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Введение

0.1. Общая характеристика работы. Диссертация посвящена исследо-

ванию задачи Римана — Гильберта с разрывными коэффициентами и усло-

виями роста, выводу новых представлений ее решения, получению важных

для математической физики продвижений в теории обобщенной гипергео-

метрической функции Лауричеллы, а также применению этих результатов

к актуальным проблемам астрофизики.

0.1.1o. Актуальность темы. Задача о восстановлении аналитической в обла-

сти B функции F = u + iv по заданному на границе ∂B соотношению между

ее вещественной и мнимой частями

a u− b v = c (0.1)

(где a, b, c — вещественные функции), называемая задачей Римана —

Гильберта, рассматривалась, начиная с основополагающих работ [220], [177],

многими известными математиками. Глубокое развитие теория этой и дру-

гих краевых задач для аналитических функций получила в трудах Сохоцко-

го [120], Вольтерра [242], Племеля [211], Гильберта [178], Нетера [202], Кар-

лемана [157], Мусхелишвили [93], [96], Пикара [210], Гахова [43], [44] и мн. др.

исследованиях.

Результаты классической теории задачи Римана — Гильберта (0.1) и ме-

тоды ее решения изложены в монографиях [45], [95], [247] и курсах [82], [109],

[176]; см. также [24], [90], [217]. Развитию и обобщению такой теории посвя-

щены работы [26], [28], [33], [46], [51], [57], [66], [99], [100], [107], [112], [113],

[149], [167], [222], [243], [244] и др.
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Конструктивные и качественные методы теории задачи Римана — Гиль-

берта находят многочисленные применения в задачах электроники и элек-

тролиза [80], [238], [241], [245], в теории нейтронных звезд [246], в теории

упругости [94], [129], [133], [137], гидро– и аэродинамике [59], [91], [134], [186],

[240], в обратных задачах импедансной томографии [183], [216], задачах рас-

пространения волн [60], [65], [84], [111], [126], в теории псевдоаналитических

функций, теории эллиптических уравнений и систем, уравнений смешанного

типа [21]-[23], [29], [30], [150], в теории случайных процессов [103], [159], [238], а

также в теории аппроксимации [4], [122]. Развитие теории краевых задач для

аналитических функций и различных их обобщений активно продолжается

в настоящее время (см., например, [73]-[76], [92], [104], [105], [114], [115]).

В диссертации рассматривается задача Римана — Гильберта с разрывны-

ми данными (под которыми понимаются функции a, b и c) и условиями роста

решения в некоторых точках границы области. Такой вариант этой зада-

чи, который естественно называть сингулярным, не был достаточно изучен,

а вместе с тем является востребованным в связи со многими актуальными

приложениями, в частности в задачах современной астрофизики [227].

Гипергеометрические функции, как известно, играют важную роль при

решении задач математической физики. Теория гипергеометрических функ-

ций многих комплексных переменных, возникшая в классических трудах

П.Аппеля [141], Дж.Хорна [179] и Дж.Лауричеллы [194], получила глубокое

развитие в работах О.Оре [204], А.Эрдейи [168], П.Ольсена [203], С.Г.Гинди-

кина [50], Х.М.Шриваставы [225], Л.Слейтер [223], Х.Экстона [169], П.Делиня

и Г.Д.Мостова [163], К.Аомото [138], И.М.Гельфанда и его научной шко-

лы [47]-[49], Б.Дворка [166] и многих других известных математиков. Иссле-

дования в этом направлении активно продолжаются в настоящее время, см.,

например, [106], [121], [139], [185].

Необходимо отметить, что обобщенные гипергеометрические функции

(одной и многих переменных) находят многочисленные приложения, в том

числе к квантовой физике, теория поля [53], [54], [110], [189], [198], [201], [218],
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[224], [229], теории относительности [192] и астрофизике [175], к задачам теп-

лопроводности [85], [169], [182], электромагнетизма [196], газовой динамики

[130], [145], теории упругости [135], [169] и акустики [165], к теории вероятно-

стей, математической статистике [160], [169], [191], [195], [199], броуновского

движения [184] и проблемам передачи информации [102], [207],

В диссертационной работе дано развитие теории функции Лауричеллы

F
(N)
D (a1, . . . , aN ; b, c; z1, . . . , zN), представляющей собой обобщенную гипергео-

метрическую функцию от N комплексных переменных (z1, . . . , zN) ∈ CN и со-

держащей комплексные параметры (a1, . . . , aN) ∈ CN , b и c; об этой функции

см. работу Дж.Лауричеллы [194], а также [138], [142], [169] и др. Определени-

ем для этой функции служит N–кратный гипергеометрический ряд, сходя-

щийся в единичном поликруге UN . Важным нерешенным вопросом в теории

функции F
(N)
D является рассматриваемая в настоящей работе проблема ее

аналитического продолжения. Она заключается в том, чтобы вне поликруга

UN представить эту функцию в виде линейной коминации других частных ре-

шений системы уравнений с частными производными, которой удовлетворяет

и F
(N)
D . Эти решения построены в работе также в виде обобщенных гипер-

геометрических рядов (отличных от F
(N)
D ), которые сходятся на множествах,

имеющих непустое пересечение с CN\UN . Указанные представления для F
(N)
D

называют формулами аналитического продолжения. Проблема аналитиче-

ского продолжения функции Лауричеллы F
(N)
D рассматривалась в работах

многих авторов, где были получены частичные результаты (см., например,

[168], [169], [203]), однако в полном объеме она оставалась нерешенной.

Важное теоретическое и прикладное значение имеют дифференциальные

соотношения, которым подчинены гипергеометрические функции. Одним из

важнейших в теории гипергеометрической функции Гаусса F (a, b; c; z) явля-

ется известное тождество Якоби [187], см. также [19], [127], [212]. Его прямым

обобщением на случай функции F
(N)
D служит найденная в настоящей рабо-

те система дифференциальных формул типа Якоби, которые ранее не были

известны. Вместе с тем эти тождества играют ключевую роль при выводе
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принципиально нового типа представлений решения задачи Римана — Гиль-

берта в виде интеграла Кристоффеля — Шварца, см. об этом ниже.

Задачи Римана — Гильберта, возникающие в связи с приложениями, как

правило, приходится решать в сложных областях. Для их сведе́ния к задаче

в канонической области, где решение выписывается явно, необходимо стро-

ить соответствующее конформное отображение. Его построение представляет

собой самостоятельную трудную задачу. Даже в случае прямолинейного мно-

гоугольника, когда для отображения есть явное представление (в виде инте-

грала Кристоффеля —Шварца), возникает проблема отыскания неизвестных

прообразов вершин, фигурирующих в этом интеграле [78], [176], [237]. Эта

проблема значительно усложняется в типичной для приложений ситуации,

когда прообразы вершин расположены крайне неравномерно и некоторые из

них — очень близко друг к другу (что называют кроудингом) [176], [193],

[236], [249]. Проблема параметров в ситуации кроудинга является весьма ак-

туальной и привлекает большое внимание исследователей [25], [164], [176],

[181], [193], [200], [235]-[237], [249]. Одним из ключевых аспектов в решении

проблемы кроудинга, как показано в [16], является высокоточное вычисле-

ние функции Лауричеллы F
(N)
D во всем диапазоне изменения ее аргументов

z1, . . . , zN . Возможность такого вычисления предоставляют найденные в на-

стоящей работе формулы аналитического продолжения этой функции.

Отметим, что в приложениях (в механике [129], физике плазмы [42], [87],

[124] и др.) нередко возникает важный случай задачи (0.1) в сложной об-

ласти, когда данные задачи a, b и c кусочно–постоянны, а в точках их раз-

рыва предписываются условия роста решения. Заметим, что условие (0.1)

при постоянных a, b и c представляет собой уравнение прямой на плоскости

w = u + iv. Такое наблюдение подсказывает, что решение задачи Римана

— Гильберта с кусочно–постоянными коэффициентами может быть геомет-

рически интерпретировано как конформное отображение исходной области

на некоторый (не обязательно однолистный) многоугольник. Возможность

такой интерпретации была указана Риманом [220] (даже для более общей
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ситуации). Отметим, что реализацией этой интерпретации в случае задачи

Римана — Гильберта с кусочно–постоянными данными в полуплоскости бы-

ло бы представление решения в виде интеграла Кристоффеля — Шварца.

Такое представление найдено в настоящей работе с помощью построенных

формул типа Якоби для функции Лауричеллы F
(N)
D .

Эффект магнитного пересоединения играет ключевую роль во многих аст-

рофизических явлениях, сопровождающихся высвобождением значительного

количества энергии, см. [67], [101], [116], [124], [144], в связи с чем моделиро-

вание этого эффекта представляет собой актуальную проблему. К указанным

явлениям относятся, например, вспышки на Солнце и разрушение магнито-

сфер нейтронных завезд в результате воздействия ударных волн, вызванных

взрывом сверхновых звезд. В диссертации решены две конкретные задачи

Римана — Гильберта (в сложной области), возникающие при моделировании

магнитного поля в окрестности пересоединяющего токового слоя в короне

Солнца. Эти задачи весьма актуальны для описания процессов, предшеству-

ющих Солнечной вспышке, см. [124], [227]. В работе также дано решение

задачи со свободной границей [117], возникающей при моделировании магни-

тосферы нейтронной звезды при воздействии на нее ударной волны от взрыва

сверхновой звезды. Именно это явление согласно современным представлени-

ям приводит к мощным всплескам жесткого космического электромагнитного

излучения [62], [69], [117], [143], [162], [197], [213], [233], [248]. Подобные задачи

со свободной границей в связи с астрофизическими приложениями рассмат-

ривались многими авторами, например, [3], [63], [64], [69], [98], [161], [239].

Однако решений в аналитической форме получено не было.

0.1.2o. Целью диссертационной работы является:

1) исследование разрешимости и получение представлений для решения

задачи Римана — Гильберта в полуплоскости, когда коэффициенты и правая

часть задачи являются кусочно–гëльдеровыми с разрывами первого рода, а

в точках их разрыва предписаны условия произвольного степенно́го роста

решения (такую задачу Римана — Гильберта называют сингулярной);
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2) построение аналитического продолжения функции Лауричеллы F
(N)
D ,

включающее нахождение полного набора решений системы уравнений с част-

ными производными для F
(N)
D и вывод формул аналитического продолжения,

представляющих функцию Лауричеллы вне единичного поликруга UN в виде

линейных комбинаций указанных решений;

3) вывод дифференциальных соотношений типа Якоби для функции

Лауричеллы F
(N)
D , являющихся обобщением известного тождества Якоби для

гипергеометрической функции Гаусса F (a, b; c; z);

4) вывод при помощи результатов пп. 1) и 3) нового представления в виде

интеграла Кристоффеля — Шварца для решения задачи Римана — Гиль-

берта в полуплоскости с кусочно–постоянными данными a, b и c, имеющими

произвольное конечное число точек разрыва;

5) применение полученных в пп. 1)–4) результатов к моделированию

эффекта магнитного пересоединения в короне Солнца, включающее реше-

ние двух конкретных задач Римана — Гильберта в сложных многоугольных

областях; первая задача описывает фазу накопления энергии в области пе-

ресоединения; вторая соответствует фазе распада токового слоя; их решение

позволило исследовать магнитное поле в зоне пересоединения, включающей

токовый слой и ударные МГД–волны (согласно современным физическим

представлениям эта модель адекватно описывает процессы в активной ча-

сти короны Солнца перед вспышкой);

6) применение полученных в пп. 1), 3) результатов к решению задачи со

свободной границей, возникающей при моделировании магнитосферы ней-

тронной звезды под воздействием на нее ударной волны от сверхновой звезды

(согласно современным физическим представлениям, это явление приводит

к мощным всплескам космического гамма–излучения).

0.1.3o. Научная новизна работы заключается в следующем:

1) на основе классических подходов [45], [95] исследована разрешимость

сингулярной задачи Римана — Гильберта в полуплоскости с кусочно–

гëльдеровыми коэффициентами и условиями произвольного степенного ро-
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ста искомой функции; получены новые представления для решения задачи

через интегралы типа Коши;

2) для функции Лауричеллы F
(N)
D с произвольным числом N перемен-

ных z1, . . . , zN построена система формул ее аналитического продолжения за

границу единичного поликруга UN и найден полный набор решений системы

уравнений с частными производными, которой удовлетворяет F
(N)
D (ранее бы-

ли известны лишь некоторые результаты для N = 2 и N = 3, подробно см.

об этом главу II);

3) получена система дифференциальных соотношения типа Якоби для

функции Лауричеллы F
(N)
D с произвольным числом N переменных (резуль-

таты являются новыми);

4) с помощью результатов п. 3) получено принципиально новое представ-

ление в виде интеграла Кристоффеля — Шварца для решения сингулярной

задачи Римана —Гильберта в полуплоскости с кусочно–постоянными данны-

ми, имеющими произвольное конечное число точек разрыва; такое представ-

ление дает геометрическую интерпретацию решения задачи как конформного

отображения полуплоскости на многоугольник (не обязательно однолистный)

и доставляет удобный аппарат для его анализа и вычисления;

5) дано приложение полученных результатов к моделированию эффекта

магнитного пересоединения в плазме Солнечной короны: решены две

сингулярные задачи Римана — Гильберта с кусочно–постоянными данны-

ми в сложных многоугольных областях, моделирующие магнитное поле в

зоне пересоединения; первая задача соответствует фазе накопления энергии,

а вторая — фазе распада токового слоя; выполнена численная реализация и

проведено исследование решения обеих задач; представлены картины магнит-

ного поля и найдены физически значимые характеристики поля (результаты

являются новыми);

6) построено аналитическое решение задачи со свободной границей, возни-

кающей при моделировании воздействия ударной волны от сверхновой звез-

ды на магнитосферу нейтронной звезды; осуществлена численная реализация
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решения и представлены численные результаты для формы магнитосферы

и распределения магнитного поля внутри нее в зависимости от параметров

модели (полученные результаты являются новыми).

0.1.4o. Используемые методы. Для достижения целей диссертации исполь-

зовались классические и современные методы математической физики,

в первую очередь, методы Ф.Д.Гахова и Н.И.Мусхелишвили теории крае-

вых задач. Кроме того, использовалась теория аналитических и специальных

функций математической физики, включая теорию интегралов типа Коши,

интегралов Барнса, интеграла Кристоффеля — Шварца, интегральные пред-

ставления Эйлера для гипергеометрических функций и теория конформного

отображения сингулярно деформируемых областей. Для решения нелиней-

ных систем трансцендентных уравнений использовался метод Ньютона.

0.1.5o. Достоверность полученных результатов подтверждается следующими

положениями. В диссертации приведены полные доказательства полученных

теоретических результатов, опирающиеся на методы и подходы, указанные в

предыдущем пункте. Установленные теоремы о задаче Римана — Гильберта

переходят в частном случае отсутствия разрывов данных задачи и ростов

решения в классические результаты Ф.Д.Гахова и Н.И.Мусхелишвили. По-

строенные для функции Лауричеллы F
(N)
D формулы аналитического продол-

жения и дифференциальные соотношения типа Якоби переходят в случае

одного переменного (т.е. при N = 1) в аналогичные известные формулы для

функции Гаусса F (a, b, c; z). Найденная структура магнитного поля в области

пересоединения переходит в предельных случаях отсутствия ударных МГД–

волн, присоединенных к токовому слою, в известные результаты Б.В.Сомова

и С.И.Сыроватского.

0.1.6o. Теоретическая и практическая значимость. Результаты диссертации

расширяют круг краевых задач математической физики в сложных областях,

для которых может быть построено решение в аналитической форме или

предложен способ их эффективного аналитико–численного решения. Кроме
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того, полученные результаты предоставляют новые конструктивные возмож-

ности в теории специальных функций математической физики и позволяют

для задач из широкого круга приложений получать решения в явном виде.

К указанным задачам относятся, в частности, ряд современных проблем аст-

рофизики, терии плазмы и задач со свободной границей.

0.1.7o. Вклад соискателя. Основные результаты диссертации получены ав-

тором самостоятельно.

0.1.8o. Публикации. По теме диссертации опубликовано 18 статей [6]-[18],

[118], [146]-[148], [228]. Из них 15 статей (см. [6]-[15], [18], [118], [146]-[148]) в

изданиях, рекомендованных ВАК.

0.1.9o. Апробация работы. Результаты диссертации докладывались на на-

учных семинарах:

1. Семинар Отдела математической физики МИАН, Москва, МИАН, 2017 г.
(руководители А.К.Гущин, Ю.Н.Дрожжинов, В.В.Жаринов);

2. Семинар ”Асимптотические методы в математической физике“, Москва,
ИПМех, 2017 г. (руководитель С.Ю.Доброхотов);

3. Семинар по комплексному анализу (Семинар Гончара), Москва, МИАН,
2015 г. (руководители Е.М.Чирка, А.И.Аптекарев, С.П.Суетин);

4. Семинар ”Методы решения задач математической физики“, Москва, ФИЦ
ИУ РАН, 2015 г. (руководители А.А.Абрамов, В.И.Власов, С.Я.Степанов);

5. Семинар ”Космическая электродинамика“, Москва, ГАИШ МГУ, 2015 г.
(руководитель Б.В.Сомов);

6. Семинар ”Вычислительная математика, математическая физика, управ-
ление“, Москва, ИВМ РАН, 2011 г. (руководители Г.М.Кобельков,
А.В.Фурсиков);

7. Семинар ”Дифференциальные и функционально–дифференциальные
уравнения“, Москва, РУДН, 2009 г. (руководитель А.Л.Скубачевский);

и на научных конференциях:

1. Конференция по теории чисел и приложениям в честь 80-летия
А.А.Карацубы. МИАН, Москва, 22–27 мая 2017 г.
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2. XII съезд Международной организации ”Астрономическое общество“, на-
учная конференция ”Астрономия от ближнего космоса до космологиче-
ских далей“. ГАИШ МГУ, Москва, 25–30 мая 2015 г.

3. Десятая ежегодная конференция ”Физика плазмы в Солнечной системе“.
Москва, ИКИ РАН, 16–20 февраля 2015 г.

4. The 7–th International Conference on Differential and Functional — Differen-
tial equations. Moscow, Russia, RUDN University, August 22–29, 2014.

5. Международная конференция по дифференциальным уравнениям и ди-
намическим системам. Суздаль, 4–9 июля 2014 г.

6. 40th Scientific Assembly, COSPAR (Committee on Space Research), Moscow,
MSU, August 2–9, 2014.

7. Девятая ежегодная конференция ”Физика плазмы в Солнечной системе“,
Москва, ИКИ РАН, 10–14 февраля 2014 г.

8. XI Конференция молодых ученых ”Фундаментальные и прикладные кос-
мические исследования“, Москва, ИКИ РАН, 9–11 апреля 2014 г.

9. Конференция ”Физика плазмы в солнечной системе“. Москва, ИКИ РАН,
4–8 февраля 2013 г.

10. International Conference ”Spectral and Evolution Problems“. Sevastopol.
September 17–29, 2012.

11. International Conference–School for Young Scientists ”Modern Problems of
Applied Mathematics and Computer Science“. Dubna, JINR, Russia, August
22–27, 2012.

12. International Conference ”Differential Equations and Applications“ in honour
of M.Vishik 90-th birthday. Moscow, Russia, Information Transmission
Problems Institute of RAS, June 4–7, 2012.

13. Конференции ”Астрономия в эпоху информационного взрыва: результа-
ты и проблемы“. Москва, МГУ, 28 мая – 1 июня, 2012 г.

14. Конференция ”Физика плазмы в солнечной системе“. Москва, ИКИ РАН,
6–10 февраля 2012 г.

15. International Moscow Workshop on Solar Physics ”The Sun: from quiet to
active – 2011“. Moscow, Russia, Lebedev Physical Institute, August 29 –
September 2, 2011.
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16. JENAM-2011 European Week of Astronomy and Space Science.
Saint-Petersburg, Russia, 4–8 July 2011.

17. Конференция ”Физика плазмы в солнечной системе“. Москва, ИКИ РАН,
14–18 февраля 2011 г.

18. International conference ”Differential equations and related topics“ dedicated
to I.G.Petrovskii. Moscow, MSU, May 30 – June 4, 2011.

19. Международная конференция по прикладной математике и информа-
тике, посвященная 100–летию со дня рождения академика А.А.Дородни-
цына. Москва, ВЦ РАН, 7–11 декабря 2010 г.

20. XXI Международная конференция ”Spectral and Evolution Problems“, 18–
29 сентября 2010 г. Севастополь.

21. Конференция ”Асимптотические методы и математическая физика“, по-
священная профессору С.Ю.Доброхотову. Москва, ИПМех РАН, 12–14
мая 2010 г.

22. International Conference on complex analysis and related topics. Turku,
Finland, August 17–29, 2009.

23. XVII Всероссийская конференция ”Теоретические основы и конструиро-
вание численных алгоритмов и решение задач математической физики
с приложением к многопроцессорным системам“, посвященная памяти
К.И.Бабенко. Дюрсо, 16–20 сентября 2008 г.

24. Третья международная конференция ”Функциональные пространства.
Дифференциальные операторы. Общая топология Проблемы математи-
ческого образования“, посвященная 85–летию Л.Д.Кудрявцева. Москва,
РУДН, 25–28 марта 2008 г.

25. V Международная конференция ”Дифференциальные и функционально-
дифференциальные уравнения“. Москва, РУДН, 17–24 августа 2008 г.

26. Международная конференция по дифференциальным уравнениям и ди-
намическим системам. Суздаль, 27 июня – 2 июля 2008 г.

27. Международная конференция ”Анализ и особенности“, посвященная 70–
летию В.И.Арнольда, Москва, МИАН, 20–24 августа 2007 г.

28. Международная конференция ”Дифференциальные уравнения, теория
функций и приложения“, посвященная 100–летию со дня рождения
И.Н.Векуа. Новосибирск, 28 мая – 2 июня 2007 г.
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29. Международная конференция ”Дифференциальные уравнения и смеж-
ные вопросы“, посвященная памяти И.Г.Петровского, Москва, МГУ, 21–
26 мая 2007 г.

30. Международная конференция ”Математические идеи П.Л.Чебышева и
их приложение к современным проблемам естествознания“. Обнинск, 14–
18 мая 2006 г.

31. Международная конференция по дифференциальным уравнениям и ди-
намическим системам. Суздаль, 10–15 июля 2006 г.

32. Международная конференция ”Тихонов и современная математика“.
Москва, МГУ, 19–25 июня 2006 г.

33. International Conference ”Computational Methods and Function Theory“,
Joensuu, Finland, June 13–17, 2005.

0.1.10o. Структура работы. Диссертация разбита на главы, параграфы, пунк-

ты и подпункты. Первая цифра номера пункта совпадает с номером парагра-

фа, а вторая обозначает номер пункта в параграфе. В каждой главе принята

своя (двойная) нумерация теорем, предложений и замечаний; при этом первая

цифра указывет номер главы. Принята двойная нумерация формул: первая

цифра означает номер параграфа, вторая — порядковый номер формулы в

параграфе. При ссылке на формулу из другой главы к номеру формулы до-

бавляется явная ссылка на соответствующую главу. При ссылке на подпункт

к его номеру добавляется номер параграфа и пункта.

0.2. Обзор содержания диссертации. Диссертация состоит из введе-

ния, четырех глав и списка литературы. Доказательства некоторых утвер-

ждений и дополнительные сведения помещены в приложения A–D. Объем

работы (вместе с приложениями) составляет 300 страниц, включая 20 рисун-

ков и одну таблицу. Список литературы содержит 249 наименований.

Глава I посвящена сингулярной задаче Римана — Гильберта в полуплос-

кости. Основные результаты главы: 1) исследована разрешимость сингуляр-

ной задачи Римана — Гильберта с кусочно–гёльдеровыми данными

и условиями произвольного степенного роста решения в точках разрыва
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граничных данных; 2) получено представление решения такой задачи через

интегралы типа Коши.

§1 главы I содержит вводный материал о задаче Римана — Гильберта в

односвязной области и методах ее решения. Отмечено, что в работе исполь-

зуется подход, основанный на ее сведе́нии с помощью конформного отобра-

жения к аналогичной задаче Римана — Гильберта в канонической области

(полуплоскости), решение которой строится через интегралы типа Коши.

В связи с этим в §2 главы I указан ряд методов конформного отображения

сложных облатей, в том числе приведены сведения об отображении прямоли-

нейных многоугольников при помощи интеграла Кристоффеля — Шварца и

круговых многоугольников на основе уравнения Шварца, а также о прибли-

женных методах конформного отображения, в том числе о методе Теодорсона

— Гаррика и вариационных методах.

Следующий §3 главы I посвящен постановке указанной сингулярной

задачи Римана — Гильберта и ее сведению к задаче сопряжения. В §4 ука-

заны свойства модифицированного интеграла типа Коши, который затем в

§5 и §6 главы I используется для построения решения задачи Римана — Гиль-

берта. В §5 получена формула для индекса κ рассматриваемой задачи и

найдено общее решение однородной задачи.

В §6 главы I в терминах модифицированного интеграла типа Коши по-

строено частное решение неоднородной задачи и выписано общее решение

неоднородной сингулярной задачи Римана — Гильберта. Основные результа-

ты параграфа 6 сформулированы в виде теоремы 1.5.

Глава II посвящена развитию теории функции Лауричеллы F
(N)
D .

Основные результаты главы: 1) найдены дифференциальные соотношения

типа Якоби для F
(N)
D ; 2) получены формулы аналитического продолжения

этой функции при произвольном числе N переменных за границу единично-

го поликруга UN , где она первоначально определена с помощью N–кратного

гипергеометрического ряда; 3) найден полный набор решений системы урав-

нений с частными производными, которой удовлетворяет F
(N)
D . Эти решения
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являются аналогом и прямым обобщением канонических решений Куммера,

известных в теории гипергеометрического уравнения Гаусса.

Вначале, в §1 этой главы, приведены необходимые сведения о функции

Лауричеллы F
(N)
D , включая обобщенный гипергеометрический ряд для нее,

интегральное представления типа Эйлера, некоторые разложения и формулы

дифференцирования, а также систему уравнений с частными производными,

которой она удовлетворяет.

В §2 главы II приведены используемые результаты из теории функции

Гаусса F (a, b; c; z), включая интегральные представления Эйлера и Барнса,

канонические решения Куммера (в том числе их вариант для логарифмиче-

ского случая) и основанные на них формулы аналитического продолжения.

§3 главы II посвящен выводу дифференциальных соотношений типа

Якоби для функции Лауричеллы F
(N)
D . Прежде всего, в п. 3.1 получены

соотношения между ассоциированными функциями Лауричеллы; эти соот-

ношения, представленные в виде теоремы 2.1, играют важную роль при до-

казательстве основного результата параграфа — соотношений типа Якоби для

функции F
(N)
D , которым посвящена теорема 2.2, см. п. 3.2. Отметим также,

что в данном параграфе в виде теоремы 2.3 указана (отличная от классиче-

ской) система уравнений для функции Лауричеллы. Эта система уравнений

является непосредственным следствием найденных формул типа Якоби.

Следующий §4 главы II посвящен выводу формул аналитического продол-

жения для функции Лауричеллы F
(N)
D . В п. 4.1 построено аналитическое про-

должение этой функции в окрестность точки

z(∞) = (∞, . . . ,∞),

т.е. в область, где все N ее переменных z1, . . . , zN принимают значения, по мо-

дулю большие единицы. Для этого в п. 4.1 (см. предложение 2.1) дано новое

представление функции Лауричеллы в виде интеграла типа Барнса, удобное

для осуществления аналитического продолжения указанного типа. Затем в

предложении 2.2 с помощью предложения 2.1 осуществлено продолжение по
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одному переменному (в окрестность бесконечности). Далее на основе пред-

ложения 2.2 получено требуемое аналитическое продолжение в окрестность

точки z(∞), т.е. по всем переменным z1, . . . , zN . Соответствующие формулы

продолжения представлены в теореме 2.5.

Далее в п. 4.2 построено аналитическое продолжение функции Лауричел-

лы в окрестность точки

z(1) = (1, . . . , 1),

т.е. в область, где все N ее переменных принимают значения, близкие к еди-

нице. Для этого в предложении 2.3 дано еще одно представление функции

F
(N)
D в виде интеграла типа Барнса, удобное для осуществления аналитиче-

ского продолжения в указанную область. С помощью этого представления

в предложении 2.4 найдено продолжение по одному переменному (в окрест-

ность единицы) и с его помощью осуществлено требуемое аналитическое про-

должение в окрестность точки z(1). Соответствующие формулы продолжения

представлены в теореме 2.6.

Наконец, в п. 4.3 даны формулы аналитического продолжения в область,

где некоторые p переменных функции Лауричеллы близки к единице, а осталь-

ные (N−p) — к бесконечности. Результаты этого пункта, сформулированные

в виде теоремы 2.7, получены с помощью формул продолжения, выведенных

в пп. 4.1 и 4.2. Формулы аналитического продолжения выписаны в терминах

обобщенных гипергеометрических рядов нового вида F(N, p), G
(N, p)
j и H

(N,p)
j ,

свойства сходимости которых отражены в предложении 2.5.

§5 главы II посвящен важному частному случаю функции Лауричеллы при

N = 2, известному как функция Аппеля F1(a, a′; b, c; z, ζ). В этом параграфе

построены формулы аналитического продолжения F1 в весьма важной для

приложений ситуации, когда параметры a, a′, b и c подчинены специальным

целочисленным соотношениям. Этот случай, называемый логарифмическим

(аналитическое продолжение содержит не только степени, но и логарифмы

переменных), требует отдельного рассмотрения, так как если применить к
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этому случаю обычные формулы продолжения, допустимые для нелогариф-

мического случая, то тогда в них возникнут сингулярные слагаемые, что

сделает невозможным их непосредственное использование. Построенные в

этом разделе формулы аналитического продолжения сформулированы в виде

предложений 2.8–2.11 и предложений 2.14–2.20. Данные формулы дают пред-

ставления функции F1 через обобщения двойных гипергеометрических рядов

на логарифмический случай: эти обобщени указаны в пп. 5.2.4o и 5.4.1o.

Глава III посвящена выводу принципиально нового представления реше-

ния задачи Римана — Гильберта с кусочно–постоянными данными в виде

интеграла Кристоффеля Шварца.

§1 главы III носит вспомогательный характер. Основным результатом здесь

является представление решения задачи Римана — Гильберта с кусочно–

постоянными коэффициентами и условиями роста через модифицированные

интегралы типа Коши; данный результат сформулирован в виде теоремы 3.1.

§2 главы III посвящен преобразованию полученного в §1 решения сингу-

лярной задачи Римана — Гильберта к виду интеграла Кристоффеля —Швар-

ца; такой интеграл представляет собой первообразную от произведения бино-

мов и полинома с вещественными коэффициентами. Техническим средством,

позволяющим осуществить указанное преобразование, являются дифферен-

циальные соотношения типа Якоби, найденные в главе II. В п. 2.1 изложен

подход к такому преобразованию, в п. 2.2 выписан необходимый для этого

вариант соотношений типа Якоби, а сам вывод представления в виде инте-

грала Кристоффеля — Шварца осуществлен в пп. 2.4, 2.5. Это представление

дано в виде теоремы 3.3.

Глава IV посвящена применению результатов, полученных в главах I–III,

к задачам астрофизики. Решены три конкретные задачи, возникающие при

моделировании эффекта магнитного пересоединения в Солнечной и космиче-

ской плазме. Первые две являются задачами Римана — Гильберта в сложной

области; они моделируют магнитное поле в окрестности токовых конфигура-

ций, состоящих из токовых слоев типа Сыроватского и присоединенных к ним
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ударных волн. Первая из этих задач соответствует фазе накопления энергии

в активной области короны, а вторая — фазе распада токового слоя. Третья

задача с математической точки зрения является задачей со свободной грани-

цей. Она моделирует магнитосферу нейтронной звезды при воздействии на

нее ударной волны, образованной взрывом Сверхновой звезды.

В §1 главы IV изложены основные положения математических моделей

трех указанных физических явлений. Токовые конфигурации для первой

и второй задачи, состоящие из бесконечно тонкого токового слоя и присо-

единенных к нему ударных МГД–волн, изображены на рис. 4.3, стр. 191, и

рис. 4.4b, стр. 192, в виде симметричных систем прямолинейных разрезов

на комплексной плоскости. В первой задаче токовый слой (горизонтальный

разрез) сплошной, а во второй задаче он состоит из двух несвязных частей

(два горизонтальных разреза). Присоединенные к ним наклонные разрезы

изображают ударные волны. Внешности систем разрезов на этих рисунках

представляют собой области, в которых рассматривается магнитное поле и

решаются две указанные краевые задачи Римана — Гильберта. Для первой

модели (и соответственно первой задачи) область обозначается через X, а для

второй — через Y.

В §2 главы IV описанно сведение первых двух из изложенных в §1 моде-

лей магнитного пересоединения в Солнечной короне, к задачам Римана —

Гильберта с кусочно–постоянными данными и некоторыми условиями роста

решения в областях X и Y. Первую из этих задач, рассматриваемую в области

X, обозначаем через C, а ее решение — через Fcon. Вторую задачу, рассмат-

риваемую в области Y, обозначаем через D, а ее решение — через Fdis
1).

В пп. 2.2 и 2.3 даны соответственно постановки задач C и D и описано

их сведе́ние к аналогичным задачам в четверти исходной области, оказываю-

щейся одинаковой для этих двух задач и обозначаемой через G (см. рис. 4.6a

на стр. 198 и рис. 4.7a на стр. 199); нетрудно увидеть, что G представляет
1Здесь в обозначениях использованы первые буквы английских слов ”continuous“ и ”discontinuous“ для

того чтобы подчеркнуть, что токовый слой в первой задаче непрерывный, а во второй разрывный.
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собой прямолинейный пятиугольник. Для новых задач и их решений сохра-

няем прежние обозначения. Предлагаемый подход к решению задач C и D

в области G предполагает построение конформного отображения ζ = Φ(z)

этой области на верхнюю полуплоскость H+, см. рис. 4.6 и рис. 4.7. После

его построения функции Fcon и Fdis находятся в виде суперпозиций Fcon(z) =

P+
con ◦ Φ(z) и Fdis(z) = P+

dis ◦ Φ(z) отображения ζ = Φ(z) и решений P+
con(ζ) и

P+
dis(ζ) соответствующих задач Римана — Гильберта в H+.

Построению отображения ζ = Φ(z) посвящен § 3 гл. IV. В нем внача-

ле выписано представление в виде интеграла Кристоффеля — Шварца для

обратного отображения z = Φ−1(ζ) полуплоскости H+ на пятиугольник G.

Неизвестными параметрами этого интеграла служат λ и τ — прообразы двух

вершин (см. рис. 4.6 и рис. 4.7) и предынтегральный множитель K. В п. 3.1,

3.2 сформирована система нелинейных уравнений для неизвестных парамет-

ров и указан способ ее решения, основанный на использовании результатов

по функции Аппеля F1, представленных в главе II, а также на использовании

асимптотик величин λ и τ , сформулированных в теореме 4.1.

В п. 3.3 изложен метод построения отображения Φ(z) путем обращения

интеграла Кристоффеля — Шварца, позволяющий получить искомое отобра-

жение в виде набора экспоненциально сходящихся степенны́х разложений с

явно выписанными коэффициентами; объединение множеств сходимости раз-

ложений, изображенных на рис. 4.10, стр. 216, покрывает всю (замкнутую)

область G. Метод основан на теории [37]. После завершения построения кон-

формного отображения Φ(z) области G на полуплоскость H+ мы переходим

к решению задач Римана — Гильберта C и D в полуплоскости.

§4 главы IV посвящен решению задачи C в полуплоскости H+. В п. 4.1 дана

постановка этой задачи. Ее решение в п. 4.2 построено в виде интеграла типа

Коши, преобразованного затем к виду интеграла Кристоффеля — Шварца,

а в п. 4.3 дан эффективный способ его вычисления в виде экспоненциально

сходящихся степенных рядов. Пункт 4.4 посвящен геометрической интерпре-

тации решения P+
con задачи Римана — Гильберта C. Показано, что область

Wcon, являющаяся образом полуплоскости при отображении Pcon и называе-
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мая областью годографа магнитного поля, представляет собой бесконечный

четырехугольник. Исследован вид Wcon в зависимости от параметров модели.

§5 главы IV посвящен решению задачи D в верхней полуплоскости. В п. 5.1

дана постановка этой задачи. Ее решение в п. 5.2 построено в виде интеграла

типа Коши, а затем преобразовано к виду интеграла Кристоффеля — Швар-

ца. В пункте 5.3 дана геометрическая интерпретация решения задачи D как

конформного отображения на область годографа Wdis, представляющую со-

бой бесконечный восьмиугольник.

§6 главы IV посвящен численной реализации для задач C и D. В этом пара-

графе представлены картины магнитного поля, а также исследован имеющий

физический смысл характер его преломления на ударных волнах. Отмечена

эффективность метода решения рассматриваемых задач Римана — Гильбер-

та в многоугольных областях, позволившего получить решения задач C и D

с точностью не хуже 10−6 в равномерной норме.

§7 главы IV посвящен решению задачи со свободной границей, моделиру-

ющей форму магнитосферы нейтронной звезды и ее магнитное поле при воз-

действии на нее ударной волны от взрыва Сверхновой звезды. В пункте 7.1

сформулирована постановка задачи со свободной границей для аналитиче-

ской функции F, представляющей собой сопряженный комплексный потен-

циал магнитного поля и определенной в области M, изображающей магни-

тосферу; эта область заранее неизвестна и подлежит нахождению. Искомая

аналитическая функция F имеет простой полюс внутриM, соответствующий

магнитному диполю, моделирующему собственное поле нейтронной звезды,

см. рис. 4.5a, стр. 194. Искомой дугой границы области M является физиче-

ская граница магнитосферы, сформированная в результате равновесия внеш-

него газового давления набегающего потока плазмы и магнитного давления

поля нейтронной звезды. Заданная часть границы области M соответствует

токовому слою, изображенному в виде горизонтального разреза на рис. 4.5a.

В пункте 7.2 изложен способ решения поставленной задачи со свободной

границей, основанный на решении двух задач Римана — Гильберта в задан-

ной области — полуплоскости H+. В первой из этих двух задач искомой явля-
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ется функция P+, которую естественно называть потенциалом магнитного

поля в полуплоскости, а во второй — функция Ψ, представляющая собой ло-

гарифм производной конформного отображения Φ полуплоскости на область

M. Потенциал P+ входит в краевое условие задачи для Ψ. После нахож-

дения P+ и Ψ область M (включая заранее неизвестную часть границы)

восстанавливается как конформный образ полуплоскости при отображении

Φ, а магнитное поле в M вычисляется с помощью очевидной подстановки

F = P+ ◦ Φ−1. Потенциал P+ найден в п. 7.2.

Конформное отображение построено в виде интеграла типа Кристоффеля

— Шварца в пп. 7.3, 7.4. В пункте 7.4 этот интеграл вычислен в виде конеч-

ной комбинации элементарных функций. Численные результаты для решения

всей задачи со свободной границей представлены в пункте 7.5.

0.3. Основные обозначения и некоторые определения.

0.3.1o. Числа. Буквами z, ζ и w обозначаются комплексные переменные;

z = x + iy, ζ = ξ + iη, w = u + iv, где i — мнимая единица. Веществен-

ная и мнимая части числа a обозначаются, как обычно, через Re a и Im a;

a — число, комплексно сопряженное с a. Буквами z, w и др. обозначаем

N–мерные векторы комплексных чисел, например, z := (z1, . . . , zN); если

размерность отличается от N , то на этот факт указываем явно.

0.3.2o. Множества. Если B — плоская область, то ∂B — ее граница, а B =

B∪∂B — ее замыкание; если B расположена на комплексной плоскости z, то

точки ее границы ∂B обозначаем через z′.

R — множество вещественных чисел;

N — множество натуральных чисел;

Z+ и Z− — множества неотрицательных и неположительных целых чисел;

C — комплексная плоскость;

C = C ∪ {∞} — расширенная комплексная плоскость;

CN — N–мерное комплексное пространство;

CN
= CN ∪ {∞, . . . ,∞} — расширенное N–мерное комплексное

пространство;
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H+ = {z : Im z > 0} — верхняя полуплоскость;

U = {z : |z| < 1} — единичный круг;

UN = {z ∈ CN : |zj| < 1, j = 1, N } — единичный поликруг.

0.3.3o. Функции. Запись f : B
conf−→D означает, что функция f осуществляет

конформное отображение области B на область G; ϕ ◦ f — суперпозиция

функций f и ϕ; ϕ−1 —функция, обратная к ϕ. Если функция f(z) аналитична

в области B, то будем писать f ∈ A(B). Выражение a := b означает, что a по

определению равно b.

0.3.4o. Асимптотические символы. Напомним определения (см., например,

[61]) асимптотических символов O, O∗ и o. Пусть функции f(ζ) и g(ζ) опреде-

лены на некотором множестве M изменения переменной ζ, а ξ — его предель-

ная точка. Запись f(ζ) = O
(
g(ζ)

)
, ζ → ξ, означает существование такой по-

стоянной C и окрестности U точки ξ, что |f(ζ)| < C|g(ζ)| при всех ζ ∈ M∩U .

Запись f(ζ) = O?
(
g(ζ)

)
, ζ → ξ, означает существование отличного от нуля

предела limζ→ ξ, ζ ∈M

[
f(ζ) / g(ζ)

]
= C 6= 0, а запись f(ζ) = o

(
g(ζ)

)
, ζ → ξ,

— что этот предел равен нулю.

0.3.5o. Замечание о виде краевого условия Римана — Гильберта. Очевид-

но, что условие (0.1) задачи Римана — Гильберта можно переписать в виде

Re
[
h(z′)F(z′)

]
= c (z′), где h(z′) := a(z′)+ ib(z′). В дальнейшем краевое усло-

вие этой задачи будем записывать в этой форме, называя функции h(z′) и

c(z′) коэффициентом и правой частью задачи, а их вместе — данными задачи.



Г л а в а I

Сингулярная задача
Римана — Гильберта

§1. Задача Римана — Гильберта в односвязной области

1.1. Постановка задачи и метод ее решения. Задача Римана — Гиль-

берта заключается в построении аналитической в некоторой области функ-

ции по заданному на границе соотношению между ее вещественной и мнимой

частями. Впервые эта задача в весьма общем виде была поставлена Риманом

[220], а для случая, когда указанное соотношение является линейным, (а об-

ласть односвязная) изучалась в работах Гильберта [177], [178] и ряда других

исследователей, см. [44], [45], [93], [95], [111], [202], [209], [214], [242], [247] и

др. Рассмотренная в этих работах классическая постановка данной задачи

формулируется следующим образом.

В односвязной области B, ограниченнной контуром Γ, требуется найти

аналитическую в B и непрерывную в B функцию F(z) = u(x, y) + iv(x, y),

удовлетворяющую на контуре Γ краевому условию

Re
[
h(z′) F (z′)

]
= c (z′), z′ ∈ Γ, (1.1)

где h(z′) 6= 0 и c(z′) — соответственно комплексная и вещественная функции,

заданные на Γ и непрерывные по Гёльдеру.

Для решения задачи Римана — Гильберта (1.1) в случае, когда она рас-

сматривается в верхней полуплоскости

H+ := {ξ + iη = ζ : Im ζ > 0},
– 27 –
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будем использовать обозначение P+(ζ). С помощью подхода, предложенного

Гаховым [45] и Мусхелишвили [95], эта задача сводится к задаче сопряжения

функций P+(ζ) и P−(ζ), вторая из которых аналитична в нижней полуплос-

кости H− := {ζ : Im ζ < 0}. Решение последней задачи выписывается явно

через интегралы типа Коши [45], [95]. Если же задача Римана — Гильберта

рассматривается в области B, отличной от канонической, то свести ее непо-

средственно к задаче сопряжения не представляется возможным. Отметим,

что везде в работе в качестве канонической области принимается верхняя по-

луплоскость. Однако в качестве таковой можно выбрать также круг U или

его внешность D. В этом случае функцию P−(ζ) следует определять в допол-

нении соответствующей канонической области до полной плоскости C.
Известен способ решения задачи Римана — Гильберта (1.1) в неканониче-

ской области B путем приведения ее к сингулярному интегральному урав-

нению на границе ∂B области [45], [90], [95]. Но в случае, когда эта граница

имеет сложную структуру (например, не является жордановой) и при необхо-

димости конструктивного и алгоритмически эффективного решения задачи,

такой способ наталкивается на значительные теоретические и вычислитель-

ные трудности.

Решение задачи Римана — Гильберта в неканонической области B может

также быть выписано в терминах оператораШварца SB для этой области [45],

т.е. оператора SB, который восстанавливает аналитическую в B функцию по

заданным на ∂B значениям ее вещественной части. Нахождение ядра такого

оператора эквивалентно построению конформного отображения области B

на каноническую, например, на полуплоскость H+.

Если же такое отображение Φ : B
conf−→ H+ известно, то более удобным

оказывается другой способ решения задачи Римана — Гильберта отности-

ельно аналитической в сложной области B функции F(z). Он заключается

в преобразовании исходной задачи в B с помощью обратного отображения

z = Φ−1(ζ) к аналогичной задаче Re
[
χ(ξ)P+(ξ)

]
= σ(ξ), ξ ∈ R, в полуплос-
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кости H+ относительно аналитической в ней функции P+(ζ) := F ◦ Φ−1(ζ),

где коэффициент χ(ξ) и правая часть σ(ξ) связаны с исходными данными h

и c задачи (1.1) в B формулами

χ(ξ) = h ◦ Φ−1(ξ), σ(ξ) = c ◦ Φ−1(ξ).

Решение задачи в H+ согласно сказанному выше строится явно. После этого

решение исходной задачи находится в виде суперпозиции F(z) = P+ ◦ Φ(z).

Именно такой подход и предлагается использовать в настоящей работе для

решения сингулярной задачи Римана — Гильберта в сложных областях; от-

метим, что от классической она отличается наличием разрывов у данных

задачи и условием роста решения в точках разрыва. При таком подходе

необходимо использовать конструктивные методы построения отображения

Φ : B
conf−→ H+.

Ряд методов построения отображения Φ(z) или обратного к нему Φ−1(ζ),

обозначаемого ниже через µ(ζ), для некоторых классов односвязных областей

B сложного вида изложены в п. 1.3.

Метод решения сингулярной задачи Римана — Гильберта в H+, заключа-

ющейся (напомним) в отыскании аналитической в H+ функции P+ по гра-

ничному условию

Re
[
χ(ξ)P+(ξ)

]
= σ(ξ), ξ ∈ R, (1.2)

изложен в §3 – §6 для случая кусочно–гёльдеровых данных χ(ξ) и σ(ξ) с раз-

рывами первого рода и предписанным в точках разрыва ростом решения, в

том числе неинтегрируемым. В этом методе искомая функция P+ представ-

ляется через модифицированные интегралы типа Коши.

Для случая кусочно–постоянных данных χ и σ задачи (1.2) в главе III

получено принципиально новое представление искомой функции P+ в ви-

де интеграла типа Кристоффеля — Шварца. Такое представление решает

поставленную еще Риманом [220] проблему геометрической интерпретации
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решения задачи Римана — Гильберта. Оно не только обладает геометриче-

ской наглядностью, но и является намного более удобным, чем представле-

ние через интегралы типа Коши, для численной реализации и, в частности,

позволяет эффективно находить производные решения на границе, а также

коэффициенты его разложения вблизи точек разрыва данных χ и σ.

Сформулированный подход и полученное принципиально новое представ-

ление решения были использованы автором для эффективного решения

нескольких вариантов сингулярной задачи Римана — Гильберта, возникаю-

щей в физике плазмы, см. главу IV.

1.2. Приложения к астрофизике. Обзор некоторых приложений зада-

чи Римана — Гильберта был приведен во Введении. Отметим еще, что эта

задача возникает в ряде важных проблем физики плазмы, причем во многих

интересных с физической точки зрения случаях она является сингулярной.

В частности, именно к сингулярной задаче Римана — Гильберта приводит

предложенная Б.В.Сомовым [87], [227] модель эффекта магнитного пересо-

единения, играющего ключевую роль в формировании Солнечных вспышек

и в ряде других ярких явлений физики плазмы [2], [67], [101], [116], [226],

[227],

Модель Б.В.Сомова, являющаяся развитием модели токового слоя Сыро-

ватского [124], включает присоединенные к концам такого нейтрального токо-

вого слоя четыре магнитогидродинамические (МГД) ударные волны. Данная

модель сводится к задаче Римана — Гильберта в бесконечной десятиуголь-

ной области сложного вида, причем задача содержит условие роста искомой

функции на бесконечности, т.е. является сингулярной [87], [227].

В работе [18], отраженной в главе IV диссертации, получено полное ре-

шение этой задачи и осуществлена его численная реализация. Решение F(z)

данной задачи найдено в виде суперпозиции F(z) = P+ ◦ Φ(z) конформного

отображения Φ(z) исходной области на полуплоскость H+, представленного

в виде обращенного интеграла Кристоффеля — Шварца, и явного решения
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P+(ζ) соответствующей задачи Римана — Гильберта в H+, найденного также

в виде интеграла Кристоффеля — Шварца. При этом для рассматриваемого

случая эффективно решена проблема параметров интеграла Кристоффеля —

Шварца Φ−1(ζ) и построено обращение Φ(z) этого интеграла в явном анали-

тическом виде. Физической интерпретации построенного решения посвящены

статьи [15], [118].

В статьях [13], [14], [148], результаты которых нашли отражение в главе IV

диссертации, предложены две модели, являющиеся развитием работ Сыро-

ватского и Сомова [119], [124]. Предложенные модели включают распадаю-

щийся токовый слой типа Сыроватского конечной длины. Одна из моделей

содержит присоединеные к концам токового слоя ударные МГД–волны, во

второй ударные волны отсутствуют. Первая модель сводится к решению син-

гулярной задачи Римана — Гильберта в сложной многоугольной области. Для

ее решения были применены результаты и подходы, предложенные в работах

[11], [16]-[18] для общей сингулярной задачи Римана — Гильберта в сложных

областях. Решение задачи для второй модели найдено в явном виде.

В работах [12], [147] дано приложение разрабатываемых методов [11], [16]-

[18] к задаче со свободной границей, возникающей при моделировании вза-

имодействия ударной волны от взрыва сверхновой звезды с магнитным по-

лем нейтронной звезды. Такая задача сведена к последовательному решению

двух сингулярных задач Римана — Гильберта. Эти результаты также нашли

отражение в главе IV диссертации.

§2. Методы конформного отображения

односвязных областей

Среди многочисленных методов конформного отображения можно услов-

но выделить две группы: аналитические и приближенные. Ниже, в пп. 2.1

и 2.2, даны краткие эскизы двух аналитических методов, а в п. 2.3 — ряда

приближенных методов.
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2.1. Интеграл Кристоффеля — Шварца. Наиболее известным ана-

литическим методом конформного отображения односвязных областей B яв-

ляется метод, основанный на интеграле Кристоффеля — Шварца (см. [55],

[58], [72], [78], [82], [88], [109], [173], [176]), который для случая отображения

µ : H+ conf−→ B полуплоскости на N–угольную область B с (измеряемыми по

области) углами πβk при вершинах zk имеет вид

z = µ(ζ) = K0

∫ ζ ∏N

k =1
(t− ζk)

βk − 1 dt + K1, (2.1)

где K0 и K1 — постоянные, а ζk := µ−1(zk) — прообразы вершин N–угольника

B. Главной трудностью в этом методе является нахождение прообразов ζk (см.

об этом, например, [164], [176], [193], [200], [234], [236], [249]), вернее, (N−3)-х

из них, ибо три прообраза могут в соответствии с теоремой Римана [55] быть

произвольно заданы на вещественной оси R = ∂H+ (с соблюдением порядка

обхода). Особенно сложной эта проблема становится в ситуации кроудинга,

т.е. резко неравномерного расположения прообразов. Слово кроудинг (от ан-

глийского ”crowding“) означает ”скучивание“, ”давка“, ”толкотня“; в рассмат-

риваемом случае отображения полуплоскости скучивание на R понимается

в метрике римановой сферы [58], [78], [176]. Следует отметить, что при ис-

пользовании интеграла Кристоффеля — Шварца в приложениях — именно

случай кроудинга чаще всего и возникает. Методы решения проблемы пара-

метров указанного интеграла (к которым причисляются, кроме прообразов,

также еще и неизвестные константы K0 и K1) указаны в [32], [72], [78], [173],

[176]. Эффективные методы решения проблемы кроудинга предложены в [16],

[18], [25], [97], [234], [235], [237].

2.2. Отображение круговых многоугольников. Известен предложен-

ный Г.А.Шварцем [221] (см. также [19], [52], [55], [58], [68], [78]) аналитический

метод конформного отображения односвязных круговых N–угольников, т.е.

областей B, граница которых состоит из дуг окружностей; точки их соеди-

нения (вершины кругового многоугольника) и соответствующие углы будем,
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как и выше, обозначать через zk и πβk, а прообразы вершин — через ζk. Со-

гласно этому методу конформное отображение µ : H+ conf−→ B удовлетворяет

уравнению {
µ, ζ

}
= R (ζ), (2.2)

в котором
{
ϕ, ζ

}
— производная Шварца, определяемая равенством

{
µ, ζ

}
:=

[
µ′′(ζ)

µ ′(ζ)

]′
− 1

2

[
µ′′(ζ)

µ ′(ζ)

]2

, (2.3)

а R(ζ) — рациональная функция, имеющая при нормировке µ(∞) = zN вид

R(ζ) :=
N−1∑
n=1

1− β2
n

2(ζ − ζn)2 +
1

(ζ − ζ1)(ζ − ζN−1)

(
N∑

n=1

β2
n − 1

2
ΘN, n +

N−2∑
m=2

γm

ζ − ζm

)
.

Здесь ΘN,n := (−1)δN,n, где δN,n — символ Кронекера, а γm — вещественные

числа, называемые акцессорными постоянными. Если задать еще два про-

образа вершин (например, положив ζ1 = 0, ζ2 = 1), то с учетом принятого

выше условия ζN = ∞ это полностью определит отображение µ(ζ). И тогда

уравнениеШварца (2.2) для однозначно определенной функции µ(ζ) будет со-

держать (N−3) неизвестных прообразов и (N−3) неизвестных акцессорных

параметров γm. Таким образом, при построении отображения µ : H+ conf−→ B

на основе решения уравнения Шварца (2.2) возникает проблема отыскания

(2N − 6) неизвестных параметров. Решение этой проблемы с помощью ана-

литических средств представляется весьма затруднительным [31], [68], [108],

[128], как и решение в аналитическом виде самого уравнения (2.2).

Последняя задача может быть несколько упрощена с помощью описывае-

мого ниже приема, изложенного в работах [52], [55], [58] и сводящего решение

нелинейного уравнения (2.2) третьего порядка к решению следующего линей-

ного уравнения класса Фукса [1], [52], [109], [171] второго порядка:

Ξ ′′(ζ) +
1

2
R(ζ) Ξ(ζ) = 0. (2.4)

Поскольку вронскиан Ξ′1Ξ2 − Ξ1Ξ
′
2, образованный двумя линейно незави-

симыми решениями Ξ1 и Ξ2 уравнения (2.4), как известно, равен отличной
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от нуля постоянной (которую без ограничения общности можно положить

равной единице), то, обозначив через µ(ζ) их отношение

µ(ζ) = Ξ1(ζ)/Ξ2(ζ) (2.5)

и дифференцируя его, находим µ ′(ζ) = Ξ−2
2 (ζ). Представляя производную

Шварца с помощью известного тождества [52], [55], [58], [78],
{
µ, ζ

}
= − 2

√
µ ′(ζ)

d2

dζ2

[
1√

µ ′(ζ)

]
,

подставляя в его правую часть µ ′(ζ) = Ξ−2
2 (ζ) и используя вид уравнения

(2.4), получаем, что функция µ (ζ), определенная как отношение (2.5) двух

линейно независимых решений уравнения класса Фукса (2.4), является реше-

нием уравнения Шварца (2.2), что и требовалось установить.

Необходимо заметить, что решение редуцированного уравнения (2.4),

хотя и значительно более простого, чем исходное уравнение Шварца (2.2),

также представляет собой трудную задачу, поскольку теория уравнений клас-

са Фукса второго порядка, к которому относится уравнение (2.4), далека от

завершения; некоторые относящиеся к этой проблеме результаты даны

в работах [31], [37], [68], [108] и в приведенной в них библиографии. Раз-

вернутая теория обсуждаемого класса уравнений создана лишь для случая

трех особых точек ζn, когда оно имеет специальное название ”уравнение Ри-

мана“ [220]. Эта теория изложена, например, в монографиях [1], [19], [79],

[215], где в частности показано, что уравнение Римана сводится к гипергео-

метрическому уравнению Гаусса, а соответствующая этому случаю область

B представляет собой круговой треугольник. О конформном отображении

круговых треугольников см. [19], [37], [52], [58], [78]. Разработка теории урав-

нений класса Фукса с числом особых точек, большем трех, и тесно связанный

с этим вопрос о построении в аналитическом виде конформного отображения

круговых N–угольников при N > 3 являются весьма трудной и, вместе с тем,

остро актуальной современной проблемой; см. об этом, например, [31], [39],

[68] и приведенную там библиографию.
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2.3. Приближенные методы конформного отображения. Для

построения конформного отображения односвязных областей B сложного

вида известно большое число приближенных методов, существенно опира-

ющихся на численные процедуры [16], [38], [55], [56], [72], [78], [109], [136],

[158], [170], [173], [174], [176], [188], [200], [205], [231], [232].

Один из них [176], [231] основан на построении отображения ζ = Φ(z)

жордановой области B 3 z∗ на круг U := {|ζ| = 1} с использованием задачи

Дирихле в B:

∆U(z) = 0, z ∈ B, U(z′) = − ln |z′ − z∗|, z′ ∈ ∂B,

после решения которой и комплексификации F(z) = U(z)+ iV (z), V (z∗) = 0,

искомое отображение находится по формуле

Φ(z) = (z − z∗) exp
[
F(z)

]
.

Ряд приближенных методов [38], [55], [56], [72], [109], [136], [176], базируется

на вариационных принципах, в частности на принципах Бибербаха [151] и

Жюлиа [188], [190]. Первый из них гласит: пусть B — область Каратеодори

[88], [156]; тогда среди всех функций Φ̃(z), регулярных в области B 3 {z∗} и

подчиненных нормировке

Φ̃(z∗) = 0, Φ̃′(z∗) = 1, (2.6)

наименьшую площадь отображенной области Φ̃(B) дает функция Φ, отобра-

жающая B на круг UR := {|ζ| = R} некоторого радиуса R > 0. А прин-

цип Жюлиа утверждает: пусть B — односвязная область, содержащая точку

z = z∗ и ограниченная спрямляемым контуром Γ; тогда среди всех регуляр-

ных внутри B функций Φ̃(z), непрерывных в B, абсолютно непрерывных на Γ

и удовлетворяющих условиям (2.6), функция Φ : B
conf−→ UR дает наименьшую

длину границы образа Φ̃(Γ). Для минимизации соотствующих функционалов

чаще всего в качестве аппроксимирующей системы функций используют си-

стему полиномов, которую в ряде случаев предварительно ортонормируют.
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Известен ряд методов, сводящих задачу о построении конформного отоб-

ражения к решению интегрального уравнения [78], [174], [176], [205], [232].

В качестве иллюстрации такого подхода изложим метод, предложенный

Теодорсеном и Гарриком [232].

Пусть граница области B на плоскости z = ρeiθ звездна относительно

z = 0, т.е. ∂B представима уравнением ρ = ρ(θ), и требуется построить

конформное отображение ϕ : U conf−→ B круга на эту область с условиями нор-

мировки ϕ(0) = 0, ϕ′(0) > 0. Cчитая зависимость ρ(θ) заданной, выведем

интегральное уравнение относительно функции θ(t), где t = arg ζ ′ — аргу-

мент граничной точки ζ ′ ∈ ∂U. Заметим, что функция

Λ(ζ) = ln
ϕ(ζ)

ζ

аналитична в U, а на окружности ∂U ее вещественная и мнимая части

Re Λ
(
eit

)
= ln ρ[θ(t)], Im Λ

(
eit

)
= θ(t)− t, (2.7)

рассматриваемые как функции параметра t, связаны преобразованием Гиль-

берта [45], [95], [109], [177]. Отсюда получаем следующее нелинейное сингу-

лярное интегральное уравнение относительно θ(t):

θ(t)− t =
1

2π

∫ 2π

0
ln

{
ρ
[
θ(τ)

]}
ctg

t− τ

2
dτ.

После решения этого уравнения и подстановки найденной функции θ(t) в

(2.7) функция Λ(ζ) восстанавливается с помощью формулы Шварца по зна-

чениям вещественной части Re Λ на ∂U, а искомое конформное отображение

затем определяется через Λ(ζ) по формуле ϕ(ζ) = ζ exp
[
Λ(ζ)

]
.

Отметим еще группу аналитико–численных методов [16], [38], [40], ориен-

тированных на построение конформного отображения Φ : g
conf−→ H+ одно-

связных областей g сложной формы. Предполагается, что граница области

g состоит из двух звеньев γ и Γ, где дуга Γ кусочно–гладкая, а для обла-

сти g можно указать такое ее расширение G через дугу Γ, что отображение

F : G
conf−→ H+ может быть эффективно построено. При этом область g не
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обязательно должна быть конечной или жордановой, или даже однолист-

ной, а дуга γ может быть достаточно произвольной, в том числе содержать

бесконечно удаленные точки. Обсуждаемые методы [16], [38], [40] обладают

экспоненциальной скоростью сходимости внутри g ∪ intγ, где intγ — дуга γ

без концевых точек, и допускают дифференцирование произвольное число

раз в g и в точках intγ соответствующей гладкости. Они представляют собой

сочетание метода мультиполей [35], [37], [40] соответственно с методом Симма

[176], [231], принципом Жюлиа [188], [190] и теорией конформного отображе-

ния сингулярно деформируемых областей [36], [37], [40].

Остановимся на кратком описании первого из них [16]. Пусть выполняются

указанные выше предположения относительно областей g и G. Обозначим

через A1 и A2 точки соединения дуг γ и Γ, а через N — некоторую точку из

intγ. В описываемом методе вначале строится отображение f : g
conf−→U+, где

U+ := H+ ∩ {|w| < 1} — полукруг, удовлетворяющее условиям f(A1) = −1,

f(N) = 0, f(A2) = 1. Выбрав некоторую точку M ∈ ∂G \ γ, подчиним

функцию F : G
conf−→H+ условиям: F (N) = 0, F (M) = ∞.

На дуге Γ введем функцию χ (z) := − ln |F (z)|, определим систему функ-

ций {Ωk(z)}∞k=0 по формуле Ωk (z) := Re
[
F (z)

]k и, обозначив через (·, ·)
скалярное произведение в L2 (Γ), рассмотрим систему линейных уравнений
∑N

l=0 (Ωk, Ωl) aN
l = (Ωk, χ), k = 0, N , относительно величин (aN

0 , . . . , aN
N ).

Тогда последовательность функций
{
fN (z)

}
N
, определяемых по формуле

fN (z) := F (z) exp
[ ∑N

k=0
aN

k F k (z)
]
,

равномерно сходится к отображению f(z) на множестве g ∪ int γ и эту после-

довательность можно дифференцировать произвольное число раз в g и m раз

в точках Cm,α–гладкости дуги int γ. С помощью найденного f(z) требуемое

отображение Φ : g
conf−→ H+ строится без труда.
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§3. Задача Римана — Гильберта в верхней

полуплоскости и ее сведение к задаче сопряжения

Параграф посвящен постановке сингулярной задачи Римана — Гильберта

(1.2) в H+ для функции P+, когда данные задачи χ(ξ) и σ(ξ) — разрывные

кусочно–гёльдеровые функции на R = ∂H+, а в точках разрыва предписы-

ваются условия степенно́го, в том числе неинтегрируемого, роста решения.

В п. 3.1 описан класс H0(Ξ), которому принадлежат функции χ(ξ) и σ(ξ),

в п. 3.2 введены необходимые обозначения, в п. 3.3 дана постановка сингу-

лярной задачи Римана — Гильберта, а в п. 3.4 описано ее сведе́ние к задаче

сопряжения.

3.1. Класс H0(Ξ) кусочно–гёльдеровых функций на вещественной

оси. В настоящем разделе краевые задачи рассматриваются на плоскости

комплексного переменного ζ = ξ + iη. Граничное условие задачи Римана

— Гильберта относительно аналитической функции P+ (ζ) имеет вид (1.2),

где комплексная функция χ(ξ) и вещественная функция σ(ξ) принадлежат

классу кусочно–гёльдеровых на R функций с разрывами первого рода, точное

определение которого дано ниже.

Следуя [95], определим класс H0(Ξ) для произвольной функции f(ξ). Вве-

дем множество точек

Ξ :=
{
ξ0, ξ1, . . . , ξN

}
(3.1)

вещественной оси R, где ξ1, ξ2, . . . , ξN — конечные точки, причем ξk+1 > ξk,

а ξ0 = ξN+1 — (единственная) бесконечно удаленная точка; при этом обыч-

ные символы +∞ и −∞ означают соответственно ξ0 − 0 и ξ0 + 0.c Будем

говорить, что на оси R задана кусочно–гёльдерова функция f(ξ) с разрывами

первого рода в точках ξk, k = 0, N , и обозначать это f ∈ H0(Ξ), если вы-

полняются следующие условия. Во внутренних точках каждого из отрезков

Lk := [ξk, ξk+1], k = 0, N , функция f(ξ) удовлетворяет условию Гëльдера,

а в точках ξk она не определена, но имеет в них правые и левые пределы
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и удовлетворяет односторонним условиям Гëльдера. Это означает, что для

функций fk(ξ), k = 0, N , определенных на отрезках Lk по формулам

fk(ξ) := f(ξ), ξ ∈ Lk, fk(ξk) := f(ξk + 0), fk(ξk+1) := f(ξk+1 − 0),

где Lk := (ξk, ξk+1), выполняются соотношения

|fk(ξ
′′)− fk(ξ

′)| ≤ C|ξ′′ − ξ′|µ, ξ′, ξ′′ ∈ Lk,

для конечных точек ξk — соотношения

|fk(ξ)− fk(ξk)| ≤ C|ξ − ξk|µ , ξ ∈ Lk,

|fk−1(ξ)− fk−1(ξk)| ≤ C|ξ − ξk|µ, ξ ∈ Lk−1 ,

а для бесконечной точки ξ0 — следующие соотношения:

|f0(ξ)− f0(ξ0)| ≤ C|ξ|−µ, ξ ∈ L0, |fN(ξ)− fN(ξ0)| ≤ C|ξ|−µ, ξ ∈ LN ,

где µ ∈ (0, 1).

Будем говорить, что функция f ∈ H0(Ξ) нигде на R не обращается в нуль

и писать f(ξ) 6= 0, ξ ∈ R, если каждая из функций fk, k = 0, N , отлична от

нуля на соответствующем (замкнутом) отрезке Lk ее определения.

3.2. Используемые обозначения и предположения. Пусть заданные

на R комплексная χ(ξ) и вещественная σ(ξ) функции, являющиеся данными

задачи Римана — Гильберта (1.2), принадлежат классу H0(Ξ), причем χ(ξ)

нигде не равна нулю, т.е.

χ ∈ H0(Ξ), χ(ξ) 6= 0, ξ ∈ R; σ ∈ H0(Ξ). (3.2)

На каждом из участков непрерывности Lk выберем произвольным образом

ветвь аргумента функции χ(ξ) и обозначим через δk деленные на π скачки

функции arg χ(ξ) в точках разрыва:

δk :=
arg χ (ξk + 0)− arg χ (ξk − 0)

π
, k = 1, N, (3.3)
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а для бесконечно удаленной точки полагаем

δ0 := − arg χ (ξo + 0)− arg χ (ξo − 0)

π
. (3.4)

Обозначим через αk и βk соответственно дробные и целые части величин δk

[0, 1) 3 αk := {δk} , βk := [δk] , k = 0, N , (3.5)

и заметим, что

αk + βk = δk , k = 0, N . (3.6)

Введем также скачки функции σ(ξ)/χ(ξ):

ρk :=
σ (ξk + 0)

χ (ξk + 0)
− σ (ξk − 0)

χ (ξk − 0)
, k = 0, N. (3.7)

Пусть, кроме того, заданы неотрицательные целые числа n o, n1, . . . , nN ∈ Z+.

3.3. Два случая рассматриваемой задачи: нелогарифмический и

логарифмический. Мы рассматриваем задачу Римана — Гильберта для

аналитической в верхней полуплоскости функции P+ с условиями ее роста в

точках ξk, в том числе с неинтегрируемым ростом. При этом будем отдельно

изучать два случая:

I) когда соотношения nk = 0, αk = 0, ρk 6= 0 одновременно не выполня-

ются ни в одной точке ξk, k = 0, N , разрыва граничных условий, т.е.

6 ∃ k = 0, N : nk = 0, αk = 0, ρk 6= 0 ; (3.8)

II) когда указанные соотношения одновременно выполняются хотя бы для

одной точки ξk, т.е.

∃ k = 0, N : nk = 0, αk = 0, ρk 6= 0 . (3.9)

Первый случай будем называть нелогарифмическим, а второй — логарифми-

ческим в связи с видом асимптотики решения P+(ζ) рассматриваемой задачи

вблизи точек ξk, см. ниже пп. 3.3.1o и 3.3.2o.



– 41 –

В связи со сказанным постановки неоднородной задачи Римана — Гильбер-

та для этих случаев различаются. Однако, для однородной задачи возникает

только одна постановка, поскольку для нее, очевидно, ρk = 0 ∀k = 0, N , и,

следовательно, реализуется только первый, нелогарифмический случай. По-

становки неоднородной задачи Римана — Гильберта для I–го и II–го случаев

даны соответственно в пп. 3.3.1o и 3.3.2o, а их решения — в §6.

3.3.1o. Постановка задачи для нелогарифмического (I–го) случая. Этот слу-

чай соответствует рассмотрению сингулярной задачи Римана — Гильберта

(1.2) в предположениях п. 3.2 и предположении (3.8). Она формулируется

следующим образом: найти аналитическую в верхней полуплоскости H+ и

непрерывную в H+ \ Ξ функцию P+(ζ), т.е.

P+ ∈ H+ := A (H+) ∩ C
(
H+ \ Ξ

)
, (3.10)

удовлетворяющую на вещественной оси краевому условию

Re
[
χ(ξ) P+(ξ)

]
= σ(ξ), ξ ∈ R \ Ξ, (3.11)

а в точках ξk — условиям роста:

P+(ζ) =

{
O

[
(ζ − ξk)

αk −nk
]
, если nk 6= 0;

O(1), если nk = 0;
ζ → ξk (k = 1, N ), (3.12)

P+(ζ) = O
(
ζ α o + n o

)
, ζ →∞. (3.13)

Предложение 1.1. Фигурирующие в условиях роста (3.12), (3.13) ве-

личины αk, определяемые по формулам (3.3)–(3.5), не зависят от выбора

ветвей аргумента коэффициента χ(ξ) на участках непрерывности Lk.

Это утверждение легко устанавливается с учетом того, что дробная часть

числа не изменяется при прибавлении к этому числу произвольного целого.

Предложение 1.2. Если для рассматриваемого случая I в какой–либо

точке ξk одновременно обращаются в нуль αk и nk, то в этой точке обя-

зательно выполняется равенство σk = 0 .

Утверждение вытекает из условия (3.8).
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3.3.2o. Постановка задачи для логарифмического (II–го) случая. Пусть для

коэффициентов χ(ξ) и σ(ξ) задачи (3.11) по–прежнему выполняются пред-

положения п. 3.2. Предположим, что для одной или нескольких точек ξk,

которые обозначим ξkm
, одновременно выполняются равенства

nkm
= 0, αkm

= 0, ρkm
6= 0 , (3.14)

т.е. имеет место случай II. Тогда в каждой конечной точке ξkm
требование

(3.12), которое при αkm
= nkm

= 0 означало бы P+(ζ) = O(1), ζ → ξkm
,

заменяется на следующее:

P+(ζ) = O
[
ln(ζ − ξkm

)
]
, ζ → ξkm

, (3.15)

а если условие (3.14) выполняется в бесконечно удаленной точке ξk0
= ξ0,

то соотношение (3.13), которое при αk o
= nk o

= 0 означало бы P+(ζ) = O(1),

ζ →∞, заменяется на следующее:

P+(ζ) = O
(
ln ζ

)
, ζ →∞. (3.16)

3.4. Сведе́ние к задаче сопряжения. Используя равенство

2 Re [ χ(ξ) P+ (ξ) ] = χ(ξ) P+ (ξ) + χ(ξ) P+ (ξ),

переписываем краевое условие (3.11) в виде

P+ (ξ) = −χ(ξ)

χ(ξ)
P+ (ξ) +

2 σ (ξ)

χ(ξ)
, ξ ∈ R \ Ξ. (3.17)

Вводя по формуле

P−(ζ) = P+ ( ζ ), ζ ∈ H− , (3.18)

аналитическую в нижней полуплоскости H− функцию P−(ζ), для которой

согласно (3.10) выполняется включение

P−(ζ) ∈ H− := A
(
H−

) ∩ C
(
H− \ Ξ

)
, (3.19)
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и учитывая равенство ζ = ζ, ζ ∈ R, убеждаемся, что в правой части (3.17)

можно сделать замену P+(ξ) = P−(ξ) . Обозначим коэффициент−χ(ξ) / χ(ξ)

при P+ в правой части равенства (3.17) через G(ξ),

G(ξ) := exp
[
2 i Θ(ξ)

]
, Θ(ξ) := arg

[
i χ (ξ)

]
, (3.20)

а свободный член — через g(ξ),

g(ξ) :=
2 σ(ξ)

χ(ξ)
. (3.21)

Тогда равенство (3.17), переписанное в виде

P+ (ξ) = G(ξ) P− (ξ) + g (ξ), ξ ∈ R \ Ξ, (3.22)

представляет собой условие сопряжения функций P+ ∈ H+ и P− ∈ H−,

коэффициенты G и g которого, так же, как и функция Θ, удовлетворяют

согласно (3.2), (3.20), (3.21) соотношениям

G ∈ H0(Ξ), Θ ∈ H0(Ξ), g ∈ H0(Ξ); (3.23)

∀ξ ∈ R : G(ξ) 6= 0. (3.24)

При этом сами функции P+ и P−, составляющие кусочно–аналитическую

функцию P,

P(ζ) =

{
P+ (ζ), ζ ∈ H+ ,

P− (ζ), ζ ∈ H− ,
(3.25)

связаны равенством (3.18), которое, следуя [77], будем называть условием

комплексного уравновешивания. Кроме того, функция P удовлетворяет сле-

дующим условиям роста:

• для случая I согласно (3.12), (3.13) имеем

P(ζ) =

{
O

[
(ζ − ξk)

αk −nk
]
, nk 6= 0;

O(1), nk = 0;
ζ → ξk (k = 1, N ), (3.26)

P(ζ) = O
(
ζα o+n o

)
, ζ →∞. (3.27)



– 44 –

• для случая II согласно (3.15), (3.16) имеем: в конечных точках ξkm
, где од-

новременно выполняются сотношения (3.14), вместо условия (3.26) ставится

следующее:

P(ζ) = O
[
ln(ζ − ξkm

)
]
, ζ → ξkm

; (3.28)

если же (3.14) имеет место для ξk o
= ∞, то вместо условия (3.27) ставится

P(ζ) = O
(
ln ζ

)
, ζ →∞. (3.29)

Из сказанного выше вытекает, что если P+ удовлетворяет условию (3.11)

задачи Римана — Гильберта с данными χ и σ, отвечающими (3.2), то функ-

ция P, определяемая по формулам (3.18), (3.25), удовлетворяет условию со-

пряжения (3.22) с данными G и g, подчиняющимися (3.23), (3.24), и отвечает

включению

P ∈ H ⇐⇒
{

P+ ∈ H+ ,

P− ∈ H− ,
(3.30)

где H+ и H− определены в (3.10) и (3.19).

Подставляя (3.18) в (3.22), убеждаемся, что верно и обратное утверждение.

Учитывая еще указанное выше поведение функций P+ и P− в точках {ξk},
приходим к следующему предложению.

Предложение 1.3. Любое решение P задачи сопряжения (3.18), (3.22)–

(3.24), (3.26)–(3.30) представляет в H+ решение задачи Римана — Гильбер-

та (3.2), (3.11)–(3.13) и, обратно, любое решение P+ этой задачи Римана

— Гильберта, дополненное в H− по формулам (3.18), (3.25), является реше-

нием указанной задачи сопряжения.

Решение P ∈ H задачи сопряжения (3.22)–(3.24), (3.26)–(3.30) будем ис-

кать в виде суммы

P(ζ) = Ψ(ζ) + N(ζ) (3.31)

общего решения Ψ(ζ) однородной (т.е. соответствующей g(ξ) ≡ 0) и некото-

рого решения N(ζ) неоднородной задачи сопряжения.

Для построения функций Ψ и N нам понадобятся свойства специальной

модификации интеграла типа Коши, рассмотренного в следующем параграфе.
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§4. Модифицированный интеграл типа Коши

Материал п. 4.1 настоящего подраздела, взят из монографий [45], [95].

Пункты 4.2, 4.3 посвящены модифицированному интегралу типа Коши, ис-

пользуемому в следующих параграфах для построения решения сингулярной

задачи Римана — Гильберта.

4.1. Интеграл типа Коши. Формулы Сохоцкого. Пусть L — лежа-

щая в C простая гладкая дуга (замкнутая или незамкнутая), на которой за-

дано направление обхода, а λ(t) — определенная на L комплекснозначная

непрерывная по Гёльдеру функция, где t — комплексная координата. Тогда

интеграл

F (z) =
1

2πi

∫

L

λ(t) dt

t− z
(4.1)

называют интегралом типа Коши, функцию λ(t) — его плотностью, а 1/(t−z)

— ядром Коши.

Интеграл типа Коши F (z) является аналитической в C \L функцией пере-

менного z. В указанных предположениях для дуги L и плотности λ(t) функ-

ция F (z) непрерывно продолжима слева и справа на дугу L за исключением

ее концов (обозначаемых a и b), если таковые имеются. Левые F+(t) и пра-

вые F−(t) предельные значения интеграла типа Коши на L терпят скачок,

равный плотности λ(t), т.е. справедливо следующее равенство

F+ (t) − F− (t) = λ (t), t ∈ int L , (4.2)

и связаны с сингулярным интегралом

Φ(t) =
1

2πi

∫

L

λ(t′) dt′

t′ − t

равенствами

F±(t) = ±λ (t)

2
+ Φ(t), t ∈ int L , (4.3)

где int L — дуга L без концевых точек. Соотношения (4.2) и (4.3) называют

формулами Сохоцкого.
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4.2. Модифицированный интеграл типа Коши с плотностью из

класса H0(Ξ). Пусть λ(ξ) представляет собой произвольную (комплексно-

значную) кусочно–гёльдерову функцию на R с разрывами первого рода в

точках ξk, т.е. удовлетворяет включению

λ ∈ H0(Ξ). (4.4)

Пусть, далее, точка δ ∈ R фиксирована и не совпадает с точками ξk,

R 3 δ 6∈ Ξ. (4.5)

Тогда интеграл

Λ(ζ) =
ζ − δ

2πi

∫

R

λ(t) dt

(t− δ) (t− ζ)
=

{
Λ+ (ζ), ζ ∈ H+ ,

Λ− (ζ), ζ ∈ H− ,
(4.6)

будем называтьмодифицированным интегралом типа Коши. Близкие к нему

интегралы вводились в монографии [45]. При необходимости подчеркнуть,

что интеграл Λ соответствует плотности λ(ζ), будем его обозначать Λ(λ; ζ).

Свойства интеграла (4.6) при условии (4.4) устанавливает

Теорема 1.1. Cправедливы следующие утверждения.

1) Интеграл (4.6) существует в смысле главного значения.

2) Функции Λ+(ζ) и Λ−(ζ) принадлежат классам H+ и H−, а для их

граничных значений справедлива формула Сохоцкого

Λ+ (ξ) − Λ− (ξ) = λ(ξ) , ξ ∈ R \ Ξ. (4.7)

3) Для того чтобы функции Λ+(ζ) и Λ−(ζ) удовлетворяли условию ком-

плексного уравновешивания

Λ−(ζ) = Λ+ ( ζ ), ζ ∈ H− (4.8)

необходимо и достаточно, чтобы плотность λ(ξ), ξ ∈ R, принимала толь-

ко мнимые значения.
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4) Функция Λ(ζ) имеет в точках Ξ следующие асимптотики:

Λ (ζ) =
λ(ξk − 0)− λ(ξk + 0)

2πi
ln |ζ − ξk| + O(1), ζ → ξk , k = 1, N, (4.9)

Λ (ζ) =
λ(−∞) − λ(+∞)

2πi
ln |ζ| + O(1), ζ →∞ . (4.10)

Доказательство теоремы 1.1 дано в приложении A, стр. 250.

4.3. Некоторые частные случаи модифицированного интеграла

типа Коши. Рассмотрим следующий интеграл:

M (ζ) =
ζ − δ

π

∫

R

Θ(t) dt

(t− δ) (t− ζ)
=

{
M+ (ζ), ζ ∈ H+ ,

M− (ζ), ζ ∈ H− ,
(4.11)

где функция Θ(ξ), связана с коэффициентом χ(ξ) задачи Римана — Гиль-

берта (3.11) формулой (3.20). Напомним, что согласно (3.23) функция Θ(ξ)

принадлежит классу H0(Ξ).

Заметив, что M(ζ) = Λ(2 i Θ; ζ) и принимая во внимание вытекающие из

(3.3)–(3.7) формулы

Θ(ξk − 0) − Θ(ξk + 0)

π
= αk + βk, k = 1, N ;

Θ(−∞) − Θ(+∞)

π
= α0 + β0,

получаем из теоремы 1.1

Предложение 1.4. Cправедливы следующие утверждения.

1) Интеграл (4.11) существует в смысле главного значения.

2) Функции M+(ζ) и M−(ζ) принадлежат соответственно классам H+

и H−, а для их граничных значений справедлива формула Сохоцкого

M+ (ξ) − M− (ξ) = 2 i Θ(ξ) , ξ ∈ R \ Ξ. (4.12)

3) Функции M+(ζ) и M−(ζ) удовлетворяют условию комплексного урав-

новешивания

M−(ζ) = M+ ( ζ ), ζ ∈ H−. (4.13)
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4) Функция M(ζ) имеет в точках Ξ следующие асимптотики:

M (ζ) = (αk + βk) ln |ζ − ξk| + O(1), ζ → ξk , k = 1, N, (4.14)

M (ζ) = (α0 + β0) ln |ζ| + O(1), ζ →∞ . (4.15)

Используя рассуждения, аналогичные приведенным в доказательстве тео-

ремы 1.1, можно установить следующее

Предложение 1.5. Если плотность ν ∈ H0 в интеграле

N (ζ) =
ζ − δ

π

∫

R

ν(t) dt

(t− δ) (t− ζ)
, δ ∈ R \ Ξ, (4.16)

удовлетворяет в окрестности бесконечности оценке ν(t) = O
(|t|−µ

)
, µ ∈

(0, 1), то и интеграл удовлетворяет аналогичной оценке,

N (ζ)−N(∞) = O
(|ζ|−µ

)
, N(∞) = − 1

π

∫

R

ν(t) dt

t− δ
. (4.17)

§5. Однородные задачи сопряжения и

Римана — Гильберта

В пункте 5.1 настоящего параграфа дана постановка задачи сопряжения,

к которой сводится однородная задача Римана — Гильберта, в пункте 5.2 для

этих задач найдено каноническое решение и определен индекс, а в пункте 5.3

получены формулы для искомых функций.

5.1. Постановка однородной задачи сопряжения. Пусть функция

Ψ ∈ H является решением однородной задачи сопряжения (3.22)–(3.24), (3.26)–

(3.30), т.е. Ψ+ и Ψ− удовлетворяют соотношениям

Ψ+(ξ) = G(ξ) Ψ−(ξ), ξ ∈ R \ Ξ ; (5.1)

Ψ− (ζ) = Ψ+ ( ζ ), ζ ∈ H−; (5.2)

Ψ(ζ) = O
[
(ζ − ξk)

αk−nk
]
, ζ → ξk, k = 1, N ; (5.3)
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Ψ(ζ) = O
(
ζα o+n o

)
, ζ →∞; (5.4)

напомним, что запись Ψ ∈ H понимается в смысле (3.30), а Ψ±(ζ) связаны с

Ψ(ζ) соотношением, аналогичным (3.25).

5.2. Каноническое решение. Индекс κ задачи. Назовем канониче-

ским решением задачи сопряжения (5.1)–(5.4) функцию X ∈ H, которая

удовлетворяет условиям сопряжения

X+(ξ) = G(ξ) X−(ξ), ξ ∈ R \ Ξ, (5.5)

и комплексного уравновешивания

X− (ζ) = X+ ( ζ ), ζ ∈ H−, (5.6)

в конечных точках ξk (k = 1, N) подчиняется условиям роста

X (ζ) = O?
[
(ζ − ξk)

αk−nk
]
, ζ → ξk, k = 1, N, (5.7)

а на бесконечности ведет себя некоторым степенным образом, и кроме того,

не обращается в нуль в C \ Ξ:

X (ζ) 6= 0, ζ ∈ C \ Ξ. (5.8)

Именно условие (5.8) и отличает каноническую функцию X(ζ) от решения

задачи сопряжения Ψ(ζ).

Как будет показано ниже, см. (5.16), на бесконечности каноническая функ-

ция X(ζ), имеет следующую асимптотику:

X(ζ) = O?(ζα o+ñ0), ζ →∞,

где ñ0 — некоторое целое число, вообще говоря, отличное от n o, фигуриру-

ющего в (5.4); число ñ0 будет найдено ниже. Отметим, что в [95], [45] кано-

ническое решение было введено для случаев, когда числа nk при k = 1, N

могли принимать значения 0 или 1, а число n0 — значения 0 или −1.

Вначале рассматривается вопрос о единственности канонического реше-

ния, а затем предъявляется вид одного из них и формулируется теорема его

существования.
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Предложение 1.6. Каноническое решение X(ζ), т.е. функция, удовле-

творяющая условиям (5.5)–(5.8), единственно с точностью до веществен-

ной мультипликативной постоянной.

Доказательство. Действительно, если существует другое такое реше-

ние X1(ζ), то их отношение

η (ζ) = X(ζ)/X1(ζ)

представляет собой аналитическую в C функцию, быть может, имеющую на

бесконечности степенной рост и, таким образом, являющуюся полиномом.

Поскольку функция η(ζ) нигде не обращается в нуль, то она равна постоянной

величине C, которая в силу равенства η−(ζ) = η+(ζ), следующего из (5.6),

вещественна. Предложение доказано.

Обратимся непосредственно к построению канонического решения X(ζ).

Логарифмируя краевое условие (5.5), приходим к задаче об отыскании ре-

гулярных и однозначных соответственно в H+ и H− функций ln X+(ζ) и

ln X−(ζ), составляющих функцию ln X(ζ), по заданному ее скачку на веще-

ственной оси, который согласно (3.20) равен ln G(ξ) = 2 i Θ(ξ), т.е.

ln X+(ξ) − ln X− (ξ) = 2 i Θ(ξ), ξ ∈ R \ Ξ. (5.9)

Решение этой задачи будем искать на основе модифицированного интегра-

ла типа Коши (4.11); отметим, что использовать для этого обычный интеграл

типа Коши с плотностью 2 i Θ(ξ) не представляется возможным, так как Θ(ξ),

вообще говоря, не убывает на бесконечности.

Введем функцию

X̃(ζ) := eM(ζ), (5.10)

где M(ζ) дается формулой (4.11). Тогда согласно формуле Сохоцкого (4.12) из

предложения 1.4 функция X̃(ζ), будучи подставлена в условие (5.9), удовле-

творяет этому условию, а значит она удовлетворяет и условию сопряжения

X̃+(ξ) = G(ξ) X̃−(ξ), ξ ∈ R \ Ξ . (5.11)
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Кроме того, из равенств (4.13), (5.10) и соотношения ez = ez, z ∈ C, вытекает,
что для X̃±(ζ) выполняется условие комплексного уравновешивания

X̃−(ζ) = X̃+( ζ ), ζ ∈ H−. (5.12)

Однако, несмотря на то, что функция X̃(ζ) отвечает условиям (5.11), (5.12),

она, вообще говоря, не совпадает с X(ζ), поскольку, согласно (4.14), (4.15) и

(5.10) имеет асимптотики

X̃(ζ) = O?[(ζ − ξk)
αk+βk], ζ → ξk, X̃(ζ) = O?(ζα o+β o), ζ →∞, (5.13)

тогда как функция X(ζ) должна отвечать асимптотикам (5.7).

Из сравнения (5.7) и (5.13) вытекает, что функция X (ζ), определяемая по

формулам

X(ζ) = r (ζ) X̃(ζ), r (ζ) :=
∏N

k=1
(ζ − ξk)

−βk−nk , (5.14)

удовлетворяет требуемым условием роста (5.7), а из соотношений (5.10) и

(5.14) — что она не обращается в нуль при ζ ∈ C\Ξ. Поскольку рациональная

функция r (ζ) аналитична и однозначна в C \ Ξ и удовлетворяет равенству

r(ζ) = r(ζ), ζ ∈ C, а X̃(ζ) — аналогичному равенству (5.12) и граничному

условию (5.11), то X(ζ) отвечает граничному условию (5.5) и условию ком-

плексного уравновешивания (5.6). Кроме того, поскольку M ∈ H согласно

предложению 1.4, то, учитывая формулы (5.10) и (5.14), получаем X ∈ H.

Суммируя сказанное, приходим к следующему утверждению.

Предложение 1.7. Функция

X(ζ) =
N∏

k=1

(ζ − ξk)
−βk−nk eM(ζ), (5.15)

где M(ζ) дается формулой (4.11), является каноническим решением задачи

сопряжения (5.1)–(5.4), т.е. удовлетворяет соотношениям (5.5)–(5.8).

Учитывая асимптотику (4.15) для M(ζ), находим из (5.15) асимптотику

функции X(ζ) на бесконечности:

X(ζ) = O? (ζ α o+n o−κ ), ζ →∞ ; (5.16)
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фигурирующее здесь целое число κ, определяемое по формуле

κ := n o − β o +
N∑

k=1

(βk + nk), (5.17)

будем называть индексом задачи.

Поскольку функция X+(ζ), представляющая собой сужение на H+ кано-

нического решения X(ζ) задачи сопряжения (5.1)–(5.3), удовлетворяет од-

нородному условию (3.11) задачи Римана — Гильберта, нигде в H+ \ Ξ не

обращается нуль, а в конечных точках ξk, k = 1, N , подчиняется условиям

роста (3.12), то будем называть ее каноническим решением задачи Римана

— Гильберта (3.10)–(3.13).

Предложение 1.8. Индекс κ, определяемый по формуле (5.17), не за-

висит от выбора ветвей аргумента arg χ(ξ) на участках непрерывности

коэффициента χ(ξ) задачи Римана — Гильберта (3.10)–(3.13).

Доказательство. Напомним, что через δk, k = 0, N , обозначаются де-

ленные на π скачки аргумента χ(ξ) в точках ξk его разрыва при некотором

фиксированном выборе ветвей arg χ на участках Lk непрерывности коэффи-

циента χ.

Пусть на некотором конечном участке Lm выбрана иная ветвь arg χ(ξ);

очевидно, что она отличается от исходной на 2πpm, pm ∈ Z. Тогда, обозначив
новые, деленные на π, скачки в точках ξm и ξm+1 соответственно через δ̃m и

δ̃m+1 (a их целые части — через β̃m и β̃m+1), убеждаемся с учетом формулы

(3.3), что они связаны со старыми скачками соотношениями δ̃m = δm + 2pm,

δ̃m+1 = δm+1− 2pm, а следовательно, β̃m = βm +2pm, β̃m+1 = βm+1− 2pm. При

этом δk (и βk) в остальных ξk не изменились. Вычисляя индекс по формуле

(5.17) через новые βk, убеждаемся, что он не изменился. Отсюда и из фор-

мулы (5.17) вытекает, что от выбора ветвей arg χ(ξ) на конечных интервалах

Lk величина индекса не зависит.

Выполним аналогичную проверку для бесконечных интервалов L0 и LN .

Выберем, например, на L0 ветвь arg χ(ξ), отличающуюся от исходной на 2πn0.
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Тогда согласно формулам (3.3), (3.4) старые скачки δ0 и δ1 в точках ξ0 и ξ1 свя-

заны c новыми скачками δ̃0 и δ̃1 в тех же точках соотношениями δ̃0 = δ0−2p0,

δ̃1 = δ1 − 2p0, и аналогичные соотношения справедливы для соответствую-

щих целых частей β̃0 = β0 − 2p0, β̃1 = β1 − 2p0. Отсюда и из формулы (5.17)

вытекает, что от выбора ветви arg χ(ξ) на интервале L0 величина индекса не

зависит.

Выберем на LN ветвь arg χ(ξ), отличающуюся от исходной на 2πpN . Тогда

согласно формулам (3.3), (3.4) старые скачки δN и δ0 в точках ξN и ξ0 связаны

c новыми скачками δ̃N и δ̃0 в тех же точках соотношениями δ̃N = δN + 2pN ,

δ̃0 = δ0+2pN , и аналогичные соотношения справедливы для соответствующих

целых частей β̃N = βN + 2pN , β̃0 = β0 + 2pN . Отсюда и из формулы (5.17)

вытекает, что от выбора ветви arg χ(ξ) на интервале LN величина индекса

также не зависит. Итак, она не зависит от выбора ветвей аргумента arg χ(ξ) на

любых участках непрерывности коэффициента χ(ξ). Предложение доказано.

Из предложений 1.6, 1.7 вытекает следующая

Теорема 1.2. Каноническое решения задачи сопряжения (5.1)–(5.4), т.е.

функция X(ζ), удовлетворяющая соотношениям (5.5)–(5.8), существует,

единственно с точностью до мультипликативной постоянной, имеет вид

X(ζ) = C
∏N

k=1
(ζ − ξk)

−βk−nk eM(ζ), (5.18)

где C — отличная от нуля произвольная вещественная постоянная, и обла-

дает асимптотикой (5.16) на бесконечности, где κ — индекс (5.17) задачи

сопряжения (5.1)–(5.4). Функция X+(ζ), представляющая собой сужение

X(ζ) на H+, является каноническим решением задачи Римана — Гильбер-

та (3.10)–(3.13).

Из приведенных рассмотрений также следует

Предложение 1.9. Если в условиях роста (3.12), (3.13) постановки за-

дачи Римана — Гильберта (3.10)–(3.13) хотя бы одной точки ξk′ заменить

O на O?, а показатель αk′ −nk′ заменить на показатель νk′, дробная часть

которого отлична от αk′, то такая задача окажется неразрешимой.
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5.3. Решение однородных задач сопряжения и Римана — Гиль-

берта. Обратимся к нахождению общего решения Ψ(ζ) однородной зада-

чи сопряжения (5.1)–(5.4). Введем аналитические соответственно в H+ и H−

функции

ϕ+(ζ) =
Ψ+(ζ)

X+(ζ)
, ϕ−(ζ) =

Ψ−(ζ)

X−(ζ)
. (5.19)

Учитывая асимптотическое поведение (5.3), (5.7) функций Ψ(ζ) и X(ζ), на-

ходим, что ϕ+ и ϕ− непрерывны соответственно в H+ \ {∞} и H− \ {∞}.
Отсюда, учитывая краевые условия (5.1) и (5.5), получаем равенство

ϕ+(ξ) = ϕ−(ξ), ξ ∈ R,

из которого следует, что ϕ+(ζ) и ϕ−(ζ) образуют единую аналитическую во

всей конечной плоскости функцию ϕ(ζ), причем из асимптотик (5.4) и (5.16)

вытекает, что

ϕ (ζ) = O (ζκ ) , ζ →∞, (5.20)

где κ — индекс задачи, определяемый по формуле (5.17). Рассмотрим отдель-

но два случая: (i) κ ≥ 0; (ii) κ < 0.

(i) Если индекс κ неотрицателен, то функция ϕ(ζ) = ϕ±(ζ), ζ ∈ H±, в
силу теоремы Лиувилля и асимптотики (5.20) есть многочлен Pκ(ζ) степени

κ, а в силу условия комплексного уравновешивания ϕ−(ζ) = ϕ+(ζ), ζ ∈ H−,
следующего из (5.2), (5.6), (5.19), получаем, что коэффициенты многочлена

Pκ(ζ) вещественны. Возвращаясь к решению Ψ(ζ) задачи (5.1)–(5.4), уста-

навливаем следующее

Предложение 1.10. Если индекс κ из (5.17), неотрицателен, то реше-

ние Ψ ∈ H задачи сопряжения (5.1)–(5.4) представимо в виде

Ψ(ζ) = X(ζ) Pκ (ζ) ,

где X(ζ) — каноническое решение задачи, определяемое по формуле (5.15),

а Pκ(ζ) — произвольный многочлен степени κ с вещественными коэффици-

ентами.
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(ii) Если индекс κ отрицателен, то функция ϕ(ζ), аналитическая во всей

конечной плоскости, в силу асимптотики (5.20) равна нулю в точке ζ = ∞
и, следовательно, по теореме Лиувилля тождественно равна нулю. Отсюда

вытекает

Предложение 1.11. Если κ < 0, то однородная задача сопряжения

(5.1)–(5.4) не имеет решений Ψ из класса H, кроме тривиального

Ψ(ζ) ≡ 0.

Объединяя предложения 1.3, 1.10 и 1.11, приходим к следующей теореме.

Теорема 1.3. (i) Если индекс κ, определяемый по формуле (5.17), неот-

рицателен, то решение Ψ+ ∈ H+ однородной задачи Римана — Гильберта

Re [ χ(ξ) Ψ+ (ξ)] = 0, ξ ∈ R \ Ξ, (5.21)

с условиями роста

Ψ+(ζ) =O
[
(ζ − ξk)

αk−nk
]
, ζ → ξk, k = 1, N,

Ψ+(ζ) = O
(
ζα o+n o

)
, ζ →∞,

(5.22)

где nk — произвольные неотрицательные целые числа, имеет следующий

вид:

Ψ+(ζ) =
N∏

k=1

(ζ − ξk)
−βk−nk eM+(ζ) Pκ (ζ) , ζ ∈ H+; (5.23)

здесь функция M+ (ζ) дается равенством (4.11), Pκ(ζ) — произвольный мно-

гочлен степени κ с вещественными коэффициентами, а числа αk и βk опре-

деляются из (3.5).

(ii) При κ < 0 однородная задача Римана — Гильберта (5.21), (5.22) в

классе H+ не имеет решений, кроме тривиального Ψ+(ζ) ≡ 0.

Из теоремы 1.3 вытекает, что при κ ≥ 0 задача (5.21), (5.22) имеет (κ+1)

линейно независимых решений Ψ+
m(ζ),

Ψ+
m(ζ) = ζm

N∏

k=1

(ζ − ξk)
−βk−nk eM+(ζ) , m = 0,κ,

и общее решение (5.23) является их линейной комбинацией.
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Если в задаче сопряжения (5.1)–(5.4) отказаться от условия комплексного

уравновешивания (5.2), то утверждения предложений 1.10 и 1.11 переносятся

на такой случай с той лишь разницей, что коэффициенты полинома Pκ (ζ)

будут произвольными комплексными числами.

§6. Неоднородные задачи сопряжения и

Римана — Гильберта

Пункт 6.1 настоящего параграфа посвящен сведению построения частного

решения неоднородной задачи сопряжения к задаче о скачке, которая затем

решена в пункте 6.2. В пункте 6.3 выписано частное решение задач сопря-

жения и Римана — Гильберта. В пункте 6.4 представлен основной результат

главы I, сформулированный в виде теоремы 1.5 о разрешимости сингулярной

задачи Римана — Гильберта и представлении ее решения через модифициро-

ванные интегралы типа Коши.

6.1. Постановка неоднородной задачи сопряжения и ее сведе́ние к

задаче о скачке. Пусть выполняется условие (3.8), т.е. имеет место случай I.

Построим некоторые функции N+ ∈ H+ и N− ∈ H−, составляющие частное

решение задачи (3.22)–(3.24), (3.26), (3.27), т.е. удовлетворяющие условию

сопряжения

N+(ξ) = G (ξ) N−(ξ) + g(ξ), ξ ∈ R \ Ξ, (6.1)

условию комплексного уравновешивания

N−(ζ) = N+( ζ ), ζ ∈ H−, (6.2)

и условиям роста

N(ζ) =

{
O(1), nk = 0;

O
[
(ζ − ξk)

αk −nk
]
, nk > 0;

ζ → ξk (k = 1, N), (6.3)

N(ζ) = O
(
ζ α o + n o

)
, ζ →∞. (6.4)
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Будем искать N±(ζ) в виде

N+(ζ) = X+(ζ) F+(ζ), N−(ζ) = X−(ζ) F−(ζ), (6.5)

где X(ζ) — каноническое решение однородной задачи сопряжения (5.1)–(5.4),

определяемое по формуле (5.15). Из соотношений (5.6), (6.2), (6.5) находим,

что F+ и F− должны удовлетворять условию комплексного уравновешивания

F−(ζ) = F+( ζ ), ζ ∈ H−, (6.6)

а принимая во внимание соотношения N ∈ H, X ∈ H и свойство (5.8) кано-

нической функции, получаем F ∈ H.

Учитывая асимптотики (5.7), (5.16) для X(ζ), а также предписанное усло-

виями (6.3), (6.4) поведение функции N(ζ) при стремлении ζ → ξk, находим,

что F+ и F− ограничены или имеют интегрируемую особенность в точках ξk,

k = 1, N , а на бесконечности имеют порядок O(ζκ), т.е.

F(ζ) =

{
O [(ζ − ξk)

−αk ], nk = 0;

O(1), nk > 0;
ζ → ξk (k = 1, N );

F(ζ) = O(ζκ) , ζ →∞.

(6.7)

Подставляя (6.5) в условие сопряжения (6.1) и учитывая, что согласно

(5.5) коэффициент G(ξ) в условии (6.1) может быть записан в виде

G(ξ) =
X+(ξ)

X−(ξ)
,

получаем следующеe условиe скачка на вещественной оси для F+ и F−:

F+(ξ) − F−(ξ) =
g(ξ)

X+(ξ)
, ξ ∈ R \ Ξ. (6.8)

Таким образом, мы пришли к задаче о скачке (6.6)–(6.8) для функции

F ∈ H. При построении ее решения отдельно рассмотрим два случая:

(i) κ ≥ 0, (ii) κ < 0, (6.9)

где, напомним, κ — индекс задачи, определяемый по формуле (5.17).
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6.2. Построение решения задачи о скачке.

6.2.1o. Решение задачи о скачке при неотрицательном индексе κ. Рассмот-
рим первый из случаев (6.9), соответствующий неотрицательному индексу κ.
Введем функцию S (ζ) по формуле

S(ζ) := (ζ − λ)2{κ/2} (ζ2 + 1) [κ/2 ], (6.10)

где λ ∈ R \ Ξ. Нетрудно убедиться, что такая функция при κ ≥ 0 является

полиномом степени κ с ненулевым старшим коэффициентом, что влечет

S(ζ) = O?(ζκ), ζ →∞, (6.11)

(если же κ < 0, то она обращается в нуль на бесконечности, а точках ζ = ±i

имеет полюсы). Приведем, кроме того, оценку, вытекающую из (5.16), (6.11),

S(ζ) X(ζ) = O?(ζα0+n0), ζ →∞. (6.12)

В силу (6.7) и (6.11) функции T+(ζ) и T−(ζ), определяемые равенствами

T+(ζ) :=
F+(ζ)

S(ζ)
, T−(ζ) :=

F−(ζ)

S(ζ)
, (6.13)

на бесконечности ограничены, а в конечных точках ξk ограничены или име-

ют интегрируемую особенность. Из соотношений (6.8), (6.13) находим, что

функция T(ζ) = T±(ζ), ζ ∈ H±, удовлетворяет на вещественной оси условию

скачка:

T+(ξ) − T−(ξ) = D(ξ), ξ ∈ R \ (Ξ ∪ {λ}), (6.14)

где D(ξ) дается формулой

D (ξ) :=
g(ξ)

S(ξ) X+(ξ)
. (6.15)

Частное решение задачи о скачке (6.14), сохраняя за ним прежнее обозна-

чение T, будем искать в виде интеграла типа Коши

T±(ζ) =
1

2πi

∫

R

D(t) dt

t− ζ
, ζ ∈ H±; (6.16)
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такую возможность устанавливает следующая

Теорема 1.4. Для случая I, т.е. в предположении (3.8), и неотрица-

тельном индексе κ справедливы следующие утверждения:

1) интеграл (6.16) существует в смысле главного значения; его пре-

дельные значения удовлетворяют условию скачка (6.14); функция F(ζ) =

S(ζ) T(ζ), где S определяется из (6.10), принадлежит классу H, а ее пре-

дельные значения F±(ξ) = S(ξ) T±(ξ) удовлетворяют условию скачка (6.8);

2) функция T(ζ) удовлетворяет условию комплексного уравновешивания

T−(ζ) = T+( ζ ), ζ ∈ H−; (6.17)

3) функция T(ζ) имеет в конечных точках ξk следующую асимптотику:

T (ζ) =

{
O

[
(ζ − ξk)

−αk
]
, nk = 0;

O(1), nk > 0;
ζ → ξk; (6.18)

4) функция T(ζ) имеет в бесконечной точке ξ0 следующую асимптотику:

T (ζ) =





O
(
ζ−α 0

)
, n o = 0;

O
(
ζ−1 ln ζ

)
, n o = 1, α o = 0;

O
(
ζ−1

)
, n o = 1, α o 6= 0 n o > 1;

ζ →∞. (6.19)

Доказательство теоремы 1.4 дано в приложении B на стр. 255.

Из теоремы 1.4 непосредственно вытекает, что при неотрицательном ин-

дексе κ функция F = ST,

F(ζ) =
S(ζ)

2πi

∫

R

D(t) dt

t− ζ
∈ H, (6.20)

является решением задачи о скачке (6.8), удовлетворяющим в соответствии с

(6.10), (6.17) условию комплексного уравновешивания (6.6), а согласно (6.10),

(6.18), (6.19) — условиям роста (6.7); точнее говоря, функция F(ζ) имеет в

бесконечности несколько меньший порядок роста, чем ζκ, что, однако, не

противоречит условию (6.7).
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Тогда функция N(ζ), определяемая в соответствии с (6.5) равенством N =

X F, т.е. с учетом (6.20) — формулой

N(ζ) =
S(ζ) X(ζ)

2πi

∫

R

g(t) dt

S(t) X+(t) (t− ζ)
∈ H, κ ≥ 0, (6.21)

является решением задачи сопряжения (6.1), удовлетворяющим согласно (5.6),

(6.6) условию комплексного уравновешивания (6.2). Из соотношений (5.7),

(5.16), (6.10), (6.18), (6.19) вытекает, что N(ζ) в точках ξk (k = 0, N ) имеет

рост (6.3), (6.4). Точнее, в точке ζ = ∞ функция N(ζ) имеет следующую

асимптотику:

N (ζ) =





O
(
1
)
, n o = 0;

O
(
ln ζ

)
, n o = 1, α o = 0;

O
(
ζ α o + n o−1

)
, n o = 1, α o 6= 0 или n o > 1;

ζ →∞, (6.22)

т.е. растет медленнее, чем ζ α o + n o; однако, поведение (6.22) не противоречит

условию O(ζ α o +n o), указанному в (6.4). Таким образом, при κ ≥ 0 частное

решение N(ζ) задачи сопряжения (3.22)–(3.24), (3.26)–(3.30) построено.

6.2.2o. Решение задачи о скачке при отрицательном индексе κ. Пусть индекс

κ отрицателен. Тогда решение F задачи о скачке (6.6)–(6.8) будем, как и в

случае положительного κ, искать в виде F(ζ) = S(ζ) T(ζ), но функцию S(ζ)

будем определять иначе, а именно, по формуле

S(ζ) = (ζ − λ)κ , λ ∈ R \ Ξ. (6.23)

Очевидно, что функции T+ ∈ H+ и T− ∈ H− должны удовлетворять условию

скачка (6.14), где D(ξ) определяется из (6.15) с S из (6.23), а также условию

(6.18) комплексного уравновешивания.

С помощью (6.7), (6.13) и (6.23) нетрудно убедиться, что функция T(ζ)

на бесконечности ограничена, а в конечных точках ξk ограничена или имеет

интегрируемую особенность:

T(ζ) = O(1), ζ →∞; T(ζ) = O
[
(ζ − ξk)

−αk
]

, ζ → ξk. (6.24)



– 61 –

Предложение 1.12. Решение задачи о скачке (6.14), (6.24) с правой

частью D, определяемой из (6.15), (6.23), единственно с точностью до

вещественного постоянного слагаемого.

Доказательство. Действительно, если функции T(ζ) и T1(ζ) являются

решениями этой задачи, то их разность T̃(ζ) := T(ζ) − T 1(ζ) удовлетворяет

на вещественной оси однородному условию скачка:

T̃+(ξ) − T̃−(ξ) = 0, ξ ∈ R \ Ξ,

из которого вытекает, что функция T̃(ζ) аналитична и однозначна в окрест-

ности каждой из точек ξk, k = 1, N . Таким образом, эта функция разлагается

в точках ξk в ряд Лорана, главная часть которого, в силу условия

T̃(ζ) = O
[
(ζ − ξk)

−αk
]
, ζ → ξk,

равна нулю. Отсюда находим, что функция T̃(ζ) аналитична в конечной плос-

кости (включая точки ξk), а на бесконечности ограничена, поскольку огра-

ниченными являются T(ζ) и T1(ζ) согласно первой формуле (6.24); тогда по

теореме Лиувилля функция T̃(ζ) равна постоянной величине, которая в силу

условия (6.18) вещественна, что и требовалось доказать.

Частное решение T задачи (6.14), (6.18), (6.24) можно представить в виде

интеграла типа Коши (6.16) с плотностью D(ξ), определяемой по форму-

ле (6.15), где функция S(ζ) дается выражением (6.23). Такую возможность

устанавливает следующее

Предложение 1.13. Для случая I, т.е. в предположении (3.8), и от-

рицательном индексе κ справедливы утверждения 2)–4) теоремы 1.4 для

функции T, а первое утверждение заменяется на следующее: интеграл (6.16)

существует в смысле главного значения и принадлежит классу H, а его

предельные значения удовлетворяют условию скачка (6.14); предельные зна-

чения F±(ξ) = S(ξ) T±(ξ) удовлетворяют условию скачка (6.8).

Заметим, что из этого предложения не вытекает существование решения

задачи (6.6)–(6.8), поскольку F(ζ) = S(ξ) T(ξ), вообще говоря, не принадле-

жит H из–за того, что точка ζ = λ является особой для функции S.
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Доказательство предложения 1.13. Функция 1/S(ζ), определяемая

при помощи формулы (6.23), на вещественной оси обладает бесконечной глад-

костью. Опираясь на это свойство и проводя рассуждения, аналогичные ис-

пользованным при доказательстве утверждения 1) теоремы 1.4, устанавлива-

ем требуемые утверждения. Предложение доказано.

Из предложений 1.12, 1.13 следует, что общее решение задачи (6.14), (6.18),

(6.24) при отрицательном индексе κ имеет вид

T±(ζ) = C +
1

2πi

∫

R

D(t) dt

t− ζ
, ζ ∈ H±, (6.25)

где C — вещественная постоянная. Из формулы (6.13) с учетом (6.23) находим

выражение для F(ζ)

F(ζ) = (ζ − λ)κ T(ζ), (κ < 0), (6.26)

откуда следует, что эта функция, вообще говоря, неограниченно возрастает

при стремлении ζ к точке λ, что противоречит требованию F ∈ H. Очевидно,

что для справедливости включения F ∈ H необходимо и достаточно выпол-

нения условия

T(ζ) = O
[
(ζ − λ)|κ|

]
, ζ → λ. (6.27)

Для того чтобы выразить это условие через данные задачи (6.1)–(6.4),

запишем ядро Коши в виде

1

t− ζ
=

|κ|−1∑

k=0

(ζ − λ)k

(t− λ)k+1 +
(ζ − λ)|κ|

(t− λ) |κ| (t− ζ)

и подставим правую часть этой формулы в интеграл (6.25), плотность кото-

рого с учетом (6.15), (6.23) имеет вид

D(t) = (t− λ)|κ|
g(t)

X+(t)
.

Почленное интегрирование полученной суммы дает

T (ζ) = C +

|κ|−1∑

k=0

ck (ζ − λ)k +
(ζ − λ)|κ|

2πi

∫

R

g(t) dt

X+(t)(t− ζ)
, (6.28)
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где коэффициенты ck определяются равенствами

ck :=
1

2πi

∫

R

(t− λ)|κ|−k−1 g(t) dt

X+(t)
, k = 0, 1, . . . , |κ| − 1. (6.29)

Тогда согласно (6.27)–(6.29) находим, что для ограниченности функции F(ζ)

в точке ζ = λ необходимо и достаточно выполнение условий

c0 + C = 0; ck = 0, k = 1, 2, . . . , |κ| − 1.

Поскольку C — произвольная постоянная, то полагая C = −c0, получаем из

(6.29) выражение для C

C = − 1

2πi

∫

R

(t− λ)|κ|−1 g(t) dt

X+(t)
, (6.30)

и, таким образом, для разрешимости задачи (6.6)–(6.8), а следовательно, и

задачи (6.1)–(6.4), в случае отрицательного индекса необходимо и достаточ-

но удовлетворение (|κ| − 1) условий ck = 0, где k = 1, 2, . . . , |κ| − 1, что

эквивалентно одновременному выполнению следующих равенств:
∫

R

tkσ(t) dt

χ(t) X+(t)
= 0 , k = 0, 1, . . . , |κ| − 2, (6.31)

где χ и σ — данные задачи Римана — Гильберта (3.11).

Предложение 1.14. При κ = −1 единственным решением задачи со-

пряжения (6.1)–(6.4) является функция N, определяемая по формуле

N(ζ) =
X(ζ)

2πi

∫

R

g(t) dt

X+(t)(t− ζ)
, κ < 0. (6.32)

При κ < −1 решение задачи сопряжения также имеет вид (6.32), если

выполненены условия разрешимости (6.31). Если же условия (6.31) не вы-

полнены, то указанная задача неразрешима.

Доказательство. Требуемые утверждения вытекают из рассуждений,

приведенных перед формулировкой настоящего предложения, а также фор-

мул (6.5), (6.25), (6.26), (6.30) и предложений 1.12, 1.13. Предложение дока-

зано.
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6.3. Частное решение неоднородной задачи Римана — Гильберта.

6.3.1o. Построение частного решения для случая I. Используя предложение

1.3 и учитывая формулу (6.21) и предложение 1.14, приходим к следующему

утверждению о частном решении задачи Римана — Гильберта.

Предложение 1.15. (i) Если индекс κ, вычисляемый по формуле (5.17),

неотрицателен, то функция N+ ∈ H+, определяемая равенством (6.21), яв-

ляется частным решением задачи Римана — Гильберта (3.11)–(3.13); здесь

X+(ζ) — каноническое решение, определяемое по формуле (5.15), а функции

S(ζ) дается равенством (6.10).

(ii) Если κ = −1, то единственным решением задачи Римана — Гиль-

берта (3.11)–(3.13) из класса H+ является функция N+(ζ), определяемая

по формуле (6.32).

Если же κ < −1 и выполняются условия (6.31), то единственным ре-

шением задачи Римана — Гильберта (3.11)–(3.13) из класса H+ является

функция N+(ζ), определяемая по формуле (6.32). Если κ < −1 и условия

(6.31) не выполнены, то задача (3.11)–(3.13) в классе H+ не имеет реше-

ний.

6.3.2o. Построение частного решения для случая II. Повторяя рассуждения

из п. 6, использованные при получении частного решения в случае I, уста-

навливаем следующий аналог предложения 1.15 для случая II.

Предложение 1.16. Пусть в одной или нескольких точках ξk, фигури-

рующих в постановке задачи Римана — Гильберта (3.11)–(3.13) и обозна-

чаемых ξkm
, одновременно выполняются соотношения (3.14), т.е. имеет

место случай II. Тогда после замены в этих точках условий (3.12), (3.13)

соответственно на (3.15), (3.16) для частного решения N+ ∈ H+ этой

задачи справедливы следующие утверждения:

(i) Пусть индекс κ неотрицателен. Если соотношения (3.14) одновре-

менно не выполняются для бесконечно удаленной токи ξk o
= ξ0, то справед-

ливо утверждение (i) из предложения 1.15. Если же соотношения (3.14)

одновременно выполняются в ξk o
= ξ0, то функцию S(ζ) в формуле (6.21)
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для частного решения N ∈ H+ следует определять равенством

S(ζ) := (ζ − λ)2{κ/2} (ζ2 + 1) [κ/2 ](ζ − λ̃); λ, λ̃ ∈ R \ {ξk}, λ 6= λ̃. (6.33)

(ii) Пусть индекс κ отрицателен. Тогда справедливо утверждение (ii)

из предложения 1.15.

6.4. Общее решение для неоднородной задачи Римана — Гиль-

берта. Полное решение задачи (3.12)–(3.11) получается добавлением неко-

торого частного решения N+(ζ) к решению Ψ+(ζ) однородной задачи (5.1)–

(5.4): P+ = Ψ+ +N+. Тогда из теоремы 1.3 и предложений 1.15, 1.16 вытекает

следующая

Теорема 1.5. I) Пусть выполняются условия (3.2), (3.8). Тогда справед-

ливы утверждения:

(i) Если индекс κ, определяемый по формуле (5.17), неотрицателен, то

решение P+ ∈ H+ задачи Римана — Гильберта (3.2), (3.11)–(3.13) имеет

вид

P+(ζ) = X+(ζ)

[
Pκ(ζ) +

S(ζ)

πi

∫

R

σ(t) dt

S(t) χ(t) X+(t) (t− ζ)

]
, (6.34)

где Pκ(ζ) — произвольный полином степени κ с вещественными коэффици-

ентами, X+(ζ) — каноническое решение задачи, определяемое равенством

X+(ζ) =
N∏

k=1

(ζ − ξk)
−βk−nk eM+(ζ) , (6.35)

а M+(ζ) и S(ζ) даются формулами (4.11) и (6.10).

(ii) Если κ = −1, то единственным решением P+ ∈ H+ рассматривае-

мой задачи является функция

P+(ζ) =
X+(ζ)

πi

∫

R

σ(t) dt

χ(t) X+(t) (t− ζ)
. (6.36)

Если κ < −1 и выполняются условия (6.31), то единственное решение

задачи из H+ дается формулой (6.36). Если же κ < −1 и условия (6.31) не

выполнены, то эта задача в классе H+ не имеет решений.
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II) Пусть выполняются условия (3.2), (3.9). Тогда в конечных точках

ξkm
, где одновременно выполняются соотношения (3.14), условие (3.12) в

постановке задачи следует заменить на (3.15), а представления (6.34) при

κ ≥ 0 и (6.36) при κ < 0 для решения P+ ∈ H+ сохраняются. Если же

(3.14) имеет место для ξk0
= ∞, то условие (3.13) следует заменить на

(3.16), представление (6.36) при κ < 0 сохраняется, а функцию S(ζ) в пред-

ставлении (6.34) при κ ≥ 0 для решения следует определять равенством

(6.33).



Г л а в а II

Развитие теории функции
Лауричеллы F

(N)
D

§1. Обобщенная гипергеометрическая функция F
(N)
D

1.1. Функция Лауричеллы и некоторые ее приложения. Рассмат-

риваемая в настоящей главе функция

F
(N)
D (a1, . . . , aN ; b, c; z1, . . . , zN) (1.1)

была введена Дж.Лауричеллой [194] в качестве одного из обобщений гипер-

геометрической функции Гаусса F (a, b; c; z) на случай N комплексных пере-

менных z1, . . . , zN и соответствующих им комплексных параметров a1, . . . , aN .

В его работе [194] был также установлен вид системы уравнений с частны-

ми производными, которой удовлетворяет функция F
(N)
D . Исследованию этой

системы и самой функции F
(N)
D посвящены работы многих авторов, см., на-

пример, фундаментальные статьи и монографии [89], [139], [142], [163], [168],

[169], [185], [203], [209].

Интерес к функции F
(N)
D , как и к другим обобщенным гипергеометриче-

ским функциям, вызван не только ее большим теоретическим значением в

математической физике, но и многочисленными актуальными приложения-

ми, где она возникает. Среди таких приложений отметим задачи астрофи-

зики [175], квантовой теории поля [189], [198], теории относительности [192],

некоторые проблемы передачи информации [207], теории вероятности и ма-

тематической статистики [160], [191], [195].
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Найденные в диссертационной работе соотношения типа Якоби для

функции F
(N)
D играют ключевую роль при выводе принципиально нового

представления для решения задачи Римана — Гильберта с кусочно–

постоянными данными в виде интеграла типа Кристоффеля — Шварца.

Получению этого представления посвящена Глава III. Построенные форму-

лы аналитического продолжения функции F
(N)
D находят приложение, в част-

ности, при решении известной трудной проблемы кроудинга [237] для пара-

метров интеграла Кристоффеля — Шварца. В главе IV представлен пример

решения задачи о нахождении параметров этого интеграла для отображение

многоугольной области, возникающей в связи с астрофизическими задачами.

В следующем п. 1.2 приведены необходимые сведения из теории функции

Лауричеллы (1.1), а в п. 1.3 сформулированы полученные в настоящей главе

результаты для этой функции.

1.2. Обобщенный гипергеометрический ряд, система уравнений с

частными производными и интегральные представления. Изучаемую

функцию Лауричеллы (1.1), зависящую от N комплексных переменных z1, z2,

. . ., zN и комплексных параметров a1, a2, . . ., aN , b и c, будем для краткости

обозначать через F
(N)
D (a; b, c; z), где a := (a1, . . . , aN) и z := (z1, . . . , zN) —

векторы из CN . Эта функция определяется в виде следующего N–кратного

степенного ряда, см. [169], [185], [194]:

F
(N)
D (a; b, c; z) :=

∞∑

|k|=0

(b)|k|(a1)k1
. . . (aN)kN

(c)|k|k1! . . . kN !
zk1
1 . . . zkN

N , (1.2)

где суммирование ведется по векторному индексу k := (k1, . . . , kN) с неотри-

цательными целыми компонентами kj ≥ 0, j = 1, . . . , N , для которого модуль

|k|, как обычно, означает сумму всех элементов, т.е.

|k| :=
N∑

j=1

kj.

Выражение (a)k, традиционно называемое символом Похгаммера (см.,

например, [19]), определяется через гамма–функцию Γ(s) с помощью
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равенства

(a)k :=
Γ(a + k)

Γ(a)
(1.3)

и представляет собой для целых неотрицательных k произведение вида

(a)0 = 1, (a)k = a (a + 1) . . . (a + k − 1), k = 1, 2, . . . . (1.4)

Параметр c в формуле (1.2) не принимает целых неположительных значений,

т.е. c /∈ Z−.
Обобщенный гипергеометрический ряд (1.2), которым определяется F

(N)
D ,

сходится в единичном поликруге

UN :=
{

z ∈ CN : |zj| < 1, j = 1, N
}
.

Как известно [194], см. также [142], [169], [185], функция F
(N)
D (a; b, c; z)

удовлетворяет следующей системе из N линейных уравнений в частных

производных второго порядка по переменным zj:

zj(1− zj)
∂2u

∂zj
2 + (1− zj)

N∑′

k=1

zk
∂2u

∂zj∂zk
+

+
[
c− (1 + aj + b)zj

] ∂u

∂zj
− aj

N∑′

k=1

zk
∂u

∂zk
− ajb u = 0, j = 1, N,

(1.5)

где ”штрих“ над суммой означает, что суммирование ведется по k 6= j; пара-

метры a, b и c входят в выражения для коэффициентов уравнений. Особым

множеством M системы (1.5) является объединение гиперплоскостей

M
(τ)
j :=

{
z ∈ CN

: zj = τ
}
, τ ∈ S := {0, 1,∞},

и гиперплоскостей Mj, l := {z ∈ CN
: zj = zl}; здесь j, l = 1, N , j 6= l.

В частности, множеству M принадлежат такие точки z ∈ CN , у которых

для всех компонент zj выполняется включение zj ∈ S. Будем обозначать

через z
(1,∞)
p точки особого множества, у которых первые p компонент равны

единице, а остальные (N − p) — бесконечности:

z(1,∞)
p := ( 1, . . . , 1︸ ︷︷ ︸

p

, ∞, . . . ,∞︸ ︷︷ ︸
(N−p)

)
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Точки множества M, все N компонент которых равны 1, будем обозначать

z(1) := ( 1, . . . , 1︸ ︷︷ ︸
N

),

а точки, все N компонент которых равны ∞, обозначаем

z(∞) := (∞, . . . ,∞︸ ︷︷ ︸
N

).

В окрестности любой точки z ∈ CN определены (N +1) линейно независимых

решения этой системы (1.5), и таким образом, ее общее решение зависит от

(N + 1)-й произвольной комплексной постоянной, см. [169].

Под функцией F
(N)
D (a; b, c; z) при z ∈ UN понимается ряд (1.2), а при

z /∈ UN — его аналитическое продолжение. Такое продолжение в область

LN :=
{

z ∈ CN : |arg(1− zj)| < π, j = 1, N
}

может быть осуществлено с помощью следующего интегрального представ-

ления для F
(N)
D , приведенного, например, в [169] и обобщающего известную

формулу Эйлера [19], [127] для функции Гаусса F :

F
(N)
D (a; b, c; z) =

Γ(c)

Γ(b) Γ(c− b)

1∫

0

tb−1 (1− t)c−b−1

N∏
j=1

(1− t zj) aj

dt. (1.6)

Здесь предполагается Re b > 0, Re (c−b) > 0; правая часть (1.6), как нетрудно

увидеть, является однозначной в LN функцией.

Отметим, что в случае одной переменной, т.е. при N = 1, ряд (1.2),

определяющий функцию Лауричеллы F
(N)
D (a; b, c; z), совпадает с классиче-

ским гипергеометрическим рядом [19], [127] для функции Гаусса, а система

уравнений (1.5) при этом переходит в классическое гипергеометрическое урав-

нение. Элементы теории функции Гаусса, необходимые для целей настоящей

работы, приведены ниже в § 2. В случае двух переменных, т.е. при N = 2,

обобщенный гипергеометрический ряд (1.2) совпадает с известной функцией

F1(a, a′; b, c; z, ζ), введенной П.Аппе́лем, см. [19], [141], [142].



– 71 –

При дальнейших рассмотрениях будет использовано следующее (извест-

ное) представление F
(N)
D , справедливое при |zj| < 1:

F
(N)
D (a; b; c; z) =

∞∑

k=0

(aj)k (b)k

(c)k k!
zk
j F

(N−1)
D

(
a′j; b + k, c + k; z′j

)
, (1.7)

где фигурируют векторы a′j и z′j, получаемые из векторов a и z исключением

j-й компоненты:

a′j := (a1, . . . , aj−1, aj+1, . . . , aN), z′j := (z1, . . . , zj−1, zj+1, . . . , zN). (1.8)

Формулу (1.7) можно вывести, например, из формулы (1.6), разлагая

в знаменателе подынтегрального выражения j-й сомножитель по степеням

(tzj)
k, k = 0, 1, . . ., почленно интегрируя полученное разложение и применяя

представление (1.6) для функции Лауричеллы с (N − 1) переменными.

Приведем формулу дифференцирования [169]

∂

∂zj
F

(N)
D (a; b; c; z) =

=
aj b

c
F

(N)
D (a1, . . . , aj + 1, . . . , aN ; b + 1, c + 1; z1, . . . , zN)

(1.9)

и укажем еще, что значение F
(N)
D (a; b, c; z), очевидно, не изменяется при

произвольной перестановке любого числа переменных zj и одновременной

перестановке соответствующих им параметров aj. Точнее говоря, имеет

место соотношение

F
(N)
D (a; b, c; z) = F

(N)
D

(
σ(a); b, c; σ(z)

)
, (1.10)

где σ(a) и σ(z) суть векторы, полученные из векторов a и z в результате

действия некоторого элемента σ ∈ SN группы SN перестановок множества из

N элементов.

1.3. Замечания о полученных в работе результатах.

1.3.1o. Формулы типа Якоби. В §3 настоящей главы установлена систе-

ма дифференциальных соотношений для функции F
(N)
D , являющихся пря-

мым обобщением классического тождества Якоби [19], [127], [187], [212] для
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функции Гаусса F (a, b; c; z). Частный случай этих соотношений применен в

главе III к выводу представления решения задачи Римана — Гильберта с

кусочно–постоянными данными в виде интеграла Кристоффеля — Шварца.

Необходимо отметить, что вывод новых дифференциальных соотношений для

обобщенных гипергеометрических функций, в том числе для функции Лау-

ричеллы, является актуальной задачей, важной как с теоретической, так и с

прикладной точек зрения; ей посвящены работы многих авторов, см., напри-

мер, [139], [154], [155].

1.3.2o. Формулы аналитического продолжения. Важной нерешенной

задачей в теории функции Лауричеллы F
(N)
D является построение аналитиче-

ского продолжения ряда (1.2) во внешность поликруга UN в виде линейных

комбинаций частных решений uj(a; b, c; z) системы (1.5), т.е. поиск представ-

лений вида:

F
(N)
D (a; b, c; z) =

N∑
j=0

λj uj(a; b, c; z), z /∈ UN . (1.11)

Здесь предполагается, что функции uj(a; b, c; z) в свою очередь выражаются

через некоторые обобщенные гипергеометрические ряды, сходящиеся на

множествах, имеющих непустое пересечение с CN \ UN ; вид этих рядов,

вообще говоря, отличен от (1.2). Коэффициенты λj зависят от параметров

a1, . . . , aN , b, c и не обращаются в нуль одновременно. Представления

вида (1.11) естественно называть формулами аналитического продолжения

функции Лауричеллы. Эти формулы являются аналогами соответствующих

представлений [19], [127] для функции Гаусса.

Формулы аналитического продолжения функции F
(N)
D дают удобный аппа-

рат для качественного анализа и эффективного вычисления интеграла (2.1) в

LN \UN . Отметим, что хотя такой интеграл сам осуществляет аналитическое

продолжение ряда (1.2) в область LN , но он при этом не дает адекватного

представления функции F
(N)
D (a; b, c; z) вблизи ее особых многообразий, кото-

рые, разумеется, являются особыми и для системы уравнений (1.5). Поэтому
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вычисление функции Лауричеллы в LN \UN с помощью представления (2.1)

наталкивается на серьезные трудности, особенно если аргумент z близок к

точкам z
(1,∞)
p , и, в частности, к z(1) или z(∞). Отметим, что, как показано

в [16], высокоточное вычисление интегралов вида (2.1), в том числе вблизи

z(1) и z(∞), является одним из ключевых аспектов в решении известной

проблемы кроудинга [237] для параметров интеграла Кристоффеля — Швар-

ца. Если z ∈ UN , то для эффективного вычисления (2.1) может быть при-

менен ряд (1.2), который в UN сходится экспоненциально. Для вычисления

функции F
(N)
D вне UN необходимо использовать найденные в настоящей ра-

боте формулы ее аналитического продолжения.

Результаты теории аналитического продолжения функции Гаусса изложе-

ны, например, книгах в [19] и [127]. Развитие этих результатов на случай

функции Аппеля F1 дано в работе [203], где была построена система формул

такого продолжения F1 = F
(2)
D (a, a′; b, c; z, ζ) в нелогарифмическом случае,

т.е. когда параметры a, a′, b и c не связаны специальными целочисленными

соотношениями (подробно об этом см. §5). Некоторые формулы продолжения

F1, не установленные в [203], даны в [38]. Построение полной системы формул

аналитического продолжения F
(N)
D (a; b, c; z) при произвольном N ≥ 3 натал-

кивается на существенные трудности. Вопрос о таком продолжении для F
(3)
D

изучался в книге [169] с помощью подхода из [203], основанного на перераз-

ложении рядов, однако не получил исчерпывающего решения. Для случая

N ≥ 4, по–видимому, известны лишь некоторые частные результаты.

В §4 настоящей главы для функции F
(N)
D (a; b, c; z) при всех N ≥ 2 найден

полный набор формул аналитического продолжения вида (1.11) в окрестность

точек z
(1,∞)
p ∈ CN , где p = 0, 1, . . . N . В §5 получен полный набор формул

аналитического продолжения функции Аппеля в логарифмическом случае.
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§2. Некоторые сведения о функции Гаусса F (a, b; c; z)

В настоящем параграфе приведены используемые в дальнейшем сведения

из теории гипергеометрической функции Гаусса F (a, b; c; z). Основная часть

материала заимствована из [1], [19], [52], [176], [212].

2.1. Гипергеометрический ряд и уравнение. Гипергеометрическая

функция Гаусса F (a, b; c; z), зависящая от комплексного переменного z и

набора комплексных параметров a, b и c, представима в единичном круге

U := {z ∈ C : |z| < 1} следующим рядом:

F (a, b; c; z) =
∞∑

k=0

(a)k (b)k

(c)k k!
zk, (2.1)

где предполагается, что c 6= 0,−1,−2, . . ., а выражение (a)k обозначает

символ Похгаммера, определяемый формулой (1.4). Если z /∈ U, то под

функцией F (a, b; c; z) понимается аналитическое продолжение ряда (2.1) в

соответствующую область комплексной плоскости. Некоторые используемые

в работе формулы такого продолжения приведены в п. 2.3.

Отметим, что функция F (a, b; c; z) является голоморфным в точке z = 0

решением u(z) уравнения Гаусса

z (1− z) u′′(z) +
[
c− (a + b + 1)z

]
u′(z) − a b u(z) = 0, (2.2)

которое представляет собой уравнение класса Фукса с тремя (регулярными)

особыми точками z = 0, 1 и ∞. К этому уравнению, очевидно, редуцируется

система (1.5), если в ней положить, что искомая функция u(z) не зависит от

переменных z2, . . . , zN и приравнять соответствующие параметры a2, . . . , aN

к нулю.

2.2. Интегральные представления. Если параметры функции Гаусса

удовлетворяют соотношениям Re c > Re b > 0, то справедлива интегральная

формула Эйлера

F (a, b; c; z) =
Γ(c)

Γ(b) Γ(c− b)

1∫

0

tb−1 (1− t)c−b−1

(1− t z)a
dt. (2.3)
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Правая часть этой формулы является однозначной аналитической функцией

переменного z в области L :=
{
z ∈ C : | arg(1 − z)| < π

}
и дает, таким

образом, аналитическое продолжение в эту область гипергеометрического

ряда (2.1).

Функция Гаусса может быть записана в виде интегрального представления

Барнса:

F (a, b; c; z) =
Γ(c)

2πi Γ(a) Γ(b)

+i∞∫

−i∞

Γ(a + s) Γ(b + s) Γ(−s)

Γ(c + s)
(−z)s ds. (2.4)

Здесь здесь переменное z изменяется в области
{ | arg(−z)| < π

}
, а путь

интегрирования выбран таким, что полюсы функции Γ(−s), расположенные

в точках s = k, k ∈ Z+, и полюсы функции Γ(a + s)Γ(b + s), расположенные

в точках s = −a − k и s = −b − k, k ∈ Z+, лежат соответственно справа и

слева от него.

Известная лемма Барнса устанавливает следующее тождество:

Γ(α + γ)Γ(α + δ)Γ(β + γ)Γ(β + δ)

Γ(α + β + γ + δ)
=

=
1

2πi

+i∞∫

−i∞

Γ(α + s) Γ(β + s) Γ(γ − s)Γ(δ − s) ds,

(2.5)

где путь интегрирования искривлен (если необходимо) так, что полюсы

выражения Γ(γ − s) Γ(δ − s), т.е. точки s = γ + k, s = δ + k, k ∈ Z+, и

полюсы выражения Γ(α + s) Γ(β + s), т.е. точки s = −α − k, s = −β − k,

k ∈ Z+, лежат соответственно справа и слева от него.

2.3. Канонические решения Куммера и аналитическое продолже-

ние F (a, b; c; z). Из числа канонических решений Куммера укажем

следующую пару функций, образующих полную систему в окрестности

особой точки z = 1:

u
(1)
1 (a, b; c; z) = F (a, b; a + b− c + 1; 1− z), (2.6)
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u
(1)
2 (a, b; c; z) = (1− z)c−a−b F (c− a, c− b; c− a− b + 1; 1− z), (2.7)

а также еще одну пару функций, образующих полную систему в окрестности

точки z = ∞:

u
(∞)
1 (a, b; c; z) = (−z)−a F (a, 1− c + a; 1− b + a; z−1), (2.8)

u
(∞)
2 (a, b; c; z) = (−z)−b F (b, 1− c + b; 1− a + b; z−1). (2.9)

В формулах (2.6)–(2.9) под символом F понимается гипергеометрический ряд

(2.1), а верхний индекс в обозначениях функций u
(1)
j и u

(∞)
j , j = 1, 2, указы-

вает на точку, вблизи которой они определены.

Важно отметить, что если параметры a, b и c гипергеометрического урав-

нения (2.2) таковы, что число (c − a − b) является целым, то с помощью

равенств (2.6) и (2.7) нельзя определить два линейно независимые решения

u
(1)
1 и u

(1)
2 уравнения (2.2). Действительно, если (c−a− b) = 0, то как нетруд-

но убедиться, в этом случае правые части (2.6) и (2.7) будут совпадать. Если

же (c − a − b) = m ∈ Z \ {0}, то третий параметр одной из функции F в

этих формулах является целым неположительным числом (−m), и все члены

гипергеометрического ряда (2.1) для такой функции обращаются в бесконеч-

ность, начиная с номера m. Аналогичное замечание, очевидно, справедливо

для формул (2.8) и (2.9), которые при целых (b − a) не определяют двух

линейно независимых решений u
(∞)
1 и u

(∞)
2 .

Указанные выше особые случаи параметров a, b и c, когда выполняется

одно из соотношений

(c− a− b) ∈ Z, (b− a) ∈ Z,

принято называть логарифмическими, поскольку при этих условиях решение

гипергеометрического уравнения (2.2) содержит не только степени величин

z и (1 − z), но и их логарифмы. Для того чтобы определить аналоги

канонических решений (2.6)–(2.9) в логарифмическом случае, удобно ввести
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в рассмотрение следующий ряд:

F±
ln(a, b; 1−m; z) :=

m−1∑

k=0

(a)k (b)k

k! (1−m)k
zk +

+
(−1)m

(m− 1)!

∞∑

k=m

(a)k(b)k

k!(k −m)!

[
h±k (a, b, m)− ln(±z)

]
zk ;

(2.10)

здесь числа h±k,m(a, b) определяются следуюшими равенствами:

h+
k (a, b, m) := h̃k − ψ(b + k), h−k (a, b, m) := h̃k − ψ(1− b− k),

h̃k := ψ(1−m + k) + ψ(1 + k)− ψ(a + k),
(2.11)

где ψ(s) = Γ ′(s)/Γ(s) — логарифмическая производная гамма–функции, а

первая сумма в (2.10) считается равной нулю при m = 0 и единице при m = 1.

Применение рядов F±
ln, определяемых соотношениями (2.10), (2.11), позволяет

существенно упростить традиционную запись канонических решений и

формул аналитического продолжения, которые можно найти, например, в [19].

Пусть c = a + b + m, где m — произвольное неотрицательное целое число,

т.е. m ∈ Z+. Тогда роль канонических решений (2.6), (2.7) для уравнения

(2.2) в окрестности точки z = 1 играют следующие функции:

u
(1)
1 (a, b; a + b + m; z) = F+

ln(a, b; 1−m; 1− z), (2.12)

u
(1)
2 (a, b; a + b + m; z) = (1− z)m F (a + m, b + m; 1 + m; 1− z). (2.13)

Если же c = a + b−m, где m ∈ Z+, то роль этих решений играют функции

u
(1)
1 (a, b; a + b−m; z) = F (a, b; 1 + m; 1− z), (2.14)

u
(1)
2 (a, b; a + b−m; z) = (1− z)−m F+

ln(a−m, b−m; 1−m; 1− z). (2.15)

Пусть b = a + m при некотором неотрицательном целом m. Тогда роль

канонических решений (2.8), (2.9) для уравнения (2.2) в окрестности точки

z = ∞ играют функции:

u
(∞)
1 (a, a + m; c; z) = (−z)−aF−

ln

(
a, 1− c + a; 1−m; z−1 )

, (2.16)
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u
(∞)
2 (a, a + m; c; z) = (−z)−a−m F

(
a + m, 1− c + a + m; 1 + m; z−1). (2.17)

Если же a = b+m, где m ∈ Z+, то система канонических решений уравнения

(2.2) вблизи z = ∞ заменяется следующей:

u
(∞)
1 (b + m, b; c; z) = (−z)−b−m F

(
b + m, 1− c + b + m; 1 + m; z−1), (2.18)

u
(∞)
2 (b + m, b; c; z) = (−z)−bF−

ln

(
b, 1− c + b; 1−m; z−1). (2.19)

Определяемые с помощью равенств (2.6)–(2.9), (2.12)–(2.19) функции u
(1)
j

и u
(∞)
j , j = 1, 2, являются основой для построения аналитического продол-

жения ряда (2.1) во внешность единичного круга. А именно, формула такого

продолжения функции F (a, b; c; z) в область

K :=
{
z ∈ C : |z − 1| < 1, |arg(1− z)| < π

}
(2.20)

для случая, когда число (c− a− b) не является целым, имеет вид

F (a, b; c; z) = A1 u
(1)
1 (a, b; c; z) + A2 u

(1)
2 (a, b; c; z), (2.21)

где функции u
(1)
0 и u

(1)
1 определяются равенствами (2.6), (2.7), а коэффици-

енты A0 и A1 — следующими равенствами:

A1 =
Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)
, A2 =

Γ (c) Γ (a + b− c)

Γ (a) Γ (b)
. (2.22)

Если же c = a+b+m при m = 0, 1, 2, . . ., то формула продолжения в область

(2.20) принимает вид

F (a, b; a + b + m; z) = A1 u
(1)
1 (a, b; a + b + m; z),

A1 =
Γ (a + b + m) (m− 1)!

Γ (a + m) Γ (b + m)
,

(2.23)

где u
(1)
1 дается равенством (2.12), а если c = a + b−m при m = 1, 2, . . ., то

F (a, b; a + b−m; z) = A2 u
(1)
2 (a, b; a + b−m; z),

A2 =
Γ (a + b−m) (m− 1)!

Γ (a) Γ (b)
,

(2.24)

где u
(1)
2 дается равенством (2.15).
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Формула аналитического продолжения ряда (2.1) в область

V :=
{
z ∈ C : |z| > 1, |arg(−z)| < π

}
(2.25)

для случая, когда число (b− a) не является целым, имеет вид

F (a, b; c; z) = B1 u
(∞)
1 (a, b; c; z) + B2 u

(∞)
2 (a, b; c; z), (2.26)

где функции u
(∞)
1 и u

(∞)
2 определяются из (2.8), (2.9), а коэффициенты B1 и

B2 даются равенствами

B1 =
Γ (c) Γ (b− a)

Γ (b) Γ (c− a)
, B2 =

Γ (c) Γ (a− b)

Γ (a) Γ (c− b)
. (2.27)

Если же b = a + m, при m = 0, 1, 2, . . ., то формула продолжения в область

(2.25) принимает вид

F (a, a + m; c; z) = B1 u
(∞)
1 (a, a + m; c; z),

B1 =
Γ (c) (m− 1)!

Γ (a + m) Γ (c− a)
,

(2.28)

где функция u
(∞)
1 дается равенством (2.16). Если a = b+m, при m = 1, 2, . . .,

то формула аналитического продолжения в область (2.25) принимает вид

F (b + m, b; c; z) = B2 u
(∞)
2 (b + m, a; c; z),

B2 =
Γ (c) (m− 1)!

Γ (b + m) Γ (c− b)
,

(2.29)

где функция u
(∞)
2 определяется из (2.19).

Замечание 2.1. Отметим, что построенные в §4 и §5 формулы анали-

тического продолжения функций Лауричеллы F
(N)
D и Аппеля F1 являются

прямым обобщением соотношений (2.21)–(2.29) на случай этих функций и

переходят в них при N = 1.

2.4. Ассоциированные гипергеометрические ряды и тождество

Якоби. Функции Гаусса, параметры которых отличаются на целые числа,

т.е. функции вида F (a + k, b + m; c + n; z), где k, m, n ∈ Z, называют ассоци-

ированными. В работе [219] Б.Риман установил, что если параметр c /∈ Z, то
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любые три ассоциированные гипергеометрические функции связаны линей-

ным однородным соотношением с полиномиальными коэффициентами, т.е.

справедливо равенство:
∑2

j=0
Qj(z) F

(
a + kj, b + mj; c + nj; z

)
= 0, (2.30)

где Qj(z) — полиномы по переменному z с коэффициентами, зависящими

от параметров a, b, c и (целых) чисел kj, mj, nj. В частности, справедливо

следующее тождество, которое нам потребуется в дальнейшем:

c F (a, b; c; z)− b zF (a, b + 1; c + 1; z) = c F (a− 1, b; c; z). (2.31)

Известное тождество, найденное Якоби [187], которому удовлетворяет

функция Гаусса, имеет вид:

d

dz

[
zc−1 (1− z)a+b−c F (a, b; c; z)

]
=

= (c− 1) zc−2 (1− z)a+b−c−1 F (a− 1, b− 1; c− 1; z).
(2.32)

Отметим, что это тождество эквивалентно гипергеометрическому уравнению

(2.2), см. [19].

§3. Дифференциальные соотношения типа Якоби для

функции Лауричеллы F
(N)
D

3.1. Тождества для ассоциированных функций Лауричеллы.

Функции F
(N)
D , параметры которых отличаются на целые числа, естественно

называть ассоциированными по аналогии с функциями F (a+k, b+m; c+n; z).

Найденные в §4, §5 настоящей главы формулы аналитического продолжения

F
(N)
D и набор решений системы уравнений (1.5) для этой функции позволяют

выписать явные выражения для коэффициентов в соотношениях, аналогич-

ных (2.30), которым удовлетворяют ассоциированные функции Лауричеллы.

Не останавливаясь на подробном рассмотрении этого вопроса, приведем неко-

торые тождества для ассоциированных функций F
(N)
D , обобщающие формулу
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(2.31). Эти тождества потребуются в п. 3.4 настоящего параграфа при дока-

зательстве соотношений типа Якоби для функции Лауричеллы.

Введем обозначение aj для вектора, получаемого из вектора a уменьше-

нием на единицу j-й компоненты, т.е.

aj := (a1, . . . , aj−1, aj − 1, aj+1, . . . , aN). (3.1)

Справедливо следующее утверждение.

Теорема 2.1. Для ассоциированных функций Лауричеллы имеют место

соотношения

c F
(N)
D (a; b, c; z)− b zj F

(N)
D (a; b + 1, c + 1; z) = c F

(N)
D (aj; b, c; z), (3.2)

для любого целого j = 1, N .

Доказательство. Вначале убедимся в справедливости равенства (3.2)

при j = 1, т.е. установим следующее соотношение

c F
(N)
D

(
a; b, c; z

)− b z1 F
(N)
D

(
a; b + 1, c + 1; z

)
= c F

(N)
D

(
a1; b, c; z

)
. (3.3)

Доказательство формулы (3.3) проведем методом индукции по числу N

переменных функции Лауричеллы. Нетрудно увидеть, что при N = 1 эта

формула превращается в известное тождество (2.31) для ассоциированных

гипергеометрических функций Гаусса.

Покажем, что равенство (3.3) верно, если предположить, что оно выполня-

ется для функций Лауричеллы с числом переменных (N − 1), т.е. если имеет

место соотношение

c F
(N−1)
D

(
ã; b, c; z̃

)− bz1 F
(N−1)
D

(
ã; b + 1, c + 1; z̃

)
=

= c F
(N−1)
D

(
ã1; b, c; z̃

)
,

(3.4)

где векторы ã и z̃ получаются соответственно из a и z исключением N -й

компоненты:

ã := (a1, . . . , aN−1), z̃ := (z1, . . . , zN−1). (3.5)
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Введем обозначение для выражения в левой части (3.3):

f
(
a; b, c; z

)
:= c F

(N)
D

(
a; b, c; z

)− b z1 F
(N)
D

(
a; b + 1, c + 1; z

)
(3.6)

и разложим фигурирующие здесь функции F
(N)
D в ряды вида (1.7)

F
(N)
D

(
a; b; c; z

)
=

∞∑
p=0

(aN)p (b)p

p! (c)p
zp
N F

(N−1)
D

(
ã; b + p; c + p; z̃

)
, (3.7)

F
(N)
D

(
a; b+1; c+1; z

)
=

∞∑
p=0

(aN)p (b + 1)p

p! (c + 1)p
zp
N F

(N−1)
D

(
ã; b+p+1; c+p+1; z̃

)
.

(3.8)

Подставляя эти разложения в (3.6), получаем

f
(
a; b, c; z

)
=

∞∑
p=0

(aN)p (b)p

p! (c + 1)p
zp
N fp

(
ã; b, c; z̃

)
, (3.9)

где

fp

(
ã; b, c; z̃

)
:=

(c + 1)p

(c)p
c F

(N−1)
D

(
ã; b + p; c + p; z̃

)−

− (b + 1)p

(b)p
b z1F

(N−1)
D

(
ã; b + p + 1; c + p + 1; z̃

)
.

(3.10)

Учитывая следующие соотношения, вытекающие из определения символа

Похгаммера (1.5):

(b + 1)p

(b)p
b = b + p,

(c + 1)p

(c)p
c = c + p, (3.11)

перепишем (3.10) в виде

fp

(
ã; b, c; z̃

)
= (c + p) F

(N−1)
D

(
ã; b + p; c + p; z̃

)−
− (b + p) z1 F

(N−1)
D

(
ã; b + p + 1; c + p + 1; z̃

)
,

а принимая во внимание (3.4), получаем выражение для fp

fp

(
ã; b, c; z̃

)
= (c + p)F

(N−1)
D

(
ã1; b + p; c + p; z̃

)
,

с учетом которого равенство (3.9) приобретает следующий вид:

f
(
a; b, c; z

)
=

∞∑
p=0

(aN)p (b)p

p! (c + 1)p
zp
N (c + p)F

(N−1)
D

(
ã1; b + p; c + p; z̃

)
.
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Упрощая коэффициенты этого ряда с помощью равенства

(c + 1)p

(c + p)
=

(c)p

c
,

вытекающего из второго соотношения (3.11), и применяя формулу (1.7) для

функции Лауричеллы, находим

f
(
a; b, c; z

)
= c F

(N)
D

(
a1; b, c; z

)
. (3.12)

Таким образом, левая часть формулы (3.3), обозначенная в формуле (3.6)

через f , преобразована к виду (3.12), совпадающему с правой частью (3.3),

что и означает справедливость этой формулы. Ограничение |zN | < 1, при

котором проведено доказательство, легко устраняется с помощью принципа

аналитического продолжения.

Применяя свойство симметрии (1.10) функции Лауричеллы к формуле

(3.3), убеждаемся в справедливости равенства (3.2) при любом j = 1, N .

Теорема 2.1 доказана.

3.2. Система дифференциальных соотношений типа Якоби. Вве-

дем обозначения, используемые при формулировке и доказательстве обобще-

ния классического тождества Якоби (2.32) на случай функции Лауричеллы

F
(N)
D (a; b, c; z).

Напомним, что вектор aj дается формулой (3.1), и обозначим через aj,s

вектор, получаемый из aj увеличением на единицу s-й компоненты, т.е.

aj,s := (a1, . . . , aj − 1, . . . , as + 1, . . . , aN). (3.13)

Под модулем вектора будем понимать сумму его элементов, так что, напри-

мер, для вектора a′j из (1.8) имеем

|a′j| :=
N∑

s=1, s 6=j

as. (3.14)

Справедливо следующее утверждение.
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Теорема 2.2. Функция Лауричеллы F
(N)
D (a; b, c; z) удовлетворяет диф-

ференциальным соотношениям типа Якоби

∂

∂zj

{ [ N∏′

p=1

(zj − zp)
ap

]
z

c−|a′j |−1
j (1− zj)

aj+b−c F
(N)
D (a; b, c; z)

}
=

=

[ N∏′

p=1

(zj − zp)
ap−1

]
z

c−|a′j |−2
j (1− zj)

aj+b−c−1 Rj (a; b, c; z), j = 1, N,

(3.15)

где Rj определяется по формуле

Rj(a; b, c; z) =

[ N∏′

p =1

(zj − zp)

] [
(c− 1)F

(N)
D (aj; b− 1, c− 1; z) +

+

N∑′

s=1

as
zs(1− zs)

zj − zs
F

(N)
D (aj,s; b, c; z)

]
;

(3.16)

штрих над суммой или произведением означает, что s 6= j или p 6= j.

Доказательство теоремы 2.2 дано ниже в п. 3.4 настоящего параграфа.

При этом используется установленное теоремой 2.1 соотношение для ассоци-

ированных функций Лауричеллы.

Замечание 2.2. Нетрудно убедиться в том, что если число N переменных

функции Лауричеллы равно единице, т.е. она совпадает с функцией Гаусса, то

устанавливаемые теоремой 2.2 соотношения (3.15), (3.16) для F
(N)
D переходят

в тождество Якоби (2.32) для F (a, b; c; z). Действительно, при N = 1 система

формул (3.15), (3.16) сводится к одному равенству, а векторный параметр a

и векторный аргумент z функции Лауричеллы содержат по одному элементу

и переходят соответственно в скалярный параметр a и скалярный аргумент z

функции Гаусса. Произведения по индексу p, фигурирующие в (3.15), (3.16),

не содержат ни одного сомножителя, а сумма по индексу s в (3.16) — ни

одного слагаемого. Согласно известному правилу такие произведения следует
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положить равными единице, а сумму — равной нулю. Кроме того, принимая

во внимание (3.14), полагаем |a′j| = 0. Учитывая сказанное и подставляя в

левую часть равенства (3.15) функцию F (a, b; c; z) вместо F
(1)
D , а в его правую

часть — функцию R1(a; b, c; z) = (c− 1)F (a− 1, b− 1; c− 1; z), вычисленную

по формуле (3.16) при N = 1, приходим к тождеству (2.32).

Замечание 2.3. Отметим еще, что если для некоторого j параметр

aj = 1, то определяемая из (3.16) функция Rj, является по переменному

zj полиномом степени (N − 1), который имеет следующий вид:

Rj(a; b, c; z) =

[ N∏′

p=1

(zj − zp)

] [
(c− 1)F

(N−1)
D (a′j; b− 1, c− 1; z′j) +

+

N∑′

s=1

as
zs(1− zs)

zj − zs
F

(N−1)
D

(
a′j,s; b, c; z′j

)]
;

(3.17)

здесь вектор a′j,s получается из a увеличением на единицу s-й компоненты и

исключением j-й компоненты, т.е.

a′j, s := (a1, . . . , aj−1, aj+1, . . . , as + 1, . . . , aN), s 6= j,

а векторы a′j и z′j определяются из (1.8). Таким образом, если некоторое

aj = 1, то формулы (3.15), (3.17) позволяют существенно упростить интеграл

вида (1.6), которым представима функция Лауричеллы F
(N)
D . Этот важный

частный случай теоремы 2.2 находит применение в теории задачи Римана —

Гильберта, которому посвящена глава III.

3.3. Система уравнений с частными производными для функции

Лауричеллы как следствие соотношений типа Якоби. Приводимое

ниже утверждение, устанавливающее вид новой системы дифференциальных

уравнений для функции Лауричеллы, является следствием формул (3.15),

(3.16) типа Якоби для этой функции.

Теорема 2.3. Функция Лауричеллы F
(N)
D (a; b, c; z) удовлетворяет

следующей системе уравнений с частными производными по переменным
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zj, j = 1, 2, . . . , N :

∂2u

∂z2
j

+

(
c− |a′j|

zj
+

aj + b− c + 1

zj − 1
+

N∑′

s=1

as

zj − zs

)
∂u

∂zj
+

+
aj

zj(zj − 1)

N∑′

s=1

zs(1− zs)

zj − zs

∂u

∂zs
+

aj b u

zj (zj − 1)
= 0, j = 1, . . . , N.

Доказательство. Введем функцию

ũ (a; b, c; z) := F
(N)
D (aj; b− 1, c− 1; z) (3.18)

и заметим, что фигурирующие в правой части равенства (3.16) функции F
(N)
D

выражаются через производные ũ следующими равенствами, вытекающими

из (1.9), (3.18):

F
(N)
D (a; b, c; z) =

c− 1

(aj − 1)(b− 1)

∂

∂zj
ũ (a; b, c; z);

F
(N)
D (aj, s; b, c; z) =

c− 1

as(b− 1)

∂

∂zs
ũ (a; b, c; z), s 6= j;

(3.19)

напомним, что векторы aj и aj, s в (3.18) и (3.19) определены равенствами

(3.1) и (3.13). Подставляя (3.18) и (3.19) в формулы (3.15), (3.16) с номером j,

приходим к уравнению, которому удовлетворяет ũ. Заменяя в нем aj, b и c

соответственно на (aj +1), (b+1) и (c+1), учитывая, что ũ при такой замене

переходит в u = F
(N)
D (a; b, c; z), и применяя свойство (1.10) функции F

(N)
D ,

убеждаемся в справедливости теоремы 2.3.

Отметим, что некоторые формулы для случая функции Аппеля F1,

близкие к установленным в теореме 2.2 (если положить N = 2), приведе-

ны в работе [154].

3.4. Доказательство соотношений типа Якоби для функции

Лауричеллы. Перейдем к доказательству теоремы 2.2. Рассмотрим ее вна-

чале для случая j = 1, т.е. убедимся в справедливости следующего утвер-

ждения, где, напомним, векторы a′1, a1 и a1, s определяются из (1.8), (3.1) и

(3.13).
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Теорема 2.4. Для функции Лауричеллы справедливо следующее соот-

ношение типа Якоби:

∂

∂z1

{ [ N∏
s=2

(z1 − zs)
as

]
z

c−|a′1|−1
1 (1− z1)

a1+b−c F
(N)
D (a; b, c; z)

}
=

=

[ N∏
s=2

(z1 − zs)
as−1

]
z

c−|a′1|−2
1 (1− z1)

a1+b−c−1 R1 (a; b, c; z);

(3.20)

здесь R1 определяется по формуле

R1 (a; b, c; z) =

[ N∏
s=2

(z1 − zs)

] [
(c− 1)F

(N)
D (a1; b− 1, c− 1; z) +

+
N∑

s=2

as
zs(1− zs)

z1 − zs
F

(N)
D

(
a1, s; b, c; z

)]
.

(3.21)

Доказательство. Доказательство формулы (3.20), (3.21) проведем

методом индукции по числу N переменных функции Лауричеллы. Соглас-

но замечанию 1 после теоремы 2.2 при N = 1 эта формула превращается в

тождество Якоби (2.32) для функции Гаусса.

Докажем соотношения (3.20), (3.21) в предположении, что они справедли-

вы для функции Лауричеллы с числом переменных, равным (N − 1), т.е. в

предположении, что имеет место соотношение

∂

∂z1

{[ N−1∏
s=2

(z1 − zs)
as

]
z

c−| ã′1|−1
1 (1− z1)

a1+b−c F
(N−1)
D

(
ã; b, c; z̃

)
}

=

=

[ N−1∏
s=2

(z1 − zs)
as−1

]
z

c−|ã′1|−2
1 (1− z1)

a1+b−c−1 R̃1
(
ã; b, c; z̃

)
;

(3.22)

здесь R̃1 определяется по формуле

R̃1
(
ã; b, c; z̃

)
=

[ N−1∏
s=2

(z1 − zs)

] [
(c + p− 1)F

(N−1)
D

(
ã1; b− 1, c− 1; z̃

)
+

+
N−1∑
s=2

as
zs(1− zs)

z1 − zs
F

(N−1)
D

(
ã1, s; b, c; z̃

)]
,

(3.23)
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векторы ã и z̃ даются формулой (3.5), а векторы ã′1, ã1 и ã1, s определяются

через ã с помощью равенств

ã′1 := (a2, . . . , aN−1), ã1 := (a1 − 1, a2, . . . , aN−1),

ã1,s :=
(
a1 − 1, a2, . . . , as−1, as + 1, as+1, . . . , aN−1

)
.

(3.24)

Введем обозначение для выражения в левой части (3.20):

g (a; b, c; z) :=

:=
∂

∂z1

{ [ N∏
s=2

(z1 − zs)
as

]
z

c−|a′1|−1
1 (1− z1)

a1+b−c F
(N)
D

(
a; b, c; z

)} (3.25)

и, используя (1.7), представим фигурирующую здесь функцию F
(N)
D (a; b, c; z)

в следующем виде:

F
(N)
D (a; b, c; z) =

∞∑
p=0

(aN)p (b)p

p! (c)p
zp
N F

(N−1)
D

(
ã; b + p, c + p; z̃

)
.

Подставляя это разложение в правую часть равенства (3.25), получаем пред-

ставление величины g в виде следующего ряда:

g(a; b, c; z) =
∞∑

p=0

(aN)p (b)p

p! (c)p
zp
N gp

(
a; b, c; z

)
, (3.26)

где коэффициенты gp

(
a; b, c; z

)
даются равенствами

gp

(
a; b, c; z

)
:=

:=
∂

∂z1

{ [ N∏
s=2

(z1 − zs)
as

]
z

c−|a′1|−1
1 (1− z1)

a1+b−c F
(N−1)
D

(
ã; b + p, c + p; z̃

)}
.

(3.27)

Далее для краткости будем пропускать набор аргументов
(
a; b, c; z

)
у неко-

торых вспомогательных величин, если нет необходимости его указывать явно.

Перегруппируем множители в квадратных скобках (3.27) таким образом,

чтобы можно было применить формулу типа Якоби (3.22), (3.23) для функ-

ции Лауричеллы с числом переменных (N − 1), и запишем формулу (3.27)
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для коэффициента gp в виде

gp

(
a; b, c; z

)
=

∂

∂ z1

[
P1

(
a; b, c; z

)
P2

(
a; b, c; z

)]
, (3.28)

где величины P1 и P2 даются равенствами

P1 := (z1 − zN)aN z−aN−p
1 , (3.29)

P2 :=
N−1∏
s=2

(z1−zs)
as z

c + p− |ã′1|−1
1 (1−z1)

a1+b−c F
(N−1)

D

(
ã; b + p, c+p; z̃

)
; (3.30)

здесь | ã′1| — сумма элементов вектора ã′1, определенного в (3.24). Выполняя

дифференцирование в правой части (3.28), получаем

gp = g(1)
p + g(2)

p , g(1)
p :=

∂P1

∂z1
P2, g(2)

p := P1
∂P2

∂z1
, (3.31)

где для g
(1)
p и g

(2)
p с учетом (3.29) и (3.30) находим выражения:

g(1)
p =

[ N−1∏
s=2

(z1 − zs)
as

]
(z1 − zN)aN−1 z

c−|a′1|−2
1 (1− z1)

a1 + b−c×

× [
aNz1 − (aN + p)(z1 − zN)

]
F

(N−1)
D

(
ã; b + p, c + p; z̃

)
,

(3.32)

g(2)
p = (z1 − zN)aN z−aN−p

1 ×

× ∂

∂z1

{ [ N−1∏
s=2

(z1 − zs)
as

]
z

c + p− |ã′1| − 1
1 (1− z1)

a1+b−c F
(N−1)
D

(
ã; b + p, c + p; z̃

)
}

.

(3.33)

Применяя к производной, фигурирующей в правой части равенства (3.33),

формулу типа Якоби (3.22), (3.23), справедливость которой, напомним, пред-

полагается, получаем для этой производной выражение

∂

∂z1

{[ N−1∏
s=2

(z1 − zs)
as

]
z

c+p−|ã′1|−1
1 (1− z1)

a1+b−c F
(N−1)
D

(
ã; b + p, c + p; z̃

)
}

=

=

[ N−1∏
s=2

(z1 − zs)
as−1

]
z

c+p−|ã′1|−2
1 (1− z1)

a1+b−c−1 R̃1
(
ã; b + p, c + p; z̃

)
;

(3.34)
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где R̃1 дается равенством

R̃1
(
ã; b + p, c + p; z̃

)
=

=

[ N−1∏
s=2

(z1 − zs)

] [
(c + p− 1)F

(N−1)
D

(
ã1; b + p− 1, c + p− 1; z̃

)
+

+
N−1∑
s=2

as
zs(1− zs)

z1 − zs
F

(N−1)
D

(
ã1,s; b + p, c + p; z̃

)]
.

(3.35)

Подставляя (3.32) и (3.33) с учетом (3.34), (3.35) в первое равенство (3.31),

приходим к следующему выражению для gp:

gp =

[ N∏
s=2

(z1 − zs)
as−1

]
z

c−|a′1|−2
1 (1− z1)

a1+b−c−1 ρp, (3.36)

где множитель ρp имеет вид

ρp :=
N−1∏
s=2

(z1 − zs)×

×
{

(1− z1)
[
aNz1−(aN + p)(z1 − zN)

]
F

(N−1)
D

(
ã1; b + p, c + p; z̃

)
+

+ (z1 − zN)
N−1∑
s=2

as
zs(1− zs)

z1 − zs
F

(N−1)
D

(
ã1,s; b + p, c + p; z̃

)
+

+ (c + p− 1)(z1− zN)F
(N−1)
D

(
ã1; b + p− 1, c + p− 1; z̃

)}
.

(3.37)

Подставляя (3.36), (3.37) в (3.26), получаем

g(a; b, c; z) =

[ N∏
s=2

(z1 − zs)
as−1

]
z

c−|a′1|−2
1 (1− z1)

a1+b−c−1 Q (a; b, c; z),

(3.38)

где множитель Q имеет вид

Q (a; b, c; z) =

[ N−1∏
s=2

(z1 − zs)

] 3∑
j=1

R j(a; b, c; z), (3.39)

а функции Rj, j = 1, 3, даются равенствами

R1 := (1−z1)
∞∑

p=0

(aN)p (b)p

(c)p p!
zp
N

[
aNz1−(aN+p)(z1−zN)

]
F

(N−1)
D

(
ã; b+p, c+p; z̃

)
,

(3.40)
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R2 := (z1−zN)
∞∑

p=0

(aN)p (b)p

(c)p p!
zp
N

[ N−1∑
s=2

as
zs(1− zs)

z1 − zs
F

(N−1)
D

(
ã1,s; b+p, c+p; z̃

)]
,

(3.41)

R3 := (z1− zN)
∞∑

p=0

(aN)p (b)p

(c)p p!
(c + p− 1) zp

N F
(N−1)
D

(
ã1; b + p− 1, c + p− 1; z̃

)
.

(3.42)

Для того чтобы преобразовать выражение (3.38) для функции g, которая

согласно определению (3.25) является левой частью равенства (3.22), к виду

правой части того же равенства, необходимо выразить величины R1, R2 и R3

через функцию Лауричеллы от N переменных.

Проведем последовательно преобразования выражений (3.40)–(3.42) для

R1, R2 и R3.

(i) Обратимся к преобразованию функции R1. Перепишем выражение в

квадратных скобках (3.40) следующим образом:

aNz1 − (aN + p)(z1 − zN) = (aN + p)zN − pz1

и представим R1 в виде

R1(a; b, c; z) := (1− z1)
[
R

(1)
1 (a; b, c; z) − R

(2)
1 (a; b, c; z)

]
, (3.43)

где ряды R
(1)
1 и R

(2)
1 даются формулами

R
(1)
1 (a; b, c; z) :=

∞∑
p=0

(aN)p (b)p

p! (c)p
z p +1
N (aN+p)F

(N−1)
D

(
ã; b+p, c+p; z̃

)
, (3.44)

R
(2)
1 (a; b, c; z) := z1

∞∑
p=1

p
(aN)p (b)p

p! (c)p
zp+1
N F

(N−1)
D

(
ã; b + p, c + p; z̃

)
, (3.45)

Используя равенство (aN)p(aN + p) = (aN)p+1 и меняя индекс суммирования

в (3.44) так, чтобы суммирование начиналось с p = 1, получаем

R
(1)
1 (a; b, c; z) =

∞∑
p=1

(aN)p (b)p−1

(p− 1)! (c)p−1
zp
NF

(N−1)
D

(
ã; b + p− 1, c + p− 1; z̃

)
.

(3.46)
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С помощью выражений (3.45), (3.46) вычисляем разность, фигурирующую в

квадратных скобках (3.43):

R
(1)
1 (a; b, c; z)−R

(2)
1 (a; b, c; z) =

∞∑
p=1

(aN)p

(p− 1)!
rp zp

N , (3.47)

где

rp =
(b)p−1

(c)p−1
F

(N−1)
D

(
ã; b + p− 1, c + p− 1; z̃

)−

− (b)p

(c)p
z1 F

(N−1)
D

(
ã; b + p, c + p; z̃

)
.

(3.48)

Вынося в (3.48) за скобки множитель (b)p−1/(c)p, преобразуем rp к виду

rp =
(b)p−1

(c)p

[
(c + p− 1) F

(N−1)
D

(
ã; b + p− 1, c + p− 1; z̃

)−

− (b + p− 1) z1 F
(N−1)
D

(
ã; b + p, c + p; z̃

)]
.

(3.49)

Применяя к выражению в квадратных скобках (3.49) установленное в теоре-

ме 2.1 равенство (3.2) для ассоциированных функций Лауричеллы, получаем

rp =
(b)p−1

(c)p
(c + p− 1) F

(N−1)
D

(
ã1; b + p− 1, c + p− 1; z̃

)
. (3.50)

Подставляя в (3.50) в (3.47) и учитывая вытекающие из (1.5) равенства
c + p− 1

(c)p
=

1

(c)p−1
, (aN)p = aN (aN + 1)p−1, (3.51)

приходим к выражения для разности

R
(1)
1 −R

(2)
2 = aN zN F

(N)
D

(
a1, N ; b + p, c + p; z

)
,

которое после подставновки в (3.43) дает следующую формулу для R1:

R1(a; b, c; z) = aNzN(1− z1) F
(N)
D

(
a1, N ; b, c; z

)
. (3.52)

(ii) Обратимся к вычислению функции R2. Меняя в формуле (3.41) поря-

док суммирования, а также учитывая вытекающее из (1.7) равенство
∞∑

p=0

(aN)p (b)p

p! (c)p
zp
NF

(N−1)
D

(
ã1, s; b + p, c + p; z̃

)
= F

(N)
D

(
a1, s; b + p, c + p; z

)
,

(3.53)
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получаем для R2 выражение в виде конечной суммы

R2(a; b, c; z) = (z1 − zN)
N−1∑
s=2

as
zs(1− zs)

z1 − zs
F

(N)
D

(
a1, s; b, c; z

)
. (3.54)

(iii) Перейдем к рассмотрению функции R3. Преобразуя коэффициенты

ряда (3.42) с помощью следующих соотношений

(b)p =
b + p− 1

b− 1
(b− 1)p, (c)p =

c + p− 1

c− 1
(c− 1)p,

перепишем (3.42) в виде суммы двух рядов

R3 = R
(1)
3 + R

(2)
3 , (3.55)

где R
(1)
3 и R

(2)
3 даются равенствами

R
(1)
3 := (c−1)(z1−zN)

∞∑
p=0

(aN)p (b− 1)p

p! (c− 1)p
zp
N F

(N−1)
D

(
ã1; b−1+p, c−1+p; z̃

)
,

R
(2)
3 :=

(c− 1)(z1 − zN)

b− 1

∞∑
p=1

(aN)p (b− 1)p

p! (c− 1)p
p zp

N F
(N−1)
D

(
ã1; b+p−1, c+p−1; z̃

)
.

(3.56)

Применяя к R
(1)
3 формулу (1.7), получаем

R
(1)
3 = (c− 1)(z1 − zN) F

(N)
D

(
a1; b− 1, c− 1; z

)
. (3.57)

Для преобразования R
(2)
3 подставим в (3.56) формулу для (aN)p из (3.51) и

соотношения

(b− 1)p = (b− 1)(b)p−1, (c− 1)p = (c− 1)(c)p−1.

Заменяя в полученном равенстве для R
(2)
3 индекс суммирования так, чтобы

оно начиналось с p = 0 и учитывая представление (1.7) для функции Лаури-

челлы, получаем

R
(2)
3 = aNzN(z1 − zN) F

(N)
D

(
a1,N ; b, c; z

)
. (3.58)
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Подставляя (3.57) и (3.58) в (3.55), приходим к требуемому выражению R3 в

виде конечной комбинации функций Лауричеллы

R3 = (z1 − zN)
[
(c− 1) F

(N)
D

(
a1; b− 1, c− 1; z

)
+

+ aNzN F
(N)
D

(
a1,N ; b, c; z

)]
,

(3.59)

чем завершаем преобразование функций R1, R2 и R3 из (3.40)–(3.42).

Используя равенства (3.52), (3.54) и (3.59), получаем искомое выражение

для суммы из (3.39):

3∑

l=1

R l(a; b, c; z) = (z1 − zN)

[
(c− 1) F

(N)
D (a1; b− 1, c− 1; z) +

+
N∑

s=2

as
zs(1− zs)

z1 − zs
F

(N)
D (a1,s; b, c; z)

]
.

(3.60)

Подставляя (3.60) в (3.39), а результат такой подстановки — в формулу (3.38),

приходим к выводу, что величина g(a; b, c; z), которая по определению пред-

ставляет собой левую часть равенства (3.20), совпадает с правой частью того

же равенства, что и требовалось показать. Ограничение |zN | < 1, при

котором проведено доказательство формулы типа Якоби (3.20), (3.21), легко

устраняется с помощью принципа аналитического продолжения. Теорема 2.4

доказана.

Замечая, что утверждение теоремы 2.4 совпадает с утверждением теоре-

мы 2.2 при j = 1 и используя свойство симметрии (1.10) функции F
(N)
D ,

убеждаемся в справедливости теоремы 2.2, устанавливающей систему диф-

ференциальных соотношений для гипергеометрической функции Лауричел-

лы F
(N)
D , обобщающих классическое тождество Якоби (2.32) для функции

Гаусса.
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§4. Аналитическое продолжение функции

Лауричеллы F
(N)
D

Параграф посвящен выводу формул аналитического продолжения вида

(1.11) для функции Лариучеллы F
(N)
D (a; b, c; z) в нелогарифмическом случае.

В пп. 4.1, 4.2 получены формулы такого продолжения в окрестности точек

z(∞), z(1), все компоненты которых равны либо ∞, либо 1. На основе этих

результатов в п. 4.3 построены общие формулы аналитического продолжения

для F
(N)
D в окрестности точек z

(1,∞)
p , первые p компонент которых близки

к единице, а остальные (N − p) — к бесконечности. Необходимо отметить,

что формулы продолжения в окрестности z(∞) и z(1) записаны в терминах

обобщенных гипергеометрических рядов G(N, j)(a; b, c; z), рассматривавшися

в [169]; формулы продолжения в окрестности z
(1,∞)
p получены в терминах

обобщенных гипергеометрических рядов F(N, p)(a; b, c1, c2; z), G(N, p)
j (a; b, c; z)

и H
(N, p)
j (a; b, c; z), по–видимому, не изучавшихся в литературе.

4.1. Формулы аналитического продолжения в окрестность точки

z(∞) = (∞, . . . ,∞). Переходя к построению формул аналитического продол-

жения F
(N)
D (a; b, c; z) в окрестность точки z(∞), дадим вначале представление

этой функции в виде контурного интеграла типа Барнса [19], [86], [127], [142].

Введем используемые в таком представлении обозначения для векторов

z′1 := (z2, . . . , zN), a′1 := (a2, . . . , aN), (4.1)

зададим область SN с помощью следующего равенства

SN :=
{ |arg(−z1)| < π, |zj| < 1, j = 2, N

}
. (4.2)

и определим функцию f(a; b, c; z, s) по формуле

f(a; b, c; z, s) :=
Γ(a1 + s)Γ(b + s)Γ(−s)

Γ(c + s)
(−z1)

sF
(N−1)
D (a′1; b + s, c + s; z′1),

(4.3)
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где z ∈ SN , s ∈ C, а под выражением F
(N−1)
D (a′1; b+s, c+s; z′1) понимается ряд,

получаемый подстановкой соответствующих параметров в формулу (1.2).

Справедливо следующее утверждение.

Предложение 2.1. Функция Лауричеллы F
(N)
D (a; b, c; z), определяемая

рядом (1.2), представима для z ∈ UN ∩ SN в виде контурного интеграла

типа Барнса

F
(N)
D (a; b, c; z) =

Γ(c)

2πiΓ(a1) Γ(b)

+i∞∫

−i∞

f(a; b, c; z, s)ds, (4.4)

где f дается равенством (4.3), а контур интегрирования в (4.4) выбран

так, чтобы полюсы s
(0)
k = k, k ∈ Z+, и полюсы

s
(1)
k = −a1 − k, s

(2)
k = −b− k, k ∈ Z+, (4.5)

функции f(s) лежали соответственно справа и слева от него.

Доказательство. Обозначим через L контур интегрирования в (4.4) и

пусть Ln — его часть, ограниченная точками −(n + 1/2) i и (n + 1/2) i, где

n ∈ N, т.е. кривая Ln :=
{
s ∈ γ : |Im s| ≤ (n + 1/2)

}
; кроме того, пусть Cn —

расположенная в правой полуплоскости полуокружность радиуса (n + 1/2) с

направлением обхода по часовой стрелке. Используя известное [19] тождество

для гамма–функции

Γ(−s) =
−π

Γ(1 + s) sin πs
,

перепишем функцию (4.3) в более удобном для асимптотического исследова-

ния в виде

f(a; b, c; z, s) = −
[
Γ(a1 + s)Γ(b + s)

Γ(c + s)Γ(1 + s)

][
F

(N−1)
D (a′1; b + s, c + s; z′1)

]
π(−z1)

s

sin πs
,

(4.6)

и рассмотрим следующий интеграл:

In(a; b, c; z) :=

∫

Ln ∪Cn

f(a; b, c; z, s)ds. (4.7)
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Используя известную [19] асимптотику гамма–функции:

Γ(a + s) = O
(
ss + a− 1/2 e−s

)
, s →∞, |arg s| < π.

находим следующее соотношение для первого множителя в квадратных

скобках из (4.6):

Γ(a1 + s)Γ(b + s)

Γ(c + s)Γ(1 + s)
= O

(
sa1 + b− c− 1

)
, s →∞, |arg s| < π. (4.8)

Для фигурирующей в (4.6) функции Лауричеллы справедлива оценка:

F
(N−1)
D

(
a′1; b + s, c + s; z′1

)
= O(1), s →∞. (4.9)

Для оценки третьего множителя на кривой Cn положим s = (n + 1/2)eiθ и

(−z1)
s = exp(s ln(−z1)), где ln(−z1) = ln |z1| + i arg(−z1), причем по услови-

ям предложения | arg(−z1)| ≤ π − δ для некоторого малого положительного

δ. Тогда нетрудно убедиться в том, что выполняется оценка:
(−z1)

s

sin π θ
= O

(
exp

[− (n + 1/2)(− cos θ ln |z1|+ δ| sin θ|)]
)
, n →∞. (4.10)

С помощью этих соотношений получаем следующую асимптотику для

функции (4.6):

|f(s)| = O

(
na1 + b− c− 1 exp

[
− n

(− cos θ ln |z1|+ δ| sin θ|)
])

,

s ∈ C +
n , n →∞;

(4.11)

здесь использовано обозначение f(s) := f(a; b, c; z, s). Таким образом, если

ln z1 < 0, т.е. |z1| < 1, то подынтегральная функция для всех θ ∈ [−π/2, π/2]

экспоненциально стремится к нулю при n →∞.

Запишем интеграл (4.7) в виде∫

Ln ∪C +
n

f(s) ds =

∫

Ln

f(s) ds +

∫

C +
n

f(s) ds ,

где первый интеграл при n → ∞ стремится к
∫

L f(s) ds, а второй в силу

оценки (4.11) — к нулю. Таким образом,∫

L

f(s) ds = lim
n→∞

∫

Ln ∪C +
n

f(s) ds. (4.12)
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Для того чтобы вычислить интеграл в правой части (4.12) остановимся

на обсуждении свойств функции (4.3), рассматриваемой в зависимости от

комплексного переменного s и фиксированных остальных аргументах.

Напомним, что гамма–функция Γ(s) имеет простые полюсы в целых

неположительных точках s = −k, k ∈ Z+, причем вычеты в них даются

следующими равенствами, см. [19], [127]:

res Γ(−k) = (−1)k(k!)−1, k ∈ Z+, (4.13)

и отметим, что функция F̃ (s) := F
(N−1)
D (a′1; b + s, c + s; z′1)/Γ(c + s),

очевидно, регулярна по s во всей конечной плоскости. С учетом сказанно-

го из определения (4.3) вытекает, что f(s) имеет простые полюсы в точках

s
(0)
k = k, k ∈ Z+, а ее вычеты в них определяются равенствами:

res
s=s

(0)
k

f(s) = − Γ(a1 + k)Γ(b + k)

Γ(c + k)k!
zk
1 F

(N−1)
D (a′1; b + k, c + k; z′1). (4.14)

Интеграл в правой части (4.12) равен умноженной на (−2πi) сумме вычетов

подынтегральной функции f(s) в области, ограниченной контуром Ln ∪ C +
n ,

т.е. ∫

Ln ∪C +
n

f(s) ds = (−2πi)
n∑

k=0

res
s=s

(0)
k

f(s), (4.15)

Используя равенства (4.12)–(4.15) и определение сивола Похгаммера, полу-

чаем
∫

L

f(s) ds = 2πi
Γ(a1)Γ(b)

Γ(c)

∞∑

k=0

(a1)k(b)k

(c)k)k!
zk
1 F

(N−1)
D (a′1; b + k, c + k; z′1). (4.16)

Разделив обе части этого равенства на множитель, фигурирующий перед

суммой в правой его части и замечая, что эта сумма согласно (1.7) равна

функции Лауричеллы F
(N)
D (a; b, c; z), убеждаемся в справедливости

представления (4.3), (4.4). Предложение 2.1 доказано.

Отметим, что частный случай представления (4.3), (4.4) при N = 2, т.е.

соответствующий функции Аппеля, приведен, например, в [142].
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Замечание 2.4. Нетрудно увидеть, что установленное в предложении 2.1

интегральное представление (4.3), (4.4) осуществляет аналитическое продол-

жение функции Лауричеллы, первоначально определенной с помощью ряда

(1.2), в область SN , в которой правая часть равенства (4.4) является голо-

морфной функцией z.

Используя результат предложения 2.1, получим теперь для случая, когда

(b−a1) не является целым числом, представление функции F
(N)
D в виде суммы

двух рядов, экспоненциально сходящихся в области

DN :=
{ |z1| > 1, |arg (−z1)| < π; |zj| < 1, j = 2, N

}
, (4.17)

т.е. в подобласти SN , которая, напомним, определяется из (4.2).

Предложение 2.2. Если параметры функции F
(N)
D (a; b, c; z) таковы, что

(b− a1) не является целым числом, то для нее справедливо представление

F
(N)
D (a; b, c; z) = C0 u0(a; b, c; z) + C1 u1(a; b, c; z), (4.18)

где u0 и u1 даются формулами

u0(a; b, c; z) =

= (−z1)
−a1

∞∑

k1=0

(a1)k1
(1 + a1 − c)k1

k1!(1 + a1 − b)k1

z−k1
1 F

(N−1)
D

(
a′1; b− a1 − k1, c− a1 − k1; z′1

)
,

(4.19)

u1(a; b, c; z) =

= (−z1)
−b F

(N)
D

(
1− c + b, a2, . . . , aN ; b, 1 + b− a1;

1

z1
,
z2

z1
, . . . ,

zN

z1

)
,

(4.20)

а коэффициенты C0 и C1 имеют вид

C0 =
Γ(c) Γ(b− a1)

Γ(b)Γ(c− a1)
, C1 =

Γ(c) Γ(a1 − b)

Γ(a1)Γ(c− b)
. (4.21)

Соотношения (4.18)–(4.21) осуществляют аналитическое продолжение

ряда (1.2) в область DN , определяемую равенством (4.17).
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Доказательство. Рассмотрим следующий интеграл:∫

Ln ∪C −
n

f(a; b, c; z, s) ds, (4.22)

где C −
n — полуокружность с центром в начале координат, радиусом

(n + 1/2) и направлением обхода против часовой стрелки, целиком распо-

ложенная в левой полуплоскости. Проводя рассуждения, аналогичные тем,

что были использованы при доказательстве предложения 2.1 и записывая

оценку

|f(s)| = O

(
na1 + b− c−1 exp

[
− n

(− cos θ ln |z1|+ δ| sin θ|)
])

,

s ∈ C −
n , n →∞;

(4.23)

для подынтегральной функции, показывающую экспоненциальное убывание

при n →∞ функции f на контуре C −
n для ln |z1| > 0, т.е. |z1| > 1, находим∫

L

f(s) ds = lim
n→∞

∫

Ln ∪C −
n

f(s) ds. (4.24)

Представим теперь интеграл в виде умноженной на (2πi) суммы вычетов в

(простых) полюсах s
(1)
k и s

(2)
k , указанных в формуле в (4.5), функции f(s),

расположенных в области, ограниченной контуром Ln ∪ C −
n :∫

Ln ∪C −
n

f(s) ds = 2πi
(
S1 + S2

)
,

S
(n)
1 :=

n∑

k=0

res
s=s

(1)
k

f(s), S
(n)
2 :=

n∑

k=0

res
s=s

(2)
k

f(s).
(4.25)

Здесь выражения для вычетов, получаемые с учетом свойства (4.13) гамма–

функции, даются равенствами:

res
s=s

(1)
k

f(s) =
Γ(b− a1)Γ(a1)(1 + a1 − c)k(a1)k

Γ(c− a1)(1 + a1 − b)k k!
(−z1)

−a1−k(−1)k×

× F
(N−1)
D (a′1; b− a1 − k, c− a1 − k; z′1),

(4.26)

res
s=s

(2)
k

f(s) =
Γ(a1 − b)Γ(b)(1 + b− c)k(b)k

Γ(c− b)(1 + b− a1)k k!
(−z1)

−b−k(−1)k×

× F
(N−1)
D (a′1;−k, c− b− k; z′1).

(4.27)
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С помощью (4.24), используя (4.25)–(4.27), находим следующее сотношение:

Γ(c)

2πi Γ(a1)Γ(b)

∫

L

f(s) ds = S1 + S2, (4.28)

где S0 и S1 даются формулами

S0 = C0 u0 (a; b, c; z), S1 = C1 ũ1(a; b, c; z),

в которых функция u0 определяется из (4.19), константы C0 и C1 — из (4.35),

а функция ũ1 дается равенством

ũ1(a; b, c; z) =

= (−z1)
−b

∞∑

k=0

(1 + a1 − c)k(b)k

k!(1 + b− a1)k
z−k
1 F

(N−1)
D

(
a′1;−k, c− b− k; z′1

)
.

(4.29)

Поскольку второй параметр функции F
(N−1)
D

(
a′1;−k, c − b − k; z′1

)
равен

целому отрицательному числу, то эта функция является полиномом степе-

ни k по переменным z2, . . . , zN :

F
(N−1)
D

(
a′1;−k, c− b− k; z′1

)
=

k∑

|k|=0

(−k)|k 2,N |(a2)k2
. . . (aN)kN

(c− b− k)|k 2,N | k1! . . . kN !
z k1
2 . . . z kN

N .

(4.30)

Подставляя (4.30) в (4.29), вводя новый индекс k1 = k − (k2 + . . . + kN) и

учитывая определение (1.2) функции Лауричеллы, получаем для ũ1

представление, совпадающее с формулой (4.20) для функции u1.

Сходимость ряда (4.19) для u0 в областиDN вытекает из следующей асимп-

тотики для общего члена ряда:
∣∣∣∣
(a1)k(1 + a1 − c)k

k!(1 + a1 − b)k
z−k
1 F

(N−1)
D

(
a′1; b− a1 − k, c− a1 − k; z′1

)∣∣∣∣ =

= O
(
ka1 + b− c−1 exp

(− k ln |z1|
))

, k →∞.

Представление (4.20) для u1 сходится в DN , поскольку если вектор z лежит

в этой области, то аргумент
(

1

z1
,

z2

z1
, . . . ,

zN

z1

)
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функции F
(N)
D из (4.20), очевидно, принадлежит поликругу UN . Предложе-

ние 2.2 доказано.

Отметим, что предложение 2.2 позволяет продолжить ряд (1.2) по пере-

менной z1, модуль которой при z ∈ DN может принимать значения, большие

единицы. При этом функция u1 в представлении (4.20), очевидно, определена

в более широкой области

D̃ :=
{|z1| > 1, |arg(−z1)| < π; |z1| > . . . > |zN |

}
,

где одновременно все переменные zj, j = 1, N , могут принимать значения по

модулю большие единицы. Таким образом, в представлении (4.18) необходимо

продолжить по переменным zj, j = 2, N , лишь функцию u0.

Прежде чем перейти к такому продолжению, определим величины

gj := (a1, . . . , aj−1, 1− c + b, aj+1, . . . , aN),

|as, j| :=
j∑

n=s

an, |a| := |a1,N |, |ks, j| :=
j∑

n=s

kn,
(4.31)

и введем преобразования вектора z = (z1, . . . , zN):

z−1 :=
( 1

z1
, . . . ,

1

zN

)
, (4.32)

Yj(z) :=
(z1

zj
, . . . ,

zj−1

zj
, zj,

zj

zj+1
, . . . ,

zj

zN

)
, (4.33)

где, уточним, что выражения Y1(z) и YN(z) означают:

Y1(z) :=
(
z1,

z1

z2
, . . . ,

z1

zN

)
, YN(z) :=

( z1

zN
, . . . ,

zN−1

zN
, zN

)
. (4.34)

Запишем также следующий обобщенный гипергеометрический ряд [169]:

G(N, j)(a; b; c; z
)

:=
∞∑

|k|=0

(b)|kj | (a1)k1
. . . (aN)kN

(c)|kj | k1! . . . kN !
zk1
1 . . . zkN

N , (4.35)

где выражение |kj| для мультииндекса k = (k1, . . . , kN), означает

|kj| :=
N∑

n= j

kn −
j−1∑
n=1

kn,
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а параметр j может принимать значения 1, 2, . . . , N + 1. Областью сходи-

мости ряда (4.35) при всех j = 1, N + 1 является единичный поликруг UN .

При j = 1 формула (4.35), очевидно, переходит в определение (1.2) функции

Лауричеллы.

В формуле (4.35) разность индексов |kj| может принимать отрицатель-

ные значения. Отметим, что для отрицательных целых значений k символ

Похгаммера (a)k, определяемый из (1.3), записывается с учетом известного

тождества [19] для Гамма–функции

Γ(a + k)

Γ(a)
= (−1)k Γ(1− a)

Γ(1− a− k)
,

в следующем виде:

(a)k = (−1)k
[
(1−a)(2−a) . . .

(
(1−a)−k−1

)]−1
, k = −1,−2, . . . (4.36)

Введем еще обозначение для области

VN :=
{

z ∈ CN : |z1| > . . . > |zN | > 1; |arg(−zj)| < π, j = 1, N
}
. (4.37)

Применяя результат предложения 2.2 к функциям F
(N−1)
D , фигурирую-

щим в (4.19), а также к аналогичным функциям с меньшим числом перемен-

ных, возникающим в результате такого применения, приходим к следующему

утверждению, позволяющему продолжить функцию Лауричеллы F
(N)
D в об-

ласть VN .

Теорема 2.5. Если ни одно из чисел (b − |a1, j| ), j = 1, N , не является

целым, то аналитическое продолжение ряда (1.2) в область VN дается

формулой

F
(N)
D (a; b, c; z) =

N∑

j=0

Bj U
(∞)
j (a; b, c; z), (4.38)

где функции U
(∞)
j определяются равенствами

U
(∞)
0 (a; b, c; z) :=

( N∏

l=1

(−zl)
−al

)
F

(N)
D

(
a; 1 + |a| − c, 1 + |a| − b; z−1), (4.39)
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U
(∞)
j (a; b, c; z) := (−zj)

|a1,j−1|−b

( j−1∏

l=1

(−zl)
−al

)
×

× G(N,j)
(
gj; b− |a1, j−1|, 1− |a1, j|+ b; Yj(z

−1)
)
, j = 1, N,

(4.40)

а коэффициенты Bj имеют вид

B0 =
Γ(c) Γ

(
b− |a|)

Γ(b) Γ
(
c− |a|) , Bj =

Γ(c) Γ
(
b− |a1,j−1|

)
Γ
(|a1,j| − b

)

Γ(aj)Γ(b) Γ(c− b)
, j = 1, N.

(4.41)

Функции (4.39), (4.40) являются линейно независимыми частными реше-

ниями системы (1.5).

Доказательство. Доказательство формулы продолжения (4.38)–(4.41)

проведем методом индукции по числу N переменных функции F
(N)
D .

Заметим, прежде всего, что при N = 1, т.е. когда функция Лауричеллы

совпадает с функцией Гаусса, соотношения (4.38)–(4.41), устанавливаемые

теоремой, совпадают с известными формулами (2.8), (2.9), (2.26), (2.27),

осуществляющими продолжение функции F (a, b; c; z) во внешность единич-

ного круга. Действительно, при N = 1 правая часть (4.38), как и правая

часть (2.26), содержит лишь два слагаемых B0U
(∞)
0 и B1U

(∞)
1 , а формулы

(4.39) и (4.40), которыми определяются функции U
(∞)
0 и U

(∞)
1 , переходят со-

ответственно в канонические решения Куммера (2.8) и (2.9). При этом равен-

ства (4.41) для коэффициентов B0 и B1 совпадают с (2.27). Формула (4.37)

для области VN переходит в равенство (2.25) для области V, где справедливы
соотношения (2.8), (2.9), (2.26), (2.27).

Предположим теперь, что утверждение теоремы справедливо для функ-

ции Лауричеллы с числом переменных (N −1), и убедимся в справедливости

равенств (4.38)–(4.41), записанных для функции Лауричеллы с числом пере-

менных N . Для этого воспользуемся представлением (4.18) для функции Ла-

уричеллы, которое устанавливает предложение 2.2. Заметим, прежде всего,

что фигурирующие в формуле (4.18) функция u1 и множитель C1, определя-

емые из (4.20) и (4.21), совпадают соответственно с фигурирующими в (4.38)
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функцией U
(∞)
1 и множителем B1, которые определяются из (4.40) и (4.41)

при j = 1, т.е. для второго слагаемого в (4.18) справедливо равенство

C1u1(a; b, c; z) = B1U
(∞)
1 (a; b, c; z). (4.42)

Убедимся теперь в том, что аналитическое продолжение по переменным

z2, . . . , zN первого слагаемого в формуле (4.18), равного C0 u0(a; b, c; z), даст

сумму (4.38) за исключением слагаемого B1U
(∞)
1 , т.е. в том, что справедливо

равенство

C0 u0(a; b, c; z) = B0 U
(∞)
0 (a; b, c; z) +

N∑

j=2

Bj U
(∞)
j (a; b, c; z). (4.43)

Применяя к функциям F
(N−1)
D

(
a′1; b − a1 − k1, c − a1 − k1; z′1

)
, фигурирую-

щим в формуле (4.19), соотношения (4.38)–(4.41), которые, напомним, пред-

полагаются верными для числа переменных (N − 1), записываем формулы

аналитического продолжения для них в виде:

F
(N−1)
D

(
a′1; b− a1 − k1, c− a1 − k1; z′1

)
=

N∑′

j=0

B̃j Ũ
(∞)
j (a; b, c, k1; z1

′), (4.44)

где штрих над суммой означает, что пропущено слагаемое, соответствующее

j = 1, функции Ũ
(∞)
j определяются равенствами

Ũ
(∞)
0 (a; b, c, k1; z) :=

( N∏

l=2

(−zl)
−al

)
F

(N)
D

(
a′1; 1+|a|−c+k1, 1+|a|−b+k1;

1

z′1

)
,

(4.45)

Ũ
(∞)
j (a; b, c, k1; z) := (−zj)

|a1,j−1|−b + k1

( j−1∏

l=2

(−zl)
−al

)
×

× G(N−1,j)
(
g̃j; b− |a1, j−1| − k1, 1− |a1, j|+ b− k1; Yj−1

(
1/z′1

))
, j = 2, N,

(4.46)

а коэффициенты B̃j = B̃j (k1) имеют вид

B̃0 (k1) =
Γ(c− a1 − k1) Γ

(
b− |a| − k1

)

Γ(b− a1 − k1) Γ
(
c− |a| − k1

) , (4.47)
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B̃j (k1) =
Γ(c− a1 − k1) Γ

(
b− |a1,j−1| − k1

)
Γ
(|a1,j| − b + k1

)

Γ(aj)Γ(b− a1 − k1)Γ(c− b)
, j = 2, N.

(4.48)

Величины g̃j и Ym

(
1/z′1

)
в (4.46) определяются равенствами:

g̃j = (a2, . . . , aj−1, 1− c + b, aj+1, . . . aN), j = 2, N

Ym

(
1/z′1

)
=

(zm

z2
, . . . ,

zm

zm−1
,

1

zm
,

zm+1

zm
, . . . ,

zN

zm

)
, m = 1, N − 1.

Подставляя (4.44)–(4.48) в формулу (4.19) и умножая на C0, получаем:

C0 u0(a; b, c; z) = Q0(a; b, c; z) +
N∑

j=2

Qj(a; b, c; z) , (4.49)

где

Qj(a; b, c; z) :=

= C0 (−z1)
−a1

∞∑

k1=0

(a1)k1
(1 + a1 − c)k1

k1!(1 + a1 − b)k1

z−k1
1 B̃j (k1) Ũ

(∞)
j (a; b, c, k1; z).

(4.50)

Покажем, что для j = 0 и j = 2, N выполняются равенства

Qj(a; b, c; z) = Bj U
(∞)
j (a; b, c; z), (4.51)

где функции U
(∞)
j определяются равенствами (4.39), (4.40), а множители Bj

— равенствами (4.41).

(i) Убедимся в справедливости формулы (4.51) при j = 0, для чего преоб-

разуем правую часть (4.50) при j = 0 и покажем, она совпадает с B0 U
(∞)
0 .

Подставляя в (4.50) величины Ũ
(∞)
0 и B̃0, определяемые из (4.45) и (4.47),

получаем

Q0(a; b, c; z) =
Γ(c) Γ(b− a1)

Γ(b)Γ(c− a1)
(−z1)

−a1

( N∏

l=2

(−zl)
−al

)
×

×
∞∑

k1=0

(a1)k1
(1 + a1 − c)k1

k1!(1 + a1 − b)k1

Γ(c− a1 − k1) Γ(b− |a| − k1)

Γ(b− a1 − k1)Γ(c− |a| − k1)
×

× z−k1
1 F

(N−1)
D

(
a′1; 1 + |a| − c + k1, 1 + |a| − b + k1; z′1

)
.

(4.52)
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Учитывая следующие равенства:

Γ(b− a1)

(1 + a1 − b)k1
Γ(b− a1 − k1)

= (−1)k1,

Γ(c− a1)

(1 + a1 − c)k1
Γ(c− a1 − k1)

= (−1)k1,

(4.53)

преобразуем (4.52) к виду

Q0(a; b, c; z) =
Γ(c)

Γ(b)

( N∏

l=1

(−zl)
−al

) ∞∑

k1=0

(a1)k1

k1!

Γ(b− |a| − k1)

Γ(c− |a| − k1)
×

× z−k1

1 F
(N−1)
D

(
a′1; 1 + |a| − c + k1, 1 + |a| − b + k1; z′1

)
.

(4.54)

Записывая фигурирующие в (4.54) функции F
(N−1)
D в виде гипергеометриче-

ских рядов (1.2), получаем

Q0(a; b, c; z) =
Γ(c)

Γ(b)

( N∏

l=1

(−zl)
−al

)
×

×
∞∑

|k|=0

Γ(b− |a| − k1)(1 + |a| − c + k1)|k2,N |
Γ(c− |a| − k1)(1 + |a| − b + k1)|k2,N |

(a1)k1
. . . (aN)kN

k1! . . . kN !
z−k1

1 . . . z−kN

N .

(4.55)

Используя следующие равенства:

Γ(b− |a| − k1)

(1 + |a| − b + k1)|k2,N |
= (−1)k1

Γ(b− |a|)
(1 + |a| − b)|k|

,

Γ(c− |a| − k1)

(1 + |a| − c + k1)|k2,N |
= (−1)k1

Γ(c− |a|)
(1 + |a| − c)|k|

,

переписываем Q0 в виде

Q0(a; b, c; z) =
Γ(c) Γ

(
b− |a|)

Γ(b) Γ
(
c− |a|)

( N∏

l=1

(−zl)
−al

)
F

(N)
D

(
a; 1+|a|−c, 1+|a|−b; z−1),

и, таким образом, учитывая (4.39), (4.41), приходим к равенству (4.51) при

j = 0.

(ii) Убедимся теперь в справедливости формулы (4.51) при всех j = 2, N ,

для чего преобразуем правую часть (4.50) к виду Bj U
(∞)
j . Подставляя вели-

чины Ũ
(∞)
j и B̃j, j = 2, N , определяемые из (4.40) и (4.47) в формулу (4.50),
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получаем

Qj(a; b, c; z) =
Γ(c) Γ(b− a1)

Γ(b)Γ(c− a1)Γ(aj)Γ(c− b)
(−z1)

−a1(−zj)
|a1,j−1|−b

( j−1∏

l=2

(−zl)
−al

)
×

×
∞∑

k1=0

(a1)k1
(1 + a1 − c)k1

k1!(1 + a1 − b)k1

Γ(c− a1 − k1) Γ(b− |a1,j−1| − k1) Γ(|a1,j| − b + k1)

Γ(b− a1 − k1)
×

× z−k1

1 G(N−1,j−1)
(
g̃j; b− |a1, j−1| − k1, 1− |a1, j|+ b− k1; Yj−1

(
1/z′1

))
.

(4.56)

Преобразуя эту формулу с учетом (4.53), находим

Qj(a; b, c; z) =
Γ(c)

Γ(b)Γ(aj)Γ(c− b)
(−zj)

|a1,j−1|−b
( j−1∏

l=1

(−zl)
−al

)
×

×
∞∑

k1=0

(a1)k1

k1!
Γ(b− |a1,j−1| − k1) Γ(|a1,j| − b + k1)×

× (−1)k1

(zj

z1

)k1

G(N−1,j−1)
(
g̃j; b− |a1, j−1| − k1, 1− |a1, j|+ b− k1; Yj−1

(
1/z′1

))
.

(4.57)

Записывая фигурирующие в (4.57) функции G(N−1, j) в виде гипергеометри-

ческих рядов (4.35)

G(N−1, j−1)
(
g̃j; b− |a1, j−1| − k1, 1− |a1, j|+ b− k1; Yj−1

(
1/z′1

))
=

=
∞∑

|k2,N |=0

(b− |a1,j−1| − k1)|kj,N |−|k2,j−1| (a2)k2
. . . (1− c + b)kj

. . . (aN)kN

(1 + b− |a1,j| − k1)|kj,N |−|k2,j−1| k2! . . . kN !

(
zj/z2

)k2 . . .
(
zj/zj−1

)kj−1
(
1/zj

)kj
(
zj+1/zj

)kj+1 . . .
(
zN/zj

)kN ,

получаем

Qj(a; b, c; z) =
Γ(c)

Γ(b)Γ(aj)Γ(c− b)
(−zj)

|a1,j−1|−b
( j−1∏

l=1

(−zl)
−al

)
×

×
∞∑

|k|=0

Γ(b− |a1,j−1| − k1) Γ(|a1,j| − b + k1)(b− |a1,j−1| − k1)|kj,N |−|k2,j−1|
(1− |a1,j|+ b− k1)|kj,N |−|k2,j−1|

×

× (a1)k1
. . . (1− c + b)kj

. . . (aN)kN

k1! . . . kN !
×

× (
zj/z1

)k1 . . .
(
zj/zj−1

)kj−1
(
1/zj

)kj
(
zj+1/zj

)kj+1 . . .
(
zN/zj

)kN .
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Используя следующие равенства:

Γ(b− |a1,j−1| − k1)
(
b− |a1,j−1| − k1

)
|kj,N |−|k2,j−1| =

= Γ(b− |a1,j−1|)
(
b− |a1,j−1|

)
|kj,N |−|k1,j−1| ,

Γ(|a1,j| − b + k1)(
1− |a1,j|+ b− k1

)
|kj,N |−|k2,j−1|

= (−1)k1
Γ(|a1,j| − b)(

1− |a1,j|+ b
)
|kj,N |−|k1,j−1|

,

переписываем Qj в виде

Qj(a; b, c; z) =
Γ(c) Γ

(
b− |a1,j−1|

)
Γ
(|a1,j| − b

)

Γ(aj)Γ(b)Γ(c− b)
×

× (−zj)
|a1,j−1|−b

( j−1∏

l=1

(−zl)
−al

)
G(N,j)

(
gj; b− |a1,j−1|, 1− |a1,j|+ b; Yj(z

−1)
)
,

и, таким образом, убеждаемся в справедливости равенства (4.51) для всех

j = 2, N .

Подставляя (4.42) и (4.49), (4.51) в (4.18), получаем представление (4.38)

для функции Лауричеллы.

В том, что U
(∞)
j , j = 0, N , являются частными решениями системы (1.5),

можно убедиться непосредственной подстановкой (4.39) и (4.40) в (1.5). Тео-

рема 2.5 доказана.

Из теоремы 2.5 с помощью несложных рассуждений могут быть найдены

формулы аналитического продолжения функции Лауричеллы в области вида

VN
σ :=

{
z ∈ CN : σ(z) ∈ VN

}
, где σ — произвольный элемент группы пере-

становок SN . Действительно, учитывая равенство (1.10), вытекающее непо-

средственно из определения (1.2), а также то, что включение z ∈ VN
σ влечет

σ(z) ∈ VN , получаем, что аналитическое продолжения функции F
(N)
D в об-

ласть VN
σ осуществляется формулой (4.38) с заменой в ее правой части a на

σ(a) и z на σ(z). При этом функции U
(∞)
j (σ(a); b, c; σ(z)), j = 0, N , получае-

мые из (4.39), (4.40) действием перестановки σ ∈ SN на аргумент z и параметр

a, являются линейно независимыми частными решениями системы (1.5).
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4.2. Формулы аналитического продолжения в окрестность точки

z(1) = (1, . . . , 1). Обратимся к выводу формулы аналитического продолжения

функции Лауричеллы F
(N)
D (a; b, c; z) в окрестность точки z(1). Используя из-

вестную лемму Барнса (см. формулу (2.5), приведенную, например, в [127])

и определение (1.2) функции Лауричеллы, устанавливаем следующее соотно-

шение:
Γ(a1 + s)Γ(b + s)

Γ(c + s)
F

(N−1)
D (a′1; b + s, c + s; z′1) =

=
1

2πiΓ(c− a1) Γ(c− b)

∫ +i∞

−i∞
Γ(a1 + t)Γ(b + t)Γ(s− t)Γ(c− a1 − b− t)×

× F
(N−1)
D (a′1; b + t; c− a1; z′1)dt ,

(4.58)

где векторы a′1 и z′1, напомним, определяются равенствами (4.1). Переписывая

определение (4.3) функции f с учетом равенства (4.58) и подставляя новое

выражение f в формулу (4.4), получаем представление функции F
(N)
D в виде

двойного интеграла. Меняя в нем порядок интегрирования по s и t, а также

используя известное тождество
∫ +i∞

−i∞
Γ(−s)Γ(s− t)(−z)sds = (1− z)t

и вводя обозначение

g(a; b, c; z, s) := Γ(a1 + s)Γ(b + s) Γ(−s)Γ(c− a1 − b− s)×
× (1− z1)

s F
(N−1)
D (a′1; b + s, c− a1; z

′
1),

(4.59)

приходим к следующему утверждению, устанавливающему используемое в

работе второе представление типа Барнса для функции F
(N)
D .

Предложение 2.3. Функция Лауричеллы F
(N)
D (a; b, c; z), определяемая

рядом (1.2), представима для z ∈ {|arg(1 − z1)| < π, |zk| < 1, k = 2, N
}

в

виде контурного интеграла типа Барнса

F
(N)
D (a; b, c; z) =

Γ(c)

2πiΓ(a1) Γ(b)Γ(c− a1)Γ(c− b)

∫ +i∞

−i∞
g(a; b, c; z, s)ds,

(4.60)



– 111 –

где подынтегральная функция имеет вид (4.59), а контур интегрирования

в формуле (4.60) выбран так, чтобы полюсы

s
(1)
k = k, s

(2)
k = c− a1 − b, k ∈ Z+, (4.61)

и полюсы s
(3)
k = −a1− k, s

(4)
k = −b− k, k ∈ Z+, функции g(s) := g(a; b, c; z, s)

лежали соответственно справа и слева от него.

Отметим, что наличие указанных в предложении 2.3 полюсов у подынте-

грального выражения g(s), определяемого из (4.59), вытекает из существо-

вания полюсов у гамма–функции Γ(s) в точках s ∈ Z−. Учитывая еще, что

функция

F̃ (s) := F
(N−1)
D (a′1; b + s, c− a1; z

′
1),

очевидно, является регулярной в конечной плоскости, находим, что подын-

тегральная функция g(s) справа от контура интегрирования (4.60) не имеет

других особых точек, кроме полюсов (4.61). Нетрудно увидеть, что если

выполняется соотношение (c − a1 − b) /∈ Z, то указанные полюсы являют-

ся простыми, а вычеты g(s) в них, вычисляемые с учетом (4.13), даются

равенствами:

res g
(
s
(1)
k

)
= −Γ(a1) Γ(b) Γ(c− a1 − b)

(a1)k (b)k

(1 + a1 + b− c)k k!
×

× (1− z)k F (a′1, b + k; c− a1; ζ),

(4.62)

res g
(
s
(2)
k

)
= −Γ(c− a1) Γ(c− b) Γ(a1 + b− c)

(c− a1)k (c− b)k

(1 + c− a1 − b)k k!
×

× (1− z)c−a1−b+k F (a′, c− a1 + k; c− a1; ζ).

(4.63)

Предполагая, что разность (c − a1 − b) не является целым числом и

записывая интеграл (4.60) в виде (бесконечной) суммы вычетов (4.62), (4.63)

в простых полюсах s
(1)
k и s

(2)
k , k ∈ Z+, функции g(s), приходим к следующему

утверждению.

Предложение 2.4. Если параметры функции F
(N)
D (a; b, c; z), определяе-

мой рядом (1.2) таковы, что (c− a1 − b) не является целым числом, то ее
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аналитическое продолжение в область

GN :=
{ |1− z1|+ |zk| < 1, k = 2, N ; |arg(1− z1)| < π

}
,

дается следующей формулой:

F
(N)
D (a; b, c; z) = D0 v0 (a; b, c; z) + D1 v1 (a; b, c; z), (4.64)

где v0 и v1 определяются равенствами

v0(a; b, c; z) =
∞∑

k=0

(a1)k(b)k

k!(1 + a1 + b− c)k
(1− z1)

k F
(N−1)
D (a′1; b + k, c− a1; z′1),

(4.65)

v1(a; b, c; z) = (1− z1)
c−a1−b

( N∏

l=2

(1− zl)
−al

)
×

×F
(N)
D

(
c− |a|, a2, . . . aN ; c− b, 1 + c− a1 − b; 1− z1,

1− z1

1− z2
, . . . ,

1− z1

1− zN

)
,

(4.66)

а коэффициенты D1 и D2 имеют вид

D0 =
Γ(c) Γ(c− a1 − b)

Γ(c− a1)Γ(c− b)
, D1 =

Γ(c) Γ(a1 + b− c)

Γ(a1)Γ(b)
. (4.67)

Сходимость ряда (4.65) для v0 в области GN устанавливается методами,

изложенными в [169]. Представление (4.66) для v1 сходится в GN , поскольку

если вектор z лежит в этой области, то аргумент функции F
(N)
D из (4.66),

очевидно, принадлежит поликругу UN .

Отметим, что предложение 2.4 дает аналитическое продолжение ряда (1.2)

для функции Лауричеллы F
(N)
D (a; b, c; z) в область GN , где переменная z1

изменяется в окрестности единицы. Прежде чем осуществить такое продол-

жение по остальным переменным zj, j = 2, N , определим векторы (1 − z) и

hj по формулам:

(1− z) := (1− z1, . . . , 1− zN), (4.68)

hj := (a1, . . . , aj−1, c− |a|, aj+1, . . . , aN),
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а также введем обозначение для области

KN :=
{

z ∈ CN : 0 < |1−z1| < . . . < |1−zN | < 1; |arg(1−zj)| < π, j = 1, N
}
.

(4.69)

Кроме того, напомним, что величины |a1,j|, |a| и отображение Yj даются

соответственно равенствами (4.31) и (4.33), а ряд G(N, j) определен форму-

лой (4.35).

Применяя результат предложения 2.4 к функциям F
(N−1)
D , фигурирую-

щим в (4.65), а также к аналогичным функциям с меньшим числом перемен-

ных, возникающим в результате такого применения, приходим к следующему

утверждению, позволяющему осуществить продолжение функции Лауричел-

лы F
(N)
D (a; b, c; z) в область KN .

Теорема 2.6. Если ни одно из чисел (c−|a1, j|−b), j = 1, N , не является

целым, то аналитическое продолжение ряда (1.2) в область KN дается

формулой

F
(N)
D (a; b, c; z) =

N∑
j=0

AjU
(1)
j (a; b, c; z), (4.70)

где функции U
(1)
j определяются равенствами

U
(1)
0

(
a; b, c; z) = F

(N)
D (a; b, 1 + |a|+ b− c; 1− z

)
, (4.71)

U
(1)
j (a; b, c; z) = (1− zj)

c−|a1, j |−b
( N∏

l=j+1

(1− zl)
−al

)
×

× G(N, j)
(
hj; c− |a1, j−1| − b, 1 + c− |a1, j| − b, Yj(1− z)

)
, j = 1, N,

(4.72)

а коэффициенты Aj имеют вид

A0 =
Γ(c) Γ

(
c− |a| − b

)

Γ
(
c− |a|) Γ(c− b)

, (4.73)

Aj =
Γ(c) Γ

(
c− |a1, j−1| − b

)
Γ
( |a1, j|+ b− c

)

Γ(aj)Γ(b)Γ(c− b)
, j = 1, N . (4.74)
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Функции (4.71), (4.72) являются линейно независимыми частными реше-

ниями системы (1.5).

Доказательство теоремы 2.6 дано в приложении C.

Из теоремы 2.6 и равенства (1.10) вытекает, что формулы аналитического

продолжения F
(N)
D (a; b, c; z) в области вида KN

σ :=
{
z ∈ CN : σ(z) ∈ KN

}
,

где σ ∈ SN , имеют вид (4.70) с заменой в правой части этого равенства a на

σ(a) и z на σ(z). При этом функции U
(1)
j

(
σ(a); b, c; σ(z)

)
, j = 0, N , получае-

мые из (4.71), (4.72) действием перестановки σ ∈ SN на аргумент z и параметр

a, являются линейно независимыми частными решениями системы (1.5).

В заключение отметим, что подход к получению формул аналитического

продолжения функции Лауричеллы F
(N)
D (a; b, c; z), реализованный в пп. 4.1,

4.2 на примере точек z(∞) и z(1), далее применяется для построения полной

системы формул такого продолжения, соответствующих различным диапа-

зонам изменения z вблизи всех особых многообразий F
(N)
D .

4.3. Формулы аналитического продолжения в окрестность точ-

ки z
(1,∞)
p = (1, . . . , 1,∞, . . . ,∞). Перейдем к выводу формул аналитического

продолжения в область, где первые p переменных функции Лауричеллы z1,

. . ., zp близки к единице, а остальные (N − p) ее переменных zp+1, . . ., zN

близки к бесконечности.

4.3.1o. Некоторые обозначения. Обозначим черезWN, p области следующего

вида:

WN, p :=
⋃

δ∈(0,1)

WN, p(δ), (4.75)

где для каждого заданного δ ∈ (0, 1) вспомогательная область WN, p(δ) опре-

деляется равенством

WN, p(δ) :=

:=
{
z ∈ CN : 0 < |1− z1| < . . . < |1− zp| < δ, |arg(1− zj)| < π, j = 1, p;

|zp+1| > . . . > |zN | > 1 + δ, |arg(−zj)| < π, j = p + 1, N
}

.

(4.76)
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Здесь целочисленный параметр p принимает значения p = 0, N , причем, если

p = 0, то в (4.76) отсутствуют ограничения для переменных zj, j = 1, p, а

если p = N , то в этом определении отсутствуют ограничения для переменных

zj, j = p + 1, N .

Напомним, что SN — группа перестановок множества из N элементов, а

σ(z) — результат действия некоторого элемента σ ∈ SN на вектор z, т.е. век-

тор, получаемый перестановкой компонент z. Определим конусные области,

совпадающие с WN, p с точностью до симметрий

WN, p
σ :=

{
z ∈ CN : σ(z) ∈WN, p

}
. (4.77)

Напомним также следующие элементарные операции над вектором z =

= (z1, . . . , zN):

(1− z) := (1− z1, . . . , 1− zN), z−1 :=
( 1

z1
, . . . ,

1

zN

)
, (4.78)

а также вид (4.33), (4.34) преобразований Yj(z). Для векторов

rp = rp(z) :=
(
z1, . . . , zp

)
, sp = sp(z) :=

(
zp+1, . . . , zN

)
(4.79)

аналогичные (4.33), (4.34) преобразования, а также их композиции определя-

ются очевидным образом, например, справедливы равенства

Yj(1− rp) =
(1− z1

1− zj
, . . . ,

1− zj−1

1− zj
, 1− zj,

1− zj

1− zj+1
, . . . ,

1− zj

1− zp

)
, (4.80)

Yj

(
s−1
p

)
=

( zj

zp+1
, . . . ,

zj

zj−1
,

1

zj
,

zj+1

zj
, . . . ,

zN

zj

)
. (4.81)

Введем еще вспомогательные функции Z
(N, p)
j (z), где j, p = 0, N , по

формулам:

Z
(N, p)
0 (z) :=

(
rp − 1, s−1

p

)
, Z

(N, p)
j (z) :=

(
Yj

(
1 − rp

)
, s−1

p

)
, j = 1, p;

(4.82)

Z
(N, p)
j (z) :=

( z1 − 1

zj
, . . . ,

zp − 1

zj
, Yj

(
s−1
p

) )
, j = p + 1, N ; (4.83)
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здесь использованы определения (4.79)–(4.81), а выражения вида

f = (w1, . . . , wn,q)

или f = (w,q), где w = (w1, . . . , wn) и q = (q1, . . . , qj), означают, что

f = (w1, . . . , wn, q1, . . . , qj).

Если p = 0, то для определения функций Z
(N, p)
j (z) используется первое равен-

ство (4.82) и равенства (4.83), а если p = N , то указанные функции находятся

из (4.82), а формулы (4.83) в определении не участвуют.

Напомним обозначения (4.31) для частичных сумм |as,l| и |a| компонент
вектора a = (a1, . . . , aN) и введем векторы hp,j, выражающиеся через пара-

метры a1, . . . , aN , b и c функции Лауричеллы по формулам:

hp,j := (a1, . . . , aj−1, c− |a|, aj+1, . . . , aN), j = 1, p, (4.84)

hp,j := (a1, . . . , aj−1, 1−c+ |a1,p|+b, aj+1, . . . , aN), j = p + 1, N. (4.85)

Если p = 0, то hp,j определяются только с помощью (4.85), а если p = N ,

то только с помощью (4.84). В п. 4.3.2o векторы (4.82), (4.83) и (4.84), (4.85)

будут играть роль соответственно переменных и параметров для обобщен-

ных гипергеометрических функций, с помощью которых записаны формулы

аналитического продолжения ряда (1.2).

Введем следующие величины:

κ(k, p, l) := |k1,p| − |kp+1, l−1|+ |kl,N |,
λ(k, p, l) :=|kl,p| − |k1, l−1|, µ(k, p) := |kp+1, N | − |k1, p|,

(4.86)

где выражение |ks,l| означает частичную сумму элементов мультииндекса

k = (k1, . . . , kN), определенную в (4.31). Кроме того, будем использовать

сокращенную запись для произведений вида:

k! := k1! . . . kN !, (a)k := (a1)k1
. . . (aN)kN

, zk := zk1
1 . . . zkN

N . (4.87)

Напомним, что символ Похгаммера (a)k, определяемый из (1.3) для k ∈ Z+

имеет вид (1.4), а для 0 > k ∈ Z — вид (4.36).
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Введем обобщенные гипергеометрические ряды F(N, p)(a; b, c1, c2; z),

G
(N, p)
j (a; b, c; z) и H

(N,p)
j (a; b, c; z) по следующим формулам, где использо-

ваны обозначения (1.3), (4.86), (4.87):

F(N, p)(a; b, c1, c2; z) :=
∞∑

|k|=0

(b)|kp+1,N |
(c1)µ(k,p)(c2)|k1,p|

(a)k
k!

zk, (4.88)

G
(N, p)
j (a; b, c; z) :=

∞∑

|k|=0

(b)λ(k, p, j)

(c)λ(k, p, j)

(aj − |kp+1, N |)kj

(aj)kj

(a)k
k!

zk, (4.89)

H
(N,p)
j (a; b, c; z) :=

∞∑

|k|=0

(b)κ(k, p, j)

(c)κ(k, p, j)

(aj + |k1, p|)kj

(aj)kj

(a)k
k!

zk. (4.90)

Предполагается, что в формуле (4.89) параметр j может принимать значения

1, 2, . . . , p, а в формуле (4.90) — значения p + 1, p + 2, . . . , N .

Сходимость рядов (4.88)–(4.90) устанавливает следующее утверждение.

Предложение 2.5. Ряды (4.88), (4.89) и (4.90) сходятся соответствен-

но в областях FN,p, GN,p
j и HN,p

j , которые можно представить в виде

FN,p =
⋃

δ∈(0,1)

FN,p(δ), GN,p
j =

⋃

δ∈(0,1)

GN,p
j (δ), HN,p

j =
⋃

δ∈(0,1)

HN,p
j (δ),

где вспомогательные круговые области FN,p(δ), GN,p
j (δ) и HN,p

j (δ) для каж-

дого заданного заданного δ ∈ (0, 1) определяются следующими формулами:

FN,p(δ) :=
{

z ∈ CN : |zs| < δ, s = 1, p; |zl| < (1 + δ)−1, l = p + 1, N
}

,

GN,p
j (δ) :=

{
z ∈ CN : |zs| < 1, s = 1, p, s 6= j; |zj| < δ;

|zl| < (1 + δ)−1, l = p + 1, N
}

,

HN,p
j (δ) :=

{
z ∈ CN : |zs| < 1, s = 1, p ;

|zl| < 1− δ, l = p + 1, N, l 6= j, |zj| < δ
}

.

Доказательство предложения 2.5 проводится известными методами, из-

ложенными, например, в [169]. Для каждого из N–кратных гипергеометри-

ческих рядов рассматривается набор сопряженных радиусов сходимости, т.е.
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положительных величин rj, j = 1, N , таких, что соответствующий ряд схо-

дится при |zj| < rj, j = 1, N , и расходится, если выполняются обратные нера-

венства (подробно о сходимости N–кратных степенны́х рядов см. [34], [131]).

Величины rj для рядов (4.88)–(4.90), следуя [169], вычисляем по формулам

rj = |Φj(k)|−1, где

Φj(k) = lim
ε→∞

fj(εk), fj(k) =
A(k1, . . . , kj + 1, . . . , kN)

A(k)
, kl ≥ 0, j = l, N,

а A(k) = A(k1, . . . , kN) общий вид коэффициентов. Например, для ряда

(4.88), т.е при

A(k) =
(b)|kp+1,N |

(c1)µ(k,p)(c2)|k1,p|

(a)k
k!

,

находим rs = |k1,p|/ r при s = 1, p, и rl = r/|kp+1,N |, при l = p + 1, N , где

r :=
∣∣|k1,p| − |kp+1,N |

∣∣. Отсюда с учетом требования rj < 1 для всех j = 1, N

получаем (1 + rs)rl = 1 для s и l из указанных диапазонов. Таким образом,

устанавливаем, что ряд (4.88) сходится на каждом множестве FN,p(δ), δ ∈
(0, 1), т.е. на множестве FN,p. Доказательство остальных двух утверждений

предложения проводится аналогично. Предложение 2.5 доказано.

4.3.2o. Построение формул аналитического продолжения. Обратимся к во-

просу об аналитическом продолжении функции Лауричеллы F
(N)
D (a; b, c; z).

Следующая теорема, где использованы обозначения (4.31), (4.82)–(4.85),

(4.88)–(4.90), устанавливает формулы такого продолжения функции F
(N)
D в

области WN, p, вид которых определяется соотношениями (4.59).

Теорема 2.7. Аналитическое продолжение ряда (1.2) в область WN, p

с произвольным p = 0, N , при котором ни одно из чисел

(c− |a1, j| − b), j = 1, p; (b− |ap+1, j| ), j = p + 1, N,

не является целым, дается следующей формулой:

F
(N)
D (a; b, c; z) =

N∑
j=0

Aj U
(1,∞)
p, j (a; b, c; z), (4.91)



– 119 –

где функции U
(1,∞)
p, j при j = 0, p определяются равенствами

U
(1,∞)
p, 0 (a; b, c; z) :=

( N∏

l=p+1

(−zl)
−al

)
×

×F(N, p)
(
a; 1 + |a| − c, 1 + |ap+1,N | − b, 1 + |a1,p|+ b− c; Z

(N,p)
0 (z)

)
,

(4.92)

U
(1,∞)
p, j (a; b, c; z) := (1− zj)

c−|a1,j |−b
( p∏

l=j+1

(1− zl)
−al

) ( N∏

l=p+1

(−zl)
−al

)
×

× G
(N,p)
j

(
hj,p; c− |a1,j−1| − b, 1 + c− |a1,j| − b; Z

(N,p)
j (z)

)
, j = 1, p,

(4.93)

а при j = p + 1, N — следующими равенствами:

U
(1,∞)
p, j (a; b, c; z) := (−zj)

|ap+1, j−1|−b

( j−1∏

l=p+1

(−zl)
−al

)
×

× H
(N, p)
j

(
hj,p; b− |ap+1,j−1|, 1 + b− |ap+1, j|; Z

(N,p)
j (z)

)
, j = p + 1, N.

(4.94)

Фигурирующие в представлении (4.38) коэффициенты Aj при j = 0, p име-

ют вид

A0 =
Γ(c) Γ

(
b− |ap+1,N |

)
Γ
(
c− |a1,p| − b

)

Γ(b) Γ
(
c− |a|) Γ(c− b)

,

Aj =
Γ(c) Γ

(
c− |a1, j−1| − b

)
Γ
(|a1, j|+ b− c

)

Γ(aj) Γ(b) Γ(c− b)
,

(4.95)

а при j = p + 1, N — следующий вид:

Aj =
Γ(c) Γ

(
b− |ap+1, j−1|

)
Γ
(|ap+1, j| − b

)

Γ(aj) Γ(b) Γ(c− b)
. (4.96)

Функции U
(1,∞)
p, j , определяемые из (4.92)–(4.94), являются линейно незави-

симыми частными решениями системы (1.5).

Доказательство формул продолжения (4.91)–(4.96) осуществляется

методом индукции по числу переменных функции Лауричеллы. Мы не при-

водим эти довольно громоздкие выкладки, вполне аналогичные тем, которые
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были выполнены при доказательствах теорем 2.5 и 2.6. В том, что U
(1,∞)
p, j ,

j = 0, N , являются частными решениями системы (1.5), можно убедиться

непосредственной подстановкой (4.92), (4.93) и (4.94) в (1.5). Имеющееся в

теореме 2.7 ограничение на параметры F
(N)
D устраняются с помощью подхо-

да, продемонстрированного в §5 на примере случая двух переменных (т.е.

функции Аппеля F1).

Из теоремы 2.7 с помощью несложных рассуждений могут быть найде-

ны формулы аналитического продолжения функции Лауричеллы в области

WN,p
σ , определяемые равенством (4.64), для всех p = 0, N и σ ∈ SN , где,

напомним, SN — группа перестановок множества из N элементов. Действи-

тельно, учитывая свойство симметрии (1.10) функции Лауричеллы,

вытекающее непосредственно из ее определения (1.2), а также то, что

включение z ∈ WN,p
σ влечет σ(z) ∈ WN,p, получаем, что аналитическое

продолжения функции F
(N)
D в областьWN, p

σ осуществляется формулой (4.38)

с заменой в ее правой части, т.е. в коэффициентах Aj = Aj(a; b, c; z) и функ-

циях U
(1,∞)
p, j (a; b, c; z), определяемых из (4.39)–(4.60), параметра a на σ(a) и

аргумента z на σ(z). При этом функции U
(1,∞)
p, j,σ := U

(1,∞)
p, j

(
σ(a); b, c; σ(z)

)
,

получаемые из (4.39), (4.40) действием перестановки σ ∈ SN , являются

линейно независимыми частными решениями системы (1.5).

Можно показать, что множество

A(N) :=
{
U

(1,∞)
p, j, σ ; j, p = 0, N, σ ∈ SN

}

представляет собой полный набор решений системы (1.5) в W :=
⋃
p,σ
W(N,p)

σ .

При N = 1 функции из A(N) превращаются в известные канонические реше-

ния гипергеометрического уравнения (2.2), найденные Куммером [19], [127].

При N = 2 такая система решений была, в основном, построена в [203], [168]

(спобом, отличным от примененного в диссертации), а при N = 3 за неко-

торыми исключениями указана в [169]. При N ≥ 3 полный набор функций,

принадлежащих множеству A(N), по–видимому, оставался неизвестным.
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§5. Аналитическое продолжение функции Аппеля F1 в

логарифмическом случае

5.1. Функция Аппеля и связанная с ней система уравнений. Рас-

сматриваемая настоящем параграфе гипергеометрическая функция Аппеля

F1 определяется с помощью следующего двойного ряда [140], [142], [19]:

F1(a, a′; b, c; z, ζ) =
∞∑

k, n=0

(b)k+n (a)k (a′)n

(c)k+n k! n!
zkζn , |z| < 1, |ζ| < 1, (5.1)

являющегося частным случаем функции Лауричеллы (1.2) для N = 2:

F1(a, a′; b, c; z, ζ) = F
(2)
D (a, a′; b, c; z, ζ);

здесь z и ζ — комплексные переменные, а величины a, a′, b и c — комплексные

параметры, от которых зависит функция F1. Отметим также, что для F1

справедливо следующее интегральное представление, являющееся частным

случаем (1.6):

F1 (a, a′; b, c; z, ζ) =
Γ(c)

Γ(b) Γ(c− b)

1∫

0

tb−1 (1− t)c−b−1

(1− t z) a(1− t ζ) a′ dt; (5.2)

здесь Re b > 0 и Re (c− b) > 0.

В работе Аппеля [141] было установлено, что обобщенный гипергеомет-

рический ряд (5.1) является частным решением следующей системы двух

дифференциальных уравнений, записанной относительно функции u = u(z, ζ):




z(1− z)uzz + ζ(1− z)uzζ +
[
c− (a + b + 1)z

]
uz − a uζ − ab u = 0,

ζ(1− ζ)uζζ + z(1− ζ)uzζ +
[
c− (a′ + b + 1)ζ

]
uζ − a′ uz − a′b u = 0,

(5.3)

где, как обычно, частная производная искомой функции u(z, ζ) указывает-

ся в виде нижего индекса, так что, например, выражения uzζ и uzz означа-

ют соответственно ∂2u
∂z∂ζ и ∂2u

∂z2 . В окрестности любой точки (z, ζ) ∈ C2 опре-

делены три линейно независимых решения этой системы, и таким образом,
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ее общее решение зависит от трех произвольных комплексных постоянных,

см. [168], [169]; здесь C 2 обозначает двумерное комплексное пространство.

Нетрудно увидеть, что система (5.3) является частным случаем системы (1.5),

которой удовлетворяет функция Лауричеллы.

Начиная с работы [209], изучался важный вопрос о построении набора

канонических частных решений системы (5.3), играющих для нее ту же роль,

которую играют решения Куммера [19], [127] для гипергеометрического урав-

нения Гаусса. Отметим, что набор канонических решений для (5.3), которые

можно выписать в терминах рядов вида (5.1), можно найти в книге [142].

Подробный обзор исследований, проводившихся в этом направлении, дан в

статье Эрдейи [168]. В этой работе установлено, что представленных в [142]

функций недостаточно для описания общего решения системы (5.3). Кроме

того, в [168] было указано, что недостающие решения могут быть выражены

через следующий гипергеометрический ряд двух переменных:

G(a, a′; b, c; z, ζ) =
∞∑

k, n=0

(b)n−k (a)k (a′)n

(c)n−k k! n!
zkζn , |z| < 1, |ζ| < 1. (5.4)

Этот ряд, играющий столь важную роль в теории функции Аппеля, был ра-

нее указан в работе [180] как функция G2 среди перечня существенно раз-

личных гипергеометрических рядов двух переменных, известного как список

Горна. Отметим, что в настоящей работе используется несколько иная фор-

ма записи этого ряда, отличная от указанной в списке Горна [180] (см. также

[19]), в связи с чем для его обозначения будем использовать символ G вместо

традиционного G2. Нетрудно увидеть, что формула (5.4) является частным

случаем формулы (4.35) при N = 2 и j = 2, т.е. в ситуации двух переменных.

В статье [203] изучался вопрос об аналитическом продолжении ряда (5.1),

определяющего функцию Аппеля в бикруге

U2 :=
{

(z, ζ) ∈ C 2 : |z| < 1, |ζ| < 1
}
, (5.5)

за его границу. В указанной работе получены представления для F1, явля-

ющиеся обобщением известных формул аналитического продолжения гипер-
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геометрической функции Гаусса F (a, b; c; z), приведенных, например, в [19],

[127] (см. п. 2.3). Выведенные соотношения позволили также указать новые

канонические решения системы (5.3), которые выписываются в терминах ря-

да (5.4). Однако использованный в [203] подход, основанный на переразложе-

нии ряда (5.1), в силу своей громоздкости не дает исчерпывающего решения

поставленной задачи об аналитическом продолжении F1 и интегрировании

системы (5.3). Отметим, что некоторые частные случаи продолжения функ-

ции F1, не рассмотренные в [203], указаны в [38].

Настоящий параграф посвящен рассмотрению логарифмического случая

функции Аппеля F1, когда ее параметры таковы, что некоторые из чисел

c− a− a′ − b, c− a− b, c− a′ − b, b− a− a′, b− a, b− a′ (5.6)

являются целыми. Отметим, что полученные в [203] формулы не распростра-

няются на этот важный для теории и приложений случай. Термин ”логариф-

мический“ использован для него в связи с тем, что найденные в пп. 5.2–5.4

представления для F1 вне единичного бикруга содержат не только степени

переменных z и ζ или величин (1− z) и (1− ζ), но и логарифмы различных

их комбинаций. Противоположную ситуацию, когда ни одно из чисел (5.6) не

является целым, называем нелогарифмическим случаем.

Для вывода формул аналитического продолжения функции F1 и нахожде-

ния набора канонических решений системы (5.3) для логарифмического слу-

чая в настоящей работе используется подход, развиваемый в §4. Построенные

в пп. 5.2–5.4 канонические решения системы (5.3) записаны в терминах двой-

ных гипергеометрических рядов нового типа, являющихся аналогами рядов

(5.1) и (5.4). Аналитическое продолжение в окрестность точек (z, ζ) = (∞,∞)

и (z, ζ) = (1, 1) рассмотрено соответственно в п. 5.2 и 5.3, а продолжение

в окрестности (1,∞) и (∞, 1) — в п. 5.4. В этом пункте также получены

некоторые новые формулы продолжения и для нелогарифмического случая.

Интегральным представлениям типа Барнса для F1, служащим основой для

пп. 5.2–5.4, посвящены п. 5.2.2o и п. 5.3.2o.
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Построенные формулы аналитического продолжения F1(a, a′; b, c; z, ζ)

позволяют эффективно вычислять эту функцию во всем диапазоне измене-

ния ее переменных.

5.2. Формулы аналитического продолжения в окрестность точки

(z, ζ) = (∞,∞).

5.2.1o. Предварительные замечания. Настоящий раздел посвящен аналити-

ческому продолжению функции Аппеля F1, во внешность единичного бикру-

га, т.е. в область {
(z, ζ) ∈ C2 : |z| > 1, |ζ| > 1

}
,

где переменные z и ζ могут принимать большие по модулю значения.

Отметим, что поскольку эта функция удовлетворяет следующему соотноше-

нию симметрии

F1(a, a′; b, c; z, ζ) = F1(a
′, a; b, c; ζ, z), (5.7)

вытекающему непосредственно из ее определения (5.1), то достаточно

рассмотреть ситуацию

|z| > |ζ|. (5.8)

Формулы аналитического продолжения для противоположного случая, т.е.

при |ζ| > |z|, легко следуют из результатов настоящего раздела путем

применения к ним соотношения (5.7).

Проведенные в пп. 5.2.3o–5.2.7o рассмотрения показали, что если оба чис-

ла (b− a) и (b− a− a′) не являются целыми, то вид формул аналитического

продолжения функции Аппеля (5.1) качественно отличается от вида анало-

гичных формул в противоположной ситуации, когда целым числом является

либо разность (b−a), либо разность (b−a−a′). Первый из указанных случаев,

при котором

(b− a) /∈ Z и (b− a− a′) /∈ Z, (5.9)

будем называть нелогарифмическим, поскольку представления функции F1,

получаемые при аналитическом продолжении, содержат лишь степени пе-
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ременных z и ζ и не содержат их логарифмы. Этот случай рассмотрен в

п. 5.2.3o.

Противоположный случай, который будем называть логарифмическим,

наступает, если имеет место одно из следующих соотношений:

(A) (b− a) ∈ Z, (b− a− a′) /∈ Z; (B) (b− a) /∈ Z, (b− a− a′) ∈ Z.

(5.10)

Формулы аналитического продолжения функции F1 для условий (A) и (B)

выведены соответственно в пп. 5.2.5o, 5.2.6o и 5.2.7o, 5.2.8o. Будем называть

(A) первым логарифмическим, а (B) — вторым логарифмическим случаем

при продолжении в бесконечность. Общим для них является то, что соответ-

ствующие представления F1 включают не только степени переменных z и ζ,

но и их логарифмы.

Отметим еще, что ситуация, в которой числа (b−a) и a′ являются целыми,

т.е. одновременно нарушаются оба соотношения (5.9), исключена из нашего

рассмотрения.

При изучении случая (A) необходимо отдельно рассматривать ситуацию,

когда разность (b− a) является целым неотрицательным числом, и когда эта

разность отрицательна, т.е. требуется ввести следующие два подслучая:

(A.1) b = a + m, m = 0, 1, 2, . . . ;

(A.2) b = a−m, m = 1, 2, . . . .
(5.11)

Подчеркнем, что формулы продолжения, полученные при условиях (A.1)

и (A.2) соответственно в пп. 5.2.5o и 5.2.6o, имеют качественно различное

устройство, и они не могут быть получены друг из друга, например, с помо-

щью каких–либо простых замен.

При изучении случая (B) необходимо рассматривать ситуацию, когда раз-

ность (b − a − a′) является неотрицательным числом, и когда эта разность
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отрицательна, т.е. требуется ввести следующие два подслучая:

(B.1) b = a + a′ + m, m = 0, 1, 2, . . . ;

(B.2) b = a + a′ −m, m = 1, 2, . . . ,
(5.12)

формулы аналитического продолжения для которых построены соответствен-

но в пп. 3.5.1 и 3.5.2.

Для упрощения записи формул в тех случаях, где это не может вызвать

недоразумений, будем опускать набор аргументов (a, a′; b, c; z, ζ) или его

часть, т.е., например, вместо w(a, a′; b, c; z, ζ) будем писать w(ζ).

5.2.2o. Представление в виде интеграла типа Барнса. Зададим область S с

помощью следующего соотношения:

S :=
{

(z, ζ) ∈ C2 : |arg(−z)| < π, |ζ| < 1
}
, (5.13)

и определим функцию f(a, a′; b, c; z, ζ, s) по формуле

f(a, a′; b, c; z, ζ, s) :=
Γ(a + s)Γ(b + s)Γ(−s)

Γ(c + s)
(−z)sF (a′, b + s; c + s; ζ),

(5.14)

где (z, ζ) ∈ S и s ∈ C, а под выражением F (a′; b+ s, c+ s; ζ) понимается ряд,

получаемый подстановкой соответствующих параметров в формулу (2.1).

Остановимся на обсуждении свойств функции (5.14), рассматриваемой в

зависимости от комплексного переменного s и фиксированных остальных

аргументах; при этом для краткости будем использовать обозначение

f(s) := f(a, a′; b, c; z, ζ, s). Напомним, что гамма–функция Γ(s) имеет про-

стые полюсы в целых неположительных точках s = −k, k ∈ Z+, причем

вычеты в них даются равенствами (4.13), указанными, например, в [19], [127],

и отметим, что функция F̃ (s) := F (a′, b+s; c+s; ζ)/Γ(c+s), очевидно, регу-

лярна по s во всей конечной плоскости. С учетом сказанного из определения

(5.14) вытекает, что f(s) имеет простые полюсы в точках s
(0)
k = k, k ∈ Z+, а

ее вычеты в них:

res f
(
s
(0)
k

)
= − Γ(a)Γ(b)

Γ(c)

(a)k (b)k

(c)k k!
z k F (a′, b + k; c + k; ζ). (5.15)
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Это свойство позволяет записать используемое в работе первое интегральное

представление типа Барнса для функции Аппеля, справедливость которого

устанавливает следующее утверждение, приведенное, например, в [142].

Предложение 2.6. Функция Аппеля F1, определяемая рядом (5.1),

представима для (z, ζ) ∈ U2 ∩ S в виде контурного интеграла типа Барнса

F1(a, a′; b, c; z, ζ) =
Γ(c)

2πiΓ(a) Γ(b)

+i∞∫

−i∞

f(a, a′; b, c; z, ζ, s)ds, (5.16)

где f дается равенством (5.14), области U2 и S определяются из (5.5) и

(5.13), а контур интегрирования в (5.16) выбран так, чтобы полюсы s
(0)
k ,

k ∈ Z+, и полюсы

s
(1)
k = −a − k, s

(2)
k = −b − k, k ∈ Z+, (5.17)

функции f(s) лежали соответственно справа и слева от него.

Формулу (5.16) нетрудно проверить, представив интеграл в ее правой

части в виде умноженной на (−2πi) суммы вычетов (5.15) функции f(s)

в точках {s(0)
k }∞k=0. Необходимые оценки для f(s), позволяющие записать

интеграл (5.14) в виде такой суммы, получаются с использованием извест-

ных оценок [19], [127], [169] для гипергеометрической и гамма-функции (см.

доказательство предложения 2.1).

Продолжая рассматривать свойства функции f(s), отметим, что если

разность параметров a и b не является целым числом, т.е. (b − a) /∈ Z, то
расположенные слева от контура интегрирования в (5.16) точки (5.17), явля-

ются простыми полюсами f(s), а вычеты в них, получаемые с учетом (4.13),

даются равенствами:

res f
(
s
(1)
k

)
=

Γ(b− a)Γ(a)

Γ(c− a)

(1 + a− c)k (a)k

(1 + a− b)k k!
×

× (−z)−a−k (−1)k F (a′, b− a− k; c− a− k; ζ),

(5.18)

res f
(
s
(2)
k

)
=

Γ(a− b)Γ(b)

Γ(c− b)

(1 + b− c)k (b)k

(1 + b− a)k k!
×

× (−z)−b−k (−1)k F (a′, −k; c− b− k; ζ).

(5.19)
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Если же параметры a и b связаны соотношением b = a + m, где m — неотри-

цательное целое число, то точки

s
(1)
k = −a− k, k = 0, 1, 2, . . . , (5.20)

по–прежнему, являются простыми полюсами, вычеты в которых находятся

заменой b на a + m в формуле (5.18):

res f
(
s
(1)
k

)
=

(m− 1)! Γ(a)

Γ(c− a)

(1 + a− c)k (a)k

(1−m)k k!
×

× (−z)−a−k (−1)k F (a′, m− k; c− a− k; ζ),

(5.21)

а точки

s
(2)
k, ln = −a− k, k = m, m + 1, . . . , (5.22)

представляют собой полюсы второго порядка, и можно показать, что

соответствующие вычеты имеют вид

res f
(
s
(2)
k, ln

)
=

Γ(a)

Γ(c− a)

(a)k (1 + a− c)k

k!(k −m)!
×

× (−z)−a−k (−1)m+k

{
d

ds

[
F

(
a′, a + m + s; c + s; ζ

)]∣∣∣
s=−a−k

+

+
[
h−k (a, 1 + a− c) + ln(−z)

]
F

(
a′, m− k; c− a− k; ζ

)}
,

(5.23)

где величины h−k определяются равенством (2.11).

Укажем также, что если выполнено равенство b = a−m, где m — неотри-

цательное целое число, то точки

s
(2)
k = −b− k, k = 0, 1, . . . , m− 1 , (5.24)

по–прежнему, являются простыми полюсами, вычеты в которых находятся

из (5.18) и имеют вид:

resf
(
s
(2)
k

)
=

(m− 1)!Γ(b)

Γ(c− b)

(1 + b− c)k(b)k

(1−m)k k!
×

× (−z)−b−k (−1)k F (a′,−k; c− b− k; ζ),

(5.25)
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а точки

s
(1)
k, ln = −b− k, k = m, m + 1, . . . , (5.26)

представляют собой полюсы второго порядка, вычеты в которых, как можно

показать, имеют следующий вид:

res f
(
s
(1)
k, ln

)
=

Γ(b)

Γ(c− b)

(b)k (1 + b− c)k

k!(k −m)!
×

× (−z)−b−k (−1)m+k

{
d

ds

[
F

(
a′, b + s; c + s; ζ

)]∣∣∣
s=−b−k

+

+
[
h−k (b, 1 + b− c) + ln(−z)

]
F

(
a′, −k; c− b− k; ζ

)}
,

(5.27)

где величины h−k определяются из (2.11).

В заключение отметим, что слева от контура, по которому в формуле (5.16)

ведется интегрирование, подынтегральная функция f(s) за исключением

перечисленных выше полюсов других особенностей не имеет. Формулы

аналитического продолжения F1 в область больших по модулю z будут полу-

чены в разд. 3 путем вычисления интеграла (5.16) в виде суммы вычетов в

указанных полюсах.

5.2.3o. Нелогарифмический случай. Для удобства вывода формул продол-

жения в логарифмическом случае, построенных в пп. 5.2.5o–5.2.8o, настоящий

пункт воспроизводит некоторые из результатов §3, посвященного функции

Лауричеллы, для ее частного случая — функции Аппеля.

Перейдем к выводу формул продолжения функции Аппеля F1, предпола-

гая, что ее переменные z и ζ удовлетворяют неравенству (5.8), а параметры

a, a′ и b таковы, что выполнены соотношения (5.9), т.е. имеет место нелога-

рифмический случай.

Напомним, что функция Аппеля представима в виде интеграла типа

Барнса (5.14), (5.16). Записывая интеграл (5.16) в виде умноженной на (2πi)

суммы вычетов (5.18) и (5.19) в простых полюсах (5.17) подынтегральной

функции (5.14), находим следующее соотношение для F1:

F1(a, a′; b, c; z, ζ) = B1u1(a, a′; b, c; z, ζ) + B2u2(a, a′; b, c; z, ζ), (5.28)
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где функции u1 и u2 даются равенствами

u1(a, a′; b, c; z, ζ) = (−z)−a
∞∑

k=0

(1 + a− c)k (a)k

(1 + a− b)k k!
z−k F (a′, b−a−k; c−a−k; ζ),

(5.29)

u2(a, a′; b, c; z, ζ) = (−z)−b
∞∑

k=0

(1 + b− c)k (b)k

(1 + b− a)k k!
z−k F (a′, −k; c− b− k; ζ),

(5.30)

а коэффициенты B1 и B2 определяются из (2.27).

Поскольку второй параметр функции F (a′, −k; c− b− k; ζ), фигурирую-

щей в (5.30) равен целому отрицательному числу, то она является полиномом

степени k по переменному ζ, вид которого вытекает из определений функции

Гаусса (2.1) и выражения (1.4) для символа Похгаммера:

F (a′, −k; c− b− k; ζ) =
k∑

n=0

(−k)n(a
′)n

(c− b− k)n n!
ζn . (5.31)

Подставляя (5.31) в (5.30), вводя новый индекс суммирования k1 = k − n и

учитывая определение (5.1) функции Аппеля, находим представление для u2

через эту функцию

u2(a, a′; b, c; z, ζ) = (−z)−b F1

(
1− c + b, a′; b, 1 + b− a;

1

z
,

ζ

z

)
; (5.32)

здесь F1 означает гипергеометрический ряд (5.1). Заметим, что соотношения

(2.27), (5.28), (5.29), (5.32) дают аналитическое продолжение функции Аппеля

в область

D :=
{|z| > 1, |arg(−z)| < π; |ζ| < 1

}
.

При этом функция u2 из (5.32) определена в более широкой, чем D, области

D̃ :=
{|z| > 1, |arg(−z)| < π; |z| > |ζ|},

где одновременно обе переменные z, ζ могут принимать значения по модулю

большие единицы. Таким образом, для получения требуемого аналитическо-

го продолжения функции Аппеля в представлении (5.28) необходимо продол-

жить по переменной ζ лишь функцию u1, определяемую (5.29).
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Введем область V2 с помощью соотношения:

V2 :=
{|z| > |ζ| > 1, |arg(−z)| < π; |arg(−ζ)| < π

}
. (5.33)

которое является частным случаем (4.37), определяюшего область VN .

Применяя к фигурирующим в (5.29) гипергеометрическим функциям

F ( a′, b− a− k; c− a− k; ζ ),

формулы продолжения (2.8), (2.9), (2.26), (2.27) и подставляя результат в

правую часть (5.29), приходим к следующему утверждению, позволяющему

аналитически продолжить функцию Аппеля F1(a, a′; b, c; z, ζ) в область V2,

определяемую с помощью (5.33).

Предложение 2.7. Пусть выполняются соотношения (5.9), т.е. имеет

место нелогарифмический случай. Тогда аналитическое продолжение ряда

(5.1) в область V2 дается формулой

F1(a, a′; b, c; z, ζ) =
2∑

j=0

BjU
(∞)
j (a, a′; b, c; z, ζ), (5.34)

где функции U
(∞)
j , j = 0, 1, 2, определяются равенствами

U
(∞)
0 (a, a′; b, c; z, ζ) = (−z)−a (−ζ)−a′F1

(
a, a′; 1−c+a+a′, 1−b+a+a′;

1

z
,

1

ζ

)
,

(5.35)

U
(∞)
1 (a, a′; b, c; z, ζ) = (−z)−a (−ζ)a−b G

(
a, 1−c+b; b−a, 1+b−a−a′;

ζ

z
,

1

ζ

)
,

(5.36)

U
(∞)
2 (a, a′; b, c; z, ζ) = (−z)−b F1

(
1− c + b, a′; b, 1 + b− a;

1

z
,

ζ

z

)
, (5.37)

а коэффициенты Bj имеют вид

B0 =
Γ (c) Γ (b− a− a′)
Γ (b) Γ (c− a− a′)

, B1 =
Γ (c) Γ (b− a) Γ (a + a′ − b)

Γ (a′) Γ(c− b) Γ(b)
,

B2 =
Γ (c) Γ (a− b)

Γ (a) Γ (c− b)
.

(5.38)

Функции (5.35)–(5.37) являются линейно независимыми частными реше-

ниями системы (5.3). Под функцией G, фигурирующей в формуле (5.36),
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понимается обобщенный гипергеометрический ряд (5.4), а F1 в формулах

(5.35), (5.37) означает ряд (5.1).

В том, что функции U
(∞)
j , j = 0, 1, 2, являются частными решениями

системы (5.3), можно убедиться, например, непосредственной подстановкой

(5.35)–(5.37) в уравнения (5.3) или же сделать это так, как указано в [168].

Отметим, что формулы (5.34)–(5.38) были выведены в статье [203] другим

способом, основанным на переразложении рядов. Примененный в настоящей

работе способ получения этих формул представляет интерес, поскольку

может быть использован для построения аналитического продолжения

многих других двукратных гипергеометрических рядов. В данной работе эти

результаты приведены также и для удобства их сопоставления с полученны-

ми далее формулами продолжения в логарифмическом случае.

Необходимо отметить, что целые неположительные значения параметра c

являются ”сингулярными“ для ряда (5.1), определяющего функцию

Аппеля. Действительно, если c = −m, m ∈ Z+, то все члены ряда (5.1),

для которых сумма индексов (k+n) больше m, обращаются в бесконечность.

Что же касается ряда (5.4), то для него сингулярными являются целые непо-

ложительные значения c ∈ Z−, а таже целые положительные значения пара-

метра b ∈ N. Учитывая еще, что гамма-функция Γ(s) имеет полюсы в точках

s ∈ Z−, нетрудно увидеть, что если имеет место логарифмический случай

(A), т.е. выполнено первое соотношение (5.10), то в формуле (5.34) не опре-

делены величины B1U
(∞)
1 и B2U

(∞)
2 . Если же имеет место логарифмический

случай (B), т.е. выполнено второе соотношение (5.10), то в (5.34) не опреде-

лены B0U
(∞)
0 и B1U

(∞)
1 .

Таким образом, логарифмический случай требует отдельного рассмотре-

ния, которое и проведено в пп. 5.2.5o–5.2.8o. При этом в отличие от нелога-

рифмического случая формулы аналитического продолжения функции F1 не

могут быть выписаны лишь в терминах рядов (5.1) и (5.4). Поэтому прежде,

чем перейти к выводу формул аналитического продолжения, распространя-
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юших результат предложения 2.7 на логарифмический случай, определим

двойные гипергеометрические ряды, являющиеся расширением F1 и G на

случай ”сингулярных“ значений параметров b и c. Этим обобщенным гипер-

геометрическим рядам посвящен следующий п. 5.2.4o.

5.2.4o. Обобщенные гипергеометрические ряды F±
1,ln, G±

1,ln и G1,ln. Опреде-

лим с помощью следующих формул функции F±
1,ln, представляющие собой

аналоги F1 для случая целых неположительных значений параметра c, кото-

рые, напомним, являются сингулярными для ряда (5.1):

F±
1, ln(a, a′; b, 1−m; z, ζ) :=

m−1∑

k+n=0

(b)k+n(a)k(a
′)n

(1−m)k+nk! n!
zk ζn +

+
(−1)m

(m− 1)!

∞∑

k+n=m

(b)k+n(a)k(a
′)n

(k + n−m)! k! n!

(
λ±k,n − ln ζ

)
zk ζn,

(5.39)

λ+
k,n := λ̃k,n − ψ(b + k + n), λ−k,n := λ̃k,n − ψ(1− b− k − n),

λ̃k,n := ψ(1 + n) + ψ(1−m + k + n)− ψ(a′ + n);
(5.40)

здесь параметр m принимает целые неотрицательные значения. Предполага-

ется, что первая сумма в (5.39) отсутствует при m = 0 и равна единице при

m = 1, а множитель (−1)m/(m− 1)! перед второй суммой равен 1 при m = 0

и (−1) при m = 1.

Введем в рассмотрение функции G±
1, ln, являющиеся расширением опреде-

ления (5.4) функции G на случай целых значений параметров b и c, явля-

ющихся сингулярными для (5.4). Определим функцию G±
ln(a, a′; m, c; z, ζ),

представляющую собой аналог ряда (5.4) для целых неотрицательных значе-

ний параметра b, по формулам

G±
ln(a, a′; m, c; z, ζ) :=

m−1∑

k=0

∞∑
n=0

(m)n−k (a)k(a
′)n

(c)n−k k! n!
zk ζn +

+
(−1)m

(m− 1)!

∞∑

k=m

[
k−m∑
n=0

(1− c)k−n (a)k(a
′)n

(k − n−m)! k! n!

(
τ±k,n − ln z

)
zkζn+

+
∞∑

n=k−m+1

(m + n− k − 1)! (a)k(a
′)n

(c)n−k k! n!
zk ζn

]
,

(5.41)
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где числа τ±k,n имеют вид:

τ+
k,n := τ̃k,n − ψ(b + n− k), τ−k,n := τ̃k,n − ψ(1− b− n + k),

τ̃k,n := ψ(1 + k) + ψ(1−m + k − n)− ψ(a + k),
(5.42)

а также функцию Gln(a, a′; −m, c; z, ζ) с помощью следующего равенства:

Gln(a, a′; −m, c; z, ζ) :=
∞∑

k=0

∞∑

n=k+m+1

(n− k −m− 1)! (a)k (a′)n

(c)n−k k! n!
zk ζn. (5.43)

В формулах (5.41)–(5.43) параметр m ∈ Z+, а первая сумма в (5.41) считается

равной нулю при m = 0.

Определим теперь аналоги функции (5.4) для целых значений параметра c.

Введем функции G±
ln(a, a′; b, 1−m; z, ζ) по формулам

G±
ln(a, a′; b, 1−m; z, ζ) :=

∞∑

k=0

{ m+k−1∑
n=0

(b)n−k (a)k(a
′)n

(1−m)n−k k! n!
zk ζn +

+
(−1)m

(m− 1)!

∞∑

n=m+k

(b)n−k(a)k(a
′)n

(n− k −m)! k! n!

[
κ±k,n − ln(±ζ)

]
zk ζn

}
,

(5.44)

где величины κ±k,n даются равенствами:

κ+
k,n := κ̃k,n − ψ(a′ + n), κ−k,n := κ̃k,n − ψ(1− a′ − n),

κ̃k,n := ψ(1 + n) + ψ(1−m + n− k) + ψ(b + n− k),
(5.45)

а также следующие функции:

G±
ln(a, a′; b, 1 + m; z, ζ) :=

∞∑

k=m

{ k−m−1∑
n=0

(k − n−m− 1)! (a)k(a
′)n

(1− b)k−n k! n!
zk ζn +

+ (−1)m
∞∑

n=k−m

(b)n−k(a)k(a
′)n

(n− k + m)! k! n!

[
κ±k,n − ln(±ζ)

]
zk ζn

}
;

(5.46)

здесь величины κ±k,n даются равенствами:

κ+
k,n := κ̃k,n − ψ(a′ + n), κ−k,n := κ̃k,n − ψ(1− a′ − n),

κ̃k,n := ψ(1 + n) + ψ(1 + m + n− k) + ψ(b + n− k).
(5.47)
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Напомним, что символ Похгаммера (a)k, определенный равенством (1.4), при

положительных значениях индекса k имеет вид произведения (1.5), а при

отрицательных значениях k переписывается в виде (4.36).

Используя известный подход, изложенный, например, в [19], [169], мож-

но показать, что введенные выше ряды (5.39)–(5.42) сходятся в единичном

бикруге U2, определенном в (5.5), с исключенным множеством

Ez := {(z, ζ) : z = 0, |ζ| < 1},

ряды (5.44)–(5.47) сходятся в U(2) с исключенным множеством

Eζ := {(z, ζ) : ζ = 0, |z| < 1}, (5.48)

а ряд (5.43) сходится во всей области U2. На множествах Ez и Eζ соответ-

ствующие ряды формально обращаются в бесконечность благодаря наличию

логарифмов ln z или ln ζ. Неоднозначность, обусловленная этими логарифми-

ческими слагаемыми, устраняется очевидным образом с помошью проведения

подходящих разрезов.

5.2.5o. Логарифмический случай (A.1). Предположим, что выполнено пер-

вое соотношение (5.11), т.е. имеет место первый логарифмический случай

(A.1). Справедливо следующеее утверждение, позволяющее продолжить функ-

цию Аппеля в область V2, определенную в (5.33).

Предложение 2.8. Пусть параметры a и b функции Аппеля связаны

первым соотношением (5.11) при некотором m ∈ Z+. Тогда аналитическое

продолжение ряда (5.1) в область V2 дается формулой

F1(a, a′; a + m, c; z, ζ) =

= B0 U
(∞)
0 (a, a′; a + m, c; z, ζ) + B1 U

(∞)
1 (a, a′; a + m, c; z, ζ),

где функции U
(∞)
0 и U

(∞)
1 имеют вид

U
(∞)
0 (a, a′; a + m, c; z, ζ) =

= (−z)−a (−ζ)−a′F1

(
a, a′; 1− c + a + a′, 1 + a′ −m;

1

z
,

1

ζ

)
,

(5.49)
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U
(∞)
1 (a, a′; a + m, c; z, ζ) =

= (−z)−a (−ζ)−mG−
ln

(
a, 1− c + a + m; m, 1− a′ + m;

ζ

z
,
1

ζ

)
,

(5.50)

обобщенный гипергеометрический ряд G−
ln определен в (5.41), (5.42),

а коэффициенты B0 и B1 даются равенствами

B0 =
Γ (c) Γ (m− a′)

Γ (a + m) Γ (c− a− a′)
, B1 =

Γ (c) Γ (a′ −m) (m− 1)!

Γ (a′) Γ(a + m) Γ(c− a−m)
.

Функции U
(∞)
0 и U

(∞)
1 , определенные в (5.49), (5.50), а также следующая

функция

U
(∞)
2 (a, a′; a + m, c; z, ζ) =

= (−z)−b F1

(
1− c + a + m, a′; a + m, 1 + m;

1

z
,

ζ

z

)
,

(5.51)

являются линейно независимыми частными решениями системы (5.3) в

области V2.

Введенные в предложении 2.8 функции U
(∞)
j , j = 0, 1, 2, являются кано-

ническими решениями системы (5.3) в области V2 при условии (A.1), ука-

занном в формуле (5.11). В том, что они удовлетворяют этой системе можно

убедиться, например, непосредственной подстановкой (5.35)–(5.37) в уравне-

ния (5.3). Эти громоздкие, но по существу элементарные выкладки мы не

приводим. Отметим, что в отличие от нелогарифмического случая, рассмот-

ренного в предложении 2.7, в логарифмическом случае (A.1) аналитическое

продолжение функции Аппеля дается линейной комбинацией двух, а не трех

канонических решений системы (5.3).

5.2.6o. Логарифмический случай (A.2). Предположим, что выполнено вто-

рое соотношение (5.11), т.е. имеет место случай (A.2). Справедливо следу-

ющее утверждение, где, напомним, область V2, определена соотношением

(5.33).

Предложение 2.9. Пусть параметры a и b функции Аппеля связаны

вторым соотношением (5.11) при некотором m ∈ Z+. Тогда аналитическое
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продолжение ряда (5.1) в область V2 дается формулой

F1(b + m, a′; b, c; z, ζ) =
2∑

j=0

Bj U
(∞)
j (b + m, a′; b, c; z, ζ),

где функции U
(∞)
j имеют вид

U
(∞)
0 (b + m, a′; b, c; z, ζ) =

= (−z)−b−m (−ζ)−a′F1

(
b + m, a′; 1− c + a′ + b + m, 1 + a′ + m;

1

z
,

1

ζ

)
,

(5.52)

U
(∞)
1 (b + m, a′; b, c; z, ζ) =

= (−z)−b−m (−ζ)mGln

(
b + m, 1− c + b; −m, 1− a′ −m;

ζ

z
,

1

ζ

)
,
(5.53)

U
(∞)
2 (b + m, a′; b, c; z, ζ) = (−z)−b F+

1, ln

(
1− c + b, a′; b, 1−m;

1

z
,

ζ

z

)
,

(5.54)

обобщенные гипергеометрические ряды Gln и F+
1,ln определяются из (5.41)–

(5.43), а коэффициенты Bj имеют следующий вид:

B0 =
Γ (c) Γ (−a′ −m)

Γ (b) Γ (c− b− a′ −m)
, B1 =

Γ (c) Γ (a′ + m)

Γ (a′) Γ(b) Γ(c− b)
,

B2 =
Γ (c) (m− 1)!

Γ (b + m) Γ (c− b)
.

Функции (5.52)–(5.54) являются линейно независимыми частными реше-

ниями системы (5.3).

Отметим, что введенные в предложении 2.9 функции U
(∞)
j , j = 0, 1, 2,

представляют собой канонические решения системы (5.3) при условии (A.2),

указанном в формуле (5.11). Также как и в нелогарифмическом случае, см.

предложение 2.7, в логарифмическом случае (A.2) аналитическое продолже-

ние функции Аппеля дается линейной комбинацией трех канонических реше-

ний системы (5.3).

5.2.7o. Логарифмический случай (B.1). Обратимся к аналитическому про-

должению функции F1 в ситуации, когда параметры функции таковы, что
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разность (b − a − a′) является целым неотрицательным числом m, т.е. име-

ет место указанный в формуле (5.12) случай (B.1). Справедиво следующее

утверждение, где, напомним, область V2 определена равенством (5.33).

Предложение 2.10. Пусть параметры a и b функции Аппеля связаны

первым соотношением (5.12) при некотором m ∈ Z+. Тогда аналитическое

продолжение ряда (5.1) в область V2 дается формулой

F1(a, a′; a + a′ + m, c; z, ζ) =
2∑

j=0

Bj U
(∞)
j (a, a′; a + a′ + m, c; z, ζ),

где функции U
(∞)
j , j = 0, 1, 2, имеют вид

U
(∞)
0 (a, a′; a + a′ + m, c; z, ζ) =

= (−z)−a (−ζ)−a′F−
1,ln

(
a, a′; 1− c + a + a′, 1−m;

1

z
,
1

ζ

)
,

(5.55)

U
(∞)
1 (a, a′; a + a′ + m, c; z, ζ) =

= (−z)−a (−ζ)−a′−mG−
ln

(
a, 1− c + a + a′ + m; a′ + m, 1 + m;

ζ

z
,
1

ζ

)
,

(5.56)

U
(∞)
2 (a, a′; a + a′ + m, c; z, ζ) =

= (−z)−a−a′−m F1

(
1− c + a + a′ + m, a′; a + a′ + m, 1 + a′ + m;

1

z
,

ζ

z

)
,

(5.57)

обобщенные гипергеометрические ряды F−
1,ln и G−

ln определяются из (5.39),

(5.40) и (5.46), (5.47), а коэффициенты Bj имеют следующий вид:

B0 =
Γ (c) (m− 1)!

Γ (a + a′ + m) Γ (c− a− a′)
,

B1 =
Γ (c) Γ (a′ + m)

Γ (a′) Γ(a + a′ + m) Γ(c− a− a′ −m)
,

B2 =
Γ (c) Γ(−m− a′)

Γ (a) Γ (c− a− a′ −m)
.

Функции (5.55)–(5.57) являются линейно независимыми частными реше-

ниями системы (5.3).
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Введенные в предложении 2.10 функции U
(∞)
j , j = 0, 1, 2, являются

каноническими решениями системы (5.3) в области V2 для логарифмическо-

го случая (B.1), условия которого указаны в (5.12). Также как и в случаях,

расммотренных в предложениях 2.7, 2.9, здесь аналитическое продолжение

функции Аппеля дается линейной комбинацией трех канонических решений

системы (5.3).

5.2.8o. Логарифмический случай (B.2).Предположим, что параметры функ-

ции F1 таковы, что разность (b − a − a′) является целым отрицательным

числом m, т.е. имеет место второе соотношение из формулы (5.12). Следую-

щее утверждение устанавливает формулы аналитического продолжения F1 в

область V2, определяемую равенством (5.33).

Предложение 2.11. Пусть параметры a и b функции Аппеля связаны

вторым соотношением (5.11) при некотором m ∈ Z+. Тогда аналитическое

продолжение ряда (5.1) в область V2 дается формулой

F1(a, a′; a + a′ −m, c; z, ζ) =

= B1 U
(∞)
1 (a, a′; a + a′ −m, c; z, ζ) + B2 U

(∞)
2 (a, a′; a + a′ −m, c; z, ζ),

где функции U
(∞)
1 и U

(∞)
2 имеют вид

U
(∞)
1 (a, a′; a + a′ −m, c; z, ζ) =

= (−z)−a (−ζ)−a′+mG−
ln

(
a, 1− c + a + a′ −m; a′ −m, 1−m;

ζ

z
,
1

ζ

)
,

(5.58)

U
(∞)
2 (a, a′; a + a′ −m, c; z, ζ) =

= (−z)−a−a′+m F1

(
1− c + a + a′ −m, a′; a + a′ −m, 1 + a′ −m;

1

z
,
ζ

z

)
,

(5.59)

ряд G−
ln определяется из (5.44), (5.45), а коэффициенты B1 и B2 даются

равенствами

B1 =
Γ (c) Γ (a′ −m) (m− 1)!

Γ (a′) Γ(a + a′ −m)Γ (c− a− a′ + m)
, B2 =

Γ (c) Γ(m− a′)
Γ (a) Γ (c− a− a′ + m)

.
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Функции U
(∞)
1 и U

(∞)
2 , определенные по формулам (5.58), (5.59), а также

следующая функция

U
(∞)
0 (a, a′; a + a′ −m, c; z, ζ) =

= (−z)−a (−ζ)−a′ F1

(
a, a′; 1− c + a + a′, 1 + m ;

1

z
,

1

ζ

) (5.60)

являются линейно независимыми частными решениями системы (5.3).

Фигурирующие в предложении 2.11 функции U
(∞)
j , j = 0, 1, 2, являются

каноническими решениями системы (5.3) в области V2 для логарифмическо-

го случая (B.2), условия которого указаны в (5.12). В отличие от нелогариф-

мического случая и случая (A.2), рассмотренных в предложениях 2.7, 2.9,

здесь продолжение функции Аппеля дается линейной комбинацией двух, а

не трех канонических решений системы (5.3).

В заключение отметим, что произвольное решение системы (5.3) в области

V2 может быть представлено в виде линейной комбинации не более чем трех

функций U
(∞)
j , j = 0, 1, 2, указанных в предложениях 2.7–2.11.

5.3. Формулы аналитического продолжения в окрестность точки

(z, ζ) = (1, 1).

5.3.1o. Предварительные замечания. Настоящий раздел посвящен к выводу

формул аналитического продолжения функции Аппеля во внешность единич-

ного поликруга, т.е. в область
{
(z, ζ) ∈ C2 : |z − 1| < 1, |ζ − 1| < 1

}
.

Отметим, что поскольку эта функция удовлетворяет соотношению симметрии

(5.7), то достаточно рассмотреть ситуацию

|z − 1| < |ζ − 1|. (5.61)

Если выполнено обратное неравенство |ζ − 1| < |z − 1|, то соответствующие

формулы аналитического продолжения легко следуют из результатов насто-

ящего раздела и соотношения (5.7).
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Рассмотрению случая, когда одновременно выполняются соотношения

(c− a− b) /∈ Z и (c− a− a′ − b) /∈ Z, (5.62)

посвящен п. 5.3.3o. Поскольку представления для функции F1(a, a′; b, c; z, ζ),

осуществляющие аналитическое продолжение в окрестность точки

(z, ζ) = (1, 1), содержат лишь степени величин (1− z), (1− ζ) и не содержат

их логарифмы, то будем называть (5.62) нелогарифмическим случаем.

Если же соотношения (5.62) не выполняются, то будем отдельно рассмат-

ривать следующие два случая:

(C) (c− a− b) ∈ Z, (c− a− a′ − b) /∈ Z;

(D) (c− a− b) /∈ Z, (c− a− a′ − b) ∈ Z,
(5.63)

которые будем называть соответственно первым логарифмическим и вторым

логарифмическим случаем продолжения в окрестность единицы. Формулы

аналитического продолжения функции F1 для условий (C) и (D) построены

соответственно в пп. 5.3.4o, 5.3.5o и 5.3.6o, 5.3.7o Общим для них является то,

что в найденных формулах для F1 присутствуют не только степени величин

(1− z) и (1− ζ), но и их логарифмы.

При изучении случая (C) необходимо отдельно рассматривать ситуацию,

когда разность (c− b− a) является целым неотрицательным числом, и когда

эта разность отрицательна, т.е. требуется ввести два подслучая:

(C.1) c = a+b+m, m = 0, 1, 2, . . . ; (C.2) c = a+b−m, m = 1, 2, . . . .

(5.64)

Подчеркнем, что формулы продолжения, полученные при условиях (C.1)

и (C.2) соответственно в пп. 5.3.4o и 5.3.5o, имеют качественно различное

устройство, и они не могут быть получены друг из друга, например, с помо-

щью каких–либо простых замен.

Условие (D), очевидно, включает следующие два варианта:

(D.1) c = a + a′ + b + m, m = 0, 1, 2, . . . ;

(D.2) c = a + a′ + b−m, m = 1, 2, . . . ,
(5.65)
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формулы аналитического продолжения для которых построены соответствен-

но в пп. 5.3.6o и 5.3.7o.

5.3.2o. Представление в виде интеграла типа Барнса. Перейдем к выводу

еще одного представления типа Барнса для функции Аппеля, которое будет

использовано для построения ее аналитического продолжения в случае,

когда одна или обе переменные z и ζ близки к единице. Используя известную

лемму Барнса (см. формулу (2.5), указанную, например, в [127]) и определе-

ние (2.1) гипергеометрической функции, устанавливаем следующее соотно-

шение:

Γ(a + s)Γ(b + s)

Γ(c + s)
F (a′, b + s, c + s; ζ) =

1

2πiΓ(c− a) Γ(c− b)
×

×
+i∞∫

−i∞

Γ(a + t)Γ(b + t)Γ(s− t)Γ(c− a− b− t)F (a′; b + t; c− a; ζ)dt .

(5.66)

Переписывая определение (5.14) функции f с учетом равенства (5.66) и

подставляя новое выражение f в формулу (5.16), получаем представление

функции F1 в виде двойного интеграла. Меняя в нем порядок интегрирова-

ния по s и t, а также используя известное тождество
∫ +i∞

−i∞
Γ(−s)Γ(s− t)(−z)sds = (1− z)t

и вводя обозначение

g(a, a′; b, c; z, ζ, s) :=

:= Γ(a + s)Γ(b + s)Γ(−s)Γ(c− a− b− s)(1− z)sF (a′, b + s; c− a; ζ),
(5.67)

приходим к следующему утверждению, устанавливающему используемое в

работе второе представление типа Барнса для функции F1.

Предложение 2.12. Функция Аппеля F1, определяемая рядом (5.1), пред-

ставима в области
{
(z, ζ) ∈ C2 : |arg(1−z)| < π, |ζ| < 1

}
в виде контурного



– 143 –

интеграла типа Барнса

F1(a, a′; b, c; z, ζ) =
Γ(c)

2πiΓ(a) Γ(b)Γ(c− a)Γ(c− b)

+i∞∫

−i∞

g(a, a′; b, c; z, ζ, s)ds,

(5.68)

где подынтегральная функция имеет вид (5.67), а контур интегрирования

в формуле (5.68) выбран так, чтобы полюсы

s
(1)
k = k, s

(2)
k = c− a− b + k, k ∈ Z+, (5.69)

и полюсы s
(3)
k = −a− k, s

(4)
k = −b− k, k ∈ Z+, функции

g(s) := g(a, a′; b, c; z, ζ, s)

лежали соответственно справа и слева от него.

Отметим, что наличие указанных в предложении 2.12 полюсов у подын-

тегрального выражения g(s) вытекает из существования полюсов у гамма–

функции Γ(s) в точках s ∈ Z−. Учитывая еще, что функция

F̃ (s) := F (a′, b + s; c− a; ζ),

очевидно, является регулярной в конечной плоскости, находим, что подын-

тегральная функция g(s) справа от контура интегрирования (5.68) не име-

ет других особых точек, кроме полюсов (5.69). Нетрудно увидеть, что если

выполняется соотношение (c − a − b) /∈ Z, то указанные полюсы являются

простыми, а вычеты g(s) в них, вычисляемые с учетом (4.13), даются равен-

ствами:

res g
(
s
(1)
k

)
= −Γ(a)Γ(b)Γ(c− a− b)

(a)k (b)k

(1 + a + b− c)k k!
×

× (1− z)k F (a′, b + k; c− a; ζ),

(5.70)

res g
(
s
(2)
k

)
= −Γ(c− a)Γ(c− b)Γ(a + b− c)

(c− a)k (c− b)k

(1 + c− a− b)k k!
×

× (1− z)c−a−b+k F (a′, c− a + k; c− a; ζ).

(5.71)
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Если же, напротив, (c− a− b) ∈ Z, то необходимо различать следующие два

случая.

Пусть c− a− b = m, где m — неотрицательное целое число. Тогда точки

s
(1)
k = −k, k = 0, 1, . . . , m− 1 , (5.72)

по–прежнему, являются простыми полюсами, вычеты в которых находятся

заменой параметра c на (a + b + m) в формуле (5.71):

res g
(
s
(1)
k

)
= −Γ(a)Γ(b) (m− 1)!

(a)k (b)k

(1−m)k k!
(1− z)k F (a′, b + k; b + m; ζ),

(5.73)

а точки

s
(2)
k, ln = k, k = m, m + 1, . . . , (5.74)

представляют собой полюсы второго порядка, и можно показать, что

соответствующие вычеты имеют вид:

res g
(
s
(2)
k, ln

)
=

= (−1)m Γ(a)Γ(b)
(a)k (b)k

k!(k −m)!
(1− z) k

{[
d

ds
F

(
a′, b + s; b + m; ζ

) ]

s=k

+

+
[
ln(1− z) − h+

k (a, b)
]
F

(
a′, b + k; b + m; ζ

)
}

,

(5.75)

где величины h+
k определяются равенством (2.11).

Пусть c− a− b = −m, где m — неотрицательное целое число. Тогда точки

s
(2)
k = −m + k, k = 0, 1, . . . , m− 1, (5.76)

являются простыми полюсами, вычеты в которых по формуле

res g
(
s
(2)
k

)
= −Γ(a−m)Γ(b−m) (m− 1)!

(a−m)k (b−m)k

(1−m)k k!
×

× (1− z)−m+k F (a′, b−m + k; b−m; ζ),

(5.77)

а точки

s
(1)
k, ln = −m + k, k = m, m + 1, . . . , (5.78)
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представляют собой полюсы второго порядка, и можно показать, что соот-

ветствующие вычеты имеют вид:

res g
(
s
(1)
k, ln

)
= (−1)m Γ(a−m)Γ(b−m)

(a−m)k (b−m)k

(k −m)! (k)!
(1− z) k−m×

×
{[

d

ds
F

(
a′, b−m + s; b−m; ζ

) ]

s=k

+

+
[
ln(1− z) − h+

k (a−m, b−m)
]
F

(
a′, b−m + k; b−m; ζ

)
}

.

(5.79)

где величины h+
k определяются из (2.11).

В заключение обратим внимание на то, что справа от контура, по которо-

му в формуле (5.68) ведется интегрирование, подынтегральная функция g(s)

за исключением перечисленных выше полюсов других особенностей не имеет.

Формулы аналитического продолжения F1 в область, где z принимает значе-

ния вблизи единицы, будут получены в разд. 4 путем вычисления интеграла

(5.68) в виде суммы вычетов в указанных полюсах.

Отметим еще, что обобщения представлений Барнса (5.16) и (5.68) на

случай функции Лауричеллы F
(N)
D представлены в работе [8].

5.3.3o. Нелогарифмический случай. Перейдем к выводу формул продолже-

ния функции Аппеля F1, предполагая, что переменные z и ζ удовлетворяют

неравенству (5.61), а параметры таковы, что выполнены соотношения (5.62),

т.е. имеет место нелогарифмический случай.

Напомним, что функция Аппеля представима в виде интеграла типа

Барнса (5.67), (5.68). Записывая интеграл (5.68) в виде умноженной на (−2πi)

суммы вычетов (5.70) и (5.71) в простых полюсах (5.69) подынтегральной

функции (5.67), находим следующее соотношение для функции F1:

F1(a, a′; b, c; z, ζ) = A1v1(a, a′; b, c; z, ζ) + A2v2(a, a′; b, c; z, ζ), (5.80)
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где функции v1 и v2 даются равенствами

v1(a, a′; b, c; z, ζ) :=
∞∑

k=0

(a)k (b)k

(1 + a + b− c)k k!
(1− z)k F (a′, b + k; c− a; ζ),

(5.81)
v2(a, a′; b, c; z, ζ) :=

:= (1− z)c−a−b
∞∑

k=0

(c− a)k (c− b)k

(1 + c− a− b)k k!
(1− z) k F (a′, c− a + k; c− a; ζ),

(5.82)

а коэффициенты A1 и A2 определяются из (2.22).

Применяя формулу (2.21) к фигурирующим в (5.81) гипергеометрическим

функциям

F (a′, b + k; c− a; ζ), k ∈ Z+, (5.83)

записываем каждую из них в виде произведения константы (a′)k/(c − a)k,

степени (1− ζ)−a′−k и функции F (c− a− a′, −k; 1− a′ − k; 1− ζ), которая,

согласно (2.1), (1.4) является полиномом степени k по (1 − ζ), т.е. функции

(5.83) могут быть записаны в виде:

F (a′, b + k; c− a; ζ) =
(a′)k

(c− a)k
(1− ζ)−a′−k

k∑
n=0

(−k)n(c− a− a′)n

(1− a′ − k)n n!
(1− ζ)n .

(5.84)

Подставляя (5.84) в (5.82), вводя новый индекс суммирования k1 = k − n и

учитывая определение (5.1) функции Аппеля, находим представление для v2

через эту функцию

v2(a, a′; b, c; z, ζ) :=

(1− z)c−a−b (1− ζ)−a′F1

(
c− a− a′, a′; c− b, 1 + c− a− b; 1− z,

1− z

1− ζ

)
.

(5.85)

Заметим, что соотношения (2.22), (5.80), (5.81), (5.85) дают аналитическое

продолжение функции Аппеля в область

G :=
{|1− z|+ |ζ| < 1, |arg(1− z)| < π; |arg(1− ζ)| < π

}
.
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При этом функция v2 определена в более широкой области

G̃ :=
{|1− z| < 1, |1− z| < |1− ζ|; |arg(1− z)| < π; |arg(1− ζ)| < π

}
,

где одновременно обе переменные z, ζ могут принимать значения, близкие

к единице. Таким образом, в представлении (5.80) в окрестность единицы

необходимо продолжить по переменной ζ лишь функцию v1, определяемую

равенством (5.81).

Введем область K2 с помощью соотношения:

K2 :=
{
0 < |1− z| < |1− ζ|; |arg(1− z)| < π, |arg(1− ζ)| < π

}
, (5.86)

которое является частным случаем (4.69) для области KN при N = 2.

Применяя к фигурирующим в (5.81) гипергеометрическим функциям

F (a′, b+k; c−a; ζ) формулы продолжения (2.6), (2.7), (2.21), (2.22) и подстав-

ляя результат в формулу (5.81), приходим к следующему утверждению, поз-

воляющему продолжить функцию Аппеля F1(a, a′; b, c; z, ζ) в область K2.

Предложение 2.13. Пусть выполняются соотношения (5.9). Тогда

аналитическое продолжение ряда (5.1) в область K2 дается формулой

F1(a, a′; b, c; z, ζ) =
2∑

j=0

AjU
(1)
j (a, a′; b, c; z, ζ), (5.87)

где функции U
(1)
j , j = 0, 1, 2, определяются равенствами

U
(1)
0 (a, a′; b, c; z, ζ) = F1

(
a, a′; b, 1 + a + a′ + b− c; 1− z, 1− ζ

)
, (5.88)

U
(1)
1 (a, a′; b, c; z, ζ) = (1− z)c−a−a′−b×
×G

(
a, c− a− a′; c− a− b, 1 + c− a− a′ − b;

1− z

1− ζ
, 1− ζ

)
,

(5.89)

U
(1)
2 (a, a′; b, c; z, ζ) = (1− z)c−a−b (1− ζ)−a′×
× F1

(
c− a− a′, a′; c− b, 1 + c− a− b; 1− z,

1− z

1− ζ

)
,

(5.90)
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а коэффициенты Aj имеют вид

A0 =
Γ (c) Γ (c− a− a′ − b)

Γ (c− a− a′) Γ (c− b)
, A1 =

Γ (c) Γ (c− a− b) Γ (a + a′ + b− c)

Γ (a′) Γ(b) Γ(c− b)
,

A2 =
Γ (c) Γ (a + b− c)

Γ (a) Γ (b)
.

(5.91)

Функции (5.88)–(5.90) являются линейно независимыми частными реше-

ниями системы (5.3). Под функцией G, фигурирующей в формуле (5.89),

понимается обобщенный гипергеометрический ряд (5.4).

Относительно результатов этого предложения справедливы замечания,

аналогичные приведенным после предложения 2.7. Представленный в настоя-

щей работе подход к получению формул (5.87)–(5.91) отличается от

примененного в [203] способа, основанного на переразложении рядов, и может

быть применен для построения аналитического продолжения других классов

двукратных гипергеометрических рядов. В работе эти формулы приведены

также и для удобства их сопоставления с полученными далее формулами

продолжения в логарифмическом случае.

Нетрудно увидеть, что если имеет место логарифмический случай (C), т.е.

выполнено первое соотношение (5.63), то в формуле (5.87) не определены

величины A1U
(1)
1 и A2U

(1)
2 . Если же имеет место логарифмический случай (D),

т.е. выполнено второе соотношение (5.63), то в (5.87) не определены A0U
(1)
0 и

A1U
(1)
1 .

Таким образом, логарифмический случай требует отдельного рассмотре-

ния, которому посвящены пп. 5.3.4o и 5.3.6o. При этом формулы аналитиче-

ского продолжения функции Аппеля F1 содержат введенные в п. 5.2.4o ряды

F±
1, ln и G±

ln.

5.3.4o. Логарифмический случай (C.1). Перейдем к рассмотрению формул

аналитического продолжения функции Аппеля F1 в ситуации, когда ее па-

раметры удовлетворяют первому условию (5.64), т.е имеет место логарифми-

ческий случай (C.1). Справедливо следующее утверждение, где, напомним,
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область K2 определена соотношением (5.86).

Предложение 2.14. Пусть параметры a, b и c функции Аппеля связаны

первым соотношением (5.64) при некотором m ∈ Z+. Тогда аналитическое

продолжение ряда (5.1) в область K2 дается формулой

F1(a, a′; b, a + b + m; z, ζ) =

= A0 U
(1)
0 (a, a′; b, a + b + m; z, ζ) + A1 U

(1)
1 (a, a′; b, a + b + m; z, ζ),

где функции U
(1)
0 и U

(1)
1 имеют вид

U
(1)
0 (a, a′; b, a + b + m; z, ζ) = F1

(
a, a′; b, 1 + a′ −m; 1− z, 1− ζ

)
, (5.92)

U
(1)
1 (a, a′; b, a + b + m; z, ζ) =

= (1− ζ)m−a′ G+
ln

(
a, b− a′ −m; m, 1− a′ + m;

1− z

1− ζ
, 1− ζ

)
,

(5.93)

обобщенный гипергеометрический ряд G+
ln определяется из (5.41), (5.42), а

коэффициенты A0 и A1 даются равенствами:

A0 =
Γ (a + b + m) Γ (m− a′)
Γ (a + m) Γ (b− a′ + m)

, A1 =
Γ (a + b + m) Γ (a′ −m) (m− 1)!

Γ (a′) Γ(b) Γ(a + m)
.

Функции U
(1)
0 и U

(1)
1 , определенные формулами (5.92), (5.93), а также

следующая функция

U
(1)
2 (a, a′; b, a + b + m; z, ζ) = (1− z)m (1− ζ)−a′×
× F1

(
b− a′ + m, a′; a + m, 1 + m; 1− z,

1− z

1− ζ

)
.

(5.94)

являются линейно независимыми частными решениями системы (5.3) в

области K2.

Введенные в предложении 2.14 по формулам (5.92), (5.93) и (5.94) функции

U
(1)
j , j = 0, 1, 2, являются каноническими решениями системы (5.3) в области

K2 для логарифмического случая (C.1), условия которого указаны в (5.64).

5.3.5o. Логарифмический случай (C.2). Предположим, что выполнено

второе соотношение (5.64), т.е. имеет место случай (C.2). Следующее утвер-

ждение устанавливает формулы аналитического продолжения функции F1 в

область K2, определенную соотношением (5.86).
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Предложение 2.15. Пусть параметры a, b и c функции Аппеля связаны

вторым соотношением (5.64), т.е. имеет место логарифмический случай

(C.2). Тогда аналитическое продолжение ряда (5.1) в область K2 дается

формулой

F1(a, a′; b, a + b−m; z, ζ) =
2∑

j=0

Aj U
(1)
j (a, a′; b, a + b−m; z, ζ),

где функции U
(1)
j , j = 0, 1, 2, имеют вид

U
(1)
0 (a, a′; b, a + b−m; z, ζ) = F1

(
a, a′; b, 1 + a′ + m; 1− z, 1− ζ

)
, (5.95)

U
(1)
1 (a, a′; b, a + b−m; z, ζ) =

= (1− ζ)−a′−mGln

(
a, b− a′ −m; −m, 1− a′ −m;

1− z

1− ζ
, 1− ζ

)
,
(5.96)

U
(1)
2 (a, a′; b, a + b−m; z, ζ) =

= (1− z)−m (1− ζ)−a′ F+
1,ln

(
b− a′ −m, a′; a−m, 1−m; 1− z,

1− z

1− ζ

)
,

(5.97)

обобщенные гипергеометрические ряды F+
1,ln и Gln, даются равенствми (5.39),

(5.40) и (5.43), а коэффициенты Aj выражаются по формулам

A0 =
Γ (a + b−m) Γ (−a′ −m)

Γ (a−m) Γ (b− a′ −m)
, A1 =

Γ (a + b−m) Γ (a′ + m)

Γ (a−m) Γ(a) Γ(b)
,

A2 =
Γ (a + b−m) (m− 1)!

Γ (a) Γ (b)
.

Функции (5.95)–(5.97) являются линейно независимыми частными реше-

ниями системы (5.3).

Введенные в предложении 2.15 по формулам (5.95)–(5.97) функции U
(1)
j ,

j = 0, 1, 2, являются каноническими решениями системы (5.3) в области K2

для логарифмического случая (C.2), условия которого указаны в (5.64).

5.3.6o. Логарифмический случай (D.1). Перейдем к формулам аналитиче-

ского продолжения функции Аппеля F1 в ситуации, когда ее параметры тако-

вы, что разность (c−a−a′− b) является целым неотрицательным числом m,
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т.е. имеет место указанный в формуле (5.65) случай (D.1). Справедливо сле-

дующее утверждение, где область K2 определена соотношением (5.86).

Предложение 2.16. Пусть параметры a, a′, b и c функции Аппеля свя-

заны первым соотношением (5.65) при некотором m ∈ Z+. Тогда аналити-

ческое продолжение ряда (5.1) в область K2 дается формулой

F1(a, a′; b, a + a′ + b + m; z, ζ) =
2∑

j=0

Aj U
(1)
j (a, a′; b, a + a′ + b + m; z, ζ),

где функции U
(1)
j имеют вид

U
(1)
0 (a, a′; b, a + a′ + b + m; z, ζ) = F+

1, ln

(
a, a′; b, 1−m; 1− z, 1− ζ

)
, (5.98)

U
(1)
1 (a, a′; b, a + a′ + b + m; z, ζ) =

= (1− ζ)m G+
ln

(
a, b + m; a′ + m, 1 + m;

1− z

1− ζ
, 1− ζ

)
,

(5.99)

U
(1)
2 (a, a′; b, a + a′ + b + m; z, ζ) = (1− z)a′+m (1− ζ)−a′×
× F1

(
b + m, a′; a + a′ + m, 1 + a′ + m; 1− z,

1− z

1− ζ

)
,

(5.100)

гипергеометрические ряды F+
1,ln и G+

ln определяются из (5.39), (5.40) и (5.46),

(5.47), а коэффициенты Aj имеют следующий вид:

A0 =
Γ (c) (m− 1)!

Γ (a + a′ + m) Γ (c− a− a′)
,

A1 =
Γ (c) Γ (a′ + m)

Γ (a′) Γ(a + a′ + m) Γ(c− a− a′ −m)
,

A2 =
Γ (c) Γ(−m− a′)

Γ (a) Γ (c− a− a′ −m)
.

Функции (5.98)–(5.100) являются линейно независимыми частными реше-

ниями системы (5.3).

Введенные в предложении 2.16 по формулам (5.98)–(5.100) функции U
(1)
j ,

j = 0, 1, 2, являются каноническими решениями системы (5.3) в области K2

для логарифмического случая (D.1), условия которого указаны в (5.65).
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5.3.7o. Логарифмический случай (D.2).Предположим, что параметры функ-

ции Аппеля таковы, что разность (c−a−a′− b) является целым отрицатель-

ным числом −m, т.е. имеет место второе соотношение из формулы (5.65).

Имеет место следующее утверждение, позволяющее продождить функцию

Аппеля в область K2, определяемую из (5.86).

Предложение 2.17. Пусть параметры a, b и c функции Аппеля связаны

вторым соотношением (5.65) при некотором m ∈ Z+. Тогда аналитическое

продолжение ряда (5.1) в область K2 дается формулой

F1(a, a′; b, a + a′ + b−m; z, ζ) =

B1 u
(1)
1 (a, a′; b, a + a′ + b−m; z, ζ) + B2 u

(1)
2 (a, a′; b, a + a′ + b−m; z, ζ),

где функции U
(1)
j , j = 0, 1, 2, имеют вид

U
(1)
1 (a, a′; b, a + a′ + b−m; z, ζ) =

= (1− z)−m G+
ln

(
a, b−m; a′ −m, 1−m;

1− z

1− ζ
, 1− ζ

)
,

(5.101)

U
(1)
2 (a, a′; b, a + a′ + b−m; z, ζ) = (1− z)a′−m (1− ζ)−a′×

× F1

(
b−m, a′; a + a′ −m, 1 + a′ −m; 1− z,

1− z

1− ζ

)
;

(5.102)

гипергеометрический ряд G+
ln находится из (5.44), а коэффициенты Aj

имеют следующий вид:

A1 =
Γ (a + a′ + b−m) Γ (a′ −m) (m− 1)!

Γ (a′) Γ(b)Γ (a + a′ −m)
,

A2 =
Γ (a + a′ + b−m) Γ(m− a′)

Γ (a) Γ (b)
.

Функции (5.101), (5.102), а также следующая

U
(1)
0 (a, a′; b, a+a′+ b−m; z, ζ) = F1

(
a, a′; b, 1+m ; 1− z, 1− ζ

)
. (5.103)

являются линейно независимыми частными решениями системы (5.3).

Введенные в предложении 2.17 по формулам (5.101), (5.102) и (5.103) функ-

ции U
(1)
j , j = 0, 1, 2, являются каноническими решениями системы (5.3) в об-

ласти K2 для логарифмического случая (D.2), условия которого приведены

в (5.65).
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В заключение отметим, что произвольное решение системы (5.3) в области

K2 может быть представлено в виде линейной комбинации не более чем трех

функций U
(1)
j , j = 0, 1, 2, указанных в предложениях 8–12.

5.4. Формулы аналитического продолжения в окрестности точeк

(z, ζ) = (∞, 1) и (z, ζ) = (1,∞).

5.4.1o. Гипергеометрические ряды F, G, H и их аналоги для логарифмиче-

ского случая В данном разделе построены формулы аналитического продол-

жения функции Аппеля в область W2, определяемую как объединение

W2 :=
⋃

δ∈(0,1)

W2(δ), (5.104)

где вспомогательные областиW2(δ) при каждом δ ∈ (0, 1) даются равенством

W2(δ) :=
{
(z, ζ) ∈ C2 : 0 < |1− z| < δ, |ζ| > 1 + δ;

|arg(1− z)| < π, |arg(−ζ)| < π
}
.

(5.105)

Представленные в следующем п. 5.4.2o записаны в терминах следующих

гипергеометрических рядов:

F(a, a′; b, c, c′; z, ζ) =
∞∑

k, n=0

(b)n (a)k (a′)n

(c)n−k (c′)k k! n!
zkζn , (z, ζ) ∈ F, (5.106)

G(a, a′; b, c; z, ζ) =
∞∑

k, n=0

(b)k (a− n)k (a′)n

(c)k k! n!
zkζn , (z, ζ) ∈ F, (5.107)

H(a, a′; b, c; z, ζ) =
∞∑

k, n=0

(b)k+n (a)k (a′ + k)n

(c)k+n k! n!
zkζn , (z, ζ) ∈ H. (5.108)

Области сходимости F и H этих рядов, в чем можно убедиться, используя

подход, изложенный, например, в [169], [19], определяются по формулам

F :=
⋃

δ∈(0,1)

F(δ), H :=
⋃

δ∈(0,1)

H(δ), (5.109)

где вспомогательные области F(δ) и H(δ) для каждого δ ∈ (0, 1) имеют вид:

F(δ) :=
{
(z, ζ) ∈ C2 : |z| < δ, |ζ| < (1 + δ)−1 }

. (5.110)
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H(δ) :=
{
(z, ζ) ∈ C2 : |z| < 1− δ, |ζ| < δ

}
. (5.111)

Обобщения рядов (5.106)–(5.108) на случай N переменных представлены в

§4, см. формулы (4.88)–(4.90).

При построении аналитического продолжения функции Аппеля F1

в логарифмическом случае нам также потребуются введенные далее функ-

ции, которые представляют собой аналоги рядов F, G и H для ”сингулярных“

значений параметров этих функций.

Для функции F(a, a′; b, c, c′; z, ζ), определяемой по формуле (5.106),

cингулярными являются целые значения параметра c, а также целые неполо-

жительные значения c′. Следующие три ряда являются расширением

определения (5.106) на указанные случаи параметров c и c′:

Fln(a, a′; b, 1−m, c′; z, ζ) :=
∞∑

k=0

{ m+k−1∑
n=0

(b)n (a)k(a
′)n

(1−m)n−k(c′)k k! n!
zk ζn +

+
(−1)m

(m− 1)!

∞∑

n=m+k

(b)n(a)k(a
′)n

(n− k −m)!(c′)k k! n!

[
µk,n − ln(−ζ)

]
zk ζn

}
,

(5.112)

Fln(a, a′; b, 1 + m, c′; z, ζ) :=

:=
∞∑

k=m

{ k−m−1∑
n=0

(b)n (k − n−m− 1)!(a)k(a
′)n

(c′)k k! n!
zk ζn +

+ (−1)m
∞∑

n=k−m

(b)n(a)k(a
′)n

(n− k −m)!(c′)k k! n!

[
µk,n − ln(−ζ)

]
zk ζn

}
,

(5.113)

где µk,n = h−n (a′, b, m), а h−n определяется из (2.11),

Fln(a, a′; b, c, 1−m; z, ζ) :=
m−1∑

k=0

∞∑
n=0

(b)n (a)k(a
′)n

(c)n−k(1−m)k k! n!
zk ζn +

+
(−1)m

(m− 1)!

∞∑

k=m

∞∑
n=0

(b)n(a)k(a
′)n

(c)n−k(k −m)! k! n!

[
µ′k,n − ln(−ζ)

]
zk ζn ;

(5.114)

здесь µ′k,n = ψ(1−m + k) + ψ(1 + k)− ψ(1− c + k − n)− ψ(a + k).
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Для рядов H(a, a′; b, c; z, ζ) и G(a, a′; b, c; z, ζ), определяемых по фор-

мулам (5.107) и (5.108), cингулярными являются целые неположительные

значения параметра c ∈ Z−. Следующие два ряда являются расширением

определений (5.107) и (5.108) на указанные случаи этого параметра:

Hln(a, a′; b, 1−m; z, ζ) :=
m−1∑

k=0

{ m−k−1∑
n=0

(b)k+n (a)k(a
′)n

(1−m)k+n k! n!
zk ζn +

+
(−1)m

(m− 1)!

∞∑

n=m−k

(b)k+n (a)k(a
′)n

(n + k −m)!(c)k k! n!

[
νk,n − ln(−ζ)

]
zk ζn

}
,

(5.115)

где числа νk,n имеют вид: νk,n = h−n (b + k, a′,m),

Gln(a, a′; b, 1−m; z, ζ) :=
m−1∑

k=0

∞∑
n=0

(b)k (a− n)k(a
′)n

(1−m)k k! n!
zk ζn +

+
(−1)m

(m− 1)!

∞∑

k=m

∞∑
n=0

(b)k (a− n)k(a
′)n

(k −m)!(c)k k! n!

[
κk,n − ln(−ζ)

]
zk ζn ;

(5.116)

здесь κk,n = ψ(1−m + k) + ψ(1 + k)− ψ(b + k)− ψ(a + k + n).

Напомним еще, что символ Похгаммера (a)k, определенный равенством

(1.3), при положительных значениях индекса k записывается в виде (1.4), а

при отрицательных значениях k — в виде (4.36).

Используя известный подход, изложенный, например, в [169], [19], можно

показать, что ряды (5.112)–(5.114) сходятся в области F, заданной соотноше-

ниями (5.109), (5.110), за исключением точек множества Eζ , определенного

по формуле (5.48), а ряд (5.115) сходится в области H, определенной с помо-

щью (5.109), (5.111), за исключением того же множества (5.48), на котором

указанные выше ряды формально обращаются в бесконечность благодаря

наличию логарифма ln(±ζ). Неоднозначность, обусловленная присутствием

этого логарифма, устраняется очевидным образом с помошью проведения

подходящих разрезов.

5.4.2o. Формулы аналитического продолжения в областьW2. Применяя фор-

мулы продолжения (2.26), (2.27) к гипергеометрическим функциям

F (a′, b + k; c− a; ζ) и F (a′, c− a + k; c− a; ζ), (5.117)
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фигурирующим в (5.81), (5.82), приходим к следующему утверждению.

Предложение 2.18. Пусть параметры функции Аппеля таковы, что

ни одно из чисел (c−a−b) и (a′−b) не является целым. Тогда аналитическое

продолжение ряда (5.1) в область W2 дается формулой

F1(a, a′; b, c; z, ζ) =
2∑

j=0

AjU
(1,∞)
j (a, a′; b, c; z, ζ),

где функции U
(1,∞)
j , j = 0, 1, 2, определяются равенствами

U
(1,∞)
0 (a, a′; b, c; z, ζ) =

= (−ζ)−a′F
(

a, a′; 1− c + a + a′, 1− b + a′, 1 + a + b− c; z − 1, ζ−1
)
,

(5.118)

U
(1,∞)
1 (a, a′; b, c; z, ζ) = (1− z)c−a−b(−ζ)−a′ ×

× G
(

c− a− a′, a′; c− b, 1 + c− a− b; 1− z, ζ−1
)
,

(5.119)

U
(1,∞)
2 (a, a′; b, c; z, ζ) = (−z)−b H

(
a, 1− c + a + b; b, 1− a′ + b;

z − 1

ζ
,

1

ζ

)
,

(5.120)

а коэффициенты Aj имеют вид

A0 =
Γ (c) Γ (c− a− b) Γ(b− a′)
Γ (b) Γ(c− b) Γ (c− a− a′)

,

A1 =
Γ (c) Γ (a + b− c)

Γ (a) Γ(b)
, A2 =

Γ (c) Γ (a′ − b)

Γ (a′) Γ (c− b)
.

Функции (5.118)–(5.120) являются линейно независимыми частными ре-

шениями системы (5.3). Гипергеометрические ряды F, G, H определяются

равенствами (5.106)–(5.108).

Ограничение (a′− b) /∈ Z на параметры функции Аппеля устраняет следу-

щее предложение. Для случая b = a′ + m, где m = 0, 1, 2, . . ., формулы ана-

литического продолжения, установленные в этом предложении, получаются

применением к первой функции из (5.117) соотношений (2.28), а ко второй

функции из (5.117) — формул (2.26), (2.27), с последующей подстановкой в
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(5.81), (5.82). Аналогичные формулы для функции F1 в случае b = a′ − m,

m = 1, 2, . . ., в представленном ниже предложении получаются применением

к первой функции из (5.117) соотношений (2.29), а ко второй функции из

(5.117) — формул (2.26), (2.27), с последующей подстановкой в (5.81), (5.82).

Напомним, что область W2 имеет вид (5.104), (5.105).

Предложение 2.19. Пусть параметры функции Аппеля таковы, что

(c− a− b) /∈ Z и (a′ − b) ∈ Z. Тогда справедливы утверждения.

1) Если b = a′ + m, m = 0, 1, 2, . . ., то аналитическое продолжение ряда

(5.1) в область W2 дается формулой

F1(a, a′; a′ + m, c; z, ζ) =

= A0U
(1,∞)
0 (a, a′; a′ + m, c; z, ζ) + A1U

(1,∞)
1 (a, a′; a′ + m, c; z, ζ),

где функции U
(1,∞)
j , j = 0, 1, определяются равенствами

U
(1,∞)
0 (a, a′; a′ + m, c; z, ζ) =

= (−ζ)−a′Fln

(
a, a′; 1− c + a + a′, 1−m, 1 + a + a′ + m− c; z − 1, ζ−1),

(5.121)

U
(1,∞)
1 (a, a′; b, c; z, ζ) = (1− z)c−a−a′−m(−ζ)−a′ ×
× G

(
c− a− a′, a′; c− a− a′ −m, 1 + c− a− a′ −m; 1− z, ζ−1 )

,
(5.122)

а коэффициенты A0 и A1 — следующими равенствами:

A0 =
Γ (c) Γ (c− a− a′ −m) (m− 1)!

Γ (a′ + m) Γ(c− a− a′) Γ (c− a′ −m)
, A1 =

Γ (c) Γ (a + a′ − c + m)

Γ (a) Γ(a′ + m)
.

Функции (5.121), (5.122), а также следующая

U
(1,∞)
2 (a, a′; b, c; z, ζ) =

= (−z)−a′−m H
(

a, 1− c + a + a′ + m; a′ + m, 1 + m;
z − 1

ζ
,

1

ζ

)
,

(5.123)

являются линейно независимыми частными решениями системы (5.3).

Гипергеометрические ряды Fln, G и H, фигурирующие в (5.121), (5.122),

(5.123), определяются равенствами (5.112), (5.107) и (5.108).
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2) Eсли b = a′ − m, m = 1, 2, . . ., то аналитическое продолжение ряда

(5.1) в область W2 дается формулой

F1(a, a′; a′ −m, c; z, ζ) =
2∑

j=0

AjU
(1,∞)
j (a, a′; a′ + m, c; z, ζ)

U
(1,∞)
0 (a, a′; a′ −m, c; z, ζ) =

= (−ζ)−a′ Fln

(
a, a′; 1− c + a + a′, 1 + m, 1 + a + a′ −m− c; z − 1, ζ−1 )

,

(5.124)

U
(1,∞)
1 (a, a′; a′ −m, c; z, ζ) = (1− z)c−a−a′+m(−ζ)−a′ ×
×G

(
c− a− a′, a′; c− a′ + m, 1 + c− a− a′ + m; 1− z, ζ−1 )

,
(5.125)

U
(1,∞)
2 (a, a′; a′−m, c; z, ζ) =

= (−ζ)−a′+m Hln

(
a, 1− c + a + a′ −m; a′ −m, 1−m;

z − 1

ζ
,

1

ζ

)
,

(5.126)

а коэффициенты Aj имеют вид

A0 =
Γ (c) Γ (c− a− a′ + m)

Γ (a′ −m) Γ(c− a′ + m) Γ (c− a− a′)
,

A1 =
Γ (c) Γ (a + a′ − c−m)

Γ (a) Γ(a′ −m)
, A2 =

Γ (c) Γ (m− 1)!

Γ (a′) Γ (c− a′ + m)
.

Гипергеометрические ряды Fln, G и Hln, фигурирующие в (5.124), (5.125)

и (5.126), определяются равенствами (5.113), (5.107) и (5.115). Функции

(5.118)–(5.120) являются линейно независимыми частными решениями

системы (5.3).

Ограничение (c − a − b) /∈ Z на параметры функции Аппеля F1 устраня-

ет приведенное далее предложение. Формулы аналитического продолжения

функции F1, устанавливаемые этим предложением для случая c = a + b + m,

где m = 0, 1, 2, . . ., получаются, подстановкой в представление (c.44) выра-

жений (5.73) и (5.75) для вычетов, в которых функции Гаусса аналитиче-

ски продолжены с использованием соотношений (2.26), (2.27). Аналогичные

формулы для функции F1 в случае c = a + b − m, m = 1, 2, . . ., находятся
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подстановкой в представление (c.54), стр. 274, выражений (5.77) и (5.79) для

вычетов, в которых к функциям Гаусса также применены формулы аналити-

ческого продолжения (2.26), (2.27). Таким образом, получаем следующее

Предложение 2.20. Пусть параметры функции Аппеля таковы, что

(c− a− b) ∈ Z и (a′ − b) /∈ Z. Тогда сраведливы утверждения:

1) если c = a + b + m, m = 0, 1, 2, . . ., то аналитическое продолжение

ряда (5.1) в область W2 дается формулой

F1(a, a′; b, a + b + m; z, ζ) =

= A0 U
(1,∞)
0 (a, a′; b, a + b + m; z, ζ) + A2 U

(1,∞)
2 (a, a′; b, a + b + m; z, ζ),

где функции U
(1,∞)
j , j = 0, 1, определяются равенствами

U
(1,∞)
0 (a, a′; b, a + b + m; z, ζ) =

= (−ζ)−a′ Fln

(
a, a′; 1− b + a′ −m, 1− b + a′ 1−m; z − 1, ζ−1 )

,
(5.127)

U
(1,∞)
2 (a, a′; b, a + b + m; z, ζ) =

= (−z)−b H
(

a, 1−m; b, 1− a′ + b;
z − 1

ζ
,

1

ζ

)
,

(5.128)

а коэффициенты A0 и A1 — следующими равенствами:

A0 =
Γ (a + b + m) Γ (b− a′)(m− 1)!

Γ (b) Γ(a + m) Γ (b− a′ −m)
, A2 =

Γ (a + b + m) Γ (a′ − b)

Γ (a′) Γ(a + m)
.

Функции (5.127), (5.128), а также следующая

U
(1,∞)
1 (a, a′; b, a + b + m; z, ζ) = (1− z)m(−ζ)−a′ ×

× G
(

b− a′ + m, a′; a + m, 1 + m; 1− z, ζ−1
)
,

(5.129)

являются линейно независимыми частными решениями системы (5.3).

Гипергеометрические ряды Fln, H и G, фигурирующие в (5.127), (5.128),

(5.129), определяются равенствами (5.114), (5.108) и (5.107).

2) Eсли c = a + b−m, m = 1, 2, . . ., то аналитическое продолжение ряда

(5.1) в область W2 дается формулой

F1(a, a′; b, a + b−m; z, ζ) =

= A1U
(1,∞)
1 (a, a′; b, a + b−m; z, ζ) + A2U

(1,∞)
2 (a, a′; b, a + b−m; z, ζ),
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U
(1,∞)
1 (a, a′; b, a + b−m; z, ζ) = (1− z)−m(−ζ)−a′ ×

× Gln

(
b− a′ −m, a′; a−m, 1−m; 1− z, ζ−1 )

,
(5.130)

U
(1,∞)
2 (a, a′; a′ −m, c; z, ζ) = (−ζ)−b H

(
a, 1 + m; b, 1− a′ + b;

z − 1

ζ
,

1

ζ

)
,

(5.131)

а коэффициенты Aj имеют вид

A1 =
Γ (a + b−m) (m− 1)!

Γ (a) Γ(b)
, A2 =

Γ (a + b−m) Γ (a′ − b)!

Γ (a′) Γ (a−m)
.

Функции (5.130)–(5.131), а также следующая:

U
(1,∞)
0 (a, a′; b, a + b + m; z, ζ) =

= (−ζ)−a′ F
(
a, a′; 1− c + a + a′, 1− b + a′ 1 + m; z − 1, ζ−1 )

,
(5.132)

являются линейно независимыми частными решениями системы (5.3).

Гипергеометрические ряды Gln, H и F фигурирующие в (5.130), (5.131) и

(5.132), определяются равенствами (5.116), (5.108) и (5.106).

Введенные в предложениях 2.18–2.20 функции U
(1,∞)
j , j = 0, 1, 2, явля-

ются каноническими решениями системы (5.3) в области W2. Произвольное

решение этой системы в W2 может быть записано в виде линейной

комбинации не более чем трех функций U
(1,∞)
j , представленных в предло-

жениях 2.18–2.20.

Аналитическое продолжение функции Аппеля в область больших по моду-

лю z и близких к единице ζ получается применением к предложениям 2.18–

2.20 соотношения симметрии (5.7).



Г л а в а III

Представление решения задачи
Римана — Гильберта в виде интеграла

Кристоффеля — Шварца

В настоящей главе установлено, что решение P+(ζ) сингулярной задачи

Римана — Гильберта в H+ в случае, когда ее данные χ(ξ) и σ(ξ) кусочно–

постоянны с множеством точек разрыва Ξ, указанном в (3.1), стр. 38, может

быть представлено в виде обобщенного интеграла Кристоффеля — Шварца:

P+(ζ) = K1

∫ ζ ∏N

k=1
(t− ξk)

γk−1 P (t)dt + K2; (0.1)

здесь P (ζ) — полином с вещественными коэффициентами, для которого

найдено явное выражение в терминах функции Лауричеллы, определяемой

рядом (1.2), стр. 68. Степень полинома P (ζ) в (0.1) зависит от числа точек

разрыва функции χ(ξ) и от индекса κ задачи. Показатели γk — вещественные

числа; их дробные части выражаются через скачки аргумента функции χ(ξ)

в точках ее разрыва, а целые части γk определяются некоторыми дополни-

тельными условиями.

Поскольку приведенный выше интеграл Кристоффеля — Шварца, как из-

вестно [78], определяет отображение H+ на (возможно, неоднолистный) мно-

гоугольник, то найденное представление придает геометрический смысл ис-

комой функции P+ и тем самым решает проблему Римана о ее геометрической

интерпретации. Кроме того, представление (0.1) решения задачи Римана —

Гильберта более удобно для численной реализации, чем традиционное через

интегралы типа Коши.
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– 162 –

В § 1 решение рассматриваемой сингулярной задачи Римана — Гильберта

с кусочно–постоянными данными записано через интегралы типа Коши. В

§ 2 это представление преобразовано с помощью формулы типа Якоби для

функции Лауричеллы F
(N)
D к виду интеграла типа Кристоффеля — Шварца.

§1. Задача Римана — Гильберта с кусочно–постоянными

данными в H+ и представление ее решения в виде

интеграла типа Коши

1.1. Постановка задачи. Обозначим через Lk интервалы веществен-

ной оси R между соседними точками множества Ξ из (3.1), стр. 38, т.е.

Lk = (ξk, ξk+1), k = 0, N , где, напомним, ξ0 = ξN+1 — бесконечно удален-

ная точка. Введем комплексную и вещественную кусочно–постояные функ-

ции χ(ξ) и σ(ξ) на оси R, которые в дальнейшем играют роль данных задачи,

по формулам

χ(ξ) = χk, σ(ξ) = σk; ξ ∈ Lk, k = 0, N, (1.1)

где χk 6= 0 и σk — некоторые постояные величины. Кроме того, как и в главе I,

зададим набор неотрицательных целых чисел:

G :=
{
n0, n1, . . . , nN

}
, nk ∈ Z+, k = 0, N, (1.2)

и поставим в соответствие каждой точке ξk ∈ Ξ число nk ∈ G, которое в

дальнейшем будет характеризовать целую часть показателя роста решения

P+(ζ) задачи Римана — Гильберта в этой точке.

Отметим, что аргумент arg χ(ξ) функции χ(ξ) из (1.1) принимает на каж-

дом из интервалов Lk, k = 0, N , некоторое постоянное значение, определен-

ное с точностью до величины 2πmk, где mk — целое число (свое для каждого

интервала). Зафиксируем произвольным образом величины mk, k = 0, N , и

вычислим скачки функции arg χ(ξ) в точках множества Ξ по формулам

δk :=
arg χk − arg χk−1

π
, k = 1, N ; δ0 := − arg χ0 − arg χN

π
, (1.3)
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уточняющим (3.3), (3.4), стр. 39; кроме того, вычислим дробные и целые

части скачков δk, определенных в (1.3):

[0, 1) 3 αk := {δk}, βk := [δk], k = 0, N ; (1.4)

введем еще скачки функции ρ(ξ) = σ(ξ)/χ(ξ):

ρk =
σk+1

χk+1
− σk

χk
, k = 0, N.

Определим также величину

ΘN :=
π

2
− arg χN . (1.5)

Будем предполагать, что числа n0 и α0, соответствующие бесконечно удален-

ной точке ξ0, одновременно не равны нулю, что с учетом α0 ∈ [0, 1) и n0 ∈ Z+

означает α0 + n0 6= 0, а, кроме того, среди конечных точек ξk ∈ Ξ нет таких,

для которых одновременно имеют место равенства nk = 0 и αk = 0, но ρk 6= 0.

Таким образом, считаем, что всегда удовлетворяются условия

1) α0 + n0 6= 0, 2) 6 ∃ k = 1, N : nk = 0, αk = 0, ρk 6= 0. (1.6)

Отметим, что эти условия обеспечивают выполнение требований (3.8), стр. 40,

т.е. имеет место случай I (нелогарифмический).

Через H+ по–прежнему обозначаем класс функций, аналитических в H+ и

непрерывных в H+ \Ξ, где Ξ — множество точек (3.1), стр. 38, вещественной

оси, в которых функции χ(ξ) и σ(ξ) терпят разрывы.

Рассматриваемая задача Римана — Гильберта заключается в нахождении

аналитической в верхней полуплоскости функции P+ ∈ H+ по заданному на

вещественной оси краевому условию

Re
[
χ(ξ)P+(ξ)

]
= σ(ξ), ξ ∈ R \ Ξ, (1.7)

где χ и σ определены в (1.1); при этом предполагается, что в точках множе-

ства Ξ функция P+ удовлетворяет следующим условиям роста:

P+(ζ) =

{
O

[
(ζ − ξk)

αk −nk
]
, если nk 6= 0;

O(1), если nk = 0;
ζ → ξk (k = 1, N ), (1.8)



– 164 –

P+(ζ) = O
(
ζ α o + n o

)
, ζ →∞. (1.9)

Эти соотношения повторяют (3.26) и (3.27), см. стр. 43, и приведены здесь

для удобства изложения.

1.2. Представление решения через интегралы типа Коши. Разре-

шимость сформулированной в предыдущем пункте задачи Римана — Гиль-

берта и представление ее решения устанавливает следующая теорема, уточ-

няющая теорему 1.5, I), см. стр. 65, для случая кусочно–постояных данных

χ и σ.

Теорема 3.1. Для рассматриваемой задачи Римана — Гильберта (1.7)–

(1.9) с кусочно–постоянными данными (1.1), удовлетворяющими условиям

(1.6), справедливы следующие утверждения.

i) Если индекс κ, определяемый по формуле

κ := n o − β o +
∑N

k=1
(βk + nk), (1.10)

неотрицателен, то решение P+ ∈ H+ имеет вид

P+(ζ) = X+(ζ)
[
Pκ (ζ) + F+(ζ)

]
; (1.11)

здесь X+(ζ) — каноническая функция, определяемая по формуле

X+(ζ) = e iΘN

∏N

k=1
(ζ − ξk)

αk−nk, (1.12)

где постоянная ΘN дается равенством (1.5), Pκ(ζ) — произвольный много-

член степени κ с вещественными коэффициентами, а функция F+(ζ) на-

ходится следующим образом:

F+(ζ) =
∑N

k=0
F+

k (ζ), (1.13)

F+
k (ζ) =

σk

χk πi

∫

Lk

dt

X+(t)(t− ζ)
, k = 1, N − 1, (1.14)

F+
0 (ζ) =

σ0(ζ − τ∗)κ

χ0 πi

∫

L0

(t− τ∗)−κ

X+(t)(t− ζ)
dt,

F+
N(ζ) =

σN(ζ − τ ∗)κ

χN πi

∫

LN

(t− τ ∗)−κ

X+(t)(t− ζ)
dt;

(1.15)
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здесь τ∗, τ ∗ ∈ R — произвольные точки, принадлежащие соответственно

интервалам (ξ1, +∞) и (−∞, ξN).

ii) Если κ = −1, то единственное решение задачи имеет вид

P+(ζ) = X+(ζ) F+(ζ), (1.16)

где функция F+(ζ) определяется по формулам (1.13)–(1.15), при этом в

(1.15) следует формально положить κ = 0.

iii) Если κ < −1 и выполняются условия разрешимости
∑N

m=0
Bk m

σm

χm
= 0, k = 0, 1, . . . , |κ| − 2; Bk m :=

∫

Lm

tk

X+ (t)
dt, (1.17)

то единственное решение задачи имеет вид (1.16). Если же κ < −1 и

указанные условия (1.17) не выполнены, то рассматриваемая задача Римана

— Гильберта неразрешима.

Доказательство теоремы 3.1, использующее те же приемы, что и в

доказательстве теоремы 1.5, I), представлено в приложении D.

Предположим, что первое условие (1.6) не выполнено, т.е. α0 = n0 = 0.

Тогда, используя равенство

α0 + n0 = κ +
∑N

k=1
(αk − nk), (1.18)

вытекающее из (1.3), (1.4) и (1.10), нетрудно убедиться в том, что определен-

ные в (1.13) интегралы F+
0 (ζ) и F+

N(ζ) по бесконечным интервалам расходятся

(рассматриваем случай κ ≥ 0). Если при этом ρ0 6= 0, то условие (1.9) теоре-

мы 3.1 следует заменить на P+(ζ) = O(ln ζ), ζ →∞, а в формулах (1.15) для

F+
0 (ζ) и F+

N(ζ) — положить (κ + 1) вместо κ. После этого все утверждения

теоремы будут выполнены. Если же α0 = n0 = 0 и ρ0 = 0, то в формулах

(1.15) полагаем τ ∗ = τ∗ и сумму F+
0 (ζ) + F+

N(ζ) =: S(ζ) рассматриваем как

интеграл в смысле главного значения, который, как нетрудно показать, су-

ществует. Функцию F+(ζ), фигурирующую в теореме, будем вычислять по

формуле F+(ζ) = S(ζ) +
∑N−1

k=1 F+
k (ζ), где F+

k (ζ), по–прежнему, определяют-

ся из (1.14). С учетом такой модификации функции F+(ζ) все утверждения
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теоремы 3.1 выполнены. Условие (1.9) при этом переходит в P+(ζ) = O(1),

ζ → ∞. Отметим также, что если в одной из конечных точек ξk ∈ Ξ на-

рушается второе условие (1.6), то вид решения, приведенный в теореме 3.1

сохраняется, при этом в точке ξk функция P+(ζ) будет иметь логарифмиче-

скую асимптотику, вместо степенной (1.8).

Можно показать, что если в формуле (1.13) для F+
0 заменить τ∗ на τ̃ 6= τ∗ и

обозначить такую функцию через F̃+
0 , то разность F̃+

0 −F+
0 будет некоторым

полиномом степени (κ − 1) с вещественными коэффициентами. Аналогич-

ное замечание справедливо и для F+
N . Таким образом, присутствие τ∗ и τ ∗

в (1.15) не влияет на общее число произвольных вещественных постоянных,

равное (κ + 1), от которых зависит решение задачи Римана — Гильберта,

рассматриваемой в теореме 3.1.

§2. Построение решения задачи Римана — Гильберта в

виде интеграла Кристоффеля — Шварца

2.1. Предварительные замечания. Перепишем решение P+ задачи

Римана — Гильберта (1.7)–(1.9), приведенное в теореме 3.1, так, чтобы его

удобно было преобразовать к виду интеграла Кристоффеля — Шварца (0.1)

с помощью частного случай формулы типа Якоби, указанного ниже в тео-

реме 3.2. Раскрывая квадратные скобки в представлении (1.11) для решения

P+ при неотрицательном индексе κ, получаем

P+(ζ) = Ψ+(ζ) + N+(ζ), (2.1)

где функция

Ψ+(ζ) := X+(ζ)Pκ(ζ), (2.2)

является общим решение однородной задачи, а N+(ζ) — частное решение

неоднородной задачи, определяемое по формуле

N+(ζ) =
∑N

k=0
N+

k (ζ), N+
k (ζ) := X+(ζ)F+

k (ζ), (2.3)
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в которой X+(ζ) и F+
k (ζ) даются равенствами (1.12) и (1.13). В случае отри-

цательного индекса κ согласно теореме 3.1 в представлении (2.1) отсутствует

слагаемое Ψ+(ζ), а функции F+
k (ζ), фигурирующие в формуле (2.3), находят-

ся из (1.13), где для F+
0 (ζ) и F+

N(ζ) необходимо положить κ = 0.

Функция Ψ+(ζ) записывается в виде интеграла Кристоффеля — Швар-

ца путем дифференцирования правой части равенства (2.2), последующих

несложных преобразований и неопределенного интегрирования полученного

выражения; соответствующие формулы приведены в п. 2.5.

Вывод аналогичного представления для частного решения N+(ζ) осуществ-

ляется следующим образом. Используя замену переменных, переводящую ин-

тервал Lk в единичный (0, 1), и применяя интегральное представление для

функции Лауричеллы (1.6), выразим все слагаемые N+
k (ζ) в (2.3) через функ-

ции F
(N)
D (для которых наборы параметров и переменных не совпадают при

разных k). Применяя к полученным выражениям для N+
k (ζ) вариант форму-

лы типа Якоби, указанный ниже в п. 2.2, преобразуем производные d
dζ N+

k (ζ) к

виду произведения биномов и некоторого явно выписанного полинома T k(ζ),

откуда после интегрирования находим

N+
k (ζ) =

∫ ζ ∏N

j=1
(t− ξj)

αj−nj−1 T k(t) dt. (2.4)

Замечая, что подынтегральные выражения в (2.4) при разных k отличаются

лишь видом полинома Tk(ζ), сложим равенства (2.4) и в соответствии с (2.3)

получим искомое представление для N+(ζ).

Описанные преобразования функций N+
0 и N+

N осуществлены соответствен-

но в пп. 2.4.1o и 2.4.3o, а аналогичные преобразования функций N+
k , k =

1, N − 1, выполнены в п. 2.4.2o. В следующем п. 2.2 указан используемый

частный случай формул типа Якоби, а в п. 2.3 введены обозначения, упро-

щающие вид получаемых формул.

2.2. Используемый вариант формулы типа Якоби для функции

Лауричеллы. В теореме 2.2 главы II, см. стр. 84, были построены диффе-

ренциальные соотношения типа Якоби, обобщающие тождество (2.32), стр. 80,
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на случай функции Лауричеллы F
(N)
D . Согласно замечанию 2.3 на стр. 85

тождество с номером j существенно упрощается, если aj = 1, и имеет вид

произведения биномов и некоторого явно выписанного полинома.

Вывод представления вида (0.1) для решения задачи Римана — Гильберта

основан на использовании установленной теоремой 2.2 формулы с номером

j = N для функции Лауричеллы F
(N)
D , параметр aN которой равен единице,

т.е. функции вида

F
(N)
D ( a1, . . . , aN−1︸ ︷︷ ︸

=a

, 1; b, c; z1, . . . , zN−1︸ ︷︷ ︸
= z

, w); (2.5)

здесь переменное zN , соответствующее параметру aN = 1, переобозначено

через w. Такую формулу для функции (2.5) по–прежнему будем называть

формулой или соотношением типа Якоби для функции Лауричеллы.

В дальнейшем применяется следующая векторная запись для параметров

и аргументов функции (2.5):

a := (a1, . . . , aN−1), z := (z1, . . . , zN−1), (2.6)

а также обозначение as для вектора, полученного увеличением s–й компо-

ненты a на единицу:

as := (a1, . . . as−1, as + 1, as+1, . . . , aN−1). (2.7)

Модуль вектора означает сумму его элементов, например, для вектора a из

(2.6) имеем |a| := ∑N−1
s=1 as.

Из теоремы 2.2 главы II, стр. 84, вытекает следующее утверждение.

Теорема 3.2. Для функции Лауричеллы (2.5) имеет место формула ти-

па Якоби:

∂

∂w

{ [ ∏N−1

j=1
(w − zj)

aj

]
wc−|a|−1 (1− w)1+b−c F

(N)
D (a, 1; b, c; z, w)

}
=

=

[ ∏N−1

j=1
(w − zj)

aj−1
]

wc−|a|−2 (1− w)b−c R (a; b, c; z, w),

(2.8)
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где R (a; b, c; z, w) — полином степени (N − 1) по переменному w, опреде-

ляемый равенством

R(a; b, c; z, w) =

[ ∏N−1

j=1
(w − zj)

] (
λ0 +

∑N−1

s=1

λs

w − zs

)
; (2.9)

здесь коэффициенты λs, s = 0, N − 1, не зависят от w и выражаются через

функции Лауричеллы с числом переменных (N−1) по следующим формулам:

λ0 := (c− 1)F
(N−1)
D (a; b− 1, c− 1; z),

λs :=aszs(1− zs)F
(N−1)
D (as; b, c; z), s = 1, N − 1,

(2.10)

где векторы a, z и as определены в (2.6) и (2.7).

Напомним, что в главе II, см. формулу (2.32) на стр. 80, было приведено

известное в теории гипергеометрической функции Гаусса тождество Якоби

[19], [187]. Отметим, что правая часть этого равенства, как нетрудно показать,

используя формулы (4.4) на стр. 96 и (1.4), стр. 69, существенно упрощается,

если параметр a равен единице, и имеет вид произведения биномов. В этом

случае тождество Якоби принимает вид
d

dz

[
zc−1(1− z)1+b−cF (1, b; c; z)

]
= (c− 1)zc−2(1− z)b−c. (2.11)

Нетрудно увидеть, что установленные теоремой 3.2 формулы типа Яко-

би (2.8)–(2.10) для функции Лауричеллы (2.5) обобщают тождество (2.11).

Действительно, пусть N = 1, т.е. функция Лауричеллы (2.5) совпадает с

F (1, b; c; z). Тогда поскольку вектор a из (2.6) имеет (N − 1) элемент, пола-

гаем |a| = 0 в (2.8), а произведения по j и суммы по s в (2.8), (2.9) считаем

равными соответственно единице и нулю (поскольку верхний предел меньше

нижнего). С учетом этого из (2.9), (2.10) получаем R = λ0 = c− 1 и видим,

что тождество (2.8) при N = 1 совпадает с (2.11).

2.3. Используемые обозначения. Введем вектор a := (a0, a1, . . . , aN),

компоненты aj которого связаны с данными задачи Римана — Гильберта

(1.7)–(1.9) с помощью соотношений:

a0 := κ, aj := αj − nj, j = 1, N ; (2.12)
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здесь, напомним, κ — индекс задачи, определяемый по формуле (1.10), ве-

личины αj находятся из (1.3), (1.4), а nj — неотрицательные целые числа из

набора (1.2).

Определим векторы ak, k = 1, N − 1, получаемые из a исключением эле-

ментов a0, ak, ak+1, т.е.

ak := (a1, . . . , ak−1, ak+2, . . . , aN), (2.13)

а также векторы a0 и aN :

a0 = aN := (a0, a2, . . . , aN−1). (2.14)

Введем векторы as
k, получаемые увеличением на единицу компоненты as век-

торов ak (предполагается, что s 6= k, k + 1, если k = 1, . . . , N − 1 и s 6= 1, N ,

если k = 0 или k = N), т.е.

as
k :=

(
a1, . . . , ak−1, ak+2, . . . , as−1, as + 1, as+1, . . . , aN

)
, k = 1, N − 1,

as
0 = as

N :=
(
a0, a2, . . . , as−1, as + 1, as+1, . . . , aN−1

)
,

a0
0 = a0

N := (a0 + 1, a2, . . . , aN−1).

(2.15)

Определим числа bk и ck, k = 0, N , с помощью соотношений

b0 := |α|+ κ − |n|, c0 := |α2,N |+ κ − |n2,N |+ 1; (2.16)

bk := 1 + nk − αk, ck := 2 + nk + nk+1 − αk − αk+1, k = 1, N − 1; (2.17)

bN := |α|+ κ − |n|, cN := |α1,N−1|+ κ − |n1,N−1|+ 1; (2.18)

здесь, как обычно,

|αk,l| =
∑l

j=k
αj, |α| = |α1,N |; |nk,l| =

∑l

j=k
nj, |n| = |n1,N |. (2.19)

Величины |βk,l| и |β|, где β := (β1, . . . , βN), определяются аналогично. Век-

торы uk, k = 0, N , имеют вид

u0 :=
(
u0

0, u0
2, . . . , u

0
N−1

)
; (2.20)
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uk :=
(
uk

1, . . . , u
k
k−1, u

k
k+2, . . . , u

k
N

)
, k = 1, N − 1; (2.21)

uN :=
(
uN

0 , uN
2 , . . . , uN

N−1
)
; (2.22)

здесь величины uk
j определяются следующими равенствами:

u0
0 :=

ξN − τ∗
ξN − ξ1

; u0
j :=

ξN − ξj

ξN − ξ1
, j = 2, N − 1; (2.23)

uk
j :=

ξk+1 − ξk

ξj − ξk
, j = 1, N \ {k, k + 1}, k = 1, N − 1; (2.24)

uN
0 :=

τ ∗ − ξ1

ξN − ξ1
; uN

j :=
ξj − ξ1

ξN − ξ1
, j = 2, N − 1 , (2.25)

в которых τ∗ и τ ∗ имеют тот же смысл, что и в теореме 3.1, а ξj, j = 1, N , —

точки множества Ξ разрыва граничных данных χ(ξ) и σ(ξ) задачи Римана

— Гильберта (1.7)–(1.9), определенного в (3.1).

Приведем выражение для бета–функции [19]:

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
,

используемой далее для упрощения записи формул.

2.4. Приведение функции N+
k (ζ), k = 0, N , и частного решения

N(ζ) к виду интеграла Кристоффеля — Шварца.

2.4.1o. Представление для функции N+
0 (ζ) в виде интеграла Кристоффеля —

Шварца. В соответствии с (2.3), (1.12) и (1.13) функция N+
0 (ζ) имеет следу-

ющее представление через интеграл типа Коши:

N+
0 (ζ) =

σ0

χ0πi

[
(ζ − τ∗)κ

N∏
j=1

(ζ − ξj)
αj−nj

] ξ1∫

−∞

(t− τ∗)−κ dt
N∏

j=1
(t− ξj)αj−nj(t− ζ)

. (2.26)

Выполняя замену переменных t и ζ на новые переменные τ и w по формулам

t(τ) = ξN + (ξ1 − ξN)τ−1 , ζ(w) = ξN + (ξ1 − ξN)w (2.27)
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и используя представление (1.6), стр. 70, для функции Лауричеллы, получаем

для интеграла в (2.26) следующее выражение:
∫ ξ1

−∞

(t− τ∗)−κ dt∏N
j=1 (t− ξj)αj−nj(t− ζ)

= −B(b0, c0 − b0)×

× (ξ1 − ξN)−b0F
(N)
D

(
a0, 1; b0, c0; u0, w

)
,

(2.28)

где параметры a0, b0, c0 и переменное u0 функции Лауричеллы определены

в (2.14), (2.16) и (2.21), (2.23). С помощью замены ζ(w), введенной в (2.27),

преобразуем произведение перед интегралом (2.26) к виду:

(ζ − τ∗)κ
N∏

j=1

(ζ − ξj)
αj−nj = (ξ1 − ξN)b0wc0−|a0|−1 (w − 1)1+b0−c0

N−1∏′

j=0

(w − u0
j)

aj ,

(2.29)

где учтены равенства α1 − n1 = 1 + b0 − c0, αN − nN = c0 − |a0| − 1, легко

получаемые из формул (2.14), (2.16) для параметров a0, b0 и c0, а величины u0
j

определены в (2.23). Штрих над произведением в (2.29) означают, что индекс

j 6= 1. Подставляя (2.28), (2.29) в (2.26), находим

N+
0

(
ζ(w)

)
= − σ0

χ0πi
B(b0, c0 − b0)×

×wc0−|a0|−1 (w − 1)1+b0−c0

[ N−1∏′

j=0

(w − u0
j)

aj

]
F

(N)
D

(
a0, 1; b0, c0; u0, w

)
.

(2.30)

Дифференцируя это равенство и применяя формулу типа Якоби (2.8),

(2.10), получаем выражение для производной
d

dw
N+

0

(
ζ(w)

)
=

σ0

χ0πi
B(b0, c0 − b0)×

×wc0−|a0|−2 (w − 1)b0−c0

[ N−1∏′

j=0

(w − u0
j)

aj−1
]

R0 (w),

(2.31)

где R0(w) — полином по переменному w, определяемый следующими равен-

ствами:

R0(w) =

[ N−1∏′

j =0

(w − u0
j)

](
λ0
−1 +

N−1∑′

s=0

λ0
s

w − u0
s

)
; (2.32)
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λ0
−1 = (c0 − 1)F

(N−1)
D ( a0; b0 − 1, c0 − 1; u0 ),

λ0
s = asu

0
s(1− u0

s)F
(N−1)
D

(
as

0; b0, c0; u0
)
, s = 0, 2, . . . , N − 1.

(2.33)

В формуле (2.32) штрих над суммой и произведением означает, что они бе-

рутся по всем индексам за исключением соответственно s = 1 и j = 1.

Выполняя в формулах (2.31), (2.32) обратную к ζ(w) из (2.27) замену

w(ζ) =
ζ − ξN

ξ1 − ξN
,

d

dζ
= (ξ1 − ξN)−1 d

dw
(2.34)

с учетом равенства − arg χ0 − π(|α| − |n|) = − arg χN + π(|β|+ |n|), вытека-
ющего из (1.3), (1.4), (1.10), получаем

d

dζ
N+

0 (ζ) = eiΘN

[ N∏
j=1

(ζ − ξj)
αj −nj−1

]
T 0(ζ); (2.35)

здесь ΘN — постоянная из (1.5), а T0(ζ) — полином степени (N + κ − 2),

определенный по формуле

T0(ζ) = Λ0

[
(ζ − τ∗)κ

N−1∏

j =2

(ζ − ξj)

](
µ0
−1 +

µ0
0

ζ − τ∗
+

N−1∑
2=0

µ0
s

ζ − ξs

)
, (2.36)

где коэффициенты Λ0, µ0
−1 и µ0

s имеют вид

Λ0 = −eiπ(β0−n0) σ0

π |χ0| B(b0, c0 − b0) (ξN − ξ1)
−b0,

µ0
−1 = (c0 − 1)(ξ1 − ξN)F

(N−1)
D ( a0; b0 − 1, c0 − 1; u0 ),

µ0
0 = a0 (ξN − τ∗)(τ∗ − ξ1) F

(N−1)
D

(
a0

0; b0, c0; u0
)
,

µ0
s = as (ξN − ξs)(ξs − ξ1) F

(N−1)
D

(
as

0; b0, c0; u0
)
, s = 2, . . . , N − 1.

(2.37)

Здесь, напомним, величины as, a0, b0, c0 и u0 связаны с данными задачи

Римана — Гильберта (1.7)–(1.9) равенствами (2.14), (2.16) и (2.20).

Интегрируя обе части равенства (2.35), приходим к следующему утвер-

ждению.

Предложение 3.1. Функция N+
0 (ζ), заданная формулой (2.26), предста-

вима в виде следующего интеграла Кристоффеля — Шварца:

N+
0 (ζ) = eiΘN

∫ ζ

ζ∗

[ ∏N

j=1
(t− ξj)

αj −nj−1
]
T 0(t) dt + ν∗0 , (2.38)
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где ΘN — постоянная из (1.5), а полином T0(ζ) степени (N + κ − 2) опре-

деляется равенствами (2.36), (2.37).

В качестве нижнего предела интегрирования ζ∗ в (2.38) может быть вы-

брана любая точка ζ∗ ∈ H+, в которой функция N+
0 принимает конечное зна-

чение. При этом константа интегрирования ν∗0 = N+
0 (ζ∗) находится из (2.26),

(2.28), где ζ необходимо заменить на ζ∗, а переменное w функции Лауричел-

лы — на величину w(ζ∗), вычисленную с помощью первого равенства (2.34).

Выражение для этой константы следующее:

ν∗0 = −eiΘN Λ0(ζ
∗ − τ∗)κ

N∏
j=1

(ζ∗ − ξj)
ajF

(N)
D

(
a0, 1; b0, c0; u0,

ζ∗ − ξN

ξ1 − ξN

)
, (2.39)

где ΘN и Λ0 находятся соответственно из (1.5) и (2.37).

Напомним, что рассматриваемая в предложении 3.1 функция N+
0 перво-

начально была определена по формуле (2.3), т.е. в виде N+
0 = X+F+

0 , где X+

дается равенством (1.12), F+
0 — равенством (1.13); при этом предполагалось,

что индекс κ задачи Римана — Гильберта неотрицателен (κ ≥ 0). В случае

κ < 0 согласно п. ii) и iii) теоремы 3.1 функция F+
0 определяется из (1.13),

где следует положить κ = 0. Таким образом, если κ < 0, то функция N+
0

также записывается в виде интеграла Кристоффеля — Шварца (2.38), при

этом полином T0(ζ) определяется по формулам (2.36), (2.37), где необходимо

положить a0 = κ = 0, и имеет степень (N − 2).

2.4.2o. Представление для функций N+
k (ζ), k = 1, N − 1, в виде интеграла

Кристоффеля — Шварца. В соответствии с (2.3), (1.12) и (1.13) для функций

N+
k (ζ), k = 1, N − 1, справедливо следующее представление через интеграл

типа Коши:

N+
k (ζ) =

σk

χkπi

[ ∏N

j=1
(ζ − ξj)

αj−nj

] ∫ ξk+1

ξk

dt∏N
j=1 (t− ξj)αj−nj(t− ζ)

. (2.40)

Для того чтобы преобразовать (2.40) к виду интеграла Кристоффеля —Швар-

ца, прежде всего выразим фигурирующий в (2.40) интеграл типа Коши через
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функцию Лауричеллы. Для этого введем вместо t и ζ новые переменные τ и

w по формулам

t(τ) = ξk + (ξk+1 − ξk) τ , ζ(w) = ξk +
ξk+1 − ξk

w
(2.41)

Выполняя в интеграле (2.40) замены (2.41) и используя представление (1.6),

стр. 70, для функции Лауричеллы, получаем для интеграла в (2.26) следую-

щее выражение:
∫ ξk+1

ξk

dt∏N
j=1(t− ξj)αj−nj(t− ζ)

= −e−iπak+1 B(bk, ck − bk)×

×
[
(ξk+1 − ξk)

−ak−ak+1

N∏′′

j =1

(ξk − ξj)
−aj

]
wF

(N)
D

(
ak, 1; bk, ck;uk, w

)
,

(2.42)

где параметры ak, bk, ck и переменные uk функции Лауричеллы определены

в (2.13), (2.17) и (2.21), (2.24). Применяя замену ζ(w) из (2.41), преобразуем

произведение перед интегралом (2.40) к виду:

N∏
j=1

(ζ − ξj)
αj−nj = eiπak+1

[
(ξk+1 − ξk)

ak+ak+1

N∏′′

j=1

(ξk − ξj)
aj

]
×

× wck−|ak|−2(w − 1)1+bk−ck

N∏′′

j=1

(w − uk
j )

aj ,

(2.43)

где учтены равенства |n| − |α| = ck− |ak| − 2, αk+1−nk+1 = 1 + bk− ck, легко

получаемые из формул (2.15), (2.17), а величины uk
j определены в (2.24).

Два штриха над произведением в (2.43) означают, что индекс j 6= k, k + 1.

Подставляя (2.42), (2.43) в (2.40), находим

N+
k

(
ζ(w)

)
= − σk

χk πi
B(bk, ck − bk)w

ck−|ak|−1(w − 1)1+bk−ck ×

×
N∏′′

j=1

(w − uk
j )

ajF
(N−1)
D

(
ak, 1; bk, ck;uk, w

)
.

(2.44)

Дифференцируя это равенство и применяя формулу типа Якоби (2.8),
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(2.10), получаем выражение для производной

d

dw
N+

k

(
ζ(w)

)
=

σk

χkπi
B(bk, ck − bk)×

×wck−|ak|−2(w − 1)bk−ck

[ N∏′′

j=1

(w − uk
j )

αj−nj−1
]

Rk (w),

(2.45)

где Rk(w) — полином по переменному w, определяемый следующими равен-

ствами:

Rk(w) =

[ N∏′′

j =1

(w − uk
j )

](
λk
−1 +

N∑′′

s=1

λk
s

w − uk
s

)
; (2.46)

здесь суммы и произведения берутся по всем индексам за исключением соот-

ветственно s = k, k + 1 и j = k, k + 1.

λk
−1 = (ck − 1)F

(N−2)
D ( ak; bk − 1, ck − 1; uk ),

λk
s = asu

k
s(1− uk

s)F
(N−2)
D

(
as

k; bk, ck; uk

)
, s = 1, N, s 6= k, k + 1.

Возвращаясь в формулах (2.45), (2.46) к переменному ζ с помощью обрат-

ной к (2.41) замены w(ζ) с помощью равенств

w(ζ) =
ξk+1 − ξk

ζ − ξk
,

d

dζ
= −ξk+1 − ξk

(ζ − ξk)2

d

dw
, (2.47)

и используя соотношение

− arg χk − π(|αk+1,N | − |nk+1,N |) = − arg χN + π(|βk+1,N |+ |nk+1,N |),

получаем
d

dζ
N+

k (ζ) = eiΘN

[ N∏
j=1

(ζ − ξj)
αj −nj−1

]
T k(ζ), (2.48)

где величина ΘN определена в (1.5), а Tk(ζ) — полином степени (N − 2),

определяемый по формуле

Tk(ζ) = Λk

[ N∏′′

j=1

(ζ − ξj)

] [
µk
−1 + (ζ − ξk)

N∑′′

s=1

µk
s

ζ − ξs

]
; (2.49)
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здесь коэффициенты Λk, µk
−1 и µk

s даются формулами

Λk = −eiπ(|βk+1,N |+|nk+1,N |) σk

|χk|πB(bk, ck − bk)(ξk+1 − ξk)
ck−1

N∏′′

j=1

|ξk − ξj|−aj ,

µk
−1 = (ck − 1)F

(N−2)
D ( ak; bk − 1, ck − 1; uk ),

µk
s = as

(ξs − ξk+1)

(ξk − ξs)
F

(N−2)
D

(
as

k; bk, ck; uk

)
, s = 1, N, s 6= k, k + 1.

(2.50)

Напомним, что фигурирующие здесь величины ak, as
k, bk, ck и uk определя-

ются через данные рассматриваемой задачи Римана — Гильберта (1.7)–(1.9) с

помощью равенств (2.13), (2.15), (2.17) и (2.21); сумма и произведения в (2.49),

(2.50) берутся по всем индексам за исключением соответственно s = k, k + 1

и j = k, k + 1.

Интегрируя обе части формулы (2.48), приходим к следующему утвержде-

нию.

Предложение 3.2. Функции N+
k (ζ), k = 1, N − 1, определенные с по-

мощью интеграла типа Коши (2.40), представимы в виде интеграла Кри-

стоффеля — Шварца следующего вида:

N+
k (ζ) = eiΘN

∫ ζ

ζ∗

[ ∏N

j=1
(ζ − ξj)

αj −nj−1
]
T k(t) dt + ν∗k , (2.51)

где постоянная ΘN находится из (1.5), а полиномы Tk(ζ), k = 1, N − 1,

имеют степень (N − 2) и определяются равенствами (2.49), (2.50).

В качестве нижнего предела интегрирования ζ∗ в (2.51) может быть вы-

брана любая точка ζ∗ ∈ H+, в которой функция N+
k принимает конечное

значение. При этом константа интегрирования ν∗k = N+
k (ζ∗) находится из

(2.40), (2.42), где ζ = ζ∗ и переменное w функции Лауричеллы заменено на

величину w(ζ∗), вычисленную из первого равенства (2.47). Выражение для

этой константы имеет вид

ν∗k = −eiΘN
Λk

ζ∗ − ξk

N∏
j =1

(ζ∗ − ξj)
−ajF

(N)
D

(
ak, 1; bk, ck; uk,

ξk+1 − ξk

ζ∗ − ξk

)
, (2.52)

где ΘN и Λk определяются соответственно из (1.5) и первого равенства (2.50).
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2.4.3o. Представление для функции N+
N(ζ) в виде интеграла Кристоффеля —

Шварца. В соответствии с (2.3), (1.12) и (1.13) для функции N+
N(ζ) справед-

ливо следующее представление через интеграл типа Коши:

N+
N(ζ) =

σN

χN πi

[
(ζ − τ ∗)κ

N∏
j=1

(ζ − ξj)
αj−nj

] +∞∫

ξN

(t− τ ∗)−κ dt
N∏

j=1
(t− ξj)αj−nj(t− ζ)

. (2.53)

Для того чтобы преобразовать (2.53) к виду интеграла Кристоффеля —Швар-

ца, прежде всего выразим фигурирующий в (2.53) интеграл через функцию

Лауричеллы. Для этого введем вместо t и ζ новые переменные τ и w по фор-

мулам

t(τ) = ξ1 +
ξN − ξ1

τ
, ζ(w) = ξ1 + (ξN − ξ1)w. (2.54)

Выполняя в интеграле (2.53) замены (2.54) и используя интегральное пред-

ставление (1.6), стр. 70, для функции Лауричеллы, получаем
∫ +∞

ξN

(t− τ ∗)−κ dt∏N
j=1 (t− ξj)αj−nj(t− ζ)

= B(bN , cN − bN)×

× (ξN − ξ1)
−bN F

(N)
D

(
aN , 1; bN , cN ; uN , w

)
,

(2.55)

где параметры aN , bN , cN и переменные uN определены в (2.14), (2.18) и

(2.22), (2.25). С помощью замены ζ(w), введенной в формуле (2.54), преобра-

зуем произведение перед интегралом в (2.53) к виду:

(ζ − τ ∗)κ
∏N

j=1
(ζ − ξj)

αj−nj = (ξN − ξ1)
bN ×

× wcN−|aN |−1(w − 1)1+bN−cN

N−1∏′

j=0

(w − uN
j )aj ,

(2.56)

где штрих над произведением означает, что j 6= 1, и учтены соотношения

α1 − n1 = cN − |aN | − 1, αN − nN = 1 + bN − cN , получаемые из формул

(2.14), (2.18) для параметров aN , bN и cN , а величины uN
j определены в (2.25).



– 179 –

Подставляя (2.55), (2.56) в (2.53), находим

N+
N

(
ζ(w)

)
=

σN

χN πi
B(bN , cN − bN)wcN−|aN |−1(w − 1)1+bN−cN×

×
[ N−1∏′

j=0

(w − uN
j )aj

]
F

(N)
D

(
aN , 1; bN , cN ;uN , w

)
.

(2.57)

Дифференцируя это равенство и применяя формулу типа Якоби (2.8),

(2.10), получаем выражение для производной

d

dw
N+

N

(
ζ(w)

)
= − σN

χN πi
B(bN , cN − bN)×

×wcN−|aN |−2(w − 1)bN−cN

[ N−1∏′

j=0

(w − uN
j )aj−1

]
RN(w),

(2.58)

где RN(w) — полином по переменному w, определяемый следующими равен-

ствами:

RN(w) =

[ N−1∏′

j =0

(w − uN
j )

](
λN
−1 +

N−1∑′

s=0

λN
s

w − uN
s

)
, (2.59)

λN
−1 = (cN − 1)F

(N−1)
D (aN ; bN − 1, cN − 1; uN),

λN
s = asu

N
s (1− uN

s )F
(N−1)
D

(
as

N ; bN , cN ; uN

)
, s = 0, 2, . . . , N − 1;

(2.60)

штрих над суммой означает, что s 6= 1. Выполняя в формулах (2.58), (2.59)

обратную к ζ(w) из (2.54) замену

w(ζ) =
ζ − ξ1

ξN − ξ1
,

d

dζ
= (ξN − ξ1)

−1 d

dw
, (2.61)

получаем
d

dζ
N+

N(ζ) = eiΘN

[ ∏N

j=1
(ζ − ξj)

αj −nj−1
]

TN(ζ), (2.62)

где постоянная ΘN дается равенством (1.5), а TN(ζ) — полином степени (N +

κ − 2), определяемый по формуле

TN(ζ) = ΛN

[
(ζ − τ ∗)κ

∏N−1

j =2
(ζ − ξj)

](
µN
−1 +

µN
0

ζ − τ ∗
+

N−1∑
s=2

µN
s

ζ − ξs

)
;

(2.63)
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здесь коэффициенты ΛN , µN
−1 и µN

s имеют вид

ΛN =
σN

|χN |πB(bN , cN − bN) (ξN − ξ1)
−bN ,

µN
−1 = (cN − 1)(ξN − ξ1)F

(N−1)
D ( aN ; bN − 1, cN − 1; uN ),

µN
0 = a0(τ

∗ − ξ1) (ξN − τ ∗)F (N−1)
D

(
a0

N ; bN , cN ; uN

)
,

µN
s = as(ξs − ξ1) (ξN − ξs)F

(N−1)
D

(
as

N ; bN , cN ; uN

)
, s = 2, . . . , N − 1,

(2.64)

где, напомним, параметры as, aN , as
N , bN , cN и переменные uN функции Ла-

уричеллы связаны с данными рассматриваемой задачи Римана — Гильберта

(1.7)–(1.9) с помощью равенств (2.14), (2.15), (2.18) и (2.22).

Интегрируя в формуле (2.62), приходим к следующему утверждению.

Предложение 3.3. Функции N+
N(ζ), определенная формулой (2.26), пред-

ставима в виде интеграла Кристоффеля — Шварца следующего вида:

N+
N(ζ) = eiΘN

∫ ζ

ζ∗

[ ∏N

j=1
(ζ − ξj)

αj −nj−1
]
TN(t) dt + ν∗N , (2.65)

где постоянная ΘN определена в (1.5), а полином TN(ζ) степени (N +κ−2)

явно задан с помощью равенств (2.63), (2.64).

В качестве нижнего предела интегрирования в (2.65) может быть выбрана

любая точка ζ∗ ∈ H+, в которой функция N+
N принимает конечное значение.

При этом константа интегрирования ν∗N = N+
N(ζ∗) находится по формулам

(2.53), (2.55), где ζ = ζ∗, а величина w = w(ζ∗) вычислена с помощью первого

равенства (2.61). Приведем выражение для этой константы:

ν∗N = −eiΘNΛN(ζ∗ − τ ∗)κ
N∏

j=1

(ζ∗ − ξj)
ajF

(N)
D

(
aN , 1; bN , cN ;uN ,

ζ∗ − ξ1

ξN − ξ1

)
, (2.66)

где ΘN и ΛN находятся соответственно из (1.5) и первого равенства (2.64).

Для функции N+
N(ζ), рассматриваемой в предложении 3.3, справедливо

замечание, аналогичное приведенному на стр. 174 после предложения 3.1.

Действительно, представление (2.63)–(2.65) для этой функции в виде инте-

грала Кристоффеля — Шварца получено в предположении неотрицательного
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индекса κ задачи Римана — Гильберта (1.7)–(1.9). Если κ < 0, то из теоре-

мы 3.1 и приведенных выше рассуждений следует, что формула (2.65) имеет

прежний вид, а в выражения (2.63), (2.64) для полинома TN(ζ) следует фор-

мально подставить a0 = κ = 0; при этом TN(ζ) имеет степень (N − 2).

2.4.4o. Представление частного решения N+(ζ) в виде интеграла Кристоф-

феля — Шварца. Пусть в некоторой точке ζ∗ ∈ H+ конечными являются все

функции N+
k (ζ), определенные в (2.3), а следовательно, и частное решение

N+(ζ) задачи Римана — Гильберта (1.7)–(1.9). Складывая в соответствии с

(2.3) представления (2.38), (2.51), (2.65) для N+
k (ζ), находим следующее пред-

ставление функции N+(ζ) в виде интеграла Кристоффеля — Шварца:

N+(ζ) = eiΘN

ζ∫

ζ∗

[ N∏
j=1

(ζ − ξj)
αj−nj−1

]
T(t) dt + ν∗; (2.67)

здесь ΘN — константа из (1.5), а T(ζ) — полином степени (N + κ − 2) с

вещественными коэффициентами следующего вида:

T(ζ) =
∑N

k=0
Tk(ζ),

где Tk(ζ), k = 0, N , даются равенствами (2.36), (2.49) и (2.63), и, таким обра-

зом,

T(ζ) =

[ N∏
j=1

(ζ − ξj)

]{
Λ0(ζ − τ∗)κ

(ζ − ξ1)(ζ − ξN)

(
µ0
−1 +

µ0
0

ζ − τ∗
+

N−1∑
s=2

µ0
s

ζ − ξs

)
+

+
N−1∑

k=1

Λk

(ζ − ξk)(ζ − ξk+1)

[
µk
−1 + (ζ − ξk)

N∑′′

s=1

µk
s

ζ − ξs

]
+

+
ΛN(ζ − τ ∗)κ

(ζ − ξ1)(ζ − ξN)

(
µN
−1 +

µN
0

ζ − τ ∗
+

N−1∑
s=2

µN
s

ζ − ξs

)}
,

(2.68)

где τ∗ и τ ∗ имеют тот же смысл, что и в теореме 3.1, величины Λk и µk
s

определяются из (2.37), (2.50), (2.64), а два штриха над суммой означают,

что s 6= k, k + 1. В формуле (2.67) постоянная ν∗ = N+(ζ∗) имеет вид

ν∗ =
∑N

k=0
ν∗k , (2.69)

где числа ν∗k находятся из (2.39), (2.52) и (2.66).
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Из теоремы 3.1 следует, что если индекс κ < −1, то для существования

частного решения (2.67) требуется выполнение условий разрешимости (1.17).

Отметим еще, что если нарушается первое условие (1.6), то согласно за-

мечаниям, приведенным после теоремы 3.1, этот случай требует некоторых

модификаций при рассмотрении функций N+
0 и N+

N . В случае α0 = n0 = 0 и

g0 = 0 преобразование сингулярного интеграла X+(ζ)S(ζ) к виду интеграла

Кристоффеля — Шварца осуществляется способом, близким к примененному

в пп. 2.4.1o–2.4.3o.

Полином T(ζ) может иметь более простой вид для специальных случаев

данных рассматриваемой задачи Римана — Гильберта. Например, если функ-

ции χ(ξ) и σ(ξ) имеют три точки разрыва, т.е. N = 2, а индекс задачи равен

нулю, то T(ζ) является константой, равной T̃ =
∑2

k=0 Λkµ
k
−1, где величины Λk

и µk
−1 определяются по формулам (2.37), (2.50), (2.64), модифицированным

для указанного частного случая N = 2 и κ = 0.

2.5. Представление решения задачи Римана — Гильберта в ви-

де интеграла Кристоффеля — Шварца. Согласно сказанному в п. 2.1

общее решение Ψ+(ζ) однородной задачи Римана — Гильберта с кусочно–

постоянным коэффициентом χ(ξ) имеет вид

Ψ+(ζ) = e iΘN

N∏

j=1

(ζ − ξj)
αj−nj Pκ(ζ),

где ΘN — константа из (1.5), а Pκ(ζ) — произвольный полином степени κ
с вещественными коэффициентами. Путем дифференцирования и неопреде-

ленного интегрирования находим

Ψ+(ζ) = e iΘN

∫ ζ

ζ∗

[ ∏N

j=1
(t− ξj)

αj−nj−1
]
Q (t) dt + w∗

0, (2.70)

где Q (ζ) — полином степени (N − κ − 1), связанный с Pκ(ζ) равенством

Q (ζ) = Pκ(ζ)
N∑

s=1

[
(αs − ns)

N∏

j=1,j 6=s

(ζ − ξj)
]

+ P ′
κ (ζ)

N∏

j=1

(ζ − ξj), (2.71)
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а величина w∗
0 = Ψ+(ζ∗) определяется по формуле

w∗
0 = e iΘN

∏N

j=1
(ζ∗ − ξj)

αj −nj Pκ(ζ
∗). (2.72)

Нетрудно убедиться, учитывая (1.18), что при α0 = n0 = 0 старший коэффи-

циент полинома Q(ζ) равен нулю.

Из формул (2.1), (2.67) и (2.70) находим искомое представления для P+(ζ)

в виде интеграла Кристоффеля — Шварца, чем и завершаем доказательство

следующего утверждения.

Теорема 3.3. Для решения P+(ζ) задачи Римана — Гильберта (1.7)–

(1.9) в H+ с кусочно–постоянными данными (1.1), удовлетворяющими усло-

виям (1.6), справедливы следующие утверждения.

i) Если индекс κ, определенный по формуле (1.10) неотрицателен, то

решение P+ ∈ H+ представимо в виде интеграла Кристоффеля — Шварца

P+(ζ) = e iΘN

∫ ζ

ζ∗

∏N

j=1
(t− ξj)

αj −nj−1 R (t) dt + w∗; (2.73)

здесь R(ζ) — полином степени (N + κ − 1) с вещественными коэффициен-

тами следующего вида:

R (ζ) = Q (ζ) + T (ζ), (2.74)

где Q (ζ) — полином степени (N + κ − 1), определенный по формуле (2.71)

через полином Pκ(ζ) степени κ c произвольными вещественными коэф-

фициентами, а T(ζ) — вещественный полином (2.68), степень которого

(N + κ − 2). В формуле (2.73) фигурируют постоянные: ΘN из (1.5) и

w∗ := w∗
0 + ν∗, где w∗

0 и ν∗ находятся из (2.72) и (2.69).

ii) Если κ = −1, то единственное решение задачи записывается в виде

интеграла Кристоффеля — Шварца (2.73), (2.74), где в формуле (2.74) для

полинома R(ζ) следует положить Q (ζ) ≡ 0 и формально положить κ = 0

в формуле (2.68) для T(ζ).

iii) Если κ < −1, то для существования решения необходимо и доста-

точно выполнения условий (1.17). При этом, если указанные условия вы-

полнены, то решение находится по той же формуле, что и при κ = −1.
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Отметим, что если решение P+ рассматриваемой задачи Римана — Гиль-

берта конечно в одной из точек ξk ∈ Ξ (и, следовательно, непрерывно в пе-

ресечении некоторой окрестности ξk с замкнутой полуплоскостью H+ ), то в

формуле (2.74) можно положить ζ∗ = ξk, а величину w∗ = P+(ζ∗) вычислить

непосредственно из краевого условия задачи Римана — Гильберта. Действи-

тельно, продолжая по непрерывности краевое условие (1.7) в точку ξk слева

и справа, и подставляя в него w∗ = P+(ξk), получаем следующую систему

двух (линейных) уравнений для w∗:

Re
(
χk−1 w∗) = σk−1, Re

(
χk w∗) = σk.

Нетрудно убедиться в том, что ее решением является следующая величина:

w∗ = P+(ξk) = i
χkσk−1 − χk−1σk

Im (χkχk−1)
, (2.75)

которую и принимаем в качестве постоянной интегрирования в формуле (2.73)

при ζ∗ = ξk; в формуле (2.75) предполагается, что Im (χkχk−1) 6= 0.

Представление в виде интеграла Кристоффеля — Шварца (2.73) показы-

вает, что функция P+(ζ) осуществляет конформное отображение верхней по-

луплоскости H+ на некоторую односвязную многоугольную неоднолистную

область M, см., например, [78]. Внутренние точки ветвления области M яв-

ляются образами комплексных нулей полинома R(ζ) (лежащих в H+) при

отображении w = P+(ζ), а граничные угловые точки M — образами точек

ξk ∈ Ξ, а также вещественных нулей R(ζ) при этом отображении. Измерямый

по области M угол в точке wk = P+(ξk), k 6= 0, равен πγk := π(αk − nk), если

R(ξk) 6= 0, и π(γk +ρ), если R(ξk) = 0, где ρ — порядок нуля полинома R в ξk.

Угол в точке w̃ := P+(ξ̃ ), где ξ̃ ∈ R и R(ξ̃ ) = 0, но ξ̃ /∈ Ξ, равен π(ρ̃+1), где ρ̃

— порядок нуля R в точке ξ̃. Таким образом, теорема 3.3 дает ясную геомет-

рическую интерпретацию решению P+(ζ) рассматриваемой задачи Римана —

Гильберта.



Г л а в а IV

Приложение к задачам астрофизики

§1. Эффект магнитного пересоединения и используемые

предположения

1.1. Рассматриваемые задачи. Многие взрывообразные процессы, изу-

чаемые в физике звезд, протекают в разреженной плазме, когда магнитные

силы преобладают над всеми остальными (газодинамическими, гравитацион-

ными и др.), а высвобождение значительного количества энергии происходит

в результате эффекта магнитного пересоединения, т.е. принципиального из-

менения конфигурации магнитного поля [67], [101], [116], [124], [144]. При

изучение таких процессов основной математической задачей часто является

эффективный расчет магнитного поля для той или иной плазменной конфи-

гурации [101], [227].

В первой части настоящей главы (см. §2–§5) решены две задачи

Римана — Гильберта в сложной многоугольной области, возникающие при

моделировании магнитного пересоединения в короне Солнца. Именно это

явление согласно современным представлениям приводит к большим

солнечным вспышкам [101], [227]. Физический смысл искомых аналитических

функций в указанных задачах — магнитное поле в окрестности токовой кон-

фигурации, состоящей из токового слоя и присоединенных ударных волн.

Рассматриваемые задачи решены в аналитическом виде на основе резуль-

татов, полученных в главах I–III, в том числе с использованием нового вида

представлений искомых функций в виде интеграла Кристоффеля — Шварца,
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см. теорему 3.3. Выполнена эффективная численная реализация построенных

решений задач Римана — Гильберта, результаты которой представлены в §6.

Во второй части главы (см. §7) решена задача со свободной границей, воз-

никающая при моделировании магнитного пересоединения в магнитосфере

нейтронной звезды, вызванного воздействием на нее ударной волны, образо-

ванной взрывом Сверхновой звезды. Это астрофизическое явление лежит в

основе современных гипотез о происхождении космических всплесков гамма–

излучения большой мощности [62], [69], [117], [143], [197], [213], [233], [248].

Рассматриваемая задача со свободной границей сведена к последователь-

ному решению двух задач Римана — Гильберта, решения которых построены

в аналитическом виде с использованием результатов глав I–III. Дана чис-

ленная реализация, включающая нахождение (заранее неизвестной) границы

магнитосферы и вычисление магнитного поля внутри нее.

В следующем п. 1.2 приведены физические предпосылки, позволяющие

рассматривать приближение сильного магнитного поля, и описаны рассмат-

риваемые в работе модели указанных выше физических явлений в короне

Солнца и в магнитосферах нейтронных звезд.

1.2. Приближение сильного магнитного поля. Плазма в космиче-

ских условиях часто имеет высокую проводимость, и в ней легко возникают

электрические токи и индуцируются магнитные поля. Хорошо изучены та-

кие поля лишь для ближайшей к нам звезды — Солнца. По величине они не

превышают нескольких тысяч Гаусс, но солнечная атмосфера обладает тем

замечательным свойством, что, начиная с некоторой высоты (приблизительно

с основания хромосферы), энергия магнитного поля значительно превышает

тепловую, кинетическую и гравитационную энергию плазмы.

Вместе с тем наиболее сильными магнитными полями обладают нейтрон-

ные звезды. Величина поля для таких звезд превышает 1011 − 1012 Гс, а для

магнетаров (намагниченных молодых нейтронных звезд) может достигать и

1015 Гс. Столь сильное поле является ключевым фактором, определяющим

быстрые течения плазмы вблизи нейтронных звезд, включая направленные
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релятивистские выбросы, и отвечает за возникновение ряда ярких наблюдае-

мых эффектов, таких как ускорение частиц до гигантских энергий и всплески

жесткого электромагнитного излучения [143], [162], [248].

Более точно приближение сильного магнитного поля удобно описывать в

терминах плотности различных видов энергии плазмы, так что это прибли-

жение можно записать следующим образом:

B 2
0

8π
À 2n0kB

T0 ,
ρ0v

2
0

2
, ρ0 g0 . (1.1)

Здесь B0, n0, T0, ρ0, v0 — характерные значения напряженности магнитного

поля, концентрации и температуры плазмы, ее плотности и скорости, g0 —

ускорение силы тяжести на поверхности Солнца.

Условия (1.1) характерны как для активных областей на Солнце, в ко-

торых происходят вспышки, так и для плазмы в магнитосферах нейтрон-

ных звезд. При этом для описания поведения плазмы можно использовать

уравнения идеальной магнитной гидродинамики (см., например, [81], [83],

[227]). В безразмерном виде эти уравнения имеют следующий вид (см., на-

пример, [226], [227]):

εm

{
1

δ

∂ v

∂t
+ (v · ∇)v

}
= − εp

∇p

ρ
− 1

ρ
B× rot B + εg g , (1.2)

∂ B

∂t
= δ rot (v ×B) , div B = 0 , (1.3)

∂ρ

∂t
+ δ div ρv = 0 ,

∂s

∂t
+ δ (v · ∇) s = 0 , p = p (ρ, s). (1.4)

Здесь величины

δ =
vτ

L
, εm =

v2

V 2
A

, εp =
p0

ρ0V 2
A

, εg =
gL

V 2
A

(1.5)

cуть безразмерные параметры, характеризующие реальную физическую си-

туацию, которую мы хотим описать в той или иной задаче; V
A

= B0/
√

4πρ0

– характерное значение альвеновской скорости.

Анализ безразмерных параметров (1.5) позволяет выбрать адекватное при-

ближение из существующих в идеальной МГД. В интересующем нас случае
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Рис. 4.1. Линии магнитного поля в окрестности токового слоя Сыроватского. Показан
предельный случай: полный ток в слое равен нулю.

пересоединения в сильном магнитном поле, условия (1.1) означают, что маг-

нитная сила превалирует над всеми остальными: градиентом газового давле-

ния, силой инерции и т.д. Действительно, условия (1.1) в терминах парамет-

ров (1.5) имеют вид

εm, εp, εg ¿ 1 . (1.6)

Поэтому из уравнения движения плазмы (1.2) следует, что в нулевом порядке

относительно малых параметров (1.6), поле является бессиловым, т.е. удовле-

творяется уравнению B × rot B = 0 . Если, кроме того, в рассматриваемой

области отсутствуют токи, то магнитное поле является просто потенциаль-

ным: rot B = 0 . Именно этот случай изучается в настоящей работе.

1.3. Обобщения моделей Сыроватского и Петчека магнитного пе-

ресоединения в короне Солнца. В связи с проблемой солнечных вспы-

шек в работах [70], [123] было показано, что в плазме высокой проводимости

в окрестности нулевой линии магнитного поля формируется тонкий токовый

слой. В условиях солнечной короны процесс пересоединения в таких слоях
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Рис. 4.2. Линии магнитного поля в окрестности токового слоя Сыроватского. Показан
предельный случай: отсутствуют обратные токи.

идет очень медленно, что позволяет накопить необходимую для вспышки

энергию в виде магнитного поля токового слоя, см., например, [226].

В приближении сильного магнитного поля Сыроватский [124] построил

простую аналитическую модель токового слоя в виде поверхности разрыва,

разделяющей поля противоположной направленности, как это показано на

рис. 4.1, 4.2. Внутренняя структура этого разрыва подразумевает двумерный

процесс магнитного пересоединения в нейтральном токовом слое ([123], [125];

см. также [206], [230]). Переход к токовому слою нулевой толщины в модели

Сыроватского связан с тем, что в космической плазме высокой проводимости

толщина слоя много меньше его ширины.

На рис. 4.1, 4.2 токовый слой Сыроватского изображен в виде разреза

длины 2b на комплексной плоскости z = x + iy. Магнитное поле B = Bx +

iBy, считающееся потенциальным и соленоидальным во внешности такого

разреза, дается формулой

Bx − iBy = −i γ
z2 − ε2
√

z2 − b 2
, (1.7)
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а связанный с ним соотношением Bx− iBy = dΨ/dz комплексный магнитный

потенциал Ψ определяется равенством

Ψ(z) = −iγ

2

[
z
√

z2 − b2 + (b2 − 2ε2) ln
(
z +

√
z2 − b2

)]
+ const ; (1.8)

здесь величина ε является расстоянием от начала координат до точки, где

поле B обращается в нуль. На рис. 4.1, 4.2 представлены семейства магнит-

ных силовых линий, т.е. семейства линий уровня функции A = Im Ψ. Рис. 4.1

соответствует значению параметра ε из интервала (0, 1), а рис. 4.2 соответ-

ствует ε = b.

Другая классическая модель пересоединения называется течением Пет-

чека [208] и обычно рассматривается в качестве альтернативы к токовому

слою Сыроватского. Течение Петчека состоит из небольшой диффузионной

области (заменяющей токовый слой Сыроватского и отличающейся от него

по физическим свойствам) и четырех присоединенных к ней МГД ударных

волн медленного типа.

Исходя из результатов численных экспериментов по пересоединению (в

первую очередь, из расчетов [27], [152]) Б.В.Сомов и С.А.Марковский предло-

жили двумерную модель [87], являющуюся обобщением работ Сыроватского

[124] и Петчека [208]. Магнитное поле в такой модели считается потенциаль-

ным и соленоидальным во внешности токовой конфигурации, состоящей из

бесконечно тонкого токового слоя, изображенного на рис. 4.3 в виде горизон-

тального разреза длины 2b, и присоединенные к его концам наподобие усов

под углом πα четырех ударных волн. Им на рис. 4.3 соответствуют наклон-

ные разрезы конечной длины r. В данной модели нормальная к ударной волне

компонента магнитного поля предполагается равной постоянной величине β.

Кроме того, на бесконечности предписывается условие линейного роста по-

ля с коэффициентом пропорциональности γ. Тип ударной волны в отличие

от [208] не задан, а должен быть найден в результате решения задачи для

магнитного поля.

Описанная выше модель [87] сводится к задаче Римана – Гильберта во

внешности системы разрезов, изображенных на рис. 4.3 отрезками прямых
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Рис. 4.3. Область X — внешность токовой конфигурации.

линий. Найденная в работе [42] асимптотика решения задачи устанавливает,

что при малой длине ”усов“ поправка к полю без ”усов“ , т.е. к решению Сы-

роватского [124] без особенностей, имеет порядок
√

r/b.

В настоящей работе дано полное решение рассматриваемой задачи Римана

— Гильберта. Искомая функция построена в аналитическом виде с помошью

результатов глав I–III. Она записана в виде суперпозиции конформного отоб-

ражения четверти исходной области на полуплоскость и интеграла Кристоф-

феля — Шварца, представляющего решение соответствующей задачи Рима-

на — Гильберта в полуплоскости. При построении решения были преодолена

проблема высокоточного вычисления конформного отображения, а именно:

в явном виде обращен интеграл Кристоффеля — Шварца; дан вычислитель-

ный метод нахождения параметров этого интеграла, эффективный, в том

числе и в ситуации кроудинга (т.е. ”слипания“ прообразов вершин, обыч-

но вызывающего существенные трудности для стандартных подходов). Этот

метод базируется на построенных асимптотиках неизвестных прообразов (по

геометрическим параметрам области) и на формулах аналитического про-

должения функции Аппеля, представленных в гл. II. Даны результаты чис-

ленной реализации для построенного решения задачи Римана — Гильберта

и проведен его детальный анализ, представляющий интерес с точки зрения

рассматриваемого приложения.

Еще одно обобщение модели Сыроватского необходимо в связи с возможно-

стью распада токового слоя на параллельные токовые ленты. Такой эффект

может возникнуть в результате разрывной (тиринг) неустойчивости [172] или
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Рис. 4.4.

при появлении в слое области более высокого электрического сопротивле-

ния, например, аномального сопротивления ввиду возбуждения той или иной

плазменной турбулентности [71]. В работе Сомова и Сыроватского [119] была

предложена простая аналитическая модель распадающегося слоя, имеюще-

го бесконечную ширину. На края разрыва в слое действует сила магнитных

натяжений, пропорциональная величине разрыва и стремящаяся увеличить

его. Внутри разрыва индуцируется электрическое поле, способное во время

солнечной вспышки ускорять заряженные частицы до высоких энергий [227].

Для изучения структуры магнитного поля во внешности распадающегося

токового слоя конечной ширины в [13], [14] предложены две модели, в ко-

торых токовый слой изображается в виде двух горизонтальных разрезов на

плоскости, см. рис. 4.4a, b. Токовая конфигурация в первой модели не содер-

жит ударных волн, см. рис. 4.4a, а во второй такая конфигурация включает

четыре присоединенные ударные МГД волны, изображенные на рис. 4.4b в

виде разрезов, наклоненных под углом πα.

На разрезах, соответствующих токовому слою, магнитное поле не имеет

нормальной к нему составляющей, а на разрезах, соответствующих ударным
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волнам, как и в модели [87], нормальная компонента поля задана равной по-

стоянной величине β. Магнитное поле имеет линейный рост на бесконечности

и ограничено по величине в конечной части плоскости за исключением кон-

цевых точек токового слоя, свободных от ударных волн, где может иметь

степенной рост порядка −1/2. Это условие роста, накладываемое на поле,

как и в задаче о токовом слое Сыроватского, с физической точки зрения обу-

словлено тем, что толщина токового слоя формально принята равной нулю. В

частном случае токового слоя Сыроватского без обратных токов, см. рис. 1b,

это ограничение отсутствует, поскольку магнитное поле обращается в нуль

на концах токового слоя.

В рассматриваемой модели предполагается такая ситуация, когда вне то-

кового слоя поле обращается в нуль лишь в точке z = 0. Точка z = 0 в центре

области пересоединения имеет особый статус. Считается, что в процессе пе-

ресоединения плотность плазмы в окрестности этой точки может упасть (см.

[227]) до столь низких значений, что пересоединение становится очень быст-

рым. Иными словами, не хватает плазмы, чтобы сформировать вторичный

токовый слой, способный подавить распад токового слоя.

Постановки задач Римана — Гильберта для моделей с распадающимся

токовым слоем, соответствующие приведенным физическим предпосылкам,

даны в п. 2.3.

1.4. Модель магнитосферы нейтронной звезды. Нейтронные звезды

обладают магнитным полем, напряженность которого достигает 1012–1015 Гс.

Столь сильное поле ответственно за возникновение ряда наблюдаемых ярких

эффектов, таких как направленный релятивистский выброс плазмы, ускоре-

ние частиц до гигантских энергий, всплески жесткого электромагнитного из-

лучения [143], [162], [248], [233]. Исследование магнитосфер нейтронных звезд

представляет собой актуальную астрофизическую проблему.

Одним из важных вопросов в теории нейтронных звезд является иссле-

дование взаимодействия ударной волны, образованной взрывом сверхновой,

с магнитным полем звезды, см. [62], [69], [117], [227], [143], [162], [197], [213],
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Рис. 4.5. (a) Схема магнитосферы. (b) Вспомогательная полуплоскость.

[233], [248]. Согласно современным представлениям о физике данного явле-

ния ударная волна от сверхновой осуществляет быстрое сжатие исходной

невозмущенной магнитосферы в ее головной части и формирует вытянутый

магнитосферный хвост с противоположной стороны. Граница магнитосфе-

ры определяется условием равенства газового давления p набегающего пото-

ка плазмы и давления B2/8π магнитного поля, заполняющего околозвездное

пространство. В хвосте магнитосферы образуется пересоединяющий токовый

слой. Магнитная сила B× rotB доминирует над градиентом газового давле-

ния, гравитационной и другими силами вплоть до значительных расстояний
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от звезды до границы магнитосферы. В связи с этим для описания магнито-

гидродинамических процессов в магнитосфере хорошо применимо приближе-

ние сильного поля, см. п. 1.2.

В настоящей работе в рамках двумерной стационарной модели [117]

построено аналитическое решение задачи о (заранее неизвестной) форме

границы магнитосферы нейтронной звезды и дано явное представление для

магнитного поля. В рассматриваемой модели магнитное поле звезды при-

ближается точечным диполем, и предполагается, что в хвосте магнитосферы

расположен плоский нейтральный токовый слой, см. рис. 4.5. Изучение

подобных задач со свободной границей в связи с астрофизическими приложе-

ниями имеет давнюю историю и проводилось многими авторами, например,

[3], [63], [64], [69], [98], [161], [239]. Однако решений в замкнутой аналитической

форме получено не было.

§2. Постановка задач Римана — Гильберта для моделей

магнитного пересоединения в короне Солнца

2.1. Общий подход к нахождению магнитного поля. В изучаемых

моделях пересоединения рассматривается плоское магнитное поле

B = (Bx, By, 0),

являющееся потенциальным (rotB = 0) и соленодидальным (divB = 0) в

области g — внешности токовой конфигурации Γ = ∂g, изображаемой в виде

разреза или системы разрезов на комплексной плоскости z = x + iy. На

рис. 4.3 областью g является X, а на рис. 4.4a и 4.4b роль g выполняют

(двусвязные) области I и Y соответственно.

В дальнейшем магнитное поле B будем записывать в комплексном виде

B(z) = Bx(x, y) + iBy(x, y). (2.1)
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В обсуждаемых моделях (см. п. 1.3 настоящей главы) на контуре Γ предпола-

гается заданной нормальная компонента Bn магнитного поля. Такая компо-

нента поля равна нулю на токовом слое, а на разрезах комплексной плоскости,

соответствующих ударным волнам, равна заданной постоянной величине β.

Нетрудно проверить, что величина Bn выражается через B по формуле

Bn = Re
[
ν(z) B(z)

]
, z ∈ Γ, (2.2)

где ν(z) — комплексная единичная нормаль.

В бесконечности для функции B(z) ставится условие линейного роста, что

отражает следующая асимтотика:

B(x, y) ∼ iγ z, z →∞, (2.3)

где γ — заданная вещественная постоянная, равная градиенту магнитного

поля. Такое поведение поля соответствует картине линий, наблюдаемой вдали

от ”гиперболической нулевой точки“, иначе говоря, картине ”простейшего“

поля, заданного формулой B0(x, y) = iγ z, z ∈ C.
Для нахождения магнитного поля B удобно использовать комплексно со-

пряженную с ним функцию

F(z) = u(x, y) + iv(x, y) = B(z), z ∈ g, (2.4)

поскольку из отмеченной выше потенциальности и соленоидальности поля

вытекает, что F(z) = B(z) является аналитической функцией переменного z

в области g.

Заменяя в равенстве (2.2) величину B на F и учитывая сделанное заме-

чание относительно значений нормальной к Γ компоненты магнитного поля,

приходим к задаче Римана — Гильберта для аналитической функции F(z),

Re
[
ν(z)F(z)

]
= c (z), z ∈ Γ, (2.5)

где c(z) — известная функция. В точках токового слоя выполняется равенство

c(z) = 0, т.е. краевое условие однородно, а если модель включает ударные
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волны, то в точках Γ, изображающих ударные волны, выполняется равенство

c(z) = β, где β — заданное постоянное значение компоненты Bn магнитного

поля (β — параметр модели). Заметим также, что поскольку Γ состоит из

прямолинейных звеньев, функция ν(z) является кусочно–постоянной.

Из асимптотики (2.3) для поля B и определения (2.4) функции F(z), вы-

текает следующее условие линейного роста функции F(z) на бесконечности:

F(z) ∼ −iγ z, z →∞. (2.6)

В изучаемых моделях предполагается, что поле B обладает симметрией,

при которой его компонета Bx четна относительно оси y и нечетна отно-

сительно оси x, а компонента By обладает противоположными свойствами

четности. Эти условия можно записать в виде следующих соотношений:

B(z) = B(−z), B(z) = −B(z). (2.7)

Нетрудно убедиться в том, что при отыскании магнитного поля в окрестно-

сти токового слоя без ударных волн учет условий симметрии (2.7) позволяет

свести задачу (2.5) в области g к аналогичной задаче в канонической обла-

сти — верхней полуплоскости H+ = {ζ : Im ζ > 0}. Таким образом, решение

задачи может быть выписано непосредственно через интегралы типа Коши,

которые в рассматриваемых случае допускают вычисление через элементар-

ные функции, см. далее п. 2.3.1o.

Задачу Римана — Гильберта, моделирующую магнитное поле в окрестно-

сти непрерывного токового слоя с присоединенными ударными волнами, бу-

дем называть задачей C, а ее решение обозначать Fcon(z), используя первые

буквы английского слова ”continuous“, чтобы подчеркнуть физический смысл

задачи и ее решения. Аналогично, задачу Римана — Гильберта для магнит-

ного поля в модели разрывного токового слоя с присоединенными ударными

волнами, будем называть задачей D, а ее решение обозначать Fdis(z), исполь-

зуя первые буквы английского слова ”discontinuous“.



– 198 –

Рис. 4.6. Схема решения краевой задачи Римана — Гильберта C. (a) Исходная область G

(четверть области пересоединения) в комплексной плоскости z. (b) Верхняя полуплос-
кость. (c) Пример области годографа магнитного поля Wcon для задачи C (с непрерывным
токовым слоем).

При решении задач C и D учет симметрии поля позволяет перейти к рас-

смотрению аналогичных задач Римана — Гильберта в области G — четверти

плоскости с разрезом, см. рис. 4.6a, 4.7a. Эта область является более простой,

чем исходные X и Y, но согласно сказанному в п. 1.1 главы I, решение зада-

чи в такой области не допускает явного аналитического решения. Поэтому

для построения функций Fcon(z) и Fdis(z) мы применяем конформное отоб-

ражение ζ = Φ(z) области G на верхнюю полуплоскость H+ и переходим к

аналогичным задачам в H+ для функций

P+
con(ζ) = Fcon

[
Φ−1(ζ)

]
, P+

dis(ζ) = Fdis
[
Φ−1(ζ)

]
,

см. рис. 4.6a, 4.6b и рис. 4.7a, 4.7b.

Поскольку, как было отмечено выше, коэффициенты задачи Римана —

Гильберта здесь кусочно–постоянны, то, используя результаты глав I–III, за-
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Рис. 4.7. Схема решения краевой задачи Римана — Гильберта D. (a) Исходная область G

(четверть области пересоединения) в комплексной плоскости z. (b) Верхняя полуплос-
кость. (c) Пример области годографа Wdis магнитного поля для задачи D, соответствую-
щей распадающемуся токовому слою).

пишем требуемые функции P+
con(ζ) и P+

dis(ζ) в виде обобщенного интегра-

ла Кристоффеля — Шварца. Затем найдем функции Fcon и Fdis, подставив

ζ = Φ(z) соответственно в P+
con(ζ) и P+

dis(ζ), т.е. записывая искомые функции

в виде суперпозиции

Fcon(z) = P+
con ◦ Φ(z), Fdis(z) = P+

dis ◦ Φ(z) . (2.8)

Отметим, что на рис. 4.6c и 4.7c изображены примеры областей годографа

Wcon и Wdis, т.е. образов исходной области G при отображениях w = Fcon(z)

и w = Fdis(z).

Отображение Φ(z) построено ниже в §3, а нахождению решений P+
con(ζ) и

P+
dis(ζ) задачи Римана — Гильберта в H+ посвящены §4, §5.

Для изучения магнитного поля удобно воспользоваться векторным потен-

циалом A, через который оно выражается по формуле B = rotA. Посколь-

ку рассматриваемое поле B является плоским, то у вектора A лишь третья
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компонента отлична от нуля, т.е. A = (0, 0, A). Эта компонента восстанав-

ливается через первообразную решения F = B задачи Римана — Гильберта

по следующим формулам:

A(x, y) = Im Ψ (z), Ψ(z) =

∫ z

0
F(t)dt ; (2.9)

функцию Ψ(z) будем называть комплексным потенциалом поля. Нетрудно

убедиться в том, что магнитное поле B направлено по касательной к линиям

уровня функции A. Поэтому будем изображать его в виде семейства линий

A(x, y) = const. На рис. 4.1, 4.2 значения этой константы указаны рядом с

соответствующими линиями магнитного поля. При построении картины маг-

нитного поля для задач C и D в формулу (2.9) следует вместо F подставить

соответственно функции Fcon и Fdis.

Полный ток J через токовую конфигурацию пропорционален циркуляции

магнитного поля B вдоль произвольного замкнутого контура, содержащего

внутри себя эту конфигурацию. Учитывая равенство (2.4), выражающее поле

через аналитическую функцию F(z), приходим к следующей формуле для

полного тока:

J = −2π Im
[
res F(∞)

]
; (2.10)

здесь res F(∞) означает вычет функции F(z) на бесконечности, т.е. взятый

со знаком ”−“ коэффициент при z−1 в ее лорановском разложении.

Для вычисления тока в задачах C и D в формулу (2.10) вместо F следует

подставить соответственно функции Fcon и Fdis.

2.2. Задача Римана — Гильберта, соответствующая фазе накоп-

ления энергии в области пересоединения (задача C).

2.2.1o. Постановка задачи в исходной области X. Прежде чем сформули-

ровать задачу Римана — Гильберта C в области X (см. рис. 4.3, стр. 191),

определим эту область более формально, чем это было сделано в п. 1.3.

Граница Γ = ∂X представляет собой симметричную относительно осей x

и y систему прямолинейных разрезов, точнее говоря, объединение

Γ =
4⋃

j=0

Γj,
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горизонтального разреза Γ0 := {z : Re z ∈ [−b, b], Im z = 0}, изображающего

токовый слой, и наклонных разрезов

Γ1 =
{
z : z = b + t r eiπα, t ∈ [0, 1]

}
;

Γ2 =
{
z :(−z) ∈ Γ1

}
, Γ3 =

{
z : (−z) ∈ Γ1

}
, Γ4 =

{
z : z ∈ Γ1

}
,

(2.11)

изображающих ударные волны. Таким образом, X := C \ Γ представляет

собой односвязную бесконечную десятиугольную область.

Изложенная в п. 1.3 математическая модель магнитного поля в окрест-

ности непрерывного токового слоя с присоединенными ударными волнами с

учетом сказанного в п. 2.1 приводит к постановке задачи Римана — Гильбер-

та (задачи C в области X), заключающейся в нахождении аналитической в X

и непрерывной в X функции Fcon, удовлетворяющей краевым условиям

Re
[
νj Fcon(z)

]
= cj , z ∈ Γj , j = 0, 4 , (2.12)

и условию роста:

Fcon(z) = −i γz + o (1) , z → ∞, (2.13)

где νj, j = 0, 4 — нормали к разрезам Γj, определяемые равенствами

ν0 = i, ν1 = ieiπα, ν2 = −ie−iπα, ν3 = −ieiπα, ν4 = ie−iπα. (2.14)

а cj в правой части (2.12) даются следующими равенствами:

c0 = 0, cj = β, j = 1, 4; (2.15)

здесь β и γ — заданные числа.

Как было сказано на стр. 197, обозначение C для задачи (2.12)–(2.15) и обо-

значение Fcon для искомой функции выбраны для того, чтобы подчеркнуть

их физический смысл. Напомним, что магнитное поле связано с решением

этой задачи соотношением B = Fcon.

Из постановки задачи C следует, что Fcon(z) можно записать в виде суммы

Fcon(z) = β Fβ(z) + γ Fγ(z), (2.16)
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где первое слагаемое есть решение той же задачи при β = 1, γ = 0, а второе

— при β = 0, γ = 1. Таким образом, Fβ(z) представляет собой регулярное

(исчезающее) на бесконечности решение задачи (2.12), а Fγ(z) — решение

задачи (2.12)–(2.14), где cj = 0, j = 0, 4.

Очевидно также, что зависимость решения Fcon(β, γ; z) от параметров β

и γ может быть факторизована в следующем виде:

Fcon(β, γ; z) = γ Fcon(β/γ, 1; z). (2.17)

2.2.2o. Сведе́ние к области G — четверти X. Нетрудно увидеть, что постав-

ленная задача (2.12)–(2.15) и сама область X обладает симметрией относи-

тельно осей x и y в смысле тождеств

Fcon(z) = −Fcon(z), Fcon(−z) = Fcon(z); (2.18)

поэтому достаточно перейти к рассмотрению соответствующей задачи в об-

ласти G, получаемой пересечением X с первым квадрантом

Q I =
{

z : Im z > 0, Re z > 0
}
,

т.е. область G = X ∩ Q I или

G = Q I \ Γ1, (2.19)

и определяется тремя геометрическими параметрами b, r, α.

Используя соотношения симметрии (2.18), сводим исходную задачу (2.12)–

(2.15) к задаче Римана — Гильберта в области G: требуется найти аналити-

ческую в G и непрерывную в G \ ({∞}) функцию Fcon, удовлетворяющую

краевому условию

Re
[
h(z)Fcon(z)

]
= c(z), z ∈ ∂G, (2.20)

в котором коэффициент h(z) и правая часть c (z) определяются по формулам

h(z) =





i на (ABC),

i eiπα на (CDE),

1 на (EA),

c (z) =

{
0 на (ABC) ∪ (EA),

β на (CDE),
(2.21)
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и отвечающую следующему условию роста в бесконечно удаленной точке:

Fcon(z) = −i γz + o (1), z →∞; (2.22)

отметим, что точка z = ∞ теперь является не внутренней, а граничной точ-

кой z = A.

Задачу Римана — Гильберта (2.20)–(2.22) будем называть задачей C в обла-

сти G, а ее решение обозначать Fcon по аналогии с принятыми обозначениями

для задачи C в области X и ее решения.

После нахождения решения Fcon задачи (2.20)–(2.22), продолжаем его с

помощью соотношений симметрии (2.18) во всю область X и, таким обра-

зом, находим решение исходной задачи (2.12)–(2.15). Как отмечалось в п. 2.1,

численные результаты будут представлены во всей области X и в наиболее

репрезентативной с физической точке зрения форме, т.е. в виде семейства ли-

ний уровня A(x, y) = const магнитного потенциала, определяемого из (2.9).

2.3. Задача Римана — Гильберта, соответствующая фазе распада

токового слоя в области пересоединения (задача D).

2.3.1o. Токовый слой без ударных волн. Распадающийся токовый слой изо-

бражается на комплексной плоскости z в виде двух прямолинейных разрезов

(BC) и (DE) равной длины, расположенных на вещественной оси симмет-

рично относительно начала координат:

(BC) =
{−b < x < −a, y = 0

}
, (DE) =

{
a < x < b, y = 0

}
, (2.23)

здесь b и a — вещественные положительные числа (b > a), являющиеся пара-

метрами задачи. Область I, где рассматривается магнитное поле (2.1) и свя-

занная с ним аналитическая функция (2.4), представляет собой внешность

разрезов (BC) и (DE), см. рис. 4.4a.

В данной модели, как и в модели Сыроватского, предполагается, что поле

B обладает симметрией (2.7), из которой следует условие

Bx(x, 0) = 0 на (AB), (CD) и (EA). (2.24)
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Рис. 4.8. Картина линий магнитного поля в окрестности токового слоя с разрывом, но без
присоединенных ударных волн; полный ток в слое равен нулю.

Нормальная к токовому слою компонетна магнитного поля совпадает с By,

поэтому во внутренних точках разрезов (BC) и (DE) оно направлено парал-

лельно оси x, т.е.

By(x, 0) = 0 на (BC) и (DE). (2.25)

Предполагается, что при стремлении z к концам этих разрезов поле может

быть неограниченным (как и в модели токового слоя Сыроватского):

|B(x, y)| < C | z± b |−1/2, z → ∓ b; |B(x, y)| < C | z± a |−1/2, z → ∓ ε,

(2.26)

где C > 0 некоторая постоянная. На бесконечности по–прежнему ставится

условие (2.3) линейного роста поля B.

Описанная выше модель сводится к задаче Римана — Гильберта в верх-

ней полуплоскости относительно аналитической функции F(z), связанной с

магнитным полем B соотношениями (2.4). При этом краевое условие на ве-
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Рис. 4.9. Картина линий магнитного поля в окрестности токового слоя с разрывом, но без
присоединенных ударных волн; обратные токи отсутствуют.

щественной оси имеет вид Re
[
h(x) F(x)

]
= 0, где коэффициент h(z) опре-

деляется по формуле

h(x) =

{
1, x ∈ (AB) ∪ (CD) ∪ (EA),

−i, x ∈ (BC) ∪ (DE).

Функция F(z) подчинена условию линейного роста (2.6) на бесконечности и

вытекающим из (2.26) условиям роста в концевых точках отрезков (BC) и

(DE):

|F(z)| < C | z ± b |−1/2, z → ∓ b ; |F(z)| < C | z ± a |−1/2, z → ∓ a .

Используя результаты главы I, находим искомое решение F(z) в виде

F(z) = −i γ
z (z2 − ε2)√

(z2 − a2)(z2 − b 2)
, (2.27)

где число ε — свободный вещественный параметр, возникающий при фор-

мальном решении задачи; с физической точки зрения он определяет положе-

ние нулей магнитного поля.
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Потенциал A(x, y) магнитного поля выражается через полученное реше-

ние F задачи Римана — Гильберта по формулам (2.9). Подставляя выражение

(2.27) для F в интеграл (2.9), находим комплексный потенциал Ψ(z) в полу-

плоскости H+

Ψ(z) = −iγ
{1

2

√
(z2 − a2)(z2 − b2) +

+ L ln
[
z2 − (b + a)2

2
+

√
(z2 − a2)(z2 − b2)

]}
+ Ψ0,

Ψ0 = −πγL− iγ
[ab

2
− L ln

(b + a)2

2

]
, L = (a2 + b2 − 2ε2)/4 ;

(2.28)

для продолжения этой функции в нижнюю полуплоскость необходимо вос-

пользоваться равенствами (2.18). Полный ток в рассматриваемой модели да-

ется вытекающей из (2.10) и (2.27) формулой:

J = πγ (2 ε2 − a2 − b2). (2.29)

Отсюда получаем, что при ε > ε0, где ε0 =
√

(a2 + b2)/2, полный ток положи-

телен, т.е. прямой ток превалирует над обратным, а при ε = ε0 выполняется

равенство J = 0.

Параметрами рассматриваемой модели, от которых зависит поле B и его

комплексный потенциал Ψ, являются градиент γ магнитного поля на беско-

нечности, величина ε, определяющая положения нулей поля, а также геомет-

рические параметры токового слоя a и b. Заметим, что при a → 0 выражение

(2.27) для сопряженного поля F переходит в выражение (1.7), возникающее

в модели токового слоя Сыроватского, а выражение (2.29) для тока J — в

соответствующее выражение (2.10). Выражения (1.8) и (2.28) для потенциа-

лов поля в модели Сыроватского и в рассматриваемой модели совпадают при

a = 0 с точностью до постоянного слагаемого.

2.3.2o. Задача Римана — Гильберта для распадающегося токового слоя с

присоединенными ударными волнами (задача D). Перейдем к формулировке

задачи Римана — Гильберта в области Y (см. рис. 4.3, стр. 191), изобража-

ющей токовую конфигурацию, которая включает распадающийся токовый



– 207 –

слой (два горизонтальных разреза) и присоединенные ударные волны (четы-

ре наклонных разреза).

Прежде всего, отметим, что граница Γ = ∂Y представляет собой объеди-

нение двух Y –образных компонент, заданных соотношениями

Y + := Γ+
0 ∪ Γ1 ∪ Γ4, Y − := {z : −z ∈ Y +}; (2.30)

здесь компонента Y + состоит из горизонтального разреза

Γ+
0 = {z : Re z ∈ [a, b], Im z = 0}

и наклонных разрезов Γ1 и Γ4, определенных в (2.11), а компонента Y − по-

лучается симметричным отражением Y + относительно оси y. Наконец, сама

(двусвязная) область Y := C\(Y +∪Y −) является внешностью разрезов (2.30).

Математическая модель, изложенная в п. 1.3, с учетом сказанного в п. 2.1

приводит к постановке задачи Римана — Гильберта (задачи D в области Y),

заключающейся в нахождении аналитической в Y и непрерывной

в Y \ {∞,−a, a} функции Fdis, удовлетворяющей краевым условиям

Re
[
νj Fdis(z)

]
= cj , z ∈ Γj , j = 0, 4 , (2.31)

где Γ0 = Γ+
0 ∪Γ−0 , а величины νj, j = 0, 4, и правые части cj, j = 0, 4 опреде-

лены соответственно равенствами (2.14) и (2.15). Предполагается также, что

функция F отвечает следующим условиям роста в точках z ∈ {∞,−a, +a}:

Fdis(z) = −iγz + o(1), z →∞; Fdis(z) = O
[
(z ± a)−1/2], z → ±a;

(2.32)

фигурирующие в постановке задачи величины β (см. формулу (2.15)) и γ

суть вещественные постоянные, являются параметрами модели.

Как было сказано на стр. 197 обозначение D (от английского ”discontinuous“)

для задачи (2.31), (2.32) и обозначение Fdis для искомой функции выбраны

для того, чтобы подчеркнуть их физический смысл. Напомним, что магнит-

ное поле связано с решением этой задачи соотношением B = Fdis.
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2.3.3o. Сведение к задаче в четверти исходной области. Дополняя поставлен-

ную задачу условиями симметрии

Fdis(z) = −Fdis(z), Fdis(−z) = Fdis(z), (2.33)

сводим ее к задаче Римана — Гильберта в области G, определенной равен-

ством (2.19), см. также рис. 4.6a, стр. 198. Формулировка задачи следующая:

требуется найти аналитическую в G и непрерывную в G \({∞, a}) функцию

Fdis, удовлетворяющую краевому условию

Re
[
h(z)Fdis(z)

]
= c(z), z ∈ ∂G, (2.34)

в котором коэффициенты h(z) и c (z) определяются по формулам

h(z) =





i на (A,B) ∪ (B′, C),

1 на (B, B′) ∪ (E, A),

ieiπα на (C, D, E),

c (z) =

{
0 на (A,B,B′, C) ∪ (E, A),

β на (A,B,C),

(2.35)

и отвечающую следующим условиям роста в точках z0 и z2

Fdis(z) = −iγz+o(1), z →∞; Fdis(z) = O
[
(z−a)−1/2 ]

, z → a; (2.36)

фигурирующие здесь величины β и γ — вещественные постоянные, явля-

ющиеся параметрами модели. Геометрические величины b, r, a и α также

являются параметрами модели.

Задачу Римана — Гильберта (2.34)–(2.36) будем называть задачей D в

области G, а ее решение обозначать Fdis по аналогии с задачей D в области Y.

После нахождения решения Fdis задачи (2.34)–(2.36), продолжаем его с

помощью соотношений симметрии (2.33) во всю область Y и, таким образом,

находим решение исходной задачи (2.31), (2.32). Как уже отмечалось в п. 2.1,

численные результаты будут представлены в полной области Y в наиболее

репрезентативной с физической точке зрения форме, т.е. в виде семейства

линий уровня A(x, y) = const, где магнитный потенциал A(x, y) дается (2.9).
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§3. Вспомогательное конформное отображение

области G — четверти области пересоединения

3.1. Представление обратного отображения z = Φ−1(ζ) в виде ин-

теграла Кристоффеля —Шварца.Область G, изображенная на рис. 4.6a,

стр. 198, является односвязным пятиугольником с вершинами A = ∞, B = 0,

C = b (слева от разреза Γ1), D = b + reiπα, E = b (справа от разреза

Γ1). Отметим, что измеряемые по области G углы в этих точках равны παj,

j ∈ {A,B, C,D, E}, где αA = −1/2, αB = 1/2, αC = 1− α, αD = 2, αE = α.

Будем рассматривать отображение z = Φ−1(ζ), подчиненное следующим

условиям, которые его однозначно определяют:

Φ−1(∞) = ∞, Φ−1(0) = 0, Φ−1(1) = b + re iπα, (3.1)

т.е. положим, что вершинам A, B и D многоугольника G соответствуют, точ-

ки ζ = ∞, ζ = 0 и ζ = 1 на границе полуплоскости (ср. рис. 4.6а и 4.6b).

Обозначая через λ и τ неизвестные прообразы вершин C и E, записываем

z = Φ−1(ζ) в виде интеграла Кристоффеля — Шварца [78], [82], [88]:

Φ−1(ζ) = K

∫ ζ

0
t−1/2 (t− λ)−α (t− 1) (t− τ)α−1 dt, (3.2)

где предынтегральный множитель K, в чем нетрудно убедиться, веществен-

ный и положительный (K > 0).

Для нахождения неизвестных параметров λ, τ и K этого интеграла извест-

ным способом (см., например, [78]) формируем систему нелинейных трансцен-

дентных уравнений, приравнивая три заданных расстояния между вершины-

ами многоугольной границы ∂G соответствующим их выражениям, вычис-

ленным с помощью формулы (3.2). Например, интегрируя в (3.2) по отрезку

[λ, τ ] должно дать 0, поскольку расстояние между вершинами C и E равно

нулю (см. 4.6a, 4.6b), что приводит к первому уравнению:

K

∫ τ

λ

t−1/2 (t− λ)−α (1− t) (τ − t)α−1 dt = 0.
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После интегрирования в (3.2) по отрезкам [0, λ] и [λ, 1] аналогично записы-

ваем еще два уравнения и, таким образом, приходим к следующей системе

уравнений:

K I1(λ, τ) = b, K I2(λ, τ) = r, K I3(λ, τ) = 0, (3.3)

где через Ij(λ, τ), j = 1, 3, обозначены следующие интегралы:

I1 (λ, τ) =

∫ λ

0
t−1/2 (λ− t)−α (1− t) (τ − t)α−1 dt, (3.4)

I2 (λ, τ) =

∫ 1

λ

t−1/2 (t− λ)−α (1− t) (τ − t)α−1 dt, (3.5)

I3 (λ, τ) =

∫ τ

λ

t−1/2 (t− λ)−α (t− 1) (τ − t)α−1 dt. (3.6)

Выполняя в этих интегралах замены переменного так, чтобы интегрирование

велось по отрезку [0, 1], и используя представление (5.2) для функции Аппеля

F1, выражаем их через эту функцию по формулам

I1 (λ, τ) =

√
π Γ(1− α)

Γ(3/2− α)
λ1/2−α τα−1 F1

(
− 1, 1− α;

1

2
,

3

2
− α; λ,

λ

τ

)
, (3.7)

I2 (λ, τ) =
[
(1− α) (2− α)

]−1
λ−1/2 (1− λ)2−α (τ − λ)α−1×

× F1

(1

2
, 1− α; 1− α, 3− α;

λ− 1

λ
,
1− λ

τ − λ

)
,

(3.8)

I3 (λ, τ) = − π

sin πα
λ−1/2(1− λ)F1

(1

2
,−1; 1− α, 1; −τ − λ

λ
,
τ − λ

1− λ

)
. (3.9)

Разделив второе уравнение из (3.3) на первое, исключим K и сведем,

таким образом, проблему нахождения неизвестных параметров в формуле

Кристоффеля — Шварца (3.2) к системе двух уравнений только для прооб-

разов λ и τ :

I2, 1 (λ, τ) = ρ, I3 (λ, τ) = 0, (3.10)

где через ρ обозначена относительная длина ”уса“ (т.е. разреза CDE, см.

рис. 4.6a), а через I2, 1 — отношение интегралов:

ρ =
r

b
, I2, 1 (λ, τ) =

I2 (λ, τ)

I1(λ, τ)
. (3.11)
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В формулах (3.10), (3.11) предполагается, что интегралы Ij, j = 1, 3, вычис-

ляются из (3.7)–(3.9).

После решения системы (3.10) предынтегральный множитель K — нахо-

дится из из первого уравнения (3.3) по формуле

K =
b

I1(λ, τ)
. (3.12)

Заметим еще, что, как следует из системы уравнений (3.10) и вида входя-

щих в нее интегралов (3.4)–(3.6), искомые прообразы зависят только от двух

геометрических параметров задачи: от α и ρ, т.е. λ = λ(α, ρ) и τ = τ(α, ρ).

3.2. Вычисление параметров λ, τ и K интеграла Кристоффеля

— Шварца. Cистемы нелинейных уравнений, подобные рассмотренной в

предыдущем п. 3.1 системе относительно λ, τ и K, известны и для произволь-

ного многоугольника [72], [78], [176], но аналитическое решение они допускают

лишь в немногих частных случаях [37], [38], [41], [78]. Поэтому для решения

таких систем необходимо использовать численные алгоритмы [32], [78], осно-

ванные на сочетании метода Ньютона [5], [72], [234], [249] и, возможно, мето-

да продолжения по параметру [72], [132]. Главные трудности, возникающие

при этом, связаны с построением качественного начального приближения для

неизвестных прообразов и разработкой алгоритмов высокоточного вычисле-

ния интегралов, аналогичных введенным выше Ij, фигурирующих системах

такого типа.

Как было подчеркнуто в [176], [193], [236], [249], эти трудности значитель-

но возрастают в том случае, когда для рассматриваемого отображения воз-

никает эффект кроудинга. Этот эффект заключается в резко неравномерном

расположении прообразов вершин на вещественной оси. Наименование ”кро-

удинг“ , происходящее от английского to crowd (толпиться), было предложено

в [200]. Изучению этого эффекта и поиску способов преодоления порождае-

мых им трудностей привлекает большое внимание исследователей [164], [176],

[181], [193], [200], [235], [236], [249].
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В работе [16] установлено, что элементы системы уравнений для неиз-

вестных параметров интеграла Кристоффеля — Шварца могут быть при-

ведены к виду интегралов (2.1), т.е. записаны через функцию Лауричеллы

F
(N)
D . Таким образом, в [16] показано, что высокоточное вычисление функции

F
(N)
D (a; b, c; z) во всем диапазоне ее переменных является одним из ключе-

вых аспектов в решении известной трудной проблемы кроудинга [176], [237]

параметров интеграла Кристоффеля — Шварца. Если z ∈ UN , то для эф-

фективного вычисления (2.1) может быть применен ряд (1.2), который в UN

сходится экспоненциально. Для вычисления функции F
(N)
D вне UN необходи-

мо использовать формулы ее аналитического продолжения, установленные

в главе II диссертации. В частности, для вычисления интегралов (3.7)–(3.9),

фигурирующих в системе (3.10), (3.11), используются результаты об анали-

тическом продолжении функции Аппеля, представленные в §5 главы II.

Начальные приближения строятся на основании асимптотик для неизвест-

ных параметров λ и τ отображения Φ−1, которые устанавливает следующая

теорема.

Теорема 4.1. Пусть λ и τ — прообразы точек C и E при отображении

Φ−1 : H+ conf−→G(ρ). Тогда

(I) для ”малых“ ρ справедливы асимптотики

λ = 1 − c
(1)
λ ρ − c

(2)
λ ρ2 − O(ρ3), ρ → 0, (3.13)

τ = 1 + c (1)
τ ρ + c (2)

τ ρ2 + O(ρ3), ρ → 0, (3.14)

коэффициенты в которых определяются формулами

c
(1)
λ =

2

σ0 (1− α) 1−α
, c

(2)
λ =

−2 + 5α− α2

σ2
0(1− α) 3−2α

+
4 (α σ1 − µ0)

σ3
0 (1− α) 2−2α

, (3.15)

c(1)
τ =

2α

σ0 (1− α) 2−α
, c(2)

τ =
α (−1 + 5α− α2)

σ2
0 (1− α) 4−2α

+
4 α (α σ1 − µ0)

σ3
0 (1− α) 3−2α

; (3.16)

здесь

σ0 =
∞∑

k=0

(1− α)k (1− α)k

k! (k + 1− α) (k + 2− α)
, σ1 = σ0 +

1

(1− α) (2− α)
, (3.17)
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µ0 =
∞∑

k=0

(1− α)k (1− α)k

k! (k + 1− α) (k + 2− α) (k + 3− α)
. (3.18)

(II) при α ∈ (0, 1/2) для ”больших“ ρ справедливы асимптотики

λ = ρ−2/(1−2α) C
(0)
λ

[
1 + C

(1)
λ ρ−1 + O

(
ρ−2/(1−2α)

)]
, (3.19)

τ = C (0)
τ + C (1)

τ ρ−1 + O
(
ρ−2) , ρ →∞, (3.20)

коэффициенты которых определяются формулами

C
(0)
λ =

[
σ (0)
√

π

Γ(3/2− α)

Γ(1− α)

] 2/(1−2 α)

,

C
(1)
λ = − 2

(1− 2 α) cos π α
− σ (1)(1− 2 α)1/2−αΓ(α− 1/2)√

π Γ(α)

(3.21)

C (0)
τ =

1

1− 2 α
, C (1)

τ =
(1− 2 α) 1/2−α

2
√

π

Γ(α− 1/2)

Γ(α)
σ0 ; (3.22)

здесь

σ (0) =
∞∑

k=0

(1− α)k (1− 2 α)k

k! (k − α + 1/2) (k − α + 3/2)
,

σ (1) =
∞∑

k=0

(1− α)k k (1− 2 α)k

k! (k − α + 1/2) (k − α + 3/2)
.

(3.23)

Доказательство [18] асимптотик (3.13), (3.14) и (3.19), (3.20) строится с

помощью теории конформного отображения сингулярно деформируемых об-

ластей [37]. Выражения для коэффициентов (3.15)–(3.18) и (3.21)–(3.23) нахо-

дятся путем подстановки соответственно формул (3.13), (3.14) и (3.19), (3.20)

в уравнения (3.10), (3.11).

Для решения системы (3.10) будем применять метод Ньютона [5]. В каче-

стве начальных приближений для λ и τ при ”малых“ ρ ∈ (0, ρ∗) используем

главные члены асимптотик (3.13), (3.14), а при ”больших“ ρ ∈ (ρ∗,∞) — со-

ответствующие главные члены из (3.19), (3.20). Указанные величины ρ∗ и ρ∗,

обозначающие границу применения начальных приближений, построенных

на основе асимптотик, находятся путем численного эксперимента.
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При ”средних“ значениях относительной длины ”уса“ , т.е. при ρ ∈ (ρ∗, ρ∗),

не удается найти явный и простой способ построения хороших начальных

приближений для прообразов. В этом случае для отыскания решения системы

(3.10) используется метод продолжения этого решения по параметру η ∈
[0, 1] от некоторого

ρ0 ∈ (0, ρ∗] ∪ [ρ∗,∞) (3.24)

до заданного ρ. Соответствующий вычислительный алгоритм, являющийся

аналогом известных (см. [132], и приведенную там библиографию), состоит в

следующем. Введем семейство областей G(η), у которых относительная длина

”уса“ (CDE) зависит от η следующим образом:

ρ(η) = ρ0 + (ρ− ρ0) η, η ∈ [0, 1], (3.25)

где ρ0 выбрано в соответствии с (3.24), а параметр α зафиксирован. Очевидно,

что при η = 1 относительная длина ”уса“ равна требуемому ρ для рассматри-

ваемой области, а величины λ(1) и τ(1) совпадают с искомыми прообразами

λ и τ . Разбиваем весь диапазон [0, 1] изменения η на N частей:

0 = η0 < . . . < ηk−1, ηk < . . . < ηN = 1. (3.26)

На k–м шаге продолжения величи́ны λ(ηk) и τ(ηk) находятся при помощи

метода Ньютона из системы (3.10) с ρ = ρ(ηk), а в качестве начального при-

ближения используются значения λ(ηk−1) и τ(ηk−1) с предыдущего шага про-

должения. На нулевом же шаге, т.е. при η = 0, значения функций λ(η) и

τ(η) эффективно находятся из системы (3.10), поскольку ρ(0) = ρ0, а для ρ0

известны хорошие начальные приближения для пробразов λ и τ .

Опираясь на работы [72], [132], можно показать, что при достаточно мел-

ком разбиении (3.26) отрезка изменения η и достаточно точном вычислении

интегралов (3.4)–(3.6) гипергеометрического типа описанный метод обеспе-

чивает сходимость к искомым значениям прообразов λ и τ.

Напомним, что после вычисления прообразов λ и τ предынтегральный

множитель K находится из (3.12). Эти завершается построение отображения

Φ−1(ζ) из (3.2).
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Проведеные вычислительные эксперименты показали высокую эфектив-

ность изложенного выше метода решения рассматриваемой задачи вычис-

ления параметров интеграла Кристоффеля — Шварца. Так, время расче-

та одного варианта на компьютере невысокой производительности составило

менее 1 с. При этом для параметров λ, τ, K отображения (3.2) была достиг-

нута относительная точность не ниже 10−11. Высокая точность вычисления

при малом времени расчета обеспечивалась, прежде всего, благодаря ана-

литическому методу вычисления интегралов гипергеометрического типа по

формулам (3.7)–(3.9) и использованию аналитического продолжения функ-

ции Аппеля F1. Отметим, что, как показали сравнительные эксперименты,

этот метод на порядки превышает по точности и быстродействию обычно

применяемые методы квадратур Гаусса и Гаусса — Якоби.

Приведем некоторые численные результаты для прообразов.

Таблица 1

ρ λ τ

Численный

результат

λ∞ λ0 Численный

результат

τ∞ τ0

0.05 0.87795711206 0.871122 1.0424456291 1.04491

0.1 0.78517522024 0.747823 1.1502313641 1.09184

0.2 0.60462027734 0.517431 1.1538390136 1.19165

0.4 0.38254549302 0.122582 1.2711080174 1.41564

1. 0.12167880954 1.4890827629

10 2.3156472001×10−4 1.73712×10−4 1.9039571069 1.89212

20 1.8579327220×10−5 1.75601×10−5 1.9492146682 1.94611

50 5.5700274258×10−7 5.52493×10−7 1.9789498685 1.97846

100 3.6747910009×10−8 3.66754×10−8 1.9893456608 1.98921

После того как параметры λ, τ и K найдены и отображение z = Φ−1(ζ),

имеющее вид интеграла Кристоффеля — Шварца (3.2), полностью опреде-

лено, возникает необходимость в его обращении, так как в представлении

F = P ◦ Φ для решения задачи Римана — Гильберта фигурирует обратное
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Рис. 4.10. Области сходимости разложений для отображения ζ = Φ(z).

отображение ζ = Φ(z). Обычно такое обращение осуществляют поточечно

при помощи численных процедур [164], [181], [234], [235]; при этом также

возникает необходимость вычисления интегралов гипергеометрического ти-

па, осложняемая ситуацией кроудинга, т.е. возникают трудности, сходные с

упомянутыми выше.

В следующем п. 3.3 изложен аналитический метод обращения интеграла

Кристоффеля — Шварца в виде набора разложений (степенны́х рядов) с явно

выписанными коэффициентами; этот метод, основан на теории, изложенной

в [37], [37]. Множества сходимости упомянутых разложений, для нашего слу-

чая изображенные на рис. 4.10, покрывают в совокупности замыкание (за

исключением бесконечности) отображаемой области G. Более того, для лю-

бой точки z ∈ G \{∞} существует по меньшей мере одно разложение из этого

набора, которое сходится в данной точке z с экспоненциальной скоростью. Та-

ким образом, совокупность этих разложений дает удобный и эффективный

инструмент для вычисления и исследования отображения ζ = Φ(z).

Решение задач (2.20)–(2.22) и (2.34)–(2.36) дано ниже в §4 и §5 соответ-

ственно. С помощью результатов главы III искомые функции приведены к

весьма удобному виду интеграла Кристоффеля — Шварца. Это позволило

выразить каждую из них в виде совокупности разложений, аналогичных раз-

ложениям для Φ(z), о которых говорилось выше, обладающих теми же свой-
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ствами, в том числе высокой вычислительной эффективностью. Использова-

ние этих разложений для обеих функций, P+ и Φ, входящих в представление

(2.8), дает эффективный инструмент для исследования решения F исходных

задач задач (2.20)–(2.22) и (2.34)–(2.36) и соответствующей численной реали-

зации, которой посвящен §6.

Отметим еще, что аналитическая функция w = F(z) осуществляет кон-

формное отображение исходной области G на некоторую область W, которую

в соответствии с [82] будем называть областью годографа магнитного поля.

Из представления P+(ζ) в виде интеграла Кристоффеля — Шварца вытека-

ет, что область годографа W является многоугольником. Этот факт придает

геометрическую наглядность решению рассматриваемой задачи и облегчает

его анализ.

3.3. Построение требуемого отображения ζ = Φ(z) области G.

3.3.1o. Предварительные замечания. Конформное отображение ζ = Φ(z)

области G на H+ строится в настоящем разделе путем обращения отображе-

ния z = Φ−1(ζ), представленного в виде интеграла Кристоффеля — Шварца

(3.2). Излагаемый ниже метод обращения этого интеграла дает для Φ(z) пред-

ставление в виде набора степенных разложений вблизи вершин A,B,C,D, E

многоугольной области G (рис. 4.10а), а также вблизи некоторой регулярной

точки S ее границы (рис. 4.10в), которую также будем считать вершиной

с углом, равным π. Для коэффициентов этих разложений получены явные

формулы.

Отмеченные вершины будем обозначать также через zP, где

P ∈ {A,B,C,D,E, S},

например, zA = A, а углы при них, измеряемые по области G — через πβP.

Обозначим через GP множество, на котором разложение вблизи вершины

zP сходится и представляет отображение Φ(z). Как показано ниже, множе-

ства GP имеют вид, изображенный на рис. 4.10, и покрывают в совокупности
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всë замыкание отображаемой области (с исключенной бесконечностью),

т.е.
⋃
P

GP = G \ {∞}.
3.3.2o. Обращение интеграла Кристоффеля — Шварца. Образы точек zP при

отображении ζ = Φ(z) обозначим через ξP, так что ξA = ∞, ξB = 0, ξC =

λ, ξD = 1, ξE = τ.

Для того чтобы найти искомое представление функции Φ(z) вблизи

любой из отмеченных вершин zP, получим сперва разложение интеграла (3.2)

вблизи ее прообраза ξP, а затем обратим это разложение, следуя [37]. Отме-

тим, что представления для конечной и бесконечно удаленной вершин имеют

принципиально различный вид.

Получим вначале представления для функции Φ(z) вблизи конечных

вершин zP, т.е. для P ∈ {B, C, D, E, S}. При выбранном P запишем

интеграл Кристоффеля — Шварца (3.2) в виде ряда по степеням (ζ−ξP)βP+k,

k = 0, 1, . . . Для этого все фигурирующие в (3.2) биномы (ζ−ξn)
βn при n 6= P

разложим в ряды Тейлора по степеням (ζ − ξP); отметим, что для этой цели

отмеченные биномы удобно переписать в форме
(
ξn − ξP

)βn−1 [
1− (ζ − ξP)/(ξn − ξP)

]βn−1
.

Перемножая полученные ряды и почленно интегрируя результат, получаем

искомый ряд по степеням (ζ − ξP)βP+k. Принимая во внимание, что ряд
∑∞

k=0 ck xα+k, c0 6= 0, легко преобразуется к виду
(∑∞

k=1 ĉk xk
)α

, находим

представление для Φ−1 вблизи ξP :

Φ−1(ζ) = zP + eiπδP KP

[
(ζ − ξP) +

∞∑

k=2

b
(P)
k r1−k

P (ζ − ξP)k

]βP

,

KP =
K

βP

4∏

k=1

′
∣∣∣ξP − ξk

∣∣∣
βk−1

,

(3.27)

где rP — радиус сходимости разложения в (3.27), являющийся расстояни-

ем от ξP до ближайшей особой точки ξn; штрих при символе произведения

означает, что оно берется по всем означенным k, кроме k = P.



– 219 –

Используя [26], обращаем представление (3.27) при различных

P ∈ {B, C, D, E, S} и находим разложения, сходящиеся и представляющие

функцию Φ(z) на множествах GP, соответствующих точкам zP. Эти

(замкнутые) множества изображены на рис. 4.10 (стр. 216), а указанные раз-

ложения могут быть записаны в виде:

Φ(z) = ξP +

(
RP

KP

)1/βP ∞∑

k=1

B
(P)
k

[
VP(z)

]k

, VP(z) =

(
e−iπδP

z − zP

RP

)1/βP

;

(3.28)

здесь RP — расстояние от zP до ближайшей особой точки; δP определяются

по формулам

δB = 0, δC = α, δD = α− 1, δE = 0, δS = −1/2,

а в соответствии с формулой из [37] коэффициенты B
(P)
k связаны с коэффи-

циентами b
(P)
k из представления (3.27) равенством:

B
(P)
k =

1

k K
k/ βP

P

[
R

1 / βP

P

rP

]k−1 k−1∑
n=1

(
−k

n

) ∑

s1 + ... + sn = k−1

n∏
j=1

b
(P)
sj +1 .

(3.29)

Отметим, что разложение (3.28) сходится в любой точке z, находящейся на

расстоянии ρ от zP (ρ < RP), со скоростью геометрической прогрессии, име-

ющей знаменатель ρ/RP.

Получим теперь представление для Φ(z) вблизи бесконечной вершины

zA. Для этого, действуя аналогично случаю конечной вершины, запишем

интеграл Кристоффеля — Шварца (3.2) в виде ряда по степеням ζ1/2−k,

k = 0, 1, . . . Далее, принимая во внимание, что ряд
∑∞

k=0 ck x1/2−k, c0 6= 0,

легко преобразуется к виду
(
ĉ−1 x +

∑∞
k=0 ĉk x−k

)1/2
, находим представление

для Φ−1 вблизи ξA :

Φ−1(ζ) = 2 K

(
ζ +

∞∑

k=0

b
(A)
k τ k+1 ζ −k

)1/2

, (3.30)

где ряд сходится и представляет отображение Φ−1(ζ) на множестве K+(τ);

здесь K+(τ) := H+ ∪ {|ζ| > τ}. Используя [37], обращаем представление
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(3.30) и находим разложение для Φ(z), сходящееся и представляющее функ-

цию Φ(z) на (замкнутом) множестве GA, имеющем вид, изображенный на

рис. 4.10:

Φ(z) =

(
RA

2KP

)2 {
VA +

∞∑

k=0

B
(A)
k

[
VA(z)

]−k
}

, VA(z) =

(
z

RA

)2

;

(3.31)

здесь RA — расстояние от начала координат z = 0 до точки D, а в соответ-

ствии с формулой [37] коэффициенты B
(A)
k связаны с b

(A)
k из (3.30) равенством:

B
(A)
k = − (4 K2

P)k

k

[
τ

R2
A

]k+1 k∑
n=1

(
k

n

) ∑

s1 + ... + sn = k +1

n∏
j=1

b
(A)
sj +1 . (3.32)

Отметим, что разложение (3.31) сходится в любой точке z, находящейся на

расстоянии ρ от z = 0 (ρ > RA) со скоростью геометрической прогрессии,

имеющей знаменатель RA/ρ.

Принимая во внимание вид множеств сходимости GP, изображенных на

рис. 3, а также отмеченный характер сходимости представлений (3.28), (3.31),

убеждаемся в справедливости следующего утверждения: для любой точки

z ∈ G \ {∞} можно указать по крайней мере одно из разложений (3.28),

(3.31), сходящееся в данной точке с экспоненциальной скоростью. Таким об-

разом, набор разложений (3.28) при различных P ∈ {B,C,D,E, S} вместе

с разложением (3.31), соответствующим вершине A, действительно можно

рассматривать как общее представление отображения ζ = Φ(z) во всëм за-

мыкании отображаемой области с исключенной бесконечностью.

3.3.3o. Пример разложения Φ вблизи вершин. Более детальное описание рас-

смотренных выше разложений функции ζ = Φ(z) дадим на примерах вершин

A и C. Коэффициенты b
(C)
k и b

(A)
k даются формулами:

b
(C)
k+1 = rk

C

k∑
n=1

(−1)n
(
1/(α− 1)

)
n

n!
En, k, k = 1, 2, . . . ; (3.33)

E1, k = QC
k , k = 1, 2, . . .

En, k =
k−1∑

l=n−1

E1, k−l En−1, l, n = 2, 3, . . . , k = n, n + 1, . . . ;
(3.34)
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QC
0 = 1, QC

k =
1− α

k + 1− α

[
ϕC

k − ϕC
k−1/(1− λ)

]
;

ϕC
k =

k∑
n=0

(−1)n (1/2)n (1− α)k−n

n! (k − n)! λn (τ − λ)k−n
, k = 0, 1, . . .

(3.35)

b
(A)
k = τ −k− 1

k+1∑

l=0

QA
l QA

k− l +1, k = 0, 1, . . . , (3.36)

QA
0 = 1, QA

l =
(
ϕA

l − ϕA
l− 1

)
/(1− 2l);

ϕA
l =

l∑
n=0

(α)l−n (1− α)n λl−n τn

n! (l − n)!
, l = 0, 1, . . . .

(3.37)

Тогда коэффициенты BC
k и BA

k находятся по формулам (3.29), (3.32); тем

самым, разложения (3.28), (3.32) для Φ вблизи zC и zA полностью определены.

§4. Решение задачи Римана — Гильберта,

моделирующей магнитное поле при накоплении энергии

в области пересоединения

4.1. Постановка задачи в полуплоскости. Исходную краевую задачу

(2.20)–(2.22) для аналитической функции Fcon(z) = u(z) + iv(z) в области G

сводим с помощью отображения z = Φ−1(ζ) к аналогичной задаче в верхней

полуплоскости H+ относительно функции

w = P+
con(ζ) = Fcon ◦ Φ−1(ζ) .

Постановка задачи Римана — Гильберта для P+
con (ζ) следующая: требуется

найти аналитическую в H+ и непрерывную в H+ \ {∞} функцию P+
con(ζ),

удовлетворяющую на вещественной оси ∂H+ краевому условию

Re
[
χ(ξ)P+

con(ξ)
]

= σ(ξ) , ξ ∈ ∂H+ , (4.1)

где χ(ξ) и σ(ξ) — комплексная и вещественная кусочно-постоянные функции,

определяемые по формулам

χ (ξ) =





e−iπ/2, ξ ∈ ABC,

−ieiπα, ξ ∈ CDE,

eiπ, ξ ∈ EA;

, σ (ξ) =





0, ξ ∈ ABC,

−β, ξ ∈ CDE,

0, ξ ∈ EA;

(4.2)
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на бесконечности предписывается условие линейного роста с заданным коэф-

фициентом γ:

P+
con (ζ) = −2 i γ K

√
ζ + o(1), ζ → ∞, (4.3)

где K — предынтегральный множитель в (3.2), который считается известным

после нахождения Φ−1.

Сформулированная задача (4.1)–(4.3) является частым случаем рассмот-

ренной в главе III задачи Римана — Гильберта с кусочно–постоянными коэф-

фициентами. При этом точками {ξk} разрыва коэффициентов являются три

точки вещественной оси: ξ0 = ∞, λ и τ . Вычисляя величины αk и индекс κ
задачи по формулам (3.3)–(3.5), (5.17) главы I, находим

α0 =
1

2
, α1 = α, α2 =

1

2
− α, κ = 0. (4.4)

Из теоремы 3.1 гл. III, равенства κ = 0 и того, что коэффициент γ в форму-

ле (4.3) задан, вытекает однозначная разрешимость задачи (4.1)–(4.3). Этот

факт с учетом единственности отображения Φ(z) также приводит к выводу

об однозначной разрешимости задачи (2.20)–(2.22) в области G.

4.2. Решение задачи Римана — Гильберта в полуплоскости. Учи-

тывая, что индекс задачи (4.1)–(4.3) равен нулю и применяя теорему 1.5,

записываем ее решение в следующем виде:

P+
con (ζ) =

(ζ − λ)α e−i π /2

(ζ − τ)α− 1/2

{
a0 − β

π

∫ τ

λ

(τ − t)α− 1/2 dt

(t − λ)α (t − ζ)

}
, (4.5)

где a0 — вещественная постоянная, которую находим из асимптотики (4.3),

через параметр задачи γ и параметр конформного отображения K в виде

a0 = 2 γ K. (4.6)

Отметим также, что каноническое решение задачи (4.1)–(4.3) имеет вид

X+
con(ζ) = e−iπ/2 (ζ − λ)α(ζ − τ)1/2−α .



– 223 –

Учитывая в (4.5) выражение (4.6) для a0 получаем искомое решение задачи

Римана — Гильберта (4.1)–(4.3), записанное через интеграл типа Коши:

P+
con (ζ) = − i (ζ − λ)α

(ζ − τ)α− 1/2

{
2 γ K − β

π

∫ τ

λ

(τ − t)α− 1/2 dt

(t − λ)α (t − ζ)

}
, (4.7)

который далее в соответствии с результатами главы III преобразуем к виду

интеграла Кристоффеля — Шварца.

Применяя результат теоремы 3.3 и вычисляя в соответствии с (2.75) зна-

чение функции P+
con в точке ζ = λ:

P+
con(λ) =

−β

sin πα
, (4.8)

получаем искомое представление для P+(ζ) в виде интеграла Кристоффеля

— Шварца:

P+
con (ζ) = − i γ K

∫ ζ

λ

(t − λ)α− 1

(t − τ)α +1/2 (t − p) dt − β

sin π α
, (4.9)

p =
β

γ

√
τ − λ

π3/2 K
Γ(1− α) Γ

(
α +

1

2

)
+ 2 α (τ − λ) + λ. (4.10)

Из формулы (4.9) вытекает, что зависимость решения P+
con(β, γ; ζ) от па-

раметров β и γ, входящих в условия задачи (4.2), (4.3), может быть факто-

ризована в виде:

P+
con(β, γ; ζ) = γ P̂

(
β / γ ; ζ

)
,

P̂
(
β / γ ; ζ

)
= − iK

∫ ζ

λ

(t− λ)α−1

(t− τ)α+1/2 (t− p) dt − β

γ sin πα
,

что соответствует факторизации (2.17) для функции Fcon . Следовательно,

для понимания этой зависимости при γ 6= 0 достаточно исследовать зависи-

мость решения P+
con только от β при γ = 1.

Замечание 4.1. Можно показать, что решение Fcon(ζ) исходной задачи

(2.12), (2.13), описывающее магнитное поле в области пересоединения, при

стремлении длины r ударной волны к нулю и согласованном стремлении ве-

личины β → ∞ (и фиксированных других параметрах задачи) переходит в
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выражение (1.7) для магнитного поля в модели Сыроватского. Доказатель-

ство строится с помощью формул (2.8), (2.18), (4.9), (4.10), (3.2) и асимптотик

(3.13), (3.14).

4.3. Представление решения P+
con в виде рядов. Решение P+

con(ζ) за-

дачи Римана — Гильберта вH+, полученное в форме интеграла (4.9), предста-

вим в виде набора степенных разложений вблизи отмеченных выше прообра-

зов вершин области Wcon, а также вблизи прообразов некоторых регулярных

точек T1, T2 этой области и ее границы (см. рис. 4.6b, 4.6c). Эти разложе-

ния, аналогичные представлениям (3.27), (3.30) для интеграла (3.2), весьма

удобны и эффективны при практическом вычислении функции P+
con(ζ).

Все названные прообразы будем обозначать через ξk, где

D ∈ {A, C, P, E, T1, T2},
соответствующие им вершины области W — через wk, а углы при этих вер-

шинах — через π αk (рис. 4.6c). При этом будем формально полагать, что

αT1
= αT2

= 1.

Действуя тем же путем, что и при выводе представления (3.27) для Φ−1,

получаем аналогичное представление для P+
con вблизи конечных прообразов,

т.е. для ξk, k ∈ {C, P, E, T1, T2} :

P+
con(ζ) = wk + e iπγk Ck

[
(ζ − ξk) +

∞∑

k=2

b
(k)
k ρ1−k

k (ζ − ξk)
k

]αk

,

Ck = γ
K

αk

3∏

k=1

′
∣∣∣ξk − ξk

∣∣∣
αk−1

,

(4.11)

где ρk — радиус сходимости ряда в (4.11), являющийся расстоянием от ξk до

ближайшей особой точки ξn, n 6= k; показатели γk определяются следующим

образом: γC = −α, γP = −α − 1, γE = −1/2, γT1
= 1, а показатель γT2

—

деленный на π аргумент подынтегральной функции в (4.9).

Аналогично устанавливается представление для P+
con вблизи ξA = ∞:

P+
con (ζ) = −2 i γ K

(
ζ +

∞∑

k=0

b
(A)
k τ k+1 ζ−k

)1/2
, (4.12)
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сходящееся и представляющее функцию P+
con в K+(τ). Для данного разложе-

ния приведем явное выражение для коэффициентов:

b
(A)
k = τ−k−1

k+1∑
n=0

QA
n QA

k−n+1, QA
0 = 1, QA

n =
ϕn − pϕn−1

1− 2n
,

ϕn =
n∑

l=0

(1− α)n−l (α + 1/2)l τ
l

(n− l)! l ! λl−n
,

(4.13)

где n = 0, 1, . . .

Можно убедиться, что при надлежащем выборе T1 и T2 множества схо-

димости представлений (4.11), (4.12) покрывают в совокупности замкнутую

полуплоскость H+. Отсюда, принимая во внимание характер сходимости раз-

ложений, фигурирующих в (4.11), (4.12) в скобках, приходим к выводу, что

для любой точки ζ ∈ H+\{∞} найдется хотя бы одно из этих представлений,

сходящееся в этой точке с экспоненциальной скоростью.

4.4. Область годографа магнитного поля Wcon . В соответствии с

п. 2.4 область Wcon, на которую аналитическая функция w = Fcon(z) отобра-

жает исходную область G, называем областью годографа магнитного поля.

Очевидно, что Wcon является конформным образом полуплоскости H+ при

отображении w = P+
con(ζ). Тогда из представления (4.9) вытекает, что Wcon

представляет собой четырехугольную область с вершинами A, C, P, E, где

комплексная координата точки C равна P+
con(λ) и дается формулой (4.8). Уг-

лы в указанных вершинах соответственно равны

πδA = −π

2
, πδC = πα, πδP = 2π, πδE = π

(1

2
− α

)
,

см. рис. 4.6c на стр. 198), а прообразами этих вершин служат точки

ξA = ∞, ξC = λ, ξP = p, ξE = τ,

см. рис. 4.6b.

При изменении параметра β от −∞ до +∞ и фиксированных остальных

параметрах задачи (в том числе γ, равном 1) в соответствии с (4.10) изме-

няется величина p = p(β) — прообраз вершины P , а вместе с ним сильно
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Рис. 4.11. Вид области годографа Wcon: (a) при β = 0, (b) при β > β∗.

меняется и вид области Wcon. Критическими значениями β, при которых та-

кое изменение носит принципиальный характер, являются β = β∗, 0, β∗,

где величины β∗ и β∗, определяемые условиями p(β∗) = λ (т.е. совпадают

вершины P и C, см. рис. 4.6c), и p(β∗) = τ (т.е. совпадают вершины P и E,

см. рис. 4.6c) имеют вид

β∗ = − 2 π
√

π α

Γ(1 − α) Γ(α + 1/2)
K
√

τ − λ < 0,

β∗ =
π
√

π (1 − 2 α)

Γ(1− α) Γ(α + 1/2)
K
√

τ − λ > 0,

(4.14)

легко следующий из (4.10). Вид области годографа магнитного поля при β =

0 изображен на рис. 4.11a, для некоторого β ∈ (0, β∗) — на рис. 4.6c, стр.

198), а для некоторого β ∈ (β∗,∞) — на рис. 4.11b. При β = 0 точки C

и E сливаются друг с другом и с началом координат. При изменении β в

диапазоне (0, β∗) область Wcon приобретает вид, изображенный на рис. 4.6c,

и длина разреза EP сокращается с ростом β, а при β = β∗ точки P и E

сливаются. При дальнейшем росте параметра β в диапазоне β ∈ (β∗, +∞)

область Wcon приобретает вид, изображенный на рис. 4.11b; с ростом β длина

разреза EP увеличивается, причем при β → +∞ точки C и E стремятся

к бесконечности, а точка P — к началу координат, так что в пределе разрез
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EP рассекает область Wcon на две области без общих точек, которые, как

нетрудно убедиться, представляют собой третий и четвертый квадранты.

Необходимо отметить, что физический смысл имеют те значения парамет-

ра β, при которых магнитное поле не обращается в нуль внутри области g,

или, что тоже самое,

P+
con(ζ) 6= 0, ζ ∈ H+ \ [0, τ ].

Нетрудно увидеть, что необходимым и достаточным для этого является вы-

полнение следующего требования: β ∈ [0, β0], где β0 определяется из условия

P+
con(0) = 0 и дается формулой, вытекающей непосредственно из (4.9), (4.10):

β0 = −Pγ/Pβ; (4.15)

здесь числа Pβ и Pγ находятся с помощью равенств

Pβ = − 1

sin π α
+

λα
√

τ − λ

π
√

π α τ 1/2+α
Γ(1− α) Γ

(1

2
+ α

)
×

× F
(1

2
+ α, 1; 1 + α;

λ

τ

)
.

(4.16)

Pγ =
K λα

τ 1/2+α

[
2 (τ − λ) F

(1

2
+ α, 1; 1 + α;

λ

τ

)
+

+
λ

1 + α
F

(1

2
+ α, 1; 2 + α;

λ

τ

)]
.

(4.17)

где F — гипергеометрическая функция Гаусса.

§5. Решение задачи Римана — Гильберта,

моделирующей магнитное поле при распаде

токового слоя

5.1. Постановка задачи Римана — Гильберта в полуплоскости.

Перейдем к рассмотрению задачи, моделирующей распадающийся токовый

слой с присоединенными ударными волнами, т.е. задачи (D). Исходную кра-

евую задачу (2.34)–(2.36) для аналитической функции Fdis(z) = u(z)+iv(z) в
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области G сводим с помощью отображения z = Φ−1(ζ) к аналогичной задаче

в верхней полуплоскости H+ относительно функции

w = P+
dis(ζ) = Fdis ◦ Φ−1(ζ) ,

см. рис. 4.7.

Постановка задачи Римана — Гильберта для P+
dis (ζ) следующая: требуется

найти аналитическую в H+ и непрерывную в H+ \ {∞, a} функцию P+
dis(ζ),

удовлетворяющую на вещественной оси ∂H+ краевому условию

Re
[
χ(ξ)P+

dis(ξ)
]

= σ(ξ) , ξ ∈ ∂H+ , (5.1)

где χ(ξ) и σ(ξ) — комплексная и вещественная кусочно-постоянные функции,

определяемые по формулам

χ(z) =





i, ξ ∈ (AB) ∪ (B′C),

1, ξ ∈ (BB′) ∪ (EA),

ieiπα, ξ ∈ (CDE),

σ (z) =

{
0, ξ ∈ (ABB′C) ∪ (EA),

β, ξ ∈ (ABC),

(5.2)

в точках ζ = ∞ и ζ = µ предписываются следующие условия роста:

P+
dis (ζ) = −2 i γ K

√
ζ + o(1), ζ →∞; P+

dis(ζ) = O
[
(ζ−µ)−1/2 ]

, ζ → µ;

(5.3)

здесь коэффициент γ считается заданным (параметр модели), величина K —

предынтегральный множитель в (3.2), который вычисляется при нахождении

Φ−1, а через µ обозначен прообраз точки B′, т.е. µ вычисляется по формуле

µ = Φ(a),

где алгоритм вычисления Φ дан в п. 3.3.

Сформулированная задача (4.1)–(4.3) является частым случаем рассмот-

ренной в главе III задачи Римана — Гильберта с кусочно–постоянными коэф-

фициентами. При этом точками {ξk} разрыва коэффициентов являются три



– 229 –

точки вещественной оси: ξ0 = ∞, 0, µ, λ и τ . Вычисляя величины αk и индекс

κ задачи по формулам (3.3)–(3.5), (5.17) главы I, находим

α0 = α1 = α2 =
1

2
, α3 = α, α4 =

1

2
− α, κ = 0.

Из теоремы 3.1 гл. III, равенства κ = 0 и того, что коэффициент γ в форму-

ле (4.3) задан, вытекает однозначная разрешимость задачи (5.1)–(5.3). Этот

факт с учетом единственности отображения Φ(z) также приводит к выводу

об однозначной разрешимости задачи (2.34)–(2.36) в области G.

5.2. Решение задачи Римана — Гильберта в полуплоскости. Учи-

тывая, что индекс задачи (4.1)–(4.3) равен нулю и применяя теорему (1.5),

записываем ее решение в следующем виде:

P+
dis(ζ) = X+

dis(ζ)
[
a0 +

β

π

τ∫

λ

t−1/2(t− µ)1/2(t− λ)−α(τ − t)α−1/2

t− ζ
dt

]
, (5.4)

где X+
dis — каноническое решение задачи однородной задачи, определяемое

формулой

X+
dis(ζ) = e−iπ/2 ζ1/2 (ζ − µ)−1/2 (ζ − λ)α (ζ − τ)1/2−α, (5.5)

а постоянная a0 находится из первой асимптотики (5.3), через параметр за-

дачи γ и параметр конформного отображения K в виде

a0 = 2 γ K. (5.6)

Учитывая в (5.4) выражение (5.6) для a0 получаем искомое решение задачи

Римана — Гильберта (4.1)–(4.3) в виде интеграла типа Коши:

P+
dis(ζ) = X+

dis(ζ)
[
2γK +

β

π

τ∫

λ

t−1/2(t− µ)1/2(t− λ)−α(τ − t)α−1/2

t− ζ
dt

]
, (5.7)

который далее в соответствии с результатами главы III преобразуем к виду

интеграла Кристоффеля — Шварца.

Применяя результат теоремы 3.3 и вычисляя в соответствии с (2.75) зна-

чение функции P+
dis в точке ζ = 0:

P+
dis(0) = 0,
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получаем искомое представление для P+
dis(ζ) в виде интеграла Кристоффеля

— Шварца:

P+
dis(ζ) = −iγK

∫ ζ

0
t−1/2 (t− µ)−3/2 (t− λ)α−1 (t− τ)−1/2−αR3(t) dt , (5.8)

где R3(ζ) — полином третьей степени следующего вида:

R3(ζ) = (ζ − µ)(ζ − λ)(ζ − τ) − ζ(ζ − λ)(ζ − τ) +

+ 2αζ(ζ − µ)(ζ − τ) + (1− 2α)ζ(ζ − µ)(ζ − λ) +

+
β

γ

Γ(1− α)Γ(α + 1/2)

π
√

π K
λ−3/2(λ− µ)−1/2(τ − λ)1/2×

× [
A0λ(λ− µ)ζ(ζ − µ)− A1τ(λ− µ)(ζ − µ)(ζ − λ)+

+ A2λ(τ − µ)ζ(ζ − λ)
]
;

(5.9)

здесь числа A0, A1 и A2 выражаются через функцию Лауричеллы F
(2)
D , зави-

сящую от двух переменных, по формулам

A0 = F
(2)
D

( 1

2
,−1

2
; −α,

1

2
; w1, w2

)
, A1 = F

(2)
D

( 3

2
,−1

2
; 1− α,

3

2
; w1, w2

)
,

A2 = F
(2)
D

( 1

2
,
1

2
; 1− α,

3

2
; w1, w2

)
, w1 = −τ − λ

λ
, w2 = −τ − λ

λ− µ
.

Используя (2.75), нетрудно также убедиться в справедливости следующих

равенств:

P+
dis(λ) =

−β

sin πα
, P+

dis(τ) =
−iβ

cos πα
. (5.10)

Из формулы (5.8) вытекает, что зависимость решения P+
dis(β, γ; ζ) от па-

раметров β и γ, входящих в условия задачи (4.2), (4.3), может быть факто-

ризована в виде:

P+
dis(β, γ; ζ) = γ P̂dis

(β

γ
; ζ

)
,

P̂dis

(β

γ
; ζ

)
= − iK

∫ ζ

0
t−1/2 (t− µ)−3/2 (t− λ)α−1 (t− τ)−1/2−αR3(t) dt,

что соответствует факторизации (2.17) для функции Fdis . Следовательно,

для понимания этой зависимости при γ 6= 0 достаточно исследовать зависи-

мость решения P+
dis только от β при γ = 1.

Замечание 4.2. Можно показать, что при µ → 0 формулы (5.8), (5.9)

для P+
dis(ζ) переходят в соотношения (4.9), (4.10) для функции P+

con(ζ), соот-

ветствующей модели без распада токового слоя.
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5.3. Область годографа магнитного поля Wdis . В соответствии с

п. 2.4 область Wdis, на которую аналитическая функция w = Fdis(z) отобра-

жает исходную область G, называем областью годографа магнитного поля.

Если данные задачи Римана — Гильберта таковы, что все корни полинома

P3(ζ), определяемого по формуле (5.9), вещественны, то из представления

(5.8) для отображения w = P+
dis(ζ) вытекает, что Wdis является восьмиуголь-

ной областью с вершинами A, B, P1, M, P2, C, P3, E, где комплексные ко-

ординаты точек C и E равны соответственно P+
dis(λ) и P+

dis(τ) и даются фор-

мулами (5.10). Углы в указанных вершинах соответственно равны

πδA = −π

2
, πδB =

π

2
, πδP1

= 2π, πδM = −π

2
,

πδP2
= 2π, πδC = πα, πδP3

= 2π, πδE = π
(1

2
− α

)
,

см. рис. 4.7c на стр. 199), а прообразами этих вершин служат точки

ξA = ∞, ξB = 0, ξP1
= p1, ξM = µ,

ξP2
= p2, ξC = λ, ξP3

= p3, ξE = τ,

см. рис. 4.7b, стр. 199.

Для вычисления решения P+
dis(ζ) задачи Римана — Гильберта в H+, полу-

ченного в форме интеграла Кристоффеля — Шварца (5.9), представим в виде

набора степенных разложений вблизи отмеченных выше прообразов вершин

области Wdis, а также вблизи прообразов некоторых регулярных точек этой

области и ее границы. Эти разложения, аналогичные представлениям (3.27),

(3.30) для интеграла (3.2), весьма удобны и эффективны при практическом

вычислении функции P+
dis(ζ). Указанных разложения строятся тем же спо-

собом, что и аналогичные разложения для функции P+
con(ζ), полученные в

п. 4.3, стр. 224.
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§6. Численная реализация для задач Римана —

Гильберта C и D

6.1. Алгоритм нахождения решений Fcon и Fdis задач C и D.

В соответвии со сказанным в п. 2.1 алгоритм решения задач C и D включает

следующие четыре этапа.

Во–первых, находятся параметры λ, τ и K конформного отображения z =

Φ−1(ζ), определяемого в виде (3.2), с помощью метода из §3, стр. 209. При

этом интегралы гипергеометрического типа, входящие в систему (3.3) выра-

жаются через функцию Аппеля F1 по формулам (3.7)–(3.9) и для их вычис-

ления используются представленные в главе II результаты об аналитическом

продолжении этой функции. Способ построения начальных приближений для

искомых параметров указан в п. 3.2.

Во–вторых, находится конформное отображение ζ = Φ(z) в виде набора

разложений (3.28), (3.31), коэффициенты B
(P)
k которых выражаются по фор-

мулам (3.29), (3.32) через величины b
(P)
k . Метод нахождения коэффициентов

изложен в 3.3.

В–третьих, строятся решения P+
con и P+

dis задачи Римана – Гильберта в по-

луплоскости H+ в виде разложений, аналогичных тем, которые были приме-

нены для вычисления конформного отображения Φ. Для функции P+
con такие

разложения приведены в п. 4.3. Разложения функции P+
dis строятся вполне

аналогичным способом и не приводятся здесь по причине достаточной гро-

моздкости.

В–четвертых, решения Fcon(z) и Fdis(z) задач C и D находятся по форму-

лам (2.8) через построенные функции ζ = Φ(z), P+
con(ζ) и P+

dis(ζ).

Проведенные вычислительные эксперименты позволяют сказать, что ис-

пользуемые для вычисления функций Φ(z), P+
con(ζ) и P+

dis(ζ) разложения (ко-

эффициенты которых вычисляются по достаточно простым формулам) пред-

ставляют собой весьма эффективный и удобный вычислительный аппарат,

обеспечивающий высокую относительную точность (порядка 10−6 в норме
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C( X \ {∞}) или C( Y \ {∞,±a}) при малом времени вычислений (порядка

0.1 с). Для достижении такой точности для функций F+
con(z) и F+

dis(z) в упо-

мянутых разложениях достаточно было удерживать обычно более 40 членов.

Отметим еще простоту вычисления коэффициентов этих разложений.

6.2. Картина магнитного поля в области пересоединения при на-

личии непрерывного или распадающегося токового слоя. Численная

реализация решений задач C и D была проведена для широкого набора сво-

бодных параметров соответствующих моделей магнитного пересоединения.

Полученные результаты представлены в первую очередь в виде картин рас-

пределения линий магнитного поля. Такие картины отражают глобальное

устройство поля в области пересоединения, а также его структуру вблизи то-

кового слоя и ударных волн. Как показали численные эксперименты, карти-

на поля в данных моделях существенно зависит от параметров задачи. Для

того чтобы это продемонстрировать удобно зафиксировать геометрические

параметры, а также параметр γ, и наблюдать за динамикой картины поля

при изменении только одного параметра β. В задаче C полагаем b = 1 = r,

α = 1/4, γ = 1.

Прежде чем представить результаты для задачи C, вернемся к модели Сы-

роватского без ударных волн. На рис. 4.1 показаны семейства линий магнит-

ного поля в окрестности токового слоя Сыроватского. Эти линии являются

линиями уровня функции A(z) = Im Ψ(z) — векторного потенциала магнит-

ного поля; для изображенных на рис. 4.2 семейств линий поля Ψ определяет-

ся формулой (1.8). Рис. 4.1 соответствует значению ε, лежащему в диапазоне

(0, b) , а рис. 4.2 — значению ε = b. Если выполняется условие 0 ≤ ε ≤ b,

то вне токового слоя нет точек, где поле обращается в нуль. Согласно рабо-

те Сыроватского [124], такая ситуация не требует введения дополнительных

разрезов, соответствующих вторичным токовым слоям, и имеет физический

смысл.

Переходя к обсуждения численных результатов для картины магнитного

поля в задаче C, отметим, прежде всего, что для условие отсутствия нулей
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Рис. 4.12. Картина магнитного поля в области X при β = 0.

поля в C \ X выполняется при β ∈ [0, β0]. где предельное значение β0 на-

ходится из (4.15)–(4.17). При b = 1 = r, α = 1/4 по формулам (4.15)–(4.17)

вычисляем β0 = 1.531023.

На рис. 4.12 представлена картина поля для предельного случая β = 0,

а на рис. 4.13 — для предельного случая β = β0. При β ∈ [0, β0] токовый

слой пересекают две симметрично расположенные силовые линии, отделя-

ющие участки, где ток течет в противоположных направлениях. При этом

замкнутые силовые линии и нулевые точки поля внутри области отсутству-

ют. Типичной для этого диапазона является картина поля, соответствующая

β = 1, которая представлена на рис. 4.14.

При β ∈ (−∞, 0) силовые линии не пересекают токовый слой, некоторые

из них образуют замкнутые контуры с циркуляцией против часовой стрелки,

а внутри области X возникают две нулевые точки поля, симметрично распо-

ложенные на вещественной оси. При β ∈ (β0, +∞) силовые линии также

не пересекают токовый слой, некоторые из них образуют замкнутые контуры

с циркуляцией поля по часовой стрелке, а внутри области X возникают две
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Рис. 4.13. Картина магнитного поля в области X при β = β0.

нулевые точки поля, симметрично расположенные на мнимой оси. (Мы не

приводим численные результаты для этих диапазонов значений параметров,

поскольку получаемые картины поля не соответствуют физическим предпо-

ложениям модели.)

Прежде чем представить результаты для задачи D, вернемся к модели то-

кового слоя без ударных волн. На рис. 4.8, 4.9 изображены семейства линий

магнитного поля в окрестности распадающегося токового слоя. Эти линии

являются линиями уровня функции A(z) = ImΨ(z), где комплексный потен-

циал Ψ определяется формулой (2.28). На рис. 4.8 приведена картина поля

при ε = b, когда магнитное поле обращается в ноль на внешних краях токо-

вого слоя. Рис. 4.9 соответствует значению ε, лежащему в диапазоне (a, b).

Если выполняется условие a ≤ ε ≤ b, то вне токового слоя не возникает то-

чек (за исключением z = 0, имеющей особый статус), где поле обращается

в нуль. Поэтому, согласно работе [124], такой диапазон изменения параметра

ε имеет физический смысл. Дополнительно к этому ограничению мы будем

предполагать, что обратный (компенсирующий) ток не может быть больше
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Рис. 4.14. Картина магнитного поля в области X при β = 1 ∈ (0, β0).

первичного прямого тока, обуславливающего процесс магнитного пересоеди-

нения в токовом слое.

На рис. 4.15–4.17 приведены картины магнитного поля для модели с рас-

падающимся токовым слоем при наличии присоединенных ударных волн. На

рисунках 4.16 и 4.17, соответствующих β = 0.3 и β = 0.5, видны области пря-

мого и обратного токов в токовом слое и преломление линий магнитного поля

на присоединенных ударных волнах. На рис. 4.15, соответствующем β = 0, в

токовом слое отсутствуют области обратного тока, а линии магнитного поля

не пересекают ударные волны.

6.3. Поведение поля вблизи ударной волны. Изучим характер пре-

ломления магнитного поля на ударных волнах, т.е. на разрезах Γj. В силу

условий симметрии поля (2.18) и (2.33) достаточно провести все рассмотре-

ния только для разреза Γ1.

Обозначим через θ1 и θ2 углы отклонения вектора магнитного поля (или

что то же самое — силовой линии) от внутренних по отношению к области
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Рис. 4.15. Картина магнитного поля в области Y при β = 0.

G нормалей соответственно к участкам CD и DE ее границы, см. 4.6. Со-

отношение между этими углами определяет тип ударной волны, см., напри-

мер, [227]. Если углы θ1 и θ2 положительны, то при выполнении соотношения

θ2 > θ1 ударная волна является медленной, а в случае обратного неравенства

θ1 > θ2 — быстрой МГД ударной волной. Если же на некоторой части фронта

ударной волны выполняется неравенство θ1 < 0, то такая ситуация соответ-

ствует транс-альвеновской волне. Углы θ1 и θ2 могут быть вычислены через

решения Fcon и Fdis задач C и D следующим способом.

Введем на дуге (CDE) границы области G натуральный параметр s, т.е.

текущую длину дуги, которую будем отсчитывать от вершины разреза в на-

правлении обхода граничного контура, при котором область остается cлева:

z(s) = b + r (1− s sign s) eiπα, s ∈ [−1, 1], на (CDE) ;

при этом подразумевается, что когда s возрастает от −1 до 0, то точка z(s)

пробегает берег (CD), а когда s возрастает от 0 до 1, то точка z(s) пробегает

берег (DE) наклонного разреза на рис. 4.6а.
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Рис. 4.16. Картина магнитного поля в области Y при β = 0.3.

Образом точки z(s) при отображении Fcon будет точка w = Fcon(z(s))

прямолинейного участка границы области Wcon на рис. 4.6c, представимая

формулой

Fcon
(
ζ(s)

)
= −β (sin πα )−1 + e− iπα σcon(s) , s ∈ [−1, 1] . (6.1)

Здесь вещественная величина σcon(s) есть расстояние на плоскости годогра-

фа от точки C до Fcon(ζ(s)). Следовательно, функция σcon(s) находится из

выражения

σcon(s) = ei π α
{

Fcon
[
z(s)

]
+ β (sin πα)−1 }

. (6.2)

Нетрудно убедиться, что зависимость θ(s) угла между линией поля и норма-

лью к наклонному разрезу от параметра s выражается через σ(s) следующим

образом:

θ(s) = arctg
[
β−1 σcon(s)− ctg πα

]
, (6.3)
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Рис. 4.17. Картина магнитного поля в области Y при β = 0.5.

а величины θ1 и θ2 связаны с θ соотношениями

θ1(s) = θ(s), s ∈ [−1, 0]; θ2(s) = θ(s), s ∈ [0, 1].

Аналогичные формулы для углов θ1 и θ2 в задаче D, очевидно, получаются

заменой Fcon на Fdis в формулах (6.1)–(6.3).

Продолжим рассмотрение задачи C. Для того, чтобы сделать некоторые

качественные выводы о влиянии параметров модели на соотношение меж-

ду θ1 и θ2, удобно обратиться к области годографа Wcon магнитного поля,

пример которой изображен на рис. 4.6. Ударной волне соответствует участок

(CPE) границы области Wcon. Штриховой линией показаны оси, на которых

откладываются значения нормальной Bn и касательной Bτ по отношению

к ударной волне компонент магнитного поля. Положим tg θ = Bτ/Bn, где

значения Bτ и Bn вычислены в точке w∗ участка (CPE) границы W. Если

прообраз z∗ = F−1(w∗) точки w∗ лежит на участке (CD) границы области G

(рис. 4.6a), то θ = θ1, а если на участке (DE) ее границы, то θ = θ2.
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Рис. 4.18. Углы θ1 и θ2 между магнитным полем и нормалью к ударной волне.

Анализируя рис. 4c, нетрудно увидеть, что на всем участке (CPE) величи-

на Bn постоянна и равна β. Это наглядно демонстрирует исходное предполо-

жение модели. Из рис. 4.6a, 4.6c видно, что вблизи точки C границы области

годографа (а, следовательно, и вблизи точки C границы исходной области

G) существует участок границы, где Bτ < 0. Между тем, вблизи точки E

существует участок границы, где Bτ > 0. Отсюда вытекает, что у основания

ударной волны (т.е. вблизи точки присоединения ее к токовому слою), при

любых параметрах модели существует отрезок γ
TA

ударной волны, где угол

θ1 отрицателен, а угол θ2 положителен. Как уже отмечалось выше, такая

ситуация соответствует транс-альвеновской МГД ударной волне.

Если для параметра p в представлении (4.9) выполняется неравенство 0 <

p < 1, то вблизи точки D, являющейся внешним концом ударной волны,
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выполняется соотношение θ1 > θ2, что соответствует медленной МГД ударной

волне. Поскольку θ1 непрерывно увеличивается от отрицательных значений

до положительных, то при 0 < p < 1 должен существовать участок γ fast дуги

(CDE), на котором выполняется неравенство θ2 > θ1, что соответствуюет

быстрой ударной волне. Область годографа Wcon, изображенная на рис. 4.6c,

соответствует описанной ситуации.

Если p > τ , то область годографа отличается от изображенной на рис.

4.6c. В этом случае величина Bτ на дуге (CD) всегда больше этой величины

на дуге (DE) границы области Wcon (а, следовательно, и G). Это означа-

ет, что соотношение θ2 > θ1 выполняется на всей дуге (CDE), т.е. участок

транс-альвеновской волны сменяется участком быстрой волны, а последую-

щий переход к медленной МГД ударной волне отсутствует.

Используя выражение (4.10) для величины p, перепишем в терминах па-

раметров модели условие p < 1, которое является достаточным для одновре-

менного существования участков на дуге (CDE) границы области G, соот-

ветствующих быстрой и медленной ударным волнам:
β

γ
< π3/2 K

1− 2α (τ − λ)− λ√
τ − λ Γ(1− α) Γ(α + 1/2)

.

Аналогичным образом перепишем условие p > τ , при котором отсутствует

переход от быстрой волны к медленной:
β

h
> π3/2 K

τ − 2α(τ − λ)− λ√
τ − λ Γ(1− α) Γ(α + 1/2)

.

Kак показывает вычислительный экперимент, эти неравенства достаточны,

но не являются необходимыми для существования или несуществования ука-

занной смены типа ударной волны, и при выполнении условия 1 < p < τ

возможны обе указанные структуры ударной волны. На рис. 4.18 приведены

графики углов θ1 и θ2, вычисленные соответственно при β = 0.3, γ = 1 и

при β = 1, γ = 1. Для таких значений параметров выполяется соотноше-

ние 1 < p < τ . Видно, что рис. 4.18а соответствует тому, что ударная волна

делится на три зоны, соответствующие транс-альвеновской, быстрой и мед-

ленной волнам; на рис. 4.18b есть зоны транс-альвеновской и быстрой волны,

а зона медленной волны отсутствует.
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§7. Решение задачи со свободной границей,

возникающей при моделировании магнитосферы

нейтронной звезды

7.1. Постановка задачи со свободной границей. Математическая

постановка задачи заключается в следующем. В рассматриваемой модели

[117] магнитосфера звезды представляет собой симметричную односвязную

область G на комплексной плоскости z = x + iy, см. рис. 4.5а.

Магнитное поле B =
(
Bx(x, y), By(x, y), 0

)
считается потенциальным в

области G за исключением начала координат z = 0, где расположен то-

чечный магнитный диполь, моделирующий поле звезды; направление ди-

поля совпадает с направлением оси y, а его величина равна µ. Это озна-

чает, что функция B(z), сопряженная с ”комплексным“ магнитным полем

B(z) = Bx(x, y)+ iBy(x, y), является аналитической в G\{0}, и выполняется

асимптотическое соотношение

B(z) = i
µ

z 2 + O(1), z → 0. (7.1)

Граница области G состоит из двух дуг Γ и γ, см. рис. 4.5а. Форма кривой

Γ, изображающей магнитопаузу, заранее неизвестна и определяется равен-

ством внешнего газового давления p потока плазмы и давления магнитного

поля B:
|B|2
8π

= p, z ∈ Γ; (7.2)

величина p считается постоянной. Бесконечный прямолинейный разрез γ вдоль

вещественной оси представляет собой сечение токового слоя, перпендикуляр-

ного плоскости z. Координата z = ε концевой точки B и полуширина H

хвоста магнитосферы на бесконечности заданы.

Предполагается, что магнитное поле не проникает через Γ и γ, т.е. выпол-

няются соотношения

(B,n) = 0, z ∈ (Γ ∪ γ), (7.3)

где n — вектор нормали к Γ или γ.



– 243 –

Для описания поля B(z) введем комплексный потенциал, представляющий

собой аналитическую функцию F(z), связанную с B(z) соотношением

i F ′(z) = B(z). (7.4)

Потенциал F(z) считается непрерывным в G \ {N,E1, E2}. Условие (7.3) с

учетом такой непрерывности означает, что на дугах Γ и γ границы области G

вещественная часть F(z) принимает постоянные значения, которые полагаем

равными соответственно 0 и −πQ.

Из соотношений (7.1), (7.3) получаем следующие условия для потенциала

F (z) = − µ

z
+ O(1), z → 0, (7.5)

Re F = −πQ, z ∈ γ; Re F = 0, z ∈ Γ. (7.6)

Условие (7.2), определяющее форму кривой Γ, приобретает вид

|F ′(z)|2 = 8π p, z ∈ Γ. (7.7)

Параметрами модели являются величины p, µ, ε и H. Задача заключа-

ется в том, чтобы по заданным значениям этих параметров и соотношениям

(7.5)–(7.7) найти форму границы магнитосферы (кривую Γ) и вычислить маг-

нитное поле B(z) в области G.

7.2. Сведение задачи со свободной границей к двум задачам

Римана — Гильберта. Обратимся к решению сформулированной задачи.

Отметим, что близкие методы решения задач со свободной границе рассмат-

ривались в [59]. Введем конформное отображение z = Φ(ζ) верхней полу-

плоскости H+ =
{
ζ : Im ζ > 0

}
на область G с неизвестной граничной дугой

Γ. Магнитный потенциал F(z), определенный в области G, при таком отоб-

ражении перейдет в функцию

P(ζ) := F ◦ Φ(ζ), (7.8)

для которой в H+ возникнет задача, аналогичная (7.5), (7.6). После построе-

ния Φ и P кривая Γ и магнитный потенциал F будут найдены по формулам

Γ =
{
z : z = Φ(ζ), Re ζ ∈ (−1, 1), Im ζ = 0

}
, F(z) = P ◦ Φ−1(z), (7.9)
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где ζ = Φ−1(z) — отображение G на H+, обратное к Φ.

Искомое конформное отображение z = Φ(ζ) подчиним следующим усло-

виям, которые его однозначно определяют:

Φ(−1) = E1, Φ(1) = E2, Φ(∞) = B. (7.10)

Точки на плоскостях z и ζ, соответствующие друг другу при отображении Φ,

будем обозначать одинаковыми буквами, см. рис. 4.5а, 4.5b. В силу симметрии

областей G,H+ и выбранных условий (7.10) прообразом точки N плоскости z,

где располагается магнитный диполь, будет точка на мнимой оси плоскости

ζ с комплексной координатой, обозначаемой ih.

Функция P(ζ), определяемая формулой (7.8), удовлетворяет на веществен-

ной оси следующим условиям Римана — Гильберта и условию роста, вытека-

ющим из (7.5), (7.6):

ReP(ζ) = −πQ , ζ ∈ (BE1) ∪ (E2B); ReP(ζ) = 0, ζ ∈ (E1E2); (7.11)

P (ζ) = − iM

ζ − ih
+ O(1), ζ → ih, (7.12)

где M = µ|Φ ′(ih)|−1. Кроме этих условий, задачу для P(ζ) дополним еще сле-

дующими асимптотиками при ζ → ±1, согласующимися с условиями (7.11)

разрыва вещественной части аналитической функции P(ζ), и асимптотикой

на бесконечности, согласующейся с (7.12):

P (ζ) = O
(
ln(ζ ± 1)

)
, ζ → ±1; P (ζ) = O(1), ζ →∞. (7.13)

Нетрудно убедиться в том, что аналитическая в H+ за исключением ζ = ih

и непрерывная в H+ \ {E1, E2, N} функция P, удовлетворяющая условиям

(7.11)–(7.13), единственна и имеет следующий вид:

P(ζ) = iQ ln
1 + ζ

1− ζ
+

M

2h

(ζ − ih

ζ + ih
− ζ + ih

ζ − ih

)
. (7.14)

Физический смысл задачи (7.5)–(7.7) предполагает существование двух то-

чек заострения на кривой Γ и наличие обратного тока в токовом слое. Для

этого достаточно предположить (см. пп. 5, 6), что все четыре нуля ζ = ±σ,±τ
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производной P ′(ζ) потенциала (7.14) вещественны и выполняются неравен-

ства σ < 1, τ > 1. Отсюда получаем следующее обеспечивающее указанные

эффекты соотношение для параметров модели:

0 <
Q

M
< min

{
1, h−2 }

. (7.15)

С учетом сказанного, из (7.14) находим производную P ′(ζ) в виде

P ′(ζ) = 2i(Q−M)C(ζ), C(ζ) =
(ζ2 − σ2)(ζ2 − τ 2)

(1− ζ2)(ζ2 + h2)2 , (7.16)

где числа σ и τ даются равенствами

σ =
b−√D

2a
, τ =

b +
√

D

2a
, (7.17)

в которых

a = M −Q, b = 2h2Q + (1 + h2)M, D =
[
8h2(1 + h2)Q + (1− h2)2M

]
M.

На рис. 4.5a, 4.5b, стр. 194, точки, соответствующие нулям ζ = ±σ, обозна-

чены через C1, C2, а соответствующие нулям ζ = ±τ — через X1, X2.

7.3. Построение конформного отображения z = Φ(ζ). Перейдем к

построению конформного отображения z = Φ(ζ). Прежде всего отметим,

что условие (7.7) на Γ при отображении G на H+ преобразуется с учетом

(7.8) в следующее соотношение на интервале (E1E2) вещественной оси для

производной Φ′(ζ)

|Φ′(ζ)| = (8πp)−1/2 |P′(ζ)|, ζ ∈ (E1E2), (7.18)

где P ′(ζ) определяется из (7.16).

Для того чтобы сформулировать условие для Φ′(ζ) на остальной части R,
заметим, что луч (BE1) преобразуется отображением Φ в верхний берег раз-

реза γ, а (E2B) — в нижний берег этого разреза. Отсюда, используя геомет-

рический смысл аргумента производной конформного отображения, находим

arg Φ′(ζ) = 0, ζ ∈ (BE1); arg Φ′(ζ) = π, ζ ∈ (E2B). (7.19)
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Вводя аналитическую функцию

Ψ(ζ) := ln Φ′(ζ), (7.20)

и переписывая с ее помощью равенства (7.18) и (7.19), приходим к следую-

щему краевому условию задачи Римана — Гильберта относительно Ψ(ζ):

Re
[
ν(ζ) Ψ(ζ)

]
= c (ζ), (7.21)

где коэффициент ν(ζ) и правая часть c(ζ) даются равенствами

ν(ζ) =

{
1, ζ ∈ (E1E2);

i, ζ ∈ (BE1) ∪ (E2B);

c (ζ) =





ln p0 + ln |C(ζ)|, ζ ∈ (E1E2);

0, ζ ∈ (BE1);

π, ζ ∈ (E2B),

(7.22)

p0 = (M −Q)/
√

2πp , (7.23)

где C(ζ) дается вторым равенством (7.16). Дополним задачу для Ψ(ζ) следу-

ющими асимптотиками при ζ → ±1 и ζ →∞:

Ψ(ζ) = O
(
ln(ζ ± 1)

)
, ζ → ±1; Ψ(ζ) = O(ln ζ), ζ →∞, (7.24)

согласующимися с тем, что коэффициент ν(ζ) и правая часть c (ζ) краево-

го условия (7.21) разрывны, а также с предполагаемым видом области G,

см. рис. 1а, и тем, что функция Ψ(ζ) связана с производной конформного

отображения H+ на G формулой (7.20).

Опираясь на результаты главы I, можно показать, что решение задачи

Римана — Гильберта, заключающейся в нахождении аналитической в H+ и

непрерывной в H+ \ {E1, E2, B} функции Ψ(ζ), удовлетворяющей условиям

(7.21)–(7.24), сушествует, единственно и имеет следующее представление в

виде интеграла типа Коши:

Ψ(ζ) =
X(ζ)

πi

∫

R

c(t) dt

X(t) ν(t)(t− ζ)
, (7.25)

где X(ζ) =
√

ζ2 − 1 — каноническое решение однородной задачи Римана —

Гильберта.
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7.4. Представление для конформного отображения в виде инте-

грала типа Кристоффеля — Шварца. Вычисляя интеграл (7.25) с ис-

пользованием геометрического подхода к задаче Римана — Гильберта, разви-

ваемого в главе III и формулы типа Якоби для функции Аппеля F1, получаем

следующее выражение для Ψ(ζ):

Ψ(ζ) = ln
p0(ζ

2 − σ2)
[
1− (

τζ +
√

τ 2 − 1
√

ζ2 − 1
)2

]

(ζ2 − 1) (ζ +
√

ζ2 − 1)
[
1 +

(
hζ +

√
h2 + 1

√
ζ2 − 1

)2
]2 , (7.26)

где постоянная p0 определяется формулой (7.23).

Из равенств (7.20) и (7.26) находим выражение для производной Φ ′(ζ)

искомого конформного отображения z = Φ(ζ). Интегрируя это выражение,

получаем следующее представление для отображающей функции Φ(ζ) в виде

интеграла

Φ(ζ) = −2p0 λ−2δ4
∫ Z(ζ)

Z(ih)

(t2 − 2σt + 1)(t2 + 2σt + 1)(t2 − λ2)2

t(t2 − 1)(t2 + δ2)4 dt, (7.27)

где Z(ζ) = ζ+
√

ζ2 − 1 — обратная функцияЖуковского, а δ и λ выражаются

через h и τ по формулам

δ =
√

h2 + 1− h, λ = τ −
√

τ 2 − 1. (7.28)

Вычисляя интеграл (7.27) путем разложения подынтегральной функции

на простые дроби, получаем Φ(ζ) в виде конечной комбинации логарифмов

и степеней обратной функции Жуковского:

Φ(ζ) = K
[
Φ̃(ih)− Φ̃(ζ)

]
, (7.29)

Φ̃(ζ) = κ1 ln Z(ζ) + κ2 ln
[
Z2(ζ)− 1

]
+ κ3 ln

[
Z2(ζ) + δ2]+

+
3∑

k=1

ck

[
Z2(ζ) + δ2]−k

,
(7.30)

κ1 = −2λ4

δ 8 , κ2 =
4(1− σ2)(1− λ2)2

(1 + δ2)4 ,

κ3 =
λ4

δ8 −
4(1− σ2)(1− λ2)2

(1 + δ2)4 ,

(7.31)
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Рис. 4.19. Форма границы магнитосферы и картина магнитного поля, cоответствующие
p = 1, µ = 0.15, ε = 0.05 и H = 0.3.

c1 = −1 +
λ4

δ6 +
4(1− σ2)(1− λ2)2

(1 + δ2)3 ,

c2 = −3

2
+ 2σ2 + λ2 + δ2 − λ4

2δ4 +
2(1− σ2)(1− λ2)2

(1 + δ2)2 ,

(7.32)

c3 = −
[
δ4 − 2(1− σ2)δ2 + 1

]
(δ2 + λ2)2

3 δ2(δ2 + 1)
, K =

(M −Q)δ4
√

2πp λ2 . (7.33)

Здесь σ и τ даются формулами (7.17), а λ и τ — формулами (7.28).

Зависимость величин M , Q и h от параметров p, ε, µ и H модели выра-

жается следующими соотношениями:

M
∣∣Φ′(ih)

∣∣ = µ, K Φ̃(ih) = ε,
π

2
Kκ2 = H.

7.5. Численные результаты для формы магнитосферы и магнит-

ного поля. Подытоживая результаты пп. 7.2–7.4, получаем решение исход-

ной задачи (7.5)–(7.7) в явном аналитическом виде: искомая форма границы

Γ магнитосферы дается первой, а требуемый магнитный потенциал F(z) —
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Рис. 4.20. Форма границы магнитосферы и картина магнитного поля, cоответствующие
p = 1, µ = 0.15, ε = 0.06 и H = 0.1.

второй формулой (7.9), в которых функция P определяется равенством (7.14),

а конформное отображение z = Φ(ζ) — формулами (7.29)–(7.33).

На рис. 4.19 приведены форма Γ границы магнитосферы и распределение

линий магнитного поля, соответствующие p = 1, µ = 0.15, ε = 0.08, H = 0.2,

а на рис. 4.20 — аналогичные данные, соответствующие p = 1, µ = 0.15, ε =

0.06, H = 0.1. На этих рисунках видны участки обратного тока на внутреннем

крае токового слоя, отделенные от участков прямого тока линией магнитного

поля, пересекающей слой.

Наличие обратных токов в токовом слое характеризует неравновесную

магнитосферу, образованную в результате взаимодействия ударной волны от

сверхновой с магнитным полем нейтронной звезды, в отличие от равновес-

ной магнитосферы, например магнитосферы Земли, сформированной квази-

стационарным потоком плазмы солнечного ветра. Обратный ток позволяет

накопить избыток магнитой энергии, который реализуется в виде импульс-

ных всплесков гамма–излучения [117] или другого жесткого электромагнит-

ного излучения.
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Приложение A. Некоторые свойства интеграла типа Коши

A.1. Интеграл типа Коши со специальной плотностью. Поведе-

ние в концевых точках контура. Пусть рассматриваемая дуга разомкну-

тая; тогда, как и выше, a и b — ее концевые точки, а саму дугу обозначим La, b.

Если функция λ(z) гёльдерова на La, b, а в концевых точках удовлетворяет

одностороннему условию Гёльдера, то будем писать λ ∈ Höl (La, b).

Рассмотрим интеграл типа Коши по дуге La, b с плотностью

λ(t) = λ̃(t)(t− c)−γ, (a.1)

где c — одна из концевых точек (a или b); γ ∈ [0, 1) — показатель степени, а

функция λ̃(t) принадлежит классу Höl (La, b).

Рассмотрим поведение такого интеграла типа Коши в концевой точке c.

Окрестность точки z = c, разрезанную вдоль кривой La,b, обозначим Oc\La,b.

Согласно [95] имеет место

Предложение a.1. Пусть плотность λ(t) интеграла типа Коши (4.1),

взятого по дуге La, b, имеет вид (a.1). Тогда в некоторой разрезанной окрест-

ности Oc \La,b, точки c, где c ∈ {a, b}, справедливы следующие представле-

ния для F (z).

1) Если γ = 0 и λ̃(c) 6= 0, то

F (z) = ∓ λ̃(c)

2πi
ln(z − c) + F0(z), z ∈ Oc \ La,b,

где верхний знак берется при c = a, нижний — при c = b; под ln(z − c)

подразумевается любая ветвь логарифма в Oc \ La,b; F0(z) — некоторая

голоморфная в Oc \ La,b функция, стремящаяся к определенному конечному

пределу при z → c.

2) Если γ = 0 и λ̃(c) = 0, то интеграл типа Коши представляет собой

голоморфную в Oc \ La,b функцию, стремящуюся к конечному пределу при

z → c:

lim
z→ c

F (z) = A < ∞, z ∈ Oc \ La,b. (a.2)
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3) Если γ ∈ (0, 1), то

F (z) = ± e±γπi λ̃(c)

2 i sin πγ
(z − c)−γ + F1(z), z ∈ Oc \ La,b,

где знаки выбираются так же как и в утверждении 1), функция (z − c)−γ

принимает на левом берегу разреза La,b значения (t−c)−γ из формулы (a.1),

а F1(z) — некоторая голоморфная в Oc \ La,b функция, имеющая асимпто-

тику F1(z) = o
(
(z − c)−γ

)
при z → c.

A.2. Доказательство теоремы 1.1.

1) Выберем некоторые положительные числа ε1 и ε2 и представим интеграл

(4.6), стр. 46, в виде суммы

Λ(ζ) =
∑3

j=1
Λj(ζ), (a.3)

где интегралы Λj(ζ), определяемые формулами

Λj(ζ) = Λ±j (ζ) :=
ζ − δ

2πi

∫

Lj

λ(t) dt

(t− δ) (t− ζ)
, ζ ∈ H±, (a.4)

взяты соответственно по промежуткам L1 := (−∞, δ−ε1), L2 := (δ−ε1, δ+ε2)

и L3 := (δ + ε2, +∞).

Поскольку подынтегральная функция в Λ1 и Λ3 кусочно–непрерывна и

ограничена на отрезках интегрирования, а ее модуль убывает на бесконечно-

сти как |t|−2, то интегралы Λ1 и Λ3 существуют как несобственные для всех

ζ ∈ H±. Таким образом, функции Λ1(ζ) и Λ3(ζ), равные соответственно Λ±1 (ζ)

и Λ±3 (ζ) при ζ ∈ H±, являются аналитическими в плоскости с выброшенным

разрезом по соответствующей линии интегрирования, т.е.

Λ1 ∈ A
(
C \ (−∞, δ − ε1]

)
, Λ3 ∈ A

(
C \ [δ + ε2, +∞)

)
. (a.5)

Воспользовавшись равенством

ζ − δ

(t− δ)(t− ζ)
=

1

t− ζ
− 1

t− δ
, (a.6)

представим Λ2(ζ) в виде

Λ2(ζ) =
1

2πi

∫ δ+ε2

δ−ε1

λ(t) dt

t− ζ
− 1

2πi

∫ δ+ ε2

δ−ε1

λ(t) dt

t− δ
. (a.7)
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Первый интеграл, очевидно, представляет собой аналитическую функцию в

плоскости с разрезом [δ−ε1, δ +ε2], а второй (не зависящий от ζ) существует

в смысле главного значения, поскольку функция λ(ξ) в силу соотношений

(4.4), (4.5) удовлетворяет условию Гельдера в точке ξ = δ.

Суммируя сказанное с учетом (a.3), получаем, что интеграл (4.6) суще-

ствует в смысле главного значения, а функции Λ+(ζ) и Λ−(ζ) аналитичны

соответственно в верхней и в нижней полуплоскости. Пункт 1) теоремы до-

казан.

2) Покажем, что для Λ+(ζ) и Λ−(ζ) справедлива формула Сохоцкого (4.7),

стр. 46. Пусть ξ — произвольная точка из R \ Ξ. Выберем для нее числа ε1

и ε2 так, чтобы ξ принадлежала интервалу (δ− ε1, δ + ε2) вещественной оси.

Так как этот интервал лежит в указанных в (a.5) областях аналитичности

функций Λ1(ζ) и Λ3(ζ), то эти функции непрерывны в H+ ∪ H− ∪ ξ, что

означает

Λ+
j ∈ C(H+ ∪ ξ), Λ−j ∈ C(H− ∪ ξ), j = 1, 3, (a.8)

и в заданной точке ξ выполняется равенство

Λ+
j (ξ)− Λ−j (ξ) = 0, j = 1, 3. (a.9)

Обозначив первый интеграл в (a.7) через Λ̃(ζ), заметим, что он является

интегралом типа Коши с гёльдеровой плотностью в точке ξ, поэтому

Λ̃+(ζ) ∈ C
(
H+ ∪ ξ

)
, Λ̃−(ζ) ∈ C

(
H− ∪ ξ

)
, (a.10)

и для него верна формула Сохоцкого (4.2), стр. 45. Поскольку интеграл Λ2(ζ)

отличается от Λ̃(ζ) на константу
(
второй интеграл в (a.7)

)
, то выполняется

формула Сохоцкого

Λ+
2 (ξ)− Λ−2 (ξ) = λ(ξ). (a.11)

Принимая во внимание равенство

Λ±(ζ) =
∑3

j=1
Λ±j (ζ), ζ ∈ H±,

вытекающее из (a.3), (a.4), и учитывая соотношения (a.8)–(a.11), устанав-

ливаем в силу произвольности ξ ∈ R \ Ξ искомые включения Λ± ∈ H± и

равенство (4.7), стр. 46. Пункт 2) теоремы доказан.
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3) Если плотность λ(ξ) принимает только мнимые значения при ξ ∈ R,
то условие комплексного уравновешивания (4.8) вытекает непосредственно

из представления (4.6) с учетом вещественности функции λ(t)/i, а также

равентсва K(t, ζ) = K(t, ζ ), справедливого для функции

K(t, ζ) :=
1

2π

ζ − δ

(t− δ)(t− ζ)
.

Обратно, условие комплексного уравновешивания (4.8) приводит к необ-

ходимости выполнения равенства
∫

R

λ(t) dt

(t− δ) (t− ζ)
=

∫

R

−λ(t) dt

(t− δ) (t− ζ)

для всех ζ ∈ H−, что возможно только при условии λ(ξ) = −λ(ξ), ∀ξ ∈ R, т.е.
если λ(ξ) принимает только мнимые значения. Пункт 3) теоремы доказан.

4) Перейдем к исследованию поведения Λ(ζ) при стремлении ζ к точкам

множества Ξ.

Рассмотрим вначале конечные точки ξk, т.е. соответствующие k = 1, N .

Выберем некоторое ξk′, примем ε1 и ε2 такими, что ξk′ ∈ (δ − ε1, δ + ε2), и

перепишем интеграл Λ2(ζ) в виде суммы Λ2(ζ) = Λ2,1(ζ) + Λ2,2(ζ), где

Λ2,1(ζ) :=
ζ − δ

2πi

ξk′∫

δ− ε1

λ(t) dt

(t− δ) (t− ζ)
, Λ2,2(ζ) :=

ζ − δ

2πi

δ + ε2∫

ξk′

λ(t) dt

(t− δ) (t− ζ)
.

Используя (a.6), представим интеграл Λ2,1(ζ) в виде

Λ2,1(ζ) = − 1

2πi

∫ ξk′

δ− ε1

λ(t) dt

t− δ
+

+
1

2πi

∫ ξk′

δ− ε1

λ(t)− λ(ξk′ − 0)

t− ζ
dt +

λ(ξk′ − 0)

2πi
ln

ζ − ξk′

ζ − δ + ε1
.

(a.12)

Если δ ∈ (δ − ε1, ξ′k), то первый интеграл в (a.12), понимаемый в смысле

главного значения, существует в силу соотношений (4.4), (4.5), стр. 46, а если

δ 6∈ (δ − ε1, ξ′k), то он существует в обычном смысле. Поскольку согласно

п. 2.1.1 функция λ(t) ∈ H0(Ξ) удовлетворяет в ξk′ одностороннему условию

Гёльдера, то плотность во втором интеграле (a.12) степенны́м образом с по-

ложительным показателем стремится к нулю при t → ξk′, а значит, согласно
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(a.2), этот интеграл стремится к конечному пределу при ζ → ξk′. Учиты-

вая, что первый интеграл в (a.12) не зависит от ζ, и принимая во внимание

соотношение Im
(
ln (ζ − ξk′)

)
= O(1), ζ → ξk′, приходим к асимптотике

Λ2,1(ζ) =
λ(ξk′ − 0)

2πi
ln |ζ − ξk′| + O(1), ζ → ξk′. (a.13)

Анализируя аналогичным образом интеграл Λ2,2(ζ), получаем

Λ2,2(ζ) = −λ(ξk′ + 0)

2πi
ln |ζ − ξk′| + O(1), ζ → ξk′. (a.14)

Складывая соотношения (a.13) и (a.14) для Λ2,1(ζ) и Λ2,2(ζ), находим асимп-

тотику для Λ2(ζ) при ζ → ξk′; учитывая еще следующие вытекающие из (a.5)

формулы Λ1 (ζ) = O(1), Λ3 (ζ) = O(1), ζ → ξk′, и равенство (a.3), устанавли-

ваем требуемую асимптотику (4.9), стр. 47.

Для доказательства соотношения (4.10) вначале исследуем поведение на

бесконечности функций Λ1(ζ) и Λ3(ζ). Представим Λ1(ζ) в виде

Λ1(ζ) =
ζ − δ

2πi

δ−ε1∫

−∞

[
λ(t)− λ(−∞)

]
dt

(t− δ) (t− ζ)
+

(ζ − δ) λ(−∞)

2πi

δ−ε1∫

−∞

dt

(t− δ) (t− ζ)
.

(a.15)

Обозначим через Λ1,1(ζ) первое слагаемое в (a.15) и покажем, что оно имеет

конечный предел при ζ →∞. Действительно, используя замену

z =
1

ζ − δ
, τ =

1

t− δ
, λ̃(τ) = λ(t), λ̃(0) = λ(−∞), ε̃ = −ε−1

1 ,

приводим его к виду

Λ1,1(ζ) = Λ̃1,1(z) =
1

2πi

∫ ε̃

0

[
λ̃(τ)− λ̃(0)

]
dτ

τ − z
,

где для плотности интеграла выполняется неравенство |λ̃(τ)− λ̃(0)| < C |τ |µ
с некоторым µ ∈ (0, 1), следующее из оценки |λ(−∞) − λ(ξ)| < C |ξ|−µ,

справедливой в силу (4.4), стр. 46. Тогда из соотношения (a.2) вытекает су-

ществование конечного предела для Λ1,1(ζ) при ζ → ∞. Из этого факта и
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следующего выражения для второго слагаемого из (a.15)

(ζ − δ) λ(−∞)

2πi

∫ δ−ε1

−∞

dt

(t− δ) (t− ζ)
=

λ(−∞)

2πi
ln

ζ − δ + ε1

ε1

вытекает асимптотика на бесконечности для Λ1(ζ):

Λ1(ζ) =
λ(−∞)

2πi
| ln ζ| + O(1), ζ →∞. (a.16)

Аналогичным образом устанавливаем поведение Λ3(ζ) в бесконечности:

Λ3(ζ) = − λ(+∞)

2πi
ln |ζ| + O(1), ζ →∞. (a.17)

Принимая во внимание соотношение Λ2 (ζ) = O(1), ζ →∞, непосредственно

вытекающее из (a.7), и асимптотики (a.16), (a.17) находим с учетом (a.3)

искомую асимптотику (4.10). Теорема доказана.

Приложение B. Доказательство теоремы 1.4.

1) Пусть κ — четное число или нуль. Тогда, из вида (6.10), стр. 58, функции

S(ξ) следует, что она не обращается в нуль в точке ξ = λ, а значит, функ-

ция D(ξ) из (6.15), стр. 58, в этой точке гёльдерова. Поскольку g ∈ H0(Ξ),

то из оценок (5.7), стр. 49, для X(ζ) и вида (6.10), стр. 58, функции S(ζ)

находим, что функция D(ξ) имеет в конечных точках Ξ интегрируемую осо-

бенность или нуль (возможно, дробного порядка), а из оценки (6.12), стр. 58,

для произведения X(ζ)S(ζ) получаем, что на бесконечности D(ξ) убывает,

если одновременно α o и n o не равны нулю:

|D(ξ)| = O(|ξ|−α o−n o), |ξ| → ∞, α o + n o 6= 0.

В этом случае интеграл (6.16), стр. 58, существует как несобственный при

всех ζ ∈ H±. Кроме того, очевидно, что этот интеграл, т.е. T ∈ H.

Если же α o = n o = 0, то согласно предложению 1.2, стр. 41, имеем ρ0 = 0;

последнее означает, что функция g(ξ) непрерывна в бесконечности. Отсюда
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и из асимптотики (6.12), стр. 58, вытекает, что и D(ξ) непрерывна в беско-

нечности
(
т.е. значения D(+∞) и D(−∞) конечны и равны между собой

)
, а

учитывая предложение 1.5 находим, что D удовлетворяет в ξ = ±∞ условию

Гёльдера

|D(ξ)−D(±∞)| < C|ξ|−µ, µ ∈ (0, 1).

Поэтому интеграл (6.16), стр. 58, в рассматриваемом случае α o = n o = 0

существует в смысле главного значения при всех ζ ∈ H±. Очевидно, что он

также принадлежит H.

Пусть теперь κ — нечетное число. Тогда функция S(ζ) имеет в точке ζ = λ

нуль первого порядка, а функция D(ξ) — особенность типа (ξ − λ)−1, а в

остальных точках ξ ∈ R функция D(ξ) ведет себя так же, как в изученном

выше случае четного κ. В рассматриваемом случае доказательство существо-

вания интеграла (6.16), стр. 58, в смысле главного значения при всех ζ ∈ H±,
а также справедливость включения S(ζ) T(ζ) ∈ H проводится с помощью

рассуждений, использованных при доказательстве утверждений 1) и 2) тео-

ремы 1.1 о существовании модифицированного интеграла типа Коши (4.6),

стр. 46, и его принадлежности H.

Рассуждения, примененные при доказательстве утверждения 2) теоремы

1.1 для анализа граничных свойств интеграла (4.6), стр. 46, включая формулу

Сохоцкого (4.7), приводят к установлению справедливости равенства (6.14),

стр. 58, для скачка функции T и к установлению равенства (6.8), стр. 57, для

предельных значений произведения S(ζ) T±(ζ) = F±(ζ). Пункт 1) теоремы

доказан.

2) Покажем, что T±(ζ) удовлетворяют условию комплексного уравновеши-

вания (6.17), стр. 58. Непосредственно из определения (6.16) функции T+(ζ)

получаем равенство

T+( ζ ) = − 1

2πi

∫

R

χ(t) dt

t− ζ
, ζ ∈ H− , (b.1)

из которого видно, что для установления (6.17), стр. 59, достаточно показать,
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что

D(ξ) = −D(ξ), ξ ∈ R \ Ξ. (b.2)

Производя в определении (6.15), стр. 58, функции D(ξ) комплексное со-

пряжение, подставляя в него равенство X+(ξ) = G(ξ)X−(ξ), следующее из

(5.5), стр. 49, а также используя определение (3.21), стр. 43, для g(ξ), т.е.

g(ξ) = 2σ(ξ)/χ(ξ), в котором σ(ξ) вещественна, и учитывая соотношение

S(ξ) = S(ξ), получаем для D выражение

D(ξ) =
g(ξ)

S(ξ) X+(ξ)
=

2 σ(ξ)

S(ξ) χ(ξ)G(ξ)X−(ξ)
. (b.3)

Принимая во внимание равенство X−(ξ) = X+(ξ), ξ ∈ R \ Ξ, вытекающее из

(5.6), стр. 49, с учетом включения X ∈ H, а также используя определения

(3.20), стр. 43, для G(ξ) и Θ(ξ):

G(ξ) = e2iΘ(ξ), Θ(ξ) = arg
[
i χ(ξ)

]

и вытекающее из последней формулы равенство χ(ξ) e2iΘ(ξ) = χ(ξ), приводим

правую часть (b.3) к виду

2 σ(ξ)

S(ξ) χ(ξ)X+(ξ)

χ(ξ)

χ(ξ)
e2iΘ(ξ) =

g(ξ)

S(ξ) X+(ξ)
(−1) = −D(ξ);

тем самым, устанавливаем (b.2), а следовательно, и (6.17), стр. 59. Пункт 2)

теоремы доказан.

3) Обратимся к доказательству формул (6.18), стр. 59, т.е. к исследованию

поведения T(ζ) вблизи конечных точек ξk (k = 1, N ). Поскольку вблизи

любой из этих точек g ограничена, а S отделена от нуля, то в силу оценки

(5.7), стр. 49, функция D(ξ) имеет при nk = 0 и любом αk ∈ [0, 1) следующую

асимптотику:

D(ξ) = O
[
(ξ − ξk)

−αk
]
, ξ → ξk, nk = 0, (b.4)

причем, если αk = 0, то согласно предложению 1.2 имеем ρk = 0, поэтому g(ξ),

а значит, и D(ξ) удовлетворяет в точке ξ = ξk условию Гёльдера. Отсюда и
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из (b.4) вытекает, что функции T±(ζ), определенные в виде интеграла (6.16),

стр. 58, имеют порядок O
[
(ζ − ξk)

−αk
]
в точке ξk при всех αk ∈ [0, 1), т.е.

справедливо первое соотношение (6.18), стр. 59.

Из проведенного анализа вытекает также, что если nk > 0, то функция

D(ξ) обращается в нуль в точке ξ = ξk,

D(ξ) = O[(ξ − ξk)
nk−αk], ξ → ξk, nk > 0,

и удовлетворяет в ней условию Гельдера; в этом случае из представления

(6.16) и свойств интеграла типа Коши вытекает, что функции T±(ζ) огра-

ничены при стремлении ζ к точке ξk, т.е. справедливо второе соотношение

(6.18), стр. 59. Пункт 3) теоремы доказан.

4) Обратимся к доказательству формулы (6.19), стр. 59, т.е к исследованию

поведения T(ζ) вблизи бесконечно удаленной точки ζ = ξ0 := ∞. Для этого

представим интеграл T(ζ) в виде суммы трех интегралов

T(ζ) =
3∑

j=1

Tj(ζ), T±j (ζ) :=
1

2πi

∫

Lj

χ(t) dt

t− ζ
, ζ ∈ H±; (b.5)

взятых соответственно по промежуткам L1 := (−∞, ε1), L2 := (ε1, ε2) и

L3 := (ε2, +∞), где ε1 и ε2 — такие вещественные числа, что интервал L2

содержит точки ξ = λ, ξ = 0 и все ξk, k = 1, N .

4.1) Докажем справедливость первой строки формулы (6.19). Пусть no = 0

и α o 6= 0. Рассмотрим вначале интеграл T3(ζ). Представим его плотность D

в виде

D(ξ) := ξ−α o D̃(ξ). (b.6)

Используя выражения (6.15), стр. 58, и (5.15), стр. 51, для функций D(ξ) и

X(ζ), асимптотику (6.12), стр. 58, для произведения S(ζ) X(ζ), а также учи-

тывая предложение 1.4 на стр. 47 и предложение 1.5 на стр. 48, убеждаемся,

что D̃(ξ) удовлетворяет условию Гёльдера на интервале (ε2, +∞) и односто-

роннему условию Гёльдера в бесконечно удаленной точке ξ = +∞.
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Перепишем интеграл T3(ζ) с учетом представления (b.6) для его плотности

в виде

T3(ζ) =
1

2πi

∫ ∞

ε2

D̃(t) dt

tα o (t− ζ)
, (b.7)

а используя здесь замену t = ε2τ
−1, приведем T3(ζ) к виду

T3(ζ) = − ε1−α0
2 ζ−1

2πi

∫ 1

0

D̃(ε2τ
−1) τα0−1 dτ

τ − ε2ζ−1 . (b.8)

Применяя для оценки интеграла (b.8) утверждение 3 предложения a.1, нахо-

дим следующую асимптотику для T3(ζ):

T3(ζ) = O(ζ−α o), ζ →∞ (no = 0, α o 6= 0). (b.9)

Рассматривая аналогично функцию T1(ζ) из (b.5), получаем

T1(ζ) = O(ζ−α o), ζ →∞ (no = 0, α o 6= 0). (b.10)

Кроме того, для T2(ζ), определяемого из (b.5), как интеграла типа Коши по

конечному отрезку (ε1, ε2), очевидно соотношение

T2(ζ) = O
(
ζ −1), ζ →∞ (

no ≥ 0, α o ∈ [0, 1)
)
. (b.11)

Тогда из (b.9)–(b.11) и (b.5) вытекает требуемая первая строка асимптотиче-

ской оценки (6.19), стр. 59, для T (ζ), соответствующей n o = 0 и α0 6= 0.

Если же одновременно α0 и n0 равны нулю, то, как установлено в п. 1)

доказательства, интеграл T(ζ) существует в смысле главного значения. Точ-

нее, если T(ζ) записан в виде (b.5), то в смысле главного значения существует

сумма интегралов T1(ζ)+T3(ζ) =: T̃(ζ). Выполняя в интегралах T1(ζ) и T3(ζ)

замену t = 1/τ , получаем для T̃(ζ) следующее выражение:

T̃(ζ) = −ζ−1

2πi

∫ b

−a

D(τ−1) dτ

τ(τ − ζ−1)
,

где a = ε−1
1 , b = ε−1

2 .

Действуя аналогично рассуждениям из доказательства п. 1) теоремы 1.1,

перепишем T̃ в виде

T̃(ζ) = − 1

2πi

∫ b

−a

D(τ−1) dτ

τ − ζ−1 +
1

2πi

∫ b

−a

D(τ−1) dτ

τ
,



– 260 –

где первый интеграл представляет собой аналитическую функцию в плоско-

сти переменного ζ̃ = ζ−1 с разрезом [−a, b] и имеет конечный предел при

ζ →∞, а второй интеграл существует в смысле главного значения, посколь-

ку его плотность D(τ−1) удовлетворяет условию Гельдера в точке τ = 0.

Нетрудно убедиться, используя формулу Сохоцкого (4.3), стр. 45, что

lim
H+3ζ→∞

T̃(ζ) = D(∞).

Отсюда с учетом асимптотики (b.11) и формулы T(ζ) = T̃(ζ)+T2(ζ) находим

T(ζ) = O(1), ζ → ∞. Это означает справедливость первой строки асимпто-

тической оценки (6.19), стр. 59, для T (ζ) при n o = 0 и α o = 0.

4.2) Обратимся к доказательству второй строки формулы (6.19), соответ-

ствующей случаю n o = 1 и α o = 0. Представим, как и раньше, интеграл T (ζ)

в виде суммы (b.5) и введем функцию f3(ζ) := ζ T 3(ζ). Покажем, что

f3 (ζ) = O ( ln ζ ), ζ →∞. (b.12)

Действительно, записывая для нашего случая D(t) с помощью (6.12), (6.15),

в виде

D(ξ) := ξ−1 [
D̃(ξ)− D̃(+∞)

]
+ ξ−1D̃(ξ), (b.13)

преобразуем f3(ζ) к виду

f3(ζ) =
ζ

2πi

+∞∫

ε 2

D̃ (t) − D̃ (+∞)

t (t− ζ)
dt +

D̃(+∞)

2πi
ln

ε2 − ζ

ε 2
. (b.14)

Выполняя в фигурирующем здесь интеграле замену переменного t = ε2τ
−1 и

учитывая утверждение 3) предложения a.1, убеждаемся, что этот интеграл

существует для всех ζ ∈ H± и имеет конечные пределы при H± 3 ζ → ∞.

Таким образом, из формулы (b.14) вытекает асимптотика (b.12), откуда с

учетом определения f3(ζ) находим T 3(ζ) = O
(
ζ−1 ln ζ

)
, ζ → ∞. Рассматри-

вая аналогично функцию T1(ζ), находим асимптотику T1(ζ) = O
(
ζ−1 ln ζ

)
,
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ζ → ∞. Учитывая еще соотношение (b.11), справедливое и в рассматривае-

мом случае n o = 1 и α o = 0, а также равенство (b.5), приходим ко второй

строке формулы (6.19), стр. 59.

4.3) Перейдем к доказательству третьей строки формулы (6.19), т.е. пред-

положим, что n o = 1, α o 6= 0 или n o > 1. Покажем, что функция f3(ζ) =

ζ T3(ζ) ограничена на бесконечности. Выполняя следующие преобразования

f3(ζ) =
ζ

2πi

∞∫

ε2

D̃(t)

tα o+n o(t− ζ)
dt =

= − 1

2πi

∞∫

ε2

D̃(t)

tα o+n o
dt +

1

2πi

∞∫

ε2

D̃(t)

tα o+n o−1(t− ζ)
dt ,

(b.15)

находим, что оба интеграла здесь сходятся как несобственные. Первый ин-

теграл, очевидно, не зависит от ζ, а второй, обозначаемый через I(ζ), при

помощи замен

z =
1

ζ
, τ =

1

t
, ν(τ) = D̃(t), ε̃ = ε−1

2 , (b.16)

преобразуется к виду

I(ζ) = Ĩ(z) = − z

2πi

ε̃∫

0

τα o+n o−2 ν (τ)

τ − z
dτ ; (b.17)

фигурирующая здесь функция ν(τ) в силу (b.6) и (b.16) удовлетворяет од-

ностороннему условию Гёльдера в точке τ = 0. Таким образом, если n o ≥ 2,

то из (b.17) вытекает существование конечного предела I(ζ) при ζ →∞. Ес-

ли же n o = 1 и α o > 0, то I(ζ) совпадает с интегралом (b.7), для которого

была найдена асимптотика O(ζ−α o), ζ → ∞. Суммируя сказанное, из (b.15)

получаем искомую асимптотику f3(ζ) = O(1), ζ →∞.

Из последнего соотношения и из равенства f3(ζ) = ζ T3 (ζ) вытекает асимп-

тотика T3(ζ) = O
(
ζ−1

)
, ζ → ∞. Рассматривая аналогично функцию T1(ζ),

можно показать, что T1(ζ) = O(ζ−1
)
, ζ → ∞. Учитывая еще представление

(b.5) и равенство (b.11), справедливое и в рассматриваемом случае n o = 1,
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α o 6= 0 или n o > 1, приходим к третьей строке формулы (6.19) на стр. 59,

чем и завершаем доказательство теоремы 1.4.

Приложение C. Доказательство некоторых утверждений Гл. II.

C.1. Доказательство теоремы 2.6. Доказательство формулы продол-

жения (4.70)–(4.74) проведем методом индукции по числу N переменных

функции Лауричеллы.

Заметим, прежде всего, что при N = 1, т.е. когда функция Лауричеллы

совпадает с функцией Гаусса, соотношения (4.70)–(4.74), устанавливаемые

теоремой, совпадают с известными формулами (2.6), (2.7), (2.21), (2.22), осу-

ществляющими продолжение функции F (a, b; c; z) в окрестность точки z = 1.

Действительно, при N = 1 правая часть (4.70), как и правая часть (2.21),

содержит лишь два слагаемых A0U
(1)
0 и A1U

(1)
1 , а формулы (4.71) и (4.72), ко-

торыми определяются функции U
(1)
0 и U

(1)
1 , переходят соответственно в (2.6)

и (2.7). При этом равенства (4.73), (4.74) для коэффициентов A0 и A1 сов-

падают с (2.22). Формула (4.69) для области KN переходит в формулу (2.20)

для области K, где справедливы соотношения (2.6), (2.7), (2.21), (2.22).

Предположим теперь, что утверждение теоремы справедливо для функ-

ции Лауричеллы с числом переменных (N −1), и убедимся в справедливости

равенств (4.70)–(4.74), записанных для функции Лауричеллы с числом пере-

менных N . Для этого воспользуемся представлением (4.64) для функции Ла-

уричеллы, которое устанавливает предложение 2.4. Заметим, прежде всего,

что фигурирующие в формуле (4.64) функция v1 и множитель D1, определя-

емые из (4.66) и (4.67), совпадают соответственно с фигурирующими в (4.70)

функцией U
(1)
1 и множителем A1, которые определяются из (4.72) и (4.74) при

j = 1, т.е. для второго слагаемого из (4.64) справедливо равенство

D1v1(a; b, c; z) = A1U
(1)
1 (a; b, c; z). (c.1)

Убедимся теперь в том, что аналитическое продолжение первого слагаемого

в формуле (4.64), равного D0 v0(a; b, c; z), по переменным z2, . . . , zN , даст
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часть суммы (4.70), за исключением слагаемого A1U
(1)
1 , т.е. в том, что имеет

место представление

D0 v0(a; b, c; z) = A0 U
(1)
0 (a; b, c; z) +

N∑
j=2

Aj U
(1)
j (a; b, c; z). (c.2)

Применяя к функциям F
(N−1)
D (a′1; b + k, c − a1; z′1), фигурирующим в фор-

муле (4.19), соотношения (4.38)–(4.41), которые, напомним, предполагаются

верными для числа переменных (N − 1), записываем формулы аналитиче-

ского продолжения этих функций в виде:

F
(N−1)
D (a′1; b + k, c− a1; z′1) =

N∑′

j=0

Ãj Ũ
(1)
j (a; b, c, k1; z1

′), (c.3)

где штрих над суммой означает, что пропущено слагаемое, соответствующее

j = 1, функция Ũ
(1)
0 определяется равенством

Ũ
(1)
0

(
a; b, c; z) = F

(N−1)
D (a′1; b + k1, 1 + |a|+ b− c + k1; 1− z′1

)
, (c.4)

функции Ũ
(1)
j , j = 2, N , — следующими равенствами:

Ũ
(1)
j (a; b, c; z) = (1− zj)

c−|a1,j |−b−k1

( N∏

l=j+1

(1− zl)
−al

)
×

×G(N, j−1)
(
h̃j; c− |a1,j−1| − b− k1, 1 + c− |a1,j| − b− k1, Yj−1(1− z′1)

)
,

(c.5)

а коэффициенты Ãj = Ãj(k1), j = 0, 2, . . . , N , имеют вид

Ã0 =
Γ(c− a1) Γ

(
c− |a| − b− k1

)

Γ
(
c− |a|) Γ(c− a1 − b− k1)

, (c.6)

Ãj =
Γ(c− a1) Γ

(
c− |a1,j−1| − b− k1

)
Γ
( |a1,j|+ b− c + k1

)

Γ(aj)Γ(b + k1)Γ(c− a1 − b− k1)
, j = 2, N .

(c.7)

Векторы h̃j и Ym

(
1− z′1

)
в (c.5) имеют вид:

h̃j = (a2, . . . , aj−1, c− |a|, aj+1, . . . , aN), j = 2, N ,
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Ym

(
1− z′1

)
=

( 1− z2

1− zm
, . . . ,

1− zm−1

1− zm
, 1− zm,

1− zm

1− zm+1
, . . . ,

1− zm

1− zN

)
,

m = 1, N − 1.

Подставляя (c.3)–(c.7) в формулу (4.19), находим:

D0 v0(a; b, c; z) = Q0(a; b, c; z) +
N∑

j=2

Qj(a; b, c; z) , (c.8)

где

Qj(a; b, c; z) :=
Γ(c) Γ(c− a1 − b)

Γ(c− a1)Γ(c− b)
×

×
∞∑

k1=0

(a1)k1
(b)k1

k1!(1 + a1 + b− c)k1

(1− z1)
k1 Ãj (k1) Ũ

(1)
j (a; b, c, k1; z).

(c.9)

Покажем, что для всех j = 0, 2, . . . , N выполняются равенства

Qj(a; b, c; z) = Aj U
(1)
j (a; b, c; z), (c.10)

где функции U
(1)
j определяются равенствами (4.71), (4.72), а множители Aj

— равенствами (4.73), (4.74).

(i) Убедимся в справедливости формулы (c.10) при j = 0, для чего

преобразуем правую часть (c.9) при j = 0 и покажем, она совпадает с A0 U
(1)
0 .

Подставляя в (c.9) величины Ũ
(1)
0 и Ã0, определяемые из (c.3) и (c.6), и ис-

пользуя разложение

F
(N−1)
D (a′1; b + k1, 1 + |a|+ b− c + k1; 1− z′1

)
=

=
∞∑

|k2,N |=0

(b + k1)|k2,N |(a2)k2
. . . (aN)kN

(1 + |a|+ b− c + k1)|k2,N |k2! . . . kN !
(1− z2)

k2 . . . (1− zN)kN ,

получаем

Q0(a; b, c; z) =
Γ(c) Γ(c− a1 − b)

Γ(c− b)Γ(c− |a|) ×

×
[ ∞∑

|k|=0

Γ(c− |a| − b− k1)(b)k1
(b + k1)|k2,N |

(1 + a1 + b− c)k1
Γ(c− a1 − b− k1)(1 + |a|+ b− c + k1)|k2,N |

×

× (a1)k1
. . . (aN)kN

k1! . . . kN !
(1− z1)

k1 . . . (1− zN)kN

]
.

(c.11)
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Учитывая следующие равенства:

Γ(c− a1 − b)

(1 + a1 + b− c)k1
Γ(c− a1 − b− k1)

= (−1)k1, (b)k1
(b + k1)|k2,N | = (b)|k|,

Γ(c− |a| − b− k1)

(1 + |a|+ b− c + k1)|k2,N |
= (−1)k1

Γ(c− |a| − b)

(1 + |a|+ b− c)|k|
,

преобразуем (c.11) к виду

Q0(a; b, c; z) =
Γ(c) Γ(c− |a| − b)

Γ(c− |a|)Γ(c− b)
×

×
∞∑

|k|=0

(b)|k|
(1 + |a|+ b− c)|k|

(a1)k1
. . . (aN)kN

k1! . . . kN !
(1− z1)

k1 . . . (1− zN)kN ,
(c.12)

а принимая во внимание определение функции Лауричеллы (1.2) и формулы

(4.71) и (4.73) для U
(1)
0 и A0, завершаем доказательство равенства (c.10) при

j = 0.

(ii) Убедимся в справедливости формулы (c.10) при всех j = 2, N , для чего

преобразуем правую часть (c.9) к виду Aj U
(1)
j . Подставляя в (c.9) величины

Ũ
(1)
j и Ãj, j = 2, N , определяемые из (4.72) и (4.74), а также разложение

G(N−1, j−1)
(
h̃j; c− |a1,j−1| − b− k1, 1 + c− |a1,j| − b− k1, Yj−1(1− z′1)

)
=

=
∞∑

|k2,N |=0

(c− |a1,j−1| − b− k1)|kj,N |−|k2,j−1| (a2)k2
. . . (c− |a|)kj

. . . (aN)kN

(1 + c− |a1,j| − b− k1)|kj,N |−|k2,j−1| k2! . . . kN !
×

×
(1− z2

1− zj

)k2

. . .
(1− zj−1

1− zj

)kj−1

(1− zj)
kj

( 1− zj

1− zj+1

)kj+1

. . .
( 1− zj

1− zN

)kN

,

получаем

Qj(a; b, c; z) =
Γ(c) Γ(c− a1 − b)

Γ(aj)Γ(c− b)
(1− zj)

c−|a1,j |−b
( N∏

l=j+1

(1− zl)
−al

)
×

×
∞∑

|k|=0

(b)k1
Γ(c− |a1,j−1| − b− k1)Γ(|a1,j|+ b− c + k1)

Γ(b + k1)Γ(c− a1 − b− k1)(1 + a1 + b− c)k1

×

× (c− |a1,j−1| − b− k1)|kj,N |−|k2,j−1|
(1 + c− |a1,j| − b− k1)|kj,N |−|k2,j−1|

(a1)k1
. . . (c− |a|)kj

. . . (aN)kN

k1! . . . kN !

[
Yj(1− z)

]k
.
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Учитывая следующие равенства: (b)k1
/ Γ(b + k1) = 1 / Γ(b),

Γ(c− |a1,j−1| − b− k1)(c− |a1,j−1| − b− k1)|kj,N |−|k2,j−1| =

= Γ(c− |a1,j−1| − b)(c− |a1,j−1| − b)|kj,N |−|k1,j−1|,

Γ(|a1,j|+ b− c + k1)

(1 + c− |a1,j| − b− k1)|kj,N |−|k2,j−1|
= (−1)k1

Γ(|a1,j|+ b− c)

(1 + c− |a1,j| − b)|kj,N |−|k1,j−1|
,

Γ(c− a1 − b)

Γ(c− a1 − b− k1)(1 + a1 + b− c)k1

= (−1)k1 ,

преобразуем (c.11) к виду

Qj(a; b, c; z) =
Γ(c) Γ

(
c− |a1,j−1| − b

)
Γ
( |a1,j|+ b− c

)

Γ(aj)Γ(b)Γ(c− b)
×

× (1− zj)
c−|a1,j |−b

( N∏

l=j+1

(1− zl)
−al

) ∞∑

|k|=0

(c− |a1,j−1| − b− k1)|kj,N |−|k1,j−1|
(1 + c− |a1,j| − b− k1)|kj,N |−|k1,j−1|

×

× (a1)k1
. . . (c− |a|)kj

. . . (aN)kN

k1! . . . kN !

[
Yj(1− z)

]k
,

принимая во внимание определение (4.35) функции G(N,j) и формулы (4.72) и

(4.74) для U
(1)
j и Aj, завершаем доказательство равенства (c.10) при

j = 2, . . . , N .

Подставляя (c.1), (c.8) и (c.10) в (4.64), получаем представление (4.70) для

функции Лауричеллы.

В том, что U
(1)
j , j = 0, N , являются частными решениями системы (1.5),

можно убедиться непосредственной подстановкой (4.71) и (4.72) в (1.5).

Теорема 2.6 доказана.

C.2. Доказательство предложения 2.8. Перейдем к выводу формул

аналитического продолжения функции F1, предполагая, что выполнено пер-

вое соотношение (5.11), т.е. имеет место первый логарифмический случай

(A.1). Записывая интеграл (5.16) в виде умноженной на (2πi) суммы вычетов

в простых полюсах (5.20) и вычетов в двойных полюсах (5.22) подынтеграль-
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ной функции (5.14), находим представление функции F1:

F1(a, a′; a + m, c; z, ζ) =
Γ(c)

Γ(a)Γ(a + m)

[ m−1∑

k=0

res f
(
s
(1)
k

)
+

∞∑

k=m

res f
(
s
(2)
k, ln

) ]
,

(c.13)

где величины res f
(
s
(1)
k

)
и res f

(
s
(2)
k, ln

)
даются соответственно равенствами

(5.21) и (5.23).

Применяя формулы аналитического продолжения (2.8), (2.9), (2.26), (2.27)

к гипергеометрическим функциям F
(
a′, m−k; c−a−k; ζ

)
, фигурирующим

в (5.21) и (5.23), находим, для них следующие выражения, справедливые при

всех k ∈ Z+, в том числе и при k = 0, 1, . . . , m− 1:

F
(
a′, m− k; c− a− k; ζ

)
= C1 w1(ζ) + C2 w2(ζ), (c.14)

где функции w1(ζ) и w2(ζ) даются равенствами

w1(ζ) = (−ζ)−a′F
(
a′, 1− c + a + a′ + k; 1 + a′ −m + k; ζ−1), (c.15)

w2(ζ) = (−ζ)k−mF
(
m− k, 1− c + a + m; 1− a′ + m− k; ζ−1), (c.16)

а коэффициенты C1 и C2 — следующими равенствами:

C1 :=
Γ(c− a− k)Γ(m− k − a′)
Γ(m− k)Γ(c− a− a′ − k)

, C2 :=
Γ(c− a− k)Γ(a′ −m + k)

Γ(a′)Γ(c− a−m)
.

(c.17)

Если же k = m, m + 1, . . . , то, как нетрудно увидеть, соотношения (c.14)–

(c.17) упрощаются и приводятся к следующему виду:

F
(
a′, m− k; c− a− k; ζ

)
= C2 (−ζ)k−m

k−m∑
n=0

(m− k)n(1− c + a + m)n

n! (1− a′ + m− k)n
ζ−n.

(c.18)

Применяя формулы (2.8), (2.9), (2.26), (2.27) к функциям F
(
a′, a+m+s; c+

s; ζ
)
из (5.23), выполняя дифференцирование по s и подставляя в полученное

равенство s = −a− k, находим:
d

ds

[
F

(
a′, a + m + s; c + s; ζ

)]∣∣∣
s=−a−k

= C̃1 w1(ζ) + C2 w̃2(ζ),

k = m, m + 1, . . . ,

(c.19)
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где функция w1(ζ) определяется из (c.15), а функция w̃2(ζ) дается формулой:

w̃2(ζ) := (−ζ)k−m

{
k−m∑
n=0

(1− c + a + m)n(m− k)n

n!(1− a′ + m− k)n

[
λk,m − ln(−ζ)

]
ζ−n +

+ (−1)m−k (k −m)!
∞∑

n=k−m+1

(a′)n(m− k + n− 1)!

n!(c− a− k)n
ζ−n

}
,

(c.20)

λk,m := ψ(c−a−k)− ψ(a′−m+k−n) + ψ(1−m+k−n)− ψ(1−m+k); (c.21)

коэффициент C2 находится из (c.17), а коэффициент C̃1 определяется равен-

ством:

C̃1 = (−1)k−m(k −m)!
Γ(c− a− k)Γ(m− a′ − k)

Γ(c− a− a′ − k)
. (c.22)

Подставляя (c.14)–(c.22) в (5.21), (5.23), переписывая выражения для вычетов

res f(s
(1)
k ) и res f

(
s
(2)
k,ln

)
в виде двойных сумм и подставляя результат в (c.13),

приходим к утверждению предложения 2.8.

C.3. Доказательство предложения 2.9. Записывая интеграл (5.16) в

виде умноженной на (2πi) суммы вычетов в простых полюсах (5.24) и вы-

четов в двойных полюсах (5.26) подынтегральной функции (5.14), находим

следующее представление для функции F1:

F1(b + m, a′; b, c; z, ζ) =
Γ(c)

Γ(b + m)Γ(b)

[ m−1∑

k=0

res f
(
s
(2)
k

)
+

∞∑

k=m

res f
(
s
(1)
k, ln

) ]
,

(c.23)

где величины res f
(
s
(2)
k

)
и res f

(
s
(1)
k, ln

)
даются соответственно равенствами

(5.25) и (5.27).

Преобразуем с помощью формул продолжения (2.8), (2.9), (2.26), (2.27)

гипергеометрические функции F
(
a′, −k; c−b−k; ζ

)
, фигурирующие в (5.25)

и (5.27), к виду:

F
(
a′, −k; c− b− k; ζ

)
=

(a′)k

(1− c + b)k
ζk

k∑
n=0

(−k)n(1− c + b)n

n! (1− a′ − k)n
ζ−n. (c.24)
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Применяя формулы (2.8), (2.9), (2.26), (2.27) к функции F
(
a′, b+ s; c+ s; ζ

)

из (5.27), выполняя дифференцирование по s и подставляя в полученное

равенство s = −b− k, находим:

d

ds

[
F

(
a′, b+s; c+s; ζ

)]∣∣∣
s=−b−k

= C1 w1(ζ) + C2 w2(ζ), k = m, m+1, . . . ,

(c.25)

где функции w1(ζ) и w2(ζ) определяются равенствами:

w1(ζ) = (−ζ)−a′ F
(
a′, 1− c+a′+ b+k; 1+a′+k; ζ−1), k = m, m+1, . . . ,

(c.26)

w2(ζ) = (−ζ)k

{
k∑

n=0

(−k)n(1− c + b)n

n!(1− a′ − k)n

[
τk, n − ln(−ζ)

]
ζ−n +

+ (−1)k k!
∞∑

n=k+1

(n− k − 1)! (1− c + b)n

n! (1− a′ − k)n
ζ−n

}
,

(c.27)

τk, n = ψ(c− b− k)− ψ(a′ + k − n) + ψ(1− n + k)− ψ(1 + k); (c.28)

а коэффициенты C1 и C2 — следующим равенством:

C1 = (−1)k k!
Γ(c− b− k)Γ(−a′ − k)

Γ(c− b− a′ − k)
, C2 :=

Γ(c− b− k)Γ(a′ + k)

Γ(a′)Γ(c− b)
.

(c.29)

Подставляя (c.24)–(c.29) в (5.25) и (5.27), переписывая выражения для

вычетов res f(s
(1)
k ) и res f(s

(2)
k ) в виде двойных сумм и подставляя результат

в (c.23), завершаем доказательство предложения 2.9, где, напомним, область

V2, определена соотношением (5.33).

C.4. Доказательство предложения 2.10. Запишем представление (5.28),

(5.29), (5.32) для функции Аппеля, подставив в указанные формулы b =

a + a′ + m:

F1(a, a′; a + a′ + m, c; z, ζ) =

= B1u1(a, a′; a + a′ + m, c; z, ζ) + B2u2(a, a′; a + a′ + m, c; z, ζ);
(c.30)
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здесь функции u1 и u2 даются равенствами

u1(a, a′; a + a′ + m, c; z, ζ) =

= (−z)−a
∞∑

k=0

(1 + a− c)k (a)k

(1− a′ −m)k k!
z−k F (a′, a′ + m− k; c− a− k; ζ),

(c.31)

u2(a, a′; a + a′ + m, c; z, ζ) =

= (−z)−a−a′−mF1

(
1− c + a + a′ + m, a′; a + a′ + m, 1 + a′ + m;

1

z
,
ζ

z

)
,
(c.32)

а коэффициенты B1 и B2 — следующими равенствами:

B1 =
Γ (c) Γ (a′ + m)

Γ (a + a′ + m) Γ (c− a)
, B2 =

Γ (c) Γ (−m− a′)
Γ (a) Γ (c− a− a′ −m)

. (c.33)

Для того, чтобы аналитически продолжить фигурирующие в формуле

(c.31) функции F (a′, a′+m−k; c−a−k; ζ) в окрестность бесконечно удален-

ной точки, прежде всего заметим, что разность второго и первого параметров

этих функций является целым числом (m − k), знак которого зависит от

индекса суммирования k. Если k ≤ m, то применяя формулу (2.28), (2.16), к

указанным функциям, находим

F (a′, b− a− k; c− a− k; ζ) =
Γ(c− a− k) (m− k − 1)!

Γ(a′ + m− k) Γ(c− a− a′ − k)
w1(ζ), (c.34)

w1(ζ) := (−ζ)−a′
{ m−k−1∑

n=0

(a′)n(1− c + a + a′ + k)n

n! (1−m + k)n
ζ−n+

+
(−1)m−k

(m− k − 1)!

∞∑

n=m−k

(a′)n(1− c + a + a′ + k)n

n! (n−m + k)!
×

×[
h−n (a′, 1− c + a + a′ + m,m− k) + ln(−ζ)

]
ζ−n

}
,

(c.35)

где величины h−n находятся из (2.11). Если же m < k, то с помощью формул

аналитического продолжения (2.28), (2.16) получаем следующее представле-

ние:

F (a′, b− a− k; c− a− k; ζ) =
Γ(c− a− k) (k −m− 1)!

Γ(a′) Γ(c− a− a′ −m)
w2(ζ) , (c.36)
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w2(ζ) = (−ζ)−a′−m+k

{ k−m−1∑
n=0

(a′ + m− k)n(1− c + a + a′ + m)n

n! (1 + m− k)n
ζ−n+

+
(−1)k−m

(k −m− 1)!

∞∑

n=k−m

(a′ + m− k)n(1− c + a + a′ + m)n

n! (n + m− k)!
×

× [
h−n (a′ + m− k, 1− c + a + a′ + m, k −m) + ln(−ζ)

]
ζ−n

}
,

(c.37)

где h−n определяются (2.11).

Подставляя (c.34)–(c.37) в формулу (c.31) и учитывая (c.30), (c.32), уста-

навливаем предложение 2.10, где, напомним, область V2 определена равен-

ством (5.33).

C.5. Доказательство предложения 2.11. Предположим, что парамет-

ры функции F1 таковы, что разность (b − a − a′) является целым отрица-

тельным числом m, т.е. имеет место второе соотношение из формулы (5.12).

Подставляя b = a+a′−m в (5.28), (5.30), (5.32) получаем в рассматриваемом

случае следующее представление для функции Аппеля:

F1(a, a′; a + a′ −m, c; z, ζ) =

=B1u1(a, a′; a + a′ −m, c; z, ζ) + B2u2(a, a′; a + a′ −m, c; z, ζ);
(c.38)

здесь функции u1 и u2 даются равенствами

u1(a, a′; a + a′ −m, c; z, ζ) =

= (−z)−a
∞∑

k=0

(1 + a− c)k (a)k

(1− a′ + m)k k!
z−k F (a′, a′ −m− k; c− a− k; ζ),

(c.39)

u2(a, a′; a + a′ −m, c; z, ζ) =

= (−z)−a−a′+mF1

(
1− c + a + a′ −m, a′; a + a′ −m, 1 + a′ −m;

1

z
,
ζ

z

)
,

(c.40)

а коэффициенты B1 и B2 — следующими равенствами:

B1 =
Γ (c) Γ (a′ −m)

Γ (a + a′ −m) Γ (c− a)
, B2 =

Γ (c) Γ (m− a′)
Γ (a) Γ (c− a− a′ + m)

. (c.41)
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Применяя формулы продолжения (2.28), (2.16) к фигурирующим в (c.39)

гипергеометрическим функциям F (a′, a′ −m− k; c− a− k; ζ), находим:

F (a′, a′ −m− k; c− a− k; ζ) =
Γ(c− a− k)(m + k − 1)!

Γ(a′)Γ(c− a− a′ + m)
w1(ζ), (c.42)

w1(ζ) := (−ζ)−a′+m+k

{ m+k−1∑
n=0

(a′ −m− k)n(1− c + a + a′ −m)n

n! (1−m− k)n
ζ−n+

+
(−1)m+k

(m + k − 1)!

∞∑

n=m+k

(a′ −m− k)n(1− c + a + a′ −m)n

n! (n−m− k)!
×

× [
h−n (a′ −m− k, 1− c + a + a′ −m, m + k) + ln(−ζ)

]
ζ−n

}
,

(c.43)

где h−n находится из (2.11). Подставляя (c.42), (c.43) в формулу (5.29), завер-

шаем доказательство предложения 2.11.

C.6. Доказательство предложения 2.14. Перейдем к выводу формул

аналитического продолжения функции Аппеля F1 в ситуации, когда ее па-

раметры удовлетворяют первому условию (5.64), т.е имеет место логариф-

мический случай (C.1). Записывая интеграл (5.68) в виде умноженной на

(−2πi) суммы вычетов в простых полюсах (5.72) и вычетов в двойных полю-

сах (5.74) подынтегральной функции (5.14), находим следующее соотношение

для функции F1:

F1(a, a′; b, a + b + m; z, ζ) =

= − Γ(a + b + m)

Γ(a)Γ(b)Γ(a + m)Γ(b + m)

[ m−1∑

k=0

resf
(
s
(1)
k

)
+

∞∑

k=m

resf
(
s
(2)
k, ln

) ]
,

(c.44)

где величины res f
(
s
(1)
k

)
и res f

(
s
(2)
k, ln

)
даются соответственно равенствами

(5.73) и (5.75).

Применяя формулы продолжения (2.6), (2.7), (2.21), (2.22), к гипергеомет-

рическим функциям F
(
a′, b + k; b + m; ζ

)
, фигурирующим в (5.73) и (5.75),

находим, что для всех k ∈ Z+, в том числе и при k = 0, 1, . . . , m− 1, имеет

место представление:

F
(
a′, b + k; b + m; ζ

)
= C1 w1(ζ) + C2 w2(ζ), (c.45)
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где функции w1(ζ) и w2(ζ) даются равенствами

w1(ζ) = F
(
a′, b + k; 1 + a′ −m + k; 1− ζ

)
, (c.46)

w2(ζ) = (1− ζ)m−k−a′F
(
b− a′ + m, m− k; 1− a′ + m− k; 1− ζ

)
, (c.47)

а коэффициенты C1 и C2 — следующими равенствами:

C1 :=
Γ(b + m)Γ(m− k − a′)
Γ(m− k)Γ(b− a′ + m)

, C2 :=
Γ(b + m)Γ(a′ −m + k)

Γ(a′)Γ(b + k)
. (c.48)

Если же k = m, m+1, . . ., то как нетрудно увидеть, соотношения (c.45)–(c.48)

переходят в следующее:

F
(
a′, b + k; b + m; ζ

)
= C2 (1− ζ)m−k−a′

k−m∑
n=0

(m− k)n(b− a′ + m)n

n! (1− a′ + m− k)n
(1− ζ)n,

(c.49)

Применяя формулы (2.8), (2.9), (2.26), (2.27) к функциям F
(
a′, b+s; b+m; ζ

)

из (5.75), выполняя дифференцирование по s и подставляя в полученное ра-

венство s = −k, где k = m,m + 1, . . ., находим:
d

ds

[
F

(
a′, b + s; b + m; ζ

)]∣∣∣
s=k

= C̃1 w1(ζ) + C2 w̃2(ζ), k = m, m + 1, . . . ,

(c.50)

где функция w1(ζ) определяется из (c.46), а функция w̃2(ζ) дается формулой:

w̃2(ζ) = −(1− ζ)m−a′−k×

×
{

k−m∑
n=0

(b− a′ + m)n(m− k)n

n!(1− a′ + m− k)n

[
gk(a

′, b, m) + ln(1− ζ)
]
(1− ζ)n +

+ (−1)k (k −m)!
∞∑

n=k−m+1

(b− a′ + n)n(m− k + n− 1)!

n!(1− a′ + m− k)n
(1− ζ)n

}
,

(c.51)

gk(a
′, b, m) = ψ(b + k)− ψ(a′ −m + k − n)+

+ ψ(1−m + k − n)− ψ(1−m + k);
(c.52)

коэффициент C2 находится из (c.48), а коэффициент C̃1 определяется

равенством:

C̃1 = −(−1)k−m(k −m)!
Γ(b + m)Γ(m− a′ − k)

Γ(b− a′ + m)
. (c.53)
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Подставляя (c.45)–(c.53) в (5.73), (5.75), переписывая выражения для вычетов

res f(s
(1)
k ) и res f(s

(2)
k ) в виде двойных сумм и подставляя результат в (c.44),

убеждаемся в справедливости предложения 2.14, позволяющего продолить

функцию Аппеля в область K(2), определяемую соотношением (5.86).

C.7. Доказательство предложения 2.15. Предположим, что выполне-

но второе соотношение (5.64), т.е. имеет место случай (C.2). Записывая инте-

грал (5.67) в виде умноженной на (−2πi) суммы вычетов в простых полюсах

(5.76) и вычетов в двойных полюсах (5.78) подынтегральной функции (5.14),

находим следующее соотношение для функции F1:

F1(a, a′; b, a + b−m; z, ζ) =

= − Γ(a + b−m)

Γ(a)Γ(b)Γ(a−m)Γ(b−m)

[ m−1∑

k=0

res f
(
s
(2)
k

)
+

∞∑

k=m

res f
(
s
(1)
k, ln

)]
,

(c.54)

где величины res f
(
s
(2)
k

)
и res f

(
s
(1)
k, ln

)
даются соответственно равенствами

(5.77) и (5.79).

Преобразуем с помощью формул продолжения (2.6), (2.7), (2.21), (2.22)

гипергеометрические функции F
(
a′, b−m + k; b−m; ζ

)
, фигурирующие в

(5.77) и (5.79), к виду:

F
(
a′, b−m+k; b−m; ζ

)
=

(a′)k

(b−m)k
(1−ζ)−a′−k

k∑
n=0

(−k)n(b−m− a′)n

n! (1− a′ − k)n
(1−ζ)n.

(c.55)

Применяя формулы (2.6), (2.7), (2.21), (2.22) к функции F
(
a′, b+s; b−m; ζ

)

из (5.79), выполняя дифференцирование по s и подставляя в полученное ра-

венство s = k, где k = m, m + 1, . . ., находим:

d

ds

[
F

(
a′, b + s; b−m; ζ

)]∣∣∣
s=k

= C1 w1(ζ) + C2 w2(ζ), k = m, m + 1, . . . ,

(c.56)

где функции w1(ζ) и w2(ζ) определяются равенствами:

w1(ζ) = F
(
a′, b−m + k; 1 + a′ + k; 1− ζ

)
, k = m, m + 1, . . . , (c.57)
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w2(ζ) = (1−ζ)−a′−k×

×
{

k∑
n=0

(−k)n(b− a′ −m)n

n!(1− a′ − k)n

[
τk(a

′, b, m)− ln(1− ζ)
]
(1− ζ)n−

− (−1)k k!
∞∑

n=k+1

(n− k − 1)! (b− a′ −m)n

n! (1− a′ − k)n
(1− ζ)n

}
,

(c.58)

τk(a
′, b, m) := ψ(a′ + k− n)− ψ(b−m + k) + ψ(1 + k)− ψ(1 + k− n); (c.59)

а коэффициенты C1 и C2 — следующими равенствами:

C1 = −(−1)k k!
Γ(b−m)Γ(−a′ − k)

Γ(b−m− a′)
, C2 =

Γ(b−m)Γ(a′ + k)

Γ(a′)Γ(b−m + k)
. (c.60)

Подставляя (c.55)–(c.60) в (5.77) и (5.79), переписывая выражения для вы-

четов res f(s
(1)
k ) и res f(s

(2)
k ) в виде двойных сумм и подставляя результат в

(c.54), завершаем доказательство предложения 2.15.

C.8. Доказательство предложения 2.16. Перейдем к выводу формул

аналитического продолжения функции Аппеля F1 в ситуации, когда ее пара-

метры таковы, что разность (c−a−a′− b) является целым неотрицательным

числом m, т.е. имеет место указанный в формуле (5.65) случай (D.1). За-

пишем представление (5.80), (5.81), (5.85) для функции Аппеля, подставив в

указанные формулы c = a + a′ + b + m:

F1(a, a′; b, a + a′ + b + m; z, ζ) = A1v1(a, a′; b, a + a′ + b + m; z, ζ)+

+ A2v2(a, a′; b, a + a′ + b + m; z, ζ);
(c.61)

здесь функции v1 и v2 даются равенствами

v1(a, a′; b, a + a′ + b + m; z, ζ) =

=
∞∑

k=0

(a)k (b)k

(1− a′ −m)k k!
(1− z)k F (a′, b + k; a′ + b + m; ζ),

(c.62)

v2(a, a′; b, a + a′ + b + m; z, ζ) =

= (1− z)a′+m (1− ζ)−a′F1

(
b + m, a′; a + a′ + m, 1 + a′ + m; 1− z,

1− z

1− ζ

)
,

(c.63)
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а коэффициенты A1 и A2 — следующими равенствами:

A1 =
Γ (a + a′ + b + m) Γ (a′ + m)

Γ (a′ + b + m) Γ (a + a′ + m)
, A2 =

Γ (a + a′ + b + m) Γ (−m− a′)
Γ (a) Γ (b)

.

(c.64)

Для того, чтобы аналитически продолжить фигурирующие в (c.62) функ-

ции

F (a′, b + k; a′ + b + m; ζ), k ∈ Z+,

необходимо обратить внимание на то, что разность третего и первых двух

параметров этих функций является целым числом (m − k), знак которого

зависит от индекса суммирования k в формуле (c.62). Если k ≤ m, то

применяя формулу (2.28), (2.16), к указанным функциям, находим

F (a′, b + k; a′ + b + m; ζ) =
Γ(a′ + b + m) (m− k − 1)!

Γ(a′ + m− k) Γ(b + m)
w1(ζ) (c.65)

w1(ζ) :=
m−k−1∑

n=0

(a′)n(b + k)n

n! (1−m + k)n
(1− ζ)n +

(−1)m−k

(m− k − 1)!
×

×
∞∑

n=m−k

(a′)n(b + k)n

n! (n−m + k)!

[
h+

n (a′, b + k, m− k) − ln(1− ζ)
]
ζ−n

}
,

(c.66)

где величины h+
n имеют вид

h+
n (a′, b+k, m−k) = ψ(1+n)+ψ(1−m+k+n)−ψ(a′+n)−ψ(b+k+n). (c.67)

Если же m < k, то с помощью формул (2.28), (2.16) получаем следующее

представление:

F (a′, b− a− k; c− a− k; ζ) =
Γ(a′ + b + m) (k −m− 1)!

Γ(a′) Γ(b + k)
w2(ζ) , (c.68)

w2(ζ) := (1− ζ)m−k

{ k−m−1∑
n=0

(a′ + m− k)n(b + m)n

n! (1 + m− k)n
(1− ζ)n+

+
(−1)k−m

(k −m− 1)!

∞∑

n=k−m

(a′ + m− k)n(b + m)n

n! (n− k + m)
×

×[
h+

n (a′ + m− k, b + m, k −m) − ln(1− ζ)
]
ζ−n

}
,

(c.69)
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где величины h+
n имеют вид

h+
n (a′ + m− k, b + m, k −m) = ψ(1 + m + n− k) + ψ(1 + n)−

−ψ(a′ + m + n− k)− ψ(b + m + n).
(c.70)

Подставляя (c.62)–(c.70) в формулу (c.61), завершаем доказательство пред-

ложения 2.16.

C.9. Доказательство предложения 2.17. Предположим, что парамет-

ры функции Аппеля таковы, что разность (c − a − a′ − b) является целым

отрицательным числом −m, т.е. имеет место второе соотношение из формулы

(5.65). Подставляя c = a+a′+b−m в равенства (5.80), (5.81), (5.85) получаем

в рассматриваемом случае следующее представление для функции Аппеля:

F1(a, a′; b, a + a′ + b−m; z, ζ) =

= A1u1(a, a′; b, a + a′ + b−m; z, ζ) + A2u2(a, a′; b, a + a′ + b−m; z, ζ);

(c.71)

здесь функции u1 и u2 даются равенствами

u1(a, a′; b, a + a′ + b−m; z, ζ) =

=
∞∑

k=0

(a)k (b)k

(1− a′ + m)k k!
(1− z)k F (a′, b + k; a′ + b−m; ζ),

(c.72)

u2(a, a′; b, a + a′ + b−m; z, ζ) = (1− z)a′−m (1− ζ)−a′×
× F1

(
b−m, a′; a + a′ −m, 1 + a′ −m; 1− z,

1− z

1− ζ

)
,

(c.73)

а коэффициенты A1 и A2 — следующими равенствами:

A1 =
Γ (a + a′ + b−m) Γ (a′ −m)

Γ (a′ + b−m) Γ (a + a′ −m)
, A2 =

Γ (a + a′ + b−m) Γ (m− a′)
Γ (a) Γ (b)

.

(c.74)

Применяя формулы продолжения (2.15), (2.24) к фигурирующим в (c.72) ги-

пергеометрическим функциям F (a′, b + k; a′ + b−m; ζ), находим:

F (a′, b + k; a′ + b−m; ζ) =
Γ(a′ + b−m)(m + k − 1)!

Γ(a′)Γ(b + k)
w2(ζ), (c.75)
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w2(ζ) := (1− ζ)−m−k

{ m+k−1∑
n=0

(a′ −m− k)n(b−m)n

n! (1−m− k)n
(1− ζ)n+

+
(−1)m+k

(m + k − 1)!

∞∑

n=m+k

(a′ −m− k)n(b−m)n

n! (n−m− k)!
×

×[
h+

n (a′ −m− k, b−m,m + k) − ln(1− ζ)
]
(1− ζ)n

}
,

(c.76)

где h+
n находится из (2.11).

Подставляя (c.75), (c.76) в формулу (c.72) и учитывая (c.71), (c.73), (c.74),

завершаем доказательство предложения 2.17, позволяющего продождить функ-

цию Аппеля в область K2, определяемую из (5.86).

Приложение D. Доказательство теоремы 3.1

D.1. Каноническое решение и общее решение однородной зада-

чи Римана — Гильберта с кусочно–постоянными χ и σ. Представлен-

ное в теореме 3.1 решение задачи Римана — Гильберта для случая кусочно–

постоянных данных χ и σ по существу отличается от представленного в теоре-

ме 1.5, стр. 65, только способом построения частного решения. При сведе́нии

(см. п. 3.4 главы I) к задаче сопряжения (3.22), стр. 43, коэффициенты послед-

ней G(ξ) и g(ξ) также оказываются в данном случае кусочно–постоянными:

G(ξ) = e2iΘ(ξ), Θ(ξ) = Θk :=
π

2
− arg χk; g(ξ) = gk :=

2 σk

χk
, ξ ∈ Lk.

(d.1)

Решение задачи Римана — Гильберта принимает в этом случае специаль-

ный вид. А именно, интеграл M(ζ) из формулы (4.6), гл. I, превращается в

сумму логарифмов, в результате чего каноническая функция X+(ζ), опре-

деляемая равенством (6.35), гл. I, выражается в виде произведения биномов

(см. ниже), а решение однородной задачи приобретает форму произведения

N биномов и полинома степени κ (см. ниже).

Обратимся к построению функции M+(ζ), определяемой модифицирован-

ным интегралом типа Коши (4.11), гл. I, в рассматриваемом случае кусочно–
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постоянной функции Θ(ξ). Пусть δ — точка вещественной оси из множества

(ξ1, ξN) \ {ξk}. Представим интеграл (4.11), гл. I, в виде суммы

M+(ζ) =
∑N

k=0
M+

k , M+
k (ζ) := Θk

ζ − δ

π

∫ ξk+1

ξk

dt

(t− δ) (t− ζ)
(d.2)

и вычислим отдельно M+
k (ζ); напомним, что Θk определены в (d.1).

Замечая, что M+
0 (ζ) есть интеграл по бесконечному интервалу (−∞, ξ1),

найдем его в виде следующего предела

M+
0 (ζ) = lim

A→∞
M+

0 (A, ζ), M+
0 (A, ζ) := Θ0

ζ − δ

π

∫ ξ1

−A

dt

(t− δ) (t− ζ)
,

где M+
0 (A, ζ) вычисляется с использованием равенства (a.6) в виде

M+
0 (A, ζ) :=

Θ0

π

( ∫ ξ1

−A

dt

t− ζ
−

∫ ξ1

−A

dt

t− δ

)
=

Θ0

π
ln

(ζ − ξ1)(A + δ)

(δ − ξ1)(A + ζ)
;

переходя здесь к пределу при A →∞, получаем

M+
0 (ζ) =

Θ0

π
ln (ζ − ξ1) + C0, (d.3)

где C0 ∈ R не зависит от ζ. Аналогично вычисляем интегралы M+
N(ζ) и M+

k (ζ)

M+
N (ζ) = −ΘN

π
ln (ζ − ξN) + i ΘN + CN , (d.4)

M+
k (A, ζ) :=

Θk

π

( ∫ ξk+1

ξk

dt

t− ζ
−

∫ ξk+1

ξk

dt

t− δ

)
=

=
Θk

π
ln

ζ − ξk+1

ζ − ξk
+ Ck, k = 1, N − 1,

(d.5)

где Ck и CN вещественны и не зависят от ζ. Заметим, что если δ ∈ (ξk, ξk+1),

то второй интеграл в круглых скобках равенства (d.5) понимается в смысле

главного значения.

Учитывая равенства (3.3)–(3.5), гл. 1, и формулу (d.1), находим из (d.2)–

(d.5) следующее выражение для M+(ζ):

M+(ζ) = ln
∏N

k=1
(ζ − ξk)

αk+βk + i ΘN + C; (d.6)

здесь C :=
∑N

k=0 Ck — вещественная константа.
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Поскольку согласно теореме 1.2 из п. 5.2, гл. I, каноническое решение

X+(ζ) определяется с точностью до мультипликативной вещественной посто-

янной, то подставим в формулу (6.35), гл. I, для его нахождения вместо M+(ζ)

функцию M̃+(ζ) = M+(ζ)−C и получим требуемую формулу (1.12), стр. 164,

для определения X+(ζ). В этой формуле выбрана такая ветвь функции, ко-

торая принимает положительные значения при вещественных ζ ∈ (ξN , +∞).

Нетрудно убедиться, что построенное каноническое решение имеет на беско-

нечности асимптотику (5.16), гл. I, где κ — индекс задачи, определяемый по

формуле (5.17), гл. I (или, что тоже самое, формуле (1.10), стр. 164).

Учитывая, что каноническое решение X+ (ζ) сингулярной задачи Рима-

на — Гильберта для случая кусочно–постоянных коэффициентов имеет вид

(1.12), стр. 164, получаем из теоремы 1.3 следующее

Предложение d.1. (i) Если индекс κ, определяемый по формуле (1.10),

стр. 164, неотрицателен, то решение Ψ+ ∈ H+ однородной задачи Римана

— Гильберта (1.7)–(1.9), стр. 163, с кусочно–постоянными данными (1.1),

удовлетворяющими условиям (1.6), имеет следующий вид:

Ψ+(ζ) = e i ΘN

∏N

j=1
(ζ − ξj)

αj−nj Pκ (ζ) , ζ ∈ H+, (d.7)

где Pκ(ζ) — произвольный многочлен степени κ с вещественными коэффи-

циентами.

(ii) При κ < 0 однородная задача Римана — Гильберта в классе H+ не

имеет решений, отличных от тождественного нуля.

D.2. Частное решение неоднородной задачи. Напомним, что соглас-

но (6.5), гл. I, искомое частное решение представляется в виде произведения

N±(ζ) = X±(ζ) F±(ζ). (d.8)

Здесь каноническое решение X+(ζ) в верхней полуплоскости дается форму-

лой (1.12), стр. 164, а в нижней определяется равенством X−(ζ) = X+(ζ).

Перейдем к нахождению функции F.
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С помощью представления (6.5), гл. I, для функций N±(ζ) приходим к

задаче о скачке (6.6)–(6.8), гл. I, относительно F(ζ). Ee решение будем искать

в виде суммы вида (1.13), стр. 164, точнее

F(ζ) =
∑N

k=0
Fk(ζ), (d.9)

где для функций Fk(ζ) получаем условие комплексного уравновешивания и

следующие условия скачка на вещественной оси:

F +
k (ξ) − F−

k (ξ) =

{
gk / X+ (ξ), ξ ∈ Lk,

0, ξ ∈ R \ [ξk, ξk+1];
(d.10)

напомним, что gk из (d.10) определяются в (d.1). Кроме того, полагаем, что

функции Fk удовлетворяют асимптотическим оценкам, аналогичным оцен-

кам (6.7), стр. 57, для F(ζ), а именно, для функций Fk, k = 1, N − 1, эти

асимптотики задаются в трех точках, ξ0, ξk и ξk+1, для функции F0 — в двух,

ξ0 и ξ1, а для функции FN — также в двух, ξ0 и ξN .

Если выполняется соотношение (1.6), стр. 163, то эти оценки имеют сле-

дующий вид:

• в бесконечности для функций Fk при k = 0, N

Fk(ζ) = O(ζκ) , ζ →∞; k = 0, N ; (d.11)

• в конечных точках ξk и ξk+1 для функций Fk при k = 1, N − 1

Fk(ζ) =

{
O

[
(ζ − ξk)

−αk
]
, ζ → ξk,

O
[
(ζ − ξk+1)

−αk+1
]
, ζ → ξk+1;

(d.12)

• в точке ξ1 для функции F0 и в точке ξN для функции FN

F0(ζ) = O
[
(ζ − ξ1)

−α1
]
, ζ → ξ1,

FN(ζ) = O
[
(ζ − ξN)−αN

]
, ζ → ξN .

(d.13)

При неотрицательном индексе κ в качестве аналога функции S(ζ) из (6.10),

гл. I, принимаем (ζ − τ∗)κ или (ζ − τ ∗)κ, где τ∗ и τ ∗ — точки вещественной

оси, лежащие соответственно на множествах R \ (−∞, ξ1) и R \ (ξN , +∞).
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Учитывая выражение (d.1) для g(ξ), получаем для решения задачи о скачке

(d.10)–(d.13) в верхней полуплоскости представление (1.14)–(1.15), стр. 164.

При κ = −1 видим, что функции F+
k , вычисляемые по формулам (1.14)–

(1.15), стр. 164, где формально полагаем κ = 0, удовлетворяют условиям

(d.10)–(d.13).

При κ < −1 функции F+
k , вычисляемые по формулам (1.14)–(1.15), стр.

164, также удовлетворяют условию скачка (d.10) и имеют требуемое поведе-

ние (d.12), (d.13) в конечных точках из {ξk}, однако, они не отвечают условию

(d.11) на бесконечности. Вместе с тем, в соответствии с теоремой 1.5 их сумма

(d.9) может удовлетворять этому условию, если и только если выполняются

условия разрешимости (6.31), гл. 1. Для рассматриваемого случая кусочно–

постоянных данных χ(ξ) и σ(ξ) задачи Римана — Гильберта эти условия, как

нетрудно убедиться, означают, что величины σk/χk удовлетворяют системе

линейных уравнений (1.15), стр. 164.

Подытоживая сказанное, приходим к следующему предложению.

Предложение d.2. Если кусочно–постоянные данные (1.1), задачи Ри-

мана — Гильберта (1.7)–(1.9) удовлетворяют условиям (1.6), то

(i) функция F+ в представлении (d.8) частного решения N+ дается фор-

мулой (1.13), стр. 164, где F+
k , k = 0, N , имеют вид (1.14)–(1.15), стр.

164.

(ii) При κ = −1 в указанных представлениях следует формально поло-

жить κ = 0.

(iii) При отрицательном индексе κ < −1 для существования решения

задачи необходимо и достаточно потребовать выполнение условий (1.15),

стр. 164.

Суммируя сказанное в предложениях d.1 и d.2 и учитывая равенства P+ =

Ψ+ + N+, N+ = X+F+, убеждаемся в справедливости теоремы 3.1.
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