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Общая характеристика работы

Молекулярная газодинамика –– это динамика газа, построенная на основе
кинетической теории. Под последней обычно понимают теорию неравновесных
свойств газа. Ключевую роль при описании газа играет отношение длины сво-
бодного пробега молекул газа ℓ к характерному размеру течения L –– так назы-
ваемое число Кнудсена Kn = ℓ/L. В континуальном пределе (Kn → 0) обычно
используют законы классической гидродинамики, основанной на модели сплош-
ной среды, и только в случае конечных Kn учитывают молекулярную структуру
газа. Таким образом, в литературе можно встретить разделение на континуаль-
ную гидрогазодинамику и динамику разреженного газа. Однако имеется доста-
точно широкий круг задач, для которых уравнения Навье––Стокса некорректно
описывают поведение газа даже при Kn → 0. Поэтому в настоящем исследова-
нии используется термин молекулярная газовая динамика, подчёркивая тот факт,
что методы и представления кинетической теории используются как для разре-
женного газа, так и для его континуального предела. Этот термин, по-видимому,
впервые предложен в 1970 году М.Н. Коганом1, позже подхвачен Г. Бёрдом2 и
Ё. Соне3.

Актуальность темы. Становление молекулярной газодинамики можно
связать с важными прикладными направлениями, возникшими в первой поло-
вине XX века. В частности, задача разделения изотопов стала импульсом для
развития асимптотической теории и методов вычисления транспортных коэф-
фициентов на основе кинетической теории. Динамика разреженного газа выде-
лилась в отдельную науку благодаря активному освоению космоса. Первые ис-
следования носили в основном экспериментальный характер, но в XXI веке пре-
валирующую роль играет компьютерное моделирование, что говорит о зрело-
сти теоретических представлений дисциплины. Неравновесное состояние газа
описывается в общем случае шестимерной функцией распределения, её эволю-
ция подчиняется уравнению Больцмана. Входящий в него нелинейный интеграл
столкновений представляет собой нелокальный квадратичный оператор, что со-
здаёт существенные трудности, как для математического, так и численного ана-
лиза. За последние три десятилетия строгая математическая теория пополни-
лась множеством фундаментальных результатов, а стремительный рост супер-
компьютерных мощностей, доступных исследователям и инженерам, спровоци-
ровал системное развитие численных методов.

На сегодняшний день можно выделить несколько прикладных областей
молекулярной газодинамики:

1Коган М. Н. Некоторые вопросы молекулярной газодинамики // Ученые записки ЦАГИ. 1971.
Т. 2, № 1. С. 49—59.

2Бёрд Г. Молекулярная газовая динамика / пер. с англ. А. И. Ерофеева, О. Г. Фридлендера,
В. Е. Яницкого. М. : Мир, 1981. 319 с.

3Sone Y.Molecular gas dynamics: theory, techniques, and applications. Boston : Birkhäuser, 2007.
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1. Аэрокосмические исследования. Движение аппаратов в верхних слоях
атмосферы сопровождаются сильно неравновесными течениями и до-
статочно большими числами Кнудсена.

2. Микроэлектромеханические системы (МЭМС). Эта относительно мо-
лодая отрасль обуславливает основную волну интереса к изучению раз-
реженного газа в начале XXI века. В таких МЭМС как приводы, микро-
турбины и газовые хроматографы возникают разреженные течения газа.

3. Аэрозоли. Процесс их образования, изменение их дисперсного состава
описываются в рамках кинетической теории. Аэрозольные реакторы ис-
пользуются среди прочего для производства стекловолокна, кремние-
вых пластин и углеродного волокна. Наконец, конечная фаза существо-
вания атмосферных загрязнений –– это также аэрозольные частицы.

4. Вакуумные технологии. Моделирование течений газа, когда число
Кнудсена значительно меняется в пространственно-временных масшта-
бах, представляет собой особенно трудную задачу, однако современный
уровень развития вычислительных средств позволяет во многих случа-
ях обходиться без дорогостоящих экспериментальных прототипов.

Таким образом, актуальность данного исследования обусловлена
– активным развитием прикладных областей,
– потребностью в высокоточных численных методах,
– быстрым ростом доступных вычислительных ресурсов.
Объект исследования –– движение одноатомного газа различной степени

разреженности. В исследовании одновременно изучается два предмета:
– методы численного и асимптотического анализа,
– физические свойства стационарных течений.
Степень разработанности темы.
Формальная асимптотическая теория уравнения Больцмана была заложена

с трудах Д. Гильберта4, С. Чепмена5, Д. Энскога6, позже развита Д. Барнеттом7,
Х. Грэдом8 и Ё. Соне9. Решение уравнения Больцмана для слаборазреженного
газа допускает отделение гидродинамической части от существенно неравновес-
ных пространственно-временны́х кинетических слоёв. Большой цикл работ Ки-
отской группы (Ё. Соне, К. Аоки, Ш. Таката, Т. Овада и др.) посвящён высоко-

4Hilbert D. Begründung der kinetischen Gastheorie // Mathematische Annalen. 1912. Т. 72, № 4.
С. 562—577.

5Chapman S. On the law of distribution of molecular velocities, and on the theory of viscosity and
thermal conduction, in a non-uniform simple monatomic gas // Philosophical Transactions of the Royal
Society of London. Series A. 1916. Vol. 216. P. 279–348.

6Enskog D.Kinetische Theorie der Vorgänge inmässig verdünntenGasen : Dissertation / EnskogDavid.
Upsala, 1917.

7Burnett D. The distribution of velocities in a slightly non-uniform gas // P. London Math. Soc. 1935.
Vol. 2, no. 1. P. 385–430.

8Grad H. Asymptotic theory of the Boltzmann equation // The physics of Fluids. 1963. Vol. 6, no. 2.
P. 147–181.

9Sone Y. Kinetic theory and fluid dynamics. Boston : Birkhäuser, 2002.
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точному численному анализу кнудсеновского слоя первого10 и второго порядка11
для диффузного отражения и газа твёрдых сфер. Различные системы гидродина-
мических уравнений могут быть получены в зависимости от способа асимптоти-
ческого масштабирования. В частности, для медленных неизотермических тече-
ний справедливы уравнения Когана––Галкина––Фридлендера (КГФ)12, содержа-
щие некоторые ненавье––стоксовские члены.

Огромное множество исследований посвящено численному решению
уравнения Больцмана. Среди них можно выделить три магистральных на-
правления в зависимости от способа аппроксимации функции распределения
скоростей:

– методы прямого статистического моделирования (ПСМ) строятся на
основе некоторого случайного процесса марковского типа, способного
аппроксимировать больцмановскую динамику;

– методы дискретных скоростей подразумевают фиксированный набор
доступных молекулярных скоростей;

– проекционные методы используют разложение по базису в определён-
ном функциональном пространстве.

Методы ПСМ в силу своей универсальности и простоты нашли широкое приме-
нение в прикладных областях, однако присущие им флуктуации иногда сильно
ограничивают точность получаемых результатов. Проекционные методы, напро-
тив, обладают наилучшим соотношением погрешности к размерности аппрокси-
мационного пространства, но, как правило, в достаточно узком классе решений.
Оказалось возможным добиться второго порядка точности в рамках метода дис-
кретных скоростей, однако для этого потребовался длинный исторический путь.

Метод дискретных скоростей был впервые использован А. Нордсиком и
Б. Хиксом13. Для вычисления интеграла столкновения они использовали куба-
туры Монте-Карло с последующей консервативной коррекцией функции рас-
пределения. В дальнейшем метод дискретных скоростей развивался С. Йе-

10Ohwada T., Sone Y., Aoki K. Numerical analysis of the shear and thermal creep flows of a rarefied gas
over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules // Phys. Fluids
A. 1989. Vol. 1, no. 9. P. 1588–1599; Sone Y., Ohwada T., Aoki K. Temperature jump and Knudsen layer in
a rarefied gas over a plane wall: Numerical analysis of the linearized Boltzmann equation for hard-sphere
molecules // Phys. Fluids A. 1989. Vol. 1, no. 2. P. 363–370.

11Hattori M., Takata S. Second-order Knudsen-layer analysis for the generalized slip-flow theory I //
Bull. Inst. Math. Acad. Sinica. 2015. Vol. 10. P. 423–448; Hattori M., Takata S. Second-order Knudsen-
layer analysis for the generalized slip-flow theory II: curvature effects // J. Stat. Phys. 2015. Vol. 161, no. 4.
P. 1010–1036; Ohwada T., Sone Y. Analysis of thermal stress slip flow and negative thermophoresis using
the Boltzmann equation for hard-sphere molecules // Eur. J. Mech. B/Fluids. 1992. Vol. 11. P. 389–414.

12Коган М. Н., Галкин В. С., Фридлендер О. Г. О напряжениях, возникающих в газах вследствие
неоднородности температуры и концентраций. Новые типы свободной конвекции // Успехи физиче-
ских наук. 1976. Т. 119. С. 111—125.

13Nordsieck A., Hicks B. L. Monte Carlo evaluation of the Boltzmann collision integral: tech. rep. /
University of Illinois. Urbana, Illinois, 1966. R–307.
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ном14, В. В. Аристовым и Ф. Г. Черемисиным15. Д. Гольдштейн, Б. Стёртевант
и Дж. Бродуелл первыми для решения уравнения Больцмана использовали ки-
нетические модели газа, допускающие столкновения только в дискретном про-
странстве16. А. Пальчевский,Ж.Шнайде́р иА. В. Бобылев показали, что, несмот-
ря на присущие им консервативность и энтропийность на микроскопическом
уровне17, теоретический порядок сходимости таких моделей к уравнениюБольц-
мана сильно меньше единицы18. В. Панфёров и А. Гейнц показали, как специаль-
ная замена переменных позволяет улучшить сходимость, но лишь вплоть до пер-
вого порядка19. Размазывание (mollification) столкновительного процесса позво-
ляет естественным образом решить проблему консервативной аппроксимации,
избегая решения целочисленных уравнений:

– К. Бюе, С. Кордье и П. Дегон продемонстрировали, как с его помощью
обеспечить консервативность на макроскопическом уровне (для столк-
новительного оператора целиком)20;

– Х. Бабовски построил простейшую схему с консервативностью на ме-
зоскопическом уровне (для всей столкновительной сферы)21, его подход
позже развил Д. Гёрш22;

– Ф. Г. Черемисин предложил новый класс методов, сохраняющих консер-
вативность на микроскопическом уровне (для отдельной столкновитель-
ной пары)23.

Микроскопическая консервативность, достигнутая Ф. Г. Черемисиным, позволя-
ет построить наиболее эффективную численную схему и может быть интерпре-
тирована как проекционная процедура Петрова––Галёркина, в которой столкно-
вительные инварианты образуют ортогональную оболочку. Кроме того, специ-
альная процедура интерполяции функции распределения обеспечивает энтро-

14Yen S. M. Numerical solution of the nonlinear Boltzmann equation for nonequilibrium gas flow prob-
lems // Annu. Rev. Fluid Mech. 1984. Vol. 16, no. 1. P. 67–97.

15Аристов В. В., Черемисин Ф. Г. Консервативный метод расщепления для решения уравнения
Больцмана // Ж. вычисл. матем. и матем. физ. 1980. Т. 20, № 1. С. 191—207.

16Goldstein D., Sturtevant B., Broadwell J. E. Investigations of the motion of discrete-velocity gases //
Progress in Astronautics and Aeronautics. 1989. Vol. 117. P. 100–117.

17 Каждое дискретное столкновение не уменьшает энтропию, сохраняет массу, импульс и кине-
тическую энергию.

18Palczewski A., Schneider J., Bobylev A. V. A consistency result for a discrete-velocity model of the
Boltzmann equation // SIAM J. Numer. Anal. 1997. Vol. 34, no. 5. P. 1865–1883.

19Panferov V. A., Heintz A. G. A new consistent discrete-velocity model for the Boltzmann equation //
Mathematical methods in the applied sciences. 2002. Vol. 25, no. 7. P. 571–593.

20Buet C., Cordier S., Degond P. Regularized Boltzmann operators // Comput. Math. with Appl. 1998.
Vol. 35, no. 1/2. P. 55–74.

21Babovsky H. Discretization and numerical schemes for steady kinetic model equations // Comput.
Math. with Appl. 1998. Vol. 35, no. 1/2. P. 29–40.

22Görsch D. Generalized discrete velocity models // Math. Models Methods Appl. Sci. 2002. Vol. 12,
no. 01. P. 49–75.

23Черемисин Ф. Г. Консервативный метод вычисления интеграла столкновений Больцмана // До-
клады РАН. 1997. Т. 357, № 1. С. 1—4.
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пийность метода24. Поэтому такой метод будем называть консервативным про-
екционно-интерполяционным методом дискретных скоростей (KПИМДС).

Во многих прикладных задачах эффективная аппроксимация уравнения
Больцмана требует существенно неоднородной дискретизации в скоростном
пространстве. Неравномерные сетки активно используются как в методах дис-
кретных скоростей25, так и проекционных26. КПИМДС на неравномерных сет-
ках может быть построен с помощью техники многоточечного проецирования,
впервые предложенной Ф. Варгизом27.

В настоящем исследовании выделены две основные цели:
1. Развитие КПИМДС для неравномерных сеток, его верификация в ши-

роком диапазоне неравновесности.
2. Численный анализ некоторых одномерных и медленных неизотермиче-

ских течений разреженного газа на основе как уравнения Больцмана,
так и соответствующих уравнений гидродинамического типа. Оценка
области применимости последних при различных граничных условиях.

Для достижения указанных целей поставлены следующие задачи:
1. Анализ многоточечных проекционных шаблонов, необходимых для

консервативного вычисления интеграла столкновений на неравномер-
ных сетках.

2. Построение асимптотического решения второго порядка для погранич-
ного слоя Прандтля для газа твёрдых сфер.

3. Сравнительный анализ численных решений задачи Куэтта в широком
диапазоне параметров, получаемых с помощью КПИМДС и других об-
щепризнанных методов.

4. Исследование сходимости численного решения уравнения Больцмана к
асимптотическому для широкого класса течений между параллельными
пластинами.

5. Исследование различных подходов к постановке граничных условий
для уравнений КГФ, сравнительный анализ с решением уравнения
Больцмана.

6. Параметрический анализ течений между некоаксиальными и эллипти-
ческими цилиндрами в континуальном пределе.

24Черемисин Ф. Г. Решение уравнения Больцмана при переходе к гидродинамическому режиму
течения // Доклады РАН. 2000. Т. 373, № 4. С. 483—486.

25Clarke P. [et al.]. A novel discrete velocity method for solving the Boltzmann equation including
internal energy and non-uniform grids in velocity space // AIP Conference Proceedings. Vol. 1501. AIP.
2012. P. 373–380; Kolobov V. I., Arslanbekov R. R., Frolova A. A. Boltzmann solver with adaptive mesh in
velocity space // AIP Conference Proceedings. Vol. 1333. AIP. 2011. P. 928–933.

26Heintz A., Kowalczyk P., Grzhibovskis R. Fast numerical method for the Boltzmann equation on non-
uniform grids // J. Comput. Phys. 2008. Vol. 227, no. 13. P. 6681–6695;Wu L., Reese J. M., Zhang Y. Solving
the Boltzmann equation deterministically by the fast spectral method: application to gas microflows // J.
Fluid Mech. 2014. Vol. 746. P. 53–84.

27Varghese P. L. Arbitrary post-collision velocities in a discrete velocity scheme for the Boltzmann
equation // Proc. of the 25th Intern. Symposium on Rarefied Gas Dynamics. 2007. P. 225–232.
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Задачи 1–5 позволяют достичь первой цели, задачи 2–6 раскрывают содержание
второй цели.

Научная новизна:
1. КПИМДС применяется для существенно неравномерных сеток в про-

странстве скоростей для достижения высокой точности.
2. Нелинейная асимптотическая теория используется для верификации

численного метода решения уравнения Больцмана.
3. Уравнения КГФрешаются с граничными условиями, содержащими чле-

ны отличные от теплового скольжения.
4. Рассматриваются неизученные ранее эффекты и свойства известных те-

чений разреженного газа.
Теоретическая и практическая значимость:
1. Результаты анализа нелинейной задачи Куэтта могут служить эталоном

для верификации других численных методов.
2. Предложенная методология численного анализа медленных неизотер-

мических течений существенно расширяет возможности их компьютер-
ного моделирования.

Методология и методы исследования. В качестве математической моде-
ли неравновесного газа используется кинетическая теория, высокий уровень раз-
вития которой позволяет настоящему исследованию обходиться без эмпириче-
ской базы. Методологическая база включает специальные математические и вы-
числительные методы:

– асимптотические методы нелинейной теории возмущения;
– численные методы интегрирования систем дифференциальных уравне-
ний в частных производных, специальные численные методы вычисли-
тельной гидродинамики;

– численные методы многомерного интегрирования;
– квадратурные методы решения интегральных уравнений;
– проекционные методы решения операторных уравнений;
– вариационное исчисление.

В работе использован широкий спектр современных компьютерных технологий
и программных комплексов, включая

– системы компьютерной алгебры (SymPy28),
– генерацию расчётных сеток (gmsh29),
– организацию параллельных вычислений (MPI30),
– инструментарий вычислительной гидродинамики (OpenFOAM31),

28Joyner D. [et al.]. Open source computer algebra systems: SymPy // ACM Communications in Com-
puter Algebra. 2012. Vol. 45, no. 3/4. P. 225–234.

29Geuzaine C., Remacle J.-F. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-
processing facilities // Int. J. Numer. Methods Eng. 2009. Vol. 79, no. 11. P. 1309–1331.

30Gropp W., Lusk E., Skjellum A. Using MPI: portable parallel programming with the message-passing
interface. Vol. 1. MIT press, 1999. 350 p.

31Weller H. G. [et al.]. A tensorial approach to computational continuummechanics using object-oriented
techniques // Comput. Phys. 1998. Vol. 12, no. 6. P. 620–631.
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– визуализацию полей (matplotlib32).
Численные решения уравнений КГФ и Больцмана получены с помощью соот-
ветствующих авторских кодов:

– солвера на основе алгоритма SIMPLE33 snitSimpleFoam [3],
– программного комплекса анализа газокинетических процессов [4; 5].
В соответствии с результатами решения поставленных задач выдвигаются

основные положения, выносимые на защиту:
1. Для многоточечных проекционных шаблонов выявлены критерии, ми-

нимизирующие требования к мощности множества кубатурных то-
чек [2].

2. С точностью 8–10 знаков вычислены неизвестные ранее транспорт-
ные коэффициенты для газа твёрдых сфер, необходимые для вычисле-
ния тензора напряжений и вектора потока тепла в пограничном слое
Прандтля [2].

3. Получено решение плоской задачи Куэтта для широкого диапазона чи-
сел Кнудсена вплоть до гиперзвуковых скоростей. Абсолютная погреш-
ность первых 13-ти моментов функции распределения не выше 10−4 [2].

4. Продемонстрировано, что КПИМДС на неравномерных прямоуголь-
ных сетках –– надёжный инструмент для высокоточного анализа нели-
нейных плоских кинетических слоёв. Отклонение от асимптотического
решения не более 10−4 для нелинейных течений между параллельными
пластинами с температурой, распределённой а) константно [2], б) сину-
соидально [1].

5. На численных примерах показано, что использование совместимых гра-
ничных условий первого и второго порядка для уравнений КГФ суще-
ственно улучшает точность асимптотического решения. Исследованы, в
том числе, граничные условия, учитывающие кривизну граничной по-
верхности [1].

6. На основе численного параметрического анализа некоторых нелиней-
ных течений газа между равномерно нагретыми телами в континуаль-
ном пределе было обнаружено, что обтекаемые тела притягиваются по-
добно электрически заряженным телам [3].

Достоверность полученных результатов обеспечивается следующими об-
стоятельствами:

1. Кинетическое уравнение Больцмана выводится из первых принципов и
содержит минимальное количество дополнительных допущений. В на-
стоящем исследовании повсеместно используется газ твёрдых сфер и
граничные условия полного диффузного отражения. Эксперименталь-
ные данные свидетельствуют о том, что эти модели достаточно адек-

32Hunter J. D. Matplotlib: A 2D graphics environment // Computing In Science & Engineering. 2007.
Vol. 9, no. 3. P. 90–95.

33Caretto L. S., Curr R. M., Spalding D. B. Two numerical methods for three-dimensional boundary
layers // Comput. Methods Appl. Mech. Eng. 1972. Vol. 1, no. 1. P. 39–57.
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ватно отражают реальные кинетические процессы вшироком диапазоне
неравновесности.

2. Проводится систематический сравнительный анализ результатов, полу-
ченных с помощьюКПИМДС, прямого статистического моделирования
и асимптотического анализа уравнения Больцмана.

3. Проводится анализ сходимости численных методов на основе множе-
ства решений на разностных сетках различной мелкости.

4. Верификация используемых солверов и систем обработки данных вы-
полнена на тестовых задачах, решение которых с высокой точностью
представлено в литературе. Результаты находятся в полном соответ-
ствии с результатами, полученными другими авторами.

Апробация работы. Результаты диссертации докладывались лично соис-
кателем на

– семинаре сектора кинетической теории отдела механики ВЦ ФИЦ ИУ
РАН (Москва, 2016),

– 2 Международном симпозиуме по аэродинамике, охватывающем раз-
личные режимы течений (Маньян, Китай, 2017),

– Всероссийской конференции по аэрогидродинамике, посвященной 100-
летию со дня рождения С. В. Валландера (Санкт-Петербург, 2017).

Публикации. Основные результаты по теме диссертации изложены в 5
печатных изданиях, рекомендованных ВАК.

Объём и структура работы. Диссертация состоит из введения, трёх глав,
заключения и одного приложения. Полный объём диссертации составляет
147 страниц, включая 52 рисунка и 6 таблиц. Список литературы содержит
260 наименований.

Содержание работы

Во введении обосновывается актуальность избранной темы, устанавли-
вается степень её разработанности, ставятся цели и задачи диссертационного
исследования, раскрывается научная новизна, определяются методологические
основания исследования, теоретическая и практическая значимость полученных
автором результатов, формулируются положения, выносимые на защиту.

Первая глава состоит из 3 частей и посвящена основному математиче-
скому аппарату молекулярной газодинамики. Первая часть излагает основы ки-
нетического описания газа, включая уравнение Больцмана, его свойства, методы
упрощения столкновительного члена и граничные условия. Освещается место
кинетической теории в механике жидкости, газа и плазмы, её границы примени-
мости и связь с классической механикой.

Вторая часть содержит короткий обзор современных достижений матема-
тической теории задачи Коши. Избегая точных формулировок, изложены в до-
ступной форме основные результаты, справедливые как для предельно общих ре-
шений в лебеговом пространстве L1, так и на основе нелинейной теории возму-
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щения вL2(M−1). Освещены вопросы, имеющие первостепенную важность для
понимания больцмановской динамики, такие как существование и единствен-
ность решения, эволюция полиномиальных моментов, устойчивость и сходи-
мость к равновесию в зависимости от молекулярного потенциала.

В третьей части внимание уделено асимптотической теории слаборазре-
женного газа. Описывается методика декомпозиции кинетического решения при
малых числах Кнудсена в виде суммы f = fH+fK , где fH –– гидродинамическая
часть, fK –– поправка слоя Кнудсена. Такое разложение единственно, посколь-
ку гидродинамическое решение получается из разложения Гильберта в степен-
ной ряд по Kn, а неравновесная часть решения убывает быстрее любой степени
Kn. Кроме классической линейной асимптотической теории, рассматриваются
отдельные нелинейные разделы, непосредственно применяемые для задач, рас-
смотренных в настоящем исследовании (положение 4).

Во-первых, это одномерные течения при числах Маха порядка единицы.
Вплоть до членов второго порядка они описываются уравнениями Навье––Сток-
са

d

dy

(
Γ1
dvH
dy

)
= O(k2), Γ1

(
dvH
dy

)2

+
5

4

d

dy

(
Γ2
dTH
dy

)
= O(k2),

где Γi(TH) –– транспортные коэффициенты, vH и TH –– скорость и температура
газа соответственно, а k = Kn

√
π/2. В силу симметрии задачи dpH/dy = O(k2).

Неоднородность давления pH может быть вычислена из уравнения

3pH
2

dpH
dy

+
d

dy

[
Γ3
d2TH
dy2

+ Γ7

(
dTH
dy

)2
]
+
d

dy

[
(Γ8 − 2Γ9)

(
dvH
dy

)2
]
= O(k3).

Поперечный тепловой поток подчиняется закону Фурье

qyH = −5

4
Γ2
dTH
dy

k +O(k3),

а его продольная гидродинамическая часть появляется только во втором порядке:

qxH =
TH
pH

(
Γ3

2

d2vH
dy2

+ 4Γ10
dTH
dy

dvH
dy

)
k2 +O(k3).

Тензор давлений существенно анизотропный в нелинейном режиме:

pxxH − pyyH =
1

pH

[
2Γ9

(
dvH
dy

)2

− Γ3
d2TH
dy2

− Γ7

(
dT0
dy

)2
]
k2 +O(k3),

pzzH − pyyH =
2Γ8

pH

(
dvH
dy

)2

k2 +O(k3).
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Для степенного потенциала можно записать

Γ1,2(T ) = γ1,2T
s, Γ3,8,9(T ) = γ3,8,9T

2s,

Γ7(T ) = Γ′
3 − γ7T

2s−1, Γ10(T ) = γ10T
2s−1.

Газу твёрдых сфер соответствует s = 1/2, а максвелловскому s = 1.
Во-вторых, это медленные неизотермические течения при числах Рей-

нольдса порядка единицы. Они описываются уравнениями КГФ:

∂

∂xi

(
uiH1

TH0

)
= 0,

∂

∂xj

(
uiH1ujH1

TH0

)
− 1

2

∂

∂xj

[
Γ1

(
∂uiH1

∂xj
+
∂ujH1

∂xi
− 2

3

∂ukH1

∂xk
δij

)]
−

[
Γ7

Γ2

ujH1

TH0

∂TH0

∂xj
+

Γ2
2

4

d

dTH0

(
Γ7

Γ2
2

)(
∂TH0

∂xj

)2
]
∂TH0

∂xi

= −1

2

∂p†H2

∂xi
,

∂uiH1

∂xi
=

1

2

∂

∂xi

(
Γ2
∂TH0

∂xi

)
,

где uiH1 = p0vi1 и

p†H2 = p0pH2 +
2

3

∂

∂xk

(
Γ3
∂TH0

∂xk

)
− Γ7

6

(
∂TH0

∂xk

)2

.

Индексы соответствуют степенному разложению h = h0 + h1k + h2k
2 + · · ·. На

равномерно нагретое тело со стороны газа действует сила

p0

∮
S

Fi2dS = −
∮
S

p†H2nidS + Γ1

∮
S

∂uiH1

∂xj
njdS +

Γ7

2

∮
S

(
∂TH0

∂xj

)2

nidS.

Рассматриваются граничные условия первого и второго порядка, включая члены,
содержащие тензор кривизны поверхности.

Вторая глава состоит из 2 частей и посвящена численным методам.
Первая часть содержит обзор, классификацию и сравнительный анализ основ-
ных подходов к дискретной аппроксимации уравнения Больцмана. Основное
внимание уделено решениюпространственно-однородной задачи и схемам с опе-
раторным расщеплением пофизическим процессам (свободный перенос и столк-
новения).

Во второй части излагается основной численный метод, позволяющий до-
стигнуть второго порядка точности для функции распределения f во всём се-
мимерном пространстве: по времени t, по физическим xi и скоростным ζi коор-
динатам. Для этого используются симметричное расщепление, TVD-схемы для
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аппроксимации бесстолкновительного уравнения Больцмана

∂f

∂t
+ ζi

∂f

∂xi
= 0

и КПИМДС для решения пространственно-однородного уравнения Больцмана

∂f

∂t
= J(f), J(f) =

∫
Rd×Sd−1

(f ′f ′∗ − ff∗)BdΩ(α)dζ∗.

Столкновительный интеграл J(f) записан с использованием следующих обозна-
чений:

f = f(ζ), f∗ = f(ζ∗), f ′ = f(ζ′), f ′∗ = f(ζ′
∗),

ζ ′i = ζi + αiαj (ζj∗ − ζj) , ζ ′i∗ = ζi∗ − αiαj (ζj∗ − ζj) .

Пусть неравномерная сетка с узлами ζγ и весами wγ даёт кубатуру∫
F (ζ)dζ ≈

∑
γ∈Γ

Fγwγ =
∑
γ∈Γ

F̂γ , Fγ = F (ζγ),
∑
γ∈Γ

wγ = VΓ,

тогда столкновительный интеграл, записанный в симметризованном виде

J(fγ) =
1

4

∫
R2d×Sd−1

(
δγ + δ∗γ − δ′γ − δ′∗γ

)
(f ′f ′∗ − ff∗)BdΩ(α)dζdζ∗,

где δγ = δ(ζ − ζγ) –– дельта-функция в Rd, аппроксимируется суммой

Ĵγ =
πV 2

Γ∑
ν∈N

wνw∗ν

∑
ν∈N

(
δγν + δ∗γν − δ′γν − δ′∗γν

)(wνw∗ν

w′
νw

′
∗ν
f̂ ′ν f̂

′
∗ν − f̂ν f̂∗ν

)
Bν ,

где δγν –– символ Кро́некера. Множество кубатурных точек {ζν , ζ∗ν ,αν}ν∈N
определяется соответствующим методом численного интегрирования. В настоя-
щем исследовании используются оптимальные правила Коробова34. Штрихован-
ные величины требуют определения, поскольку скорости после столкновения ζ′

ν

и ζ′
∗ν в общем случае не попадают в узлы сетки. Если их заменить на ближайшие

сеточные скорости ζλν
и ζµν

, то Ĵγ потеряет консервативность и энтропийность.
Для решения этих проблем используются две специальные процедуры.

Проекционная процедура может быть записана через разложение вида

δ′γν =
∑
a∈Λ

rλν ,aδλν+sa,γ ,

34КоробовН.М.Теоретикочисловыеметоды в приближенном анализе.М. :Физматгиз, 1963. 224 с.

13



где λν + sa ∈ Γ. Оно может быть получено с помощью метода Петрова––Галёр-
кина ∫

ψs(ζγ)

(
δ(ζ′ − ζγ)−

∑
a∈Λ

rλν ,aδ(ζλν+sa − ζγ)

)
dζγ = 0.

Консервативность КПИМДС достигается, когда {ψs} содержит все инварианты
столкновений: ψ0 = 1, ψi = ζi, ψ4 = ζ2i . Множество правил смещения S = { sa :
a ∈ Λ, rλν ,a ̸= 0 } называется проекционным шаблоном.

Интерполяционная процедура в достаточно общем виде может быть запи-
сана через среднее взвешенное по Колмогорову:

f̂ ′ν = φ−1
f

(∑
a∈Λ

qλν ,aφf

(
f̂λν+sa

))
, w′

ν = φ−1
w

(∑
a∈Λ

pλν ,aφw (wλν+sa)

)
.

Энтропийность КПИМДС достигается через среднее геометрическое:

φf,w(x) = ln(x), φ−1
f,w(x) = exp(x), pλν ,a = qλν ,a = rλν ,a.

Аналогичные соотношения справедливы для δ′∗γν , f̂ ′∗ν и w′
∗ν .

На основе кубатурной формулы вида

Ĵn
γ =

N∑
j=1

∆̂n+(j−1)/N
γ

строится численная схема решения задачи Коши в дробных шагах

f̂n+j/N
γ = f̂n+(j−1)/N

γ +
∆t

N
∆̂n+(j−1)/N

γ (j = 1, . . . ,N), ∆t = tn+1 − tn.

Каждый j-ый шаг сохраняет массу, импульс, кинетическую энергию и не умень-
шает энтропию при сохранении положительности.

Даются конструктивные оценки на минимальное количество кубатурных
точек, обеспечивающее f̂n+j/N

γ > 0 (положение 1). Если все проекционные веса
rλν ,a положительны, то достаточно

N > Af̂maxε
2
fε

2
w,

где

A =
π∆tV 2

ΓNBmax∑
ν∈N wαν

wβν

, Bmax = max
γ,σ∈Γ
α∈S2

B(α, ζγ , ζσ) = O(ζmax), ζmax = max
γ∈Γ

|ζγ |,

f̂max = max
γ∈Γ

f̂γ , εf = max
sa,sb∈S
γ∈Γ

f̂γ+sa

f̂γ+sb

, εw = max
γ,σ∈Γ

wγ

wσ
.
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Если же проекционные веса принимают отрицательные значения, то оценка зна-
чительно ухудшается:

N > Af̂maxr̄max max
γ,σ∈Γ

f̂γ

f̂σ
, r̄max = max

γ∈Γ,a∈Λ
(−rγ,a).

Величина εf уменьшается при измельчении сетки в областях с высоким гради-
ентом и при уменьшении диаметра проекционного шаблона

RS = max
sa,sb∈S
γ∈Γ

∣∣ζγ+sa − ζγ+sb

∣∣ .
Таким образом, чтобы смягчить оценку на N , необходимо уменьшать |Γ|, ζmax,
εw скоростной сетки и RS , r̄max проекционного шаблона. На равномерной сетке
консервативность может быть достигнута с помощью двухточечного шаблона с
r̄max = 0; для пяти- и семиточечной схем r̄max = 1/8.

Из приведённых оценок видно, что сохранение положительности для всех
дробных шагов приводит в общем случае к огромным N , поэтому в настоящем
исследовании используется схема с фильтрацией кубатурного множества

Ĵγ =
∑

ν∈N\M

∆̂γν ,

гдеM –– множество кубатурных точек, нарушающих условие положительности.
Для достижения желаемой точности контролируется малость величины

πV 2
Γ

ρ
∑

ν∈N wνw∗ν

∑
ν∈M

∣∣∣f̂λν
f̂µν

− f̂ν f̂∗ν

∣∣∣Bν ,

где ρ =
∫
fdζ –– плотность газа.

Третья глава содержит результаты численного и асимптотического анали-
за некоторых классических задач молекулярной газодинамики для одноатомного
газа твёрдых сфер. В качестве граничных условий на твёрдой поверхности везде
используется полное диффузное отражение.

В первой части рассматривается плоское течениеКуэтта дляширокого диа-
пазона чисел Кнудсена (от 10−2 до 102) и чисел Маха (от 0 до 5). Разреженный
газ заключён между двумя параллельными пластинами, движущимися со скоро-
стями vx(y = ±1/2) = ±∆v/2. Основная сложность численного анализа задачи
связана с сингулярным поведением решения возле твёрдых пластин.

Во-первых, вследствие граничных условий функция распределения терпит
разрыв вдоль плоскости ζini = 0 непосредственно на граничной поверхности с
нормалью ni, направленной в сторону газа. Этот разрыв не проникает внутрь об-
ласти с газом, однако резкий перепад решения возле ζini = 0 требует сильного
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Рис. 1 — Изолинии функции распределения при∆v = 2. Показано сечение ζz = 0.1665.

измельчения скоростной сетки (рис. 1). Кроме того, оно необходимо для разре-
шения логарифмической сингулярности вида35

∂f

∂ζi
ni = C ln ζini +O(1), (ζini < 0).

Погрешность решения на равномерной сетке при том же количестве узлов раз-
растается при увеличении числа Кнудсена.

Во-вторых, для малых чисел Кнудсена требуется измельчение физической
сетки вблизи пластин, поскольку36

∂f

∂xi
ni =

C

Kn
ln

(xi − xBi)ni
Kn

+O(1),

35Chen I.-K. [et al.]. Singularity of the Velocity Distribution Function in Molecular Velocity Space //
Commun. Math. Phys. 2016. Vol. 341, no. 1.

36Chen I.-K., Liu T.-P., Takata S. Boundary Singularity for Thermal Transpiration Problem of the Lin-
earized Boltzmann Equation. // Archive for Rational Mechanics & Analysis. 2014. Vol. 212, no. 2.
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Рис. 2 — Профили некоторых моментов функции распределения.
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Рис. 3 — Зависимость сдвигового напряжения от числа Кнудсена. P ∗
NSxy соответствует

решению уравнений Навье––Стокса с граничными условиями без скольжения. Показаны
решения модельного уравнения Крука––Веландера , линеаризованного уравнения

Больцмана , КПИМДС , ПСМ и асимптотическое решение .

где xBi –– координата граничной поверхности.

Вычисляются профили первых тринадцати моментов функции распреде-
ления для различных чисел Кнудсена и Маха. На рис. 2а показано, как кривизна
профиля продольного теплового потока меняет знак по мере роста числа Маха.
Рис. 2б демонстрирует степень анизотропичности тензора давлений. На рис. 3

17



0.0 0.5x

0.0

0.5

y

T

1.4

1.3

1.2

1.
11

.0
51

0.9

0.8

0.7

0.6

а) уравнения КГФ с граничными условиями
второго порядка

0.0 0.5x

0.0

0.5

y

T

1.4

1.3

1.2

1.
11

.0
51

0.9

0.8

0.7

0.6

б) уравнение Больцмана

Рис. 4 — Изотермические линии для Kn = 0.01

0.0 0.5x

0.0

0.5

y

vi
k

0.1
0.2

0.4

0.6
0.8

1

а) уравнения КГФ с граничными условиями
второго порядка

0.0 0.5x

0.0

0.5

y

vi
k

0.1
0.2

0.4

0.6
0.8

1

б) уравнение Больцмана

Рис. 5 — Стационарное поле скоростей для Kn = 0.01; изолинии соответствуют модулю.

проводится сравнение полученных результатов с другими методами. Все данные
согласуются между собой в пределах точности (положения 3 и 4).

Во второй части рассматривается течение между пластинами с синусои-
дальным распределением температур. На рис. 4 и 5 видно, что при Kn = 0.01
асимптотическое решение с хорошей точностью воспроизводит кинетическое
решение, полученное КПИМДС (положение 4). На рис. 6 видно, что такой ре-
зультат достигнут, главным образом, благодаря граничным условиям, учитыва-
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Рис. 6 — Некоторые граничные интегралы в зависимости от числа Кнудсена,
полученные разными методами: уравнение теплопроводности , уравнения КГФ с

граничными условиями ведущего порядка (только тепловое скольжение) ,
первого и второго порядков, уравнение Больцмана на равномерной сетке и

неравномерной . Планка у соответствует абсолютной погрешности 3 · 10−4.
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Рис. 7 — Поле скоростей ui1 между двумя некоаксиальными цилиндрами при T1 = 1 и
T2 = 5; изолинии соответствуют модулю.

ющим тепловое скольжение, скачки скорости и температуры первого порядка.
Сравниваются решения, полученные на различных скоростных сетках.

В третьей части рассматривается течение газа между равномерно нагреты-
ми некоаксиальными цилиндрами и сферами в континуальном пределе. На рис. 7
изображено нелинейное термострессовое течение, возникающее между поверх-
ностями с температурами T1 = 1 и T2 = 1 + τ . Оси цилиндров смещены вдоль
оси x на расстояние d. На рис. 8 показана зависимость силы течения от разницы
температур, а на рис. 9 распределение отдельных компонент действующей силы.

Сила взаимодействия между цилиндрами, оказывается, подобна электро-
статической (положение 6). В частности, для степенного молекулярного потен-
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циала можно записать

p0

∮
S

Fx2dS =
δC

δd
(T s

2 − T s
1 )(T

1+s
2 − T 1+s

1 ),

где C –– аналог электрической ёмкости. Для цилиндров и сфер,37

Ccyl ∝
1

θ
, Csph ∝

∞∑
n=1

R1R2 sh θ
R2 shnθ −R1 sh(n− 1)θ

, ch θ =
R2

1 +R2
2 − d2

2R1R2
.

На рис. 10 показаны соответствующие силы, вычисленные из уравнений КГФ.
В четвёртой части рассматривается течение между коаксиальными эллип-

тическими цилиндрами, нагретыми до температур T0 = 1 и T1 = 5. На рис. 11
можно сравнить решение уравнения Больцмана с асимптотическим. На рис. 11а
отчётливо видны а) нелинейное термострессовое течениеO(Kn) во всём объёме,
б) термострессовое скольжение O(Kn2) возле граничных поверхностей. Однако
в области, где градиент температуры сравним с Kn−1, гидродинамическое опи-
сание неприменимо.

Приложение состоит из одной части, излагающей основные определения
и специальные численные методы, необходимые для вычисления неизвестных
ранее транспортных коэффициентов для газа твёрдых сфер. Наибольшая точ-
ность достигнута после сведения неоднородного линеаризованного уравнения
Больцмана к одномерным интегральным уравнениям Фредгольма, которые ре-
шены классическим методом квадратур с применением асимптотического ана-
лиза и экстраполяции Ричардсона (положение 2):

γ8 = 1.495941968, γ9 = 1.636073459, γ10 = 2.449780.

В заключении приведены основные выводы и рекомендации:
1. Рассмотрены классические задачи молекулярной газовой динамики, та-

кие как течения между параллельными пластинами, некоаксиальными цилин-
драми и сферами, эллиптическими цилиндрами. Полученные решения обладают
высокой точностью, верифицированы и могут считаться эталонными. Их деталь-
ный анализ обнаружил ряд новых физических эффектов. Некоторые из них прак-
тически недоступны для ПСМ, что служит веским основанием к дальнейшему
развитию численных методов решения уравнения Больцмана.

2. Обобщение KПИМДС для неравномерных сеток приводит к дополни-
тельным вычислительным трудностям. В частности, усложняется алгоритм кон-
сервативного проецирования в интеграле столкновений, повышаются требова-
ния к мощности множества кубатурных точек, что в целом приводит к увели-
чению вычислительных затрат. Кроме того, на неравномерной сетке, в общем
случае, снижается точность кубатур функций близких к максвелловским. Тем не
менее в настоящем исследовании на численных примерах продемонстрировано,

37Смайт В. Электростатика и электродинамика. М. : ИЛ, 1954. 390 с.
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Рис. 11 — Стационарное поле скоростей при Kn = 0.02: изолинии соответствуют
модулю, кривые со стрелками изображают направление.
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как в рамках KПИМДС неравномерная прямоугольная сетка позволяет достичь
высокой точности и эффективности а) для детального разрешения плоских ки-
нетических слоёв, б) для медленных, но сильно неизотермических течений. На-
стоящая область применения метода значительно шире, включая гиперзвуковые
течения и задачи при очень больших числах Кнудсена. Неравномерные сетки
позволяют эффективно аппроксимировать как большой объём скоростного про-
странства в первом случае, так и высокие градиенты функции распределения во
втором.

3. Важной задачей математического анализа KПИМДС остаётся вопрос
сходимости и особенно влияния проекционного шаблона на её скорость. Нерав-
номерные сетки неизбежно приводят к отрицательным проекционным весам, ко-
торые могут стать причиной аномальных численных флуктуаций решения. Эта
проблема требует детального анализа.

4. Асимптотическая теория уравнения Больцмана для малых чисел Кнуд-
сена играет важнейшую роль в моделировании разреженного газа. С её помощью
можно получить не только значения транспортных коэффициентов из знания мо-
лекулярного потенциала, но также истинные граничные условия для гидродина-
мических уравнений и, что немаловажно, корректно описать существенно нерав-
новесное поведение газа в слое Кнудсена. На численных примерах было показа-
но, как использование граничных условий первого и второго порядка позволяет
улучшить точность и качество асимптотического решения. В настоящем иссле-
довании применение асимптотической теории оказалось ещё шире. Главным об-
разом, она послужила надёжным инструментом верификации численного мето-
да решения уравнения Больцмана. Кроме того, использование асимптотического
решения в качестве начального приближения позволило значительно ускорить
решение стационарных задач с малыми числами Кнудсена.

5. Гидродинамическое описание газа может оказаться некорректным на
масштабах существенно больше длины свободного пробега, если градиентымак-
роскопических величин в некоторых областях сравнимы с обратным числом
Кнудсена. Достоверно описать поведение газа в этих существенно неравновес-
ных областях возможно только в рамках кинетического подхода. Подобная ситу-
ация встречается во многих реальных задачах. В настоящем исследовании было
продемонстрировано кардинальное изменение картины медленного неизотерми-
ческого течения при больших градиентах температуры.

6. Медленные неизотермические течения представляют интерес в наби-
рающей обороты индустрии МЭМС. В настоящем исследовании показано, что
численное решение уравнения Больцмана в континуальном пределе сходится к
решению уравнений КГФ с соответствующими граничными условиями, кото-
рые, таким образом, верно учитывают влияние сильных температурных неодно-
родностей на процессы переноса в слаборазреженном газе.
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