




Общая характеристика работы

1o. Актуальность темы. Диссертация посвящена исследованию задачи
Римана — Гильберта с разрывными коэффициентами и условиями роста,
выводу новых представлений ее решения, получению важных для матема-
тической физики продвижений в теории обобщенной гипергеометрической
функции Лауричеллы, а также применению этих результатов к актуальным
проблемам астрофизики.

Задача о восстановлении аналитической в области B функции F = u + iv

по заданному на границе ∂B соотношению между ее вещественной и мнимой
частями

a u− b v = c (1)

(где a, b, c — вещественные функции), называемая задачей Римана —
Гильберта, рассматривалась, начиная с основополагающих работ Б.Римана и
Д.Гильберта, многими известными математиками. Глубокое развитие теория
этой и других краевых задач для аналитических функций получила в трудах
Ю.В.Сохоцкого, Племеля, Вольтерра, Гильберта, Пикара, Нетера, Карлема-
на, Ф.Д.Гахова, Н.И.Мусхелишвили и мн. др. исследованиях.

Результаты классической теории задачи Римана — Гильберта (1) и мето-
ды ее решения изложены в монографиях Ф.Д.Гахова 1, Н.И.Мусхелишвили 2,
W.Wendland 3, см. также книги А.В.Бицадзе 4, С.Г.Михлина 5, S.Prösdorf 6,
P.Henrici 7. Развитию, обобщению и различным применениям такой теории
посвящены работы Б.Боярского, И.Н.Векуа, Н.П.Векуа, М.И.Вишика,
Ф.Д.Гахова, Н.В.Говорова, И.Ц.Гохберга, Э.И.Зверовича, М.Г.Крейна,
В.Н.Монахова, Б.В.Пальцева, И.Б.Симоненко, Л.А.Аксентьева, А.И.Аптека-
рева, Б.А.Каца, А.П.Солдатова, С.П.Суетина, H.Begehr, G.C.Wen, M.Efendiev,
R.T.Seely, W.Wendland, L.Wolfersdorf, E.Wegert и др.

1Гахов Ф.Д. Краевые задачи. М.: Наука, 1977.
2Мусхелишвили Н.И. Некоторые основные задачи математической теории уругости. М.: Наука, 1966.
3Wendland W. Elliptic systems in the plane. London: Pitman, 1979.
4Бицадзе А.В. Некоторые классы уравнений в частных производных. М.: Наука, 1981.
5Михлин C.Г. Интегральные уравнения. М.: Наука, 1966.
6Prösdorf S. Einige Klassen singulärer Gleichungen. Berlin: Akademie — Verlag, 1974.
7Henrici P. Applied and Computational Complex Analysis. Vol. 1–3. New York: John Wiley and Sons, 1991.
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Конструктивные и качественные методы теории задачи Римана — Гиль-
берта находят многочисленные приложения в задачах электроники и элек-
тролиза, в теории нейтронных звезд, гидро– и аэродинамике, в обратных
задачах импедансной томографии, задачах распространения волн, в теории
псевдоаналитических функций, теории эллиптических уравнений и систем,
уравнений смешанного типа, в теории случайных процессов, а также в теории
аппроксимации. Развитие теории краевых задач для аналитических функций
и различных их обобщений активно продолжается в настоящее время
(см., например, работы 8, 9, 10, 11, 12, 13).

В диссертации рассматривается задача Римана — Гильберта с разрывны-
ми данными, под которыми понимаются функции a, b и c из (1), и условиями
роста решения в некоторых точках границы области. Такой вариант этой за-
дачи, который естественно называть сингулярным, не был достаточно изучен,
а вместе с тем является востребованным в связи со многими актуальными
приложениями, в частности в задачах14 современной астрофизики.

Гипергеометрические функции, как известно, играют важную роль при
решении задач математической физики. Теорию гипергеометрических функ-
ций многих комплексных переменных основали P.Appel, J.Horn и G.Lauricella.
Над дальнейшим развитием этой теории работали O.Ore, A.Erdelyi, O.Olsson,

8Кац Б.А. Краевая задача Римана для голоморфных матриц на неспрямляемой кривой // Известия
вузов. Матем. 2017. №2. С. 22–33. Кац Б.А., Миронова С.Р., Погодина А.Ю. Краевая задача о скачке на
контуре с протяженными особенностями // Известия вузов. Матем. 2017. №1. С. 12–16.

9Климентов С.Б. Граничные свойства обобщенных аналитических функций. Владикавказ: ЮМИ ВНЦ
РАН и РСО-А, 2014. Климентов С.Б. Задача Римана — Гильберта в классах Харди для общих эллипти-
ческих систем первого порядка // Известия вузов. Матем. 2016. №6. С. 36–47.

10Монахов В.Н., Семенко Е.В. Краевые задачи и псевдодифференциальные операторы на римановых
поверхностях. М.: Физматлит, 2003.

11Обносов Ю.В. Задача R–линейного сопряжения для софокусного эллиптического кольца // Учeн.
зап. Казан. гос. ун-та. Сер. Физ.-матем. науки. 2008. Т. 150, кн. 4. С. 137–146. Мальцевa А.М., Обносов
Ю.В., Рогозин С.В. Обобщение теоремы Милн —Томсона на случай концентрического кольца // Учeн.
зап. Казан. гос. ун-та. Сер. Физ.-матем. науки. 2006. Т. 148, кн. 4. С. 35–50.

12Солдатов А.П. Весовые классы Харди аналитических функций // Дифференц. уравнения. 2002. Т. 38.
№6. С. 809–817. Солдатов А.П. К теории анизотропной плоской упругости // Современная математика.
Фундаментальные направления. 2016. Т. 60. С. 114–163.

13Салимов Р.Б., Шабалин П.Л. Краевая задача Гильберта теории аналитических функций и ее прило-
жения. Казань: Издательство Казанского математического общества, 2005. Салимов Р.Б., Шабалин П.Л.
О разрешимости однородной задачи Гильберта с разрывами коэффициентов и двусторонним завихрением
на бесконечности логарифмического порядка // Известия вузов. Матем. 2016. №1. С. 36–48.

14Somov B.V. Plasma Astrophysics. Part I, Fundamentals and Practice. Part II, Reconnection and Flares.
N.–Y.: Springer Science+Business Media, LLC, 2013.
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С.Г.Гиндикин, H.M.Srivastava, L.Slater, H.Exton P.Deligne, G.D.Mostow,
K.Aomoto, M.Kita, И.М.Гельфанд и его научная школа, B.Dwork и многие
другие известные математики. Исследования в этом направлении активно
продолжаются в настоящее время (см., например, работы15, 16, 17, 18).

Необходимо отметить, что обобщенные гипергеометрические функции
(одной и многих переменных) находят многочисленные приложения, в том
числе в квантовой физике, теории поля, теории относительности и астро-
физике, в задачах теплопроводности, электромагнетизма, газовой динамики,
теории упругости, и акустики, в теории вероятностей, математической ста-
тистике, теории броуновского движения и проблеме передачи информации.

В диссертационной работе дано развитие теории функции Лауричеллы
F

(N)
D (a1, . . . , aN ; b, c; z1, . . . , zN), представляющей собой обобщенную гипергео-

метрическую функцию от N комплексных переменных (z1, . . . , zN) := z ∈ CN

и содержащей комплексные параметры (a1, . . . , aN) := a ∈ CN , b и c; об этой
функции см. работу Дж.Лауричеллы19, а также 17, 18, 20. Определением для
функции Лауричеллы, для краткости обозначаемой F

(N)
D (a; b, c; z), служит

N–кратный гипергеометрический ряд

F
(N)
D (a; b, c; z) :=

∞∑

|k|=0

(b)|k|(a1)k1
. . . (aN)kN

(c)|k|k1! . . . kN !
zk1
1 . . . zkN

N , (2)

сходящийся в единичном поликруге UN :=
{

z ∈ CN : |zj| < 1, j = 1, N
}
;

суммирование в (2) ведется по мультииндексу k := (k1, . . . , kN) с неотрица-
тельными целыми компонентами kj ≥ 0, j = 1, . . . , N , для которого
|k| :=

∑N
j=1 kj. Символ Похгаммера (a)k := Γ(a + k)/Γ(a); при неотрица-

15Садыков Т.М., Цих А.К. Гипергеометрические и алгебраические функции многих переменных. М.:
Наука, 2014.

16Спиридонов В.П.Очерки теории эллиптических гипергеометрических функций // Успехи матем. наук.
2008. Т. 63. Вып. 3 (381). С. 3–72.

17 Aomoto K., Kita M. Theory of Hypergeometric Functions. Springer monographs in mathematics. Tokyo,
Dordrecht, Heidelberg: Springer, 2011.

18 Iwasaki K., Kimura H., Shimomura Sh., Yoshida M. From Gauss to Painlevé. A Modern Theory of Special
Functions. Aspects of Mathematics. V. E16. Braunschweig: Friedrich Vieweg & Sohn, 1991.

19Lauricella G. Sulle funzioni ipergeometriche a piu variabili // Rendiconti Circ. Math. Palermo. 1893. V. 7.
P. 111–158.

20Exton H. Multiple hypergeometric functions and application. New York: J. Willey & Sons inc, 1976.
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тельных k он равен (a)0 = 1, (a)k = a(a + 1) . . . (a + k − 1). Параметр c в
формуле (2) не принимает целых неположительных значений, т.е. c /∈ Z−.
Функция F

(N)
D удовлетворяет системе из N линейных уравнений в частных

производных второго порядка по переменным zj:

zj(1− zj)
∂2u

∂zj
2 + (1− zj)

N∑′

k=1

zk
∂2u

∂zj∂zk
+

+
[
c− (1 + aj + b)zj

] ∂u

∂zj
− aj

N∑′

k=1

zk
∂u

∂zk
− ajb u = 0, j = 1, N ;

(3)

здесь ”штрих“ над суммой означает, что суммирование ведется по k 6= j;
параметры a, b и c входят в выражения для коэффициентов уравнений.

Важным нерешенным вопросом в теории функции Лауричеллы является
рассматриваемая в настоящей работе проблема ее аналитического
продолжения, т.е. адекватного представления ее вне поликруга UN в виде
линейной комбинации некоторых обобщенных гипергеометрических рядов,
являющихся, также как и F

(N)
D , решениями системы уравнений (3). В ра-

боте эти гипергеометрические ряды построены; они сходятся в подобластях
пространства CN , в совокупности покрывающих все пространство за исклю-
чением некоторых гиперплоскостей. Указанные представления для F

(N)
D вне

UN называют формулами аналитического продолжения. Частичные резуль-
таты по проблеме аналитического продолжения функции Лауричеллы были
получены в ряде работ (см., например, A.Erdélyi21, O.Olsson22, H.Exton20).

Одним из приложений полученных формул аналитического продолжения
для функции F

(N)
D является проблема параметров для интеграла Кристоф-

феля — Шварца. Дело в том, что задачи Римана — Гильберта, возникающие
в приложениях, как правило, приходится решать в сложных областях. Для
их сведе́ния к задаче в канонической области, где решение выписывается
явно, необходимо строить соответствующее конформное отображение. Если

21Erdélyi A. Hypergeometric functions of two variables // Acta Mat. 1950. V. 83. Issue 131. P. 131–164.
22Olsson O.M. Integration of the partial differential equations for the hypergeometric function F1 and FD of

two and more variables // J. Math. Phys. 1964. V. 5. Issue 420. P. 420–430.
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исходной областью является прямолинейный многоугольник, то для отобра-
жения есть явное представление в виде интеграла Кристоффеля — Шварца.
Этот интеграл содержит неизвестные параметры — пробразы вершин7, 23.
Проблема параметров значительно усложняется в типичной для приложений
ситуации, когда прообразы вершин расположены крайне неравномерно и
некоторые из них — очень близко друг к другу (что называют кроудингом),
см., например,7, 24,25. Проблема параметров, в особенности в ситуации
кроудинга, является весьма актуальной и привлекает большое внимание
исследователей7, 25, 26, 27, 28. Одним из ключевых аспектов в решении пробле-
мы кроудинга, как показано в работе [17], является высокоточное вычисле-
ние функции Лауричеллы F

(N)
D во всем диапазоне изменения ее аргумен-

тов z1, . . . , zN . Возможность такого вычисления предоставляют найденные
в настоящей работе формулы аналитического продолжения этой функции.

Важное теоретическое и прикладное значение имеют дифференциальные
соотношения, которым подчинены гипергеометрические функции. Одним из
важнейших в теории гипергеометрической функции Гаусса F (a, b; c; z)

является известное тождество Якоби29,30. Его прямым обобщением на
случай функции F

(N)
D служит найденная в настоящей работе система

дифференциальных формул типа Якоби, которые ранее не были известны.
Эти соотношения играют ключевую роль при выводе представления

нового типа для решения задачи Римана — Гильберта в виде интеграла
23Коппенфельс В., Штальман Ф. Практика конформных отображений. М.: Изд. иностр. лит., 1963.
24Krikeles B.C., Rubin R.L. On the crowding of parameters associated with Schwarz — Christoffel

transformation // Appl. Math. Comut. 1988. Vol. 28. №4. P. 297–308.
25Trefethen L.N., Driscoll T.A. Schwarz — Christoffel transformation. Campridge: Cambridge university

press, 2005.
26Driscoll T.A. A MATLAB toolbox for Schwarz — Christoffel mapping // ACM Transactions Math. Soft.

1996. V. 22. P. 168–186.
27Богатырев А.Б. Конформное отображение прямоугольных семиугольников // Матем. сб. 2012. Т. 203.

№12. С. 35–56.
28Накипов Н.Н., Насыров С.Р. Параметрический метод нахождения акцессорных параметров в обоб-

щенных интегралах Кристоффеля — Шварца // Ученые записки Казанского университета. Серия Физ.–
матем. науки. 2016. Т. 158. №2. С. 202–220.

29Jacobi C.G.J. Untersuchungen über die Differentialgleichungen der hypergeometrischen Reihe // J. für
Reine Angew. Math. 1859. V. 56. P. 149–165.

30Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Гипергеометрическая функция. Функции
Лежандра. М.: Наука, 1973.
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Кристоффеля — Шварца. Такое представление удобно в важных для ряда
приложений (в механике, физике плазмы, и др.) случаях, где возникает син-
гулярная задача Римана — Гильберта (1) с кусочно–постоянными функциями
a, b и c, а в точках их разрыва предписаны условия роста решения. Очевидно,
что условие (1) при постоянных a, b и c представляет собой уравнение пря-
мой на плоскости w = u + iv. Такое наблюдение подсказывает, что решение
задачи Римана — Гильберта с кусочно–постоянными данными может быть
геометрически интерпретировано как конформное отображение исходной об-
ласти на некоторый (не обязательно однолистный) многоугольник. Реализа-
цией этой интерпретации для рассматриваемой задачи Римана — Гильберта
является представление решения в виде интеграла Кристоффеля — Шварца,
полученное в настоящей работе с помощью формул типа Якоби для функции
Лауричеллы F

(N)
D .

Отметим, что в ряде работ (см., например,23, 31, 32, 33, 34, 35, 36) решения
краевых задач Римана — Гильберта, возникающих в том числе в связи с
прикладными проблемами, были записаны в виде интеграла Кристоффеля
— Шварца, однако доказательство такого представления при произвольных
кусочно–постоянных данных задачи и формул для параметров в подынте-
гральной функции, по–видимому, получено не было.

Одним из приложений, где возникает сингулярная задача Римана — Гиль-
берта с кусочно–постоянными данными, является моделирование эффекта
магнитного пересоединения. Этот эффект играет ключевую роль во многих
астрофизических явлениях, сопровождающихся высвобождением большого

31Trefftz E. Über die Torsion prismatiacher Stäbe von polygonalen Querschnitt // Math. Ann. 1921. B. 82.
H. 1/2. S. 97–112.

32Trefethen L.N., Williams R.J. Conformal mapping solution of Laplace’s equation on a polygon with oblique
derivative boundary condition // J. Comput. Appl. Math. 1986. V. 14. P. 227–249.

33Аксентьев Л.А., Зорин И.А. О классах многолистных аналитических функций, решающих задачу
Гильберта // Изв. вузов. Серия ”Математика“. 1991. №12. C. 77–80.

34Власов В.И., Марковский С.А., Сомов Б.В. Об аналитической модели магнитного пересоединения в
плазме. Деп. в ВИНИТИ №769-В89, М., 1989.

35Власов В.И., Скороходов С.Л. О развитии метода Треффца // Докл. АН. 1994. Т. 337. №6. С. 713–717.
36Шабалин П.Л., Карабашева Э.Н.Об однолистности отображений обобщенной формулой Кристоффеля

— Шварца // Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз. 2017. Т. 143. C. 81–86.

8



количества энергии, см. работы37,38,39,40, в связи с чем его моделирование
представляет собой актуальную проблему. К указанным астрофизическим
явлениям относятся, например, вспышки на Солнце и разрушение магнито-
сфер нейтронных звезд в результате воздействия ударных волн, вызванных
взрывом сверхновых звезд.

В диссертации решены две конкретные задачи Римана — Гильберта в
сложной области, возникающие при моделировании магнитного поля в окрест-
ности пересоединяющего токового слоя в короне Солнца; рассматриваемые
модели предложены Б.В.Сомовым14, 41. Эти задачи весьма актуальны для
описания процессов, предшествующих Солнечной вспышке, см.14, 37. В работе
также дано решение задачи со свободной границей42, возникающей при моде-
лировании магнитосферы нейтронной звезды при воздействии на нее ударной
волны от взрыва сверхновой звезды. Именно это явление согласно современ-
ным представлениям приводит к мощным всплескам жесткого космического
электромагнитного излучения43,44,45. Подобные задачи со свободной грани-
цей в связи с астрофизическими приложениями рассматривались многими
авторами, обзор см. в статьях 42, 44, однако решений в аналитической форме
построено не было.

2o. Целью диссертационной работы является:
1) исследование разрешимости и получение представлений для решения

задачи Римана — Гильберта в полуплоскости, когда коэффициенты и правая
37Сыроватский С.И. О возникновении токовых слоев в плазме с вмороженным сильным магнитным

полем // Журнал экперим. и теор. физ. 1971. Т. 60. С. 1721–1741.
383елёный Л.М., Динамика плазмы и магнитных полей в хвосте магнитосферы Земли. В кн.: Итоги

науки и техники. Сер. Исследования космического пространства. Т. 24. М.: ВИНИТИ, 1986.
39Прист Э., Форбс Т. Магнитное пересоединение. М.: Физматлит, 2005.
40Benz A.O., Güdel M. Physical processes in magnetically driven flares on the Sun, stars, and young stellar

objects // Annual Review Astronomy Astrophysics. 2010. V. 48. P. 241–287.
41Марковский С.А., Сомов Б.В. Некоторые свойства магнитного пересоединения в токовом слое с удар-

ными волнами // Труды 6-го ежегодного семинара ”Проблемы физики солнечных вспышек“ . М.: Наука,
1988. С. 93–110.

42Сомов Б.В. О возможности быстрого пересоединения магнитного поля и ускорения частиц в нерав-
новесной магнитосфере релятивистской звезды // Письма в Астрон. журн. 2011. Т. 37. №10. C. 740–753.

43Егоров А.Е., Постнов К.А. О возможном наблюдаемом проявлении воздействия ударной волны на
магнитосферу нейтронной звезды // Письма в АЖ. 2009. Т. 35. №4. С. 272–278.

44Истомин Я.Н., Комберг Б.В. Новая модель источника гамма–всплеска // Астрон. журн. 2002. Т. 46.
№11. С. 908–917.

45Becker W. (Ed.) Neutron Stars and Pulsars. Berlin: Springer–Verlag, 2009.
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часть задачи являются кусочно–гëльдеровыми с разрывами первого рода, а
в точках их разрыва предписаны условия произвольного степенно́го роста
решения (такую задачу Римана — Гильберта называют сингулярной);

2) построение аналитического продолжения функции Лауричеллы F
(N)
D ,

включающее нахождение полного набора решений системы уравнений с част-
ными производными (3) и вывод соответствующих формул, представляющих
функцию Лауричеллы вне единичного поликруга UN в виде линейных ком-
бинаций указанных решений;

3) вывод дифференциальных соотношений типа Якоби для функции
Лауричеллы F

(N)
D , являющихся обобщением известного тождества Якоби для

гипергеометрической функции Гаусса F (a, b; c; z);
4) вывод при помощи результатов пп. 1) и 3) нового представления в виде

интеграла Кристоффеля — Шварца для решения сингулярной задачи Рима-
на — Гильберта в полуплоскости с кусочно–постоянными данными a, b и c,
имеющими произвольное конечное число точек разрыва;

5) применение полученных в пп. 1)–4) результатов к моделированию
эффекта магнитного пересоединения в короне Солнца, включающее решение
двух конкретных задач Римана — Гильберта в сложных многоугольных об-
ластях, первая из которых соответствует фазе накопления энергии, а вторая
— фазе распада токового слоя; их решение позволило исследовать магнитное
поле в зоне пересоединения;

6) применение полученных в пп. 1), 3) результатов к решению задачи со
свободной границей, возникающей при моделировании магнитосферы
нейтронной звезды под воздействием на нее ударной волны от сверхновой
звезды.

3o. Научная новизна работы заключается в следующем:
1) на основе классических подходов1, 2 исследована разрешимость сингу-

лярной задачи Римана — Гильберта в полуплоскости с кусочно–гëльдеровыми
коэффициентами и условиями произвольного степенного роста искомой функ-
ции; получены новые представления для решения задачи через интегралы
типа Коши;

2) для функции Лауричеллы F
(N)
D с произвольным числом N переменных

10



z1, . . . , zN построена система формул ее аналитического продолжения за гра-
ницу единичного поликруга UN и найден полный набор решений системы
уравнений с частными производными (3); ранее были известны лишь некото-
рые результаты для N = 2 и N = 3, см.20, 22.

3) получена система дифференциальных соотношения типа Якоби для
функции Лауричеллы F

(N)
D с произвольным числом N переменных (резуль-

таты являются новыми);
4) с помощью результатов п. 3) получено представление нового типа в виде

интеграла Кристоффеля —Шварца для решения сингулярной задачи Римана
— Гильберта в полуплоскости с кусочно–постоянными данными, имеющими
произвольное конечное число точек разрыва; такое представление дает гео-
метрическую интерпретацию решения задачи как конформного отображения
полуплоскости на многоугольник (не обязательно однолистный) и доставляет
удобный аппарат для его анализа и вычисления;

5) дано приложение полученных результатов к моделированию эффекта
магнитного пересоединения в плазме Солнечной короны: решены две
сингулярные задачи Римана — Гильберта с кусочно–постоянными данны-
ми в сложных многоугольных областях, моделирующие магнитное поле в
зоне пересоединения; первая задача соответствует фазе накопления энергии,
а вторая — фазе распада токового слоя; выполнена численная реализация и
проведено исследование решения обеих задач; представлены картины магнит-
ного поля и найдены физически значимые характеристики поля (результаты
являются новыми);

6) построено аналитическое решение задачи со свободной границей, возни-
кающей при моделировании воздействия ударной волны от сверхновой звез-
ды на магнитосферу нейтронной звезды; осуществлена численная реализация
решения и представлены численные результаты для формы магнитосферы
и распределения магнитного поля внутри нее в зависимости от параметров
модели (полученные результаты являются новыми).

4o. Используемые методы. Для достижения целей диссертации использова-
лись классические и современные методы математической физики, в первую
очередь, методы1, 2 теории краевых задач. Кроме того, использовалась теория

11



аналитических и специальных функций математической физики, включая
теорию интегралов типа Коши, интегралов Барнса, интеграла Кристоффеля
— Шварца, интегральные представления типа Эйлера для гипергеометриче-
ских функций и теория конформного отображения сингулярно деформируе-
мых областей. Для решения нелинейных систем трансцендентных уравнений
использовался метод Ньютона.

5o. Достоверность полученных результатов подтверждается следующими по-
ложениями. В диссертации приведены полные доказательства полученных
теоретических результатов, опирающиеся на методы и подходы, указанные в
предыдущем пункте. Установленные теоремы о задаче Римана — Гильберта
переходят в частном случае отсутствия разрывов данных задачи и ростов
решения в классические результаты Ф.Д.Гахова и Н.И.Мусхелишвили. По-
строенные для функции Лауричеллы F

(N)
D формулы аналитического продол-

жения и дифференциальные соотношения типа Якоби переходят в случае
одного переменного (т.е. при N = 1) в аналогичные известные формулы для
функции Гаусса F (a, b, c; z). Найденная структура магнитного поля в области
пересоединения переходит в предельных случаях отсутствия ударных МГД–
волн, присоединенных к токовому слою, в известные результаты Б.В.Сомова
и С.И.Сыроватского.

6o. Теоретическая и практическая значимость. Результаты диссертации рас-
ширяют круг краевых задач математической физики в сложных областях,
для которых может быть построено решение в аналитической форме или
предложен способ их эффективного аналитико–численного решения. Кроме
того, полученные результаты предоставляют новые конструктивные возмож-
ности в теории специальных функций математической физики и позволяют
для задач из широкого круга приложений получать решения в явном виде.
К указанным задачам относятся, в частности, ряд современных проблем аст-
рофизики, терии плазмы и задач со свободной границей.

7o. Вклад соискателя. Основные результаты диссертации получены авто-
ром самостоятельно.

8o. Публикации. По теме диссертации опубликовано 18 статей [1]-[18]. Из
них 15 статей (см. [1]-[15]) в изданиях, рекомендованных ВАК.
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9o. Апробация работы. Результаты диссертации докладывались на научных
семинарах:

1. Семинар Отдела математической физики МИАН, Москва, МИАН, 2017 г.
(руководители А.К.Гущин, Ю.Н.Дрожжинов, В.В.Жаринов);

2. Семинар ”Асимптотические методы в математической физике“, Москва,
ИПМех, 2017 г. (руководитель С.Ю.Доброхотов);

3. Семинар по комплексному анализу (Семинар Гончара), Москва, МИАН,
2015 г. (руководители Е.М.Чирка, А.И.Аптекарев, С.П.Суетин);

4. Семинар ”Методы решения задач математической физики“, Москва, ФИЦ
ИУ РАН, 2015 г. (руководители А.А.Абрамов, В.И.Власов, С.Я.Степанов);

5. Семинар ”Космическая электродинамика“, Москва, ГАИШ МГУ, 2015 г.
(руководитель Б.В.Сомов);

6. Семинар ”Вычислительная математика, математическая физика, управ-
ление“, Москва, ИВМ РАН, 2011 г. (руководители Г.М.Кобельков,
А.В.Фурсиков);

7. Семинар ”Дифференциальные и функционально–дифференциальные
уравнения“, Москва, РУДН, 2009 г. (руководитель А.Л.Скубачевский);

и на научных конференциях:

1. Конференция по теории чисел и приложениям в честь 80-летия
А.А.Карацубы. МИАН, Москва, 22–27 мая 2017 г.

2. XII съезд Международной организации ”Астрономическое общество“, на-
учная конференция ”Астрономия от ближнего космоса до космологиче-
ских далей“. ГАИШ МГУ, Москва, 25–30 мая 2015 г.

3. Десятая ежегодная конференция ”Физика плазмы в Солнечной системе“.
Москва, ИКИ РАН, 16–20 февраля 2015 г.

4. The 7–th International Conference on Differential and Functional — Differen-
tial equations. Moscow, Russia, RUDN University, August 22–29, 2014.

5. Международная конференция по дифференциальным уравнениям и ди-
намическим системам. Суздаль, 4–9 июля 2014 г.

6. 40th Scientific Assembly, COSPAR (Committee on Space Research), Moscow,
MSU, August 2–9, 2014.

7. Девятая ежегодная конференция ”Физика плазмы в Солнечной системе“,
Москва, ИКИ РАН, 10–14 февраля 2014 г.

13



8. XI Конференция молодых ученых ”Фундаментальные и прикладные кос-
мические исследования“, Москва, ИКИ РАН, 9–11 апреля 2014 г.

9. Конференция ”Физика плазмы в солнечной системе“. Москва, ИКИ РАН,
4–8 февраля 2013 г.

10. International Conference ”Spectral and Evolution Problems“. Sevastopol.
September 17–29, 2012.

11. International Conference–School for Young Scientists ”Modern Problems of
Applied Mathematics and Computer Science“. Dubna, JINR, Russia, August
22–27, 2012.

12. International Conference ”Differential Equations and Applications“ in honour
of M.Vishik 90-th birthday. Moscow, Russia, Information Transmission
Problems Institute of RAS, June 4–7, 2012.

13. Конференции ”Астрономия в эпоху информационного взрыва: результа-
ты и проблемы“. Москва, МГУ, 28 мая – 1 июня, 2012 г.

14. Конференция ”Физика плазмы в солнечной системе“. Москва, ИКИ РАН,
6–10 февраля 2012 г.

15. International Moscow Workshop on Solar Physics ”The Sun: from quiet to
active – 2011“. Moscow, Russia, Lebedev Physical Institute, August 29 –
September 2, 2011.

16. JENAM-2011 European Week of Astronomy and Space Science.
Saint-Petersburg, Russia, 4–8 July 2011.

17. Конференция ”Физика плазмы в солнечной системе“. Москва, ИКИ РАН,
14–18 февраля 2011 г.

18. International conference ”Differential equations and related topics“ dedicated
to I.G.Petrovskii. Moscow, MSU, May 30 – June 4, 2011.

19. Международная конференция по прикладной математике и информа-
тике, посвященная 100–летию со дня рождения академика А.А.Дородни-
цына. Москва, ВЦ РАН, 7–11 декабря 2010 г.

20. XXI Международная конференция ”Spectral and Evolution Problems“, 18–
29 сентября 2010 г. Севастополь.

21. Конференция ”Асимптотические методы и математическая физика“, по-
священная профессору С.Ю.Доброхотову. Москва, ИПМех РАН, 12–14
мая 2010 г.

22. International Conference on complex analysis and related topics. Turku,
Finland, August 17–29, 2009.
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23. XVII Всероссийская конференция ”Теоретические основы и конструиро-
вание численных алгоритмов и решение задач математической физики
с приложением к многопроцессорным системам“, посвященная памяти
К.И.Бабенко. Дюрсо, 16–20 сентября 2008 г.

24. Третья международная конференция ”Функциональные пространства.
Дифференциальные операторы. Общая топология Проблемы математи-
ческого образования“, посвященная 85–летию Л.Д.Кудрявцева. Москва,
РУДН, 25–28 марта 2008 г.

25. V Международная конференция ”Дифференциальные и функционально-
дифференциальные уравнения“. Москва, РУДН, 17–24 августа 2008 г.

26. Международная конференция по дифференциальным уравнениям и ди-
намическим системам. Суздаль, 27 июня – 2 июля 2008 г.

27. Международная конференция ”Анализ и особенности“, посвященная 70–
летию В.И.Арнольда, Москва, МИАН, 20–24 августа 2007 г.

28. Международная конференция ”Дифференциальные уравнения, теория
функций и приложения“, посвященная 100–летию со дня рождения
И.Н.Векуа. Новосибирск, 28 мая – 2 июня 2007 г.

29. Международная конференция ”Дифференциальные уравнения и смеж-
ные вопросы“, посвященная памяти И.Г.Петровского, Москва, МГУ, 21–
26 мая 2007 г.

30. Международная конференция ”Математические идеи П.Л.Чебышева и
их приложение к современным проблемам естествознания“. Обнинск, 14–
18 мая 2006 г.

31. Международная конференция по дифференциальным уравнениям и ди-
намическим системам. Суздаль, 10–15 июля 2006 г.

32. Международная конференция ”Тихонов и современная математика“.
Москва, МГУ, 19–25 июня 2006 г.

33. International Conference ”Computational Methods and Function Theory“,
Joensuu, Finland, June 13–17, 2005.

10o. Структура и объем работы. Диссертация состоит из введения, четы-
рех глав и списка литературы. Доказательства некоторых утверждений и
дополнительные сведения помещены в приложения A–D. Объем диссертации
составляет 300 страниц, включая 20 рисунков и одну таблицу. Список лите-
ратуры содержит 249 наименований.
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Обзор содержания диссертации

Во введении к диссертации отмечена актуальность выбранной темы, ука-
заны цели и научная новизна работы, обозначены используемые методы и
достоверность полученных результатов, приведены сведения об апробации
работы, а также дан обзор ее содержания.

Глава I посвящена сингулярной задаче Римана — Гильберта в полуплос-
кости. Основные результаты главы: 1) исследована разрешимость сингуляр-
ной задачи Римана — Гильберта с кусочно–гёльдеровыми данными
и условиями произвольного степенного роста решения в точках разрыва
граничных данных; 2) получено представление решения такой задачи через
интегралы типа Коши.

§1 главы I содержит вводный материал о задаче Римана — Гильберта в
односвязной области B и методах ее решения. Отмечено, что в работе ис-
пользуется подход, основанный на ее сведе́нии с помощью конформного отоб-
ражения Φ : B

conf−→ H+ к аналогичной задаче Римана — Гильберта в верх-
ней полуплоскости H+ := {ξ + iη = ζ : Im ζ > 0} относительно функции
P+(ζ) := F ◦Φ−1(ζ), решение которой строится через интегралы типа Коши.

В связи с выбранным подходом в §2 главы I приведены некоторые сведе-
ния о методах конформного отображения сложных областей. Среди таких
методов выделяются две группы: аналитические и приближенные. К пер-
вым относятся: интеграл Кристоффеля — Шварца для прямолинейных мно-
гоугольников и метод на основе уравнения Шварца для отображения кру-
говых многоугольников. Ко вторым методам относится метод Теодорсона —
Гаррика, а также ряд вариационных методов конформного отображения.

Следующий §3 главы I посвящен постановке указанной сингулярной
задачи Римана — Гильберта и ее сведению к задаче сопряжения. Форму-
лировка задачи Римана — Гильберта в H+ следующая. Пусть заданные на
R = ∂H+ комплексная χ(ξ) и вещественная σ(ξ) функции являются кусочно–
гёльдеровыми с разрывами первого рода в точках множества

Ξ :=
{
ξ0, ξ1, . . . , ξN

}
, (4)
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где ξ1, . . . , ξN — конечные точки, причем ξk+1 > ξk, а ξ0 = ξN+1 — (единствен-
ная) бесконечно удаленная точка; при этом функция χ(ξ) отлична от нуля.
На каждом из участков непрерывности Lk = (ξk, ξk+1) выберем произволь-
ным образом ветвь аргумента функции χ(ξ) и обозначим через δk деленные
на π скачки функции arg χ(ξ) в точках разрыва:

δk := π−1[arg χ (ξk + 0)− arg χ (ξk − 0)
]
, k = 1, N, (5)

а для бесконечно удаленной точки полагаем

δ0 := − π−1[arg χ (ξo + 0)− arg χ (ξo − 0)
]
. (6)

Обозначим через αk и βk соответственно дробные и целые части величин δk

[0, 1) 3 αk := {δk} , βk := [δk] , k = 0, N . (7)

Введем также скачки функции σ(ξ)/χ(ξ):

ρk :=
σ (ξk + 0)

χ (ξk + 0)
− σ (ξk − 0)

χ (ξk − 0)
, k = 0, N. (8)

Пусть, кроме того, заданы неотрицательные целые числа n o, n1, . . . , nN ∈ Z+.
Мы рассматриваем задачу Римана — Гильберта для аналитической в верх-

ней полуплоскости функции P+ с условиями ее роста в точках ξk, в том числе
с неинтегрируемым ростом. При этом будем отдельно изучать два случая:

I) когда соотношения nk = 0, αk = 0, ρk 6= 0 одновременно не выполня-
ются ни в одной точке ξk, k = 0, N , разрыва граничных условий, т.е.

6 ∃ k = 0, N : nk = 0, αk = 0, ρk 6= 0 ; (9)

II) когда указанные соотношения одновременно выполняются хотя бы для
одной точки ξk, т.е.

∃ k = 0, N : nk = 0, αk = 0, ρk 6= 0 . (10)

Первый случай будем называть нелогарифмическим, а второй — логарифми-
ческим в связи с видом асимптотики решения P+(ζ) рассматриваемой задачи
вблизи точек ξk.
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I) Нелогарифмический случай. Задача Римана — Гильберта в предположе-
нии (9) формулируется следующим образом: найти аналитическую в верхней
полуплоскости H+ и непрерывную в H+ \ Ξ функцию P+(ζ), т.е.

P+ ∈ H+ := A (H+) ∩ C
(
H+ \ Ξ

)
, (11)

удовлетворяющую на вещественной оси краевому условию

Re
[
χ(ξ) P+(ξ)

]
= σ(ξ), ξ ∈ R \ Ξ, (12)

а в точках ξk — условиям роста:

P+(ζ) =

{
O

[
(ζ − ξk)

αk −nk
]
, если nk 6= 0;

O(1), если nk = 0;
ζ → ξk (k = 1, N ), (13)

P+(ζ) = O
(
ζ α o + n o

)
, ζ →∞. (14)

II) Логарифмический случай. Предположим, что для одной или несколь-
ких точек ξk, которые обозначим ξkm

, одновременно выполняются равенства

nkm
= 0, αkm

= 0, ρkm
6= 0 . (15)

Тогда в каждой конечной точке ξkm
требование (13), которое при выполнении

αkm
= nkm

= 0 означало бы P+(ζ) = O(1), ζ → ξkm
, заменяется на следующее:

P+(ζ) = O
[
ln(ζ − ξkm

)
]
, ζ → ξkm

, (16)

а если условие (15) выполняется в бесконечно удаленной точке ξk0
= ξ0,

то соотношение (14), которое при выполнении αk o
= nk o

= 0 означало бы
P+(ζ) = O(1), ζ →∞, заменяется на следующее:

P+(ζ) = O
(
ln ζ

)
, ζ →∞. (17)

В §4 главы I указаны свойства модифицированного интеграла типа Коши

M±(ζ) :=
ζ − δ

π

∫

R

Θ(t) dt

(t− δ) (t− ζ)
, ζ ∈ H±, δ ∈ R \ Ξ, (18)

где Θ(ξ) := arg
[
i χ (ξ)

]
. Этот интеграл используется для построения канони-

ческого решения задачи Римана — Гильберта, т.е. функции X+(ζ), которая
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удовлетворяет однородному краевому условию Re [χ(ξ)X+(ξ)] = 0, ξ ∈ R \Ξ,
подчиняется условиям роста X+(ζ) = O?

[
(ζ − ξk)

αk−nk
]
, ζ → ξk, k = 1, N , в

конечных точках Ξ и нигде в H+ \ Ξ не обращается в нуль.
В §5 главы I установлено, что каноническое решение задачи Римана —

Гильберта дается формулой

X(ζ) =
∏N

k=1
(ζ − ξk)

−βk−nk eM(ζ), (19)

где M(ζ) определяется из (18), и имеет следующую асимптотику на беско-
нечности:

X(ζ) = O? (ζ α o+n o−κ ), ζ →∞ ; (20)

фигурирующее здесь целое число κ, определяемое по формуле

κ := n o − β o +
∑N

k=1
(βk + nk), (21)

будем называть индексом задачи. В §5 также показано, что если индекс
κ ≥ 0, то общее решение однородной задачи Римана — Гильберта (12)–(14)
имеет вид Ψ(ζ) = X(ζ) Pκ (ζ), где X(ζ) — каноническое решение задачи,
определяемое по формуле (19), а Pκ(ζ) — произвольный многочлен степени
κ с вещественными коэффициентами. Если же индекс κ < 0, то однородная
задача Римана — Гильберта (12)–(14) в классе H+ не имеет решений, кроме
тривиального Ψ+(ζ) ≡ 0.

В §6 главы I построено частное решение неоднородной задачи и выписа-
но общее решение неоднородной сингулярной задачи Римана — Гильберта.
Основные результаты параграфа 6 является следуюещее утверждение.
Теорема 1. I) При выполнении условий (9) справедливы утверждения:

(i) если индекс κ, определяемый по формуле (21), неотрицателен, то
решение P+ ∈ H+ задачи Римана — Гильберта (12)–(14) имеет вид

P+(ζ) = X+(ζ)

[
Pκ(ζ) +

S(ζ)

πi

∫

R

σ(t) dt

S(t) χ(t) X+(t) (t− ζ)

]
, (22)

где Pκ(ζ) — произвольный полином степени κ с вещественными коэффици-
ентами, X+(ζ) — каноническое решение задачи, определяемое по формуле
(19), M+(ζ) дается равенством (18), а S(ζ) := (ζ − λ)2{κ/2}(ζ2 + 1) [κ/2 ].
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(ii) Если κ = −1, то единственным решением P+ ∈ H+ рассматривае-
мой задачи является функция

P+(ζ) =
X+(ζ)

πi

∫

R

σ(t) dt

χ(t) X+(t) (t− ζ)
. (23)

Если κ < −1 и выполняются условия
∫

R

tkσ(t) dt

χ(t) X+(t)
= 0 , k = 0, 1, . . . , |κ| − 2, (24)

то единственное решение задачи из H+ дается формулой (23). Если же
κ < −1 и условия (24) не выполнены, то эта задача в классе H+ не имеет
решений.

II) Пусть выполняются условия (10). Тогда в конечных точках ξkm
, где

одновременно выполняются соотношения (15), условие (13) в постановке
задачи следует заменить на (16), а представления (22) при κ ≥ 0 и (23)
при κ < 0 для решения P+ ∈ H+ сохраняются. Если же (15) имеет место
для ξk0

= ∞, то условие (14) следует заменить на (17), представление (23)
при κ < 0 сохраняется, а функцию S(ζ) в представлении (22) при κ ≥ 0

для решения следует определять равенством

S(ζ) := (ζ − λ)2{κ/2}(ζ2 + 1)[κ/2](ζ − λ̃), λ, λ̃ ∈ R \ Ξ, λ 6= λ̃.

Необходимо отметить, что индекс κ задачи Римана — Гильберта и пред-
ставление ее решения, установленные теоремой 1, не зависят от выбора ветвей
аргумента функции χ(ξ).

Глава II посвящена развитию теории функции Лауричеллы F
(N)
D .

Основные результаты главы:
1) найдены дифференциальные соотношения типа Якоби для F

(N)
D ;

2) получены формулы аналитического продолжения этой функции при
произвольном числе N переменных за границу единичного поликруга UN , где
она первоначально определена с помощью N–кратного гипергеометрического
ряда (2);

3) найден полный набор решений системы уравнений с частными произ-
водными, которой удовлетворяет F

(N)
D . Эти решения являются аналогом и
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прямым обобщением канонических решений Куммера, известных в теории
гипергеометрического уравнения Гаусса.

Вначале, в §1 главы II, приведены используемые в дальнейшем известные20

сведения из теории функции Лауричеллы F
(N)
D (a; b, c; z), в том числе некото-

рые разложения и формулы дифференцирования. В поликруге UN эта функ-
ция представима обобщенным гипергеометрическим рядом (2); для нее спра-
ведливо интегральное представление типа Эйлера:

F
(N)
D (a; b, c; z) =

Γ(c)

Γ(b) Γ(c− b)

∫ 1

0

tb−1 (1− t)c−b−1

∏N
j=1 (1− t zj) aj

dt, (25)

где z ∈ LN :=
{

z ∈ CN : |arg(1−zj)| < π, j = 1, N
}
и Re b > 0, Re (c−b) > 0.

Функция F
(N)
D удовлетворяет системе (3) уравнений в частных производных,

особым множеством M которой является объединение гиперплоскостей

M
(τ)
j :=

{
z ∈ CN

: zj = τ
}
, τ ∈ S := {0, 1,∞},

и гиперплоскостей Mj, l := {z ∈ CN
: zj = zl}; здесь j, l = 1, N , j 6= l.

В частности, множеству M принадлежат такие точки z ∈ CN , у которых
для всех компонент zj выполняется включение zj ∈ S. Будем обозначать
через z

(1,∞)
p точки особого множества, у которых первые p компонент равны

единице, а остальные (N − p) — бесконечности:

z(1,∞)
p := ( 1, . . . , 1︸ ︷︷ ︸

p

, ∞, . . . ,∞︸ ︷︷ ︸
(N−p)

)

Точки множества M, все N компонент которых равны 1 или ∞, будем обо-
значать соответственно

z(1) := ( 1, . . . , 1︸ ︷︷ ︸
N

), z(∞) := (∞, . . . ,∞︸ ︷︷ ︸
N

).

В окрестности любой точки z ∈ CN определены (N +1) линейно независимых
решения этой системы (3), и таким образом, ее общее решение зависит от
(N + 1)-й произвольной комплексной постоянной.

В §2 главы II приведены используемые результаты из теории функции
Гаусса F (a, b; c; z), включая интегральные представления Эйлера и Барнса,
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канонические решения Куммера (в том числе их вариант для логарифмиче-
ского случая) и основанные на них формулы аналитического продолжения.

§3 главы II посвящен выводу дифференциальных соотношений типа
Якоби для функции Лауричеллы F

(N)
D . Прежде всего, в п. 3.1 доказываются

следующие соотношения между ассоциированными функциями Лауричеллы:

c F
(N)
D (a; b, c; z)− b zj F

(N)
D (a; b + 1, c + 1; z) = c F

(N)
D (aj; b, c; z),

где j = 1, . . . , N , вектор aj получается из вектора a уменьшением на еди-
ницу компоненты с номером j, т.е. aj := (a1, . . . , aj−1, aj − 1, aj+1, . . . , aN).

Эти соотношения необходимы для доказательства основного результата па-
раграфа — формул типа Якоби для функции F

(N)
D . Введем еще обозначение

aj,s для вектора, получаемого из aj увеличением на единицу s-й компоненты,
т.е. aj,s := (a1, . . . , aj − 1, . . . , as + 1, . . . , aN), и отметим, что под модулем
вектора далее будем понимать сумму его элементов, так что, например, для
вектора a′j := (a1, . . . , aj−1, aj+1, . . . , aN) имеем |a′j| :=

∑N
s=1, s 6=j as. Справед-

ливо следующее утверждение.
Теорема 2. Функция Лауричеллы F

(N)
D (a; b, c; z) удовлетворяет диффе-

ренциальным соотношениям типа Якоби

∂

∂zj

{ [ N∏′

p=1

(zj − zp)
ap

]
z

c−|a′j |−1
j (1− zj)

aj+b−c F
(N)
D (a; b, c; z)

}
=

=

[ N∏′

p=1

(zj − zp)
ap−1

]
z

c−|a′j |−2
j (1− zj)

aj+b−c−1 Rj (a; b, c; z), j = 1, N,

(26)

где Rj определяется по формуле

Rj(a; b, c; z) =

[ N∏′

p =1

(zj − zp)

] [
(c− 1)F

(N)
D (aj; b− 1, c− 1; z) +

+

N∑′

s=1

as
zs(1− zs)

zj − zs
F

(N)
D (aj,s; b, c; z)

]
;

(27)

штрих над суммой или произведением означает, что s 6= j или p 6= j.
В §3 главы II указана (отличная от классической20) система уравнений для

функции Лауричеллы. Эта система уравнений является непосредственным
следствием найденных формул типа Якоби.
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Следующий §4 главы II посвящен выводу формул аналитического продол-
жения для функции Лауричеллы F

(N)
D . В п. 4.1 построено аналитическое

продолжение этой функции в окрестность точки z(∞) = (∞, . . . ,∞), т.е. в
область, где все N ее переменных z1, . . . , zN принимают значения, по модулю
большие единицы. Для этого в п. 4.1 дано новое представление функции Ла-
уричеллы в виде интеграла типа Барнса, удобное для осуществления анали-
тического продолжения указанного типа. Затем осуществлено продолжение
по одному переменному (в окрестность бесконечности). Далее на этой основе
получено требуемое аналитическое продолжение в окрестность точки z(∞),
т.е. по всем переменным z1, . . . , zN .

Прежде чем сфоромулировать соответствующее утверждение, определим
следующие величины: gj := (a1, . . . , aj−1, 1− c + b, aj+1, . . . , aN),

|as, j| :=
∑j

n=s
an, |a| := |a1,N |, |ks, j| :=

∑j

n=s
kn,

где j = 1, . . . , N ; введем также преобразования вектора z = (z1, . . . , zN):

z−1 :=
( 1

z1
, . . . ,

1

zN

)
, Yj(z) :=

(z1

zj
, . . . ,

zj−1

zj
, zj,

zj

zj+1
, . . . ,

zj

zN

)
. (28)

Запишем следующий обобщенный гипергеометрический ряд20:

G(N, j)(a; b; c; z
)

:=
∞∑

|k|=0

(b)|kj | (a1)k1
. . . (aN)kN

(c)|kj | k1! . . . kN !
zk1
1 . . . zkN

N , (29)

где |kj| :=
∑N

n= j kn −
∑j−1

n=1 kn для мультииндекса k = (k1, . . . , kN), а пара-
метр j может принимать значения j = 1, N + 1. Областью сходимости ряда
(29) при всех j является единичный поликруг UN . При j = 1 формула (29),
очевидно, переходит в определение (2) функции Лауричеллы.

В формуле (29) разность индексов |kj| может принимать отрицательные
значения. Для отрицательных целых k символ Похгаммера (a)k записывается

в виде (a)k = (−1)k
[
(1− a)(2− a) . . .

(
(1− a)− k − 1

)]−1
, k = −1,−2, . . . .

Введем еще обозначение для области

VN :=
{
z ∈ CN : |z1| > . . . > |zN | > 1; |arg(−zj)| < π, j = 1, N

}
. (30)
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Следующее утверждение дает аналитическое продолжение функции
Лауричеллы F

(N)
D в область VN .

Теорема 3. Если ни одно из чисел (b − |a1, j| ), j = 1, N , не является
целым, то аналитическое продолжение ряда (2) в область VN дается фор-
мулой

F
(N)
D (a; b, c; z) =

∑N

j=0
Bj U

(∞)
j (a; b, c; z), (31)

где функции U
(∞)
j определяются равенствами

U
(∞)
0 (a; b, c; z) :=

( ∏N

l=1
(−zl)

−al

)
F

(N)
D

(
a; 1+ |a| − c, 1+ |a| − b; z−1), (32)

U
(∞)
j (a; b, c; z) := (−zj)

|a1,j−1|−b

( ∏j−1

l=1
(−zl)

−al

)
×

× G(N,j)
(
gj; b− |a1, j−1|, 1− |a1, j|+ b; Yj(z

−1)
)
, j = 1, N,

(33)

а коэффициенты Bj имеют вид

B0 =
Γ(c) Γ

(
b− |a|)

Γ(b) Γ
(
c− |a|) , Bj =

Γ(c) Γ
(
b− |a1,j−1|

)
Γ
(|a1,j| − b

)

Γ(aj)Γ(b) Γ(c− b)
, j = 1, N.

Функции (32), (33) являются линейно независимыми решениями систе-
мы (3).

Из этой теоремы следуют формулы аналитического продолжения функ-
ции Лауричеллы в области вида VN

σ :=
{
z ∈ CN : σ(z) ∈ VN

}
, где σ —

произвольный элемент группы перестановок SN . Действительно, учитывая
равенство

F
(N)
D (a; b, c; z) = F

(N)
D

(
σ(a); b, c; σ(z)

)
, (34)

вытекающее непосредственно из определения (2), а также то, что включение
z ∈ VN

σ влечет σ(z) ∈ VN , получаем, что аналитическое продолжения функ-
ции F

(N)
D в область VN

σ осуществляется формулой (31) с заменой в ее правой
части a на σ(a) и z на σ(z). При этом функции U

(∞)
j (σ(a); b, c; σ(z)), j = 0, N ,

получаемые из (32), (33) действием перестановки σ ∈ SN на аргумент z и па-
раметр a, являются линейно независимыми решениями системы (3).
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Далее в п. 4.2 главы II построено аналитическое продолжение функции
F

(N)
D в окрестность точки z(1), т.е. в области KN

σ :=
{
z ∈ CN : σ(z) ∈ KN

}
, где

KN :=
{

z ∈ CN : 0 < |1− z1| < · · · < |1− zN | < 1; |arg(1− zj)| < π, j = 1, N
}

(σ ∈ SN); все N ее переменных принимают значения, близкие к единице.
Предварительно дано еще одно представление функции F

(N)
D в виде интегра-

ла типа Барнса, удобное для осуществления аналитического продолжения в
область KN . С помощью этого представления найдено продолжение по од-
ному переменному (в окрестность единицы) и с его помощью осуществлено
требуемое аналитическое продолжение в окрестность точки z(1).

Наконец, в п. 4.3 главы II даны формулы аналитического продолжения в
область, где некоторые p переменных функции Лауричеллы близки к едини-
це, а остальные (N − p) — к бесконечности. Обозначим через WN, p области
следующего вида:

WN, p :=
⋃

δ∈(0,1)

WN, p(δ), (35)

где для каждого заданного δ ∈ (0, 1) вспомогательная область WN, p(δ) опре-
деляется равенством

WN, p(δ) :=

:=
{
z ∈ CN : 0 < |1− z1| < . . . < |1− zp| < δ, |arg(1− zj)| < π, j = 1, p;

|zp+1| > . . . > |zN | > 1 + δ, |arg(−zs)| < π, s = p + 1, N
}

.

(36)

Здесь целочисленный параметр p принимает значения p = 0, N , причем, если
p = 0, то в (36) отсутствуют ограничения для zj, j = 1, p, а если p = N , то в
этом определении отсутствуют ограничения для zj, j = p + 1, N .

Определим конусные области, совпадающие с WN, p с точностью до сим-
метрий

WN, p
σ :=

{
z ∈ CN : σ(z) ∈WN, p

}
. (37)

Если элементарные операции над вектором z определяются из (28), то для
векторов

rp = rp(z) :=
(
z1, . . . , zp

)
, sp = sp(z) :=

(
zp+1, . . . , zN

)
(38)
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аналогичные преобразования определяются очевидным образом, например,

Yj(1− rp) =
(1− z1

1− zj
, . . . ,

1− zj−1

1− zj
, 1− zj,

1− zj

1− zj+1
, . . . ,

1− zj

1− zp

)
, (39)

Yj

(
s−1
p

)
=

( zj

zp+1
, . . . ,

zj

zj−1
,

1

zj
,

zj+1

zj
, . . . ,

zN

zj

)
. (40)

Введем еще вспомогательные функции Z
(N, p)
j (z), где j, p = 0, N :

Z
(N, p)
0 (z) :=

(
rp − 1, s−1

p

)
, Z

(N, p)
j (z) :=

(
Yj

(
1 − rp

)
, s−1

p

)
, j = 1, p;

(41)

Z
(N, p)
j (z) :=

( z1 − 1

zj
, . . . ,

zp − 1

zj
, Yj

(
s−1
p

) )
, j = p + 1, N ; (42)

здесь учтены равенства (38)–(40), а выражения вида f = (w1, . . . , wn,q) или
f = (w,q), где w = (w1, . . . , wn) и q = (q1, . . . , qj), означают, что f =

(w1, . . . , wn, q1, . . . , qj). Если p = 0, то для определения функций Z
(N, p)
j (z)

используется первое равенство (41) и равенства (42), а если p = N , то ука-
занные функции находятся из (41), а формулы (42) в определении не участ-
вуют. Введем векторы hp,j, выражающиеся через параметры a1, . . . , aN , b и
c функции Лауричеллы по формулам:

hp,j := (a1, . . . , aj−1, c− |a|, aj+1, . . . , aN), j = 1, p,

hp,j := (a1, . . . , aj−1, 1− c + |a1,p|+ b, aj+1, . . . , aN), j = p + 1, N,

а также следующие величины:

κ(k, p, l) := |k1,p| − |kp+1, l−1|+ |kl,N |,
λ(k, p, l) :=|kl,p| − |k1, l−1|, µ(k, p) := |kp+1, N | − |k1, p|,

(43)

где |ks,l| =
∑l

m=s km, и кроме того, будем использовать сокращенную запись

k! := k1! . . . kN !, (a)k := (a1)k1
. . . (aN)kN

, zk := zk1
1 . . . zkN

N . (44)

Определим гипергеометрические ряды F(N, p)(a; b, c1, c2; z), G(N, p)
j (a; b, c; z)

и H
(N,p)
j (a; b, c; z) по следующим формулам:

F(N, p)(a; b, c1, c2; z) :=
∞∑

|k|=0

(b)|kp+1,N |
(c1)µ(k,p)(c2)|k1,p|

(a)k
k!

zk, (45)

26



G
(N, p)
j (a; b, c; z) :=

∞∑

|k|=0

(b)λ(k, p, j)

(c)λ(k, p, j)

(aj − |kp+1, N |)kj

(aj)kj

(a)k
k!

zk, (46)

H
(N,p)
j (a; b, c; z) :=

∞∑

|k|=0

(b)κ(k, p, j)

(c)κ(k, p, j)

(aj + |k1, p|)kj

(aj)kj

(a)k
k!

zk. (47)

Предполагается, что в формуле (46) параметр j может принимать значения
1, . . . , p, а в формуле (47) — значения p + 1, . . . , N .

Ряды (45), (46) и (47) сходятся соответственно в областях FN,p,GN,p
j иHN,p

j ,
которые можно представить в виде

FN,p =
⋃

δ∈(0,1)

FN,p(δ), GN,p
j =

⋃

δ∈(0,1)

GN,p
j (δ), HN,p

j =
⋃

δ∈(0,1)

HN,p
j (δ),

где вспомогательные круговые области FN,p(δ),GN,p
j (δ) иHN,p

j (δ) для каждого
заданного заданного δ ∈ (0, 1) определяются следующими формулами:

FN,p(δ) :=
{

z ∈ CN : |zs| < δ, s = 1, p; |zl| < (1 + δ)−1, l = p + 1, N
}

,

GN,p
j (δ) :=

{
z ∈ CN : |zs| < 1, s = 1, p, s 6= j; |zj| < δ;

|zl| < (1 + δ)−1, l = p + 1, N
}

,

HN,p
j (δ) :=

{
z ∈ CN : |zs| < 1, s = 1, p ;

|zl| < 1− δ, l = p + 1, N, l 6= j, |zj| < δ
}

.

Следующая теорема устанавливает формулы аналитического продолже-
ния функции F

(N)
D в области WN, p, вид которых определяется из (35).

Теорема 4. Аналитическое продолжение ряда (2) в областьWN, p с про-
извольным p = 0, N , при котором ни одно из чисел

(c− |a1, j| − b), j = 1, p; (b− |ap+1, j| ), j = p + 1, N,

не является целым, дается следующей формулой:

F
(N)
D (a; b, c; z) =

∑N

j=0
Aj U

(1,∞)
p, j (a; b, c; z), (48)
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где функции U
(1,∞)
p, j при j = 0, p определяются равенствами

U
(1,∞)
p, 0 (a; b, c; z) :=

(∏N

l=p+1
(−zl)

−al

)
×

×F(N, p)
(
a; 1 + |a| − c, 1 + |ap+1,N | − b, 1 + |a1,p|+ b− c; Z

(N,p)
0 (z)

)
,

(49)

U
(1,∞)
p, j (a; b, c; z) := (1− zj)

c−|a1,j |−b
( ∏p

l=j+1
(1− zl)

−al

) ( ∏N

l=p+1
(−zl)

−al

)
×

× G
(N,p)
j

(
hj,p; c− |a1,j−1| − b, 1 + c− |a1,j| − b; Z

(N,p)
j (z)

)
, j = 1, p,

(50)

а при j = p + 1, N — следующими равенствами:

U
(1,∞)
p, j (a; b, c; z) := (−zj)

|ap+1, j−1|−b

( ∏j−1

l=p+1
(−zl)

−al

)
×

× H
(N, p)
j

(
hj,p; b− |ap+1,j−1|, 1 + b− |ap+1, j|; Z

(N,p)
j (z)

)
, j = p + 1, N.

(51)

Коэффициенты Aj в представлении (48) при j = 0, p имеют вид

A0 =
Γ(c) Γ

(
b− |ap+1,N |

)
Γ
(
c− |a1,p| − b

)

Γ(b) Γ
(
c− |a|) Γ(c− b)

,

Aj =
Γ(c) Γ

(
c− |a1, j−1| − b

)
Γ
(|a1, j|+ b− c

)

Γ(aj) Γ(b) Γ(c− b)
,

а при j = p + 1, N — следующий вид:

Aj =
Γ(c) Γ

(
b− |ap+1, j−1|

)
Γ
(|ap+1, j| − b

)

Γ(aj) Γ(b) Γ(c− b)
.

Функции U
(1,∞)
p, j , определяемые из (49)–(51), являются линейно независимы-

ми решениями системы (3).
Из этой теоремы с помощью несложных рассуждений могут быть най-

дены формулы аналитического продолжения функции Лауричеллы в обла-
сти WN,p

σ , определяемые равенством (37), для всех p = 0, N и σ ∈ SN , где,
напомним, SN — группа перестановок множества из N элементов. Действи-
тельно, учитывая свойство (34) функции Лауричеллы (2), а также то, что
включение z ∈ WN,p

σ влечет σ(z) ∈ WN,p, получаем, что аналитическое
продолжения функции F

(N)
D в область WN, p

σ осуществляется формулой (48)
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с заменой в ее правой части, т.е. в коэффициентах Aj = Aj(a; b, c; z) и функ-
циях U

(1,∞)
p, j (a; b, c; z), определяемых из (49)–(51), параметра a на σ(a) и аргу-

мента z на σ(z). При этом функции U
(1,∞)
p, j,σ := U

(1,∞)
p, j

(
σ(a); b, c; σ(z)

)
,

получаемые из (49)–(51) действием перестановки σ ∈ SN , являются линейно
независимыми решениями системы (3). Можно показать, что множество

A(N) :=
{
U

(1,∞)
p, j, σ ; j, p = 0, N, σ ∈ SN

}

представляет собой полный набор решений системы (3) вW :=
⋃
p,σ
W(N,p)

σ . При

N = 1 функции из A(N) превращаются в известные канонические решения
гипергеометрического уравнения, найденные Куммером, см.30, 46. При N = 2

такая система решений была, в основном, построена в21, 22, а при N = 3

за некоторыми исключениями указана в 20; при этом в указанных работах
использовался способ, отличный от примененного в диссертации. При N ≥ 3

полный набор функций, принадлежащих множеству A(N), по–видимому, оста-
вался неизвестным.

§5 главы II посвящен важному частному случаю функции Лауричеллы при
N = 2, известному как функция Аппеля F1(a, a′; b, c; z, ζ). В этом параграфе
построены формулы аналитического продолжения F1 в весьма важной для
приложений ситуации, когда параметры a, a′, b и c подчинены специальным
целочисленным соотношениям. Этот случай, называемый логарифмическим
(аналитическое продолжение содержит не только степени, но и логарифмы
переменных), требует отдельного рассмотрения, так как если применить к
этому случаю обычные формулы продолжения, допустимые для нелогариф-
мического случая, то тогда в них возникнут сингулярные слагаемые, что сде-
лает невозможным их непосредственное использование. Построенные фор-
мулы аналитического продолжения дают представления функции F1 через
обобщения двойных гипергеометрических рядов на логарифмический случай.

Глава III посвящена выводу принципиально нового представления реше-
ния задачи Римана — Гильберта с кусочно–постоянными данными в виде
интеграла Кристоффеля Шварца.

46Уиттекер Э.Т., Ватсон Дж.Н. Курс современного анализа. Т. 2. М.: Эдиториал УРСС, 2002.
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§1 главы III носит вспомогательный характер. Основным результатом здесь
является представление решения задачи Римана — Гильберта (12) с кусочно–
постоянными данными

χ(ξ) = χk, σ(ξ) = σk; ξ ∈ Lk, k = 0, N, (52)

и условиями роста (13), (14) через интегралы типа Коши. Далее предполага-
ем, что выполнены условия (9).

Каноническое решение X+(ζ) рассматриваемой задачи Римана — Гиль-
берта имеет вид

X+(ζ) = e iΘN

∏N

k=1
(ζ − ξk)

αk−nk, (53)

ΘN := π/2 − arg χN , а общее решение Ψ+(ζ) однородной (т.е. при σ ≡ 0)
задачи Римана — Гильберта дается формулой

Ψ+(ζ) = e iΘN

∏N

j=1
(ζ − ξj)

αj−nj Pκ(ζ),

где Pκ(ζ) — произвольный полином степени κ с вещественными коэффици-
ентами.

Частное решение N+(ζ) неоднородной задачи Римана — Гильберта может
быть представлено в виде

N+(ζ) =
∑N

k=0
N+

k (ζ), N+
k (ζ) = X+(ζ) F+

k (ζ), (54)

где функции F+
k (ζ) даются равенствами

F+
k (ζ) =

σk

χk πi

∫

Lk

dt

X+(t)(t− ζ)
, k = 1, N − 1, (55)

F+
0 (ζ) =

σ0(ζ − τ∗)κ

χ0 πi

∫

L0

(t− τ∗)−κ

X+(t)(t− ζ)
dt,

F+
N(ζ) =

σN(ζ − τ ∗)κ

χN πi

∫

LN

(t− τ ∗)−κ

X+(t)(t− ζ)
dt;

(56)

здесь τ∗, τ ∗ ∈ R— произвольные точки соответственно из (ξ1, +∞) и (−∞, ξN).
Преобразование общего решения P+(ζ) = Ψ+(ζ) + N+(ζ) неоднородной

задачи Римана — Гильберта к виду интеграла Кристоффеля — Шварца осу-
ществлено путем дифференцирования и нахождения первообразной. Такое
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преобразования отдельно проведено для решения Ψ+(ζ) однородной задачи
и (что является значительно более трудным вопросом) для частного решения
N+(ζ) неоднородной задачи. Для функции Ψ+(ζ) находим

Ψ+(ζ) = e iΘN

∫ ζ

ζ∗

[ ∏N

j=1
(t− ξj)

αj−nj−1
]
Q (t) dt + w∗

0, (57)

где Q (ζ) — полином степени (N − κ − 1), связанный с Pκ(ζ) равенством

Q(ζ) = Pκ(ζ)
∑N

s=1

[
(αs − ns)

∏N

j=1,j 6=s
(ζ − ξj)

]
+ P ′

κ(ζ)
∏N

j=1
(ζ − ξj). (58)

Техническим средством, позволившим осуществить преобразование функ-
ции N+(ζ) к виду интеграла Кристоффеля — Шварца, является формула
типа Якоби для функции Лауричеллы (при специальных значениях пара-
метров). Для выражения функции N+(ζ) через функцию Лауричеллы ис-
пользовано представление (25). В п. 2.1 главы III изложен подход к такому
преобразованию, а само преобразование осуществлено в п. 2.4 главы III.

Для того чтобы сформулировать теорему о представлении решения P+ за-
дачи Римана — Гильберта в виде интеграла Кристоффеля — Шварца, введем
ряд обозначений. Введем вектор a := (a0, a1, . . . , aN), компоненты aj которо-
го связаны с данными задачи Римана — Гильберта с помощью соотношений:
a0 := κ, aj := αj−nj, j = 1, N ; здесь, напомним, κ — индекс задачи, опреде-
ляемый по формуле (21), величины αj находятся из (7), а nj — произвольные
неотрицательные целые числа.

Определим векторы ak, k = 1, N − 1, получаемые из a исключением эле-
ментов a0, ak, ak+1, т.е. ak := (a1, . . . , ak−1, ak+2, . . . , aN), а также векторы
a0 = aN := (a0, a2, . . . , aN−1). Введем векторы as

k, получаемые увеличением
на единицу компоненты as векторов ak (предполагается, что s 6= k, k+1, если
k = 1, . . . , N − 1 и s 6= 1, N , если k = 0 или k = N), т.е.

as
k :=

(
a1, . . . , ak−1, ak+2, . . . , as−1, as + 1, as+1, . . . , aN

)
, k = 1, N − 1,

as
0 = as

N :=
(
a0, a2, . . . , as−1, as + 1, as+1, . . . , aN−1

)
,

a0
0 = a0

N := (a0 + 1, a2, . . . , aN−1).

Определим числа bk и ck, k = 0, N , с помощью соотношений

b0 := |α|+ κ − |n|, c0 := |α2,N |+ κ − |n2,N |+ 1;
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bk := 1 + nk − αk, ck := 2 + nk + nk+1 − αk − αk+1, k = 1, N − 1;

bN := |α|+ κ − |n|, cN := |α1,N−1|+ κ − |n1,N−1|+ 1;

здесь, как обычно, |αk,l| =
∑l

j=k αj,|α| = |α1,N |; |nk,l| =
∑l

j=k nj, |n| = |n1,N |.
Величины |βk,l| и |β|, где β := (β1, . . . , βN), определяются аналогично. Век-
торы uk, k = 0, N , имеют вид

u0 :=
(
u0

0, u0
2, . . . , u

0
N−1

)
, uN :=

(
uN

0 , uN
2 , . . . , uN

N−1
)
;

uk :=
(
uk

1, . . . , u
k
k−1, u

k
k+2, . . . , u

k
N

)
, k = 1, N − 1;

здесь величины uk
j даются следующими равенствами:

u0
0 :=

ξN − τ∗
ξN − ξ1

; u0
j :=

ξN − ξj

ξN − ξ1
, j = 2, N − 1;

uk
j :=

ξk+1 − ξk

ξj − ξk
, j = 1, N \ {k, k + 1}, k = 1, N − 1;

uN
0 :=

τ ∗ − ξ1

ξN − ξ1
; uN

j :=
ξj − ξ1

ξN − ξ1
, j = 2, N − 1 ,

в которых τ∗ и τ ∗ имеют тот же смысл, что и в (56), а ξj, j = 1, N , — точ-
ки множества Ξ разрыва граничных данных χ(ξ) и σ(ξ) задачи Римана —
Гильберта, определенного в (4).

Представление в виде интеграла Кристоффеля — Шварца для частного
решения N+(ζ), найденное в п. 4.4 главы III, имеет вид

N+(ζ) = eiΘN

∫ ζ

ζ∗

[ ∏N

j=1
(ζ − ξj)

αj−nj−1
]
T(t) dt + ν∗, (59)

где T(ζ) — следующий полином с вещественными коэффициентами:

T(ζ) =

[ N∏

j=1

(ζ − ξj)

]{
Λ0(ζ − τ∗)κ

(ζ − ξ1)(ζ − ξN)

(
µ0
−1 +

µ0
0

ζ − τ∗
+

N−1∑
s=2

µ0
s

ζ − ξs

)
+

+
N−1∑

k=1

Λk

(ζ − ξk)(ζ − ξk+1)

[
µk
−1 + (ζ − ξk)

N∑

s=1 6=k, k+1

µk
s

ζ − ξs

]
+

+
ΛN(ζ − τ ∗)κ

(ζ − ξ1)(ζ − ξN)

(
µN
−1 +

µN
0

ζ − τ ∗
+

N−1∑
s=2

µN
s

ζ − ξs

)}
;

(60)
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здесь величины Λ0, µ0
−1 и µ0

s имеют вид

Λ0 = −eiπ(β0−n0) σ0

π |χ0| B(b0, c0 − b0) (ξN − ξ1)
−b0,

µ0
−1 = (c0 − 1)(ξ1 − ξN)F

(N−1)
D ( a0; b0 − 1, c0 − 1; u0 ),

µ0
0 = a0 (ξN − τ∗)(τ∗ − ξ1) F

(N−1)
D

(
a0

0; b0, c0; u0
)
,

µ0
s = as (ξN − ξs)(ξs − ξ1) F

(N−1)
D

(
as

0; b0, c0; u0
)
; s = 2, . . . , N − 1;

величины Λk, µk
−1 и µk

s даются формулами

Λk = −eiπ(|βk+1,N |+|nk+1,N |) σk

|χk|πB(bk, ck − bk)(ξk+1 − ξk)
ck−1

N∏

j=1, 6=k, k+1

|ξk − ξj|−aj ,

µk
−1 = (ck − 1)F

(N−2)
D ( ak; bk − 1, ck − 1; uk ),

µk
s = as

(ξs − ξk+1)

(ξk − ξs)
F

(N−2)
D

(
as

k; bk, ck; uk

)
, s = 1, N, s 6= k, k + 1;

величины ΛN , µN
−1 и µN

s имеют вид

ΛN =
σN

|χN |πB(bN , cN − bN) (ξN − ξ1)
−bN ,

µN
−1 = (cN − 1)(ξN − ξ1)F

(N−1)
D ( aN ; bN − 1, cN − 1; uN ),

µN
0 = a0(τ

∗ − ξ1) (ξN − τ ∗)F (N−1)
D

(
a0

N ; bN , cN ; uN

)
,

µN
s = as(ξs − ξ1) (ξN − ξs)F

(N−1)
D

(
as

N ; bN , cN ; uN

)
, s = 2, . . . , N − 1,

Символ B(·, ·) означает бета–функцию B(α, β) = Γ(α)Γ(β)/Γ(α + β).

Складывая представления (57), (58) и (59), (60) приходим к искомому
представлению в виде интеграла Кристоффеля —Шварца для решения P+(ζ)

задачи Римана — Гильберта.
Теорема 5. Для решения P+(ζ) задачи Римана — Гильберта (12)–(14)

в H+ с кусочно–постоянными данными (52), удовлетворяющими условиям
(9), справедливы следующие утверждения.

i) Если индекс κ, определенный по формуле (21), неотрицателен, то ре-
шение P+ ∈ H+ представимо в виде интеграла Кристоффеля — Шварца

P+(ζ) = e iΘN

∫ ζ

ζ∗

∏N

j=1
(t− ξj)

αj −nj−1 R (t) dt + w∗; (61)
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здесь R(ζ) — полином степени (N + κ − 1) с вещественными коэффициен-
тами следующего вида:

R (ζ) = Q (ζ) + T (ζ), (62)

где Q (ζ) — полином степени (N+κ−1), определенный по формуле (58) через
полином Pκ(ζ) степени κ c произвольными вещественными коэффициента-
ми, а T(ζ) — вещественный полином (60), степень которого (N + κ − 2).

ii) Если κ = −1, то единственное решение задачи записывается в виде
интеграла Кристоффеля — Шварца (61), (62), где в формуле (62) для по-
линома R(ζ) следует положить Q (ζ) ≡ 0 и формально положить κ = 0 в
формуле (60) для T(ζ).

iii) Если κ < −1, то для существования решения необходимо и доста-
точно выполнения условий

∑N

m=0
Bk m

σm

χm
= 0, k = 0, 1, . . . , |κ| − 2; Bk m :=

∫

Lm

tk

X+ (t)
dt.

При этом, если указанные условия выполнены, то решение находится по
той же формуле, что и при κ = −1.

Отметим, что в диссертации указана явная формула для w∗(ζ∗) в (61).
Представление в виде интеграла Кристоффеля — Шварца (61) показыва-

ет, что функция P+(ζ) осуществляет конформное отображение верхней по-
луплоскости H+ на некоторую односвязную многоугольную неоднолистную
область M. Внутренние точки ветвления области M являются образами (при
отображении w = P+(ζ)) комплексных нулей полинома R(ζ), лежащих в H+,
а граничные угловые точки M — образами точек ξk ∈ Ξ, а также веществен-
ных нулей R(ζ) при этом отображении. Измерямый по области M угол в точке
wk = P+(ξk), k 6= 0, равен πγk := π(αk−nk), если R(ξk) 6= 0, и π(γk + ρ), если
R(ξk) = 0, где ρ — порядок нуля полинома R в ξk. Угол в точке w̃ := P+(ξ̃ ),
где ξ̃ ∈ R и R(ξ̃ ) = 0, но ξ̃ /∈ Ξ, равен π(ρ̃+1), где ρ̃ — порядок нуля R в точ-
ке ξ̃. Таким образом, теорема 5 дает ясную геометрическую интерпретацию
решению P+(ζ) рассматриваемой задачи Римана — Гильберта.

Глава IV посвящена применению результатов, полученных в главах I–III,
к задачам астрофизики. Решены три конкретные задачи, возникающие при
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моделировании эффекта магнитного пересоединения в Солнечной и космиче-
ской плазме. Первые две являются задачами Римана — Гильберта в сложной
области; они моделируют магнитное поле в окрестности токовых конфигура-
ций, состоящих из токовых слоев типа Сыроватского и присоединенных к ним
ударных волн. Первая из этих задач соответствует фазе накопления энергии
в активной области короны, а вторая — фазе распада токового слоя. Третья
задача с математической точки зрения является задачей со свободной грани-
цей. Она моделирует магнитосферу нейтронной звезды при воздействии на
нее ударной волны, образованной взрывом сверхновой звезды.

В §1 главы IV изложены основные положения математических моделей
трех указанных физических явлений.

В §2 главы IV описанно сведение первых двух из изложенных в §1 мо-
делей магнитного пересоединения в Солнечной короне к задачам Римана —
Гильберта с кусочно–постоянными данными и некоторыми условиями роста
решения в областях X и Y, определенных ниже. Первую из этих задач, рас-
сматриваемую в области X, обозначаем через C, а ее решение — через Fcon.
Вторую задачу, рассматриваемую в области Y, обозначаем через D, а ее ре-
шение — через Fdis.

Постановка задачи C. Определим область X. Граница Γ = ∂X представляет
собой симметричную относительно осей x и y систему прямолинейных разре-

зов Γ =
4⋃

j=0
Γj, где горизонтальный разрез Γ0 := {z : Re z ∈ [−b, b], Im z = 0},

изображает токовый слой, а наклонные разрезы

Γ1 =
{
z : z = b + t r eiπα, t ∈ [0, 1]

}
;

Γ2 =
{
z :(−z) ∈ Γ1

}
, Γ3 =

{
z : (−z) ∈ Γ1

}
, Γ4 =

{
z : z ∈ Γ1

} (63)

— ударные волны. Таким образом, X := C\Γ представляет собой односвязную
бесконечную десятиугольную область.

Изложенная в §1 главы IV математическая модель магнитного поля в окрест-
ности непрерывного токового слоя с присоединенными ударными волнами
приводит к постановке задачи Римана — Гильберта C, заключающейся в на-
хождении аналитической в X и непрерывной в X функции Fcon, удовлетворя-
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ющей краевым условиям

Re
[
νj Fcon(z)

]
= cj , z ∈ Γj , j = 0, 4 , (64)

и условию роста:

Fcon(z) = −i γz + o (1) , z → ∞, (65)

где νj, j = 0, 4 — нормали к разрезам Γj, определяемые равенствами

ν0 = i, ν1 = ieiπα, ν2 = −ie−iπα, ν3 = −ieiπα, ν4 = ie−iπα. (66)

а cj в правой части (64) даются следующими равенствами: c0 = 0, cj = β,
j = 1, 4; здесь β и γ — заданные числа (параметры модели). Отметим, что
магнитное поле связано с решением этой задачи соотношением B = Fcon.

Постановка задачи D. Определим область Y, в которой рассматривается
задача. Граница Γ = ∂Y представляет собой объединение двух Y –образных
компонент, заданных соотношениями

Y + := Γ+
0 ∪ Γ1 ∪ Γ4, Y − := {z : −z ∈ Y +}; (67)

здесь компонента Y + состоит из горизонтального разреза

Γ+
0 = {z : Re z ∈ [a, b], Im z = 0}

и наклонных разрезов Γ1 и Γ4, определенных в (63), а Y − = Γ−0 ∪Γ2 ∪Γ3, по-
лучается симметричным отражением Y + относительно оси y. Наконец, сама
(двусвязная) область Y := C\ (Y +∪Y −) является внешностью разрезов (67).

Математическая модель, изложенная в п. §1 главы IV, приводит к поста-
новке задачи Римана — Гильберта D, заключающейся в нахождении анали-
тической в Y и непрерывной в Y\{∞,−a, a} функции Fdis, удовлетворяющей
краевым условиям

Re
[
νj Fdis(z)

]
= cj , z ∈ Γj , j = 0, 4 , (68)

где Γ0 = Γ+
0 ∪ Γ−0 , величины νj, j = 0, 4, определены равенствами (66), а

правые части: c0 = 0, cj = β, j = 1, 4; здесь β и γ — заданные числа.
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Предполагается также, что функция F отвечает следующим условиям роста
в точках z ∈ {∞,−a, +a}:

Fdis(z) = −iγz +o(1), z →∞; Fdis(z) = O
[
(z±a)−1/2], z → ±a; (69)

фигурирующие в постановке задачи величины β и γ суть вещественные по-
стоянные, являющиеся параметрами модели. Отметим, что магнитное поле
связано с решением этой задачи соотношением B = Fdis.

Задачи Римана—Гильберта C и D сведены к аналогичным задачам в чет-
верти исходных областей X и Y, которая в обоих случаях является первым
квадрантом QI с разрезом Γ1; такую четверть обозначаем через G, а для иско-
мых в области G функций сохраняем прежние обозначения Fcon(z) и Fdis(z).
Область G определяется тремя параметрами b, r и α и задается соотношени-
ем: G = QI \ Γ1, где Q I :=

{
z : Im z > 0, Re z > 0

}
.

Решения задач C и D строим в виде суперпозиции Fcon(z) = P+
con ◦ Φ(z) и

Fdis(z) = P+
dis ◦ Φ(z) конформного отображения ζ = Φ(z) области G на верх-

нюю полуплоскость H+ и решений P+
con(ζ) и P+

dis(ζ) соответствующих задач
Римана — Гильберта в H+.

Построению конформного отображения Φ(z) посвящен §3 главы IV. Вна-
чале выписано представление в виде интеграла Кристоффеля — Шварца для
конформного отображения z = Φ−1(ζ) верхней полуплоскости на пятиуголь-
ную область G. Отображение Φ−1 подчинено нормировке

Φ−1(∞) = ∞, Φ−1(0) = 0, Φ−1(1) = b + re iπα, (70)

а указанный интеграл имеет вид

Φ−1(ζ) = K

∫ ζ

0
t−1/2 (t− λ)−α (t− 1) (t− τ)α−1 dt. (71)

Представление (71) содержит неизвестные прообразы λ и τ двух вершин мно-
гоугольника G, а также предынтегральный множитель K. Величины λ и τ

находятся путем решения системы нелинейных уравнений

I2 (λ, τ) / I1 (λ, τ) = r/b, I3 (λ, τ) = 0; (72)
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где Ij =
∫

Λj
|f (t)| dt, Λ1 = (0, λ), Λ2 = (λ, 1), Λ3 = (λ, τ), f(t) — подынте-

гральная функция в (71); интегралы Ij выражаются через функцию Лаури-
челлы F

(2)
D по формулам

I1 (λ, τ) =

√
π Γ(1− α)

Γ(3/2− α)
λ1/2−α τα−1 F

(2)
D

(
− 1, 1− α;

1

2
,

3

2
− α; λ,

λ

τ

)
, (73)

I2 (λ, τ) =
[
(1− α) (2− α)

]−1
λ−1/2 (1− λ)2−α (τ − λ)α−1×

× F
(2)
D

(1

2
, 1− α; 1− α, 3− α;

λ− 1

λ
,
1− λ

τ − λ

)
,

(74)

I3 (λ, τ) = − π

sin πα
λ−1/2(1− λ)F

(2)
D

(1

2
,−1; 1− α, 1; −τ − λ

λ
,
τ − λ

1− λ

)
. (75)

После вычисления λ и τ множитель K находится по формуле K = b/I1(λ, τ).
В п. 3.3 главы IV построено отображение Φ(z) с помощью обращения Кри-

стоффеля — Шварца (71); искомая функция Φ(z) получена в виде набора
экспоненциально сходящихся степнны́х разложений с явно выписанными ко-
эффициентами; множества сходимости разложений покрывают в совокупно-
сти всю область G. Метод построения Φ(z) основан на теории вариации кон-
формного отображения при сингулярном деформировании области47.

§4 главы IV посвящен решению задачи C в полуплоскости H+. Искомая
функция имеет вид

P+
con(ζ) = −iγK

∫ ζ

λ

(t− λ)α−1(t− τ)−α−1/2(t− p) dt− β

sin πα
,

p =
β

γ

√
τ − λ

π3/2K
Γ(1− α)Γ

(
α +

1

2

)
+ 2α(τ − λ) + λ.

Пункт 4.4 посвящен геометрической интерпретации функции P+
con: показано,

что область Wcon, являющаяся образом полуплоскости при отображении Pcon

и называемая областью годографа магнитного поля, представляет собой бес-
конечный четырехугольник. Исследован вид Wcon в зависимости от парамет-
ров модели.

§5 главы IV посвящен решению задачи D в H+. Искомая функция имеет
вид

P+
dis(ζ) = −iγK

∫ ζ

0
t−1/2 (t− µ)−3/2 (t− λ)α−1 (t− τ)−1/2−αR3(t) dt , (76)

47Власов В.И. Краевые задачи в областях с криволинейной границей. М.: ВЦ АН СССР, 1987.
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где µ = Φ(a), R3(ζ) — полином третьей степени следующего вида:

R3(ζ) = (ζ − µ)(ζ − λ)(ζ − τ) − ζ(ζ − λ)(ζ − τ) +

+ 2αζ(ζ − µ)(ζ − τ) + (1− 2α)ζ(ζ − µ)(ζ − λ) +

+
β

γ

Γ(1− α)Γ(α + 1/2)

π
√

π K
λ−3/2(λ− µ)−1/2(τ − λ)1/2×

× [
A0λ(λ− µ)ζ(ζ − µ)− A1τ(λ− µ)(ζ − µ)(ζ − λ)+

+ A2λ(τ − µ)ζ(ζ − λ)
]
;

(77)

здесь числа A0, A1 и A2 выражаются через функцию Лауричеллы F
(2)
D , зави-

сящую от двух переменных, по формулам

A0 = F
(2)
D

( 1

2
,−1

2
; −α,

1

2
; w1, w2

)
, A1 = F

(2)
D

( 3

2
,−1

2
; 1− α,

3

2
; w1, w2

)
,

A2 = F
(2)
D

( 1

2
,
1

2
; 1− α,

3

2
; w1, w2

)
, w1 = −τ − λ

λ
, w2 = −τ − λ

λ− µ
.

В п. 5.3 дана геометрическая интерпретация решения задачи D как конформ-
ного отображения на область Wdis, представляющую собой (для случая, когда
корни многочлена P3 вещественны) бесконечный восьмиугольник.

§6 главы IV посвящен численной реализации для задач C и D. В этом пара-
графе представлены картины магнитного поля, а также исследован имеющий
физический смысл характер его преломления на ударных волнах. Отмечена
эффективность метода решения рассматриваемых задач Римана — Гильбер-
та в многоугольных областях, позволившего получить решения задач C и D

с точностью не хуже 10−6 в равномерной норме.
§7 главы IV посвящен решению задачи со свободной границей, моделиру-

ющей форму магнитосферы нейтронной звезды и ее магнитное поле при воз-
действии на нее ударной волны от взрыва сверхновой звезды. В пункте 7.1
сформулирована постановка задачи со свободной границей для аналитиче-
ской функции F, представляющей собой сопряженный комплексный потен-
циал магнитного поля и определенной в области M, изображающей магни-
тосферу; эта область заранее неизвестна и подлежит нахождению. Искомая
аналитическая функция F имеет простой полюс внутриM, соответствующий
магнитному диполю, моделирующему собственное поле нейтронной звезды.
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Искомой дугой границы области M является физическая граница магнито-
сферы, сформированная в результате равновесия внешнего газового давления
набегающего потока плазмы и магнитного давления поля нейтронной звезды.
Заданная часть границы областиM— горизонтальный разрез — соответству-
ет токовому слою.

В п. 7.2 изложен способ решения поставленной задачи со свободной гра-
ницей, основанный на решении двух задач Римана — Гильберта в заданной
области — полуплоскости H+. В первой из этих двух задач искомой является
функция P+, называемая потенциалом магнитного поля в полуплоскости,
а во второй — функция Ψ, представляющая собой логарифм производной
конформного отображения Φ полуплоскости на область M. Потенциал P+

входит в краевое условие задачи для Ψ. Функция P+(ζ) найдена в виде

P+(ζ) = iQ ln
1 + ζ

1− ζ
+

M

2h

(ζ − ih

ζ + ih
− ζ + ih

ζ − ih

)
, (78)

а конформное отображение Φ(ζ) представлено в виде интеграла

Φ(ζ) = −2
(M −Q)√

2πp
λ−2δ4

∫ Z(ζ)

Z(ih)

(t2 − 2σt + 1)(t2 + 2σt + 1)(t2 − λ2)2

t(t2 − 1)(t2 + δ2)4 dt (79)

(который взят в аналитическом виде), где Z(ζ) = ζ +
√

ζ2 − 1 — обратная
функция Жуковского,

δ =
√

h2 + 1− h, λ = τ −
√

τ 2 − 1. σ =
b−√D

2a
, τ =

b +
√

D

2a
,

a = M − Q, b = 2h2Q + (1 + h2)M, D =
[
8h2(1 + h2)Q + (1 − h2)2M

]
M.

M = µ|Φ ′(ih)|−1, Φ(ih) = 0; здесь µ и p — параметры, физически означа-
ющие соответственно величину магнитного диполя, которым моделируется
поле нейтронной звезды, и давление внешнего потока плазмы.

После нахождения P+ и Φ областьM (включая заранее неизвестную часть
границы) восстанавливается как конформный образ полуплоскости при отоб-
ражении Φ, а магнитное поле в M вычисляется с помощью очевидной под-
становки F = P+ ◦ Φ−1.

В п. 7.5 главы IV представлены численные результаты, полученные с помо-
щью построенного аналитического решения задачи со свободной границей.
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