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Введение

Молекулярная газодинамика –– это динамика газа, построенная на основе
кинетической теории. Под последней обычно понимают теорию неравновесных
свойств газа. Ключевую роль при описании газа играет отношение длины свобод-
ного пробега молекул газа ℓ к характерному размеру течения L –– так называемое
число Кнудсена Kn = ℓ/L. В континуальном пределе (Kn → 0) обычно использу-
ют законы классической гидродинамики, основанной на модели сплошной среды,
и только в случае конечных Kn учитывают молекулярную структуру газа. Таким
образом, в литературе можно встретить разделение на континуальную гидрога-
зодинамику и динамику разреженного газа. Однако имеется достаточно широкий
круг задач, для которых уравнения Навье––Стокса некорректно описывают пове-
дение газа даже при Kn → 0. Поэтому в настоящем исследовании используется
термин молекулярная газовая динамика, подчёркивая тот факт, что методы и пред-
ставления кинетической теории используются как для разреженного газа, так и
для его континуального предела. Этот термин, по-видимому, впервые предложен
в 1970 году М. Н. Коганом [239], позже подхвачен Г. Бёрдом [225] и Ё. Соне [186].

Актуальность темы. Становление молекулярной газодинамики можно
связать с важными прикладными направлениями, возникшими в первой половине
XX века. В частности, задача разделения изотопов стала импульсом для развития
асимптотической теории и методов вычисления транспортных коэффициентов на
основе кинетической теории. Динамика разреженного газа выделилась в отдель-
ную науку благодаря активному освоению космоса. Первые исследования носили
в основном экспериментальный характер, но в XXI веке превалирующую роль иг-
рает компьютерное моделирование, что говорит о зрелости теоретических пред-
ставлений дисциплины. Неравновесное состояние газа описывается в общем слу-
чае шестимерной функцией распределения, её эволюция подчиняется уравнению
Больцмана. Входящий в него нелинейный интеграл столкновений представляет
собой нелокальный квадратичный оператор, что создаёт существенные трудно-
сти, как для математического, так и численного анализа. За последние три деся-
тилетия строгая математическая теория пополнилась множеством фундаменталь-
ных результатов, а стремительный рост суперкомпьютерных мощностей, доступ-
ных исследователям и инженерам, спровоцировал системное развитие численных
методов.
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На сегодняшний день можно выделить несколько прикладных областей мо-
лекулярной газодинамики:

1. Аэрокосмические исследования. Движение аппаратов в верхних слоях ат-
мосферы сопровождаются сильно неравновесными течениями и доста-
точно большими числами Кнудсена.

2. Микроэлектромеханические системы (МЭМС). Эта относительно моло-
дая отрасль обуславливает основную волну интереса к изучению разре-
женного газа в начале XXI века. В таких МЭМС как приводы, микротур-
бины и газовые хроматографы возникают разреженные течения газа.

3. Аэрозоли. Процесс их образования, изменение их дисперсного состава
описываются в рамках кинетической теории. Аэрозольные реакторы ис-
пользуются среди прочего для производства стекловолокна, кремниевых
пластин и углеродного волокна. Наконец, конечная фаза существования
атмосферных загрязнений –– это также аэрозольные частицы.

4. Вакуумные технологии. Моделирование течений газа, когда число Кнуд-
сена значительно меняется в пространственно-временных масштабах,
представляет собой особенно трудную задачу, однако современный уро-
вень развития вычислительных средств позволяет во многих случаях об-
ходиться без дорогостоящих экспериментальных прототипов.

Таким образом, актуальность данного исследования обусловлена
– активным развитием прикладных областей,
– потребностью в высокоточных численных методах,
– быстрым ростом доступных вычислительных ресурсов.
Объект исследования –– движение одноатомного газа различной степени

разреженности. В исследовании одновременно изучается два предмета:
– методы численного и асимптотического анализа,
– физические свойства стационарных течений.
Степень разработанности темы.
Формальная асимптотическая теория уравнения Больцмана была заложе-

на с трудах Д. Гильберта [123], С. Чепмена [68], Д. Энскога [87], позже развита
Д. Барнеттом [51], Х. Грэдом [109] и Ё. Соне [185]. Решение уравнения Больц-
мана для слаборазреженного газа допускает отделение гидродинамической части
от существенно неравновесных пространственно-временны́х кинетических сло-
ёв. Большой цикл работ Киотской группы (Ё. Соне, К. Аоки, Ш. Таката, Т. Овада
и др.) посвящён высокоточному численному анализу кнудсеновского слоя перво-
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го [163; 190] и второго порядка [118; 119; 162] для диффузного отражения и га-
за твёрдых сфер. Различные системы гидродинамических уравнений могут быть
получены в зависимости от способа асимптотического масштабирования. В част-
ности, для медленных неизотермических течений справедливы уравнения Кога-
на––Галкина––Фридлендера (КГФ) [240], содержащие некоторые ненавье––сток-
совские члены.

Огромное множество исследований посвящено численному решению урав-
нения Больцмана. Среди них можно выделить три магистральных направления в
зависимости от способа аппроксимации функции распределения скоростей:

– методы прямого статистического моделирования (ПСМ) строятся на
основе некоторого случайного процесса марковского типа, способного
аппроксимировать больцмановскую динамику;

– методы дискретных скоростей подразумевают фиксированный набор
доступных молекулярных скоростей;

– проекционные методы используют разложение по базису в определённом
функциональном пространстве.

Методы ПСМ в силу своей универсальности и простоты нашли широкое приме-
нение в прикладных областях, однако присущие им флуктуации иногда сильно
ограничивают точность получаемых результатов. Проекционные методы, напро-
тив, обладают наилучшим соотношением погрешности к размерности аппрокси-
мационного пространства, но, как правило, в достаточно узком классе решений.
Оказалось возможным добиться второго порядка точности в рамках метода дис-
кретных скоростей, однако для этого потребовался длинный исторический путь.

Метод дискретных скоростей был впервые использован А. Нордсиком и
Б. Хиксом [161]. Для вычисления интеграла столкновения они использовали куба-
туры Монте-Карло с последующей консервативной коррекцией функции распре-
деления. В дальнейшем метод дискретных скоростей развивался С. Йеном [219],
В. В. Аристовым и Ф. Г. Черемисиным [222]. Д. Гольдштейн, Б. Стёртевант и
Дж. Бродуелл первыми для решения уравнения Больцмана использовали кинети-
ческие модели газа, допускающие столкновения только в дискретном простран-
стве [99]. А. Пальчевский, Ж. Шнайде́р и А. В. Бобылев показали, что, несмотря на
присущие им консервативность и энтропийность на микроскопическом уровне1,
теоретический порядок сходимости таких моделей к уравнению Больцмана силь-

1 Каждое дискретное столкновение не уменьшает энтропию, сохраняет массу, импульс и кинетическую
энергию



7

но меньше единицы [164]. В. Панфёров и А. Гейнц показали, как специальная
замена переменных позволяет улучшить сходимость, но лишь вплоть до перво-
го порядка [165]. Размазывание (mollification) столкновительного процесса поз-
воляет естественным образом решить проблему консервативной аппроксимации,
избегая решения целочисленных уравнений:

– К. Бюе, С. Кордье и П. Дегон продемонстрировали, как с его помощью
обеспечить консервативность на макроскопическом уровне (для столкно-
вительного оператора целиком) [50];

– Х. Бабовски построил простейшую схему с консервативностью на мезо-
скопическом уровне (для всей столкновительной сферы) [22], его подход
позже развил Д. Гёрш [107];

– Ф. Г. Черемисин предложил новый класс методов, сохраняющих консер-
вативность на микроскопическом уровне (для отдельной столкновитель-
ной пары) [255].

Микроскопическая консервативность, достигнутая Ф. Г. Черемисиным, позволя-
ет построить наиболее эффективную численную схему и может быть интерпре-
тирована как проекционная процедура Петрова––Галёркина, в которой столкно-
вительные инварианты образуют ортогональную оболочку. Кроме того, специ-
альная процедура интерполяции функции распределения обеспечивает энтропий-
ность метода [256]. Поэтому такой метод будем называть консервативным проек-
ционно-интерполяционным методом дискретных скоростей (KПИМДС).

Во многих прикладных задачах эффективная аппроксимация уравнения
Больцмана требует существенно неоднородной дискретизации в скоростном про-
странстве. Неравномерные сетки активно используются как в методах дискрет-
ных скоростей [70; 136], так и проекционных [121; 217]. КПИМДС на неравно-
мерных сетках может быть построен с помощью техники многоточечного про-
ецирования, впервые предложенной Ф. Варгизом [206].

В настоящем исследовании выделены две основные цели:
1. Развитие КПИМДС для неравномерных сеток, его верификация в широ-

ком диапазоне неравновесности.
2. Численный анализ некоторых одномерных и медленных неизотермиче-

ских течений разреженного газа на основе как уравнения Больцмана, так
и соответствующих уравнений гидродинамического типа. Оценка обла-
сти применимости последних при различных граничных условиях.

Для достижения указанных целей поставлены следующие задачи:
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1. Анализ многоточечных проекционных шаблонов, необходимых для кон-
сервативного вычисления интеграла столкновений на неравномерных
сетках.

2. Построение асимптотического решения второго порядка для погранич-
ного слоя Прандтля для газа твёрдых сфер.

3. Сравнительный анализ численных решений задачи Куэтта в широком
диапазоне параметров, получаемых с помощью КПИМДС и других об-
щепризнанных методов.

4. Исследование сходимости численного решения уравнения Больцмана к
асимптотическому для широкого класса течений между параллельными
пластинами.

5. Исследование различных подходов к постановке граничных условий для
уравнений КГФ, сравнительный анализ с решением уравнения Больцма-
на.

6. Параметрический анализ течений между некоаксиальными и эллиптиче-
скими цилиндрами в континуальном пределе.

Задачи 1–5 позволяют достичь первой цели, задачи 2–6 раскрывают содержание
второй цели.

Научная новизна:
1. КПИМДС применяется для существенно неравномерных сеток в про-

странстве скоростей для достижения высокой точности.
2. Нелинейная асимптотическая теория используется для верификации чис-

ленного метода решения уравнения Больцмана.
3. Уравнения КГФ решаются с граничными условиями, содержащими чле-

ны отличные от теплового скольжения.
4. Рассматриваются неизученные ранее эффекты и свойства известных те-

чений разреженного газа.
Теоретическая и практическая значимость:
1. Результаты анализа нелинейной задачи Куэтта могут служить эталоном

для верификации других численных методов.
2. Предложенная методология численного анализа медленных неизотерми-

ческих течений существенно расширяет возможности их компьютерного
моделирования.

Методология и методы исследования. В качестве математической модели
неравновесного газа используется кинетическая теория, высокий уровень разви-
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тия которой позволяет настоящему исследованию обходиться без эмпирической
базы. Методологическая база включает специальные математические и вычисли-
тельные методы:

– асимптотические методы нелинейной теории возмущения;
– численные методы интегрирования систем дифференциальных уравне-

ний в частных производных, специальные численные методы вычисли-
тельной гидродинамики;

– численные методы многомерного интегрирования;
– квадратурные методы решения интегральных уравнений;
– проекционные методы решения операторных уравнений;
– вариационное исчисление.

В работе использован широкий спектр современных компьютерных технологий и
программных комплексов, включая

– системы компьютерной алгебры (SymPy [134]),
– генерацию расчётных сеток (gmsh [97]),
– организацию параллельных вычислений (MPI [115]),
– инструментарий вычислительной гидродинамики (OpenFOAM [213]),
– визуализацию полей (matplotlib [127]).

Численные решения уравнений КГФ и Больцмана получены с помощью соответ-
ствующих авторских кодов:

– солвера на основе алгоритма SIMPLE [58] snitSimpleFoam [180],
– программного комплекса анализа газокинетических процессов [11; 236].
В соответствии с результатами решения поставленных задач выдвигаются

основные положения, выносимые на защиту:
1. Для многоточечных проекционных шаблонов выявлены критерии, мини-

мизирующие требования к мощности множества кубатурных точек [181].
2. С точностью 8–10 знаков вычислены неизвестные ранее транспортные

коэффициенты для газа твёрдых сфер, необходимые для вычисления тен-
зора напряжений и вектора потока тепла в пограничном слое Прандт-
ля [181].

3. Получено решение плоской задачи Куэтта для широкого диапазона чисел
Кнудсена вплоть до гиперзвуковых скоростей. Абсолютная погрешность
первых 13-ти моментов функции распределения не выше 10−4 [181].

4. Продемонстрировано, что КПИМДС на неравномерных прямоугольных
сетках –– надёжный инструмент для высокоточного анализа нелинейных
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плоских кинетических слоёв. Отклонение от асимптотического решения
не более 10−4 для нелинейных течений между параллельными пластина-
ми с температурой, распределённой а) константно [181], б) синусоидаль-
но [250].

5. На численных примерах показано, что использование совместимых гра-
ничных условий первого и второго порядка для уравнений КГФ суще-
ственно улучшает точность асимптотического решения. Исследованы, в
том числе, граничные условия, учитывающие кривизну граничной по-
верхности [250].

6. На основе численного параметрического анализа некоторых нелиней-
ных течений газа между равномерно нагретыми телами в континуальном
пределе было обнаружено, что обтекаемые тела притягиваются подобно
электрически заряженным телам [180].

Достоверность полученных результатов обеспечивается следующими об-
стоятельствами:

1. Кинетическое уравнение Больцмана выводится из первых принципов и
содержит минимальное количество дополнительных допущений. В на-
стоящем исследовании повсеместно используется газ твёрдых сфер и
граничные условия полного диффузного отражения. Эксперименталь-
ные данные свидетельствуют о том, что эти модели достаточно адекватно
отражают реальные кинетические процессы в широком диапазоне нерав-
новесности.

2. Проводится систематический сравнительный анализ результатов, полу-
ченных с помощью КПИМДС, прямого статистического моделирования
и асимптотического анализа уравнения Больцмана.

3. Проводится анализ сходимости численных методов на основе множества
решений на разностных сетках различной мелкости.

4. Верификация используемых солверов и систем обработки данных вы-
полнена на тестовых задачах, решение которых с высокой точностью
представлено в литературе. Результаты находятся в полном соответствии
с результатами, полученными другими авторами.

Апробация работы. Результаты диссертации докладывались лично соис-
кателем на

– семинаре сектора кинетической теории отдела механики ВЦ ФИЦ ИУ
РАН (Москва, 2016),
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– 2 Международном симпозиуме по аэродинамике, охватывающем различ-
ные режимы течений (Маньян, Китай, 2017),

– Всероссийской конференции по аэрогидродинамике, посвященной 100-
летию со дня рождения С. В. Валландера (Санкт-Петербург, 2017).

Публикации. Основные результаты по теме диссертации изложены в 5 пе-
чатных изданиях, рекомендованных ВАК.

Объём и структура работы. Диссертация состоит из введения, трёх
глав, заключения и одного приложения. Полный объём диссертации состав-
ляет 147 страниц, включая 52 рисунка и 6 таблиц. Список литературы содержит
260 наименований.
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Глава 1. Кинетическая теория газов

1.1 Основные понятия и уравнения

Кинетическая теория основывается на представлении о молекулярном стро-
ении вещества. Газом называется совокупность молекул, находящихся на столь
больших расстояниях друг от друга, что молекулы большую часть времени слабо
взаимодействуют друг с другом. Короткие промежутки времени, в течение ко-
торых молекулы сильно взаимодействуют, рассматриваются как столкновения.
Если усредненной по времени потенциальной энергией взаимодействия молекул
можно пренебречь по сравнению с их кинетической энергией, то газ называется
идеальным. Практически газы из нейтральных молекул при давлениях до сотен ат-
мосфер могут рассматриваться как идеальные. До этих же давлений вероятность
тройных столкновений мала по сравнению с вероятностью двойных (или парных).
В идеальном газе объём, занятый молекулами, мал по сравнению с объёмом, за-
нятым газом. Другими словами, если dm –– эффективный диаметр молекулы, n0 ––
число молекул в единице объёма, то в пределе dm → 0, n0 → ∞ в идеальном газе
n0d

3
m → 0. Если при этом конечной остаётся длина свободного пробега молекул

между столкновениями
ℓ =

1√
2πd2mn0

, (1.1)

то такой предельный континуум принято называть газом Больцмана.

1.1.1 Границы применимости физической модели

Предполагается, что движение молекул может быть описано с помощью
классической ньютоновской механики. Квантовые эффекты существенны лишь
при очень низких температурах и для легких молекул (водород, гелий, электро-
ны). Для водорода и гелия квантовые поправки существенны уже при нормальных
условиях. Большинство же газов сжижается при температуре, при которой ещё
нет необходимости применять квантовую теорию столкновения молекул. Кванто-
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вые эффекты необходимо учитывать при неупругих столкновениях атомов и мо-
лекул (возбуждение внутренних степеней свободы молекул, возбуждение элек-
тронных уровней и т. п.). Потенциалы упругих взаимодействий молекул также
могут быть вычислены лишь с помощью квантовой механики. Однако при из-
вестном потенциале взаимодействия упругие столкновения могут быть рассмот-
рены классически. Релятивистские эффекты существенны лишь при очень боль-
ших температурах (больших скоростях молекул). Практически их можно не учи-
тывать при температурах порядка десятков и сотен тысяч градусов.

1.1.2 Функция распределения скоростей

В диссертации повсеместно используются безразмерные переменные. Со-
ответствующие размерные референсные значения содержат верхний индекс (0).
Пусть xiL (или xL) –– прямоугольные координаты в физическом пространстве,
а ζi

√
2RT (0) (или ζ

√
2RT (0)) –– молекулярная скорость. Здесь L и T (0) –– рефе-

ренсные длина и температура, R = kB/m –– удельная газовая постоянная, где
kB = 1.380658×10−23Дж·К−1 –– постоянная Больцмана,m –– масса отдельной мо-
лекулы. В шестимерном объёме dxdζ в момент времени t находятся

dN =
ρ(0)L3

m
f(x,ζ,t)dxdζ (1.2)

молекул. f ––функция распределения скоростей молекул в газе. ρ(0) –– референс-
ная плотность, f (0) = ρ(0)/(2RT (0))3/2.

Макроскопические переменные: плотность ρρ(0), скорость vi
√
2RT (0), тем-

пература TT (0), тензор напряжений pijp(0) = pijρ
(0)RT (0) и вектор теплового по-

тока qip(0)
√
2RT (0), –– определяются как соответствующие моменты функции рас-

пределения:

ρ =

∫
f(x,ζ,t)dζ, (1.3)

ρvi =

∫
ζif(x,ζ,t)dζ, (1.4)

ρT =
2

3

∫
(ζi − vi)

2f(x,ζ,t)dζ, (1.5)

pij = 2

∫
(ζi − vi)(ζj − vj)f(x,ζ,t)dζ, (1.6)
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qi =

∫
(ζi − vi)(ζj − vj)

2f(x,ζ,t)dζ. (1.7)

Трехмерное интегрирование по ζ здесь и далее проводится во всём пространстве
ζ. Безразмерное давление p = pii/3 = ρT .

1.1.3 Уравнение Больцмана

Поведение функции распределения f определяется уравнением Больцмана

∂f

∂t
+ ζi

∂f

∂xi
+ Fi

∂f

∂ζi
=

1

k
J(f,f), (1.8)

где билинейный оператор J(f,g) выражается как

J(f,g) =
1

2

∫
(f ′g′∗ + f ′∗g

′ − fg∗ − f∗g)B

(
|αjVj|
V

,V

)
dΩ(α)dζ∗, (1.9)

f = f(x,ζ,t), f∗ = f(x,ζ∗,t),

f ′ = f(x,ζ ′,t), f ′∗ = f(x,ζ ′
∗,t),

ζ ′i = ζi + αiαjVj, ζ ′i∗ = ζi∗ − αiαjVj,

V = ζ∗ − ζ, V =
√
V 2
i = |Vi|.

Предполагается, что внешняя сила 2FikBT
(0)/L, действующая на молекулу,

не зависит от молекулярной скорости ζ, α –– единичный вектор, выражаю-
щий изменение направления молекулярной скорости из-за столкновения мо-
лекул, Ω(α) –– элемент телесного угла в направлении α, столкновительное ядро
B(|αiVi|/V,V ) –– неотрицательная функция, определяемая межмолекулярным по-
тенциалом. Интегрирование в (1.9) проводятся по всему пространству ζi∗ и по
всем направлениям αi (всей сферической поверхности) соответственно. Инте-
грал J(f,f) называется интегралом столкновения или столкновительным членом
уравнения Больцмана. Модифицированное число Кнудсена k вычисляется как

k =

√
π

2
Kn =

√
π

2

ℓ(0)

L
=

m

2
√
2πd2mρ

(0)L
. (1.10)

В безразмерном виде (1.8) неявно учтено, что число Струхаля равно единице, т. е.
референсный отрезок времени t(0) = L/

√
2RT (0).
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Классификация столкновительных ядер

В упрощённом виде столкновительный интеграл можно переписать как

B = V γb(cos θ), b(cos θ) ∼
θ→0+

θ−2−ν,

где θ –– угол отклонения частиц, сталкивающихся со скоростями ζ и ζ∗. Степен-
ному потенциалу межмолекулярного взаимодействия U(r) = r1−s (s > 2) соот-
ветствуют параметры

γ =
s− 5

s− 1
∈ (−3,1), ν =

2

s− 1
∈ (0,2).

В зависимости из значения γ содержательна следующая классификация:
– модель твёрдых сфер γ = 1,
– жёсткие потенциалы γ ∈ (0,1),
– максвелловский потенциал γ = 0,
– мягкие потенциалы γ ∈ (−3,0),
– кулоновский потенциал γ = −3.

Все степенные потенциалы порождают неинтегрируемую угловую сингулярность
вследствие слишком большого числа скользящих столкновений (при малых θ).
Рассмотрение таких сингулярных потенциалов, называемых дальнодействующи-
ми, требует существенно более продвинутого математического аппарата. Многие
результаты оказываются проще для короткодействующих потенциалов с обреза-
нием по углу [235]: ∫ π

0

B(V, cos θ) sin θdθ < +∞.

Для кулоновского потенциала вклад скользящих столкновений становится реша-
ющим, поэтому уравнение Больцмана в пределе ν → 2 сводится к уравнению
Ландау [223].

На практике часто используют модельные потенциалы. Например, для газа,
состоящего из упругих жёстких сфер,

BHS =
|αiVi|
4
√
2π
, B(0) = 4

√
πd2m

√
RT (0) (1.11)

Эффективный диаметр молекул dm обычно связывается с референсной вязкостью
газа при T (0). Г. Бёрд предложил однопараметрическую модель [34], в которой
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вязкость газа пропорциональна T s,

BVHS =
|αiVi|

4
√
2πΓ(52 − s)

(
V

2

)1−2s

, (1.12)

где Γ(z) =
∫∞
0 tz−1e−tdt –– гамма-функция. Среди двухпараметрических моделей

наиболее распространена модель Леннарда––Джонса [133]. В настоящий момент
с высокой точностью вычислены квантовомеханические ab initio потенциалы для
всех стабильных инертных газов [122] и некоторых их смесей [131].

Вывод на основе законов механики

Обоснование своего кинетического уравнения, исходя из законов механики,
было дано ещё Больцманом в эвристической форме на основании гипотезы моле-
кулярного хаоса (Stosszahlansatz). Гильберт в своей знаменитой шестой пробле-
ме поставил задачу строгого математического обоснования процессов предель-
ного перехода от атомистического понимания к моделям сплошной среды. Та-
кой переход может быть выполнен через промежуточный мезоскопический уро-
вень описания на основе одночастичной функции распределения. Х. Грэду при-
надлежит первая математическая формулировка вывода уравения Больцмана из
уравнения Лиувилля [112]. Единственный строгий результат в общей постановке
принадлежит О. Лэнфорду [138]. Ему удалось показать, что на коротком проме-
жутке времени (порядка времени среднего пробега) цепочка уравнений ББГКИ
для газа твёрдых сфер сходится в пределе Грэда––Больцмана почти везде к ки-
нетическому уравнению. Глобальная по времени сходимость известна только для
очень частного случая распространения газа в вакуум [129] или для малых флук-
туаций отдельных частиц [31]. В. И. Герасименко и Д. Я. Петрина предоставили
первые количественные оценки на множество патологических траекторий в ори-
гинальном доказательстве Лэнфорда [248]. С. Юкай упростил и формализовал до-
казательство, используя теорему Коши––Ковалевской [203]. Обобщение теоремы
Лэнфорда для короткодействующих потенцилов потребовало существенно более
деликатного анализа событий асимптотически нулевой меры [94; 175]. Недавно
французские математики Т. Бодино, И. Га́ллахер и Л. Сэн-Ремон получили ко-
личественные оценки для флуктуационного режима, что позволило обосновать
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линейное уравнение Больцмана на временах порядка ln lnN [44] и линеаризован-
ное при d = 2 на временах порядках 4

√
ln lnN [43], где N –– число частиц, заклю-

чённых в d-мерном торе. На основе их работ был достигнут первый успех для
дальнодействующих потенциалов [21].

Симметрии и законы сохранения

Для произвольной функции φ(ζ) интеграл столкновения (1.9) удовлетворя-
ет соотношению симметрии∫

φ(ζ)J(f,g)dζ =
1

4

∫
(φ+ φ∗ − φ′ − φ′

∗)J(f,g)dζ. (1.13)

Поскольку ζi + ζi∗ = ζ ′i + ζ ′i∗ и ζ2i + ζ2i∗ = ζ ′i
2 + ζ ′i∗

2, то интеграл столкновений
обладает несколькими сумматорными инвариантами ψr (r = 0, 1, 2, 3, 4):∫

ψrJ(f,g)dζ = 0, (1.14)

ψ0 = 1, ψi = ζi, ψ4 = ζ2i . (1.15)

Другими словами, в результате столкновений сохраняются масса, импульс и энер-
гия. Умножая уравнение Больцмана (1.8) на ψr и интегрируя результат по всему
пространству ζ, получим уравнения сохранения:

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0, (1.16)

∂

∂t
(ρvi) +

∂

∂xj

(
ρvivj +

pij
2

)
= ρFi, (1.17)

∂

∂t

[
ρ

(
v2i +

3

2
T

)]
+

∂

∂xj

[
ρvj

(
v2i +

3

2
T

)
+ vipij + qj

]
= 2ρvjFj, (1.18)

В классической гидрогазодинамике уравнения сохранения (1.16)–(1.18) замыка-
ются соответствующими феномелогическими выражениями для pij и qi. Напри-
мер,

pij = pδij, qi = 0 (1.19)

приводят к уравнениям Эйлера, а соотношения

pij = pδij − Γ1(T )

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3

∂vk
∂xk

δij

)
k, qi = −5

4
Γ2(T )

∂T

∂xi
k, (1.20)
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называемые законами Ньютона и Фурье соответственно, приводят к уравнениям
Навье––Стокса. Γ1(T ) и Γ2(T ) –– безразмерные коэффициенты вязкости итепло-
проводности газа, зависящие от температуры T .

Равновесное состояние

Столкновительный член в уравнении Больцмана является диссипативным
оператором, вызывающим релаксацию любого распределения к равновесному.
Л. Больцман ввёл понятие H-функционала

H(f) =

∫
f ln fdζdx. (1.21)

и доказал знаменитую H-теорему, гласящую, что

dH
dt

= −
∫
D(f)dx ≤ 0, (1.22)

где определён функционал производства энтропии

D(f) = −
∫
J(f,f) ln fdζ. (1.23)

Равенство в (1.22) достигается только для распределения Максвелла

fM =
ρ

(πT )3/2
exp

(
−(ζi − vi)

2

T

)
, (1.24)

для которого J(fM ,fM) = 0. H-теорема отражает второе начало термодинамики.

Линеаризация

Рассмотрим стационарный газ (∂/∂t = 0) при отсутствии внешних сил
(Fi = 0) с функцией распределения близкой к абсолютному распределению Mакс-
велла E(ζ):

φ =
f

E
− 1 ≪ 1, E(ζ) =

1

π3/2
exp

(
−ζ2

)
. (1.25)
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В таком случае справедливо линеаризованное уравнение Больцмана

ζi
∂φ

∂xi
=

1

k
L(φ), (1.26)

с линеаризованным интегралом столкновения

L(φ) =
∫
E∗(φ

′ + φ′
∗ − φ− φ∗)BdΩ(α)dζ∗. (1.27)

Возмущённое локальное максвелловское распределение

φM = ω + 2ζivi +

(
ζ2i −

3

2

)
τ (1.28)

удобно выражается через возмущённые макроскопические переменные:

ω = ρ− 1, τ = T − 1, P = p− 1, Pij = pij − δij, (1.29)

которые вычисляются как моменты φ:

ω =

∫
φEdζ, vi =

∫
ζiφEdζ, τ =

2

3

∫ (
ζi −

3

2

)2

φEdζ,

P = τ + ω, Pij = 2

∫
ζiζjφEdζ, Qi =

∫
ζiζ

2
jφEdζ − 5

2
vi

(1.30)

Линейный оператор L(φ), также как и J(f,g), удовлетворяет соотношению
симметрии∫

ψ(ζ)L(φ)Edζ =
1

4

∫
EE∗(ψ+ψ∗−ψ′−ψ′

∗)(φ
′+φ′

∗−φ−φ∗)BdΩdζ∗dζ. (1.31)

С помощью (1.31) несложно показать, что в гильбертовом пространстве со ска-
лярным произведением ⟨φ,ψ⟩ =

∫
φψEdζ оператор L(φ) самосопряжён и непо-

ложителен:
⟨φ,Lψ⟩ = ⟨Lφ,ψ⟩ , ⟨φ,Lφ⟩ ≤ 0, (1.32)

причём равенство выполняется только для инвариантов столкновения ψr, которые
являются собственными векторами для собственного значения λ = 0.

Спектр линеаризованного оператора существенно зависит от столкнови-
тельного ядра. Качественное изменение спектра степенного потенциала проис-
ходит, когда молекулы становятся максвелловскими (табл. 1). Для немягких по-
тенциалов характерна спектральная щель, соответствующая модулю наибольше-
го отрицательного собственного числа. Спектр максвелловского потенциала все-
гда дискретен, но ограничен при обрезании по углу, в то время как спектр мягких
и жёстких потенциалов становится непрерывным на соответствующем отрезке.
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Таблица 1 — Спектр линеаризованного уравнения Больцмана для степенного потенциала.
мягкие максвелловский жёсткие

истинные

обрезанные

1.1.4 Граничные условия

Для газа заключённого с физическую область Ω граничные условия можно
записать в достаточно общем виде

fB(x,ζ,t) =

∫
(ζ∗i−vBi)ni<0

R(ζ,ζ∗,x,t)f(x,ζ∗,t)dζ∗ (x ∈ ∂Ω, (ζi − vBi)ni > 0) ,

(1.33)
где ni –– единичная нормаль, направленная в сторону газа, vBi –– скорость пере-
мещения граничной поверхности, а на ядро рассеяния R может быть наложены
следующие условия:

R(ζ,ζ∗) ≥ 0, (1.34)

−
∫
(ζi−vBi)ni>0

(ζk − vBk)nk
(ζj∗ − vBj)nj

R(ζ,ζ∗)dζ = 1, (1.35)∫
(ζ∗i−vBi)ni<0

R(ζ,ζ∗)fB(ζ∗)dζ∗ = fB(ζ), fB = fM(ρB,vB, TB). (1.36)

Условие (1.35) соответствует непористой и неабсорбирующей граничной поверх-
ности (поток массы через неё равен нулю). Условие (1.36) требуется только от ядра
рассеяния, зависящего от плотности ρB, скорости vB и температуры TB граничной
поверхности.

На практике для твёрдой непроницаемой границы наиболее распространена
однопараметрическая модель Максвелла

RM(ζ,ζ∗) = (1− αM)δ [ζi∗ − ζi + 2(ζj − vBj)njni]

− 2αM

πT 2
B

(ζj∗ − vBj)nj exp
(
−(ζk − vBk)

2

TB

)
,

(1.37)

где αM ∈ [0,1] –– коэффициент аккомодации, δ(ζ) –– дельта-функция. В настоящем
исследовании повсеместно используются граничные условия диффузного отра-
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жения, соответствующие αM = 1. Они линеаризуются следующим образом:

φB(x, ζ) = σB + 2ζjvBj +

(
ζi −

3

2

)2

τB (ζj − vBj)nj > 0,

σB =
√
πvBjnj −

τB
2

− 2
√
π

∫
(ζj−vBj)nj<0

ζjnjφEdζ.

(1.38)

Зеркальное отражение осуществляется при αM = 0.
М. Лампис и К. Черчиньяни предложили двухпараметрическую модель [66]:

RCL(ζ,ζ∗) =
2ζn

παnαt(2− αt)T 2
B

I0

(
2
√
1− αnζnζn∗
αnTB

)
× exp

(
− [ζ2n + (1− αn)ζ

2
n∗]

2

αnTB
− [ζtk + (1− αt)ζtk∗]

2

αt(2− αt)TB

)
,

(1.39)

где ζn = (ζi − vBi)ni и ζti = ζj(δij − ninj),

I0 =
1

2π

∫ 2π

0

exp(x cos t)dt. (1.40)

В (1.39) используются коэффициенты аккомодации
– касательной компоненты импульса αt ∈ [0,2],
– нормальной кинетической энергии αn ∈ [0,1].

1.1.5 Модельные уравнения

Широкий круг нелинейных задач изучен с высокой точностью для упрощён-
ного (модельного) столкновительного оператора

JBGK(f,f) =
ρ

k
(fM − f), (1.41)

предложенного М. Круком [32] и независимо П. Веландером [212]. В линеаризо-
ванной постановке

LBGK(φ) = −φ+ ω + 2ζivi +

(
ζ2i −

3

2

)
τ. (1.42)

Основной недостаток модели Крука––Веландера –– это фиксированное число
Прандтля Pr def

= Γ1(T )/Γ2(T ) (PrBGK = 1). Этого недостатка лишены модель
Холвея [125]

JES(f,f) = ρ

[
ρ
√

detAij

(πT )3/2
exp

(
−Aijcicj

T

)
− f

]
, A−1

ij =
δij
Pr

− 1− Pr
Pr

pij
p
, (1.43)
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подстраивающая тензор напряжений, и модель Шахова [259]

JS(f,f) = ρ

[
fM

(
1 +

1− Pr
5

qici
pT

(
2c2i − 5

))
− f

]
, (1.44)

корректирующая вектор потока тепла. В (1.43) и (1.44) использовано сокращение
ci = ζi − vi.

Модель Шахова, вообще говоря, применима только для слабонеравновес-
ного газа, в противном случае функция распределения может принимать отрица-
тельные значения. Модель Холвея, как видно из определения, больше подходит
для медленных неизотермических течений, где процессы теплопроводности су-
щественно превалируют над вязкостными. Её популярность резко возрасла, после
того как в 1999 году для неё была доказана H-теорема [10]. Простота модельного
столкновительного оператора обуславливает широкое разнообразие соответству-
ющих численных методов. Практические расчёты показывают, что разреженный
газ, особенно с невысокой степенью неравновесности, достаточно адекватно опи-
сывается модельными уравнениями, однако в настоящее время не представляется
возможным произвести какие-либо априорные оценки отклонения от истинного
решения уравнения Больцмана.

1.2 Математическая теория задачи Коши

Методы численного анализа и асимптотическая теория уравнения Больцма-
на тесно связаны с математической теорией задачи Коши. Строгий анализ кра-
евых задач представляет существенные трудности, поэтому в текущем разделе
представлены известные результаты прежде всего для однородной в физическом
пространстве задачи, а также для бесконечного пространства Ω = Rd и тора
Ω = Td.

1.2.1 Пространственно-однородная задача

Задача Коши для пространственно-однородного уравнения Больцмана наи-
более изучена. Она имеет особую важность для численных методов, поскольку
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в большинстве из них используется расщепление на транспортный и столкнови-
тельный операторы. Кроме того, пространственная однородность устойчива в том
смысле, что слабая неоднородность распространяется во времени [15]. На сего-
дняшний день известно только одно семейство явных нестационарных решений,
найденное А. В. Бобылевым [226] и независимо М. Круком, Т. Ву [137] для макс-
велловского газа.

Количественные оценки для полиномиальных моментов

∥f(t)∥L1
s

def
=

∫
Rd

|ζ|sf(t,ζ)dζ (s > 2)

являются базовым инструментом в пространственно-однородной теории и отра-
жают поведение функции распределения для больших молекулярных скоростей.
Равномерная ограниченность полиномиальных моментов позволяет сразу же до-
казать существование и единственность решения, а также H-теорему Больцмана.
Первые такие результаты принадлежат Т. Карлеману [60] и А. Я. Повзнеру [249]
для газа твёрдых сфер, Д. Моргенштерну [154] для макселловского газа. Общую
L1-теорию для класса жёстких короткодействующих потенциалов развил Л. Ар-
керюд в 1971 году [17]. С. Мишлер и Б. Веннберг максимально ослабили началь-
ные предположения в задаче Коши, предоставив доказательство в предположе-
нии лишь конечности массы и энергии [153]. В общем случае энергия неубывает
со временем, однако единственность в L1 достигается только в классе решений с
постоянной энергией [214].

Множество других важных результатов получено для немягких короткодей-
ствующих потенциалов:

– существование максвелловской нижней границы [173; 174],
– распространение гладкости, экcпоненциальное убывание разрывов [62;

158],
– распространение максвелловской верхней границы [39; 95].

Столкновительное ядро имеет наиболее простой вид B = B(cos θ) для максвел-
ловского потенциала, поэтому математические результаты для него, как правило,
предшествуют исследованиям других потенциалов, однако в отличие от жёстких
потенциалов полиномиальные моменты максвелловского газа равномерно огра-
ничены лишь при условии их ограниченности в начальный момент времени.

Меньше известно о поведении газа с мягкими потенциалами. Прежде все-
го нет доказательства равномерной ограниченности полиномиальных моментов,
есть только оценка ∥f(t)∥L1

s
< C(1+t) при ∥f(0)∥L1

s
<∞ [61]. При γ < 0 столкно-
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вительное ядро обретает дополнительную кинетическую сингулярность в точке
ζ = ζ∗, поэтому смысл в L1 имеют только слабые формы столкновительного ин-
теграла. Его симметричные свойства (законы сохранения) позволяют построить
решения при γ ≥ −2 и ν < 2 [16; 108]. Используя конечность производства эн-
тропии, удаётся регуляризовать столкновительный оператор при γ > −4 [209].

Сходимость к равновесию

Долгую историю имеет проблема сходимости решения к равновесному
максвелловскому распределению M . Она тесно связана со спектральными свой-
ствами линеаризованного столкновительного оператора. Как известно, он имеет
пятикратное нулевое собственное значение, остальные отрицательные. Наличие
спектральной щели (конечное расстояние между максимальным отрицательным
собственным значением и нулевым) для немягких потенциалов ведёт к экспо-
ненциальному затуханию O(e−λt) возмущённых решений [110]. Напротив, отсут-
ствие спектральной щели у мягких потенциалов позволяет рассчитывать только
на оценку O(e−λtα), где α ∈ (0,1) [53].

Теория сходимости к равновесию в L1 также берёт начало с работы Л. Ар-
керюда 1988 года [18], в которой была показана экспоненциальная скорость для
твёрдых потенциалов. Однако этот результат был получен неконструктивными
методами. С физической точки зрения крайне важно иметь явные оценки сходи-
мости, поскольку на очень большом временном промежутке уравнение Больцмана
теряет смысл (парадокс Церме́ло).

H-функционал (энтропия со знаком минус) выполняет роль функционала
Ляпунова для уравнения Больцмана, поэтому в соответствии с принципом Кра-
совского––Ласаля производство энтропии для уравнения Больцмана –– основной
инструмент для контроля сходимости к равновесию в нелинейной постановке.
Более того, согласно неравенству Чисара––Кульбака––Пинскера больцмановская
энтропия гарантирует сходимость непосредственно в L1. В связи с этим К. Чер-
чиньяни в 1982 году предположил, что производство энтропии связано линейным
неравенством с самой энтропией [65; 78], однако позже он вместе с А. В. Бобыле-
вым построили контрпример для γ ∈ (0,2) [38]. Дж. Тоска́ни и С. Виллани́ полу-
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чили оптимальный результат в виде [199; 200; 207]

D(f) ≥ λε [H(f)−H(M)]1+ε , ε > 0.

Такой результат обеспечивает полиномиальную сходимость O(t−∞). Первона-
чальная гипотеза Черчиньяни оказалась верна только для нефизичного случая
γ = 2 [207].

Приведённые явные оценки на темп производства энтропии справедливы
на чисто функциональном уровне, поэтому они могут быть улучшены для полу-
группы, порождаемой уравнением Больцмана. В 1997 году Э. Карлен, Э. Габетта
и Дж. Тоска́ни получили оптимальный результат для максвелловского газа [62]

∥f(t)−M∥L1 ≤ Cεe
−(1−ε)λgt, ε > 0,

где λg –– ширина спектральной щели, а ε тем меньше, чем больше полиномиаль-
ных моментов ограничено. Если же в начальном условии ограничена лишь энер-
гия, то существуют сколь угодно медленно сходящиеся к равновесию решения
для нежёстких потенциалов [61; 63]. Для жёстких потенциалов К. Муо в 2005 го-
ду разработал инструменты расширения функционального пространства для ли-
неаризованной полугруппы, позволяющие соединить спектральные результаты в
L2(M−1) с нелинейной L1-теорией [155]. Таким образом, явные оценки на шири-
ну спектральной щели [26] обеспечили оптимальную сходимость O(e−λgt).

Дальнодействующие потенциалы

В XX веке дальнодействующим потенциалам было посвящено считанное
количество работ. Ё.-П. Пао ещё в 1974 году с помощью теории псевдо-диффе-
ренциальных операторов показал, что спектр линеаризованного уравнения пол-
ностью дискретен [166]. Давно было известно, что сингулярные операторы спо-
собны повышать гладкость решения, однако соответствующие результаты для
уравнения Больцмана долгое время были недоступны из-за высокой технической
сложности. В 1994 году Л. Девиллет смог доказать, что решение модельного урав-
нения Каца лежит в пространстве Соболева при t > 0 [74]. В 1997 году П.-Л. Ли-
онс впервые установил функциональную связь между производством энтропии и
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гладкостью функции распределения [143]. В 1999 году Р. Александре, Л. Девил-
лет, Б. Веннберг и С. Виллани довели этот результат до оптимальной в некотором
смысле оценки [2]

∥
√
f∥Hν/2(|ζ|<R) ≤ CR

[
D(f) + ∥f∥2L1

2

]
, R > 0.

Другими словами, сингулярный больцмановский столкновительный оператор ве-
дёт себя как дробный лапласиан−(−∆)ν/2. С физической точки зрения это означа-
ет, что процесс межмолекулярного взаимодействия в больцмановском пределе яв-
ляется диффузно-столкновительным. Важную роль в доказательстве этого функ-
ционального неравенства играет преобразование Фурье, приложение которого к
уравнению Больцмана было систематически изучено А. В. Бобылевым [228].

Единственность решения в глобальном смысле t ∈ [0, + ∞] в соболев-
ском пространстве установлена для максвелловского газа [198] и жёстких по-
тенциалов в случае умеренной угловой сингулярности ν ∈ (0,1) [77] и сильной
ν ∈ [1,2) [120]. При условии гладкости b(cos θ) оказывается, что функция распре-
деления лежит в пространстве Шварца, пока её полиномиальные моменты огра-
ничены [3; 79]. Более того, для максвелловского газа известно, что регулярность
по Жевре распространяется [75]. Экспоненциальная сходимость с явными оцен-
ками в L1 для дальнодействующих немягких потенциалов была доказана совсем
недавно [150; 201]. Сходимость для мягких потенциалов известна лишь в усред-
нённом смысле [61].

1.2.2 Пространственно-неоднородная задача

Пространственно-неоднородная задача принципиально сложнее для анали-
за. Строгая линеаризованная теория была построена Х. Грэдом [110]. Он же в 1964
году получил первые результаты в рамках нелинейной теории возмущения, дока-
зав существование, единственность возмущённого решения и стремление его к
термодинамическому равновесию, однако только для локального интервала вре-
мени [111]. В 1974 году С. Юкай представил глобальный результат в ограничен-
ной области для жёстких короткодействующих потенциалов [202]. Р. Кафлиш
обобщил его для γ > −1 [54]. Спектральный анализ не позволяет продвинуть-
ся дальше границы γ = −2. Я. Го предложил альтернативный метод, который
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позволил рассмотреть очень мягкие потенциалы [117], Экспоненциальная сходи-
мость в ограниченной области для них была доказана позже совместно с Р. Стрей-
ном [194]. В 2010 году Ф. Грессман и Р. Стрейн, используя нетривиальные ани-
зотропные cоболевские нормы [157] для метода Го, показали асимптотическую
устойчивость для всех дальнодействующих потенциалов [114]. Оказалось, что
при наличии угловой сингулярности ν > 0 спектральная щель и соответству-
ющая ей экспоненциальная сходимость имеют место при γ + ν ≥ 0. Такой же
результат, но для неограниченной области был независимо получен гонконгской
группой [4—6]. Сходимость в Rd алгебраическая. Для γ > −1 С. Юкай и К. Аса-
но доказали это ещё в 1982 году [204]. Р. Стрейн получил оптимальную оценку
O(t−

n
2+

n
2r ) в Lr

xL
2
ζ при r ∈ [2,∞] [193].

Единственная на сегодняшний день L1-теория, описывающая решения пол-
ного уравнения Больцмана без дополнительных предположений об их малости,
принадлежит Р. ди Перна и П.-Л. Лионсу [84] и отмечена Филдсовской премией
1994 году. Им удалось доказать существование слабого решения в ренормализо-
ванной форме

∂β(f)

∂t
+ ζi

∂β(f)

∂xi
= β′(f)J(f,f),

где β′(f) ≤ C/(1 + f). Позже П.-Л. Лионс упростил доказательство, исполь-
зуя теорию интегральных операторов Фурье [142], а Р. Александре и С. Виллани
обобщили его для дальнодействующих потенциалов [7]. Основная идея ренорма-
лизации –– получить в правой части сублинейный оператор вместо квадратичного
J(f,f). В такой постановке априорных оценок для массы, энергии и энтропии ока-
зывается достаточно для построения сходящейся последовательности глобальных
решений. Несмотря на достигнутый успех, связанный с устойчивостью, теория
ди-Перна––Лионса ничего не говорит о единственности решения, его положитель-
ности, сохранении энергии, стремлении к равновесию. Стоит упомянуть также
частный результат Р. Иллнера и М. Шинброта о существовании и единcтвенно-
сти решения вблиза вакуума [130].

В теории ди-Перна––Лионса центральную роль играют леммы об осред-
нении в скоростном пространстве (velocity-averaging lemmas), обеспечивающие
гладкость макроскопических величин для достаточно произвольной функции рас-
пределения [101]. В. И. Агошкову принадлежит первый подобный результат для
уравнения переноса [220]. Независимо лемму открыли Ф. Гольс, Б. Пертам и
Р. Сентис [102]. Ф. Гольс и Л. Сэн-Ремон нашли доказательство в L1 [105].
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Несмотря на отсутствие общей теории сходимости к равновесию, Л. Девил-
лет и С. Виллани смогли получить условный результат в ограниченной области
через явные оценки на поведение H-функционала [73]. Они доказали, что если
все полиномиальные моменты равномерно ограничены, то бесконечно гладкое
строго положительное решение уравнения Больцмана стремится к равновесию
по меньшей мере с полиномиальной скоростью O(t−∞). Характерной особенно-
стью динамики больцмановского газа на больших временах является чередование
режимов близких с гидродинамическому и пространственно-однородному, вслед-
ствие чего образуются временны́е осцилляции производства энтропии [91]. Позже
С. Виллани на основе полученного результата развил абстракную теорию гипо-
коэрцитивности [208] для анализа сходимости полугрупп, порождаемых вырож-
денными операторами, по аналогии с теорией гипоэллиптичности Колмогорова––
Хёрмандера. За эти работы, а также исследование нелинейного затухания Ландау,
С. Виллани в 2010 году был удостоен Филдсовской медали. М. Гуалдани, С. Ми-
шлер и К. Муо обобщили пространственно-однородный результат Муо [155] и
разработали абстрактный метод сочетания количественного спектрального ана-
лиза с энтропийными методами [116].

Ещё один важный результат был получен Т.-П. Лю и Ш.-С. Ю в рамках тео-
рии функции Грина [146; 148]. Они продемонстрировали, что затухание любо-
го возмущения, описываемого линеаризованным уравнением Больцмана, может
быть разложено на кинетическую составляющую, убывающую экспоненциально,
и гидродинамическую, амплитуда которой спадает полиномиально в R3.

1.3 Асимптотическая теория

Состояние газа в уравнении Больцмана определяется функцией распреде-
ления f(x,ζ). Приняв, что число Кнудсена определённым образом стремится к
нулю, можно перейти к менее детальному гидродинамическому описанию, кото-
рое требует задания лишь первых пяти моментов от f : плотности, скорости и тем-
пературы. В общем случае при таком асимптотическом переходе f(x,ζ) является
функционалом от ρ(x), vi(x) и T (x). Если ограничиться нулевым порядком по k
в уравнении Больцмана (1.8), то f(ζ) в таком пределе станет точечной функци-
ей от ρ, vi и T . Другими словами, мы получим уравнения Эйлера, описывающие
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локально максвелловское распределение. Если левая часть уравнения Больцмана
остаётся конечной при малом k, тогда столкновительный член J(f,f) = O(k),
таким образом асимптотическая теория изучает малое отклонение от локально
максвелловского распределения.

Формальное разложение уравнения Больцмана по степеням некоторого па-
раметра было впервые предложено Д. Гильбертом [123; 124]:

f =
∞∑
n=0

knfn(x,ζ,t). (1.45)

В общем случае нельзя ожидать сходимость этого ряда. Более того решение ви-
да (1.45) представляет собой весьма узкий класс решений, поскольку всякое та-
кое разложение однозначно определяется гидродинамическим состоянием, что
несложно показать используя теорему Гильберта о единственности.

Если известно, что f(x,ζ) зависит только от макроскопических переменных
ρr:

ρ0 = ρ, ρi = vi, ρ4 = T, (1.46)

и их градиентов произвольного порядка ∇ρr = ∂ρr/∂xi, ∂
2ρr/∂xi∂xj, . . ., то за-

дача получения совместимых гидродинамических уравнений может быть решена
проще с помощью разложения Чемпена––Энскога [87; 254]:

f =
∞∑
n=0

knfn(ρr,∇ρr,ζ). (1.47)

В общем подход Чемпена––Энскога является методом сокращения информации,
широко применяемого в нелинейной теории возмущения [45; 229].

Существенной особенностью перехода к континуальному пределу (k → 0)
в уравнении Больцмана является разделение двух различных временных масшта-
бов времени. Первый масштаб –– средний интервал времени между столкновени-
ями O(k), второй –– время макроскопического распада посредством механизмов
диффузии и теплопередачи O(k−1). С физической точки зрения, первый пери-
од соответствует релаксации H-функционала до термодинамической энтропии,
а второй –– релаксации энтропии к своему максимальному значению.

Асимптотическое решение уравнения Больцмана для слаборазреженного
газа допускает отделение достаточно гладкой гидродинамической части от суще-
ственно неравновесных пространственно-временны́х кинетических пограничных
слоёв:
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Соне

Кнудсен

Прандтль

Эйлер

O(
√
k)

O(k)

O(k2)

Рисунок 1.1 — Многослойная (многопалубная) структура течения слаборазреженного газа около
выпуклого тела: в невязкой области ni∂f/∂xi = O(f); в слое Прандтля

√
kni∂f/∂xi = O(f); в

слое Кнудсена kni∂f/∂xi = O(f); в слое Соне f разрывна.

– начальный слой, возникающий в момент времени t = 0;
– пристеночный слой, возникающий возле физической границы;
– ударный слой, возникающий непосредственно в газе.

Явное выделение этих слоёв возможно лишь для малых k, когда оба времен-
ны́х масштаба отличаются существенно. Функция распределения в них содержит
экспоненциальный фактор с множителем 1/k. Пристеночный кинетический слой
можно разделить на

– слой Кнудсена толщиной O(k),
– слой Соне толщиной O(k2) [187].

Последний характеризуется проникновением тангенциальных разрывов в ско-
ростном пространстве внутрь области с газом и возникает исключительно вокруг
выпуклых поверхностей, поскольку все разрывы распространяются вдоль харак-
теристик. Кроме кинетических можно выделить вязкий пограничный слой (слой
Прандтля) толщиной O(

√
k).

В зависимости от максимального порядка рассматриваемых членов из раз-
ложения Чемпена––Энскога можно получить уравнения Эйлера, уравнения На-
вье––Стокса для сжимаемых течений, уравнения Барнетта, супербарнеттовские
уравнения и т. д. В отличие от разложения Гильберта, в этих системах растёт поря-
док дифференциальных уравнений с увеличением порядка учитываемых членов.
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При этом известно, что задача Коши для уравнений Барнетта и следующих за ним
является некорректно поставленной. В частности, амплитуда акустических волн,
описываемых этими уравнениями для максвелловских молекул, растёт со време-
нем [227]. Другими словами, получаемые решения нестабильны по отношению к
коротковолновым возмущениям. Для краевой задачи уравнения Барнетта и следу-
ющие за ним могут также давать нефизичные решения [258]. Причина этих про-
блем заключается в том, что в уравнениях, получаемых с помощью разложения
Чемпена––Энскога, происходит смешивание членов различного порядка по k. По
этой же причине, уравнения Навье––Стокса для сжимаемых течений являются по-
правкой первого порядка к уравнениям Эйлера, но не асимптотическим решением
уравнения Больцмана. А. В. Бобылев предложил метод регуляризации уравнений
Барнетта, основанный на дополнительном перемешивании членов старшего по-
рядка [37].

Строгое асимптотическое решение можно получить с помощью разложе-
ния Гильберта, однако при конечных числах Маха оно имеет весьма сложную
структуру (рис. 1.1), поскольку требуется сращивание решений уравнений Эйле-
ра, уравнений Прандтля в вязких пограничных слоях и непосредственно уравне-
ния Больцмана в кинетических пограничных слоях [189]. Поэтому на практике
численный анализ течений проводится с помощью только лишь уравнений На-
вье––Стокса для сжимаемых течений, сочетающих несколько упомянутых вре-
менных масштабов.

При различном пространственно-временно́м масштабировании асимптоти-
ческая система уравнений гидродинамического типа может содержать макроско-
пические переменные разного порядка [30]. В некоторых случаях это приводит к
тому, что инфинитезимальные в континуальном пределе величины конечным об-
разом влияют на поля макроскопических переменных нулевого порядка. Посколь-
ку эти величины ненулевого порядка формально не существуют в континуальном
мире, то Ё. Соне предложил ввести понятие призрак-эффекта (ghost effect) для
описания такого предельного поведения [184].
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1.3.1 Обзор строгих математических результатов

Строгая асимптотическая теория тесно связана с развитием математической
теории самих гидродинамических уравнений. Ж. Лере́ в своих классических тру-
дах доказал существование слабых решений уравнений Навье––Стокса для несжи-
маемой жидкости [139]. К. Бардос, Ф. Гольс и Д. Левермор впервые поставили
задачу сходимости к ним ренормализованных решений ди-Перна––Лионса [29] и
получили первые частные результаты [28] вместе с П.-Л. Лионсом и Н. Масмо-
уди [144]. В 2004 году Ф. Гольс и Л. Сен-Ремон построили доказательство для
ограниченных ядер [104] и позже обобщили для неограниченных [103]. Окон-
чательно программу Бардоса––Гольса––Левермора завершил тунисский матема-
тик Н. Масмоуди, распространив результат для дальнодействующих потенциа-
лов [140].

Строгая асимптотическая теория для сжимаемых течений далека от своей
зрелости. Частичные результаты о сходимости к гладким решениям уравнений
Эйлера принадлежат Т. Нишиде [160] и Р. Кафлишу [55]. Больцмановская дина-
мика процессов высокой частоты (сравнимой с частотой столкновений молекул)
качественно отличается от классической гидродинамики на основе линейных за-
конов Ньютона и Фурье. На основе множества работ И. В. Карлина, А. Н. Горбаня,
М. Слемрода совместно с другими авторами, можно сделать вывод, что в пределе
малых чисел Кнудсена и конечных числах Маха корректные уравнения гидроди-
намического типа должны демонстрировать константную диссипацию высокоча-
стотных мод и существенно нелокальный характер [106].

Пограничные кинетические слои моделируются краевыми задачами в полу-
пространстве [113]. Соответствующие им теоремы существования и единственно-
сти решения линеаризованного уравнения Больцмана для газа твёрдых сфер были
доказаны Н. Б. Масловой [246] и независимо К. Бардосом, Р. Кафлишем, Б. Ни-
колаенко [27]. Пограничный слой с конденсацией и испарением изучен К. Чер-
чиньяни [64] и учениками К. Бардоса [71]. Нелинейная теория заложена в трудах
Л. Аркерюда, А. Нури [19], С. Юкая, Т. Янга, Ши-Сянь Ю [205] и Ф. Гольса [100].
Кинетическая теория ударных волн развита только для малых амплитуд. Для жёст-
ких короткодействующих потенциалов ударный профиль впервые был построен
Р. Кафлишем и Б. Николаенко [57]. Его стабильность, позитивность [145] и моно-
тонность [147] была показана Тай-Пин Лю и Ши-Сянь. Ю.
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1.3.2 Слабовозмущённые течения

Рассмотрим слаборазреженный газ, описываемый стационарным линеари-
зованным уравнением Больцмана (1.26). Абстрагируясь сначала от граничных
условий, будем искать решение в виде степенного ряда, называемого разложе-
нием Грэда––Гильберта (будем приписывать индекс G),

φG(x,ζ) =
∞∑

m=0

φGm(x,ζ)k
m, (1.48)

подразумевая, что
∂φG

∂xi
= O(φG). (1.49)

Соответствующие макроскопические величины hG = ωG, viG, τG, . . . также могут
быть разложены в ряд

hG(x) =
∞∑

m=0

hGm(x)k
m. (1.50)

Подставляя (1.48) в (1.26) и приравнивая члены одного порядка по k, получаем
ряд интегральных уравнений для φGm:

L(φG0) = 0, (1.51)

L(φGm) = ζi
∂φGm−1

∂xi
(m = 1,2,3, . . . ). (1.52)

Однородное уравнение (1.51) имеет решение в виде возмущённого распределе-
ния Максвелла (1.28), а для неоднородных уравнений (1.52) должны выполняться
условия разрешимости ∫

ψrζi
∂φGm−1

∂xi
Edζ = 0, (1.53)

где ψr –– инварианты столкновений (1.15). В силу изотропных свойств оператора
L первые члены разложения Грэда––Гильберта имеют вид

φG = φGM −
(
ζiζjB(ζ)

∂viG
∂xj

+ ζiA(ζ)
∂τG
∂xi

+
1

γ1
ζiD1(ζ)

∂PG

∂xi

)
k

+

(
ζiζjζkD2(ζ)

∂2viG
∂xj∂xk

− ζiζjF (ζ)
∂2τG
∂xi∂xj

)
k2 +O(k3) (1.54)
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а соответствующие условия разрешимости дают уравнения Стокса:

∂PG0

∂xi
= 0,

∂viG0

∂xi
= 0,

∂PGm+1

∂xi
= γ1

∂2viGm

∂x2j
,

∂2τGm

∂x2i
= 0.

 (m = 0,1,2, . . . ) (1.55)

Тензор напряжения и вектор потока могут быть вычислены из (1.54):

PijG = PGδij − γ1

(
∂viG
∂xj

+
∂vj
∂xi

)
k +

(
γ3

∂2τG
∂xi∂xj

− γ6
γ1

∂2PG

∂xi∂xj

)
k2 +O(k4)

(1.56)

QiG = −
(
5

4
γ2
∂τG
∂xi

− γ3
2γ1

∂PG

∂xi

)
k +O(k4) (1.57)

Функции A(ζ), B(ζ), D1(ζ), D2(ζ), F (ζ) являются решениями следующих
интегральных уравнений:

L [ζiA(ζ)] = −ζi
(
ζ2 − 5

2

)
, (1.58)

L
[(
ζiζj −

1

3
ζ2δij

)
B(ζ)

]
= −2

(
ζiζj −

1

3
ζ2δij

)
, (1.59)

L
[(
ζiζj −

1

3
ζ2δij

)
F (ζ)

]
=

(
ζiζj −

1

3
ζ2δij

)
A(ζ), (1.60)

L [(ζiδjk + ζjδki + ζkδij)D1(ζ) + ζiζjζkD2(ζ)]

= γ1(ζiδjk + ζjδki + ζkδij)− ζiζjζkB(ζ),
(1.61)

при дополнительных условиях:∫ ∞

0

ζ4A(ζ) exp(−ζ2)dζ = 0, (1.62)∫ ∞

0

[
5ζ4D1(ζ) + ζ6D2(ζ)

]
exp(−ζ2)dζ = 0. (1.63)

Транспортные коэффициенты вычисляются через соответствующие интегралы от
этих функций:

γ1 = I6(B), γ2 = 2I6(A),

γ3 = I6(AB) = −2I6(F ),

γ6 =
1

2
I6(BD1) +

3

14
I8(BD2),

 (1.64)

где
In(Z) =

8

15
√
π

∫ ∞

0

ζnZ(ζ) exp(−ζ2)dζ. (1.65)
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Для газа твёрдых сфер

γ1 = 1.270042427, γ2 = 1.922284066,

γ3 = 1.947906335, γ6 = 1.419423836,

}
(1.66)

а для модели Крука––Веландера

γ1 = γ2 = γ3 = γ6 = 1. (1.67)

Слой Кнудсена и граничные условия

Разложение Грэда––Гильберта не обладает достаточным количеством сво-
бодных параметров, чтобы удовлетворить кинетическим граничным условиям,
например диффузного отражения (1.38). При малых k решение стационарного
уравнения Больцмана допускает разделение пространственных масштабов, так
что оно может быть найдено в форме

φ = φG + φK , (1.68)

где φG –– гидродинамическая часть решения с масштабом порядка единицы,
φK –– кнудсеновская часть или поправка кнудсеновского слоя с масштабом поряд-
ка k. Оказывается, что кинетические граничные условия могут быть удовлетворе-
ны в предположении

kni
∂φK

∂xi
= O(φK). (1.69)

Вводя естественную для слоя Кнудсена локальную систему координат
(η,χ1,χ2),

xi = kηni(χ1,χ2) + xBi(χ1,χ2), (1.70)

где xBi –– граничная поверхность, η –– координата, растянутая вдоль нормали ni,
χ1 иχ2 –– ортогональные координаты поверхности η = const, получаем уравнение
для φK :

ζini
∂φK

∂η
= L(φK)− kζi

(
∂χ1

∂xi

∂φK

∂χ1
+
∂χ2

∂xi

∂φK

∂χ2

)
. (1.71)

Раскладывая φK в аналогичный степенной ряд

φK(x,ζ) =
∞∑
n=0

knφKn(x,ζ) (1.72)
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и приравнивая члены одного порядка по k, получаем одномерные по физическому
пространству уравнения для φK0 и φK1:

ζini
∂φK0

∂η
= L(φK0), (1.73)

ζini
∂φK1

∂η
= L(φK1)− ζi

[(
∂χ1

∂xi

)
0

∂φK0

∂χ1
+

(
∂χ2

∂xi

)
0

∂φK0

∂χ2

]
, (1.74)

с граничными условиями:

(φKm)0 = φBm − (φGm)0 (ζini > 0), lim
η→∞

φKm = 0, (1.75)

где (· · · )0 означает значение на границе (η = 0). Решение поставленных задач в
полупространстве существует при определённых функциональных соотношени-
ях между ωGm, viGm, τGm и локальными параметрами φBm. При дополнительном
требовании

φKm = O(η−∞), η → ∞ (1.76)

достигается единственность, определяющая однозначность декомпозиции (1.68).
Для диффузного отражения (1.38) получаются следующие гидродинамиче-

ские граничные условия и поправки кнудсеновского слоя:[
(vjG − vBj)

vjK

]
(δij − ninj) =−

(
∂vjG
∂xk

+
∂vk
∂xj

)
0

(δij − ninj)nk

[
k0

Y0(η)

]
k

−
(
∂τG
∂xj

)
0

(δij − ninj)

[
K1

1
2Y1(η)

]
k +O(k2),

(1.77)

[
viG

viK

]
ni = O(k2), (1.78)τG − τB

τK

ωK

 =

(
∂τG
∂xi

)
0

ni

 d1

Θ1(η)

Ω1(η)

 k +O(k2). (1.79)

За каждым из полученных коэффициентов закреплен соответствующий термин,
отражающий его физический смысл. k0 и d1 соответствуют скоростному и тем-
пературному скачкам, а K1 тепловому скольжению. Для газа твёрдых сфер [163;
190; 196]

k0 = −1.25395, d1 = 2.40014, K1 = −0.64642. (1.80)

Поскольку K1 < 0, направление теплового скольжения совпадает с направлени-
ем градиента температуры граничной поверхности. Функции Y0(η), Y1(η), Θ1(η),
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Ω1(η) убывают экспоненциально от η и табулированы для газа твёрдых сфер
в [163; 185; 186; 190; 196].

1.3.3 Медленные неизотермические течения

Для медленных неизотермических течений (малые числа Маха, значитель-
ные перепады температур) нелинейная асимптотическая теория приводит к урав-
нениям Когана––Галкина––Фридлендера (КГФ) [240], описывающим поведение
газа в гидродинамической области. В 1970-х годах они были получены и подроб-
но изучены советской группой ЦАГИ (М. Н. Коган, В. С. Галкин, О. Г. Фридлен-
дер). Несмотря на наличие некоторых барнеттовских членов, уравнения КГФ не
теряют устойчивости ввиду медленности течений, а движение газа под их дей-
ствием называется нелинейным термострессовым течением. В первых работах
эти уравнения были получены наиболее простым способом, на основе разложе-
ния Чепмена––Энскога [231; 232]. Такие же уравнения получаются из разложения
Гильберта [230]. Кроме коэффициентов вязкости и теплопроводности, в уравне-
ния КГФ входят некоторые термострессовые транспортные коэффициенты. Для
некоторых молекулярных потенциалов они были впервые вычислены с помощью
полиномов Сонина [51; 254]. Для газа твёрдых сфер более точные значения полу-
чены с помощью непосредственного численного решения соответствующих ин-
тегральных уравнений [188]. В результате многолетнего труда под руководством
О. Г. Фридлендера теория медленных неизотермических течений была подтвер-
ждена экспериментально [8; 9].

Далее излагаются основные результаты нелинейной асимптотической тео-
рии на основе разложения Гильберта. Решение, как в случае слабовозмущённых
течений, может быть найдено в виде суммы

f = fH + fK , (1.81)

где гидродинамическая часть (разложение Гильберта) fH , и поправка кнудсенов-
ского слоя fK обладают следующими свойствами:

∂fH
∂xi

= O(fH), k → 0, (1.82)

kni
∂fK
∂xi

= O(fK), k → 0, (1.83)
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fK = O(η−∞), η → ∞. (1.84)

Гидродинамические уравнения

Функция распределения fH и макроскопические переменные hH =

ρH , viH , TH , . . . также разлагаются в ряд по k:

fH =
∞∑

m=0

fHmk
m, hH =

∞∑
m=0

hHmk
m. (1.85)

Будем искать решение уравнения Больцмана в предположении медленности тече-
ния (viH0 = 0) и слабости поля внешних сил (FiH0 = FiH1 = 0). Подставляя (1.85)
в уравнение Больцмана (1.8) и приравнивая члены при равных степенях k, получа-
ем систему интегро-дифференциальных уравнений, для которой должны выпол-
няться условия разрешимости. В нулевом порядке

∂pH0

∂xi
= 0. (1.86)

В первом
∂

∂xi

(
uiH1

TH0

)
= 0, (1.87)

∂pH1

∂xi
= 0, (1.88)

∂uiH1

∂xi
=

1

2

∂

∂xi

(
Γ2
∂TH0

∂xi

)
. (1.89)

Во втором при pH1 = 0

∂

∂xi

(
uiH2

TH0

)
=
uiH1

TH0

∂

∂xi

(
TH1

TH0

)
, (1.90)

∂

∂xj

(
uiH1ujH1

TH0

)
− 1

2

∂

∂xj

[
Γ1

(
∂uiH1

∂xj
+
∂ujH1

∂xi
− 2

3

∂ukH1

∂xk
δij

)]
−

[
Γ7

Γ2

ujH1

TH0

∂TH0

∂xj
+

Γ2
2

4

(
Γ7

Γ2
2

)′(
∂TH0

∂xj

)2
]
∂TH0

∂xi

= −1

2

∂p†H2

∂xi
+
p2H0FiH2

TH0
,

(1.91)

∂uiH2

∂xi
=

1

2

∂2

∂x2i
(Γ2TH1) . (1.92)
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Здесь введены следущие обозначения: uiH1 = pH0viH1, uiH2 = pH0viH2 и

p†H2 = p0pH2 +
2

3

∂

∂xk

(
Γ3
∂TH0

∂xk

)
− Γ7

6

(
∂TH0

∂xk

)2

. (1.93)

Уравнения (1.87), (1.89), (1.91) для TH0, uiH1 и p†H2 называются уравнениями Кога-
на––Галкина––Фридлендера (КГФ). Они содержат член температурных напряже-
ний, отсутствующий в уравнениях Навье––Стокса. Сравнивая его с p2H0FiH2/TH0,
можно увидеть, что на покоящуюся единицу массы газа действует сила

Fi =
Γ2
2

4

(
Γ7

Γ2
2

)′
TH
p2H

(
∂TH
∂xj

)2
∂TH
∂xi

k2 +O(k3). (1.94)

Она исчезает только тогда, когда изотермические поверхности параллельны:

eijk
∂TH0

∂xj

∂

∂xk

(
∂TH0

∂xl

)2

= 0. (1.95)

В (1.95) использован символ Ле́ви-Чиви́ты eijk. Движение газа под действием этой
силы называется нелинейным термострессовым течением. Важно отметить, что
p†H2 не входит непосредственно в уравнение состояния, поэтому определяется с
точностью до константы.

Транспортные коэффициентыΓi = Γi(TH0) зависят от температуры. Первые
два из них соответствуют размерным вязкости µ и теплопроводности λ газа,

µ = Γ1(TH)
p(0)L√
2RT (0)

k, λ =
5Γ2(TH)

2

p(0)RL√
2RT (0)

k. (1.96)

Для степенного молекулярного потенциала можно записать

Γ1,2(T ) = γ1,2T
s, Γ3(T ) = γ3T

2s, Γ7(T ) = Γ′
3 − γ7T

2s−1. (1.97)

Для газа твёрдых сфер

s = 0.5, γ7 = 0.189201, Γ7 = 1.758705, (1.98)

для модели Крука––Веландера

s = 1, γ7 = 1, Γ7 = 1. (1.99)
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Тензор напряжений и вектор потока тепла вычисляются по следующим фор-
мулам:

pijH = pHδij −
Γ1

pH

(
∂uiH
∂xj

+
∂ujH
∂xi

− 2

3

∂ukH
∂xk

δij

)
k

+
Γ′
3 − Γ7

pH

[
∂TH
∂xi

∂TH
∂xj

− 1

3

(
∂TH
∂xk

)2

δij

]
k2

+
Γ3

pH

(
∂2TH
∂xi∂xj

− 1

3

∂2TH
∂x2k

δij

)
k2 +O(k3),

(1.100)

qiH = −5

4
Γ2
∂TH
∂xi

k +O(k3). (1.101)

Коэффициент Γ3 входит в выражения температурных напряжений, но не
движущую силу. Для степенного потенциала

Fi = − Γ7

4pH

(
∂TH
∂xj

)2
∂TH
∂xi

k2 +O(k3), (1.102)

поэтому при Γ7 > 0 нелинейное термострессовое течение возникает в направле-
нии противоположном градиенту температур.

Слой Кнудсена и граничные условия

Используя локальные координаты кнудсеновского слоя (1.70), находим, что
fK подчиняется уравнению

ζini
∂fK
∂η

= 2J(fH ,fK) + J(fK ,fK)− kζi

(
∂χ1

∂xi

∂fK
∂χ1

+
∂χ2

∂xi

∂fK
∂χ2

)
. (1.103)

В нулевом порядке гидродинамическая часть решения является максвеллианом,
удовлетворяющий граничному условию диффузного отражения при

TH0 = TB, (1.104)

а значит fK0 = 0. Используя разложения

fK = fK1k + fK2k
2 + · · · , (1.105)

fH = (fH0)0 +

[
(fH1)0 + η

(
∂fH0

∂xi

)
0

ni

]
k + · · · , (1.106)
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где (· · · )0 означает значение на границе (η = 0), получаем уравнения для fK1 и
fK2:

ζini
∂fK1

∂η
= 2J [(fH0)0 ,fK1] , (1.107)

ζini
∂fK2

∂η
= 2J [(fH0)0 , fK2]− ζi

[(
∂χ1

∂xi

)
0

∂fK1

∂χ1
+

(
∂χ2

∂xi

)
0

∂fK1

∂χ2

]
+ 2J

[
(fH1)0 + η

(
∂fH0

∂xi

)
0

ni,fK1

]
+ J(fK1,fK1).

(1.108)

Поскольку

2J [(fH0)0 ,fK1] = L
(

fK1

(fH0)0

)
(fH0)0 , (1.109)

то опять получаем одномерные задачи в полупространстве η ∈ (0, +∞) для ли-
неаризованного около (fH0)0 уравнения Больцмана с граничными условиями

(fKm)0 = fBm − (fHm)0 (ζini > 0), lim
η→∞

fKm = (fHm)0 (m = 1,2,3, . . . ).

(1.110)
Однородное уравнение (1.107) приводит к следующим граничным условиям

и поправкам кнудсеновского слоя:

1√
TB0

[
(ujH1 − uBj1)

ujK1

]
(δij − ninj) = −

(
∂TH0

∂xj

)
0

(δij − ninj)

[
K1

1
2Y1(η̃)

]
, (1.111)[

ujH1

ujK1

]
nj = 0, (1.112)

pH0

TB0

TH1 − TB1

TK1

T 2
B0ρK1

 =

(
∂TH0

∂xj

)
0

nj

 d1

Θ1(η̃)

pH0Ω1(η̃)

 , (1.113)

где η̃ = ηpH0/TB0. Неоднородное уравнение (1.108) приводит к следующим гра-
ничным условиям и поправкам кнудсеновского слоя:

1√
TB0

[
(ujH2 − uBj2)

ujK2

]
(δij − ninj) =−

√
TB0

pH0

(
∂ujH1

∂xk

)
0

(δij − ninj)nk

[
k0

Y0(η̃)

]

−TB0

pH0

(
∂2TH0

∂xj∂xk

)
0

(δij − ninj)nk

[
a4

Ya4(η̃)

]
− κ̄

TB0

pH0

(
∂TH0

∂xj

)
0

(δij − ninj)

[
a5

Ya5(η̃)

]

−κjk
TB0

pH0

(
∂TH0

∂xk

)
0

(δij − ninj)

[
a6

Ya6(η̃)

]
− ∂TB1

∂xj
(δij − ninj)

[
K1

1
2Y1(η̃)

]
,

(1.114)
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1√
TB0

[
(ujH2 − uBj2)

ujK2

]
nj =

− TB0

pH0

[(
∂2TH0

∂xi∂xj

)
0

ninj + 2κ̄
(
∂TH0

∂xi

)
0

ni

][1
2

∫∞
0 Y1(η0)dη0

1
2

∫ η̃

∞ Y1(η0)dη0

]
,

(1.115)

pH0

TB0

TH2 − TB2

TK2

T 2
B0ρK2

 =

(
∂TH1

∂xj

)
0

nj

 d1

Θ1(η̃)

pH0Ω1(η̃)


+
TB0

pH0

(
∂2TH0

∂xi∂xj

)
0

ninj

 d3

Θ3(η̃)

pH0Ω3(η̃)

+ κ̄
TB0

pH0

(
∂TH0

∂xi

)
0

ni

 d5

Θ5(η̃)

pH0Ω5(η̃)

 ,
(1.116)

где κ̄/L = (κ1 + κ2)/2L –– средняя кривизна граничной поверхности, главные
кривизны κ1/L, κ2/L принимают отрицательные значения, когда центр соот-
ветствующей кривизны лежит со стороны газа. Безразмерный тензор кривизны
κij = κ1lilj + κ2mimj выражается через единичные векторы соответствующих
главных направлений li и mi.

Коэффициент a4 соответствует термострессовому скольжению второго по-
рядка. Для газа твёрдых сфер [162; 196]

a4 = 0.0331. (1.117)

Поскольку a4 > 0, имеет место явление отрицательного термофореза [162]. Коэф-
фициенты, стоящие перед κ̄ и κij, вычислены недавно [119; 196]:

a5 = 0.23353, a6 = −1.99878, d3 = 0.4993, d5 = 4.6180. (1.118)

Функции Ya4(η), Ya5(η), Ya6(η), Θ3(η), Ω3(η), Θ5(η), Ω5(η) убывают также экспо-
ненциально от η и табулированы в [119; 162; 185; 186; 196].

Последние два члена в (1.108) приводят к дополнительным нелинейным
слагаемым в (1.114) и (1.116):

1

p2H0

(
∂TH0

∂xj
(δij − ninj)

)
0

(
∂TH0

∂xk
nk

)
0

,
1

p2H0

(
∂TH0

∂xi
ni

)2

0

, (1.119)

однако полное решение этой неоднородной задачи кнудсеновского слоя для газа
твёрдых сфер в литературе не представлено. Для модельного уравнения Крука––
Веландера численный анализ второго слагаемого выполнен в [192].
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Использование граничных условий старшего порядка

Уравнения следующего порядка для TH1, viH2 и pH3 громоздки, и до настоя-
щего времени не были получены в общей форме для произвольного молекулярно-
го потенциала. Поэтому численный анализ медленных течений слаборазреженно-
го газа обычно ведут на основе уравнений КГФ (1.87), (1.89), (1.91) с граничными
условиями (1.104), (1.111), (1.112). Однако асимптотическое решение можно улуч-
шить, если привнести в него известные граничные условия следующего порядка.
Например, можно вычислить температурное поле TH = TH0 + TH1k + O(k2) из
уравнения

1

k

∂uiH
∂xi

=
1

2

∂

∂xi

(
Γ2
∂TH
∂xi

)
+O(k2), (1.120)

получаемого из (1.89) и (1.92), при граничном условии

TH = TB + d1
TB0

pH0

(
∂TH
∂xj

)
0

njk +O(k2), (1.121)

получаемого из (1.104) и (1.113). Поскольку uiH2 неизвестно, то температурное
поле TH вычисляется с точностью O(k), однако на границе с точностью O(k2).
В (1.121) вместо ∂TH0/∂xj используется производная от TH , что позволяет учесть
температурный скачок в граничном условии следующего порядка. Аналогично
можно учесть скоростной скачок на границе:

uiH = uBi1k −
[
K1

√
TB0

(
∂TH0

∂xj

)
0

+ k0
TB0

pH0

(
∂ujH
∂xk

)
0

nk

]
(δij − ninj)k +O(k2).

(1.122)
Таким же образом в граничные условия могут быть включены члены из (1.114)
и (1.116), содержащие вторую производную от TH0, а также κ̄, κij. Граничное
условие на нормальную компоненту скорости (1.115) несовместимо с уравнени-
ем (1.87), поэтому не используется.

Поля TH и uiH , полученные вышеописанным способом, качественно лучше
описывают поведение разреженного газа, поскольку учитывают дополнительные
граничные эффекты. Можно также надеяться, что они количественно лучше ап-
проксимируют точное решение.

Для вычисления второй производной вдоль нормали от TH0 удобно восполь-
зоваться преобразованием (1.89) и (1.111):
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∂2TH0

∂xi∂xj
ninj + 2κ̄

∂TH0

∂xi
ni = −∂

2TH0

∂χ2
α

+
∂2TH0

∂x2k
=

− ∂2TH0

∂χ2
α

− 1

Γ2

[
Γ′
2

(
∂TH0

∂xi
ni

)2

+

(
Γ′
2 +

2K1√
TH0

)(
∂TH0

∂χα

)2
]
,

где подразумевается суммирование по парам повторяющихся индексов α = 1,2, а
также |∂χα/∂xi| = 1.

Силы, действующие на обтекаемые тела

Вследствие неоднородных напряжений в газе, возникает сила второго по-
рядка по k, действующая на единицу площади обтекаемого тела FiH2 = −pijH2nj

С помощью формулы Остроградского––Гаусса член второго порядка по k в (1.100)
может быть преобразован во время интегрирования по поверхности тела:∮

S

Γ3
∂2TH0

∂xi∂xj
njdS =

∮
S

∂

∂xi

(
Γ3
∂TH0

∂xj

)
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∮
S

Γ′
3

∂TH0

∂xi

∂TH0

∂xj
njdS

=

∫
V

∂

∂xi

∂

∂xj

(
Γ3
∂TH0

∂xj

)
dV −

∮
S

Γ′
3

∂TH0

∂xi

∂TH0

∂xj
njdS

=

∮
S

Γ′
3

(
∂TH0

∂xj

)2

nidS +

∮
S

Γ3
∂2TH0

∂x2j
nidS −

∮
S

Γ′
3

∂TH0

∂xi

∂TH0

∂xj
njdS,

где интегрирование производится по всему объёму тела V и всей его поверхно-
сти S. Один из вязкостных членов может быть также преобразован аналогичным
образом:∮

S

Γ1
∂ujH1

∂xi
njdS =

∮
S

∂

∂xi
(Γ1ujH1)njdS

=

∫
V

∂

∂xi

∂

∂xj
(Γ1ujH1) dV =

∮
S

(Γ1 + Γ′
1TH0)

∂ujH1

∂xj
nidS.

Здесь использовано граничное условие (1.112) и уравнение непрерывности (1.87).
Таким образом, полная сила, действующая на обтекаемое тело,

pH0

∮
S

Fi2dS =−
∮
S

p†H2nidS

+

∮
S

(Γ1 + Γ′
1TH0)

∂ujH1

∂xj
nidS +

∮
S

Γ1
∂uiH1

∂xj
njdS
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−
∮
S

Γ7

2

(
∂TH0

∂xj

)2

nidS +

∮
S

Γ7
∂TH0

∂xi

∂TH0

∂xj
njdS. (1.123)

В частности, если тело равномерно нагрето (∂TB/∂xi = 0) и покоится (uBi = 0),
то на него действует сила, состоящая из трёх компонент,

pH0

∮
S

Fi2dS = −
∮
S

p†H2nidS +

∮
S

Γ1
∂uiH1

∂xj
njdS +

∮
S

Γ7

2

(
∂TH0

∂xj

)2

nidS. (1.124)

Поправка слоя Кнудсена исключена из рассмотрения, поскольку вносит нулевой
вклад в значение полной силы. Это легко доказывается, сдвигая область интегри-
рования за пределы слоя Кнудсена.

Электростатическая аналогия

10−2 10−1 100 101 102 103
10−5

10−2

101

104

107

τ

F

а) газ твёрдых сфер: s2 = 1/2 и s7 = 0. Асимптоты:
3
4τ

2, τ → 0 и τ2, τ → ∞

10−2 10−1 100 101 102 103
10−4

10−1

102

105

108

τ

F

б) максвелловские молекулы или модель БГК:
s2 = 1 и s7 = 1. Асимптоты: 2τ2, τ → 0 и

τ3, τ → ∞
Рисунок 1.2 — Зависимость силы притяжения двух тел F от разности температур τ = T2 − T1

при T1 = 1. Тонкие пунктирные линии соответствуют асимптотам.

Сила взаимодействия между равномерно нагретыми телами оказывается
подобна электростатической. Впервые на это обратили внимание М. Н. Коган,
В. С. Галкин и О. Г. Фридлендер, рассмотрев линейное приближение [240]. Их ре-
зультат можно естественным образом обобщить в нелинейной постановке.

Если ограничится рассмотрением степенного потенциала, то коэффициент
теплопроводности Γ2 ∝ T s (см. (1.97)), а соответствующее уравнение теплопро-
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водности нелинейно, которое, однако, является линейным уравнением Лапласа
для T 1+s. Здесь и далее мы для простоты предполагаем s > 0. В соответствии с
электростатической теорией можно ввести аналог заряда

ea
def
= T s

a

∮
Sa

∂T

∂xi
nidS = C ′

abT
1+s
b ,

∑
a

ea = 0. (1.125)

T 1+s можно считать потенциалом, Caa коэффициентами ёмкости, а Cab (a ̸= b) ко-
эффициентами электростатической индукции. Несложно также построить аналог
энергии

U
def
=

∫ [
Γ7(T )

2

(
∂T

∂xi

)2

− p

]
dV = γ7

∑
a

T 2s
a

∮
Sa

∂T

∂xi
nidS = CabT

s
aT

1+s
b , (1.126)

тогда действующая сила находится как вариационная производная

F a
i =

(
δU

δrai

)
T

=
∂Cab

∂rai
T s
aT

1+s
b . (1.127)

В частности, для двух тел с температурами T1 и T2 можно записать

e = C
(
T 1+s
2 − T 1+s

1

)
, (1.128)

U = C (T s
2 − T s

1 )
(
T 1+s
2 − T 1+s

1

)
, (1.129)

Fi =
∂C

∂rai
(T s

2 − T s
1 )
(
T 1+s
2 − T 1+s

1

)
, (1.130)

поскольку e1 + e2 = 0 и e1 = e2 = 0 при T1 = T2. C –– аналог электростатической
ёмкости. При T = 1 + o(1) задача сводится к линейной, где сила притяжения
F ∝ (T2−T1)2. На рис. 1.2 показаны соответствующие зависимости для некоторых
частных случаев.

Континуальный предел

В классической гидродинамике уравнения Навье––Стокса (Γ7 = 0) с непо-
движными границами (vBi = 0) и условиями без скольжения (K1 = 0) приводят к
нулевому полю viH1 = 0 и к уравнению теплопроводности

∂

∂xi

(√
TH0

∂TH0

∂xi

)
= 0. (1.131)
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В общем случае корректное распределение температур в континуальном пределе
(k → 0) находится из уравнений КГФ с соответствующими граничными услови-
ями. Оно будет совпадать с решением (1.131) только для узкого класса задач, где
viH1 = 0.

В континуальном мире (k = 0) не существует величин uiH1 и p†H2, тем
не менее инфинитезимальное поле скоростей vi конечным образом влияет на
T . Такое асимптотическое поведение получило название призрак-эффекта (ghost
effect) [185; 186].

1.3.4 Одномерные течения при конечных чисел Маха

Как было указано выше, построение асимптотического решения при конеч-
ных числах Маха в общем случае дополнительно требует сращивания вязких по-
граничных слоёв с решением уравений Эйлера. Рассмотрение одномерных тече-
ний, описываемых уравнением

ζy
∂f

∂y
=

1

k
J(f,f),

∫
ζyfdζ =

∫
ζzfdζ = 0, (1.132)

в этом смысле существенно проще, поскольку вырождаются
– члены, содержащие кривизну слоя Прандтля,
– область невязкого течения.
Вплоть до членов второго порядка по k гидродинамическая часть решения

одномерных задач совпадает с уравнениями Навье––Стокса

d

dy

(
Γ1
dvH
dy

)
= O(k2), (1.133)

Γ1

(
dvH
dy

)2

+
5

4

d

dy

(
Γ2
dTH
dy

)
= O(k2). (1.134)

Давление pH константно вплоть до второго порядка. Если масса газа M =
∫
ρdx

постоянна, то давление pH может быть получено из равенства

pH

∫
dx

TH
=M +O(k2), (1.135)

поскольку ρ = ρH + ρK1k +O(k2) и pH = ρHTH . ρK1 не фигурирует в (1.135), так
как

∫
ρK1dx = O(k). Гидродинамическое давление второго порядка pH2 вычис-
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ляется из уравнения

3pH
2

dpH2

dy
+

d

dy

[
Γ3
d2TH
dy2

+ Γ7

(
dTH
dy

)2

+ (Γ8 − 2Γ9)

(
dvH
dy

)2
]
= O(k). (1.136)

Если газ ограничен неподвижными пластинами с граничными условиями
диффузного отражения, то справедливо следующее асимптотическое решение

v = vH −
∑
a

Y0(η̃a)

pH

(
TH

∂vH
∂y

)
a

k +O(k2), (1.137)

T = TH −
∑
a

Θ1(η̃a)

pH

(
TH

∂TH
∂y

)
a

k +O(k2), (1.138)

pxy = −Γ1
∂vH
∂y

k +O(k3), (1.139)

qx =
∑
a

HA(η̃a)

(
TH

∂vH
∂y

)
a

k + qxK2k
2

+
TH
pH

(
Γ3

2

∂2vH
∂y2

+ 4Γ10
∂TH
∂y

∂vH
∂y

)
k2 +O(k3),

(1.140)

qy = −5

4
Γ2
∂TH
∂y

k + qyK2k
2 +O(k3), (1.141)

p = pH − Pηk + (pH2 + pK2)k
2 +O(k3), (1.142)

pxx − p = −1

2
Pηk +

[
2(Γ8 + Γ9)Pu − PT + pxxK2 − pK2

]
k2 +O(k3), (1.143)

pyy − p = Pηk +
[
2(Γ8 − 2Γ9)Pu + 2PT + pyyK2 − pK2

]
k2 +O(k3), (1.144)

pzz − p = −1

2
Pηk +

[
2(Γ9 − 2Γ8)Pu − PT + pzzK2 − pK2

]
k2 +O(k3), (1.145)

где

Pη =
∑
a

(Ω1(η̃a) + Θ1(η̃a))

(
∂TH
∂y

)
a

, (1.146)

PT =
1

3pH

[
Γ3
∂2TH
∂y2

+ Γ7

(
∂TH
∂y

)2
]
, Pu =

1

3pH

(
∂vH
∂y

)2

, (1.147)

а граничные условия

vH = vBa − k0
TH
pH

∂vH
∂y

k +O(k2), TH = TBa + d1
TH
pH

∂TH
∂y

k +O(k2). (1.148)

Величины с индексом a вычисляются на соответствующей границе. Функции
кнудсеновского слоя (Y0, Θ1, HA, Ω1) убывают экспоненциально,

η̃a =
pH
TH

ηa, ηa =
|y − ya|

k
, (1.149)
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где ya –– координаты пластин.
Для степенного потенциала

Γ8 = γ8T
2s, Γ9 = γ9T

2s, Γ10 = γ10T
2s−1, (1.150)

а для модели твёрдых сфер

γ8 = 1.495941968, γ9 = 1.636073459, γ10 = 2.449780. (1.151)

Алгоритм вычисления транспортных коэффициентов (1.151) через приближённое
решение соответствующих интегральных уравнений изложен в приложении А.
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Глава 2. Численное решение уравнения Больцмана

2.1 Обзор вычислительных методов

Огромное множество исследований посвящено численному решению урав-
нения Больцмана. Среди них можно выделить три магистральных направления в
зависимости от способа аппроксимации функции распределения скоростей:

– методы прямого статистического моделирования (ПСМ) строятся на
основе некоторого случайного процесса марковского типа, способного
аппроксимировать больцмановскую динамику;

– методы дискретных скоростей подразумевают фиксированный набор
доступных молекулярных скоростей;

– проекционные методы используют разложение по базису в определённом
функциональном пространстве.

Ввиду широкого распространения методов ПСМ, распространено разделение
численных методов на стохастические и детерминистические, однако автору
представляется такая классификация неконструктивной, поскольку стохастиче-
ские приёмы, привносящие численный шум в решение, весьма универсальны и
могут применяться практически для всех стандартных методов. Эти приёмы в
некоторых случаях позволяют существенно снизить алгоритмическую сложность
чисто детерминистического метода, а возникающие флуктуации решения спо-
собны в какой-то степени отражать численную невязку. В частности, для много-
мерного интегрирования эффективны теоретико-числовые методы [242] (квази-
Монте Карло [80]). Для методов дискретных скоростей в своё время предложены
специальные ускорительные стохастические процедуры [49; 172].

В результате более чем полувекового развития численных методов решения
уравнения Больцмана, было выделено три основных свойства, строгое выполне-
ние которых делает вычислительный алгоритм надёжным и высокоэффективным:

– сохранение массы, импульса и энергии (консервативность);
– выполнение H-теоремы (энтропийность);
– положительность функции распределения.

Первые два свойства гарантируют, что на бесконечности (t → ∞) численное
решение пространственно-однородного уравнения Больцмана будет точно совпа-
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дать с аналитическим, а положительность решения, как правило, является необ-
ходимым условием устойчивости метода. Нарушение даже всех перечисленных
свойств возможно, но только при использовании достаточно подробных сеток
во всем фазовом пространстве, что практически возможно только для простей-
ших задач, обладающих дополнительными симметриями. В таком случае степень
нарушения консервативности может служить, например, апостериорной оценкой
отклонения численного решения от истинного.

2.1.1 Стохастические методы

В тех случаях, когда построение прямых численных методов сталкивает-
ся с существенными трудностями, ПСМ нередко позволяет достичь приемли-
мой точности малой кровью. В настоящее время для численного решения суще-
ственно нелинейных задач наиболее распространён метод Бёрда (DSMC), впер-
вые предложенный им на основе общих физических соображений [33]. Современ-
ные его реализации используют улучшенные алгоритмы выбора сталкивающихся
частиц, разработанные позже самим Г. Бёрдом (схема без счётчика) [36], а также
М. С. Ивановым и С. В. Рогазинским (схема мажорантной частоты) [237].

Стохастические модели разреженного газа впервые рассмотрены
М. А. Леонтовичем ещё в 1935 году [244], но только в 1992 году В. Вагнер по-
казал сходимость полумарковского метода Бёрда к уравнению Больцмана [210],
основываясь на результатах А. В. Скорохода [251] и С. Н. Смирнова [253]. До
этого времени предлагались альтернативные модели, получаемые эвристически
из уравнения Больцмана. В частности, В. Е. Яницкий и О. М. Белоцерковский
разработали стохастический метод [224] на основе строго марковского процесса
эволюции модели Каца––Леонтовича [135; 238], которая асимптотически эквива-
лента уравнению Больцмана, однако строгое доказательство [24] сходимости к
уравнению Больцмана было получено только для метода Нанбу––Бабовского [23;
159].

К основным недостаткам методов ПСМ относятся высокий уровень стати-
стического шума и значительный рост вычислительных затрат при стремлении к
континуальному пределу, возникающий из-за нарушения энтропийности для рас-
пределений близких к максвелловским. В последние годы предлагаются различ-
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ные методы уменьшения дисперсии (variance reduction) для слабо возмущённых
течений (information preservation [89; 195], time-relaxed [82; 170], low-variance [25;
126; 176]). Основой этих гибридных подходов является априорное представление
о функции распределения и применение статистического моделирования только
к возмущённой части решения (алгебраическая декомпозиция). Обобщение де-
виационного стохастического подхода, допускающего частицы c отрицательным
весом, на нелинейное уравнение Больцмана приводит к значительным вычисли-
тельным трудностям [211]. Активно развиваются гибридные методы, использую-
щие классическую схему Бёрда (moment-guide [72; 81], convex combination [56;
83]). Особую сложность представляют также течения с высоким перепадом плот-
ности (например, гиперзвуковые), поскольку очень малая часть ансамбля модель-
ных частиц попадает в области наиболее разреженного газа (например, донную).
С вычислительной точки зрения, это многомасштабные задачи с широким диа-
пазоном чисел Кнудсена. Стохастический метод взвешенных частиц позволяет
адаптировать уровень дисперсии посредством их деления и аннигиляции, одна-
ко ценой высокой сложности алгоритма [177; 178]. Несмотря на то что в широком
круге задач метод Бёрда позволяет достичь инженерной точности, множество тон-
ких эффектов остаются за гранью его реальной разрешающей способности.

2.1.2 Методы дискретных скоростей

Методы дискретных скоростей (дискретных ординат) восходят к работам
40-х годов Нобелевского лауреата С. Чандрасекара в области теории излуче-
ния [67], ещё до появления методов ПСМ. Первые значительные успехи, связан-
ные с применением этого подхода к численному решению уравнения Больцмана,
были получены в США А. Нордсиком и Б. Хиксом [161; 247]. Они использова-
ли метод Монте-Карло для вычисления пятимерного интеграла столкновений и
простейшую коррекцию функции распределения для получения устойчивой чис-
ленной схемы. Начиная с 1965 года, после ввода в эксплуатацию БЭСМ-6, метод
Хикса––Йена––Нордсика [161; 219] активно развивался в Вычислительном центре
АН СССР (Ф. Г. Черемисин, В. В. Аристов и др.). На первых ЭВМ основную труд-
ность представляли ограничения в объёме памяти [257]. Операторное расщепле-
ние уравнения Больцмана и полиномиальная коррекция, обеспечивающая консер-
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вативность на макроскопическом уровне, существенно повысили надёжность ме-
тода [222]. Он успешно применялся во многих прикладных областях, однако в тех
случаях, когда вклад, вносимый полиномиальной коррекцией, становился значи-
тельным, достижение приемлимой точности сильно осложнялось.

Модели дискретного газа

Одновременно с численными методами бурное развитие получили матема-
тические модели дискретного газа. Простейшая такая модель, содержащая толь-
ко два возможных вектора скорости, была рассмотрена ещё в фундаметальном
труде Т. Карлемана [59]. Дж. Бродуэлл в 1964 году использовал шесть и восемь
скоростей для численного анализа простейших задач разреженного газа [47; 48].
Его успех вызвал интерес у французских математиков Р. Гатиньоль [96] и А. Ка-
банна [52], впервые представившие систематическую теорию газа дискретных
скоростей. Среди пионеров формальной теории отметим также С. К. Годунова и
У. М. Султангазина [233].

Д. Гольдштейн, Б. Стёртевант и Дж. Бродуелл первыми использовали мо-
дель дискретного газа на решётке с постоянным шагом [99]. Важным её преиму-
ществом является присущая на микроскопическом уровне консервативность и эн-
тропийность. В 1995 году А. Пальчевский, Ж. Шнайде́р и А. В. Бобылев показа-
ли, что последовательность таких моделей сходится к уравнению Больцмана при
стремлении шага решётки к нулю (h → 0), однако порядок сходимости оказался
не больше 1/14 [41; 164]. Только в 2004 году их результат удалось обобщить для
двумерного газа [88], для которого сходимость вообще носит логарифмический
характер O(lnp h−1). Рассмотрев интеграл столкновения в координатах Карлема-
на1, В. Панфёров и А. Гейнц улучшили сходимость, но лишь вплоть до первого
порядка [165]. Ж. Шнайде́р совместно с Ф. Рожье [179] и Ф. Мишель [151] на ос-
нове последовательностей Фарея построили модель дискретного газа на конечной
решётке с общим числом узлов O(N 3) и сходимостью O(N−3/2 lnN + h2N 2), что
при оптимальном выборе даёт O(h−6/7). Порядок сходимости можно повысить,

1 В прямоугольных координатах Карлемана (2.3) задача о сходимости модели дискретного газа оказы-
вается существенно проще, чем исследование равномерного покрытия столкновительной сферы, поскольку
сводится к решению линейных диофантовых уравнений.
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если использовать квадратуры высокого порядка [46]. Наконец, С. Мишлер разра-
ботал метод доказательства сходимости конечно-разностных схем с операторным
расщеплением для дискретного газа к решениям Ди-Перна––Лионса [152].

Размазывание столкновительного процесса

Основная трудность классических моделей дискретного газа связана с ма-
лым количеством допустимых пар разлётных скоростей для выбранной столкно-
вительной пары. Для построения консервативной схемы второго порядка точно-
сти необходимо так или иначе привнести дополнительную свободу в столкнови-
тельный процесс. Другими словами, ослабить его или размазать (to mollify).

К. Бюе, С. Кордье и П. Дегон предложили несколько таких регуляризацион-
ных подходов, сохраняющих консервативность численной схемы в слабой форме
(для столкновительного оператора целиком) [50]. Один из них основан на раз-
мазывании столкновительной сферы; второй, напротив, при локальном сохране-
нии импульса и энергии, допускает нарушения инвариатности массы. Достижение
макроскопической консервативности в этих подходах создаёт зависимость дис-
кретного столкновительного оператора от функции распределения или по край-
ней мере отдельных её моментов. Такое требование существенно ограничивает
эффективность численной реализации. Х. Бабовски построил простейшую схе-
му с консервативностью на мезоскопическом уровне (для всей столкновительной
сферы) [22], его подход позже развил Д. Гёрш [107]. Наконец, в 1997 году Ф. Г. Че-
ремисин предложил новый класс методов дискретных скоростей, основанных на
консервативном проецировании разлётных частиц [197; 255]2. Микроскопическая
консервативность, достигнутая Ф. Г. Черемисиным, позволяет построить наибо-
лее эффективную численную схему и может быть интерпретирована как проек-
ционная процедура Петрова––Галёркина, в которой столкновительные инвариан-
ты образуют ортогональную оболочку. Кроме того, Специальная процедура ин-
терполяции функции распределения обеспечивает энтропийность метода [256].

2 Интересно отметить, что все описанные подходы были опубликованы в одном специальном изда-
нии журнала Computers & Mathematics with Applications (Vol. 35, No. 1/2) по приглашению К. Черчиньяни и
Р. Иллнера, что явилось в некотором смысле диалектическим ответом на результат Пальчевского––Шнай-
де́ра––Бобылева.
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Поэтому такой метод будем называть консервативным проекционно-интерполя-
ционным методом дискретных скоростей (KПИМДС).

2.1.3 Проекционные методы

Дополнительное априорное знание о функции распределения в отдельных
классах задач может служить основой для построения более эффективных, но ме-
нее универсальных численных методов. Проекционные методы имеют экспонен-
циальную сходимость по отношению к размерности аппроксимационного про-
странства, однако в общем случае весьма затруднительно добиться консерватив-
ности и положительности. Более того, разрывные решения представляют для них
особую сложность в связи с явлением Гиббса. Последнюю проблему можно обой-
ти, используя тот факт, что для короткодействующих потенциалов интеграл столк-
новений может быть записан в форме J = J+ − νcf , где

J+(f,f) =

∫
f ′f ′∗BdΩ(ν)dζ∗ (2.1)

и частота столкновений

νc(f) =

∫
f∗BdΩ(ν)dζ∗ (2.2)

не содержат разрывов. Гладкость интеграла обратных столкновений (2.1) впер-
вые показана П.-Л. Лио́нсом [142], позже его результат уточнён Б. Веннбер-
гом [215], К. Муо и С. Виллани́ [158]. Частота столкновений νc(f) –– также гладкая
функция, поскольку (2.2) является свёрткой с регулярной функцией.

Проекционные методы вычисления интеграла столкновений, по-видимому,
берут своё начало с классического моментного метода Х. Грэда [112], который
представляет собой метод Галёркина с многочленами Эрмита в качестве базиса
и локальным распределением Максвелла в качестве весовой функции. Если Грэд
ограничился в основном рассмотрением первых тринадцати моментов функции
распределения, то А. Шоре́н использовал для численного расчёта профиля удар-
ной волны старшие члены эрмитового базиса [69]. Из-за сильно возрастающей
сложности метод Эрмита––Галёркина применяется преимущественно для аппрок-
симации линеаризованного уравнения Больцмана [98].
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А. В. Бобылев показал, что столкновительный оператор вФурье-базисе при-
нимает особенно простой вид для максвелловских молекул [226]. Кроме того,
с вычислительной точки зрения такой базис привлекален благодаря алгоритмам
быстрого преобразования (БПФ). Первые численные результаты (анализа про-
цессов релаксации высоких моментов функции распределения) на основе метода
Фурье––Галёркина для максвелловских молекул принадлежат Ю. Н. Григорьеву
и А. Н. Михалицыну [234]. Н. Х. Ибрагимов и С. В. Рязанов использовали пред-
ставление Фурье для построения консервативного метода второго порядка для
произвольного молекулярного потенциала, оставаясь в рамках модели дискрет-
ных скоростей [128]. Основная идея метода, предложенная А. В. Бобылевым и
С. В. Рязановым [42], состоит в использовании карлемановского представления
столкновительного оператора

J(f,f) =

∫
Rd×Rd

B

(
|x+ y|,−x · (x+ y)

|x||x+ y|

)
2d−1

|x+ y|d−2
δ(x · y)(

f(ζ + y)f(ζ + x)− f(ζ + x+ y)f(ζ)
)
dxdy, (2.3)

позволяющего избежать интегрирования по сфере.
Общая теория метода Фурье––Галёркина была развита Л. Парески совмест-

но с Б. Пертамом [167]. и Дж. Руссо [168; 169]. Несмотря на проекционную точ-
ность, метод обладает существенными недостатками:

– периодизация скоростного пространства,
– неконсервативность по импульсу и энергии,
– нарушение положительности.

Первая проблема частично решается из-за гауссовского затухания функции рас-
пределения, однако чрезмерное увеличение периода приводит к значительным
осцилляциям старших мод. Вторая проблема частично решается при использо-
вании достаточного количества мод, поскольку консервативность гарантируется
с экспоненциальной точностью. По третьей проблеме важный результат получен
Ф. Фильбе и К. Муо. Для возмущённого столкновительного оператора, им удалось
доказать асимптотическую стабильность спектральной аппроксимации, не сохра-
няющей положительность [90]. В общем случае фурье-образ столкновительного
ядра не представим в виде свёртки, поэтому алгоритмы БПФ не могут быть при-
менены. К. Муо и Л. Парески показали, что для модели твёрдых сфер при d = 3 это
возможно в рамках карлемановского представления [156]. Таким образом им уда-
лось понизить вычислительную сложность метода Фурье––Галёркина сO(N 2d) до
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O(Md−1Nd lnN), где N –– число мод на каждой координатной оси, а M –– число
допустимых углов отклонений в столновительном процессе. Леи Ву, Дж. Риз и
Йонг-Хао Жанг обобщили их результат для более общей формы столкновитель-
ного ядра [217].

Все перечисленные недостатки метода Фурье––Галёркина могут быть пол-
ностью решены при аппроксимации изотропной функции распределения поли-
номами Сонина. Их первое применение восходит к работам Д. Барнетта [51] для
вычисления транспортных коэффициентов через решение интегральных уравне-
ний Гильберта. И. А. Эндер и А. Я. Эндер первыми предложили общий числен-
ный метод на их основе [260], позже построили полностью консервативную схе-
му [241]. Э. Фонн, Ф. Грох и Р. Хиптмайр обобщили метод Фурье––Сонина для
произвольной функции распределения, однако только в двумерном случае ввиду
сильно возрастающей сложности выражений [92].

Наконец отметим, что метод дискретных скоростей может быть формально
интерпретирован как проекционный метод в пространстве дельта-функций. Ес-
ли же их заменить на кусочно-полиномиальные функции с конечным носителем
внутри некоторых ячеек скоростного пространства, то получается известный раз-
рывный метод Галёркина. Для решения уравнения Больцмана он впервые был
применён Е. Ф. Ли́маром [245]. А. Майорана предложил общую методику постро-
ения консервативного разрывного метода Галёркина [149].

2.1.4 Методы консервативной коррекции

Макроскопическая консервативность метода в общем может быть достиг-
нута различными процедурами коррекции, которые, однако, способны сильно
ухудшать аппроксимационную точность используемого метода. Самая простая
идея полиномиальной коррекции (умножение на многочлен) впервые была при-
менена Ф. Г. Черемисиным и В. В. Аристовым [257]. А. В. Бобылев, Н. Х. Ибра-
гимов и С. В. Рязанов использовали представление Фурье для построения кон-
сервативного метода второго порядка для произвольного молекулярного потен-
циала, оставаясь в рамках модели дискретных скоростей [42; 128]. Для достиже-
ния консервативности они впервые, по-видимому, применили методы условной
оптимизации. И. М. Гамба и С. Х. Таркабхушанам предложили минимизировать
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функционал коррекции в L2-норме с помощью множителей Лагранжа. Э. Габетта,
Л. Парески и Дж. Тоскани показали, что дискретная равновесная функция распре-
деления должна обладать свойством [93]

ln fMγ ∈ span
{
1, ζγ, ζ

2
γ

}
(2.4)

для того, чтобы наравне с консервативностью добиться энтропийности.

2.1.5 Неравномерные сетки

Во многих прикладных задачах эффективная аппроксимация уравнения
Больцмана требует существенно неоднородной дискретизации в скоростном про-
странстве. В частности, в краевых задачах функция распределения всегда терпит
разрывы на граничной поверхности, которые к тому же распространяются вдоль
характеристик в окружающий газ при обтекании выпуклых тел. Неравномерные
решётки активно используются как в методах дискретных скоростей [70; 136], так
и проекционных [121; 217]. Более того, в [20; 136] применяются адаптивные мето-
ды построения построения сетки, однако, несмотря на очевидные преимущества,
такой подход существенно усложняет численное решение бесстолкновительного
уравнения Больцмана. Наконец, КПИМДС на неравномерных сетках может быть
построен с помощью техники многоточечного проецирования, впервые предло-
женной Ф. Варгизом [206].

2.2 Консервативный проекционно-интерполяционный метод дискретных
скоростей

Уравнение Больцмана (1.8) при отсутствии внешних сил численно решается
с помощью операторного расщепления на уравнение переноса

∂f

∂t
+ ζi

∂f

∂xi
= 0, (2.5)
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для которого используется стандартный метод конечных объёмов с явной TVD-
схемой второго порядка, и пространственно-однородное уравнение Больцмана

∂f

∂t
= J(f), (2.6)

для которого используется КПИМДС. Л. Девиллет и С. Мишлер доказали сходи-
мость конечно-разностных схем с операторным расщеплением к решениям Ди-
Перна––Лионса [76], а А. В. Бобылев и Т. Овада показали, что использование сим-
метричной схемы расщепления позволяет достичь второго порядка аппроксима-
ции [40].

2.2.1 Дискретизация скоростного пространства

Пусть регулярная скоростная сетка V = { ζγ ∈ Rd : γ ∈ Γ } построена та-
ким образом, что кубатура в пространстве ζ выражается в виде взвешенной суммы∫

F (ζ)dζ ≈
∑
γ∈Γ

Fγwγ =
∑
γ∈Γ

F̂γ,
∑
γ∈Γ

wγ = VΓ, Fγ = F (ζγ), (2.7)

где F (ζ) –– произвольная интегрируемая функция, VΓ –– полный объём скорост-
ной сетки, Γ –– некоторое множество индексов. Тогда кубатурная формула в про-
странстве (ω,ζ,ζ∗) может быть записана как∫

F (ω,ζ,ζ∗)dΩ(ω)dζdζ∗ ≈
4πV 2

Γ∑
ν∈N wνw∗ν

∑
ν∈N

F (ων,ζν,ζ∗ν)wνw∗ν, (2.8)

где F (ω,ζ,ζ∗) –– также произвольная интегрируемая функция. ζν ∈ V , ζ∗ν ∈ V и
ων ∈ Sd−1 = {ω ∈ Rd : |ω| = 1 } получаются из некоторого (3d − 1)-мерного
кубатурного правила, N ⊂ N –– его множество индексов. Заметим, что численное
интегрирование в (2.8) выполняется по дискретному спектру (ζ,ζ∗) и непрерыв-
ному спектру ω.

Интеграл столкновений, записанный в симметризованной форме,

J(fγ) =
1

4

∫ (
δγ + δ∗γ − δ′γ − δ′∗γ

)
(f ′f ′∗ − ff∗)BdΩ(ω)dζdζ∗, (2.9)



60

где δγ = δ(ζ − ζγ) –– дельта-функция Дирака в Rd, имеет следующий дискретный
аналог:

Ĵγ(f̂γ) =
πV 2

Γ∑
ν∈N wνw∗ν

∑
ν∈N

(
δνγ + δ∗νγ − δ′νγ − δ′∗νγ

)(wνw∗ν

w′
νw

′
∗ν
f̂ ′ν f̂

′
∗ν − f̂ν f̂∗ν

)
Bν,

(2.10)
где δςγ –– символ Кронекера. В общем случае ζ ′

ν и ζ ′
∗ν не попадают в V , поэтому

величины f̂ ′ν , f̂ ′∗ν ,w′
ν ,w′

∗ν и функции δ′νγ, δ′∗νγ должны быть определены некоторым
образом.

Максвелловское распределение аппроксимируется следующим образом:

f̂Mγ = ρ

[∑
ς∈Γ

wς exp
(
−
(ζς − v)2

T

)]−1

wγ exp
(
−
(ζγ − v)2

T

)
. (2.11)

2.2.2 Проекционно-интерполяционная техника

Если скорости после столкновения, ζ ′
ν /∈ V и ζ ′

∗ν /∈ V , заменяются, соответ-
ственно, ближайшими сеточными скоростями, ζλν

∈ V и ζµν
∈ V , то дискретный

интеграл столкновений (2.10) теряет свойство консервативности, и дискретный
максвеллиан (2.11) перестаёт быть равновесным состоянием. Для решения этих
проблем в КПИМДС применяются две специальные процедуры.

Во-первых, ζ ′
ν проецируется на множество сеточных скоростей { ζλν+sa :

a ∈ Λ } ⊂ V следующим образом:

δ′νγ =
∑
a∈Λ

rλν ,aδλν+sa,γ, (2.12)

где множество индексов Λ = { a : rλν ,a ̸= 0 } ⊂ Z. Множество правил смещения
S = { sa : a ∈ Λ } называется проекционным шаблоном. Выражение (2.12) мож-
но формально рассматривать как приближение δ(ζ ′ − ζγ) в пространстве дельта-
функций { δ(ζ − ζγ) : ζγ ∈ N } проекционным методом Петрова––Галёркина на
некоторую линейную оболочку функций ψs(ζ):∫

ψs(ζγ)

(
δ(ζ ′ − ζγ)−

∑
a∈Λ

rλν ,aδ(ζλν+sa − ζγ)

)
dζγ = 0. (2.13)

Если множество {ψs} содержит все столкновительные инварианты, например

ψ0 = 1, ψi = ζi, ψ4 = ζ2i , (2.14)
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то при найденных проекционных весах rλν ,a для заданных проекционных скоро-
стей ζλν+sa каждый член кубатуры (2.10) обеспечит сохранение массы, импульса
и кинетической энергии.

Во-вторых, для того чтобы выполнить

Ĵγ

(
f̂Mγ

)
= 0, (2.15)

подбирается необходимая интерполяция f̂ ′ν . В достаточно общем виде, она может
быть рассмотрена в виде среднего взвешенного по Колмогорову

f̂ ′ν = φ−1
f

(∑
a∈Λ

qλ,aφf

(
f̂λ+sa

))
, w′

ν = φ−1
w

(∑
a∈Λ

pλ,aφw (wλ+sa)

)
, (2.16)

где соответствующие интерполяционные веса нормированы:∑
a∈Λ

qλ,a = 1,
∑
a∈Λ

pλ,a = 1, (2.17)

а φf и φw –– непрерывные строго монотонные функции, φ−1
f и φ−1

w –– обратные к
ним функции. Если положить

φf(x) = φw(x) = ln(x), φ−1
f (x) = φ−1

w (x) = exp(x), pλ,a = qλ,a = rλ,a, (2.18)

то (2.15) выполняется строго. Кроме того, несложно показать, что среднее гео-
метрическое вида (2.18) приводит к выполнению дискретного аналога H-теоремы
(энтропийности) [85]. Этот тип интерполяции требует высоких затрат с вычисли-
тельной точки зрения, однако на практике операция возведения в степень может
быть выполнена с точностью 10−5, что позволяет в несколько раз ускорить вычис-
ления. Для ζ ′

∗ν и f̂ ′∗ν все формулы аналогичны.

2.2.3 Решение задачи Коши

Обратимся теперь к пространственно-однородному уравнению Больцма-
на (2.6). Пусть fnγ обозначает приближённое решение (2.6) для скорости ζγ, γ ∈ Γ

в момент времени tn, n ∈ N. Переписывая (2.10) как

Ĵn
γ

(
f̂nγ

)
=

N∑
ν=1

∆̂n+(ν−1)/N
γ

(
f̂nγ

)
, N = |N |, (2.19)
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где ∆̂
n+(ν−1)/N
γ –– это ν ∈ Nn член суммы (2.10), можно применить явный метод

Эйлера первого порядка в дробных шагах

f̂n+ν/N
γ = f̂n+(ν−1)/N

γ +∆t∆̂n+(ν−1)/N
γ

(
f̂n+(ν−1)/N
γ

)
, (2.20)

где ∆t = tn+1 − tn –– временно́й шаг. Схема (2.20) имеет порядок сходимости
O(∆t|Γ|/|N |), если все дискретные скорости ζγ распределены равномерно в по-
следовательностях (ζν)

N
ν=1 и (ζ∗ν)

N
ν=1. Этого можно добиться случайной переста-

новкой кубатурной последовательности. Если |Γ|/|N | = O(∆t), то достигается
второй порядок точности.

Оптимальные кубатурные правила Коробова [183; 243] используются для
аппроксимации восьмимерного интеграла в (2.10). На каждом временно́м шаге
решётка сдвигается на случайный вектор, так что получается последовательность
множеств кубатурных точек (Nn)n∈N.

2.2.4 Сохранение положительности

Схема (2.20) допускает отрицательные значения функции распределения,
при которых она теряет свойство устойчивости. Для того чтобы сохранить поло-
жительность, достаточно потребовать

f̂n+(ν−1)/N
γ +

∆t

N
∆̂n+(ν−1)/N

γ > 0 (2.21)

для всех γ ∈ Γ и ν ∈ Nn. Если γ = ν, то имеем

f̂ν −
A

N
f̂ν f̂∗ν > 0, A =

π∆tV 2
ΓNBmax∑

ν∈N wνw∗ν
(2.22)

или
N > Af̂max, (2.23)

где

f̂max = max
γ∈Γ

f̂γ, Bmax = max
γ,ς∈Γ
ω∈S2

B(ω, ζγ, ζς) = O(ζmax), ζmax = max
γ∈Γ

|ζγ|. (2.24)

Такая же оценка справедлива, когда ζγ = ζ∗ν .
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Проекционные узлы γ = λν + sa (и γ = µν + sa) рассматриваются с ин-
терполяцией (2.18). Дополнительно предположим, что rλν ,a ≤ 1. Если rλν ,a ≥ 0,
получаем

N > Af̂maxε
2
fε

2
w, (2.25)

где

εf = max
sa,sb∈S
γ∈Γ

f̂γ+sa

f̂γ+sb

, εw = max
γ,ς∈Γ

wγ

wς
. (2.26)

Для гладкой функции распределения εf пропорциональна максимальному диа-
метру проекционного шаблона

RS = max
sa,sb∈S
γ∈Γ

∣∣ζγ+sa − ζγ+sb

∣∣ . (2.27)

Если rλν ,a < 0, имеем

f̂λν+sa +
A

N
rλν ,af̂ν f̂∗ν > 0. (2.28)

Для произвольной функции распределения получаем дорогостоящую оценку

N > Af̂maxr̄max max
γ,ς∈Γ

f̂γ

f̂ς
, r̄max = max

γ∈Γ,a∈Λ
(−rγ,a), (2.29)

но для максвеллиана
N > Af̂maxε

2
f r̄max. (2.30)

Таким образом, чтобы уменьшить количество точек N , достаточное
для (2.21), скоростную сетку необходимо строить, минимизируя |Γ|, ζmax и εw, а
проекционный шаблон выбирать, минимизируя RS и r̄max. Величина εf уменьша-
ется при сгущении сетки в областях больших градиентов функции распределения.

На практике условие (2.21) для всех ν требует больших вычислительных за-
трат. Для достижения приемлемой точности достаточно исключать из (2.20) чле-
ны, нарушающие (2.21). Другими словами, столкновительный интеграл можно
вычислять как

Ĵn
γ =

∑
ν∈N\M

∆̂n+(ν−1)/N
γ , (2.31)

где M –– множество кубатурных точек, исключённых из N . Для того чтобы не до-
пустить значительной ошибки при такой методике численного интегрирования,
необходимо контролировать вклад исключённых узлов в столкновительный ин-
теграл. Например, N может быть выбрано так, чтобы величина

εJ =
πV 2

Γ

ρ
∑

ν∈N wνw∗ν

∑
ν∈M

∣∣∣f̂λν
f̂µν

− f̂ν f̂∗ν

∣∣∣Bν. (2.32)
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была достаточно мала. Интерполяция (2.18) может приводить к огромным значе-
ниям f̂ ′ν , когда одно из значений f̂λν+sa очень мало, а соответствующий ему вес
rλν ,a отрицателен. По этой причине интерполяция в (2.32) не используется.

2.2.5 Проекционные шаблоны

В дальнейшем будем предполагать, что скоростная сетка прямоугольна
в R3, поэтому она может быть проиндексирована целочисленным вектором, т. е.
Γ = { γ : γ ∈ Z3 }. Правило смещений может также быть представлено как цело-
численный вектор, т. е. S ⊂ Z3. Тогда сумму индексов следует интерпретировать
как векторную сумму в Z3. В [221] показано, что проекционный метод облада-
ет вторым порядком аппроксимации по отношению к шагу прямоугольной ско-
ростной сетки, поэтому веса wγ выбираются так, чтобы соответствовать формуле
прямоугольников со срединной точкой.

Благодаря симметрии равномерной сетки, достаточно использовать два про-
екционных узла, чтобы обеспечить консервативность. В общем случае пять про-
екционных узлов необходимо, чтобы существовало решение (2.13) для (2.14).
Диаметр шаблона RS можно уменьшить, если использовать семь проекционных
узлов. Если |S| = n, то схема (2.20) называется n-точечной схемой.

2-точечная схема основана на симметричном проецировании

δ′νγ = (1− r)δλγ + rδλ+s,γ, δ′∗νγ = (1− r)δµγ + rδµ−s,γ, (2.33)

где ζλ+s + ζµ−s = ζλ + ζµ и

r =
E0 − E1

E2 − E1
, E0 = ζ2

ν + ζ2
∗ν, E1 = ζ2

λ + ζ2
µ, E2 = ζ2

λ+s + ζ2
µ−s. (2.34)

Подстрочный индекс ν опущен для краткости. Для этой схемы выполняются сле-
дующие соотношения:

0 ≤ r < 1, h ≤ RS ≤
√
3h, (2.35)

где h3 = wγ = VΓ/|Γ|.
Пусть η = ζ ′

ν − ζλ, а h+, h− –– минимальные диагональные смещения от
ζλ, такие что вектор h+ направлен в тот же октант, что и η, а вектор h− лежит в
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противоположном. Тогда компактная 5-точечная схема строится на узлах

ζλ+s0 = ζλ, ζλ+si = ζλ + (h+ · ei)ei, ζλ+s4 = ζλ + h−, (2.36)

где ei –– базис прямоугольной скоростной сетки. Проекционные веса равны

rλ,0 = 1−
4∑

i=1

rλ,i, rλ,i =
ηi − rλ,4h−i

h+i
, rλ,4 =

η · (η − h+)

h− · (h− − h+)
. (2.37)

Для равномерной сетки справедливы следующие соотношения:

0 < rλ,0 ≤ 1, − 1

12
≤ rλ,i <

11

24
, −1

8
≤ rλ,4 ≤ 0, RS =

√
6h. (2.38)

Симметричная 7-точечная схема строится на узлах

ζλ+s0 = ζλ, ζλ+s±i
= ζλ + (h± · ei)ei. (2.39)

Проекционные веса равны

rλ,0 = 1−
3∑

i=1

rλ,i + rλ,−i, rλ,±i = ± ηi(ηi − h∓i)

h±i(h+i − h−i)
. (2.40)

В (2.40) суммирование по повторяющимся индексам не производится. Для равно-
мерной сетки справедливы следующие соотношения:

1

4
≤ rλ,0 ≤ q1, 0 ≤ rλ,±i ≤

3

8
, −1

8
≤ rλ,∓i ≤ 0, RS = 2h. (2.41)

И 5-точечная, и 7-точечная схемы обладают r̄max = 1/8. Для того чтобы
уменьшить это значение, необходимо использовать больше проекционных уз-
лов [86].
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Глава 3. Классические задачи молекулярной газодинамики

В трудах Киотской группы реализована масштабная программа высокоточ-
ного численного анализа классических задач молекулярной газодинамики на ос-
нове линеаризованного уравнения Больцмана для газа твёрдых сфер [185; 186]. В
настоящем исследовании рассмотрены некоторые из них при тех же предположе-
ниях, но в существенно нелинейной постановке. В представленных результатах
численная погрешность макроскопических переменных порядка 10−4 по абсолют-
ному значению. Для течения Куэтта она не превышает 10−4.

Для численного решения уравнений гидродинамического типа используют-
ся солверы, написанные в рамках вычислительной платформы OpenFOAM [213].
В частности, разработан солвер уравнений КГФ [180] на основе метода конечных
объёмов и модифицированного алгоритма SIMPLE [58].

Для численного решения уравнения Больцмана используется программный
комплекс анализа газокинетических процессов, разработанный автором в соста-
ве коллектива кафедры моделирования ядерных процессов и технологий факуль-
тета общей и прикладной физики Московского физико-технического института
(государственного университета) [11; 12; 236]. Сетки в физическом пространстве
выбираются по такому же критерию, как и при решении уравнений гидродина-
мического типа, однако дополнительно сгущаются в геометрической прогрессии
возле границ с диффузным отражением, чтобы обеспечить аппроксимацию слоя
Кнудсена с ошибкой не более 10−4. Сетки в скоростном пространстве выбираются
как равномерные, так и неравномерные, причём начальная функция распределе-
ния при моделировании на подробной сетке берётся как результат моделирова-
ния на грубой сетке. Множество кубатурных точек везде подбирается так, чтобы
εJ < 10−5.

3.1 Плоское течение Куэтта

Рассмотрим одноатомный идеальный газ, заключённый между двумя беско-
нечными параллельными пластинами с постоянной и одинаковой (∆T = 0) тем-
пературой, принятой за единичную (рис. 3.1) За счёт их движения относительно
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Рисунок 3.1 — Геометрия задачи плоского течения Куэтта

друг друга с продольной скоростью (вдоль оси x) формируется плоское течение
Куэтта. Ось y нормальна к пластинам, удалённым друг от друга на единичное рас-
стояние, так что координаты пластин равны y = ±1/2, а их скорости ±∆v/2. В
такой постановке задача антисимметрична, поэтому расчётная область заключе-
на в интервал 0 < y < 1/2. На пластине y = 1/2 ставятся граничные условия
диффузного отражения:

f(ζx,ζy,ζz) =
2

π
exp

[
−
(
ζx −

∆v

2

)2

− ζ2y − ζ2z

]∫
ζ∗y>0

ζ∗yf∗dζ∗, ζy < 0, (3.1)

а на границе y = 0 условие антисимметричности:

f(ζx,ζy,ζz) = f(−ζx,− ζy,ζz), ζy > 0. (3.2)

Плотность нормируется так, чтобы∫ 1
2

− 1
2

ρdy = 1. (3.3)

Течение Куэтта линеаризуется при ∆v ≪ 1, тогда искомое решение может
быть найдено в форме

φ = ∆vζxΦ(y,ζy,ζ), ζ =
√
ζ2i , (3.4)

Подставляя (3.4) в (1.26), получаем

ζy
∂Φ

∂y
=

1

kζx
L(ζxΦ) (3.5)
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со следующими граничными условиями:

Φ−(1/2,ζy,ζ) = 1, Φ+(0,ζy,ζ) = −Φ−(0,− ζy,ζ), (3.6)

где Φ± = Φ(ζy ≷ 0). Возмущенные макроскопические переменные

Pxy

∆v
= 2

∫
ζ2xζyΦEdζ,

vx
∆v

=

∫
ζ2xΦEdζ,

qx
∆v

=

∫
ζ2xζ

2ΦEdζ − 5

2

vx
∆v

. (3.7)

3.1.1 Методы решения линейной задачи

При k → ∞мы получаем бесстолкновительное линеаризованное уравнение
Больцмана ζy∂Φ/∂y = 0, которое имеет простое решение в виде комбинации двух
антисимметричных полумаксвеллов Φ± = ∓1, что даёт

Pxy

∆v
= − 1√

π
, vx = qx = 0. (3.8)

При малых k можно построить решение Грэда––Гильберта

Φ =
2y − ζyB(ζ)k
1− 2k0k

, (3.9)

где B(ζ) определена в (1.59). Тогда макроскопические переменные равны

Pxy

∆v
= − γ1k

1− 2k0k
,

vx
∆v

=
y − (Y −

0 − Y +
0 )k

1− 2k0k
,

qx
∆v

=
(H−

A −H+
A )k

1− 2k0k
, (3.10)

где функции кнудсеновского слоя K± = Y ±
0 , H

±
A :

K± = K(η±), η± =
1∓ 2y

2k
. (3.11)

Асимптотическое решение предполагает, что слои Кнудсена обеих пластин не пе-
ресекаются.

При произвольных k решение может быть получено путём численного ана-
лиза. С высокой точностью эта задача была решена Киотской группой для газа
твёрдых сфер [191]. Для сравнения рассмотрим также решение модельного урав-
нения Крука––Веландера, у которого столкновительный член в линеаризованной
форме

L(φ) = −φ+ ω + 2ζivi +

(
ζ2i −

3

2

)
τ (3.12)
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приводит к

ζy
∂Φ

∂y
=

1

k

(
2vx
∆v

− Φ

)
. (3.13)

Решение (3.13) может быть записано в следующем виде [216]:

Φ± = ∓ exp
(
∓η∓
ζy

)
+

∫ y

∓ 1
2

1

kζy
exp

(
−y − s

kζy

)
g(s)ds, (3.14)

где g(y) = 2vx/∆v находится из интегрального уравнения Фредгольма второго
рода

√
πg(y) = T0

(
1− 2y

2k

)
− T0

(
1 + 2y

2k

)
+

1

k

∫ 1
2

0

[
T−1

(
|y − s|
k

)
− T−1

(
y + s

k

)]
g(s)ds, (3.15)

где Tn(s) –– специальные функции Абрамовица [1]:

Tn(s) =
∫ ∞

0

tn exp
(
−t2 − s

t

)
dt, s ≥ 0, n ∈ Z. (3.16)

Ядро уравнения (3.14) содержит слабую сингулярность, поэтому для получения
высокоточного решения необходимо использовать некоторые специальные мето-
ды [132; 141]. Остальные макроскопические переменные вычисляются следую-
щим образом:

Pxy

∆v
= − 2k√

π

(
T2(0)− T2

(
1

k

)
+

1

k

∫ 1
2

0

[
T1
(
1− 2s

2k

)
− T1

(
1 + 2s

2k

)]
g(s)ds

)
,

(3.17)
qx
∆v

=
1

2
√
π

(
T2
(
1− 2y

2k

)
− T2

(
1 + 2y

2k

)
+

1

k

∫ 1
2

0

[
T1
(
|y − s|
k

)
− T1

(
y + s

k

)]
g(s)ds

)
− g(y)

4
.

(3.18)

3.1.2 Методы решения нелинейной задачи

В настоящем исследовании для решения нелинейной задачи используется
как численное решение КПИМДС, так и асимптотическое. Для верификации по-
лученных результатов дополнительно используются другие известные методы,
перечисленные коротко ниже.
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Свободномолекулярный предел

Бесстолкновительное уравнение Больцмана, как и в линеаризованном слу-
чае, имеет решение в виде комбинации двух антисимметричных полумаксвелли-
анов

f± = f(ζy ≷ 0) =
1

π
√
π

exp

[
−
(
ζx ±

∆v

2

)2

− ζ2y − ζ2z

]
, (3.19)

дополняющее уравнения (3.8) следующими соотношениями:

τ

(∆v)2
=

1

6
, qy = 0,

Pxx

(∆v)2
=

1

2
, Pyy = Pzz = 0. (3.20)

Уравнения Навье––Стокса

Для задачи течения Куэтта уравнения сохранения вырождаются в

∂p

∂y
= 0,

∂pxy
∂y

= 0,
∂

∂y
(vxpxy + qy) = 0. (3.21)

Подставляя законы Ньютона и Фурье,

pxy = −γ1k
√
T
∂vx
∂y

, qy = −5

4
γ2k

√
T
∂T

∂y
, (3.22)

в (3.21), получаем систему дифференциальных уравнений

∂

∂y

(√
T
∂vx
∂y

)
= 0,

√
T

(
∂vx
∂y

)2

+
5

4

γ2
γ1

∂

∂y

(√
T
∂T

∂y

)
= 0, (3.23)

которая обычно решается с граничными условиями без скольжения при y = 1/2:

vx =
∆v

2
, T = 1. (3.24)

Константное давление p рассчитывается по общей массе газа (см. (3.3)):

p =

(
2

∫ 1
2

0

dy

T

)−1

. (3.25)
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Прямое статистическое моделирование

Детальное описание метода Бёрда может быть легко найдено в литературе
(см., например, [35; 186]). В настоящем исследовании используется его численная
реализация, солвер dsmcFoam [182], разработанный в рамках вычислительной
платформы OpenFOAM.

Численное моделирование газа твёрдых сфер между двумя параллельными
пластинами осуществляется в двумерном пространстве (x,y) при периодических
граничных условиях вдоль оси y. Размер статистического ансамбля 2 × 106 для
∆v = 0.1 и 2 × 105 для ∆v ≥ 1. Область физического пространства 0 < y < 1/2

разделена на равномерные участки: от 40 для Kn = 10 до 100 для Kn = 0.1.
Временно́й шаг выбирается эмпирически для обеспечения удовлетворительного
приближения макроскопических переменных:

∆t =
π

2

√
Kn

1000
. (3.26)

Для снижения статистического шума решение усредняется с течением времени
после достижения устойчивого состояния.

3.1.3 Решение на равномерной сетке

Прежде всего необходимо продемонстрировать, насколько точное решение
возможно получить, используя равномерные сетки в скоростном пространстве.
Для этого решается линейная задача методом КПИМДС и сравнивается с извест-
ным решением.

На рис. 3.2 показана зависимость pxy от Kn, полученная различными мето-
дами. Для бесстолкновительного газа есть превышение pxy на 0.0061, обусловлен-
ное квадратурной ошибкой вычисления макроскопических переменных на равно-
мерной сетке. При малых Kn наблюдается отклонение коэффициентов вязкости
(+0.0083) и скольжения (−0.012).

На рис. 3.3 и 3.4 видно, что для больших Kn полученное решение сильно
отклоняется от истинного. Это вызвано недостаточной аппроксимацией резкого
перепада функции распределения около плоскости ζy = 0. Если при малых Kn
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Рисунок 3.2 — Сдвиговое напряжение, полученное КПИМДС на равномерной сетке.
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Рисунок 3.3 — Средняя скорость, полученная КПИМДС на равномерной сетке.
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Рисунок 3.4 — Средний поток тепла, полученный КПИМДС на равномерной сетке.
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Рисунок 3.5 — Зависимость погрешностей вычисления теплопотока для бесстолкновительного
газа и коэффициента теплопроводности для слаборазреженного газа от числа узлов на радиусе
равномерной скоростной сетки.
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кнудсеновский слой вносит малый вклад в интегральные характеристики, изобра-
жённые на рис. 3.3 и 3.4, то с увеличением Kn резкий перепад решения проникает
во всю область физического пространства.

Численная погрешность решения убывает со вторым порядком в зависимо-
сти от шага скоростной сетки, что продемонстрировано в логарифмическом мас-
штабе на рис. 3.5.

3.1.4 Решение на неравномерной сетке

Этот раздел последовательно описывает пространственную дискретизацию
задачи, применяемые методы контроля точности, полученные решения в ви-
де плоских сечений функции распределения и профилей макроскопических пе-
ременных, наконец, сравнительный анализ с результатами ПСМ, нелинейного
асимптотического анализа, а также с решениями линейной задачи.

Дискретизация пространства

Расчётная область (0 < y < 1/2) состоит из Nx ячеек, расположенных в
одном ряду. При малых Kn вблизи y = 1/2 физическая сетка измельчается так,
чтобы разрешить слой Кнудсена с достаточной точностью.

Пространство дискретных скоростей ограничено сфероидом, заполненным
центрированной прямоугольной сеткой V . Ось симметрии сфероида параллельна
оси ζx. ζ(cut)

x –– большая полуось, ζ(cut)
r –– малая полуось. Функция распределения

достаточно гладкая вдоль ζx и ζz; более того, ζz компонента решения незначитель-
но отличается от максвелловской с vz = 0. Поэтому расстояние между узлами
выбирается постоянным вдоль оси ζx, а вдоль оси ζz узлы располагаются как кор-
ни полиномы Эрмита, так как известно, что квадратуры Гаусса––Эрмита обеспе-
чивают максимальный порядок аппроксимации при вычислении интегралов вида∫
h(s) exp(−s2)ds. ζy координаты узлов ζγ отдаляются от ζy = 0 в геометрической

прогрессии со знаменателем r. Такое измельчение сетки позволяет аппроксими-
ровать резкий перепад около ζy = 0 с хорошей точностью.
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Таблица 2 — Параметры сетки скоростей для различных ∆v: ζ(cut)
x –– большая полуось сфероида

расчётной области, ζ(cut)
r –– малая полуось того же сфероида, Nζi –– максимальное количество

узлов вдоль каждой оси, |V| –– общее число узлов, r –– знаменатель геометрической
последовательности, ∆ζx –– расстояние между узлами вдоль оси ζx, min(∆ζy) –– минимальное
расстояние между узлами вдоль оси ζy.

∆v ζ
(cut)
x ζ

(cut)
r Nζi/2 |V| r ∆ζx min(∆ζy)

0.1 4.35 4.3 (12, 26, 8) 15008 1.28 0.36 0.0020
1.0 4.80 4.5 (14, 23, 9) 16872 1.29 0.34 0.0037
2.0 5.30 5.0 (16, 24, 10) 23096 1.28 0.33 0.0038
5.0 8.00 8.0 (20, 26, 13) 41520 1.27 0.40 0.0043

Контроль точности

Физическая сетка уточняется таким образом, что ширина краевой ячейки
составляет около Kn/100. Это условие обеспечивает точность порядка 10−4 при
аппроксимации по формуле трапеций функций Кнудсена, таких как Y0(η), HA(η).
При Kn = 100, когда решение практически константно в физическом простран-
стве, Nx = 30 достаточно для достижения той же точности.

Для оценки точности дискретного приближения в пространстве скоростей
были рассмотрены две противоположные формы функции распределения. Во-
первых, 13-моментное приближение Грэда

f =
ρ

(πT )3/2
exp

(
−c

2
i

T

)[
1 +

(pij − pδij)cicj
pT

+
4

5

qici
pT

(
c2j
T

− 5

2

)]
, ci = ζi − vi,

(3.27)
используется для оценки погрешности аппроксимации гладких функций. Во-
вторых, комбинация двух разных полумаксвеллианов

f(ζy ≷ 0) =
ρ±

(πT±)3/2
exp

(
−
(ζx − v±x )

2 + ζ2y + ζ2z
T±

)
(3.28)

используется для моделирования разрыва при ζy = 0. Кроме того, при малых Kn и
больших ∆u газ значительно нагревается из-за трения, поэтому скоростная сетка
должна подходить как для распределения скоростей с T = 1 вблизи пластины, так
и для большей температуры вблизи плоскости симметрии. Параметры скоростной
сетки, достаточные для получения точности порядка 10−4 представлены в табл. 2.
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Максимальное значение εJ наблюдается в краевой ячейке, где f меняется
сильнее около ζy = 0, и практически не зависит от Kn при Kn < 1. Для бо́льших
Kn εJ меньше из-за меньшего размера ячеек по отношению к длине свободного
пробега. Пока решение далеко от стационарного состояния, меньшее число ку-
батурных точек N используется, чтобы ускорить процесс его достижения. Для
того чтобы уменьшить статистическую ошибку из-за случайного сдвига решётки
интегрирования, значения всех макроскопических переменных усредняются по
временны́м итерациям после достижения стационарного состояния. Хотя для 7-
точечной схемы требуется немного меньшее N , 5-точечная схема используется,
поскольку требует немного меньше вычислений.

Стоит сделать замечание о временно́м шаге и процессе достижения стаци-
онарного состояния. В силу условия Куранта сходимости явной схемы для урав-
нения переноса (2.5), шаг по времени имеет тот же порядок, что и размер краевой
ячейки. Поэтому для ускорения численного счёта при малых Kn, начальная функ-
ция распределения строится как локальный максвеллиан с ρ, vi и T , полученных
при решении на грубой равномерной скоростной сетке. Более того, для самых ма-
леньких Kn, решение не достигает стационарного состояния полностью. Итераци-
онный процесс останавливается, когда амплитуда волновых колебаний уменьша-
ется до 10−4, после чего решение экстраполируется для оценки установившихся
профилей макроскопических переменных. Чтобы достичь стационарного состоя-
ния для самых больших Kn, требуется также много временны́х шагов.

Полученные результаты

На рис. 3.6 показаны двумерные поперечные сечения функций распреде-
ления при ∆v = 2. Они получены без дополнительного усреднения по време-
ни, поэтому можно заметить небольшие колебания вблизи ζy = 0 (например, на
рис. 3.6в). Вблизи границы с диффузным отражением функция распределения на-
поминает комбинацию двух полумаксвеллианов как для малых Kn (рис. 3.6а), так
и больших (рис. 3.6д). Видно, что распределение молекулярных скоростей, дви-
жущихся к пластине (ζy > 0) имеет более высокую температуру, чем распреде-
ление движущихся от неё молекул (ζy < 0). В промежуточном случае распреде-
ление скоростей больше всего отличается от максвелловского, а тепловой поток к
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Рисунок 3.6 — Контурные графики функции распределения скоростей для ∆v = 2. Показано
поперечное сечение ζz = 0.1665.
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пластине максимален (рис. 3.6в). Вблизи плоскости симметрии вид функции рас-
пределения значительно меняется в зависимости от Kn. Для малых Kn он близок
к состоянию равновесия (рис. 3.6б). С ростом Kn возникает седловая точка ζi = 0

(рис. 3.6г). Для больших Kn решение несильно отличается от распределения ско-
ростей на границе y = 1/2 (рис. 3.6е).

На рис. 3.7 показаны профили макроскопических переменных. Отметим
некоторые их особенности. Из-за роста давления газа относительное скольжение
газа вдоль пластины уменьшается с увеличением его скорости (см. также асимпто-
тическое решение (1.137)). Таким же образом уменьшается и скачок температуры.
В линейном случае продольный вектор теплового потока qx представлен только в
слое Кнудсена, но из-за сильной анизотропии функции распределения при боль-
ших ∆v его объёмная составляющая увеличивается быстрее, чем (∆v)2. Поэтому
кривизна профиля qx меняет свой знак с увеличением∆v. Асимптотическое реше-
ние описывает то же самое поведение qx (см. (1.140)). Благодаря значительному
нагреву газа при больших ∆v, вектор поперечного потока тепла qy также растёт
быстрее, чем (∆v)2, но кривизна профиля сохраняет свой знак. Более того, для
большинства ∆v и Kn qx превалирует над qy. Продольное напряжение Pxx всегда
больше, чем Pyy и Pzz. В слое Кнудсена при малых Kn, постоянное напряжение
Pyy становится больше, чем Pzz. Напомним, что Pij не тензор сдвиговых напря-
жений, а возмущенный тензор напряжений (см. (1.30)). Средняя температура газа
увеличивается с ростом Kn, потому что более разреженный газ имеет более низ-
кую теплопроводность.

Сравнение результатов

На рис. 3.8–3.14 показаны макроскопические переменные, интегрирован-
ные по половине объёма между пластинами 0 < y < 1/2, в зависимости от чис-
ла Кнудсена. Чтобы наглядно отобразить разницу между результатами, мы вы-
читаем асимптотические решения в двух противоположных пределах (Kn → 0

и Kn → ∞) и используем логарифмическую шкалу. Величины со звездочкой
вычисляются по уравнениям Навье––Стокса (1.20) с граничными условиями без
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скольжения (3.24):

P ∗
NSxy =

1

k

∫ 1
2

0

Pxydy, PNSxy = P ∗
NSxy(∆v → 0) = −γ1

∆v

2
,

v∗NSx =

∫ 1
2

0

vxdy, vNSx = v∗NSx(∆v → 0) =
∆v

8
,

τ ∗NS =

∫ 1
2

0

τdy, τNS = τ ∗NS(∆v → 0) =
γ1
γ2

(∆v)2

30
.

Их числовые значения показаны в табл. 3.
На рис. 3.8–3.10 показаны макроскопические переменные, не равные нулю

в линеаризованной задаче. При малых ∆v верификация результатов может быть
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0
(h(1) − h(2))dy|, где h = Pxy, qx, τ , а верхний индекс

обозначает метод, в зависимости от числа Кнудсена:         линии без кругов соответствуют
разнице между асимптотическим и КПИМДС решениями,         линии с кругами соответствуют
разнице между решениями, полученными методом Бёрда и КПИМДС.

Таблица 3 — Величины, полученные из численного решения уравнений Навье––Стокса.
∆v P ∗

NSxy/PNSxy v∗NSx/vNSx τ ∗NS/τNS

0.1 1.000220 0.999945 1.000049
1 1.021740 0.994715 1.004237
2 1.083898 0.981103 1.015173
5 1.438344 0.931106 1.055818
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основана на сравнении с точным численным решением линеаризованного уравне-
ния Больцмана [191] (чёрная линия). В отличие от метода Бёрда численные флук-
туации КПИМДС уменьшаются, когда задача приближается к линейному случаю
(благодаря интерполяции (2.18)).

Для сравнения с решением уравнения Крука––Веландера (голубая линия)
k заменяется в (3.14) следующими величинами: γ1k для рис. 3.8 и 3.9, γ2k для
рис. 3.10. При такой модификации коэффициенты вязкости и теплопроводности
модели Крука––Веландера совпадают с твердосферными, поскольку для неё γ1 =
γ2 = 1.

На рис. 3.8 и рис. 3.10 видно, что разница между асимптотическим решени-
ем (синяя линия) и КПИМДС (красная линия) является O(Kn3). Это находится в
соответствии с выражениями (1.139) и (1.140). При ∆v = 0.1, асимптотическое
решение близко к линейному (3.7), которое имеет больший порядок аппрокси-
мации. На рис. 3.9 отклонение кривых КПИМДС от асимптотического решения
при малых Kn указывает на то, что погрешность, достигнутая КПИМДС, нахо-
дится в интервале от 10−5 до 10−4. Это утверждение более наглядно на рис. 3.15,
где абсолютная разница между решениями изображена для некоторых макроско-
пических переменных. Увеличение ошибки для τ и vx для самых маленьких Kn
обусловлено недостаточным количеством временны́х итераций, выполненных во
время моделирования. Другими словами, стационарное состояние не достигается
полностью.

Метод Бёрда (зелёная линия) демонстрирует погрешность в интервале от
10−4 до 10−3, главным образом из-за высокой дисперсии статистического шума,
особенно при ∆v = 0.1. На рис. 3.8 заметна разность с постоянным знаком между
решениями, полученными методом Бёрда и КПИМДС. Она может быть уменьше-
на при устремлении шага по времени к нулю. Меньший временно́й шаг намерен-
но не используется в настоящем расчёте DSMC, чтобы проиллюстрировать, что
даже такой небольшой временной шаг как (3.26) может оказаться недостаточным
для достижения решения высокой точности. Между прочим, другие величины,
рассчитанные методом Бёрда, практически не меняются с дальнейшим уменьше-
нием временно́го шага.

На рис. 3.11–3.14 показаны макроскопические переменные, возникающие
как квадрат от ∆v. Результаты для ∆v = 0.1 опущены из-за низкой точности. Раз-
ница между решениями, полученными асимптотическим методом и КПИМДС,
является O(Kn3) на рис. 3.11–3.13 и O(Kn2) на рис. 3.14. Принимая во внимание
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соответствующую точность отдельных подходов, все представленные результаты
находятся в полном согласии.

3.2 Течение между пластинами с синусоидальным распределением
температур

x

z

TB(x)

0 1

1

0.5

0.5

Рисунок 3.16 — Геометрия задачи

Рассмотрим плоскую периодическую геометрию как на рис. 3.16. Газ распо-
ложен между двумя покоящимися (vBi = 0) бесконечными параллельными пла-
стинами, разделёнными на единичное расстояние. Их температура распределена
по синусоидальному закону:

TB = 1− cos(2πx)
2

. (3.29)

Плотность газа нормирована на единицу (3.3). В силу симметрии задачи расчётная
область представляет собой квадрат со стороной 1/2. На рис. 3.16 она выделена
серым цветом.

Эта задача изучалась в [188] как с помощью уравнений КГФ, так и на осно-
ве кинетического подхода, однако из-за высокой сложности численного решения
уравнения Больцмана использовалось уравнение Крука––Веландера. Некоторые
результаты моделирования смеси газов для рассматриваемой геометрии можно
найти в [218]. В настоящем исследовании получено прямое решение уравнения
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Рисунок 3.17 — Изотермические линии в континуальном пределе

Больцмана для газа твёрдых сфер. Кроме того, в рамках задачи рассматривается
асимптотическое решение для малых Kn, основанное на граничных условиях с
учётом дополнительных членов старшего порядка.

Решение задачи в континуальном пределе

Для численного решения поставленной задачи в физическом пространстве
используется следующая прямоугольная сетка: область 0 < x < 1/2 разбивается
на 30 интервалов одинаковой длины, а область 0 < y < 1/2 на 40 интервалов,
сгущающихся к y = 0.

На рис. 3.17 показано стационарное температурное поле, получаемое как
при решении уравнения теплопроводности, так и уравнений КГФ. В континуаль-
ном пределе уравнение теплопроводности получается из уравнений КГФ, если
положить Γ7 = 0 и K1 = 0. Эффект теплового скольжения газа значительно пре-
вышает влияние нелинейной термострессовой конвекции, что продемонстриро-
вано на рис. 3.18, где уравнения КГФ решены для граничных условий со сколь-
жением и без. Отметим также, что направления течения газа противоположны на
рис. 3.18а и 3.18б. Полученные результаты в континуальном пределе совпадают с
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Рисунок 3.18 — Стационарное поле vi1 в континуальном пределе: изолинии соответствуют
модулю, кривые со стрелками изображают направление.

Таблица 4 — Параметры сеток в скоростном пространстве: ζcut –– радиус сферы, в которой
помещаются все узлы сетки, Ni –– максимальное количество узлов вдоль оси xi, |V| –– полное
число узлов, min∆ζi –– минимальное расстояние между узлами вдоль оси xi, δTM/T ––
относительная невязка температуры максвеллиана, δTMM/T –– относительная невязка
температуры суммы двух полумаксвеллианов, разделённых плоскостью ζy = 0.

Сетка ζcut Nx,z/2 Ny/2 |V| min∆ζx,z min∆ζy δTM/T δTMM/T

M1 4.25 8 8 2176 0.53 0.53 [−20,0.3] · 10−5 −[4.0,10] · 10−5

M2 5.3 11 26 20248 0.4 0.005 [2.3,4.1] · 10−5 [2.7,4.0] · 10−5

M3 4.5 12 15 15568 0.05 0.005 [4.0,5.1] · 10−3 [4.4,5.5] · 10−3

M4 8.0 16 16 28640 0.1 0.1 [1.65,1.79] · 10−3 [3.1,3.4] · 10−3

представленными в [188]. Этот факт может служить верификацией используемого
солвера snitSimpleFoam.

Решение для произвольных чисел Кнудсена

Для рассмотрения задачи в произвольном диапазоне чисел Кнудсена необ-
ходимо обратиться к численному решению уравнения Больцмана. В физическом
пространстве использовалась такая же разностная сетка, как и при решении урав-
нений гидродинамического типа, однако в слое Кнудсена (вблизи y = 0) она до-
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Рисунок 3.19 — Изотермические линии для Kn = 0.01
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Рисунок 3.20 — Стационарное поле скоростей для Kn = 0.01: изолинии соответствуют модулю,
кривые со стрелками изображают направление.
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Рисунок 3.21 — Решение уравнения Больцмана для Kn = 0.1

полнительно сгущалась так, что ширина приграничной ячейки равнялась 0.02 от
длины свободного пробега.

Для контроля точности в скоростном пространстве использовались несколь-
ко сеток (M1, M2, M3), параметры которых представлены в табл. 4. Сначала задача
решалась на грубой равномерной прямоугольной сетке M1, после чего результат
уточнялся на неравномерных сетках. В прямоугольной сетке M2 узлы вдоль осей
x и z располагались как корни полинома Эрмита, а вдоль оси y сгущались в гео-
метрической прогрессии, чтобы адекватно аппроксимировать сильный перепад
функции распределения в слое Кнудсена. В прямоугольной сетке M3 расстояние
между узлами растёт квадратично вдоль каждой из осей. В отличие от M2, холод-
ные распределения (с температурой близкой к T = 0.5) точнее аппроксимируются
на M3. Множества кубатурных точек также имели разную мощность: около 5 ·103

для равномерной сетки и около 5 · 104 для неравномерной. Кроме того, для очень
малых Kn применялась временна́я экстраполяция распределений температуры и
поля скоростей, поскольку достижение стационарного состояния вблизи y = 1/2

требует слишком большого числа итераций явной схемы.
При использовании неравномерных скоростных сеток необходимо учиты-

вать не только качество аппроксимирования функции распределения, но и точ-
ность кубатур вида (2.7). Например, в последних двух столбцах табл. 4 представ-
лены диапазоны значений невязки температуры максвеллиана δTM и суммы двух
полумаксвелианов δTMM для характерных температур и скоростей задачи. На гру-
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бой сетке моменты функции распределения вычисляются достаточно точно, если
узлы распределены равномерно или как корни полинома Эрмита. В противном
случае необходимо использовать достаточно мелкую сетку, как это сделано вдоль
оси y для сетки M2. Для сетки M3 кубатура (2.7) для температуры всегда превы-
шает истинное значение на величину порядка 0.004, что позволяет скорректиро-
вать на эту величину поле температур, получаемое из численного решения урав-
нения Больцмана. Для сетки M1 невязка температуры принимает отрицательные
значения для температур близких к T = 1.5, поскольку используется недостаточ-
ное значение ζcut.

На рис. 3.19 и 3.20 изображены поля температуры и скорости для Kn =

0.01 и проводится сравнение между численным решением уравнения Больцмана
и решением уравнений КГФ для малых Kn. Отчётливо видно, что температур-
ное поле, полученное с использованием граничного условия старшего порядка
(рис. 3.19а) существенно лучше приближает точное решение (рис. 3.19б) по срав-
нению с температурным полем, полученным без его использования (рис. 3.17б).

На рис. 3.21 показаны соответствующие распределения для Kn = 0.1. С
увеличением Kn возрастают поток теплового скольжения и температурный скачок
возле границы y = 0. При этом область максимальной скорости газа отодвигается
от пластины.

Чтобы наглядно продемонстрировать сходимость численного решения
уравнения Больцмана к решению уравнений КГФ в континуальном пределе, рас-
смотрим некоторые интегральные величины в зависимости от числа Кнудсена
(рис. 3.22). На рис. 3.22а отчётливо видно, что граничные условия для гидродина-
мических уравнений наряду с соответствующими коррекциями кнудсеновского
слоя аппроксимируют численное решение уравнения Больцмана с заявленной
точностью. В частности, условие (1.104) даёт погрешность O(k), учёт темпе-
ратурного скачка первого порядка приводит к O(k2), добавка линейного скачка
второго порядка улучшает сходимость до O(k3). Отметим, что решение, полу-
ченное на грубой равномерной сетке M1, практически совпадает с решением на
M2, а также с откорректированным решением на M3.

На рис. 3.22б такие же порядки погрешности наблюдаются. Посколько изоб-
ражено поле vi/k, то погрешность численного решения уравнения Больцмана воз-
растает для малых k. Решения, полученные на неравномерных сетках, сгущаю-
щихся в области разрыва функции распределения (y = 0), совпадают между со-
бой, но отличаются на константную величину (около 0.008) от решения на M1. Та-
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Рисунок 3.22 — Некоторые граничные интегралы в зависимости от числа Кнудсена, полученные
разными методами: уравнение теплопроводности , уравнения КГФ с граничными условиями
ведущего порядка (только тепловое скольжение) , первого и второго порядков,
уравнение Больцмана на сетках M1 , M2 и M3 . Планка погрешности у M3 соответствует
коррекции температурного поля в соответствии с невязкой температуры максвеллиана. Планка
погрешности у M1 соответствует отностительной ошибке 3 · 10−4.

ким образом, разрыв функции распределения на границе диффузного отражения
и затухание этого разрыва в слое Кнудсена вносят незначительный вклад в общее
решение задачи. Для медленных течений этот факт объясняется тем, что величина
разрыва равна O(k). Это наблюдение позволяет считать функцию распределения
достаточно гладкой без существенных потерь в точности, а, следовательно, можно
пренебречь необходимостью адаптации скоростной сетки к геометрии задачи.

На рис. 3.22в и 3.22г, как и ожидалось, гидродинамическое решение отли-
чается от кинетического наO(k), поскольку изображены интегральные величины,
вычисляемые вдали от границы диффузного отражения. На рис. 3.22в отчётливо
видно, что решение уравнения Больцмана сходится именно к решению уравнений
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КГФ, а не уравнения теплопроводности, при этом скорректированное решение на
M3 практически совпадает с M2, немного превышая M1 (около 0.001). Эта раз-
ница, по-видимому, объясняется грубой аппроксимацией сетки M1. Кроме того,
на рис. 3.22в и 3.22г видно, что граничные условия, учитывающие вторые про-
изводные, слабо влияют на решение уравнений КГФ, однако учёт только лишь
температурного и скоростного скачков позволяет значительно улучшить точность
асимптотического решения для малых k.

3.3 Течение между двумя равномерно нагретыми некоаксиальными
цилиндрами

Теперь рассмотрим случай отсутствия градиента температуры на поверх-
ности окружающих тел в покое. Уравнения Навье-Стокса с любыми граничны-
ми условиями скольжения имеют тривиальное решение ui = 0, которое, однако,
недействительно для уравнений КГФ (1.87), (1.89), (1.91). Как указывалось выше,
даже при таких граничных условиях нелинейное термострессовое течениеможет
возникнуть из-за непараллельности изотермических поверхностей (см. (1.95)).

Рассмотрим два цилиндра (или две сферы) с радиусами R1 = 1, R2 = r и с
температурами T1 = 1, T2 = 1 + τ соответственно. Оси цилиндра параллельны,
расстояние между ними равно d вдоль оси x.

Решение задачи в континуальном пределе

На рис. 3.23 представлены результаты численного моделирования для

r = 2, d = 0.5.

Течения между сферами (рис. 3.23а) и цилиндрами (рис. 3.23б) имеют схожую
структуру. При возрастании τ течение газа в широкой области усиливается быст-
рее, чем в узкой (рис. 3.23в), а смена направления градиента температуры на про-
тивоположное разворачивает вихрь в обратном направлении (рис. 3.23г).
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Рисунок 3.23 — Поле скорости ui1 между двумя некоаксиальными поверхностями: изолинии
соответствуют модулю, кривые со стрелками изображают направление.

Нелинейное термострессовое течение убывает как O(τ 3) при малых τ

(рис. 3.24), поскольку температурный градиент включен в термострессовую силу
в виде кубического члена (см. (1.94)). Поэтому, когда τ 3 становится сравнимым с
k, следует наравне учитывать эффекты второго порядка по k [14]. С ростом τ на-
клон кривой становится менее крутым, так как вязкость газа твёрдых сфер растёт
с температурой (рис. 3.24).

Рассмотрим теперь силу, действующую на цилиндры. Как указа-
но ранее, pH2 определяется с точностью до константы из уравнений
КГФ (1.87), (1.89), (1.91). Эта константа не вносит вклада в общую силу, дей-
ствующую на тело, но для определённости удельной силы на единицу площади
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Рисунок 3.23 — (продолжение) Поле скорости ui1 между двумя некоаксиальными
поверхностями: изолинии соответствуют модулю, кривые со стрелками изображают
направление.

необходимо наложить дополнительное условие на pijH2, например:∫
p†H2dx = 0. (3.30)

Вклад каждого члена (1.124) в общую величину действующей силы пока-
зан на рис. 3.25 и 3.26. Отметим, что представленный профиль полного значения
соответствует не реальному профилю силы Fi2, действующему на единицу пло-
щади, а только сумме всех членов в (1.124). Определение действующей силы в
конкретной точке требует вычисления смешанных частных производных второго
порядка на границе, что является сложной задачей в используемом методе конеч-
ных объёмов.
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Рисунок 3.25 — Профиль компонентов
действующей силы Fx2 вдоль внутреннего
цилиндра в полярных координатах при
d = 0.5, T1 = 5 и T2 = 1.
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Рисунок 3.26 — Профиль компонентов действующей силы Fx2 вдоль поверхности цилиндра в
полярных координатах при d = 0.5 и τ = 4. φ = −π/2 соответствует точке x = d− 1, φ = π/2

соответствует точке x = d+ 1.

Для модели твёрдых сфер цилиндры притягиваются силой, пропорциональ-
ной τ 2 как для больших, так и для малых τ в соответствии с (1.130), хотя отдель-
ные компоненты не подчиняются этому соотношению (рис. 3.27а, 3.27б). Таким
образом, положение d = 0 является неустойчивым равновесием. Градиент тем-
пературы на внутреннем цилиндре растёт пропорционально τ 3/2, но компенси-
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Рисунок 3.27 — Полная сила, действующая на цилиндр, и её составляющие в зависимости от τ
при d = 0.5.

руется гидростатическим давлением p†H2 (рис. 3.26б, 3.27а). Вязкий член вносит
лишь незначительный вклад в общую силу. Если мы поменяем температуры T1

и T2 (рис. 3.25), полная сила, естественно, не меняет ни направления, ни своей
величины.
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Рисунок 3.28 — Полная сила, действующая на внутренний цилиндр (сферу), в зависимости от
расстоянием между их осями d

Как было указано в разделе 1.3 сила притяжения подобна электростатиче-
ской (см. (1.130)), а значит задача может быть рассмотрена как цилиндрический
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(сферический) конденсатор, для которого известны выражения ёмкости [252]:

Ccyl ∝
1

θ
, Csph ∝

∞∑
n=1

R1R2 sinh θ
R2 sinhnθ −R1 sinh(n− 1)θ

, cosh θ =
R2

1 +R2
2 − d2

2R1R2
.

(3.31)
Реальная зависимость силы притяжения от расстояния между телами представле-
на на рис. 3.28.

3.4 Течение между двумя равномерно нагретыми эллиптическими
цилиндрами

В последнем примере газ заключён между двумя равномерно нагретыми
коаксиальными эллиптическими цилиндрами расположенными так, что большие
оси соответствующих эллипсов повёрнуты на угол β. Пусть малая полуось внеш-
него цилиндра является характерной длиной и расположена на оси y, в то время
как большая полуось имеет длину a1 и лежит на оси x. Оси цилиндров находятся в
центре координат (x,y). Полуоси внутреннего эллипса равны a0 и b0. Температура
внутреннего цилиндра T1 = 1, а внешнего T2 = 1 + τ . Далее рассмотрим задачу
при следующих параметрах:

a1 = 1.5, a0 = 0.3, b0 = 0.7, τ = 4.

Результаты ПСМ разреженного газа в такой же геометрии при 0.1 ≤ Kn ≤ 5

представлены в [13]. В силу симметрии задачи при β = 0 и β = π/2 достаточно
рассмотреть первый квадрант (x > 0, y > 0), при остальных β расчётная область
увеличивается вдвое (x > 0).

При различных числах Кнудсена возникают несколько видов течений. В
континуальном пределе инфинитезимальное поле скоростей во всей области об-
разует зави́хренность против часовой стрелки, обусловленную нелинейной тер-
мострессовой конвекцией, однако уже при Kn > 0.1, наоборот, формируется тече-
ние по часовой стрелке, которое доминирует над вихрем против часовой стрелки,
находящимся в области, наиболее удалённой от внутреннего цилиндра [13]. При-
стеночное течение по часовой стрелке образуется под действием тангенциального
градиента температуры газа на границе с диффузным отражением от равномерно
нагретых цилиндров. Особый интерес представляет процесс формирования ука-
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Рисунок 3.29 — Поле скоростей ui1 между коаксиальными эллиптическими цилиндрами при а)
β = π/2 и б) β = π/4: изолинии соответствуют модулю, кривые со стрелками изображают
направление.

занного вихря по часовой стрелке в зависимости от Kn, однако, ввиду того что
поле скоростей убывает пропорционально Kn, получение соответствующих кар-
тин конкурирующих течений представляет нетривиальную задачу для численного
анализа. В настоящем исследовании она решена с помощью КПИМДС.

Решение задачи в континуальном пределе

На рис. 3.29 показано инфинитезимальное поле скоростей в континуальном
пределе, полученное путём численного решения уравнений КГФ. Модуль этого
поля максимален в области с наибольшим значением градиента температурного
поля.

На рис. 3.30 показан момент Mi2 = eijkxjFk2 силы, действующей на еди-
ницу площади внутреннего цилиндра, в зависимости от угла поворота β. Полный
момент равен нулю в симметричных случаях β = 0 и β = π/2, но только пер-
пендикулярное состояние (β = π/2) устойчиво. Соответствующие профили (в
смысле, описанном в предыдущем параграфе) момента силы вдоль внутреннего
эллипса при разных β представлены на рис. 3.31.
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Рисунок 3.31 — Профиль суммы моментов
отдельных составляющих силы Mz2 вдоль
внутреннего эллипса при τ = 4. s = 0 и
s = Lell/2 соответствуют верхней (y > 0) и
нижней (y < 0) точкам на оси ординат (x = 0).
Lell –– периметр внутреннего эллипса.

Решение для произвольных чисел Кнудсена

Для численного решения задачи при Kn = 0.02 в физическом простран-
стве используется структурированная сетка, состоящая из NV = 2401 четырёх-
угольных ячеек. Она получается методом трансфинитной интерполяции с помо-
щью пакета GMSH [97]. Направления продольных рёбер ячеек близки к касатель-
ным к изотермическим поверхностям, а поперечных к градиенту температуры.
Вблизи цилиндрических поверхностей и особенно в области высокого градиен-
та температур сетка сгущается так, что минимальная ширина ячейки равна 0.046
длины свободного пробега. В скоростном пространстве используется симметрич-
ная неравномерная сетка M4 (табл. 4), в которой расстояние между узлами растёт
квадратично вдоль каждой из осей. Такая сетка позволяет удовлетворительно ап-
проксимировать функцию распределения для широкого диапазона температур от
T1 до T2.

Для нахождения стационарного решения уравнения Больцмана потребова-
лось 105 итераций, при этом на каждом шаге использовалось 5 · 104 кубатурных
точек. На персональном компьютере с CPU 4×3 GHz такой расчёт занял несколь-
ко суток. На последних итерациях поля макроскопических величин усреднялись,
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чтобы уменьшить шум, возникающий от циклического сдвига решётчатого пра-
вила Коробова на случайный вектор.

На рис. 3.32 изображены поля скорости, полученные различными методами.
Учёт скачков скорости и температуры первого порядка (рис. 3.32а) качественно
не меняет картину течения по сравнению с континуальным пределом (рис. 3.29),
однако заметно понижает модуль скорости. Граничные условия второго поряд-
ка, включая члены с тензором кривизны (рис. 3.32б), способны описать скольже-
ние газа вдоль поверхностей цилиндров. Численное решение уравнения Больц-
мана (рис. 3.32в), однако, демонстрирует существенно отличную картину тече-
ния, где наряду с термострессовой конвекцией против часовой стрелки возникает
конкурирующий поток в противоположном направлении. Этот поток наблюдает-
ся в области, где градиент температуры и кривизна граничной поверхности мак-
симальны, но вне кнудсеновского слоя, поэтому он не может быть описан с помо-
щью граничных условий. Действительно, ti∂TH0/∂xi = 0 (ti –– единичный вектор
касательный к границе), поэтому на границе uiH1 = 0. Термострессовое сколь-
жение второго порядка сонаправлено с нелинейным термострессовым течением
(a4 > 0), однако в следующем порядке члены, связанные с кривизной, пропор-
циональные κti∂TH1/∂xi (κ –– кривизна поверхности), уравновешивают присте-
ночное течение (κ(a6 + a5/2) > 0), т. е. uiH2ti и uiH3ti имеют противоположные



102

−0.3

−0.2

−0.1

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T − TB

ϕ

а) внешний эллипс

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T − TB

ϕ

б) внутренний эллипс

−0.1

0

0.1

0.4 0.6 0.8 1 1.2 1.4

T − THCE

x

в) большая полуось внешнего эллипса

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.7 0.75 0.8 0.85 0.9 0.95 1

T − THCE

y

г) малая полуось внешнего эллипса
Рисунок 3.33 — Профиль граничной температуры. Угол φ соответствует полярным координатам
x = r cosφ, y = r sinφ. THCE –– поле температуры, описываемое уравнением теплопроводности.
Представлены следующие решения: уравнение Больцмана (поделённое на 1.0017),
уравнения КГФ с граничными условиями ведущего порядка (только тепловое скольжение) ,
первого и второго порядков.

знаки. Численный анализ с нелинейными граничными условиями не проводился,
поскольку коэффициент перед членом (ti∂TH1/∂xi)(nj∂TH0/∂xj) неизвестен.

Как видно из рис. 3.32, асимптотическое решение ведущего порядка некор-
ректно описывает поле скоростей уже при Kn = 0.02. Действительно, геометрия
задачи приводит к образованию области, где градиент температуры оказывается
сравним не с единицей, а с обратным числом Кнудсена, что означает kni∂f/∂xi =
O(f), причём в отличие от слоя Кнудсена градиент спадает медленно. Тем не ме-
нее асимптотическое решение действительно справедливо при малых Kn, однако
число Кнудсена должно определяться по наименьшему из характерных длин в за-
даче. В рассмотренной задаче это не геометрические параметры (длина цилиндра
или радиус кривизны), а минимальное расстояние, где температура газа изменя-



103

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8 1 1.2 1.4

viti
k

ϕ

а) внешний эллипс

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8 1 1.2 1.4

viti
k

ϕ

б) внутренний эллипс

−0.01

0

0.01

0.02

0.03

0.04

0.4 0.6 0.8 1 1.2 1.4

viti
k

x

в) большая полуось внешнего эллипса

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.7 0.75 0.8 0.85 0.9 0.95 1

viti
k

y

г) малая полуось внешнего эллипса
Рисунок 3.34 — Профиль тангенциальной скорости границе. Угол φ соответствует полярным
координатам x = r cosφ, y = r sinφ. Единичный вектор ti направлен против часовой стрелки.
Представлены следующие решения: уравнение Больцмана , уравнения КГФ с тепловым
скольжением , с граничными условиями, содержащими только первые производные , с
граничными условиями, содержащими первые и вторые производные .

ется на единицу. При таком определении число Кнудсена является функцией от
разницы температур τ и зависимости коэффициента теплопроводности от темпе-
ратуры Γ2(T ).

Перед тем как сравнивать поля температур, уточним способ вычисления
температуры непосредственно на поверхностях цилиндров. Дело в том, что чис-
ленное решение уравнения Больцмана методом конечных объёмов предоставля-
ет значения функции распределения и макроскопических величин в центрах яче-
ек. Поскольку в слое Кнудсена температура имеет слабую логарифмическую осо-
бенность, то граничная температура вычисляется с помощью экстраполяции вида
Ay ln y +B, где A и B –– константы, а y –– расстояние от границы. В предыдущих
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задачах линейной экстраполяции было достаточно, поскольку ширина пригранич-
ной ячейки и градиент температуры были меньше.

Перейдём к рассмотрению рис. 3.33 и 3.34, где показаны профили темпе-
ратуры и скорости на граничных поверхностях. Использование температурного
скачка первого порядка в граничных условиях позволяет существенно улучшить
асимптотическое поле температур, в то время как температурный скачок следую-
щего порядка является лишь малой поправкой. Это связано с тем, что ni∂TH0/∂xi

и ninj∂2TH0/∂xi∂xj сравнимы, но гораздо больше TH0. На рис. 3.33 константное
превышение численного решения над асимптотическим в пределах 0.004 объяс-
няется погрешностью кубатуры температуры, однако на рис. 3.33г и в области
φ > π/3 на рис. 3.33б разница между решениями увеличивается из-за значитель-
ной разницы между скоростными полями vi/k, влияющими на температурные по-
ля через уравнение энергии (1.89). Действительно, на рис. 3.34г видно, что зна-
чение (vi/kT )∂T/∂xi отличается даже знаком. Граничные условия, содержащие
вторые производные, позволяют лучше приблизить численное решение на внеш-
нем цилиндре (рис. 3.34а), но не на внутреннем (рис. 3.34б). Как было указано
выше, это связано с тем, что в области максимального градиента температуры
граничные условия для viH3 в общем случае имеют порядок O(viH2/k), но они
не учтены при решении уравнений КГФ. Резкие колебания численного решения
уравнения Больцмана (особенно на рис. 3.34б) обусловлены погрешностью дис-
кретизации в скоростном пространстве, но не превышают 10−4 по абсолютному
значению ui.
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Заключение

1. Рассмотрены классические задачи молекулярной газовой динамики, та-
кие как течения между параллельными пластинами, некоаксиальными цилиндра-
ми и сферами, эллиптическими цилиндрами. Полученные решения обладают вы-
сокой точностью, верифицированы и могут считаться эталонными. Их детальный
анализ обнаружил ряд новых физических эффектов. Некоторые из них практиче-
ски недоступны для ПСМ, что служит веским основанием к дальнейшему разви-
тию численных методов решения уравнения Больцмана.

2. Обобщение KПИМДС для неравномерных сеток приводит к дополни-
тельным вычислительным трудностям. В частности, усложняется алгоритм кон-
сервативного проецирования в интеграле столкновений, повышаются требования
к мощности множества кубатурных точек, что в целом приводит к увеличению
вычислительных затрат. Кроме того, на неравномерной сетке, в общем случае,
снижается точность кубатур функций близких к максвелловским. Тем не менее
в настоящем исследовании на численных примерах продемонстрировано, как в
рамках KПИМДС неравномерная прямоугольная сетка позволяет достичь высо-
кой точности и эффективности а) для детального разрешения плоских кинетиче-
ских слоёв, б) для медленных, но сильно неизотермических течений. Настоящая
область применения метода значительно шире, включая гиперзвуковые течения
и задачи при очень больших числах Кнудсена. Неравномерные сетки позволяют
эффективно аппроксимировать как большой объём скоростного пространства в
первом случае, так и высокие градиенты функции распределения во втором.

3. Важной задачей математического анализа KПИМДС остаётся вопрос
сходимости и особенно влияния проекционного шаблона на её скорость. Нерав-
номерные сетки неизбежно приводят к отрицательным проекционным весам, ко-
торые могут стать причиной аномальных численных флуктуаций решения. Этот
проблема требует детального анализа.

4. Асимптотическая теория уравнения Больцмана для малых чисел Кнуд-
сена играет важнейшую роль в моделировании разреженного газа. С её помо-
щью можно получить не только значения транспортных коэффициентов из знания
молекулярного потенциала, но также истинные граничные условия для гидроди-
намических уравнений и, что немаловажно, позволяет корректно описать суще-
ственно неравновесное поведение газа в слое Кнудсена. На численных примерах
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было показано, как использование граничных условий первого и второго поряд-
ка позволяет улучшить точность и качество асимптотического решения. В насто-
ящем исследовании применение асимптотической теории оказалось ещё шире.
Главным образом, она послужила надёжным инструментом верификации числен-
ного метода решения уравнения Больцмана. Кроме того, использование асимпто-
тического решения в качестве начального приближения позволило значительно
ускорить решение стационарных задач с малыми числами Кнудсена.

5. Гидродинамическое описание газа может оказаться некорректным на
масштабах существенно больше длины свободного пробега, если градиенты мак-
роскопических величин в некоторых областях сравнимы с обратным числом
Кнудсена. Достоверно описать поведение газа в этих существенно неравновесных
областях возможно только в рамках кинетического подхода. Подобная ситуация
встречается во многих реальных задачах. В настоящем исследовании было проде-
монстрировано кардинальное изменение картины медленного неизотермического
течения при больших градиентах температуры.

6. Медленные неизотермические течения представляют интерес в набира-
ющей обороты индустрии МЭМС. В настоящем исследовании показано, что чис-
ленное решение уравнения Больцмана в континуальном пределе сходится к ре-
шению уравнений КГФ с соответствующими граничными условиями, которые,
таким образом, верно учитывают влияние сильных температурных неоднородно-
стей на процессы переноса в слаборазреженном газе.

В заключение автор выражает большую признательность научному руково-
дителю Ф. Г. Черемисину за поддержку, помощь, мудрые советы и конструктив-
ные обсуждения. Отдельно автор благодарит К. Аоки за внимательное прочте-
ние отдельных работ и полезные замечания, позволившие значительно улучшить
изложение нескольких параграфов, О. Г. Фридлендера за плодотворные дискус-
сии, послужившие отправной точкой к исследованию медленных неизотермиче-
ских течений, а также О. И. Додулада за программную реализацию КПИМДС для
неравномерных сеток.
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Приложение А

Вычисление транспортных коэффициентов газа твёрдых сфер

А.1 Основные формулы

В [185; 189] представлены общие формулы для вычисления γ8, γ9 и γ10:

γ8 = I6

(
Q(0)

2 − Q̃(0)
22

)
+

1

7
I8

(
Q(0)

3 − Q̃(0)
3

)
, (А.1)

γ9 = −I6
(
B(4)

)
, (А.2)

γ10 =
5

8
I6

(
T (1)
1 + T (2)

1 − 2T̃ (0)
12

)
+

1

8
I8

(
T (1)
2 + T (2)

2 − 2T̃ (0)
2

)
, (А.3)

где
In[Z(ζ)] =

8

15
√
π

∫ ∞

0

ζnZ(ζ) exp(−ζ2)dζ, (А.4)

а подынтегральные функции выражаются как линейные комбинации решений со-
ответствующих интегральных уравнений:

L [ζiA(ζ)] = −ζi
(
ζ2 − 5

2

)
, (А.5)

L
[(
ζiζj −

1

3
ζ2δij

)
B(ζ)

]
= −2

(
ζiζj −

1

3
ζ2δij

)
, (А.6)

L
[(
ζiζj −

1

3
ζ2δij

)
B(4)(ζ)

]
= IB

(4)
ij , IB

(4)
ij =

(
ζiζj −

1

3
ζ2δij

)
B(ζ), (А.7)

L
[
(ζiδjk + ζjδki + ζkδij)T (m)

1 (ζ) + ζiζjζkT (m)
2 (ζ)

]
= IT

(m)
ijk ,

IT
(1)
ijk = −ζiζjζk

(
2A(ζ)− 1

ζ

dA(ζ)

dζ

)
,

IT
(2)
ijk = −ζiζjζk

(
(ζ2 − 3)B(ζ)− ζ

2

dB(ζ)
dζ

)
+
γ1
2
(ζiδjk + ζjδki + ζkδij),

(А.8)

L
[
ζiδjkT̃ (0)

11 (ζ) + (ζjδki + ζkδij)T̃ (0)
12 (ζ) + ζiζjζkT̃ (0)

2 (ζ)
]
= IT̃

(0)
i,jk,

IT̃
(0)
i,jk = J (ζiA(ζ), ζjζkB(ζ)),

(А.9)
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L
[
(δijδkl + δikδjl + δilδjk)Q(0)

1 (ζ)

+ (ζiζjδkl + ζiζkδjl + ζiζlδjk + ζjζkδil + ζjζlδik + ζkζlδij)Q(0)
2 (ζ)

+ ζiζjζkζlQ(0)
3 (ζ)

]
= IQ

(0)
ijkl,

IQ
(0)
ijkl =

1

3

[
ζ2B(ζ) + 2γ1

(
ζ2 − 3

2

)]
(δijδkl + δikδjl + δilδjk)

− ζiζjζkζl

(
2B(ζ)− 1

ζ

dB(ζ)
dζ

)
,

(А.10)

L
[
δijδklQ̃(0)

11 (ζ) + (δikδjl + δilδjk)Q̃(0)
12 (ζ) + (ζiζjδkl + ζkζlδij)Q̃(0)

21 (ζ)

+ (ζiζkδjl + ζiζlδjk + ζjζkδil + ζjζlδik)Q̃(0)
22 (ζ) + ζiζjζkζlQ̃(0)

3 (ζ)
]
= IQ̃

(0)
ij,kl,

IQ̃
(0)
ij,kl = J (ζiζjB(ζ), ζkζlB(ζ))

(А.11)

с дополнительными условиями для A, T (m)
1 , T̃ (0)

11 , T̃ (0)
12 , Q(0)

1 , Q̃(0)
11 и Q̃(0)

12 :∫ ∞

0

ζ4AE(ζ)dζ = 0, (А.12)∫ ∞

0

(
5ζ4T (m)

1 + ζ6T (m)
2

)
E(ζ)dζ = 0, (А.13)∫ ∞

0

(
5ζ4T̃ (0)

11 + ζ6T̃ (0)
2

)
E(ζ)dζ = 0, (А.14)∫ ∞

0

(
5ζ4T̃ (0)

12 + ζ6T̃ (0)
2

)
E(ζ)dζ = 0, (А.15)∫ ∞

0

(1,ζ2)
(
15ζ2Q(0)

1 + 10ζ4Q(0)
2 + ζ6Q(0)

3

)
E(ζ)dζ = 0, (А.16)∫ ∞

0

(1,ζ2)
(
15ζ2Q̃(0)

11 + 10ζ4Q̃(0)
21 + ζ6Q̃(0)

3

)
E(ζ)dζ = 0, (А.17)∫ ∞

0

(1,ζ2)
(
15ζ2Q̃(0)

12 + 10ζ4Q̃(0)
22 + ζ6Q̃(0)

3

)
E(ζ)dζ = 0, (А.18)

где
E(ζ) =

1

π3/2
exp

(
−ζ2

)
. (А.19)

Коэффициент вязкости был вычислен с высокой точностью ещё на первом изра-
ильском компьютере WEIZAC [171]1:

γ1 ≡ I6(B) = 1.270042427, (А.20)
1 Столь высокая точность была получена при решении обыкновенного дифференциального уравнения

четвёртого порядка, к которому может быть сведено интегральное уравнение (А.6).
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Операторы L и J связаны с интегралом столкновения J следующим обра-
зом:

EL(φ) = 2J(1, Eφ), EJ (φ, ψ) = J(Eφ,Eψ). (А.21)

Пятимерный интеграл J вычисляется как

J (φ,ψ) =
1

2

∫
E∗(φ

′ψ′
∗ + φ′

∗ψ
′ − φψ∗ − φ∗ψ)BdΩ(α)dζ∗, (А.22)

где dΩ(α) –– элемент телесного угла в направлении единичного вектора αi, опре-
деляющего направление разлётных скоростей:

ζ ′i = ζi + αiαj(ζj∗ − ζj), ζ ′i∗ = ζi∗ − αiαj(ζj∗ − ζj). (А.23)

Для модели твёрдых сфер

B =
|αi(ζi∗ − ζi)|

4
√
2π

. (А.24)

Линеаризованный интеграл столкновения может быть сведён к трёхмерному ин-
тегралу. Для модели твёрдых сфер L принимает следующий вид:

L(φ) = L1(φ)− L2(φ)− ν(ζ)φ, (А.25)

L1(φ) =
1√
2π

∫
1

|ζ − ξ|
exp

(
−ξ2 +

|ζi × ξ|2

|ζ − ξ|2

)
φ(ξ)dξ, (А.26)

L2(φ) =
1

2
√
2π

∫
|ζ − ξ| exp

(
−ξ2

)
φ(ξ)dξ, (А.27)

ν(ζ) =
1

2
√
2

[
exp

(
−ζ2

)
+

(
2ζ +

1

ζ

)∫ ζ

0

exp
(
−ξ2

)
dξ

]
. (А.28)

А.2 Численные методы

Ниже приводится описание метода вычисления соответствующих много-
мерных интегралов и решения трёхмерных интегральных уравнений.
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А.2.1 Многомерное интегрирование

Для вычисления трёх- и пятимерных интегралов вида∫
f(ζi)dζ =

4π

3

ζ3cut
N

N∑
k=0

f(ζ
(k)
i ) +R, (А.29)

∫
f(ζi,αi)dΩ(α)dζ =

16π2

3

ζ3cut
N

N∑
k=0

f(ζ
(k)
i ,α

(k)
i ) +R, (А.30)

на дискретном пространстве скоростей, ограниченным сферой ζ = ζcut, использо-
вались следующие кубатурные сетки Коробова:

ζ
(k)
i = ζcut

({ k
N

}
,
{ka2
N

}
,
{ka3
N

})
, (А.31)

α
(k)
i =

(
sin θ(k) cosφ(k), sin θ(k) sinφ(k), cos θ(k)

)
,

θ(k) = π
{ka4
N

}
, φ(k) = 2π

{ka5
N

}
,

(А.32)

где фигурные скобки соответствуют остатку от деления. Некоторые оптимальные
коэффициенты представлены в табл. 5.

А.2.2 Решение интегральных уравнений

Интегральные уравнения вида L[φ(ζi)Z(ζ)] = Φ(ζi) могут быть решены
итерационным методом релаксации

Z
(n+1)
k = (1− τk)Z

(n)
k + τkF (n)

k , (А.33)

F (n)
k =

L1(φkZ
(n)
k )− L2(φkZ

(n)
k )− Φk

νkφk
, (А.34)

где индекс k соответствует дискретному значению функции при ζi = ζ
(k)
i . Для

выбранного модуля ζ(k) имеется свобода выбора вектора ζ(k)i . В общем случае
можно положить ζ(k)i = (1,1,1)/

√
3. Если Φ не зависит от ζz, то разумно исполь-

зовать ζ(k)i = (1,1,0)/
√
2. Аналогично, при Φ = Φ(ζx) пусть ζ(k)i = (1,0,0).
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Таблица 5 — Таблица оптимальных коэффициентов для вычисления трёхмерных (а) и
пятимерных (б) интегралов.

а)

N a2 a3

10007 544 5733
50021 12962 42926
100003 47283 15021
200003 9488 20794
500009 33606 342914
1000003 342972 439897
2000003 235672 1208274
5000011 889866 4755875

10000019 4341869 594760

б)

N a2 a3 a4 a5

10007 198 9183 6967 8507
50021 7255 12933 39540 42286
100003 11729 65316 68384 51876
200003 62638 60193 112581 142904
500009 191775 488648 283447 69999
1000003 335440 656043 403734 126676
2000003 701679 680513 965077 1248525
5000011 1516505 2355509 3317359 442579

10000019 3669402 5455092 7462912 2188321

Значение F (n)
k вычисляется с помощью численного интегрирования, опи-

санного в А.2.1. Для достижения большей точности для каждого n сетка Коробо-
ва сдвигается на произвольный вектор. Модуль τk выбирается достаточно малым,
чтобы, обеспечить устойчивость метода, а также снизить флуктуационные коле-
бания, вызванные сменой кубатурной сетки. Знак τ определяется как в методе
секущей:

τk
|τk|

= sgn

(
1−

F (n)
k −F (n−1)

k

Z
(n)
k − Z

(n−1)
k

)
. (А.35)

Для нахождения решения интегрального уравнения с дополнительным
условием типа (А.12) достаточно после каждой итерации корректировать аппрок-
симацию с помощью соответствующей константы.
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Рисунок А.1 — Погрешность вычисления
функции B(ζ) по сравнению с референсной
B∗(ζ)
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Рисунок А.2 — Транспортная функция A(ζ)

А.2.3 Оценка точности

Для оценки точности сравним результат вычисления функции B(ζ) с рефе-
ренсными данными, взятыми, например, из [185].

Функция B вычисляется из интегрального уравнения

L(ζxζyB) = −2ζxζy. (А.36)

Значение B(0) не может быть вычислено непосредственно из (А.36) с помощью
метода, изложенного в А.2.2, поэтому должно быть получено с помощью экстра-
поляции.

Погрешность решения для мощности сетки Коробова порядка 107 изобра-
жена на рис. А.1, а сама функция B на рис. А.8. Погрешность вычисления коэф-
фициента вязкости γ1 равна

|γ1 − γ∗1 |
γ∗1

< 5 · 10−5. (А.37)

Ввиду структурной схожести интегральных уравнений (А.6)–(А.11), можно ожи-
дать аналогичной точности для всех полученных результатов. При вычислении
Q(0)

3 и Q̃(0)
3 погрешность увеличивается для малых ζ , что, однако, мало влияет на

точность оценки интегралов вида (А.4).



138

0 1 2 3 4 5ζ
0.0

0.5

1.0

1.5

2.0

2.5

Q(0)
2

Рисунок А.3 — Транспортная функция Q(0)
2 (ζ)
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0

5

10Q(0)
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Рисунок А.4 — Транспортная функция Q(0)
3 (ζ)

А.3 Результаты

В дальнейшем будем использовать функции A (рис. А.2) и B (рис. А.8), ко-
торые подробно и с высокой точностью табулированы, например, в [185].

А.3.1 Вычисление γ8

Для вычисления γ8 необходимо провести некоторые преобразования. Под-
ставляя в форм. (А.10) i = y, j = k = l = x, а также i = j = z, k = x, l = y,
получаем

L
[
ζxζy

(
3Q(0)

2 + ζ2xQ
(0)
3

)]
= −ζ3xζy

(
2B − 1

ζ

dB
dζ

)
, (А.38)

L
[
ζxζy

(
Q(0)

2 + ζ2zQ
(0)
3

)]
= −ζxζyζ2z

(
2B − 1

ζ

dB
dζ

)
, (А.39)

откуда в силу линейности L имеем

L
[
ζxζy

(
3ζ2z − ζ2x

)
Q(0)

3

]
= −ζxζy

(
3ζ2z − ζ2x

)(
2B − 1

ζ

dB
dζ

)
. (А.40)

Таким образом, вычислив сначала Q(0)
3 с помощью (А.40), можно найти Q(0)

2

из (А.38). Полученные функции изображены на рис. А.3 и А.4. Соответствующие
интегралы от них равны

I6

(
Q(0)

2

)
= 0.544(4),

1

7
I8

(
Q(0)

3

)
= 0.993(3). (А.41)
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Рисунок А.5 — Транспортная функция Q̃(0)
22 (ζ)
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Рисунок А.6 — Транспортная функция Q̃(0)
3 (ζ)

Аналогичными подстановками в форм. (А.11) получаем

L
[
Q̃(0)

11 + 2Q̃(0)
12 + 2ζ2xQ̃

(0)
21 + 4ζ2xQ̃

(0)
22 + ζ4xQ̃

(0)
3

]
= J

(
ζ2xB, ζ2xB

)
≡ J (1)

x , (А.42)

L
[
Q̃(0)

11 + (ζ2x + ζ2y )Q̃
(0)
21 + ζ2xζ

2
yQ̃

(0)
3

]
= J

(
ζ2xB, ζ2yB

)
≡ J (2)

xy , (А.43)

L
[
Q̃(0)

12 + (ζ2x + ζ2y )Q̃
(0)
22 + ζ2xζ

2
yQ̃

(0)
3

]
= J (ζxζyB, ζxζyB) ≡ J (3)

xy ,

(А.44)

L
[
ζxζy

(
Q̃(0)

21 + 2Q̃(0)
22 + ζ2xQ̃

(0)
3

)]
= J

(
ζxζyB, ζ2xB

)
≡ J (4)

xy , (А.45)

L
[
ζxζy

(
Q̃(0)

21 + ζ2z Q̃
(0)
3

)]
= J

(
ζxζyB, ζ2zB

)
≡ J (5)

xyz, (А.46)

L
[
ζxζy

(
Q̃(0)

22 + ζ2z Q̃
(0)
3

)]
= J (ζxζyB, ζxζzB) ≡ J (6)

xyz.

(А.47)

Неоднородные члены интегральных уравнений (А.42)–(А.47) представлены на
рис. А.7.

С помощью линейных преобразований соответственно над (А.42)–(А.44)
и (А.45)–(А.47) получаем уравнения

L
[(
6ζ2xζ

2
y − ζ4x − ζ4y

)
Q̃(0)

3

]
= 2J (2)

xy + 4J (3)
xy − J (1)

x − J (1)
y , (А.48)

L
[
ζxζy

(
3ζ2z − ζ2x

)
Q̃(0)

3

]
= J (5)

xyz + 2J (6)
xyz − J (4)

xy , (А.49)

позволяющие вычислить Q̃(0)
3 . На практике уравнение (А.49) позволяет получить

большую точность. Q̃(0)
22 находится из (А.47). Полученные функции изображены

на рис. А.5 и А.6. Соответствующие интегралы от них равны

I6

(
Q̃(0)

22

)
= 0.121(2),

1

7
I8

(
Q̃(0)

3

)
= −0.0787(7). (А.50)

Подставляя (А.41) и (А.50) в (А.1), получаем

γ8 = 1.496(3). (А.51)
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Рисунок А.7 — Интеграл столкновения J (φ,ψ), вычисленный для ζx = ζy = ζ/
√
2 (а, б, в) и для

ζx = ζy = ζz = ζ/
√
3 (г, д, е)
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Рисунок А.8 — Транспортная функция B(ζ)
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Рисунок А.9 — Транспортная функция B(4)(ζ)
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Рисунок А.10 — Транспортная функция T (1)
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Рисунок А.11 — Транспортная функция T (1)
2 (ζ)

А.3.2 Вычисление γ9

Функция B(4)(ζ) (рис. А.9) вычисляется непосредственно из уравнения

L
(
ζxζyB(4)

)
= ζxζyB. (А.52)

Интегрирование по формуле (А.2) даёт

γ9 = 1.635(7). (А.53)

А.3.3 Вычисление γ10

Из (А.8) следует, что функции T (m)
1 (рис. А.10, А.12) и T (m)

2 (рис. А.11, А.13)
можно вычислить по формулам

L
(
ζxζyζzT (1)

2

)
= −ζxζyζz

(
2A− 1

ζ

dA
dζ

)
, (А.54)
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Рисунок А.12 — Транспортная функция T (2)
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Рисунок А.13 — Транспортная функция T (2)
2 (ζ)
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Рисунок А.14 — Транспортная функция T̃ (0)
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Рисунок А.15 — Транспортная функция T̃ (0)
2 (ζ)
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Рисунок А.16 — Интеграл столкновения J (φ,ψ), вычисленный для ζx = ζy = ζ/
√
2 (а) и для

ζx = ζy = ζz = ζ/
√
3 (б)
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L
[
ζx

(
3T (1)

1 + ζ2xT
(1)
2

)]
= −ζ3x

(
2A− 1

ζ

dA
dζ

)
, (А.55)

L
(
ζxζyζzT (2)

2

)
= −ζxζyζz

(
(ζ2 − 3)B − ζ

2

dB
dζ

)
, (А.56)

L
[
ζx

(
3T (2)

1 + ζ2xT
(2)
2

)]
= −ζ3x

(
(ζ2 − 3)B − ζ

2

dB
dζ

)
+

3γ1
2
ζx (А.57)

при дополнительном условии (А.13). Соответствующие интегралы в (А.3) равны

5

8
I6

(
T (1)
1

)
= 0.986(2),

1

8
I8

(
T (1)
2

)
= 0.505(3), (А.58)

5

8
I6

(
T (2)
1

)
= 0.508(4),

1

8
I8

(
T (2)
2

)
= 0.540(7). (А.59)

Функции T̃ (0)
12 (рис. А.14) и T̃ (0)

2 (рис. А.15) находятся из уравнений

L
(
ζxζyζzT̃ (0)

2

)
= J (ζxA, ζyζzB) ≡ J (II)

xyz , (А.60)

L
[
ζy

(
T̃ (0)
12 + ζ2xT̃

(0)
2

)]
= J (ζxA, ζxζyB) ≡ J (I)

xy . (А.61)

Неоднородные члены представлены на рис. А.16. Численное интегрирование при-
водит к

5

8
I6

(
T̃ (0)
12

)
= 0.038(0),

1

8
I8

(
T̃ (0)
2

)
= 0.0068(2). (А.62)

Объединяя (А.58), (А.59) и (А.62), находим

γ10 = 2.463(3). (А.63)

А.4 Сведение интегральных уравнений к одномерным

Для модели твёрдых сфер трёхмерные интегралы (А.26) и (А.27) могут быть
упрощены, если положить ζ = (0,0,ζ) и φ(ζ) = ζnf(ζz/ζ):

L1 =
√
2

∫ ∞

0

∫ π

0

ξn+2f(cos θ) sin θ√
ζ2 − 2ζξ cos θ + ξ2

exp
(

ζ2ξ2 sin2 θ

ζ2 − 2ζξ cos θ + ξ2
− ξ2

)
dξdθ,

(А.64)

L2 =
1√
2

∫ ∞

0

∫ π

0

ξn+2f(cos θ) sin θ
√
ζ2 − 2ζξ cos θ + ξ2 exp

(
−ξ2

)
dξdθ. (А.65)
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Интегральные уравнения (А.7)–(А.11) преобразуются к следующим:

L
[(
3ζ2z − ζ2

)
B(4)

]
= 3IB(4)

zz , (А.66)

L
[
ζz
(
5ζ2z − 3ζ2

)
T (m)
2

]
= 2IT (m)

zzz − 6IT (m)
zxx , (А.67)

L
[
ζz

(
5T (m)

1 + ζ2T (m)
2

)]
= IT (m)

zzz + 2IT (m)
zxx , (А.68)

L
[
ζz
(
5ζ2z − 3ζ2

)
T̃ (0)
2

]
= 2

(
IT̃ (0)

z,zz − IT̃ (0)
z,xx − 2IT̃ (0)

x,xz

)
, (А.69)

L
[
ζz

(
5T̃ (0)

12 + ζ2T̃ (0)
2

)]
= IT̃ (0)

z,zz − IT̃ (0)
z,xx + 3IT̃ (0)

x,xz, (А.70)

L
[(
35ζ4z − 30ζ2z ζ

2 + 3ζ4
)
Q(0)

3

]
= 2

(
4IQ(0)

zzzz + 3IQ(0)
xxxx − 24IQ(0)

zzxx + 3IQ(0)
xxyy

)
,

(А.71)

L
[(
3ζ2z − ζ2

) (
7Q(0)

2 + ζ2Q(0)
3

)]
= 2

(
IQ(0)

zzzz − IQ(0)
xxxx + 2IQ(0)

zzxx − 2IQ(0)
xxyy

)
,

(А.72)

L
[(
35ζ4z − 30ζ2z ζ

2 + 3ζ4
)
Q̃(0)

3

]
= 2

(
4IQ̃(0)

zz,zz + 3IQ̃(0)
xx,xx − 16IQ̃(0)

zx,zx + 2IQ̃(0)
xy,xy − 8IQ̃(0)

zz,xx + IQ̃(0)
xx,yy

)
,

(А.73)

L
[(
3ζ2z − ζ2

) (
7Q̃(0)

22 + ζ2Q̃(0)
3

)]
= 2

(
IQ̃(0)

zz,zz − IQ̃(0)
xx,xx + 3IQ̃(0)

zx,zx − 3IQ̃(0)
xy,xy − 2IQ̃(0)

zz,xx + 2IQ̃(0)
xx,yy

)
.

(А.74)

С помощью (А.64) и (А.65) получаются одномерные интегральные уравнения:∫ ∞

0

K2(ζ,ξ)B(4)(ξ)dξ − νB(4) = B, (А.75)∫ ∞

0

K3(ζ,ξ)T (1)
2 (ξ)dξ − νT (1)

2 =
1

ζ

∂A
∂ζ

− 2A, (А.76)

∫ ∞

0

K1(ζ,ξ)T (1)
1 (ξ)dξ − νT (1)

1

=
1

5

(
ζ
∂A
∂ζ

− 2ζ2A−
∫ ∞

0

K1(ζ,ξ)ξ
2T (1)

2 (ξ)dξ + νζ2T (1)
2

)
,∫ ∞

0

(
5T (1)

1 + ζ2T (1)
2

)
ζ4 exp(−ζ2)dζ = 0,

(А.77)

∫ ∞

0

K3(ζ,ξ)T (2)
2 (ξ)dξ − νT (2)

2 =
ζ

2

∂B
∂ζ

−
(
ζ2 − 3

)
B, (А.78)
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

∫ ∞

0

K1(ζ,ξ)T (2)
1 (ξ)dξ − νT (2)

1

=
γ1
2
+

1

5

(
ζ3

2

∂B
∂ζ

− ζ2
(
ζ2 − 3

)
B −

∫ ∞

0

K1(ζ,ξ)ξ
2T (2)

2 (ξ)dξ + νζ2T (2)
2

)
,∫ ∞

0

(
5T (2)

1 + ζ2T (2)
2

)
ζ4 exp(−ζ2)dζ = 0,

(А.79)∫ ∞

0

K3(ζ,ξ)T̃ (0)
2 (ξ)dξ − νT̃ (0)

2 =
1

ζ3

(
IT̃ (0)

z,zz − IT̃ (0)
z,xx − 2IT̃ (0)

x,xz

)
, (А.80)

∫ ∞

0

K1(ζ,ξ)T̃ (0)
12 (ξ)dξ − νT̃ (0)

12

=
1

5ζ

(
IT̃ (0)

z,zz − IT̃ (0)
z,xx + 3IT̃ (0)

x,xz

)
− 1

5

(∫ ∞

0

K1(ζ,ξ)ξ
2T̃ (0)

2 (ξ)dξ − νζ2T̃ (0)
2

)
,∫ ∞

0

(
5T̃ (0)

12 + ζ2T̃ (0)
2

)
ζ4 exp(−ζ2)dζ = 0,

(А.81)∫ ∞

0

K4(ζ,ξ)Q(0)
3 (ξ)dξ − νQ(0)

3 =
1

ζ

∂B
∂ζ

− 2B, (А.82)∫ ∞

0

K2(ζ,ξ)Q(0)
2 (ξ)dξ − νQ(0)

2

=
1

7

(
ζ
∂B
∂ζ

− 2ζ2B −
∫ ∞

0

K2(ζ,ξ)ξ
2Q(0)

3 (ξ)dξ + νζ2Q(0)
3

)
,

(А.83)

∫ ∞

0

K4(ζ,ξ)Q̃(0)
3 (ξ)dξ − νQ̃(0)

3

=
1

4ζ4

(
4IQ̃(0)

zz,zz + 3IQ̃(0)
xx,xx − 16IQ̃(0)

zx,zx + 2IQ̃(0)
xy,xy − 8IQ̃(0)

zz,xx + IQ̃(0)
xx,yy

)
,

(А.84)∫ ∞

0

K2(ζ,ξ)Q̃(0)
22 (ξ)dξ − νQ̃(0)

22

=
1

7ζ2

(
IQ̃(0)

zz,zz − IQ̃(0)
xx,xx + 3IQ̃(0)

zx,zx − 3IQ̃(0)
xy,xy − 2IQ̃(0)

zz,xx + 2IQ̃(0)
xx,yy

)
− 1

7

(∫ ∞

0

K2(ζ,ξ)ξ
2Q̃(0)

3 (ξ)dξ − νζ2Q̃(0)
3

)
.

(А.85)

(А.86)

Ядра Ki(ζ,ξ) в интегральных уравнениях определены как

K1(ζ,ξ) =
1

2
√
2

ξ3

ζ
(4G1 − 2J1) exp

(
−ξ2

)
, (А.87)



146

K2(ζ,ξ) =
1

2
√
2

ξ4

ζ2
(6G2 − 2G0 − 3J2 + J0) exp

(
−ξ2

)
, (А.88)

K3(ζ,ξ) =
1

2
√
2

ξ5

ζ3
(10G3 − 6G1 − 5J3 + 3J1) exp

(
−ξ2

)
, (А.89)

K4(ζ,ξ) =
1

8
√
2

ξ6

ζ4
(70G4 − 60G2 +G0 − 35J4 + 30J2 − 3J0) exp

(
−ξ2

)
, (А.90)

где

Gn =

∫ π

0

cosn θ sin θ√
Rs − 2ξζ cos θ

exp
(

ξ2ζ2 sin2 θ

Rs − 2ξζ cos θ

)
dθ

=
1

2nξn+1ζn+1

n∑
k=0

(
n

k

)
Rn−k

s (−1)kCk,

(А.91)


C0 =

√
π exp

(
Rs −Rd

2

)
erf
(
rs − rd

2

)
,

C1 = (2 +Rd)C0 − 2(rs − rd),

Cn = 2(2n− 1)Cn−1 +R2
dCn−2 − 2

(
r2n−1
s − r2n−1

d

)
,

(А.92)

Jn =

∫ π

0

cosn θ sin θ
√
Rs − 2ξζ cos θdθ

=
1

2nξn+1ζn+1

n∑
k=0

(
n

k

)
Rn−k

s (−1)k
r2k+3
s − r2k+3

d

2k + 3
,

(А.93)

{
Rs = ξ2 + ζ2, Rd =

∣∣ξ2 − ζ2
∣∣ ,

rs = ξ + ζ, rd = |ξ − ζ| .
(А.94)

По аналогичным формулам ранее были вычислены другие транспортные
коэффициенты для модели твёрдых сфер [162].

А.4.1 Особенности исчисления

Для вычисления Ki(ζ,ξ) при малых ζ используется разложение Ki в ряд по
ζ . Функции (∂A/∂ζ)/ζ и (∂B/∂ζ)/ζ также требуют асимптотического анализа для
малых ζ .

Интегральные уравнения Фредгольма второго рода решаются методом
квадратур. Поскольку Ki(ζ,ξ) быстро убывает вместе с ξ, то область численного
интегрирования ограничивалась до [0,ζ(cut)] вместо [0,∞]. Во всех случаях ис-
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Таблица 6 — Сравнение транспортных коэффициентов. Красным цветом показаны
недостоверные знаки. В скобках указаны используемые сетки Nζ/100.

Коэффициент L в R3 L в R (60) L в R (12-14-16) L в R (30-32-34) Литература [185]

γ1 1.2701 1.2700434 1.2700424271 1.2700424271 1.270042427
γ2 — 1.9222856 1.9222840656 1.9222840656 1.922284066
γ3 — 1.9479097 1.947906335 1.947906335 1.947906335
γ7 0.2201 0.1892040 0.1892011 0.1892001 0.189201
γ8 1.4963 1.4959457 1.495941968 1.495941968 —
γ9 1.6357 1.6360755 1.6360734585 1.6360734585 —
γ10 2.4633 2.4497955 2.44977960 2.44977953 —

пользовалось ζ(cut) = 6.4. На этом отрезке были равномерно распределены Nζ

точек.
Применялось два способа повышения точности метода квадратур. Во-

первых, применялись достаточно подробные сетки. Во-вторых, уравнения реша-
лись на трёх различных сетках, после чего результаты экстраполировались в пред-
положении, что искомая функция F (ζ) содержит невязку вида

Fh(Nζ) = F (ζ) +
C1

N 2
ζ

+
C2

N 4
ζ

, (А.95)

где Fh(Nζ) –– разностное решение, Ci –– произвольные коэффициенты.

А.4.2 Сравнение результатов

В табл. 6 приводится сравнение транспортных коэффициентов, вычислен-
ных различными методами, а также приведённых в литературе. Вычисление ко-
эффициента γ3 возможно несколькими способами

γ3 = 2I6(B1) = 5I6

(
T (0)
1

)
+ I8

(
T (0)
2

)
. (А.96)

По второй формуле получается значение γ3 = 1.94790635.
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