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ВВЕДЕНИЕ 

 

Актуальность работы. Потоки жидкости и газа, текущие под 

влиянием заданного градиента давления были предметом интенсивных 

исследований учеными в течение нескольких десятилетий. Значительные 

успехи в возможности вычислить невязкие течения около тел при 

бесконечном числе Рейнольдса, стимулировали попытки использовать 

иерархическую процедура построения асимптотического решения уравнений 

Навье-Стокса, предложенную Прандтлем [Prandtl, 1935], путем решения 

пограничного слоя на поверхности тела в сочетании с проблемой невязкого 

обтекания. Однако эта элегантная техника не всегда успешна, так как в 

решении уравнений пограничного слоя при неблагоприятном градиенте 

давления может развиться непреодолимая особенность. Структура этой 

особенности изучалась Ландау и Лифшицом [1944] и подробно 

Гольдштейном [Goldstein, 1948]. Возникновение сингулярности в решении 

уравнений пограничного слоя и невозможность ее преодоления были позже 

подтверждены Стюартсоном [Stewartson, 1970], который попытался 

устранить сингулярность, принимая во внимание вязко-невязкое 

взаимодействие. Эта попытка была безуспешной, поскольку 

фундаментальное уравнение, полученное Стюартсоном, не имело решения, 

обладающего требуемыми свойствами продолжения вниз по потоку.  

В результате, наличие сингулярности Гольдштейна вызвало трудности 

в исследованиях вязких двухмерных течений в течение многих и многих лет. 

Кроме того, асимптотическая теория самоиндуцированного отрыва, 

созданная Нейландом [1969], и независимо Стюартсоном и Вильямсом 

[Stewartson, Williams, 1969] для газа и Сычевым [1972] для несжимаемой 

жидкости обеспечили альтернативный подход к разработке теории отрыва 

двухмерного ламинарного пограничного слоя. Проблема же отрыва 

пограничного слоя с заданным неблагоприятным градиентом давления 
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осталась открытой. До обсуждения исследований, которые лежат в основе 

теории, которая теперь называется теорией кромочного (предельного) 

отрыва, следует упомянуть работу Букмастера [Buckmaster, 1972]. В этом 

исследовании рассматривалось обобщение cингулярности Гольдштейна на 

случай особой линии в трехмерном пограничном слое на которой нормальная 

составляющая напряжения трения обращалась в ноль. Примечательно, что 

Букмастер получил гиперболическое уравнение в частных производных, 

решение которого - это напряжение трения вблизи особой линии. 

Исследование Букмастера является одним из предвестников данной работы, 

посвященной в 1 и 2 главах трехмерному случаю около критического 

(кромочного) отрыва пограничного слоя от гладкой поверхности. 

В настоящее время исследования Рубана [1981, 1982a] и Стюартсона  с 

соавторами [Stewartson and others, 1982], считаются центральными в теории 

кромочного (около критического) отрыва (на англ.: marginal separation). По 

этой причине название данной диссертации и содержит слова «Около 

критические решения …».  

Рубан [1981] проанализировал двумерный пограничный слой вблизи 

точки нулевого напряжения трения и показал, что решение вблизи этой точки 

может быть представлено как координатное разложение по собственным 

функциям, первая из которых отвечает за сингулярность Гольдштейна. Рубан 

обнаружил, что для несжимаемого пограничного слоя на параболической 

передней кромке тонкого аэродинамического профиля напряжение трения 

исчезает до нуля в определенной точке при увеличении угла атаки, но без 

образования сингулярности Гольдштейна. В этом случае первая собственная 

функция отсутствует в решении уравнений пограничного слоя вблизи точки 

нулевого трения, и вместо особенности Гольдштейна образуется слабая 

особенность, в которой напряжение трения ведет себя как SX X  . 

Интересно отметить, что решение уравнений пограничного слоя не 

единственное, при SX X   ; в дополнение к гладкому решению, 
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найденному Гольдштейном [Goldstein, 1948], которое проходит в область 

возвратных токов, существует также решение с разрывной первой 

производной, которое остается безотрывным вниз по потоку. 

 
В частности, было найдено, что толщина вытеснения пограничного 

слоя индуцирует возмущение давления во внешнем потенциальном потоке, 

которое, в свою очередь, влияет на поток в вязком подслое в окрестности 

точки отрыва. Длина такой области взаимодействия оказывается равной 
1 5(Re )X O   , а уравнения пограничного слоя со взаимодействием сводятся к 

задаче для А(Х) 

2 2 ( )

...,
2

x

A t dt
A x

t x

A x x
x




   



   



 

Здесь A(x) - нормированное напряжение трения, а Г - приращение угла 

атаки. Решения вышеуказанной задачи были найдены численно для 

различных значений Г. При возрастании Г функция A(x) трансформируется 

из безотрывного состояния ( A>0 всюду ) в отрывное течение, которое 

содержит возвратные токи ( A<0 ) в локальном пузырьке. Существует 

критическое значение Г = Г*, выше которого решение не существует. Полное 
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численное исследование свойств этой проблемы было выполнено Браун и 

Стюартсоном [Brown, Stewartson, 1983]. Фигура 1 показывает зависимость 

значения А(0) от параметра задачи Г. Обнаружено, что решение не 

единственно в ограниченном интервале приращений угла атаки 0 < Г < Г*, а 

именно, возможны 4 решения с малым отрывным пузырем. Интересно 

отметить, что решения на нижней ветви Фиг.1 при 0   соответствуют 

бесконечно нарастающим отрывным зонам с резким присоединением.  

Эти результаты трактуются как теория разрушения коротких зон 

отрыва в пограничных слоях (явление хорошо известное 

экспериментаторам). Таким образом, был найден целый класс решений, 

которые описывают переход от присоединенного состояния потока к 

отрывному и допускают бифуркацию решений вблизи критического 

значения угла атаки. 

 
Фиг.1 
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Интересно отметить результаты Чернышенко [1985], который решил 

указанную выше задачу для комплексных значений Г и A(x). Было найдено, 

что точка Г = Г* сингулярна, т. е. предел A(0) при *    не совпадает с 

пределом A(0) при  *  , а решение комплекснозначно для всех 

вещественных Г > Г*. Это исследование представляет интерес с точки зрения 

математических пределов применимости асимптотических разложений 

решения уравнений Навье-Стокса по числу Рейнольдса. Оказывается, что в 

классе комплекснозначных функций рассмотренная асимптотика применима 

для всех углов атаки, кроме Г = Г*.  

В дополнение к результатам, описанным выше, были проведены 

исследования с целью определения способа, при котором решение может 

быть продлено через сингулярность Гольдштейна. Одним из таких 

исследований является работа Смита и Дэниэльса [F. Smith, Daniels, 1981], 

где было обнаружено, что можно пройти вниз по течению через 

сингулярность Гольдштейна, если используется условие отсутствия 

вытеснения, иначе называемое компенсационный режим взаимодействия. 

Другой случай, связанный с гиперзвуковым пограничным слоем, 

развивающимся на холодной стенке и взаимодействующим с падающей 

ударной волной в сверхкритическом режиме, рассматривался Рубаном 

[1990], в котором применяется особый тип компенсационного 

взаимодействия. 

Поскольку существует несколько классов течений, в которых 

возникают различные законы взаимодействия, был выполнен целый ряд 

исследований с различными типами кромочного (предельного) отрыва. Даже 

в оригинальной работе Стюартсона с соавт. [Stewartson and others, 1982], 

было указано, что, изменяя знак аргумента в интегральном уравнении, можно 

получить решение для сверхзвукового внешнего течения. Таким образом, 

найденное фундаментальное уравнение может быть применено как к 
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несжимаемому течению жидкости, так и к сверхзвуковому потоку газа. 

Позже это свойство было показано независимо Фоминой [1983]. 

Важно отметить, что в научном мире асимптотической теорией 

критического (кромочного) отрыва занимались исследователи в трех 

научных школах: школа Чл.-корр. РАН В.В. Сычева в ЦАГИ (к ней 

относится и автор диссертации), школа Стюартсона и Смита в University 

College London и школа проф. Клювика в TU Wien. Каждая из этих школ, а 

также школы Чл.-корр. РАН В.Я. Нейланда (сверхзвуковые течения) и проф. 

Рыжова ВЦ АН СССР (более сосредоточенная на теории устойчивости), 

внесли заметный вклад в теорию взаимодействующих пограничных слоев. 

Особенности кромочного отрыва в вязких струях изучались 

Заметаевым [1986, 1987а]. Поскольку индуцированное давление в струе 

задается формулой p = -A"(x), порядок производной в интегральном 

уравнении увеличивается. Расчеты для этого случая показали, что 

зависимость A(0) от Г имеет вид спирали с фокусом в точке A(0) = Г = 0, как 

показано на Фиг.2. Были получены численно пять различных решений для 

одного из значений параметра, но в результате асимптотического анализа 

было установлено, что спираль скручивается бесконечно, приводя к 

бесконечному числу решений при Г = 0. 

 Фиг.2 
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Хакмюллер и Клювик [Hackmueller, Kluwick, 1989] изучили влияние 

небольшого поверхностного бугорка или углубления на решение 

фундаментального уравнения. Было обнаружено, что при прочих 

фиксированных параметрах, решение существует, если высота или глубина 

неровности не превышают некоторое критическое значение, за пределами 

которого происходит бифуркация к крупномасштабному отрыву. 

 

Актуальность диссертационной работы обусловлена тем, что явление 

внезапной перестройки картины глобального обтекания тел и, как следствие, 

резкого изменения сил и моментов, действующих на конструкции, не редко 

встречается в современной аэродинамике летательных аппаратов. 

Критические двухмерные режимы обтекания тел потоком вязкой жидкости 

или газа хорошо изучены, чего нельзя сказать о трехмерных пограничных 

слоях.  

 

Прежде чем описывать некоторые нестационарные и трехмерные 

предельные режимы отрывных течений, рассмотрим связь между теорией 

кромочного отрыва и теорией самоиндуцированного отрыва. Было 

обнаружено, что в плоскости (A(0), Г), существуют две предельные точки: (а) 

, (0)A   и (б) 0, (0) 0A  . Первая точка - это не что иное, как 

предел решения уравнений пограничного слоя без взаимодействия, а вторая 

точка соответствует «большому» отрывному пузырьку в пограничном слое с 

резким повторным присоединением или отрывом (в зависимости от типа 

взаимодействия). Взаимодействие значимо в этом случае только в 

окрестности скачка напряжения трения и резкие формы присоединения или 

отрыва являются самоиндуцированными. Такие решения существуют для 

углов атаки меньше критического значения Г* и они не имеют 

непосредственного отношения к крупномасштабному отрыву, который 
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возникает при превышении Г*. Такие решения означают не единственность 

состояния пограничного слоя для Г < Г*. Заметим, что для несжимаемого 

внешнего потока точка отрыва фиксируется при 0  , а замыкание 

отрывной зоны является самоиндуцированным и точка присоединения 

стремится в плюс бесконечность в масштабах области взаимодействия. Для 

сверхзвукового течения имеет место обратная ситуация, а именно точка 

присоединения фиксирована, а точка отрыва движется вверх по потоку до 

бесконечности. В работе Липатова [1987] рассматривался случай, когда 

особенность Гольдштейна может быть устранена путем введения области 

свободного взаимодействия, сосредоточенной на некотором небольшом 

расстоянии   выше по потоку от сингулярной точки нулевого трения. В 

вязком подслое в этом случае течение удовлетворяет уравнениям Прандтля 

[Prandtl, 1905], а условия сращивания вверх по потоку имеют вид 
2u y y    . Формулировка задачи замыкается законом давления Аккерета 

для внешнего сверхзвукового потока газа. Однако численное решение было 

построено только до точки отрыва, и поведение решения вниз по потоку 

осталось под вопросом. Можно предположить, что решение Липатова 

сращивается с решением соответствующего кромочного уравнения для 

сверхзвукового течения. Второй пример образования крупномасштабного 

отрывного течения описан в статье Керимбекова и др. [Kerimbekov and others, 

1994]. Переход от кромочного отрыва к крупномасштабному отрывному 

течению был рассмотрен для гиперзвукового пограничного слоя на холодной 

стенке, который взаимодействует с падающей ударной волной в 

сверхкритическом режиме. Интегральное уравнение для соответствующего 

взаимодействия (P = -A) имеет решение для всех значений параметра Г, в 

отличие от описанных выше случаев. В плоскости (Г, A(0)) вторая 

предельная точка ведет себя следующим образом , (0) 0A  ; поэтому 

точка отрыва движется вверх по потоку до бесконечности, и отрыв является 

скачкообразным по природе, то есть самоиндуцированным. Всесторонний 
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обзор двумерной теории кромочного отрыва представлен в книге под 

редакцией Сычева [1987], а также в расширенном переиздании на 

английском языке Сычев и др. [Sychev and others, 1998]. 

Глобальный отрыв несжимаемой вязкой жидкости от толстых тел при 

больших числах Рейнольдса оказывается не связанным напрямую с теорией 

кромочного отрыва, описывающей критические режимы малых отрывных 

пузырей. В частности, на это указывает фундаментальная работы Сычева 

[1972] о локальном ламинарном отрыве и работа, посвященная 

крупномасштабному отрыву Сычев [1967]. Вообще, что касается 

предельного состояния стационарного крупномасштабного отрывного 

обтекания двухмерных тел несжимаемой вязкой жидкостью при больших 

числах Рейнольдса, то этой теме посвящено достаточно работ теоретических, 

экспериментальных и расчетных. В частности Вик. В. Сычев считает, что 

предельного физически корректного стационарного состояния не существует. 

С другой стороны известны работы Садовского [1970, 1971, 1973] и Таганова 

[1970], предложивших невязкий предел течения в этом случае. Есть расчеты, 

выполненные Форнбергом [Fornberg, 1980, 1985], которые указывают на 

изменение закона нарастания толщины отрывной зоны по мере роста числа 

Рейнольдса, от первоначальной зависимости Re , до линейной по числу Re. 

Выпущена логически стройная работа Чернышенко [1985], построившего 

асимптотический предел решения уравнений Навье-Стокса и доказавшего 

теорему о свойствах циклического слоя смешения внутри отрывной зоны. К 

аналогичным выводам пришел Смит [F. Smith, 1985]. Таким образом, 

уместно говорить о связи именно локальной теории взаимодействия и теории 

кромочного (около критического) отрыва. 

Локальная теория взаимодействующих течений несжимаемой 

жидкости появилась при исследовании обтекания задней кромки плоской 

пластины и описана Стюартсоном [Stewartson, 1969] и немного позже 

независимо Месситером [Messiter, 1970]. Интересно отметить, что 
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исследователи столкнулись с незнакомой задачей, а именно уравнениями 

пограничного слоя, дополненными так называемым условием 

взаимодействия. Это условие связывает функциональным соотношением 

неизвестную заранее толщину вытеснения пограничного слоя и также 

неизвестный заранее градиент давления. Такое соотношение заметно разное 

для различных типов внешнего потенциального течения, и тем более для 

струй или для внутренних течений. В результате задача стала обладать неким 

эллиптическим свойством и ее численное решение оказалось 

затруднительным. Первые работы по расчету задачи взаимодействия вблизи 

задней кромки плоской пластины были успешно выполнены Джоубом и 

Бюргграфом [Jobe, Burggraf, 1974], Велдманом и ван де Вурреном [Veldman, 

von de Vooren, 1975] и Чоу и Мельником [Chow, Melnik, 1976]. Важно 

отметить, что указанное течение не содержит возвратных токов и поэтому 

решение оказалось достаточно простым. Однако для приложений заметно 

важнее изучить обтекание задней кромки тонкого профиля, что и было 

сделано для профиля с клиновидной кромкой в статьях Райли и Стюартсона 

[Riley, Stewartson, 1969] и Стюартсона [Stewartson, 1970]. Сформулированная 

ими задача оказалась сложнее, чем при обтекании задней кромки плоской 

пластины. Для ее решения Рубан [1977] разработал специальный 

итерационный метод и посчитал несколько вариантов обтекания, включая 

небольшие зоны возвратных токов. Обзор и классификация существующих 

методов на тот момент были сделаны Велдманом [Veldman, 1981], в том 

числе он предложил собственный оригинальный квази-одновременный 

метод, проверенный на обтекании задней кромки пластины и маленьких 

впадинах/бугорках. Обтекание задней кромки профиля эллиптической 

формы, описано в работах Королева [1980]. Отметим, что Королев создал 

метод решения и для задачи о ламинарном отрыве от гладкой поверхности, 

сформулированной Сычевым [1972]. Данная задача оказалась нелинейной 

задачей на собственные значения, да еще с развитой незамкнутой 
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полубесконечной зоной отрыва. Этот серьезный вызов был преодолен 

Королевым [1980] и в упрощенных предположениях Смитом [F. Smith, 1977]. 

Позже их решения были подтверждены ванн Доммеленом и Шеном [von 

Dommelen, Shen, 1984). Надо отметить, что методы установления, 

примененные к задачам данного типа обладают принципиальным свойством 

расходимости, так как нестационарные уравнения взаимодействия 

описывают решения содержащие волны Толлмина-Шлихтинга, см. например 

Рыжов и Терентьев [1977]. Как следствие нало применять специальные меры 

для подавления таких возмущений. Вообще аэродинамики в ЦАГИ уделили 

значительное внимание методам расчета течений со взаимодействием между 

пограничным слоем и внешним потоком.  Следует упомянуть прикладные 

работы по обтеканию профиля крыла со взаимодействием при конечных 

числах Рейнольдса в двухмерных и трехмерных случаях, например Карася и 

Ковалева [1989]. Известная фундаментальная работа Гайфуллина и Захарова 

[1990], посвящена расчету отрывного обтекания конуса со сходом вихревой 

пелены в рамках теории плоских сечений. Они учли в качестве предельного 

состояния внешнего потока вихревую пелену, взаимодействующую с вязким 

пограничным слоем при конечных числах Рейнольдса. Однако наиболее 

общий и ресурсоемкий метод решения использовал Королев, т.к. он решал 

эти нелинейные задачи методом Ньютона и в качестве переменных 

рассматривал все поле течения.  

Эти и другие задачи и подвигли автора разработать относительно 

простой и эффективный метод решения любых задач со взаимодействием, 

«обратный» по классификации Велдмана, используя в качестве неизвестной 

функции только толщину вытеснения. Этот метод подробно описан в главе 3 

диссертации. 

Заметный вклад в асимптотическую теорию сверхзвуковых 

взаимодействующих течений был создан в научной школе Чл.-корр. РАН 

В.Я. Нейланда [1969, 1970, 1973, 1977, 1981, монография 2003]. Следует 



15 

 

упомянуть работы Чл.-корр. РАН И.И. Липатова [1976, 1977, 1980, 1987, 

монография 2003], посвященные вдуву и отсосу газа в сверхзвуковых и 

гиперзвуковых пограничных слоях. Известен цикл работ проф. Г.Н. Дудина 

[1978, 1979-1991] посвященный теории обтекания треугольного крыла 

гиперзвуковым потоком газа в режиме умеренного и сильного 

взаимодействия. Следует упомянуть статьи Боголепова [1977, 1983, 1986] об 

обтекании малых бугорков в режиме компенсационного взаимодействия. 

Большое внимание исследователей было уделено нестационарному 

режиму взаимодействия и в том числе нестационарному уравнению 

кромочного отрыва, включая устойчивость его решений.  

Дело в том, что после появления работ по стационарным 

взаимодействующим течениям, немедленно появились исследования 

доказавшие связь теории устойчивости и теории взаимодействия. Уместно 

упомянуть серию работ, выпущенных в ВЦ АН СССР Рыжовым [1977а,б], 

Рыжов и Терентьев [1977, 1986], Жук и Рыжов [1978, 1979, 1980, 1981], 

Терентьев [1979, 1981, 1984]. В этих статьях подробно были исследованы 

асимптотики нижней и верхней ветвей кривой нейтральной устойчивости в 

пограничных слоях, изучено течение Пуазейля, рассмотрен вибратор и его 

запуск в вязком подслое нестационарной области взаимодействия в 

дозвуковых и сверхзвуковых течениях. Очень полную и подробную 

информацию об этих работах можно найти в монографии Жука [2001]. 

Особенно надо отметить полученную Жуком [2001] теорию солитонов во 

взаимодействующих трансзвуковых течениях газа, обобщающую уже 

известные режимы Бюргерса и Бенджамина-Оно. Ведь при достаточно 

больших амплитудах возмущений во взаимодействующих пограничных 

слоях, вязкие эффекты могут выпадать и уравнения взаимодействия сводятся 

к нелинейному уравнению Бюргерса (для сверхзвукового потока газа), 

интегро-дифференциальному уравнению Бенджамина [Benjamin, 1967] – Оно 

[Ono, 1975] (для дозвуковых потоков) или уравнению Кортевега де Вриза ( 
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для вязких струй). Неизвестной функцией в них оказывается толщина 

вытеснения пограничного слоя, а решение может содержать солитоны.  

Необходимо коснуться сверхзвуковой теории устойчивости в 

пограничных слоях и упомянуть работы проф. С.А. Гапонова, начав с 

известной монографии Гапонов и Маслов [1980]. В последние годы внимание 

проф. Гапонова [2008, 2009, 2011, 2013, 2016] привлекли трехволновые 

взаимодействия в гиперзвуковых пограничных слоях, но на пористой 

поверхности, а также тепло- массообмен и его влияние на характеристики 

устойчивости сверхзвуковых пограничных слоев. 

Вообще, теория взаимодействия оказалась благодатной почвой для 

исследователей, как нестационарных течений, так и в теории устойчивости. 

Следует упомянуть серию работ Вик. В. Сычева [1979, 1980, 1983, 1984] 

посвященную нестационарному самоиндуцированному отрыву и отрыву 

несжимаемой жидкости на подвижной поверхности. В частности Вик. 

Сычеву [1987] удалось найти аналитическое решение сложной задачи об 

отрыве с развитой зоной возвратных токов. Вообще в нестационарных 

течениях не всегда удобно использовать понятие линий тока, а скорее 

траекторий, поэтому для описания отрывов применяли и лагранжевы 

переменные, Каули и др. [Cowley and others, 1990]. Привлекают внимание 

необычные работы о старте плоской пластины с подвижной поверхностью 

при конечных, но больших числах Рейнольдса в рамках полных уравнений 

Навье-Стокса выполненные в научной группе Чл.-корр. РАН Гайфуллина 

[2005, 2006, 2009]. Необходимо сказать о восприимчивости пограничных 

слоев газа к внешним звуковым волнам, асимптотическую теорию которой, 

построил Рубан [1984, 1985] и позднее Гольдштейн [Goldstein, 1985].  

Очень существенный вклад в асимптотическую теорию устойчивости 

внес Смит [F. Smith, 1979] , особенно надо отметить работы о формировании 

особенностей в конечный момент времени во взаимодействующих 

пограничных слоях Смит [F. Smith, 1986]. Аналогичные результаты были 
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найдены и в теории критических (кромочных) отрывных течений. Рубан 

[1982б] также нашел неустойчивые коротковолновые моды в решении. 

Анализ, выполненный Смитом [F. Smith, 1982] и Рыжовым и Смитом 

[Ryzhov, Smith, 1984], показал, что задача Коши по времени для уравнения 

кромочного отрыва некорректна поставлена, если начальные данные заданы 

в конечный момент времени. Эта возникающая особенность в конечный 

момент времени связана с выбросом вихря из пограничного слоя, как было 

найдено Эллиотом и Смитом [Elliott, Smith, 1987]. Свойства нестационарного 

уравнения кромочного отрыва без взаимодействия, были исследованны 

Смитом и Эллиотом [Smith, Elliott, 1985], которые рассмотрели возможность 

достижения стационарного решения в зависимости от свойств исходных 

данных. В частности, обнаружено, что для того, чтобы получить гладкое 

стационарное решение без отрыва, необходимо, чтобы начальные данные 

были гладкими и безотрывными. Если начальное условие не является 

гладким или оно содержит возвратное течение, то сингулярность 

формируется в решении за конечное время. Тимошин [1987, 1988a,б] 

исследовал пульсирующие течения в канале и в пограничном слое, 

управляемые уравнением кромочного типа, в которых нестационарность 

возбуждается локально вблизи точки нулевого трения. Отличительной 

особенностью этих задач является то, что начальные данные при t    

порождают корректную задачу и позволяют получить единственное решение. 

Рассмотрим теперь трехмерные решения уравнений Навье-Стокса и 

пограничного слоя. Упрощенное обобщение теории около критического 

(кромочного) отрывного течения на трехмерный случай было сделано Браун 

[Brown, 1985] для течения на подветренной линии симметрии гладкого тела. 

Расчеты уравнений пограничного слоя на поверхности тонкого эллипсоида 

вращения, установленного под углом атака 40  , выполненные Себеси и 

др. [Cebeci and others, 1980] показывают, что продольное напряжение трения 

на подветренной линии симметрии обращается в ноль в некоторой точке, а 
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затем линейно возрастает. Браун [Brown, 1985] заключила, что эта ситуация 

эквивалентна двумерному случаю и трехмерные эффекты отсутствуют, но 

интегро-дифференциальное уравнение, определяющее продольное 

напряжение трения, немного отличается от чисто двумерного случая. 

Следует отметить, однако, что поставленная Браун [Brown, 1985] задача и 

найденное решение справедливо именно в самой плоскости симметрии, а 

поведение течения вне этой плоскости не обсуждалось. 

Также можно применять методы теории около критического 

(кромочного) отрыва для изучения потока в осесимметричном следе при 

воздействии на него неблагоприятного управляемого градиента давления. 

Асимптотическая теория разрушения следа построена в статье Вик. В. 

Сычева [1983]. Ситуация, когда скорость на оси следа обращается в нуль, 

была изучена Тригубом [1986, 1987], и было обнаружено, что в этом случае 

скорость на оси следа линейно падает до нуля в некоторой точке, а затем 

также линейно возрастает при движении вниз по потоку. При учете 

взаимодействия, в следе возможно образование короткой зоны возвратных 

токов, как и в двумерном пограничном слое, но при усугублении градиента 

давления след разрушается. Заметаев [1987 б,в] рассмотрел несжимаемое 

течение около тонкого кругового конуса, установленного под небольшим 

углом атаки, для которого потенциальный поток и пограничный слой 

являются автомодельными. Такие течения подробно изучены в 

экспериментах, смотрите монографию Чжена [1973]. В частности 

установлено, если угол атаки отнесенный к углу полураствора конуса 

составляет 0/ 0.6   , то вблизи подветренной линии стекания начинается 

распухание пограничного слоя, а при 0/ 1    заметны признаки 

образования вихревой пелены. Подобные течения также изучались 

Хонькиным и Шалаевым [1985], Шалаевым [1992, 1993, 2007], с целью 

прояснить структуру возникающих особенностей в пограничных слоях. 
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Теория отрыва для сверхзвукового внешнего потока на 

осесимметричном теле была описана Клювиком [Kluwick, 1989]. В 

частности, было обнаружено, что для «толстых» тел проблема сводится к 

двумерному случаю. В работе Хакмюллера и Клювика [Hackmueller, Kluwick, 

1990] изучалось влияние трехмерного бугорка малой высоты на двумерное 

течение вблизи точки нулевого напряжения трения и представлены картины 

предельных линий тока для достаточно широких бугорков в поперечном 

направлении. Представляют интерес результаты, полученные Виленским 

[1989, 1990] для трехмерного кромочного отрыва в пограничном слое на 

произвольной криволинейной поверхности. Было обнаружено, что область 

взаимодействия кромочного типа вытянута вдоль некоторой гладкой 

предельной линии тока и что продолжимое через нее решение может быть 

либо гладким, либо содержать разрыв производной как и в двумерной 

теории. Компонент напряжения трения, нормальный к указанной выше 

линии удовлетворяет интегро-дифференциальному уравнению в частных 

производных, аналогичному выведенному Заметаевым [1987в]. Значительное 

внимание пространственным предельным течениям, в том числе 

нестационарным уделено в работах Брауна [Braun, 2004, 2005, 2008, 2014]. 

Расчеты течений в несжимаемых пограничных слоях около тонких 

осесимметричных эллипсоидов, расположенных под углом атаки, 

выполнялись в течение многих лет для изучения свойств решений уравнений 

пограничного слоя, и в частности образования особенностей. Ряд расчетов 

был выполнен Вэнгом [Wang, 1970, 1972, 1974a, b, c, 1975], который показал, 

что на линиях симметрии могут образовываться особенности. Также была 

введена концепция отрыва «открытого» типа. Было показано, что для 

гладких начальных данных, в картине предельных линий тока найдется такая 

линия, которая приводит в сингулярную точку, а из нее в свою очередь 

начнется вихревая пелена. Экспериментальное исследование обтекания 

несжимаемым потоком вытянутого эллипсоида было выполнено Вэнг и др. 
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[Wang and others, 1990], где было подтверждено, что отрыв начинается и 

происходит с четко видной линии отрыва на поверхности. Предельные линии 

тока, исходящие из точки торможения, начинают сходиться к определенной 

линии без каких-либо признаков особых точек в поле напряжений трения. 

Однако ясно, что гладкость соответствующих решений уравнений 

пограничного слоя можно поставить под сомнение. Уместно привести 

картинку обтекания тела оживальной формы из сборника Ван-Дайка [1985], 

поясняющую эту концепцию. 

 
Расчеты уравнений пограничного слоя в окрестности линии отрыва 

были выполнены Себеси и др. [Cebeci and others, 1981], в которых было 

показано, что на линии отрыва появляется острый излом (так называемый 

«ok»), по мере того как угол атаки увеличивается. При дальнейшем росте 

угла атаки «ok» перемещается вперед ближе к точке торможения и вверх 

ближе к линии симметрии на подветренной стороне тела. Структура решения 

вблизи излома линии отрыва не ясна, но наличие такого излома 

демонстрирует схождение предельных линий тока. Было обнаружено, что 

при подходе линий тока к линии отрыва с наветренной стороны решение 

содержит сингулярность Гольдштейна, в то время как при подходе с 

подветренной стороны решение может содержать либо линию отрыва, либо 

линию, отграничивающую область недоступности для жидких частиц. 

Позже, Себеси и Су [Cebeci, Su, 1988] утверждали, что для углов атаки более 
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6° именно линия отрыва была ниже излома (на наветренной стороне), тогда 

как выше излома предельные линии тока пытались завернуть в область 

отрыва, но не могли проникнуть далее потенциальной линии тока, 

проходящей через точку излома. Таким образом, решения уравнений 

пограничного слоя вблизи начала линии отрыва существуют в любой 

области, куда жидкие частицы могут проникнуть. То есть, какие-то 

предельные линии тока, выходящие из точки торможения достигают линию, 

поперек к которой формируется особое поведение по Гольдштейну, в то 

время как другая часть предельных линий тока пытается достичь эту линию с 

другой стороны, но не может пересечь потенциальную линию тока, которая 

пересекает начало линии отрыва. Поэтому вместо того, чтобы изучать кончик 

линии отрыва, стоит рассмотреть линию конечной длины, где решение 

содержит сингулярность Гольдштейна.  

 

После подробного экскурса в историю асимптотических исследований 

отрывных течений можно сформулировать  

 

Цель Диссертации – создание методологии использования 

асимптотических методов для анализа около критических ламинарных 

отрывных течений в пограничных слоях при больших числах Рейнольдса. 

 

Для достижения поставленной цели были решены задачи: 

 

1.  Построена асимптотическая теория около критического отрывного 

пространственного течения во взаимодействующем пограничном слое 

вблизи точки нулевого трения для различных тел. 

2. Решена трехмерная задача о влиянии тонкой невязкой вихревой нити, 

размещенной вдоль потенциальной линии тока, на предотрывный 

(предельный) плоский пограничный слой. 
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3. Исследовано критическое отрывное обтекание вязкой несжимаемой 

жидкостью тонкого тела вращения с малыми искажениями 

поверхности. 

4. Разработан численный метод решения сложных двухмерных задач 

взаимодействия пограничного слоя с внешним потоком. 

5.  Решена тестовая задача обтекания вязким потоком со взаимодействием 

пластины с отклоненным щитком. Решение предельное и имеет точку 

бифуркации по параметру. 

6. Изучен численно сложный процесс смешения вязких потоков 

несжимаемой жидкости, сходящих с задней кромки пластины с 

разными скоростями. 

7.  Исследован режим восприимчивости локально непараллельного 

пограничного слоя к звуковым волнам, базовое решение взято вблизи 

точки бифуркации по параметру. 

8. Изучено взаимодействие потока газа со скачком уплотнения и его 

бифуркации при обтекании слабо-возмущенного тупого торца круглого 

цилиндра совершенным газом при больших числах Маха в 

приближении тонкого ударного слоя  

 

Таким образом, объект настоящего исследования – это течения 

вязких жидкостей или газа, а предмет исследования – это уравнения Навье-

Стокса. 

 

На защиту выносятся следующие результаты: 

 

 

1. Структура пространственного пограничного слоя вблизи точки 

зарождения развитого отрывного течения при обтекании гладких тел. 
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2. Критическое влияние слабой и тонкой вихревой нити на предотрывный 

плоский пограничный слой. 

3. Сложное отрывное пространственное обтекание тонкого 

осесимметричного тела, с периодически возмущенной поверхностью. 

4. Численный метод решения задач со взаимодействием. 

5. Решение классической задачи о смешении двух потоков с различными 

константами Бернулли вблизи задней кромки плоской пластины в 

рамках теории взаимодействия. 

6. Восприимчивость к звуку локально непараллельного 

взаимодействующего пограничного слоя вблизи точки излома 

поверхности; 

7. Неединственность формы ударной волны и течений газа в тонком 

ударном слое при обтекании почти плоского торца круглого цилиндра. 

 

 

Соответствие Паспорту Специальности. 

 

Работа полностью соответствует формуле специальности 

«…построение и исследование математических моделей для описания 

параметров потоков движущихся сред в широком диапазоне условий …» в 

области исследований: 

11. Пограничные слои, слои смешения, течения в следе. 

12. Гидродинамическая устойчивость. 

4. Течения сжимаемых сред и ударные волны. 

18. Аналитические, асимптотические и численные методы  исследования 

уравнений кинетических и континуальных моделей однородных и 

многофазных сред (конечно-разностные, спектральные, методы конечного 

объема, методы прямого моделирования и др.). 
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 Личный вклад автора: 

 

Автором диссертации проанализированы ламинарные предотрывные и 

отрывные течения вязкой несжимаемой жидкости в пограничных слоях на 

пространственных телах. Построены асимптотические модели течений при 

бесконечных числах Рейнольдса и стремлении геометрических параметров 

задач к предельным значениям. Изучены присоединенные состояния 

пограничных слоев и их разрушение. Выбраны аналитические и численные 

методы решения сформулированных задач. Разработаны численные 

алгоритмы, проведены расчеты и проанализированы результаты. 

 

Новые результаты: 

 

1. Впервые получено решение, описывающее течение вблизи точки 

зарождения отрыва при обтекании гладких трехмерных тел. 

2. Впервые детально изучено влияние вихревой нити на предотрывный 

плоский пограничный слой. 

3. Подробное исследование топологии предельных линий тока на 

поверхности тонкого тела во взаимодействующем пограничном слое. 

4. Разработан новый эффективный численный метод решения задач с 

вязко-невязким взаимодействием. 

5. Учет в решении классической задачи о смешении двух потоков вблизи 

задней кромки плоской пластины, как различных констант Бернулли, 

так и разных коэффициентов напряжения трения. 

6. Обнаружение резонанса при возбуждении звуком собственных 

колебаний в  локально непараллельном пограничном слое вблизи точки 

бифуркации решения по параметру. 



25 

 

7. Построение многопалубной структура решения вблизи особой 

звуковой точки в рамках теории тонкого ударного слоя. 

 

 

Методы, подходы и принципы: 

 

Основным методом исследования вязких ламинарных предотрывных и 

отрывных течений является метод сращиваемых асимптотических 

разложений, примененный к анализу уравнений Навье-Стокса при больших 

числах Рейнольдса, 

В численном анализе использован метод Ньютона и оригинальный 

подход вычисления матрицы Якоби для неявной системы уравнений. 

 

Обоснованность и достоверность полученных результатов 

обусловлена применением хорошо зарекомендовавших себя 

асимптотических методов (метод сращиваемых асимптотических 

разложений) при больших числах Рейнольдса; удовлетворительным 

сравнением с известными результатами расчетов сложных трехмерных 

пограничных слоев и известными экспериментальными данными об 

особенностях разрушения присоединенных течений и глобальной 

перестройке всей картины обтекания тел. 

 

Теоретическая и практическая значимость работы состоит в 

следующем:  

 

    Полученные результаты и методы анализа могут использоваться при 

оценке корректности расчетов пограничных слоев промышленными 

пакетами программ. 
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    Работа показывает, что асимптотические методы изучения сложных 

течений вязкой жидкости и газа в предотрывном и отрывном 

состоянии эффективны в фундаментальных поисковых 

исследованиях.  

    Значительное продвижение в объяснении физических механизмов 

перестройки пространственных решений вблизи бифуркационных 

режимов обтекания тел.  

   В использовании полученных теоретических результатов при  

постановке и анализе экспериментов в аэродинамических трубах при 

отрывных режимах обтекания моделей.  

 

Публикации. 
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5. New Developments and Applications in Rapid Fluid Flows, LMS 

Workshop, 14-18 July 2003, Durham, UK. 



27 

 

6. ICTAM04 - 21 International Congress of Theoretical and Applied 

Mechanics, August 15-21, 2004, Warsaw, Poland. 

7. ICIAM 07 - International Congress of Industrial and Applied Mathematics,  

2007, Zurich, Switzerland. 

8. EUROMECH Fluid Mechanics Conference 7, 14-18 September 2008, 
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9. Серия научных семинаров в University of Manchester, University College 

of London, TU Wien, 1998-2008. 
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Структура диссертации 

Диссертация состоит из введения, 5 глав, выводов и списка 

литературы. Содержание работы изложено на 224 страницах текста, включая 

80 рисунков и графиков. Список литературы содержит 193 ссылки. 

 

Содержание диссертации 

 

В главе I исследуется ламинарное обтекание вязкой несжимаемой 

жидкостью тонкого тела с конической носовой частью, установленного под 

малым углом атаки и симметричного тупого гладкого тела, установленного 

под большим углом атаки, при бесконечно больших числах Рейнольдса. В 

соответствие с экспериментальными данными и расчетами пограничного 

слоя вблизи подветренной линии симметрии может начинаться линия отрыва 

вихревой пелены. Ее начальная точка приближается к линии симметрии при 

определенных углах атаки. Пограничный слой вблизи линии симметрии 
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анализируется около точки продольного нулевого напряжения трения. Это 

предельное течение возмущается либо углом атаки, либо пространственным 

развитием, либо одновременно и тем и другим. Выведены уравнения 

пограничного слоя без взаимодействия, допускающие как гладкие решения, 

так и разрывные. Сформулирована задача со взаимодействием между вязким 

подслоем и внешним потенциальным потоком. Приведены картины 

предельных линий тока для режимов обтекания без взаимодействия и со 

взаимодействием. 

 

В главе II изучаются режимы обтекания тел с неблагоприятным 

градиентом давления для случаев осесимметричного внешнего 

потенциального течения. В параграфе 1 тонкая вихревая нить с заданной 

циркуляцией, расположена вдоль свободной линии тока потока, набегающего 

на плоскую пластину. Двухмерный пограничный слой несжимаемой 

жидкости на плоской пластине, полагается подверженным действию 

неблагоприятного градиента давления в силу некоторых внешних факторов. 

Указанное двухмерное течение возмущается тонкой продольной вихревой 

нитью постоянной циркуляции, находящейся на малом расстоянии от 

поверхности. Изучается сингулярное развитие слабых вязких трехмерных 

возмущений, порождаемых тонким вихрем, вблизи точки нулевого трения 

двумерного предельного пограничного слоя. Исследуются режимы, при 

которых может образоваться вихревая пелена, начинающаяся на поверхности 

пластины. В параграфе 2 изучается обтекание тонкого осесимметричного 

тела потоком вязкой несжимаемой жидкости в предельном режиме, а именно 

полагается, что потенциальное осесимметричное распределение давления на 

поверхности тела имеет зону роста. В результате, в некотором сечении 

продольное поверхностное напряжение трения обращается в ноль. 

Рассмотрен случай, в котором указанное предельное течение в 

осесимметричном пограничном слое возмущается малыми неровностями 
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поверхности. Сформулирована задача о взаимодействии вязкого подслоя и 

внешнего потенциального потока. 

 

В главе 3 описывается новый эффективный численный метод решения 

двухмерных задач со взаимодействием и приведены примеры решений. В 

параграфе 1 формулируется собственно сам метод, основанный на 

специальном выборе одной одномерной неизвестной функции и решении 

неявной системы уравнений методом Ньютона. Обоснован выбор толщины 

вытеснения вязкого подслоя в качестве этой функции. Сформулирован 

способ вычисления матрицы Якоби на каждой итерации. В параграфе 2 

численно решена задача обтекания плоской пластины с отклоненным 

закрылком в рамках асимптотической теории взаимодействия. Проверена 

применимость метода для очень больших замкнутых зон отрыва, не 

достижимых ранее, и вблизи точки бифуркации решения по параметру. 

Предложен способ прохождения точки бифуркации в сложных течениях. В 

параграфе 3 численно решена классическая задача о смешении потоков 

несжимаемой жидкости, с разными константами Бернулли и разными 

коэффициентами напряжения трения, стекающих с задней кромки плоской 

пластины. Предложен метод учета дополнительного условия равенства 

давлений вниз по потоку от задней кромки пластины, в нижнем и верхнем 

течениях жидкости. 

 

В главе 4 изучается восприимчивость стационарного 

взаимодействующего пограничного слоя газа, обтекающего область 

отклонения закрылка за плоской пластиной. В качестве источника 

возмущений рассматривается внешняя звуковая волна с фиксированной 

частотой. Предлагается в качестве базового локально непараллельного 

стационарного потока, подлежащего анализу на восприимчивость, принять 

решение близкое к точке бифуркации по углу отклонения закрылка. То есть 



30 

 

рассматривается предбифуркационное стационарное решение задачи со 

взаимодействием, существующее не далее некоторого угла отклонения 

закрылка. На другой ветви решений эта выбранная задача может содержать 

отрывные замкнутые зоны большого размера. Описываются режимы с  

докритическими и закритическими частотами внешней звуковой волны. 

Исследуются обтекания выпуклого и вогнутого углов. 

 

В главе 5 изучается невязкое взаимодействие в тонком ударном слое 

при больших числах Маха. Рассматривается гиперзвуковое обтекание 

совершенным невязким газом слабоискривленного торца круглого цилиндра 

в приближении тонкого ударного слоя. Изучаются режимы течения, в 

которых форма торца не является монотонной функцией радиуса, а 

содержит, например, центральное тело регулируемой высоты. Описан случай, 

в котором форма скачка уплотнения удовлетворяет нелинейному обычному 

дифференциальному уравнению, допускающему предельные решения, 

отличные, но одновременно и напоминающие таковые в вязких течениях. 

Сформулированы условия при которых возможно гладкое и негладкое 

продолжение решения через звуковую точку. Предложено взаимодействие 

специального типа между основной частью тонкого ударного слоя, скачком 

уплотнения и тонкой невязкой струйкой на поверхности тела, обусловленной 

действием разгонного градиента давления. Показано, что это взаимодействие 

усугубляет процесс разрушения течения. 
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Глава I. КРОМОЧНЫЙ ОТРЫВ В ТРЕХМЕРНЫХ ТЕЧЕНИЯХ. 

 

    §1. Критическое решение уравнений пограничного слоя при обтекании    

      тонкого конуса под углом атаки 

 

Данный параграф посвящен описанию двух работ автора [1987 б,в], с 

которых начался весь цикл исследований предельных трехмерных 

ламинарных течений, занявший порядка 30 лет. Исследования обтекания 

тонкого конуса, выполненные в 1984-1985 годах, явились, вероятно, первыми 

работами в мировой науке, обобщившими результаты Рубана [1981, 1982] на 

трехмерные случаи. По этой причине, чтобы диссертационная работа имела 

логичную и замкнутую форму, уместно начать описание созданной автором 

пространственной теории именно с течений вязкой несжимаемой жидкости 

около тонкого конуса. 

Хорошо известно, что около тонких тел существует два 

принципиально различающихся типа течений, Фиг.1-2 [Альбом Ван-Дайка 

1985]: безотрывное обтекание, при котором вязкие·эффекты проявляются 

лишь в тонком пограничном слое, и отрывное, со сходом вихревой пелены, 

которое реализуется при больших углах атаки тела относительно 

направления набегающего потока. Определенную простоту в топологическом 

смысле представляют течения около тел, имеющих острые кромки, например 

около треугольного крыла Дудин [1991], безотрывное обтекание которого 

невозможно при наличии угла атаки. Более того, для таких конфигураций 

вихревая пелена, как правило, сходит именно с острых кромок. Сложнее 

предсказать априори картину течения около гладкого тела, для отрывного 

обтекания которого трудности связаны с произволом в положении линии 

схода вихревой пелены. Существуют работы, посвященные развитому 

трехмерному отрыву, например, коническому отрыву с гладкой поверхности 
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Райли [Riley, 1979], задача о котором фактически свелась к плоской теории 

ламинарного отрыва Сычева [1972]. 

 
 

 
Фиг.1-2 
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Возникает закономерный вопрос о способах перестройки 

присоединенного течения в отрывное, о том новом свойстве, которое 

вызывает переход от одного решения стационарных уравнений к другому по 

достижении критического угла атаки. 

В плоском случае ответ получен в работах Рубана [1981, 1982] и 

Стюартсона и др. [Stewartson and others, 1982], посвященных взрыву 

короткого срывного пузыря на передней кромке тонкого профиля. 

Построены решения и для некоторых других ситуаций, Заметаев [1986]. 

В данной работе основное внимание уделено присоединенному 

течению жидкости около конуса, а именно, изучается вопрос о кризисе 

такого течения, который наступает при определенном значении угла атаки 

 . При меньших углах атаки решение уравнений пограничного слоя на 

конусе гладкое, при больших оно непродолжимо вплоть до подветренной 

линии стекания и заканчивается особенностью, аналогичной найденной 

Гольдштейном для плоского случая. 

В работе изучена структура решения уравнений пограничного слоя 

при угле атаки, стремящемся к критическому значению в окрестности особой 

точки - точки нулевого окружного напряжения поверхностного трения. 

Показано, что предельное решение особое, но продолжимое. Особенность 

характеризуется изломом в толщине вытеснения и в обеих компонентах 

поверхностного напряжения  трения. 

Пусть некоторое тонкое тело поставлено в однородный поток вязкой 

несжимаемой жидкости под углом атаки  . На форму тела наложим 

ограничение - оно должно иметь конический носок, причем пусть для 

простоты конус будет круговой. Будем считать все размеры отнесенными к 

длине тела L, скорости - к скорости набегающего потока V , а безразмерное 

давление введем по формуле 2P p V p   . Число Рейнольдса 
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Re /V L  ,   - коэффициент кинематической вязкости. В отнесенных 

координатах тело изображено на фиг. 3. Форма его пусть будет следующая: 

0

( , ), , [0;0.5],
( , ), (0.5;1]
t t

t

r r x r x x

r r x x

    

    

где 0 ( , )r x   – некоторая функция, гладко сопрягающаяся с круговым конусом 

в точке х=0.5. Угол атаки нормируем следующим образом: 0   . 

 

 

 
Фиг.3 

 

 

Решение уравнений Навье-Стокса будем строить методом 

сращиваемых асимптотических разложений при двойном предельном 

переходе 0, Re   с условием 1 2Re  . 

Задача построения потенциала обтекания тонкого тела вращения без 

угла атаки решена например Коулом [1972]. При учете угла атаки 

асимптотическое разложение потенциала имеет вид 
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2 2
0 2 1 1

2 2 2
1 1 1 1 1

2

2 1 0 1 2
1

( )ln ( , , ) ...
2

, ,

( ) ln ( ) 1
2

q x
x x y z

y z
y z r y z

q x x
r G x y

r

         


   
 

 
     

  

 

Здесь q(x) – плотность источников на оси тела, для конического носика 

q=2πx. Функция G определяется всей формой тела, ее конкретный вид для 

дальнейшего анализа интереса не представляет. На поверхности конуса в 

результате асимптотические разложения продольной и окружной скоростей и 

давления имеют вид 

 
2 2

2 0

2 2 2 2
0 0

1 ln ( , ) ..., ( 2 sin ) ...

ln (2 cos 2 sin ( )) ...

u u x v

p F x

             

        
 

 

Уравнения пограничного слоя удобно получить из уравнений 

Навье-Стокса, записанных в цилиндрической системе координат. Пусть u, v, 

w - соответственно продольная, окружная и радиальная скорости, тогда, 

пользуясь видом разложений потенциального потока, ищем решение 

уравнений Навье-Стокса в виде 

 
1

2
1 1 1 1

12 2 2
1

( , , ) ..., ( , , ) ..., Re ( , , ) ...

ln ( , , ) ..., Re ( )

u u x Y v v x Y w u w x Y

p p x Y Y r x


           

        
 

 

Относительно членов с индексом 1 получаем систему уравнений 

пограничного слоя, которая после замены     , примет вид 
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2

1 1 1 1 1
1 1 2

u v u u u
u w

x x Y Y

   
  

   
 

2
1 1 1 1 1 1 1 1

1 1 2

1 1 1 1 1

1 1 1 1 1 0

1
0 0

1

1 0, 0

0 : 0; : 1, 2 sin

2 sin (1 2 cos )

v v v v v u p v
u w

x x Y x x Y

u v u w p

x x x Y Y

Y u v w Y u v

dp

d

    
     

    

   
    

   

         

      


 

 

К системе уравнений необходимо добавить начальные условия при 

0x  и 0  . Отметим, что угол   отсчитывается от линии растекания на 

наветренной стороне конуса. Будем искать решение данной системы 

уравнений в автомодельном виде, так как краевые условия не зависят от х 

1 1
2 2

1 1 1 1 1 1 2

1 1 2

1( , ), ( , ), ( ),
2

3, ,
2

u u v v w x u w Yx

F
u v w F

 
          

  
    
  

 

И после введения двух функций тока найдем задачу 

 
2 2 3

2 3

2 2 3
1

2 3

0

0

3
2

3
2

0, 0

1, 2 sin ,

( ), 0, 0

F F F
F

pF F
F

F
F

F

F
U

     
    

     

          
        

         

 
      
 

 
    

 

 
    

 
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Здесь 0 ( )U   - решение уравнений пограничного слоя на линии растекания. 

Система уравнений решалась численно при различных значениях угла атаки 

0 . Для контроля получаемых результатов при расчете использовались две 

разностные схемы: двухслойная Крэнка-Никольсона и более устойчивая 

трехслойная; результаты совпадают с точностью до 1%. На фиг.4 

представлены две компоненты напряжения поверхностного трения: 
2 2

1 , 0F      ( 0 0.6  , кривая 1) и 2 2
2 , 0       ( 0 0.6  , 

кривая 2); 1 - продольная компонента, а 2  - окружная. Установлено, что 

непрерывное решение уравнений пограничного слоя в диапазоне [0, ]    

существует при 0 0.6  . При 0 0.6     решение гладкое. При 0     

решение особое, оно непродолжимо до точки    . Результаты расчета в 

точности соответствуют экспериментальным данным приведенным Чженом 

[1972] для угла атаки конуса, при котором появляются первые признаки 

отрыва. Наконец, при 0     уравнения допускают особое (с изломом в 1  

и 2 ), но продолжимое решение через точку нулевого окружного 

напряжения трения. Качественно кривая 2 (фиг. 4) соответствует 

двухмерному случаю Рубана [1981], однако в отличие от плоского режима 

наклоны слева и справа от особой точки различны. Координата особой точки 

3.01  . 

Аналитическое исследование решения уравнений пограничного слоя в 

малой окрестности точки     при 0     указывает, что решение не 

единственно. В частности, если 0a  и 0a  - наклоны кривой 2 (Фиг.4) слева и 

справа от точки нулевого окружного напряжения трения, то как показывает 

анализ они могут быть связаны двумя способами: 0a =- 0a  или 0 0 00
4

3a a    . 

Первый способ – это гладкое продолжение решения в зону возвратных токов, 

а второй - особое решение с изломом, соответствует численному расчету. 
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Фиг.4 

 

Константа 00  - это величина продольного трения в особой точке. 

Анализ в малой окрестности особой точки (Фиг.5) показывает, что окружное 

напряжение трения, обозначенное через 1( )A  , где 1  - нормированное 

приращение угловой координаты удовлетворяет уравнению 

 

1 1

1 1
1

( ) (1 ) 0

...,
( )

A A A

A const


     


     


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Фиг.5 Схема пространственной малой окрестности вблизи особой 

точки на поверхности конуса 

 

В этих формулах 0

0
,a

a



     ;  при 1   интересующее нас 

решение имеет вид 1 1 1( )( )A A G   . Если 10 ( 0)G   , то решение 

гладкое и определено везде. Если наоборот 10 ( 0)G   , то решение 

существует только до некоторого значения угла и непродолжимо далее вниз 

по потоку ( в данном случае по углу). При 0  в функции 1( )A   

формируется излом. 

Далее необходимо вводить в рассмотрение взаимодействие между 

пограничным слоем и внешним невязким потоком, т. к. излом формируется 

не только в окружной компоненте напряжения трения, но и в толщине 

вытеснения. И внешний потенциальный поток обтекает поперек острую 

«крышу», конек которой направлен вдоль луча    . В результате на 

поверхности конуса в малой окрестности данного луча индуцируется 

следующий градиент возмущенного давления 
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21

2
2

1 1

( )p const A dt
x

t t






  


     

 

Важно отметить, что это возмущенное давление уже не обладает 

свойством коничности, и поэтому, в вязкой части области взаимодействия 

течение будет существенно трехмерно, в отличие от автомодельного 

пограничного слоя, сформировавшего данное течение. Учет взаимодействия 

приводит к следующей начально-краевой задаче 
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
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          

       

     

      

 

 

 

Функция 1( , )A x  с точностью до множителя 1 2x  представляет собой 

окружную компоненту напряжения трения в области взаимодействия. 

Параметр Г – это приращение угла атаки к критическому значению, однако 

он может быть исключен из задачи аффинным преобразованием, поэтому все 

решения при Г<0 и Г>0 соответственно, подобны друг другу. Численный 

расчет задачи при Г=-2 приведен на Фиг.6, решение существует везде в 

области определения задачи. Вблизи носика конуса взаимодействие 

существенно, а по мере продвижения вдоль конуса вниз по потоку оно 

слабеет и решение стремится к соответствующему решению автомодельного 

пограничного слоя. При Г=0 решение имеет вид 
1

5
1( ) 0A x A


    - напряжение 

трения это всюду положительно определенная функция, т.е. при критическом 

значении угла атаки, взаимодействие сглаживает решение и никаких 

возвратных токов нет. 
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Фиг.6 

 

 

При Г=2 решение представлено на Фиг.7. Отметим, что вообще говоря, 

для Г>0 решений уравнений пограничного слоя без взаимодействия, 

определенных везде на поверхности конуса, не существует. Из графика же 

видно, что благодаря сильному взаимодействию вблизи носика конуса 

решение существует. Далее напряжение трения убывает, в некоторой точке 

достигает нулевого значения, т.е. на дне пограничного слоя появляются 

возвратные токи. При дальнейшем продвижении вдоль конуса вниз по 

потоку, окружная составляющая напряжения трения продолжает убывать и 

наконец в некоторой точке формируется непроходимая особенность 
3 2

5 5
2( ) ( ) ..., ( ) / ( ) (1),A x x A x x O x x



            . В этой особой точке 

вихрь резко вспухает и образует вихревую пелену, много толще 

пограничного слоя.  
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Фиг.7 

 

Важно отметить два факта: расстояние от носика конуса до точки 

зарождения вихревой пелены сравнимо с длиной конуса; в силу тонкости 

самого обтекаемого тела и соответственно вихревой пелены, закон плоских 

сечений работает и вихревая пелена не возмущает пограничный слой до 

точки своего появления. С увеличением угла атаки, точка зарождения 

вихревой пелены быстро сдвигается в носик и течение становится 

коническим снова, но в присутствии вихревой пелены. 

 

§2. Формирование особенностей в пространственном  

      пограничном слое 

 

В настоящее время широко распространены расчеты пограничного слоя 

около гладких тел произвольной формы. При этом решение часто 

определяется только до особых линий на поверхности тела, за которые 

частицы жидкости проникнуть не могут. Эти линии трактуются как линии 
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отрыва, хотя аналитическое исследование их отсутствует, за исключением 

некоторых автомодельных случаев, изученных например в работах Браун 

[Brown, 1965] и Вильямса [Williams, 1985]. Двухмерные течения такого типа 

описываются теорией кромочного отрыва, разработанной Рубаном 

[1981,1982] и Стюартсоном, Смитом и Каупсом [Stewartson, Smith, Kaups, 

1982]. В данном параграфе исследуется формирование особенностей в 

трехмерном ламинарном пограничном слое вблизи линии растекания 

(стекания) внешнего потенциального потока, что, однако, не ограничивает 

общности полученных результатов. Предполагается, что вдоль линии 

растекания на пограничный слой действует неблагоприятный градиент 

давления, приводящий к появлению изолированной точки нулевого 

напряжения трения. В пространственном случае такая ситуация имеет место, 

например, на вытянутом эллипсоиде вращения, установленном под углом 

атаки 40   , подробно описанная Браун [Brown, 1985]. При этом продольная 

компонента трения на верхней линии симметрии линейно падает до нуля в 

некоторой точке, а затем снова становится положительной величиной. В 

работе Браун [Brown, 1985] изучено течение жидкости именно на линии 

растекания эллипсоида с учетом взаимодействия пограничного слоя с 

внешним потенциальным потоком. Полученные результаты оказались близки 

к плоским течениям кромочного типа, изложенные Рубаном [1981,1982] и 

Стюартсоном, Смитом и Каупсом [Stewartson, Smith, Kaups, 1982]. 

В настоящей работе учтена трехмерность течения жидкости в окрестности 

точки нулевого трения. Доказано, что в рамках полных уравнений 

пограничного слоя действительно формируется изолированная точка 

нулевого продольного трения при некотором критическом угле атаки 

эллипсоида. При углах атаки меньше критического решение гладкое. При 

углах атаки больше критического найдена линия на поверхности тела, за 

которую решение не может быть продолжено. Эта кривая начинается из 

особой точки, типа Гольдштейна [Goldstein, 1948], лежащей на линии 
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растекания. В остальных точках этой линии обращается в бесконечность 

вертикальная компонента скорости. Учтено взаимодействие 

пространственного пограничного слоя с внешним потенциальным потоком. 

 

Фиг.1 Картина течения в пограничном слое вблизи точки нулевого 

продольного трения на линии симметрии 

 

Течение с линией растекания, подобное описанному Себеси, 

Стюартсоном и Хаттабом [Cebeci, Stewartson, Khattab, 1980], может 

реализоваться во многих ситуациях при расчетах пограничного слоя. 

Поэтому можно отвлечься от конкретных геометрических форм и проводить 

анализ в декартовой системе координат (Фиг.1), в силу локальности 

исследуемых явлений качественных изменений такой выбор системы 

координат за собой повлечь не должен. 
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Пусть линия z=0 является линией растекания потенциального потока 

несжимаемой жидкости, текущей над плоскостью у=0. Все скорости отнесем 

к некоторой характерной скорости течения 0U , приращения давления к 

удвоенному скоростному напору 2
0U , а длины к характерному размеру тела 

L. Будем полагать, что число Рейнольдса 0Re /U L   велико. 

Если нормальную координату к поверхности и компоненту скорости v 

считать нормированными на Re-1/2, то уравнения пограничного слоя 

запишутся следующим образом: 

   

 

2

2

2

2

0

0 : 0, : ( , ), ( , )e e

u u u p u
u v w

x y z x y

w w w p w
u v w

x y z z y

u v w

x y z

y u v w y u u x z w w x z

    
    

    

    
    

    

  
  

  

       

 (1.1) 

 

В окрестности линии z=0 скорости и давление вне пограничного слоя могут 

быть представлены в виде 

 

2
0 1

3
0 1

2 4
0 1 2

( ) ( ) ...

( ) ( ) ...

( ) ( ) ( )...

e

e

u u x z u x

w zw x z w x

p p x z p x z p x

  

  

  
 

 

причем для определенности предположим, что давление убывает в сторону 

от линии растекания 1( ) 0p x  .Соответственно решение уравнений 

пограничного слоя при 0z   можно представлять рядом Тейлора 
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2
0 1

3
0 1

2
0 1

( , ) ( , ) ...

( , ) ( , ) ...

( , ) ( , ) ...

u u x y z u x y

w zw x y z w x y

v v x y z v x y

  

  

  
 (1.2) 

 

Подставляя (1.2) в уравнения (1.1), можно получить задачу для 

главного приближения 

 

 

2
0 0 0

0 0 0 2

2
20 0 0

0 0 0 1 2

0 0
0

( )

2 ( )

0

u u u
u v p x

x y y

w w w
u v w p x

x y y

u v
w

x y

  
   

  

  
   

  

 
  

 

 (1.3) 

 

Система уравнений (1.3) обычно изучается численным способом, 

причем свойства ее решений в значительной мере аналогичны свойствам 

плоского пограничного слоя. В частности, при воздействии 

неблагоприятного градиента давления 0 ( ) 0p x   продольная компонента 

напряжения трения 0 ( 0)x u y y      может иметь особенность устранимого 

типа — излом в точке х=0 (в выбранной системе координат). Решения 

уравнений (1.3) в окрестности этой особой, изолированной точки нулевого 

напряжения трения подробно исследованы Браун [Brown, 1985]. 

Уравнения для членов первого приближения (1.2) имеют вид 
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2
0 1 01 1

0 1 0 1 1 2

2
0 01 1 1

0 1 0 1 0 1 2 2

1 1
1

( ) 2 ( )

4 2

3 0

u u uu u
v v w u p x

x y y y

w ww w w
u u v v w w p

x x y y y

u v
w

x y

  
    

   

   
      

    

 
  

 

 (1.4) 

 

Отметим, что помимо знака функции p1(x) на течение влияет и знак 

p1’(x). Если пренебречь влиянием р2(х), то  при p1’(x)>0 возмущенный 

профиль продольной скорости наполняется, а при p1’(x)<0 жидкость 

тормозится вне линии растекания быстрее, чем на самой линии растекания. 

Удобно для систем (1.3) и (1.4) ввести две функции тока по формулам: 

u=dF/dy, w=dΨ/dy. 

В дальнейшем течение изучается только в окрестности особой точки 

x=0, z=0 — точки нулевого продольного трения, которая формируется при 

угле атаки α=α*. Из выражения для давления понадобятся следующие члены: 

 

0 00 01

1 10 11

( ) ...
( ) ...

p x p p x

p x p p x

    

     

 

Если угол атаки близок к критическому, то из Браун [Brown, 1985] 

следуют разложения решений системы (1.3) при 0,x     



48 

 

 

0 1 0 1

3 3 934 2 4
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1 ( ) ,
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F F F z

F x p x F x F

x c x

F a c p F b O

y
a c c

x

        

       

       

        

     


 (1.5) 

 

Конкретный вид F02 не представляет интереса; константы а0, с0, b0 

определяются из расчета полных уравнений (1.3), причем а0 — наклон 

продольной компоненты трения впереди от особой точки, a c0z — величина 

поперечной компоненты напряжения трения 

 

1
2 02

1 1
0

1( ) ..., 1
2

c
F x a

a



        

 

Члены F1 и Ψ1 определяют возмущения, вносимые изменением угла 

атаки.  

С другой стороны, можно изучить, какие возмущения вносятся про- 

странственностью при 0, 0z   . Для этого случая 

 

2
0 2

3
0 2

...,

...

F F z F

z z

  

       
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Относительно членов F2 и Ψ2 имеется система уравнений (1.4), 

решение ее при 0x  ищется в виде координатного разложения по 

собственным функциям 

 

 

3
4

2 20 21

3 2
20 00 20 00 20 00 20

20 20

( ) ( ) ( ) ( ) ...
1 1 1( ) 0
8 2 4

0 : 0

n
nF x F x F

F p F p n F np F

F F



      

         

   

 (1.6) 

 

Третье условие для (1.6)—это отсутствие экспоненциального роста F20 при 

 . Решение (1.6) следующее: 2
20 2

1
2F a  , где а2 — произвольна. 

Краевая задача для Ψ20 и ее решение имеют вид 

 

1
4

2 20

3 2 2
20 00 20 00 20 2 0

20 20

42 0 00
20

00 0

20

( ) ( ) ...
1 1 1 1 1( ) ( )
8 2 2 2 2

0 : 0
3( ) 1 341 , ,1 2 4 32( )4

3 51 1, , ,... ; 0,2 2 2 2

n

x

p p n a c n

na c p
U n d

p

n n





     

             

     

           
   
 
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Здесь U — вырожденная гипергеометрическая функция, см. Абрамовиц и 

Стиган [1979]. Краевая задача для F21 имеет вид 
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 (1.7) 

 

Решение задачи (1.7) не растет экспоненциально при n=—
1
/2+3c0/a0; 

1/2 3/2; ... Если п<
3
/2, то при фиксированном малом z пригодность разложения 

решения в ряд Тейлора (1.2) нарушается вблизи точки х=0. Решение 

уравнений (1.3) в окрестности особой точки характеризуется параметром 

λ=1—с0/а0 . который представляет отношение модулей наклонов 

продольного трения: λ=а0+/а0, а0
+ — наклон сзади от особой точки, а0 — 

спереди.  

В терминах λ первое собственное число имеет вид п=
5
/2—3λ, оно 

является первым при λ≥2/3. При 0<λ<2/з первое собственное число n=1/2. 

Отметим, что λ>1 означает с0<0 —т. е. линию стекания, а не растекания. 

Сравнивая второй член разложения функции тока F0 в (1.5) с первым 

членом разложения функции F2, найдем, что они одинаковы по величине, 

когда (3 1)/2 2(( ) ) ( )3z O x      и 1/2 2(( ) ) ( )3z O x    . 

Зная область неприменимости тейлоровского разложения решения, 

будем искать решение в ней в виде ( 0  ) 
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Решая соответствующую краевую задачу, можно определить и01 с 

точностью до произвольной функции ( )A   

5
01 0 00

1( )
40

u A c p     

 

Найдя и01 и удовлетворив требованию отсутствия растущей экспоненты для 

и02 при   получим уравнение для А 
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 (1.9) 

 

Уравнение (1.9) может быть проинтегрировано; для А1> 1 решение имеет 

вид (а2>0) 
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1 1 2 1 2 2( 1)( ) , (1 )A A G G a        
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На фиг. 2 изображены все решения уравнения (1.9), верхняя кривая 

соответствует а2>0, средняя а2<0. Решение уравнения (1.9) справедливо в 

полуплоскости х<0; причем, как видно из фиг. 2, параметр а2 влияет на 

область определения решения. При а2>0 решение определено во всей 

полуплоскости, в частности при х=0 продольное напряжение трения 
2 (3 1)( )x O z   . Это  означает, что 0x   в изолированной точке x=z=0. 

 

 
 



53 

 

Если а2<0, то это приводит к убыванию функции A1 с ростом 1  и, 

соответственно, к торможению продольного течения. Это торможение при 

0z   более сильное, чем при z=0, и носит катастрофический характер, так как 

решение определено только до некоторой линии (3 1) 2( )sz const x    , а на 

самой этой линии 1A    . Вертикальная компонента скорости обращается в 

бесконечность на этой линии, и решение уравнений пограничного слоя за нее 

продолжено быть не может. В этом смысле поведение решения на особой 

линии аналогично особенности Гольдштейна [Goldstein, 1948] в плоском 

пограничном слое. Знак параметра а2 определяется распределением давления 

на внешней границе пограничного слоя и, как показано выше, дает область 

определения решения при z>0. Будем считать в дальнейшем а2>0, т. е. 

решение в сторону от линии растекания существует. 

Опираясь на разложения (1.8), ищем решение в общем случае 

20, 0a    
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 (1.10) 

 

Из (1.5) следует, что характерные возмущения угла атаки 1
     . 

Подставляя асимптотические разложения (1.10) в уравнения (1.1), можно 

получить краевые задачи относительно возмущений компонент скорости. 

Решение для u1 и v1 имеет вид 
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причем функция В произвольна. 

Краевая задача для w1 формулируется в виде 
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 (1.11) 

 

Решение задачи (1.11) может быть построено с помощью преобразования 

Фурье 
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Здесь (1)
1

4
( )H t  — функция Ганкеля, Абрамовиц и Стиган [1979]. Разрез в 

комплексной плоскости   проведен вдоль мнимой отрицательной полуоси; 
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ветвь 1
2( )i  выбрана так: 1 1

2 2( ) exp( 4), 0i i     . 

Относительно и2 получается следующая краевая задача: 
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 (1.12) 

 

Решая задачу (1.12) с помощью преобразования Фурье, найдем, что ее 

решение существует, если В(х1,z1) удовлетворяет уравнению 
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Из начального условия в (1.13) следует, что все решения при различных 

Г и а2 подобны друг другу. Параметр  , как было оговорено выше, 

принадлежит диапазону 2
3  . 

Для задачи (1.13) известны следующие частные интегралы: 
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Ищем решение уравнения (1.13) в виде неявной функции F(x, z, 

A1(x,z))=d, A1=zA, для которой уравнение может быть записано в одном из 

следующих эквивалентных видов: 
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У последней системы уравнений имеются интегралы вида  
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Согласно Смирнову [1974] любая F=F(d1,d2) является интегралом 

уравнения (1.15), конкретный вид F(d1,d2) выбирается исходя из начальных 

условий. При известных значениях (1.14) интеграла полного уравнения, F 

примет вид 
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Представляет интерес изучить возможны ли разрывные решения у 

уравнения (1.13). С этой целью данное уравнение надо переписать в 
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консервативной форме, причем напомним, что оно справедливо как вблизи 

линии растекания ( 1  ), так и вблизи линии стекания во внешнем 

потенциальном потоке ( 1  ). 
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Введем вектор М, имеющий компоненты (Мх,Мz) и функцию, 

описывающую линию разрыва решения R=x-xD(z)=0. 
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В случае если на линии разрыва отсутствуют источники, то должна 

сохраняться нормальная составляющая вектора М при переходе через 

разрыв. 

( ) ( )M R M R     

 

Подставляя компоненты вектора М в данное уравнение приходим к 

соотношению 
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В результате приходим к выводу, что возможен либо тривиальный 

случай A A  , либо линия разрыва имеет вид 
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Удобно проиллюстрировать решение (1.16), полученное для уравнений 

пограничного слоя с помощью соответствующих картин предельных линий 

тока, полученных интегрированием уравнения 

 

( , )
(1 )
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dz z
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Фиг. 3 Линии тока на дне безотрывного пограничного слоя, имеющего 

точку минимального продольного трения на линии растекания, 

1 22 3, 1, 1G G    . 
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Фиг. 4 Линии тока на дне пограничного слоя, имеющего сингулярную 

точку нулевого продольного трения на линии растекания, 

1 22 3, 1, 1G G     . Решение существует только до сингулярной линии. 
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Фиг. 5 Линии тока на дне пограничного слоя, имеющего точку 

минимального положительного продольного трения на линии растекания, 

1 23 4, 1, 1G G     . Решение вдали неоднозначно. 

 

На некотором расстоянии от линии растекания есть точка, в которой 

начинается линия разрыва решения, она начинается в точке схождения линий 

тока (условно показана красным цветом). Около линии разрыва видна 
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область неединственности – приосевые частицы протекают далее точки 

минимального трения, затем часть из них разворачивается и возвращается 

обратно, подтекая к линии разрыва сзади. Приходящие более отдаленные от 

оси частицы плавно поворачиваются и немедленно натыкаются на линию 

разрыва спереди.  

 

 
 

Фиг. 6 Линии тока на дне пограничного слоя, имеющего сингулярную 

точку нулевого продольного трения на линии растекания, 

1 22 3, 1, 1G G      . Вдали справа от линии растекания решение также не 

существует. 
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Фиг. 7 Линии тока на дне безотрывного пограничного слоя, имеющего 

точку минимального продольного трения на линии стекания, 

1 25 4, 1, 1G G    . 
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Фиг. 8 Линии тока на дне пограничного слоя, имеющего сингулярную 

точку нулевого продольного трения на линии стекания, 1 25 4, 1, 1G G     . 

 

Решение разрывно вблизи оси. Наглядно видно, что решение 

существует везде вдали от линии симметрии, однако на конечном расстоянии 

от оси возникает точка начала линии разрыва решения (условно обозначена 

красным цветом). Эта линия будет асимптотически стремиться к оси течения. 
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Фиг. 9 Линии тока на дне пограничного слоя – решение существует 

около линии стекания и не существует вдали от нее, 1 25 4, 1, 1G G     . 

 

 

 

 

Полученное решение справедливо при 2
3   и обладает следующими 
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свойствами: при Г<0, а2>0 — решение гладкое во всей области определения 

аргумента, Фиг.3. При Г=0, а2>0 решение гладкое везде, за исключением 

точки x=z=0 — изолированной точки нулевого продольного трения.  

При Г>0, а2>0 решение (1.16) определено только при 1( )x x z  (на фиг. 4 

качественно показано векторное поле касательных напряжений на 

поверхности тела для данного случая). В точке x1(0),  как и в плоском случае 

для особенности Гольдштейна, А(x1,0)=0, дА/дх=∞; в остальных точках 

линии x=x1(z) обращается в бесконечность вертикальная составляющая 

скорости, а компоненты трения остаются конечными. В случае если a2=0, 

решение не зависит от z и дано Браун [Brown, 1985]. Свойства решения (1.16) 

при a2<0 аналогичны описанным, однако в этом случае при любом угле атаки 

Г решение определено не во всей плоскости (х,z). При >1 (это 

соответствует линии стекания) и 0   решение аналогично описанному 

выше. Наконец, при <2/3 решение имеет вид A=A0(x)+a2z
2
, А0(х) — 

удовлетворяет первому из равенств (1.14). В этом случае сглаживание при 

0  происходит на больших масштабах по z, чем рассмотренный. 

Анализ уравнений пространственного пограничного слоя показал, что 

из точки нулевого напряжения трения на линии растекания может выходить 

особая линия, решение через которую непродолжимо. Эта линия является 

огибающей для предельных линий тока на дне пограничного слоя, и на ней 

вертикальная составляющая скорости обращается в бесконечность. 

Особенность такого типа непроходима в рамках уравнений пограничного 

слоя и требует перестройки всего глобального течения. 

Возможна ситуация, когда на линии растекания реализуется более слабая 

проходимая особенность — точка нулевого продольного напряжения трения. 

В этом случае решение всюду гладкое, за исключением особой точки. 
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§3. Вязко-невязкое взаимодействие вблизи линии симметрии  

при обтекании гладких тупых тел 

 

При выводе уравнения (1.13) предполагалось, что ( ), ( )x O z O       , где   

связано с приращением угла атаки тела соотношением 1
      .Тогда 

параметр   определяется в виде (3 2) / 2    и если a2=O(1) , то z x    при 

1  . При 1  , z x   . Таким образом характерная область изменения 

функции А растягивается поперек потока вблизи линии растекания и вдоль 

потока вблизи линии стекания. В результате, в случае линии растекания, 

потенциальная область над пограничным слоем оказывается квази-

двумерной по природе и задача о взаимодействии оказывается схожей с 

задачей Браун [Brown, 1985] ( 1 5Re  ). Однако оператор пограничного слоя 

будет в частных производных 

 

2

2

. .

1(1 ) (1 )
2

0

x

x

Brown

B L

A A A dt
A t A z dt

t z t t x

A A z

A A x





   
      

    

 

 

 

 

 

Начальным условием для данной задачи является плоское решение Браун 

[Brown, 1985] и граничные данные вверх и вниз по потоку от исследуемой 

области. Укажем, что линия z=0 является характеристикой уравнений 

пограничного слоя и задание произвольных начальных данных недопустимо, 

а граничных условий существенно, чтобы избежать некорректности задачи 

Коши в данной ситуации. Некорректность задачи Коши для уравнений 

подобного типа была показана в работе Рыжова и Смита [Ryzhov, Smith, 

1984], которые проанализировали нестационарное уравнение в теории 
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кромочного отрыва в случае задания начальных данных произвольного типа. 

Еще раз подчеркнем специфику рассматриваемой задачи – начальные 

данные не произвольны, так как заданы на характеристике и помимо этого в 

качестве граничных условий заданы известные решения уравнений 

пограничного слоя. Тем не менее появление неустойчивости в численных 

расчетах вполне ожидаемо и в случае необходимости надо применять 

специальные меры для подавления возмущений. 

 Все вычисления были выполнены для 3/ 4  . При G1=1, G2=1, 

решение остается присоединенным везде и картина предельных линий тока 

очень похожа на Фиг.3. Фиг.10 показывает предельные линии тока для    

G1=-1.5, G2=1, в этом случае численная неустойчивость не наблюдалась. На 

картинке видна седловая точка на линии растекания, из которой выходит 

линия отрыва потока. Образуется возвратное течение вблизи линии 

симметрии. Также присутствует узловая точка присоединения потока далее 

от седловой. Из нее выходит линия присоединения течения. Жидкие 

частицы присоединяются к поверхности, делают полуоборот и быстро 

сносятся вниз и вбок по потоку. Для больших величин z решение стремится 

асимптотике пограничного слоя без взаимодействия. Для всех величин G1 

, для которых существуют начальные условия, картины предельных линий 

тока качественно похожи. Фиг. 11 показывает результаты для G1=1, G2=-1, 

которые соответствуют решению пограничного слоя изображенному на 

Фиг.5., т.е. для случая когда на оси решение безотрывное, но в пограничном 

слое есть неединственность и отсутствует гладкая дальняя асимптотика. 

Взаимодействие отбирает некоторое единственное решение, но оно 

заканчивается в сингулярности при z* ~ 3.1. Около сингулярной точки 

функция А сильно нарастает и численная неустойчивость также начинает 

проявляться. Появление такой особенности в решении означает, что 

глобальная картина течения должна быть изменена, а именно меняется 

картина потенциального обтекания тела. 
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Фиг. 10 Линии тока на дне взаимодействующего пограничного слоя, 

имеющего локальный вихрь, зародившийся на линии растекания, 

1 23 4, 1,5, 1G G     . 
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Фиг. 11 Линии тока на дне взаимодействующего пограничного слоя, 

безотрывного на линии растекания, 1 23 4, 1, 1G G     . В решении 

формируется вихрь, уходит от оси вправо и вверх по потоку и заканчивается 

особенностью. Дальней асимптотики вправо нет. 
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Фиг. 12 Линии тока на дне взаимодействующего пограничного слоя, 

имеющего отрыв на линии растекания, 1 23 4, 1,5, 1,5G G      . В решении 

формируется вихрь, уходит от оси вправо и вверх по потоку и заканчивается 

особенностью на конечном расстоянии от оси. Как и в предыдущем случае 

дальняя асимптотика в сторону отсутствует. 
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Структура решения подобных уравнений вблизи сингулярной точки 

была проанализирована Заметаевым [1987б] и имеет вид 
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 Фиг.12 показывает картину предельных линий тока для G1=-1.5,  

G2=-1.5. Начальное условие содержит возвратные токи, вихрь развивается, а 

не затухает и вскоре в решении опять формируется особенность при z* ~ 1.4. 

То есть в данном случае тонкий вихрь продолжается от линии растекания до 

некоторой точки, в ней происходит «взрыв» и далее глобальная картина 

заметно меняется. 

 

 Как указывалось выше, в случае линии стекания ситуация кардинально 

иная – область взаимодействия оказывается вытянутой вдоль потока. 

Соответствующие асимптотические разложения решения в потенциальной 

области при 0, Re   имеют вид 
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 Подставляя данные разложения в уравнения Навье Стокса и совершая 

предельный переход, найдем 
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Можно проверить, что в данном случае именно поперечный индуцированный 

градиент давления оказывается существенным в вязком подслое 

пограничного слоя. Размер такой области взаимодействия следующий 
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Опуская несущественные константы, можно найти, что условие 

разрешимости сведется к уравнению 
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Таким образом, для течения вблизи линии стекания задача должна обладать 

эллиптическими свойствами, однако ее численный расчет выходит за рамки 

данной работы. 
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 Выводы главы 1. 

Изучены предотрывные режимы обтекания вязкой несжимаемой 

жидкостью тонкого конуса (угол полураствора 7,5   ) установленного под 

углом атаки ( 0.6   ), удовлетворительно совпавшие количественно с 

экспериментальными данными ( 7,5 , 4,5 , Re 27.000       ), приведенными 

Чженом (1973). 

Аналитически и численно описаны локальные предотрывные и 

отрывные состояния несжимаемого пограничного слоя на поверхности 

вытянутого эллипсоида вращения, установленного под углом атаки ( 40   ) 

вблизи подветренной линии симметрии. Результаты подтверждаются 

известными расчетами  пограничных слоев (Себеси и др. 1980, 1981), из 

которых следует появление в картине поверхностных линий тока точки, с 

выходящей из нее особой линией, разделяющей области доступности и 

недоступности для жидких частиц. 

Изучено влияние взаимодействия пограничного слоя с внешним 

потенциальным потоком. Найдено, что вблизи точки нулевого продольного 

напряжения трения на линии растекания может появляться малый 

поперечный вихрь. Он существует в небольшом диапазоне углов атаки 

обтекаемого тела. При превышении некоторого критического значения угла 

атаки такой вихрь разрушается и должна формироваться картина течения с 

развитой вихревой пеленой. Возможны режимы, при которых развитая 

вихревая пелена отстоит от линии симметрии и соединяется с ней тонким 

вихревым жгутом, который существует только при докритических углах 

атаки. 
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Глава II. ОТРЫВ ПОТОКА В РАМКАХ ТЕОРИИ ТОНКИХ  ТЕЛ 

 

§1. Влияние тонкого невязкого продольного вихря на двухмерный  

      предотрывный пограничный слой 

 

Рассматривается двумерное стационарное течение вязкой несжимаемой 

жидкости около плоской пластины, установленной под нулевым углом атаки 

в неоднородном набегающем потоке (фиг. 1, а). Пусть тонкий продольный 

вихрь с постоянной вдоль своей оси циркуляцией LU  расположен на 

малом расстоянии Lh  от плоской поверхности. Обозначим через , ,Lx Ly Lz  

прямоугольные координаты, через , ,U u U U w    и 2p U p
  – 

соответствующие проекции вектора скорости и давление. Здесь U , p
  – 

скорость и давление в набегающем потоке,   – плотность жидкости, L  – 

характерный размер пластины. Введем число Рейнольдса Re /U L  , где   

– коэффициент кинематической вязкости, в дальнейшем полагаем Re  .  
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Фиг. 1а,б 

 

Пространственное потенциальное течение, порождаемое вихревой нитью 

вблизи пластины, будет использовано как внешнее при исследовании 

пограничного слоя на поверхности пластины. 

Двумерное невязкое решение известно a priori и вблизи твердой 

поверхности координатные разложения для компонент скорости имеют вид 
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Соответственно наклон линий тока при 0y   
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Введем искомые координаты положения вихревой нити по формулам 
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00 1 00( ), ( ), 0, ( ) 1, ( ) 0, 00 0y y zhy x z hz x h h           
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Заметим, что в главном порядке функция 0( )y x  совпадает со свободной 

линией тока, а 0( )z x  является линейной функцией (это свойство следует из 

решения, полученного ниже): 
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
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Чтобы найти потенциал течения, обусловленного вихревой нитью, 

удобно ввести новые переменные в узкой области вдоль нее 

0
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z x
y y z zx x

yy yh x h x x
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Разложения компонент скорости и давления представим в виде 
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Подставляя указанные разложения в уравнения Эйлера и совершая 

предельный переход при 0h  , получим уравнение неразрывности и 

условие сохранения продольной компоненты завихренности 

0, 0w w

y yz z

       
   
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которые являются условиями Коши-Римана для комплексно-

сопряженной скорости *( ) , .V w i z iy         Здесь и далее звездочкой 

обозначены комплексно-сопряженные функции. Таким образом, 

пространственная задача потенциального обтекания пластины сводится к 

двумерной задаче о взаимодействии точечного вихря с бесконечной 
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плоскостью. Вихрь с циркуляцией 1  расположен в точке 1, 0y z    

(фиг.1, б). Тогда решение для комплексного потенциала скорости имеет вид 
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Из выражения для комплексно-сопряженной скорости 
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находим распределение поперечной скорости ( )w z  на поверхности 

пластины  
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Отметим, что 0w   при 3z   . 

Используя найденные компоненты скорости и уравнение Бернулли, 

определим продольное возмущение скорости и распределение давления на 

поверхности пластины 
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Рассмотрим трехмерный пограничный слой около твердой 

поверхности, решение в котором ищем в виде 
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В итоге получаем, что течение описывается уравнениями 

классического трехмерного пограничного слоя с заданным градиентом 

давления 
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Для данной системы уравнений необходимо задать условия 

прилипания на поверхности  
1

0 , 0U V W y    , а также условия 

сращивания с решением во внешнем невязком потоке 
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Простой анализ показывает, что при 1 0x   в качестве начальных 

данных для продольной компоненты скорости следует использовать решение 

Блазиуса на пластине, как следствие находится и асимптотика поперечной 

компоненты скорости. В общем случае задача о данном пограничном слое 

может быть решена только численно. 

Для изучения влияния вихря малой интенсивности представим 

решение сформулированной задачи при 1 0   в виде асимптотических 

разложений 
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В результате оказывается, что течение в главном приближении для 

функций 0 0,U V  описывается системой уравнений, не отличающейся от 

плоского пограничного слоя при заданном градиенте давления 
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В кромочной теории отрыва плоских пограничных слоев с заданным 

неблагоприятным градиентом давления данная задача играет ключевую роль, 

так как помимо гладкого решения, допускает непродолжимую особенность 
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Гольдштейна, а иногда более слабую – продолжимую, Рубан [1981]. Очень 

важно использовать адекватную численную схему для решения этих 

уравнений, которая гарантирует достаточную точность расчета вблизи 

сингулярных точек. Такая специальная схема нужна и для расчета 

последующих приближений пограничного слоя 1W , 1U , 1V , также 

содержащих особенности. С этой целью предлагается неявная расчетная 

схема, специально сконструированная для описанного случая. 

Для удобства зададимся распределением скорости на внешней границе 

пограничного слоя вида 
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Параметр   позволяет регулировать интенсивность неблагоприятного 

градиента давления. 

Введем равномерную разностную сетку ( , )i jx y  и запишем уравнение 

импульсов в конечных разностях со вторым порядком точности в каждом 

узле сетки ( , )i j  
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Уравнение неразрывности аппроксимируем таким образом, чтобы 

вычислять вертикальную скорость, продвигаясь от поверхности тела, и 

использовать при этом уже известные значения продольной скорости в 

данном и двух предыдущих сечениях по x   
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Расчет организуем маршевым методом по продольной координате 

x начиная с 3i  , причем в каждом последующем сечении продольную 

скорость вначале задаем экстраполяцией 
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u u u
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Для вычисления решения в искомом i-м сечении введем сеточную 

функцию 
j

F , получив ее из уравнения импульсов умножением на 2( )y  
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Система уравнений 0
j

F   есть не что иное, как нелинейная система 

уравнений относительно неизвестных значений продольной скорости во всех 

точках j . Используем метод Ньютона для решения этой системы.  
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Фиг. 2. Продольное поверхностное трение 0x  обращается в ноль в 
точке xs при критическом значении параметра 0.09762s   (а); при s    в 
функции   скачок (б), кривые 1-3 соответствуют 0.09672, 0.09, 1.2  . 

 
 
Будем добиваться сходимости итераций, вычисляя поправки к 

решению по формуле  

0
jn

j k
k n

F
F u

u


 
  
 
 

 

Заметим, что формулы дают возможность аналитического вычисления 

матрицы Якоби на каждой n-й итерации. 

На фиг. 2 представлены результаты расчета продольного напряжения 

трения 
0X
  (кривая а) и производной толщины вытеснения 1( )x  (кривая б) 

при значениях 0.09672, 0.09, 1.2   (кривые 1–3). Число точек расчетной сетки 

NX × NY = 281 × 301, x  = 0.025; y  = 0.5. Благодаря действию 

положительного градиента давления, величина трения на поверхности 
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пластины убывает и в некотором сечении достигает минимального значения. 

При 
s

   минимум трения в сечении 1 sx x  обращается в нуль, во всех же 

остальных точках трение положительно. Решение в этом случае содержит 

слабую особенность в точке нулевого трения. Когда 
s

  , решение 

невозможно продолжить вниз по потоку, так как оно содержит 

непроходимую особенность Гольдштейна [Goldstein, 1948]. 

В настоящем исследовании основное внимание уделено решениям 

уравнений Навье-Стокса вблизи точки бифуркации по параметру  , 

критическое значение которого 0.09762
s

  . 

 

 

 

Фиг.3 Поперечное поверхностное трение 1z , кривые 1-3 
соответствуют точкам , / 2, 1.4 ,S S Sx x x x x x   . 

 
 
Зная 

0 0
,U V , можно найти поперечную скорость 1W , решая для нее 

краевую задачу  
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Это уравнение содержит известные коэффициенты и зависит от 

переменной 1z  как от параметра, начальные данные следуют из асимптотики 

Блазиуса вблизи передней кромки пластины. В результате ее решение может 

быть вычислено маршевым методом по переменной 1x  для каждого 

заданного значения 1z . В силу гладкости функций по переменной 1z , следует 

ожидать гладкости решения 1 1( )w z . 

На фиг. 3 приведены результаты расчета данной задачи при 

критическом значении параметра 
s

  . Зависимость поперечного 

напряжения трения 1z  от 1z  показана в критическом сечении 1 sx x  (кривая 

1), а также на некоторых расстояниях от него. Для наглядности на фиг. 4 

представлены линии поверхностного трения, которые описываются 

уравнением 

1 1

0 1x z

d x d z

 
  

В силу асимптотически малых значений поперечного трения масштаб 

изображения вытянут по переменной 1z . Вблизи линии нулевого 
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продольного трения 1 sx x  предельные линии тока содержат точки перегиба. 

Отметим заметное сгущение линий тока в левой части фиг. 4, что в 

определенном смысле означает линию стекания или, скорее, ее 

формирование. Аналог же линии растекания в правой части усмотреть 

трудно. 

 

 
 

Фиг.4 Картина поверхностных линий тока в трехмерном пограничном 
слое под действием слабой вихревой нити 

 
 

Приближение 1 1,U V  для уравнений пограничного слоя можно 

получить, решая соответствующую краевую задачу маршевым методом для 

каждого значения 1z , при уже вычисленных функциях 0 0,U V  и 1W  
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Несмотря на то, что эта линейная система уравнений имеет нулевые 

краевые условия, решение ее нетривиально, так как второе уравнение в 

содержит неоднородность в виде уже вычисленного вынужденного члена 

1 1/W z  . 

Отметим, что решение этой задачи содержит важную особенность, 

такую же, как и в двумерной кромочной теории, а именно возмущение 

продольного трения ведет себя особым образом при 1 sx x  

1 1

11
1 0

0.5 ( )

sy

U z

y x x





 
   
  

 

 

Приведенные на фиг.5 результаты расчетов подтверждают такое 

сингулярное поведение возмущенного продольного трения при приближении 

к точке sx . Графики 11 ( )
X sx x   (кривая а) в зависимости от 1x  для набора 

значений координаты 1z  имеют конечные пределы при 1 0sx x  . Функция 

1( )z , полученная в расчетах, оказалась знакопеременной (кривая б). 

В плоских течениях особенность такого типа явилась причиной 

построения самой теории кромочного отрыва со взаимодействием. 
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Естественно предположить, что в пространственном случае возникает 

схожий эффект. 

 

 
 

 
 

Фиг.5 Поведение возмущенного продольного трения (рис. а, кривые 1-
6), вблизи сингулярной точки в разных сечениях z1=0.1; 0.2; 0.6; 1; 2; 3. 

Функция 1 1( )x sx x   вблизи точки нулевого трения (рис. б). 
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Расчеты уравнений пограничного слоя при воздействии на течение 

слабой вихревой нити показывают, что вязкие возмущения малы во всей 

области от начала пластины и вплоть до малой окрестности точки нулевого 

продольного трения. При этом поперечная координата оказывается 

параметром во всех сформулированных и решенных линейных задачах. В 

результате пространственное течение проявляет свойства, очень близкие к 

описанным двумерной кромочной теорией. Введенный коэффициент   перед 

сингулярной собственной функцией зависит от координаты 1z  и затухает при 

1
z  . В то же время в плоском случае этот коэффициент означал 

нормированное отклонение угла атаки профиля от критического значения и 

задавался в качестве параметра. При решении изучаемого течения был 

найден этот критический параметр 
s

   для данного двумерного течения. 

Из расчетов следует, что возмущать критическое решение можно двумя 

независимыми способами: варьируя параметр   вблизи 
s

  при 1 0   или 

задавая ненулевую циркуляцию вихревой нити при 
s

  . Результаты 

оказываются схожими – в пограничном слое развиваются возмущения, 

имеющие сингулярность при 1 s
x x . Следуя рассуждениям Рубана [1981], 

укажем решение уравнений пограничного слоя в малой окрестности точки 

1 s
x x  при 

s
   и 1 0  . Полагаем 1~  , тогда в приведенных 

переменных напряжение продольного трения принимает вид 

 

2
11 1( ) ( )sA x x z        

При 1 0   указанное решение в точности совпадает с двумерным. 

Удобно анализировать поведение функции A , начиная с безотрывных 

режимов, т.е. полагая 0  . В этом случае напряжение продольного трения 
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будет всюду положительным, но по мере роста циркуляции, у функции A  

появится локальный минимум. Оказывается, что для заданного   можно 

подобрать такое значение 1 , при котором продольное трение обращается в 

нуль в изолированной точке и в главном приближении решение будет 

 

2 2
1 1( ) ( ) , 0s sA x x c z z c       

Решение такого вида было использовано при расчетах течения со 

взаимодействием в статье Дака [Duck, 1989] в качестве граничных условий. 

Заметим, что если 1  возрастает далее, то подкоренное выражение 

становится отрицательным в некоторой замкнутой области и функция A  в 

ней не определена. Если же в области существования решения нарисовать 

предельные линии тока на обтекаемой поверхности, то окажется, что граница 

области недоступности является огибающей этих линий. Само решение 

вблизи огибающей – это своеобразный трехмерный аналог двумерной 

особенности Гольдштейна [Goldstein, 1948].  

На этом этапе, чтобы построить гладкое решение для ключевой 

функции ( , )A x z , естественно ввести область взаимодействия течения в 

пограничном слое с внешним потенциальным потоком. Наиболее просто 

рассмотреть квадратную область, продольный размер которой x  совпадает 

с поперечным h  и является величиной порядка 1/5Re . Полное уравнение 

взаимодействия для функции ( , )A x z  при таких предположениях впервые 

было выписано в работе Хакмюллера и Клювика [Hackmueller, Kluwick, 

1991], более подробный обзор см. Клювик [Kliwick, 1998]. В изучаемом 

случае краевая задача для кромочной области взаимодействия примет вид 
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В задаче введены параметр k , регулирующий силу неблагоприятного 

двумерного градиента давления 2/5Re
s

k d 


   и нормированная 

величина циркуляции вихревой нити   
2 2/5 4/5Re Re ; consth d d d 

 
     

 

Кромочный режим взаимодействия реализуется в окрестности точки 

минимума поверхностного трения, причем величина минимума 

асимптотически мала. Этот факт означает весьма узкие и специальные рамки 

применимости кромочной теории отрыва. 

В настоящем исследовании ставится вопрос о возможности отрыва 

"более" присоединенного двумерного пограничного слоя, минимум трения 

которого не настолько мал и постулаты кромочной теории взаимодействия не 

применимы в полном объеме. Оказывается, что для таких более 

присоединенных пограничных слоев можно ввести вытянутую в продольном 

и суженную в поперечном направлениях область взаимодействия, в отличие 

от обычного кромочного режима. Взаимодействие в указанном случае носит 
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специфичный характер и описано, например, в статье Рожко и Рубан [1987]. 

В вязкой зоне области взаимодействия продольный градиент давления 

выпадает и остается только поперечная его составляющая. В потенциальной 

же зоне области взаимодействия решение отыскивается в рамках теории 

тонкого тела. 

В данной постановке задача содержит произвольный параметр 
2/5Re . Однако более удобно работать с характерной длиной изучаемой 

области 1/2
    как с параметром. Поперечный размер h   находится 

однозначно из требования, чтобы индуцированное давление 1/2 1~ Re
i

p h
   

воздействовало на течение в вязком подслое области взаимодействия 
1/2 3/2Reh 
 

 ,     1/5Re 1
 ,     1/5 1/2Re Reh

   

Опуская промежуточные выкладки, традиционные для теории 

кромочного отрыва, выпишем задачу для искомой функции ( , )A x z  в 

приведенных переменных 
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 

  

В задаче указаны краевые условия по поперечной координате и 

начальные данные. Вопрос о постановке граничных условий вниз по потоку 

требует дополнительных исследований. С этой целью проведем линейный 

анализ данного интегро-дифференциального уравнения. Полагая 0k   и 

0  , ищем решение в виде 1A x A     
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После подстановки находим уравнение относительно 1A  

2

1 22 ( )
x t

dt p
xA z du

zx t

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
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 
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Используем для решения преобразование Фурье, предполагая, что 

фурье-образ ( )z  существует 

*2
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2
, ( )i z

xx
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Уравнение для 1A  принимает вид линейного неоднородного 

интегрального уравнения типа Вольтерра по переменной x  
*

1* *
1

( )
2

x
t

A dt
x A

x t
 




   


  

Его решение однозначно выписывается в интегральной форме 

** 3/2
1

0

exp
2 3

A k xk dk
 

  
    

  
  

Однородный оператор не содержит затухающих решений при x  . 

Таким образом, найденные гармоники не допускают затухающих 

собственных функций вверх по потоку, из чего следует, что решение 

обладает параболическими свойствами. Этот факт дает возможность 

рассчитывать нелинейное уравнение маршевым методом, используя 

заданные начальные и граничные данные. 

 

Перед численным интегрированием удобно преобразовать уравнение 

взаимодействия к виду 
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Для определенности зададим значение параметра 1k   , это 

соответствует безотрывному поведению пограничного слоя на границах 

рассматриваемой области течения. Циркуляция   остается единственным 

параметром, влияющим на решение. 

Учитывая полученное при расчетах пограничного слоя поведение 

функции ( )z  (фиг. 5, б), зададим ее вид удобной аналитической формулой 

4( )
4

z
z

z



  

Обе части изучаемой задачи содержат интегралы с сингулярными 

ядрами, поэтому обычные формулы для аппроксимации этих интегралов типа 

формулы трапеций, дают результат, неравномерно зависящий от размера 

отрезка интегрирования. Верный способ вычисления таких интегралов – 

разбить область интегрирования на малые отрезки, на каждом таком отрезке 

искомую функцию представить разложением Тейлора и получившиеся 

выражения проинтегрировать аналитически с учетом вида ядра. Результат 

будет зависеть от дифференциальных свойств самой функции, но не ядра. 

Рассмотрим вначале аппроксимацию интеграла типа Коши в правой части 

уравнения с равномерным шагом z  и запишем его значение в точке ( , )
ik

x z  
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1max max

1

1

1
( ) ,

ji

j

i i j i jk
ji iz

zz i

z

A dt A dt
I z F F

t t z t t z





 
  

   
   

 

Далее представим производную в подынтегральном выражении в виде 

разложения Тейлора в точке 1j
z


 и определим 

i j
F  

 

1 1 1

max

( ) ,

1 1, 2 ( 1)

j j j

A
A A t z

t

j i i i

  

    


     
 

1

1 1 1 1
( ( ))ln

ji

i j j j j ji
ji

z z
F A A z z A z

z z



   


     


 

Аналогично в точке jz  

max

1

( ) , 1

( ( ))ln

j j j

j i

j jj i jij
j i

A
jA A t z i i

t

z z
F A A z z A z

z z



        



      



 

Таким образом, интеграл в правой части в конечных разностях 

записывается в виде 

 

max 12

max
2 1

( ) 2 , 3 2
i

iji ik i j
j j i

i

I z F A z F i i



  

         
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Интеграл в левой части уравнения также представим в виде суммы 

интегралов по элементарным отрезкам 

1

1

1

1
( )

lk

l

k

i k
lk k

xx

x x

Gdt Gdt
M x

x t x t





 
 

   

Разложив функцию G  в ряд Тейлора в средней точке каждого отрезка 

до линейного члена включительно и, взяв интегралы аналитически, получим 

формулу 

 

1 1

1 1
1

3/2 3/2
1 11

2( ) ( ) (
2

2) ( )(( ) ( ) )
3

k
lli i i i

lki k kl l l l
l

i i

k lk l k ll l

x x
M x G G G G x x x

x

x xG Gx x x x
x




 


 

             


       


 

 

При расчете интегрального уравнения маршевым методом по 

переменной x  используем метод Ньютона для решения нелинейной 

дискретной системы уравнений в каждом сечении 

: ( ) ( ) 0ik kk ii
x z M xI    . Для достижения наибольшей скорости 

сходимости вычисляем поправки в соответствии с формулой Ньютона 

0im
j

j
m

i
A

A


 

 
  
 
 

 

где , ik MI  вычисляются по по приведенным формулам, m  – номер итерации. 

 

Расчеты выполнялись с постоянным шагом 0.1 по переменной z , 

число точек расчетной сетки составляло 201, размеры области (–10, 10). По 

переменной x  шаг подбирался в процессе расчета в зависимости от 
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дифференциальных свойств искомой функции и находился в пределах 

(0.001–0.1), размеры области также (–10, 10). В каждом сечении по 

переменной x  решение находилось с погрешностью не более 710 . Для 

проверки точности полученных результатов проводился тест по уменьшению 

шага z  вдвое при фиксированных размерах области, а также при исходном 

значении шага z  вдвое увеличивались размеры расчетной области по x  и 

z . В обоих случаях разница в результатах расчетов находилась в пределах 

ошибки аппроксимации исходного  уравнения. 

 

 
Фиг.6 Функция A(x,1.2) при различных значениях циркуляции: 

15; 15.64; 15.648; 15.649; 15.64908; 15.64909; 15.649091; 15.6490912   (кривые 1-8) 
 

Результаты численных расчетов интегрального уравнения для 

поверхностного трения ( , )A x z  при различных значениях циркуляции   

представлены на фиг. 6. Для наглядности на графике приведены кривые 1–8 в 

точке 1.2z  . Оказывается, что при малых значениях циркуляции течение 
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безотрывно, с ее увеличением трение падает и при некотором   обращается 

в нуль. При дальнейшем увеличении циркуляции появляется область 

возвратного продольного течения. Однако решение, существующее во всей 

плоскости ( , )x z , удается построить только при 
*

15.6490912   . При 

больших значениях циркуляции маршевый расчет наталкивается на 

особенность в конечной точке по x . 
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Фиг. 7. Пространственное изображение функции A(x,z) в случае : а – 
слабовозмущенного присоединенного течения при 10   и б – отрывного 
течения при 15  . 

 

Пространственный характер функции A  и ее эволюция в зависимости 

от величины циркуляции демонстрируются на фиг. 7. Наглядно видно 

формирование глубокой впадины с ростом циркуляции (фиг. 8). Такое 

поведение означает, что струйки тока, приходящие в область отрицательного 

продольного трения, закручиваются и одновременно сносятся в сторону, 

постоянно уходя вниз по потоку. Отметим отличие трехмерного отрывного 

течения от плоского: отсутствует замкнутая область, содержащая 

изолированные жидкие частицы. Весь эффект отрыва заключается в 

немонотонности поведения траекторий жидких частиц. 
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Фиг.8 Изометрическая проекция функции A(x,z) при критическом 
значении циркуляции 15.6490912  , вид снизу. 

 

 

§2. Трехмерный отрыв около неровности на поверхности тела вращения 

 

1. Рассмотрим стационарное течение вязкой несжимаемой жидкости 

около тонкого осесимметричного тела, находящегося в однородном 

набегающем потоке под нулевым углом атаки. Пусть для простоты 

поверхность тела представляет собой круговой цилиндр с продольным 

размером l . Обозначим через , ,lx lr   цилиндрические координаты, через 

, ,u u u u w    и 2p u p


  – соответствующие проекции вектора скорости 

и давление. Здесь u , p


 – скорость и давление в набегающем потоке,   – 

плотность жидкости. Ось x  будем полагать совпадающей с осью симметрии 
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тела, а начало системы координат – с его носовой частью. Введем функцию 

тока 2 1 1: ,
r x

l u u r v r 
      и число Рейнольдса Re /u l


  , где   – 

коэффициент кинематической вязкости. 

Будем считать, что радиус тела 0 0( const)
w

r l r r   по порядку 

величины больше характерной толщины пограничного слоя, т.е. 
1/2(Re) 0, (Re )O


      при Re . Тогда течение в пограничном слое 

в главном приближении описывается уравнением, не отличающимся от 

соответствующего плоскому случаю 

 
1/2 1/2

0 0

2 2 3

32

(1), Re , Re

,

0 : 0, : ( )

e

e e

e

e

x O r r y r

pd

y y y yx x d x

u pd d
u

d x d x

y y u x
y y

 
   

    
  

     

 

 
    

 

   

    

 


 

 

Рассмотрим режим течения, когда параметр, определяющий 

распределение давления ( )
e

p x , достигает своего критического значения, так 

что в некотором сечении constsx x   трение на поверхности тела впервые 

обращается в нуль. Тогда в решении выписанной задачи возникает 

устранимая особенность, Рубан [1981]. 

Этого можно добиться, например, поместив обтекаемое тело на входе в 

круговой цилиндр с искривленной в продольном направлении частью. 

Возможна, однако, и более конкретная реализация рассматриваемого 

режима. Для этого достаточно, чтобы на некотором малом (но 
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превосходящем размер области свободного взаимодействия, см. Сычев 

[1993], отрезке самого цилиндра имелось искривление. Тогда в «вязком» 

пристеночном подслое течение описывается решением задачи для уравнения 

пограничного слоя при заданном регулярном распределении давления, 

которое определяется формой этого искривления. Соответствующее решение 

было получено Заметаевым [1986]. Однако появление двух дополнительных 

малых параметров, характеризующих продольный и поперечный размеры 

искривленной части тела вращения, делает описание достаточно громоздким. 

Поэтому будем считать, что реализация такого течения обусловлена 

внешними причинами, а не искривлением поверхности тела. 

Согласно Рубану [1981], вблизи изолированной особой точки нулевого 

поверхностного трения ( )sx x  пограничный слой имеет двухслойную 

структуру. Это вязкие пристеночные подслои (области 3, фиг. 1), в которых 
1/4(| | )y O s  и при | | | | 0ss x x    

 

03/4 3 3/2 7/4 9/4
1 1 2

11/2 1/42
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6
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 
     
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 
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
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a
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
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
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Фиг. 1. 

 

Таким образом, безразмерное поверхностное трение 
1/2 1/2 2

00
Re | Re [ | | ( )]

yy y
a s O s


   при 0| | 0, 0s a  . Входящие в 

выписанные выше выражения постоянные, остаются произвольными при 

локальном анализе и определяются из решения задачи в целом. Параметр 

0 0( (Re) 0, Re )    , который в дальнейшем будет определен, 

характеризует возможную вариацию для решения в области внешнего потока 

(область 1) относительно рассматриваемого критического состояния. 
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В основной части пограничного слоя (области 2), где (1)y O  при 

| | 0s  имеем разложения 

2

1 2
0 00 00

1 0 1/4
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0 0 0 0 00

0 0
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
   
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      
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    
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  





 
 



   


 

 

Таким образом, решение исходной задачи является особым и, в 

частности, угол наклона трубок тока в пограничном слое претерпевает 

разрыв при переходе через сечения 0s   

1/2 0
00

Re / sign( ) ( ) ( )
a

s J y O s
yx

 
     

 

 


  

Сглаживание этой особенности осуществляется путем рассмотрения 

течения при 1/2
0

| | ( )s O   – области, где приведенные разложения теряют 

свою равномерную пригодность. 

В дальнейшем сосредоточим внимание на режиме течения, когда в этой 

области изменения наклона поверхностей тока индуцируют такие изменения 

давления, что возникает взаимодействие, описанное Рубаном [1982], 

Стюартсоном [Stewartson, 1982]. Пусть далее внутри этой области имеется 

малая трехмерная неровность поверхности, причем ее высоту, как и в работе 
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Хакмюллера и Клювика [Hackmueller, Kluwick, 1989, 1991], выберем такой, 

чтобы влияние последней проявлялось в процессе взаимодействия. 

2. Обозначим через   и   соответственно, масштабы для 

продольного и поперечного размеров пространственной неровности, а через 

h  – для ее высоты. При этом (Re) 0, (Re) 0h h      и (Re) (1)O    

при Re  . 

Следуя работам Рубана [1981, 1982] и Стюартсона и др. [Stewartson and 

others, 1982], на основании сказанного, а также того, что течение в «вязком» 

пристеночном подслое (область III, фиг. 1) области взаимодействия 

трехмерно, представим решение здесь в следующем виде: 
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Функция ( ),F X Z  определяет форму неровности, причем 0F  при 

| |X  . В результате подстановки данных разложений в исходные 

уравнения Навье-Стокса, для главных членов разложений получаем 
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Это решение удовлетворяет условиям прилипания на поверхности тела 

и сращивания с внешними разложениями. Функция 1( , )A X Z , определяющая 

продольную составляющую поверхностного трения, остается произвольной 

и, как известно из Стюартсона [Stewartson, 1970], должна находиться из 

решения задачи для следующих членов разложений. Уравнения для них 

имеют вид 
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Решение этих уравнений должно удовлетворять условию прилипания 

на поверхности тела ( 0)Y  , а также условиям сращивания с разложениями 

при | |X   и решением в основной части пограничного слоя при ( )s O   

(область II) 
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Входящий в сформулированную задачу параметр подобия 

2
0 ( )


   

характеризует отношение продольного и поперечного размеров неровности и 

определяет возможные режимы течения в области взаимодействия. В 

дальнейшем детально будет рассмотрен случай, когда 0   и 1  . 

Функция 
2
( , )A X Z  в остается произвольной и для ее определения (как 

и для 
1
( , )A X Z  ) необходимо в свою очередь рассмотрение следующих 

членов разложений решения. Заметим, что ранее было положено: 
1/2 5/4Re ( )O


  . Выполнение этого условия позволяет пренебречь членами, 

связанными с поперечной кривизной поверхности цилиндра. Учет этих 

членов является непринципиальным, поскольку никак не влияет на решение 

задачи и не изменяет распределения поверхностного трения. 
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В основной части пограничного слоя в области взаимодействия 

(область II) на основании найденных решений и с учетом поперечного 

изменения давления решение может быть представлено в виде 
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В результате подстановки этих разложений в уравнения Навье–Стокса 

и последующего интегрирования находим, что решение, удовлетворяющее 

условиям сращивания с разложениями в пристеночном подслое, есть 
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Здесь на основании сращивания при 00| | , ( )X U y    и 0 ( )yJ  

определяется выражением ранее. 

Рассмотрим режим течения в области взаимодействия при 0   и 

1  , т.е. когда неровность охватывает всю поверхность цилиндра или ее 

конечную часть по углу  , а продольный размер области взаимодействия (и 

неровности) по порядку величины больше радиуса цилиндра. В этом случае 
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P P X

Z Z
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Для замыкания соотношений в области взаимодействия, как обычно, 

рассмотрим внешнюю ее часть (область I), где ( )r O  . Следуя Сычеву 

[1993], будем искать здесь решение для потенциала вектора скорости в виде 
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где 
1

(Re) 0, ( ), ( )nn n n n
O o


          при Re . Функция 

*
0 ( , , Re)X r  есть переразложение во внутренних переменных выражения 

для потенциала в области 1 внешнего течения, определяющего регулярное 

распределение скорости и давления, а *( , , )
n

X r Z  обусловлены 

вытесняющим действием пограничного слоя. Для этих функций после 

подстановки в исходные уравнения получаем 
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Решение этого уравнения, удовлетворяющее условию затухания 

возмущений при 2 2*X r  , хорошо известно, см. например Адамс и Сирс 

[Adams, Sears, 1953], и тогда при * 0r   
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Производя сращивание разложений решения из основной части 

пограничного слоя с разложениями в потенциальной части при y  и 

* 0r   соответственно, находим, что 

 

2/7 2 3/22/7 1/7 1/2
0

2 2 *
0* *0

000 12
0

3* *
00 0 1 10 0

1 0

(ln ) , ,

, ( ) ( , ) ( , )

1, , 0

n n

n

n

n
n

R R

r q d A
P A X A X Z F X Z

d X

P
P q P q W

X Zr

      








  





  

   

 
    

 


 



110 

 

Полученные соотношения определяют характерный масштаб области 

взаимодействия   в зависимости от величины радиуса цилиндра  , а также 

замыкают задачу для этой области. Принципиальное значение имеет тот 

факт, что радиальная составляющая вектора скорости в областях II и III в 

своем главном члене не зависит от  . 

Прежде чем переходить к решению задачи со взаимодействием, 

остановимся кратко на других возможных режимах течения в области 

взаимодействия. 

При 0   и 0  , как и в статье Сычева [1993], имеет место 

течение на режиме поперечного взаимодействия, соответствующего в 

рассматриваемом приближении обтеканию вытянутой в продольном 

направлении неровности, лежащей на плоскости. В случае, когда 0 1   и 

1  , приходим по существу к рассмотренной выше задаче, но при этом 

продольный размер области взаимодействия есть величина порядка радиуса 

цилиндра. Из рассмотрения течения в области I внешнего потенциального 

потока при ( ),s O   ( )r O   следует, что индуцированное давление и 

радиальная составляющая вектора скорости суть величины одного порядка. 

Это означает, что 1/25/2 Re , т.е. 1/5Re   . Условия, дающие связь 

между функциями *
02 20

( , )P P P X Z   и 
1

( , )A X Z , приведены в статье 

Сычева [1993]. При 0 1   и 0   из тех же соображений, что и в 

предыдущем случае, следует, что 1/5Re   , и в главном приближении 

приходим к течению около трехмерной неровности, расположенной на 

плоскости, рассмотренному в статье Хакмюллера и Клювика [Hackmueller, 

Kluwick, 1991]. Наконец, если 0 0  , то имеет место квазидвумерное 

течение, также исследованное ими же. 
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Аффинные преобразования и замена переменных  
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приводят задачу о взаимодействии к виду  
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Здесь и всюду ниже штрихи в обозначениях опущены. Входящий в эту 

систему параметр подобия *a  характеризует степень отклонения течения в 

области 1 от его критического состояния, при котором в решении задачи без 

взаимодействия возникает устранимая особенность. 

Решение сформулированной задачи существует, если только искомые 

функции 1 0( , ), ( )A X Z P X  и 
1
( , )P X Z  связаны между собой определенным 

образом, Стюартсон [Stewartson, 1970]. Такая связь или условие 

разрешимости задачи, служащее для определения этих функций в 

соответствии с работами Стюартсона [Stewartson, 1970], Рубана [1982] и Дака 

[Duck, 1989], в данном случае имеет вид 
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Относительная простота этой задачи обусловлена тем, что функция 

1( , ) ( , )A X Z F X Z  и вместе с ней и главный член разложения для 

радиальной составляющей вектора скорости в не зависят от  . 

На основании сделанных аффинных преобразований и в результате 

интегрирования уравнения для ( , , )W X Y Z  находим распределение 

безразмерного поверхностного трения в области взаимодействия 
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Используя условие периодичности решения по (0 2 )Z Z   , 

представим форму неровности и искомые функции в виде рядов Фурье 
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подставив которые в условия разрешимости, приходим к следующей системе 

рекуррентных уравнений: 
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Здесь и ранее звездочкой обозначены комплексно сопряженные 

функции. 

 

 

 

Фиг. 2. 
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Фиг. 3 

 

Перейдем к описанию результатов численного решения задачи. 

Рассмотрим неровность вида 

2 /2
0 00 0( )cos3 , 0 2 , , constx

F H g X Z Z g e H
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В этом случае на основании системы рекуррентных соотношений 

получаем 
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При 0 0H   приходим к осесимметричному течению и для функции 

0( )A X  получаем уравнение, которое совпадает с соответствующим 

уравнением в задаче о плоском течении вязкой струи на искривленной 

поверхности, Заметаев [1986]. Решение этого уравнения не единственно, 

более того, при *| | 0a   число решений неограниченно возрастает и 

зависимость 0(0)A  от *a  имеет форму спирали, Заметаев [1987а]. 

При 0 0H   решение строилось с помощью численного метода, 

предложенного Заметаевым [1987а]. На фиг. 2 представлена зависимость 

0(0)A  от 0H  при значениях * 1,5; 1; 0; 0,7a     (соответственно кривые 1–

4). Увеличение *a , и (или) 0H  способствует возникновению отрыва. Для 

каждого *a , если решение существует, то при значениях 0H , меньших 

некоторого * *
0 0( 4,089; 3,638; 2,462; 0,91H H   соответственно). Как и для 

плоских течений, изученных в Браун и Стюартсон [Brown, Stewartson, 1983], 



117 

 

Заметаевым [1986] и Хакмюллером и Клювиком [Hackmueller, Kluwick, 

1989], обнаружилась его неединственность (фиг. 2). 

Графики функции 0( )A X  при 0 3H   и * 1,5a    для первых четырех 

решений изображены на фиг. 3. Здесь кривые 1–4 соответствуют значениям 

0( ) 0,937; 1,61; 0,343; 0,6420A    , взятым с кривой 1 на фиг. 2, если 

двигаться вдоль нее из точки 0 0H  , 0( ) 1,8460A  . По-видимому, эта кривая 

будет сворачиваться в виде спирали и число решений, как и для 0 0H  , 

подобно описанному Заметаевым [1987а], при приближении 0H  к 

некоторому значению будет неограниченно возрастать. При этом 

минимальное значение 0( )A X  и его координата будут также монотонно 

увеличиваться. 

 

 
Фиг. 4 
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Фиг. 5 

Особый интерес для изучения структуры трехмерных течений с 

локальными зонами отрыва представляет картина линий поверхностного 

трения или, как их называют, «предельных линий тока». Уравнение этих 

линий имеет вид 

3/4 11 14 6/73/143/7
0 0 0 00 0

,z

x

d Z
q r a

d X

 


   
  

Здесь zx ,   - компоненты напряжения трения. 
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Фиг. 6 

 

Фиг. 7 
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Для построения качественной картины линий поверхностного трения 

представляется целесообразным задать значение 3/4
0   . Положим его 

равным 1 3 . Заметим, что из-за выбранного условия периодичности 

достаточно ограничиться отрезком 0 2 3Z   . 

Как известно, в точках, где значения x z,   одновременно обращаются 

в нуль, возникают особенности. На фиг. 4 представлена картина линий 

поверхностного трения для значений 0 3H  , * 1,5a   , соответствующая 

кривой 1 на фиг. 3. Кроме седла (точка отрыва) и узла (точка присоединения) 

при 3Z   в этом случае возникают симметрично расположенные седла и 

фокусы. (Здесь и ниже седло обозначено крестиком, а узел – кружком). При 

0 0H  , * 1,5a    течение является безотрывным, см. Заметаев [1986]. 

Деформация поверхности приводит к появлению отрыва, но не на всей длине 

по Z , а лишь в месте углубления поверхности. 

При тех же значениях 0 3H  , * 1,5a    для второго решения (кривая 

2, фиг. 3) область отрыва охватывает всю поверхность тела по Z  и линии 

присоединения это почти прямая 2X   (фиг. 5). По сравнению с 

предыдущим решением вместо фокусов на линиях 0;Z   2 3  при 

0,5; 2X   возникают узлы. 

Наиболее сложной является картина для третьего решения (фиг. 6). 

Зона отрыва здесь имеет существенно бóльшую длину (кривая 3, фиг. 3) и 

присоединение происходит при 4,75X   точно так же, как и для второго 

решения (см. фиг. 5). Однако вместо узлов при 0,5X   (фиг. 5) на линиях 

0;Z   2 3  при 1,7X   появляются седла, а также возникают симметрично 

расположенные предельные циклы (фиг. 6). Один из них отдельно 

представлен на фиг. 7. 
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Фиг. 8 

 

Наконец, на фиг. 8 приведена картина при 0 0,8H  , * 0,7a    для 

верхней ветви решения (кривая 4, фиг. 2). Здесь при 3Z   в точках отрыва 

и присоединения возникают седла. 

Полученные решения свидетельствуют, что в соответствии с 

концепцией Лайтхила [1963] линия отрыва и присоединения являются 

асимптотическими для линий поверхностного трения и начинаются и 

заканчиваются в особых точках. 

Приведенные решения иллюстрируют наиболее типичные картины 

линий поверхностного трения для трехмерных течений с локальными зонами 

отрыва. Вне поверхности тела этим картинам соответствуют довольно 

сложные пространственные конфигурации линий тока, см. обзор Перри и 

Чонг [Perry, Chong, 1987].  



122 

 

 

Выводы главы 2. 

 

Установлено, что влияние слабой продольной вихревой нити на  

предотрывный двумерный пограничный слой носит радикальный характер 

при возрастании циркуляции вихревой нити. Взаимодействие не позволяет 

продолжить решение вниз по потоку далее некоторой точки. Такой факт 

означает кардинальную перестройку течения и, по-видимому, выброс 

завихренности за пределы пограничного слоя. Естественно предположить 

зарождение вихревой пелены в данной точке. 

Полученные решения свидетельствуют, что в соответствии с 

концепцией Лайтхила [1963] линия отрыва и присоединения являются 

асимптотическими для линий поверхностного трения и начинаются и 

заканчиваются в особых точках.  

На основе асимптотической теории кромочного отрыва удается 

получить достаточно простые решения, которые описывают течения со 

сложной структурой линий поверхностного трения. 

 



123 

 

Глава III. ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ СЛОЖНЫХ ЗАДАЧ  

                 ВЯЗКО-НЕВЯЗКОГО ВЗАИМОДЕЙСТВИЯ 

 

 §1. Эффективный численный метод решения задач вязко-невязкого  

                взаимодействия 

 В данном параграфе будет описан численный метод, разработанный 

для корректного решения сложных задач взаимодействия, на примере 

обтекания малого угла пограничным слоем. Данный метод можно определить 

как «обратный» метод расчета по классификации, предложенной Велдманом 

[Veldman, 1981], так как на всех этапах расчет выполняется, задавая толщину 

вытеснения пограничного слоя или ее возмущенные величины. Однако, в 

отличие от предложенных другими авторами (в том числе Велдманом) 

разнообразных схем организации глобальных итераций с нижней или 

верхней релаксацией, в данной работе предлагается решать неявную, 

нелинейную систему уравнений методом Ньютона. Эта система уравнений 

представляет из себя разность градиентов давления, вычисленных по 

толщине вытеснения, в невязкой и вязкой областях, в каждой точке 

расчетной сетки. Метод Ньютона обладает высокой сходимостью при 

правильном вычислении матрицы Якоби, для чего предложена оригинальная 

схема. При расчете уравнений пограничного слоя с зоной возвратных токов, 

точки отрыва и присоединения могут «скакать» от итерации к итерации, 

порождая сильную неустойчивость и требуя нижнюю релаксацию. Чтобы 

исключить подобную неустойчивость, в работе решение линеаризовалось 

аналитически относительно текущего поля скоростей и для вычисления 

матрицы направлений решалась линейная задача в пограничном слое.  

Рассмотрим двухмерное течение несжимаемой жидкости около 

поверхности, имеющей точку излома. Вблизи этой точки контур тела может 

быть представлен двумя прямыми линиями, составляющими угол   между 

собой, Фиг.1.  
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Фиг. 1 Картина течения 

Будем обозначать скорость жидкости в приходящем потоке U  и 

давление p , а характерный размер тела через L. Плотность жидкости и 

динамический коэффициент вязкости постоянны во всем поле течения и 

обозначаются через   и   соответственно. Будем предполагать, что число 

Рейнольдса  

Re U L



 

велико, и что угол излома 1
4

0Re
    , где 0  будет величиной порядка 

единицы. При этих условиях течение около угла управляется 

взаимодействием между пограничным слоем и внешним невязким потоком. 

Известно, что область взаимодействия занимает 3
8(Re )O

  окрестность угловой 

точки (см. Фиг.1). Она имеет трехслойную структуру состоящую из вязкого 

пристеночного слоя (область 1), основной части пограничного слоя (область 

2) и невязкого потенциального течения (область3) расположенного вне 
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пограничного слоя. Пусть X и Y обозначают размерные ортогональные 

координаты, где X откладывается от угловой точки по касательной к контуру 

тела перед углом, а Y в нормальном направлении. Размерные компоненты 

скорости обозначаются через U, V соответственно, а давление через P. 

Используя эти переменные, решение в вязком подслое может быть 

представлено в виде, Стюартсон [Stewartson, 1970] 
3 55 3

8 84 4

31 31
8 84 4

1 12 4 2

Re , Re ( ( ))

Re , Re ( )

Re

X L x Y L y f x

df
U U u V U v u

dx

P p U p

  

 

 



 

    

    

  

 

Здесь   это безразмерное напряжение трения на поверхности тела в 

пограничном слое непосредственно перед областью взаимодействия. 

Функция f(x) определяет форму тела. Она может быть записана в виде 

0
1

2

0, 0
, ( )

, 0
x

f x
x x

 
    

  
 

Для того чтобы устранить сингулярность при  x=0 , будем предполагать как и 

в оригинальном исследовании , что угол закруглен 

2 21( ) ( )
2

f x x x r     

В наших вычислениях параметр r будет обычно браться  r=0.1. Подставляя 

асимптотические разложения решения в уравнения Навье-Стокса и 

устремляя число Рейнольдса в бесконечность придем в результате в области 

1 к уравнениям пограничного слоя 

2

2

0

u u dp u
u v

x y dx y

u v

x y

  
   

  

 
 

 
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Они должны решаться с условием прилипания на поверхности тела  u=v=0 и 

с условием сращивания с решением в основной части пограничного слоя 

(область 2) 

( ) ..., ...dA dp dA
u y A x v y A y

dx dx dx
          

А также с начальным условием перед областью взаимодействия, Рубан [1976] 

1
3( ) ( ) ...u y x g x


       

Здесь 1 3/ ( )y x  и функция g может быть найдена, принимая во внимание 

выражение 
3 3

9 9( ) , (0) 0g e e d g


 




     

   

Константа   оказывается единственным параметром, управляющим 

течением данного типа. Интеграл Гилберта из линейной теории тонкого 

профиля (область 3) дает выражение для градиента давления 

1 ( ) ( )dp A s f s
ds

dx s x





 
 

   

и замыкает формулировку задачи о взаимодействии.  

В результате сформулирована типичная задача о взаимодействии 

пограничного слоя с внешним потоком, а именно выписаны уравнения 

пограничного слоя с неизвестными заранее толщиной вытеснения и 

градиентом давления. Задача замкнута соотношением между этими 

функциями. 

 

Численный метод 

 

Для решения данной задачи введем неравномерную сетку 
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1, ...,
( , )

1, ...,i m

i N
x y

m M

 
 

 
 

 

и обозначим величины функции A(x) в точках xi через Ai. Рассмотренные 

вместе они составляют сеточную функцию  iA . Давление не зависит от 

вертикальной координаты и тоже может быть представлено сеточной 

функцией  ip , элементы которой вводятся аналогично. При заданной  iA , 

интеграл Гилберта позволяет вычислить ту функцию, которую мы будем 

называть «невязким градиентом давления» 

 

| ( )inv i

dp
x

dx  

С другой стороны, для той же заданной функции  iA , из уравнений вязкого 

подслоя можно вычислить «вязкий градиент давления» 

| ( )vis i

dp
x

dx  

 

В результате задача отыскания решения полных уравнений 

взаимодействия сводится к поиску такой  iA , которая удовлетворяет 

неявной системе уравнений 

 

( ) | | 0, , 1, ...,j i inv vis

dp dp
F A i j N

dx dx
     
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Для решения данной нелинейной системы уравнений выбирается 

некоторое начальное приближение и далее используется метод Ньютона. На 

каждой итерации поправки ищутся, решая линейную систему 

( ) 0j

j i i

i

F
F A A

A


  
  

 

Вычисление интеграла Гилберта 

 

 Удобно выразить невязкий градиент давления в виде 

 

1 ( ) 1 ( )dp A s f s
ds ds

dx s x s x

 

 

 
  

      

 

и вычислить аналитически второй член в этом выражении 

 

2

3 1 1 2 22 2 2 22 2 2 22

1 ( ) 1

( ) ( )( )

f s x x x
ds arcth

s x x rx r x rx r





     
      

           
  

 

Тогда интеграл от искомой функции при  x=xi  запишется в виде 

 

1 1 1

1 1

2 1

1 1

( ) ( ) ( ) ( )N k i k

k i k

x x x xi N

k k ii i i ix x x x

A s A s A s A s
ds ds ds ds

s x s x s x s x

  



 

  

   
  

   
      

 

Предполагая, что функция А гладкая, интегралы можно вычислить 

аналитически, используя разложение Тейлора для искомой толщины 

вытеснения в виде 
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1 1 1( ) ( ) ...
( ) ( ) ...
( ) ( ) ...

k k k

i i i

k k k

A s A A s x

A s A A s x

A s A A s x

  
     

     

     
 

для первого, второго и третьего интегралов соответственно. В результате 

невязкий градиент давления выразится следующей формулой 

 

 

 

1
1 1

1

2
1

1 1 1 1 1
1

1
1

1
1

1( ) ( ) ( ) ln

1 ( ) ( ) ln

1 ( ) ( ) ln

i i
i i i i i i

i i

i
i k

k k k k i k k

k i k

N
k i

k k k k i k k

k i k i

x xdp
x x A x x A

dx x x

x x
A x x A x x A

x x

x x
A x x A x x A

x x


 






    








 

         
  

 
        

  

 
        

  








2

3 1 1 2 22 2 2 22 2 2 22

1

( ) ( )( )

x x x
arcth

x rx r x rx r

    
     

         

 

 

Это уравнение может быть очевидно выражено в векторном виде 

B R A Q    

Здесь вектор В состоит из элементов ( )ix  градиента давления в точках 

сетки и вектор А из элементов сеточной функции  iA . Элементы матрицы R  

i
ik

k

R
A





 

могут быть вычислены аналитически дифференцированием 

соответствующих выражений, однако в силу сложности формул и 

линейности выражения, проще придавать единичные приращения kA  

соответствующим элементам и вычислять в итоге матрицу. В результате 
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связь невязкого градиента давления и толщины вытеснения А будет известна, 

если заданы размер области и сетка. 

 

Решение уравнений пограничного слоя 

 

Уравнения пограничного слоя решаются маршевым методом, переходя 

от одного xi к следующему xi+1 . В каждом сечении пограничного слоя xi 

начиная с i=3, мы формулируем вязкую задачу, которую надо решить для 

всех уm , в виде невязок уравнений 

0, 2,...,m m M    

 

С этой целью используем уравнение импульсов. При условии, что 

продольная скорость всюду неотрицательна, имеем для m=3,…,M-1 

1 2, 2 1, 3 ,
,

2

1 , 1 2 , 3 , 1
,

1 1

1 , 2 2 , 1 3 , 4 , 1

1 2 1( )( )

i m i m i m

m i m

i i

i m i m i m

i m i

m m

i m i m i m i m

m m m m

c u c u c u
u

x x

d u d u d u dp
v

y y dx

b u b u b u b u

y y y y

 



 

 

  

  

 
   



 
  



  


 

 

В этой формуле коэффициенты вычисляются следующим образом 

 
2

1 2
1 2 3 1 2

2 1 1 2 1

1
3 1 2 1 3

1 3

( ), ,
( )( )

1, ,

i i i i

i i i i i i

m m

m m

x x x x
c c c c c

x x x x x x

y y
d d d d d

y y d

 

    





 
     

  


     


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1 2
4

1 1

1 1 2 1 2
2 4

1 1 2 1 2

1 1
1 2 4 3 1 2 4

2 2

22

( )( )( 2 )
( )( )( 2 )

,

m m m

m m

m m m m m m m

m m m m m m m

m m m m

m m m m

y y y
b

y y

y y y y y y y
b b

y y y y y y y

y y y y
b b b b b b b

y y y y

 

 

    

    

 

 

 




   
 

   

 
      

 

 

 

Указанная формула несправедлива вблизи стенки, поэтому заменим ее на 

следующую при m=2 

 

1 2,2 2 1,2 3 ,2 ,3 ,3 ,2
2 ,2 ,2 2

2 3 3

2i i i i i i

i i i

i i

c u c u c u u u udp
u v

x x y dx y

 



  
     

  

 

Чтобы замкнуть систему уравнений, используем условие на внешней границе 

вязкого подслоя для определения искомого градиента давления 

 

, 1 2 2 1 3

, 2 ,

1i M i i i
M

ii M i i i M

v c A c A c A dp

u x x u dx

 



 
    

  

 

В вычислениях используется вертикальная  составляющая скорости. Она 

находится из уравнения неразрывности, с этой целью запишем его в 

следующей дискретной форме 

 

1 2, 2 1, 3 , 1 2, 1 2 1, 1 3 , 1

2 2

, , 1

1

1
2

0

i m i m i m i m i m i m

i i i i

i m i m
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c u c u c u c u c u c u

x x x x

v v

y y

      

 





    
  

  


 


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Из этой формулы можно последовательно вычислять вертикальную скорость, 

двигаясь снизу вверх от стенки. 

Для того чтобы правильно вычислять производные скорости в областях 

с возвратными токами и как следствие гарантировать устойчивость и 

сходимость численной схемы, запишем невязки в точках, где  ui,m<0  в виде 

 

1 2, 2 1, 3 ,
,

2

1 , 1 2 , 3 , 1
,

1 1

1 , 2 2 , 1 3 , 4 , 1

1 2 1

1 2,2 2 1,2 3 ,2 ,3
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old old
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m i m
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c u c u c u
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x x

d u d u d u dp
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b u b u b u b u

y y y y

c u c u c u u
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

 
   
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 
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  


 

 
   



,3 ,2
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i

u udp
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
 

 

 

В этих формулах  ,
old

i mu  это решение взятое с предыдущего прохода по всему 

возвратному полю течения, а коэффициенты вычисляются по формулам 

 
2 2

1 2
1 2 2 3 1 22

2 1 2 1

( ) ( ), ,
( ) ( )( )

i i i i

i i i i i i

x x x x
c c c c c c

x x x x x x

 

   

 
      

  
 

 

Основная идея метода расчета проста – функция A(x) однозначно 

определяет как невязкий градиент давления, так и вязкое течение в подслое 

на дне пограничного слоя и соответственно вязкий градиент давления. Если 

эти градиенты давления совпали, то мы получили решение задачи о 

взаимодействии. Во внешнем потоке связь между толщиной вытеснения и 
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градиентом давления линейна, поэтому достаточно один раз вычислить 

матрицу Ri,k для заданной расчетной сетки. И, таким образом, достаточно 

узнать как возмущения толщины вытеснения влияют на вязкий градиент 

давления, анализируя вязкий подслой как некий «черный» ящик, разный в 

зависимости от типа исследуемой задачи. Запуская туда возмущения 

толщины вытеснения и анализируя отклик в виде возмущенного градиента 

давления. 

Расчет уравнений пограничного слоя при заданной толщине 

вытеснения A(x) не столь тривиален. В каждом текущем сечении xi надо 

решать нелинейную систему алгебраических уравнений по переменной у , с 

учетом если нужно, возвратных токов в зонах отрыва. Тем не менее, 

достаточно одного прохода по пограничному слою для полного расчета поля 

течения и нахождения вязкого градиента давления в случае положительно 

направленного течения. Если же в потоке есть зона отрыва, то приходится 

организовывать множество последовательных проходов по ней, чтобы 

методом простых итераций добиться сходимости. Тем не менее, такой расчет 

уравнений пограничного слоя при заданной толщине вытеснения оказался 

быстрым и эффективным. Пользуясь таким методом рассчитывалась матрица 

Якоби для глобальных итераций 

| ( )inv i

visck

dp dp
x

A dx dx

 
 

  
 

При заданной функции A0 запоминалось поле течения как базовое, а для 

вычисления малого отклика на возмущение, решалась линейная задача в 

вязком слое, линеаризованная относительно этого базового потока. 

0 0 0 0, , ,u U u v V v p P p A A A            

Здесь u’,v’,p’,A’ предполагаются малыми величинами. А линейные уравнения 

примут вид 
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2

0 0
0 0 2

0

U Uu u dp u
U u V v

x x y y dx y

u v

x y

      
      

    

  
 

 

 

 

Функция А'к задавалась нулем везде, кроме текущей точки к0 , в ней 

возмущение бралось единичным. Производился расчет линейных уравнений 

с таким точечным единичным возмущением и находился возмущенный 

градиент давления. В результате заполнялся один столбец в матрице Якоби. 

Данная процедура повторялась N раз. Данная процедура вычислений может 

показаться чрезмерно сложной, однако напомним, что для случая течений с 

возвратными токами, очень важно чтобы точка отрыва не «скакала» от 

итерации к итерации. Фиксируя отрывное поле течения как базовое, мы 

фиксируем направление передачи возмущений и добиваемся устойчивости 

разностной схемы. 

 

§2. Тестовое решение задачи об отрыве пограничного слоя  

      несжимаемой жидкости вблизи слабого излома контура тела. 

 

 Расчеты выполнялись, используя неравномерную сетку 251х151 и 

затем расчеты повторялись удваивая размеры шагов, чтобы проверить 

точность расчетов. Концентрация шагов сетки выполнялась около угловой 

точки и минимальные шаги составляли 0.005, 0.02x y    . В отрывной 

области мы обычно использовали шаг 0.1x  , который постепенно 

уменьшался до 0.025x   вблизи точки замыкания отрывной области. 

 Результаты расчетов собраны на Фиг.2, которая показывает длину 

отрывной области l как функцию угла  . Для положительных углов 

отклонения щитка решение типично, с ростом угла появляется отрыв и затем 

растет. Мы же рассчитали более интересный и сложный режим для 
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отрицательных углов отклонения щитка, т.к. известно, что такое решение 

существует не далее некоторого критического значения. Более того решение 

неединственно и на второй ветви отрывные зоны достигают больших 

величин. В пределе вторая ветвь, по-видимому, переходит к глобальному 

отрыву, описанному Сычевым [1972]. Решения на нижней ветви будем далее 

называть короткими «отрывами», а на верхней ветви «длинными». На фиг.3 

показаны линии тока для длинного отрывного пузыря при 5.4   . Для 

сравнения мы также показываем на этой фигуре (пунктирной линией) 

короткий отрыв с нижней ветви. 

 

 
Фиг.2 Длина зоны отрыва в зависимости от угла отклонения щитка, решение 

неединственно для выпуклых углов. 
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Фиг.3 Линии тока длинного пузыря при 5.4   , пунктир – нижняя ветвь. 

 
Фиг.4(а) Сравнение решений при 5.4   : толщина вытеснения 
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Фиг.4(b) Сравнение решений при 5.4   : напряжение трения 

 
Фиг.4(c) Сравнение решений при 5.4   : градиент давления 
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Фиг.4(d) Сравнение решений при 5.4   : давление 

 

 
Фиг.5 Линии тока при 4.67    
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Фиг.6(а) Решение при 4.67   : давление 

 
Фиг.6(b) Решение при 4.67   : напряжение трения 
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Фигуры 5 и 6 показывают поведение решений при 4.67   . При этой 

величине угла также есть два решения. Одно из них присоединенное, оно 

подробно изучено, а второе, посчитанное здесь, содержит большую 

отрывную зону. Отметим, что предложенный в работе метод позволил без 

особых затруднений посчитать эту огромную зону. Более ранние методы 

были не способны на это. Отметим, что поведение давления и напряжения 

трения на Фиг.6 вблизи точки присоединения находится в соответствии с 

теоретическими исследованиями Рубана [1980]. 

 Таким образом, в данной параграфе предложен эффективный метод 

расчета течений со взаимодействием и успешно проверен на течениях вблизи 

точки бифуркации решения по параметру, а также на расчетах вязких слоев с 

«огромными» отрывными зонами. Точность разработанного метода 

проверена сравнениями с расчетом полных уравнений Навье-Стокса в статье 

Менгалдо [Mengaldo 2015], на Фиг.7 приведены данные по градиенту 

давления и напряжению трения. Также его эффективность подтверждена 

исследованиями для трансзвуковых течений в статье Рубана [Ruban, Bernots, 

Kravtsova, 2016]. 

 
Фиг.7 

 

 §3. Решение задачи о смешении пограничных слоев, стекающих с  

                задней кромки крыла. 
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Настоящий параграф посвящен исследованию течения вблизи 

плоской задней кромки крыла, за которой происходит смешение двух 

потоков несжимаемой жидкости. Структура такого течения обобщает 

теорию Стюартсона [Stewartson, 1969], Месситера [Messiter, 1970], 

построенную для одинаковых потоков сверху и снизу пластины. Основное 

влияние задней кромки простирается на расстояние порядка 
3 8(Re ) ReO   , решение для области взаимодействия сращивается с 

решениями пограничного слоя вверх по потоку и  со слоем смешения вниз 

по потоку. Эта задача была сформулирована Дэниэльсом [ Daniels, 1977], 

но не решена из-за значительной вычислительной сложности. 

Предложенный эффективный численный метод позволил успешно 

преодолеть вычислительные проблемы. 

Рассмотрим стационарное течение жидкости около плоской пластины, 

установленной параллельно  набегающему потоку, предполагая, что 

константы Бернулли различны выше и ниже пластины. Такая ситуация 

может реализоваться при смешении двух различных потоков или на боковой 

кромке крыла малого удлинения под углом атаки. В силу локальности 

изучаемого явления конкретная схема течения не существенна и 

рассматривается наиболее простая. Введем декартову прямоугольную 

систему координат Оху, начало которой совпадает с задней кромкой, так что 

пластина длиной L занимает отрезок  –L<x<0. Полагаем, что внешний 

по отношению к пограничному слою поток жидкости имеет скорость и+  

при y>0 и и- , когда у <0. Вверху и внизу вдоль пластины развиваются 

пограничные слои, например Блазиуса (фиг. 1). Размерные компоненты 

скорости, а также давление обозначим соответственно U, V, P. В этих 

переменных разложение решения в вязком подслое в окрестности задней 

кромки при больших числах Re может быть представлено в виде, см. 

Дэниэльса [Daniels, 1977] 
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Фиг.1 Схема течения вблизи задней кромки 

3 5
8 8

31
8 8
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   

  
 

 
  и   означают плотность и коэффициент кинематической вязкости, 

число Рейнольдса Re /U L  . Подставляя данные разложения в уравнения 

Навье-Стокса и устремляя число Re , получаем соответствующие 

уравнения для вязкого подслоя. 

Для верхней части пластины 
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Чтобы сформулировать условие взаимодействия, необходимо провести 

анализ отклика внешнего потенциального течения на вытесняющее действие 

пограничного слоя. 
Решение в основной невязкой части пограничного слоя имеет вид 
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Для слабо возмущенного внешнего потенциального течения справедливы 

соотношения 

, ,

,

0

u u u v v p p

u p v p
u u

x x x y

u v

x y



 

     

      
   

   

  
 

 

 

 
из которых легко получить известные соотношения Коши-Римана 
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,p v p v

x u y y u x 

         
     

      
 

и как следствие аналитическую функцию в области комплексного 

переменного z=x+iy 

1( )f z p iv
u

    

Из условий сращивания с решением в пограничном слое, для этой 

функции задана мнимая часть на действительной оси 

Im ( ) , 0f A x u y 
   

Отсюда следует выражение для давления на верхней части пластины 
2 ( )u A t dt

p
t x



 





 

   

Аналогично течение под пластиной описывается уравнениями Прандтля с 

индексом "-". На нижней части пластины также выполняется приведенное 

выше условие прилипания, при этом условия сращивания с пограничным 

слоем перед областью взаимодействия и с решением в основной части 

пограничного слоя принимают вид 

...,
( ) ...,

u y x

u y A y



 

   

       

 

Вязкие слои с верхней и нижней частей пластины стекают с задней 

кромки и смешиваются, образуя область взаимодействия, похожую на 

область взаимодействия в окрестности задней кромки плоской пластины 

при симметричном стекании пограничных слоев, как это описано у 

Стюартсона [Stewartson, 1969], Месситера [Messiter, 1970] и Дэниэльса 

[Daniels, 1977]. Дополнительным условием для несимметричного течения 
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является равенство давлений в следе при расчете потенциальных течений 

сверху и снизу. 

 

Решение в ближнем следе Гольдштейна 

 

Решение далеко вниз по потоку у сформулированной задачи для вязкого 

подслоя в следе, может быть представлено в том же виде, что и решение 

для ближнего следа Гольдштейна [Goldstein, 1930], модифицированное с 

учетом асимметрии потоков сверху и снизу пластины. 

 

2
3

1
3

( ) ..., , y
x g x

x
     

 

Для функции g справедливо уравнение с краевыми условиями, которые 

следуют из сращивания с решением для профилей скорости в пограничном 

слое на задней кромке 

2

2

2

2 1 0
3 3

, ( ) (1)
2

, ( ) (1)
2

g gg g

g a o

g a o







    


     


    

 

 

Третье краевое условие для данного уравнения находится исходя из 

равенства индуцируемого давления сверху и снизу от следа. Для 

нахождения этого условия в области внешнего потенциального течения 

сверху и снизу пластины вне области взаимодействия решение для 

скоростей и давления представим как 
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1
2

1,2

1
2

1,2

1
2

1,2

Re ( , ) ...

Re ( , ) ...

Re ( , ) ...

u u u x y

v v x y

p p x y









  

 

 
 

 

Здесь 1 1
1 1 2 2,u p iv u p iv 

    аналитические функции z=х+iy. В окрестности 

задней кромки 0z   эти функции сращиваются с решениями для 

потенциальной части области взаимодействия. В итоге для распределения 

давления на внешней границе пограничного слоя получаем 

 
2 22 2

3 3
1 2

2 22 2
3 3

1 2

2 2( ,0 ) ( ) ..., ( ,0 ) ( ) ..., 0
3 3 3 3

2 2( ,0 ) ..., ( ,0 ) ..., 0
3 3 3 3

a u a u
p x x p x x x

a u a u
p x x p x x x

    

    

           

       
 

 

Из равенства давлений поперек следа следует третье краевое условие. 

2 2a u a u     

 

Результаты численного расчета уравнения в следе показаны на фиг.2 в 

виде профилей скорости в ближнем следе при / 1     и при разных 

скоростях сверху и снизу, а также при равных скоростях потока вверху и 

внизу пластины / 1u u    и разных коэффициентах поверхностного 

трения набегающего потока. 
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Фиг.2а Решения при равных напряжениях трения сверху и снизу и разных 
скоростях: кривая 1 - / 1u u   ; кривая 2 - / 0.5u u   ; кривая 3 - / 0.1u u    
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Фиг.2б Решения при равных скоростях сверху и снизу и разных напряжениях 
трения: кривая 1 - / 0.5    ; кривая 2 - / 0.1     
 

Численная схема решения задачи 

 

Для численного решения задачи введем неравномерную сетку 

 

(xi ,ym),   i  = 1, ..., N,    т = 1, ..., М 

 

и обозначим значения толщины вытеснения А(х) в точках xi как Аi. 

Численный метод изложенный в предыдущем параграфе, 

предназначенный для решения задач со взаимодействием, содержит 

такие ключевые моменты, как выбор искомых функций, для которых 

формулируется система нелинейных неявных дифференциальных и 
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интегральных уравнений, алгоритмы расчета интеграла 

взаимодействия и пограничного слоя, а также способ вычисления 

матрицы Якоби, применяемый для улучшения сходимости метода 

Ньютона - Рафсона. 

В качестве искомых переменных в данной задаче удобно использовать 

толщины вытеснения выше и ниже пластины, а именно Аi . Вi . Для 

нахождения всех переменных необходимо сформулировать 

соответствующие разностные уравнения. Интеграл Гилберта при заданных  

векторах А и В  позволяет вычислить "невязкое давление" Р и затем 

градиент  давления как над пластиной, так и над следом, а также под 

пластиной и следом. С другой стороны, например для того же вектора  А на 

основании расчета уравнений пограничного слоя вычисляется "вязкий 

градиент давления над пластиной. При расчете течения в следе также 

вычисляется "вязкий градиент давления", который однако определяется уже 

толщинами вытеснения как сверху А так и снизу В. Исходя из данных 

рассуждений и принимая во внимание, что соответствующие вязкие и 

невязкие градиенты должны совпадать при точном решении задачи, а 

также требуя равенства давлений в следе, получим систему неявных 

разностных уравнений над и под пластиной и в слое смешения 
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 0) ( ) 0, ,...,i inv iA p B j N N  
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Для решения этой неявной системы уравнений относительно неизвестных 

толщин вытеснения А и В, использован метод Ньютона-Рафсона. Поправки 

,i iA B  , которые записываются в виде единого вектора, вычисляются при 

решении матричного уравнения 

( ) 0j

j i i

i

F
F A A

A


  
  

 

Численная схема для решения данной задачи взята из предыдущего 

параграфа. Конечно, задача существенно усложнилась, т. к. надо 

одновременно решать вязкие слои снизу и сверху от пластины, рассчитывать 

след и вычислять интегралы взаимодействия в верхнем и нижнем 

потенциальных потоках. Необходимо решать дополнительные уравнения, 

которые следуют из равенства давлений снизу и сверху от пластины, вниз по 

потоку от задней кромки. Однако, несмотря на эти очень существенные 

усложнения базового течения, разработанный метод проявил себя с 

наилучшей стороны. Решение быстро сходилось для всех наборов 

параметров задачи. 

 

Результаты расчетов 

 

Основные расчеты были проведены с использованием неравномерной 

сетки 251 х 151 и повторены на удвоенной сетке для проверки точности 

результатов. Узлы сетки сгущаются вблизи кромки, где минимальные 

размеры шага составляют  х = 0.01 и  у= 0.02. Для расчетов были 

выбраны три характерных режима, включающих симметричное стекание 

пограничных слоев, случая различных скоростей вверху и внизу пластины 

при одинаковых величинах поверхностного напряжения трения, а также 

разного поверхностного трения сверху и снизу при равных скоростях 
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внешнего потенциального потока. Расчет симметричного случая, когда  

и+=и-=1, 1     , удовлетворительно совпадает с результатами, 

приведенными у Джоба и Бюргграфа [Jobe, Burggraf, 1974]. Решение в 

несимметричном случае существенно отличается. Это иллюстрирует фиг. 3, 

где приведена картина линий тока   = const, построенных с шагом   = 0.1. 

Отметим тот факт, что при разных потенциальных скоростях потока сверху 

и снизу от обтекаемого профиля слой смешения смещается в сторону 

большей скорости.  

 

 
Фиг.3а Линии тока около пластины и в следе для / 0.5u u    и / 1     
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Фиг.3б Линии тока около пластины и в следе для / 0.1u u    и / 1     

 
Фиг.3в Линии тока около пластины и в следе для / 1u u    и / 0.5     
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Фиг.3г Линии тока около пластины и в следе для / 1u u    и / 0.1     

 

 

 

На фиг. 4 показано распределение толщины вытеснения для выбранных 

режимов, на фиг. 5 соответствующее распределение давления. Давление 

далеко вниз по потоку от задней кромки для параметров / 1, / 0.5u u        

и асимптотическое решение 2 3x  приведены на фиг. 6 кривыми 1 и 2 

соответственно и удовлетворительно совпадают. 
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Фиг.4а,б Толщины вытеснения А и В на пластине и в слое смешения 
а - / 1, / 0.5u u       , б - / 1, / 0.1u u       . Кривая 1 – верхнее течение, 
кривая 2 – нижнее, кривая 3 – симметричный случай. 
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Фиг.4в,г Толщины вытеснения А и В на пластине и в слое смешения 
в - / 0.5, / 1u u       , г - / 0.1, / 1u u       . Кривая 1 – верхнее течение, 
кривая 2 – нижнее. 
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Фиг.5а,б Распределение давления а - / 1, / 0.5u u       ,  
б - / 1, / 0.1u u       . Кривая 1 – верхнее течение, кривая 2 – нижнее. На 
вставках поведение давления вблизи кромки. 
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Фиг.5в,г Распределение давления в - / 0.5, / 1u u       ,  
г - / 0.1, / 1u u       . Кривая 1 – верхнее течение, кривая 2 – нижнее. На 
вставках поведение давления вблизи кромки. 
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Фиг. 6. Сравнение давления р вниз по потоку для случая / 1, / 0.5u u       , 
кривая 1-давление в слое смешения,  
кривая 2-асимптотика 2 3 2 2/ (3 3),cx c a u a u

      

 

Наконец, на фиг. 7 и 8 представлены градиент давления p dp dx   и 

поверхностное трение , 0u y y      на пластине. Интересны свойства 

решения при малой скорости потока над пластиной, когда верхний 

пограничный слой подобен вязкой струе. Индуцированное давление в 

этом случае оказывается малым, так как давление пропорционально 

произведению квадрата внешней скорости на интеграл взаимодействия. 

Течение под пластиной, в результате, слабо возмущено на протяжении 

всей длины области взаимодействия. А над пластиной формируется 

короткая зона резких возмущений вблизи кромки. Можно ожидать 

появление новых асимптотически малых, но существенных областей 

изменения решения при стремлении верхней скорости к нулю. Прежде 

всего, возможно влияние кривизны линий тока на индуцированное 

давление и как следствие появление положительного градиента давления 

на верхней части пластины, тормозящего поток. 
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Фиг.7 а,б Градиент давления р’ , на вставках функции вблизи кромки, а - 

/ 1, / 0.5u u       ; б - / 1, / 0.1u u       . Кривая 1 - над пластиной, 
кривая 2 - под пластиной, кривая 3 – симметричный случай 
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Фиг.7 в,г Градиент давления р’ , на вставках функции вблизи кромки, в - 

/ 0.5, / 1u u       ; г - / 0.1, / 1u u       . Кривая 1 - над пластиной, 
кривая 2 - под пластиной, кривая 3 – симметричный случай 
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Фиг.8 а,б Поверхностное напряжение трения на пластине ( 0)x  , 
 а - / 1, / 0.5u u       ; б - / 1, / 0.1u u       . Кривая 1 - над пластиной, 
кривая 2 - под пластиной, кривая 3 – симметричный случай 
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Фиг.8 в,г Поверхностное напряжение трения на пластине ( 0)x  , 
в - / 0.5, / 1u u       ; г - / 0.1, / 1u u       . Кривая 1 - над пластиной, 
кривая 2 - под пластиной, кривая 3 – симметричный случай 
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Выводы главы 3 

 

 В данной главе численно решена классическая задача, 

сформулированная Дэниэльсом [ Daniels, 1977 ], о смешении 

взаимодействующих пограничных слоев, стекающих с задней плоской 

кромки крыла, имеющих разные скорости на внешних границах 0 / 1u u    

и различные коэффициенты напряжения трения 0 / 1     . 

 С этой целью разработан  численный метод для задач со 

взаимодействием, который по классификации Велдмана [Veldman, 1981] 

относится к «обратным» методам.  

Метод протестирован на сложной задаче обтекания пограничным 

слоем пластины с отогнутым щитком. Известно, что данная задача имеет 

точку бифуркации по углу отклонения щитка и неединственное решение. С 

помощью предложенного метода удается уверенно проходить точку 

бифуркации и считать течения с большими зонами отрыва. 

Верификация данного метода выполнена Менгалдо и др. [Mengaldo, 

2015], путем сравнения результатов расчета полных уравнений Навье-Стокса 

для малого бугорка (высота составляет 5% от толщины пограничного слоя, 

0.5, Re 400'000M   ) и численного решения уравнений взаимодействия для 

него же, разработанным методом. Количественное совпадение  

удовлетворительное.
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Глава IV. ВОСПРИИМЧИВОСТЬ ЛОКАЛЬНО НЕПАРАЛЛЕЛЬНОГО  

                 ПОГРАНИЧНОГО СЛОЯ СО ВЗАИМОДЕЙСТВИЕМ К  

                 ЗВУКОВЫМ ВОЗМУЩЕНИЯМ 

 

§1. Постановка задачи о восприимчивости пограничного слоя к  

      внешним акустическим возмущениям в рамках теории  

      взаимодействия 

 

Система асимптотических уравнений, описывающая задачу 

восприимчивости пограничного слоя, была сформулирована Рубаном 

[1984, 1985] при изучении взаимодействия звуковой волны с локальной 

неровностью поверхности в дозвуковом потоке газа, а позже в статье 

Гольдштейна [Goldstein, 1985] при описании течения несжимаемой 

жидкости за скругленной угловой точкой на поверхности твердого тела. 

Следуя Рубану [1984], предположим, что пограничный слой облучается 

монохроматической звуковой волной, распространяющейся в 

направлении оси x (фиг. 1, а). Уместно представить фотографию 

эксперимента из сборника Ван-Дайка [1985] об отрывном обтекании 

ламинарным пограничным слоем выпуклого угла. Обозначив расстояние 

от передней кромки до угловой точки через L, будем полагать число 

Рейнольдса Re /U L      большим, где U∞ и µ∞ – скорость и 

коэффициент вязкости в невозмущенном дозвуковом потоке газа (M < 1). 

Обозначим давление и плотность газа в невозмущенном потоке через p∞ и 

ρ∞ и полагаем, что газ имеет адиабатическую постоянную γ и описывается  

уравнением Клайперона. Составляющие скорости в этой системе 

координат обозначим через u и v , давление и плотность p, и ρ , 

коэффициент вязкости и энтальпию µ и h . Частота звуковой волны имеет 

порядок величины 1 4( / )ReU L
. Это условие обычно для нестационарной 
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теории свободного взаимодействия. В частности, оно удовлетворяется, 

если частота звука совпадает с нейтральной частотой для нижней ветви 

кривой устойчивости пограничного слоя. 

Величина амплитуды звуковой волны a выбрана из следующих 

соображений. Пусть характерное изменение давления в звуковой волне 

оценивается  как 2p U a   . Длина волны при M=O(1) – величина порядка 

LRe-1/4 , поэтому для градиента давления справедлива оценка 

 

12 4Rep a
U

x L
 





 

 

Наибольший интерес представляют такие значения амплитуды, при 

которых градиент давления в звуковой волне соизмерим с его величиной в 

стационарном потоке вблизи излома пластины, смотрите монографию 

Сычева и др. [1987] и Нейланда и др. [2004]. Это выполняется, если   

a=O(Re-1/8). При этом в окрестности угловой точки образуется область 

взаимодействия длиной порядка O(Re-3/8) (фиг.1,б). Область 

взаимодействия имеет трехслойную структуру и состоит из вязкого 

пристеночного подслоя (область 1), основной части пограничного  слоя 

(2) и невязкого потенциального течения (3). Для корректной  постановки  

краевой задачи о взаимодействии Рубан [1984] последовательно изучил 

пристеночный пограничный слой, нестационарное течение в невязкой 

области вне пограничного  слоя и в его основной части, выписал 

необходимые условия сращивания. 
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Фиг 1. Картина течения 
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В частности, при рассмотрении однородного течения газа вдоль 

пластины перед областью взаимодействия решение стационарных 

уравнений Навье–Стокса в пристеночном пограничном слое представлено 

как 

 
1

2
00 00

00 00

1
2

( , ) ..., Re ( , ) ...
( , ) ..., ( , ) ...,

, Re

u U u X Y v U v X Y

X Y h h h X Y

x LX y L Y



 

 



   

      

 
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Безразмерные функции u00,υ00, ρ00, h00 удовлетворяют уравнениям Прандтля, 

решение которых находится, если известны температурные условия на 

поверхности пластины и зависимость безразмерного  коэффициента 

вязкости µ00 = µ/µ∞ от энтальпии h00. 

Далее при анализе нестационарного течения в невязкой области вне 

пограничного слоя перед областью взаимодействия решение уравнений 

Навье–Стокса представлено как 

 
1 128 8

30 30

1 128 8
30 30

1 1
4 4

30

Re ..., Re ...

Re ..., Re ...,

Re , Re

u U U u p p U p

h h U h

L
t t x L x

U

 

    

 

   

 





     

        

 
 

Подстановка этих разложений в уравнения Навье–Стокса и 

последующий предельный переход при Re → ∞ дает линейную систему 

акустических уравнений, решение которой описывает монохроматическую 

волну, бегущую вдоль поверхности пластины 

 

 
30 30 30 30 30 30 30

30

sin , , ,
(1 )

p a u Mp Mp h p

M t Mx



 

     

      

 

Постоянные a* и ω* характеризуют амплитуду волны и ее частоту. 

Наконец, из анализа течения в вязком пристеночном подслое 1 

области взаимодействия, примыкающем к угловой точке, следует 

асимптотическое разложение решения уравнений Навье–Стокса 
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После стандартных для асимптотической теории взаимодействия 

аффинных преобразований и перехода к системе координат, в которой 

продольная координата проходит вдоль поверхности тела, краевая задача в 

вязком пристеночном слое принимает следующий вид, Смотрите Рубан 

[1984] (индексы 1 и * здесь опущены): 

 

2

2cos

0

u u u p u
u v a t

t x y x y

u v

x y

    
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На поверхности тела выполняются условия прилипания u=v=0, y=0. 

Краевая задача включает также условия сращивания с решением в 

основной  части пограничного слоя 

( , ) sin ...,a
u y A x t t y     

  

и вязким нестационарным решением для звуковой волны, движущейся 

вдоль плоской поверхности в пристеночном слое перед областью 

взаимодействия 
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2sin sin ...,
2

ya
u y t e t y x

  
              

 

 

Условие взаимодействия, выраженное через интеграл Гильберта из 

линейной теории тонкого профиля 

1 ( ) ( )f s A s
p ds

s x





 

   

завершает формулировку краевой задачи взаимодействия. Здесь f(x) 

описывает форму тела, через a и ω обозначены амплитуда и частота 

звуковой волны, являющиеся параметрами подобия течений 

рассматриваемого класса 

7 3 31 1 1 1 1
4 4 2 4 2 2 2 2

00 00 00 00

(1 ),Ma M
a     
 
       

 

Здесь 21 M   , через   обозначена производная 00 /u Y   , вычисленная в 

точке (1,0), ρ00 и µ00  - значения функций в этой точке. Угол в форме 

обтекаемого тела выбирается слегка скругленным (параметр r=0.1) 

 2 21( )
2

f x x x r     

 

Пусть теперь u0(x, y) – стационарное решение для продольной скорости в 

вязком подслое 1, тогда малые нестационарные возмущения этого решения 

могут быть записаны в виде 

0 1( , , ) ( , ) ( , , ) ...u x y t u x y au x y t    
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Аналогичные выражения справедливы также для вертикальной 

скорости υ(x,y,t), толщины вытеснения A(x,t) и давления p(x,t). Здесь 

амплитуда звуковой волны a « 1.  

Подстановка данных разложений в сформулированную задачу, дает в 

результате две системы уравнений. Первая описывает стационарное 

отрывное течение в пограничном слое в окрестности точки излома твердой 

поверхности. Соответствующая краевая задача имеет вид 
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Описание численной процедуры получения стационарного решения 

изложено в главе 3. 

Вторая, нестационарная краевая задача о взаимодействии описывает 

развитие периодических по времени возмущений, вызываемых звуковой 

волной 
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Чтобы решить найденную линейную систему уравнений, полагаем, что 

решение – периодическая по времени функция 
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Подстановка этих выражений дает окончательную формулировку задачи по 

пространству для численного расчета 
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  §2. Численный алгоритм решения и результаты расчетов 

 

Для проведения расчетов введем неравномерную сетку и обозначим 

значения A(x) в точках xi через Ai , значения давления как  pi=p(xi), а 

соответствующие им вектора как A и P. При заданных Ai пользуясь 

численным методом из главы 3 можно рассчитать развитие возмущений по 

переменной х. 

 Расчеты были проведены на неравномерной сетке 351 × 151 с 

концентрацией сеточных узлов вблизи угловой точки, где минимальные 

шаги составляли Δ x = 0.01 и Δу = 0.02 и протестированы  на удвоенной 

сетке. 
  

На фиг. 2 показано численное решение задачи для градиента 

давления p', поверхностного трения τ=∂u/∂y , y = 0 и толщины вытеснения 

A(x) при закритической частоте ω = 3 и α = 0. В этом случае стационарное 
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решение – это прямые линии. Малые возмущения затухают из-за схемной 

вязкости, т.е схема устойчива. 

 
Фиг.2 Тестовый расчет эволюции малых возмущений на параллельном 
базовом течении 
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Данный тестовый расчет демонстрирует чувствительность расчетного 

метода. На фиг. 3 и 4 приведено периодическое решение для безотрывного 

и отрывного базовых течений на вогнутой поверхности тела. Видно, что 

решения не затухают, что, по-видимому, означает развитие волн 

Толлмина–Шлихтинга. С увеличением параметра α амплитуда 

возмущений внутри расчетной области существенно возрастает, как видно 

из фиг. 5, а, б. При этом амплитуды распространяемых вниз  по потоку 

волн оказываются  незначительными. На фиг. 5, в приведен график в 

увеличенном  масштабе, показывающий, что решение гладкое. 

 

 
Фиг.3 Периодические возмущения на фоне безотрывного течения вблизи 
вогнутого угла 2, 3    
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Фиг.4 Периодические возмущения на фоне течения с малой отрывной зоной 
вблизи вогнутого угла 3, 3    
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Фиг.5. Рост амплитуды возмущений с увеличением отрывной зоны вблизи 
вогнутого угла, 4, 3   . Рис. в дан в увеличенном масштабе, чтобы 
подтвердить гладкость решения. 
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Фиг.6 Градиент возмущенного решения при безотрывном течении около 
выпуклого угла. Рисунок а ( 3 ):  2   (кривая 1), 4.8   (кривая 2), 
рисунок б ( 4.8   ):  2.5  (кривая 1), 3  (кривая 2). 
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Стационарное решение вблизи выпуклого угла не единственно, 

Королев [1991], Кравцова и др. [Kravtsova and others, 2005] и в некотором 

диапазоне изменения α возможны два решения, одно из которых имеет 

короткую, а второе длинную область отрыва. На фиг. 6а для сравнения 

показаны два периодических решения при безотрывном базовом обтекании 

выпуклого угла для разных α, частота звуковой волны ω = 3. С 

увеличением угла отклонения амплитуда возмущений в изучаемой области 

растет на порядок. На фиг. 6б при фиксированном α = –4.8 приведены 

решения для разных частот. С увеличением частоты звуковой волны ω, 

амплитуда периодического решения быстро возрастает. Расчеты показали, 

что амплитуда возмущений в отрывном течении на порядок больше, чем в 

безотрывном базовом течении при той же частоте звуковой волны. Из 

линейной теории устойчивости Смит [F. Smith, 1979], Жук и Рыжов [1980], 

Терентьев [1981] известно критическое значение частоты ω = 2.298. Фигура 

7 иллюстрирует развитие амплитуды возмущенного градиента давления с 

ростом частоты от докритических значений до сверхкритических для угла 

отклонения поверхности α = –5.62. Значение α = –5.62 близко к 

бифуркационному для изучаемого базового отрывного течения. 

Расчеты как для выпуклого, так и вогнутого углов показали, что 

возникает явление резонанса по частотам. На фиг. 8 показаны 

максимальные значения амплитуды возмущений для базовых 

присоединенных (а) и отрывных течений (б) вблизи угловой точки в 

зависимости от частоты звуковой волны. 
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Фиг. 7. Поведение возмущенного градиента давления около критического 
значения частоты ω =2.298: 1–6 – ω = 2.0, 2.1, 2.2, 2.3, 2.4, 2.5. 
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Фиг. 8. Максимальные значения модуля градиента давления для 
возмущений в  присоединенных (а) и отрывных течениях (б) кривые 1–5 – 

α = –4.8,–2, 2, 1.8, 1.5,  кривые 6–8 – α = –5.62, –5.6, –5.4. 
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Выводы главы 4. 

 

Линейный отклик от звуковой волны, генерируемый внутри локально 

непараллельного взаимодействующего вязкого пограничного слоя, содержит 

волновое возмущение большой амплитуды. Полученное численно решение 

допускает резонансные частоты, при стремлении к которым амплитуда очень 

быстро нарастает. Возмущение стоит на одном месте и при резонансе дает, 

возможно, абсолютную неустойчивость.
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Глава V. НЕВЯЗКОЕ ВЗАИМОДЕЙСТВИЕ В ТОНКОМ УДАРНОМ СЛОЕ  

                ПРИ БОЛЬШИХ ЧИСЛАХ МАХА 

 

§1. Обтекание слабоискривленного тупого торца кругового цилиндра,  

      содержащего центральное тело  

Рассмотрим натекание гиперзвукового потока совершенного 

невязкого газа на слабоискривленный торец круглого цилиндра (фиг. 1). 

Для примера ниже приводятся фотографии обтекания тупых тел при 

различных больших числах Маха, сборник Ван-Дайка [1985]. Возмущение 

формы торца полагаем гладкой осесимметричной функцией у= уw(r). Все 

длины отнесем к радиусу цилиндра R, скорость к V , а давление, плотность 

и полную энтальпию- к 2 2, ,V V     .   

 

 

 

 
 

Фиг.1 
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Решение уравнений Эйлера будем строить с помощью метода 

сращиваемых асимптотических разложений, используя в качестве малого 

параметра величину   

2

1 2 , 1,
1 ( 1)

M
M





 
     

     

Строго говоря, в задаче имеется два независимых параметра -   и M , 

однако выберем закон стремления числа M  к бесконечности следующим 

образом: 

2
2 2 2 2

21 2 ..., 2 (1)O
M

           
  
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Таким образом, предельный переход выполняется при 

фиксированном 2  и 0 . Форму поверхности зададим в виде 
1 2 ( , )wy g r h  , т.е. высота неровности есть величина порядка толщины 

самого тонкого ударного слоя. 

Асимптотическое разложение решения уравнений Эйлера за скачком 

уплотнения ищем в виде (в цилиндрической системе координат) 

 

   

 

31
2 2

0 1 0 1
3

2
0 0 1 1
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1 1..., ...
2

( ) ( ) ..., ( , )

r

y

s
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y f r f r Y y g r h


          

       

            


        

 

 

Подставляя (1.1) в уравнения Эйлера и совершая предельный переход, 

получаем хорошо известную, Хейз и Пробстин [1962], задачу для главного 

приближения 

 



188 

 

0 0 0 0
0 0

20 0 2
0 0 0 0 0 0

2 0 0 0
0 0 0

0

0

2
0 0 0 0 0

2 2
0 0 0

0, 0

10, ( ) 1
2 4

( )

0 : 0
( ) ( , ) :

( ), 1
21 ,

4

u u ru rv
u v

r Y r Y

H H
u v H p u

r Y

v v p
g r u u v

r Y Y

Y v

Y f r g r h

u f r v g f f

p f H

   
   

   

  
      

 

  
    

  

 

 

        

 
   

 

 

Условие непротекания на поверхности упростилось в силу выбора системы 

координат, условия при Y=f0-g следуют из соотношений на скачке 

уплотнения. Достаточно просто можно получить уравнение для f0(r). Введя 

функцию тока по формулам 

0 0,ru rv
Y r

 
  
 

 

легко найти, что 0 0( )u u   и соответственно 

00

1
( )

d
Y

r u





  

Интеграл можно вычислить до скачка уплотнения, в результате получим 

уравнение для его формы 

 2
0 0 0( ) 0rf f rg f r      

Уравнение содержит форму торца g(r,h) . Задавая значение f0(0), 

можно для любой формы тела найти форму скачка уплотнения в главном 

приближении. Укажем, что точка, в которой  0 1f     - особая для 



189 

 

выведенного уравнения. Согласно критерию Хейза [1962], отход скачка 

уплотнения на оси тела надо подбирать так, чтобы в звуковой точке решение 

было регулярным. 

Изучим более подробно свойства уравнения для формы ударной волны 

при различных функциях g(r,h). Расчеты этого уравнения были выполнены 

вначале для торца выпуклой формы g = h(1 – r
2
). Для каждого значения h 

подбиралось такое значение отхода ударной волны на оси, чтобы при 

прохождении в область сверхзвуковых скоростей (где 0 1f    ) решение в 

звуковой точке было регулярным. При этом численно удобнее проводить 

расчет из звуковой точки в обе стороны. Получено (фиг. 2), что при больших 

высотах h , звуковая точка за скачком уплотнения, помеченная здесь и далее 

*, смещается к вершине тела и течение почти всюду за скачком уплотнения 

сверхзвуковое, а при уменьшении h звуковая точка смещается к краю торца 

цилиндра.  

 
Фиг.2 Форма скачка уплотнения f (верхние кривые) для разных высот тела h (нижние кривые). 
Кривые 1-6: h=-0.2; 0; 0.2; 1.25; 2.5. Одинаковыми номерами помечены и форма тела и 
соответствующий скачок. Звездочками отмечены звуковые точки. 
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Фиг.3 Спектр наклонов скачка для разных высот центрального тела, включая критическое 
значение h*=1.425 (кривые 6 и 8): Кривые 1-7: h=0; 1; 1.3; 1.4; 1.42; 1.425; 1.6. 
 

Таким образом, найденное решение соответствует физической картине 

течения, а именно для остроносого тела дозвуковая область мала и 

сосредоточена вблизи точки торможения, в то время как для плоского торца 

звуковая точка размещена на боковой кромке торца. Для указанной формы 

тела при h = 0.5 координата звуковой точки достигает значения r* = 1 и 

остается там же при h < 0.5. Чем меньше значение h, тем дальше скачок 

отходит от поверхности торца, на кромке которого стоит звуковая точка. 

Были проведены расчеты для тел более сложной, немонотонной  

формы 
24 27 (1 )rg he r r    

 

При h = 0 такая форма содержит центральную полость, а по мере 

увеличения параметра из полости как бы выдвигается гладкий нос. 
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Интегрирование уравнения проводится, начиная из точки r = 1, звуковой при 

малых значениях параметра, и вплоть до оси тела. Ясно видно (фиг. 3), что 

при увеличении h формируется минимум в наклоне скачка, а при стремлении 

параметра к предельному значению h* = 1.425 формируется излом в наклоне 

скачка уплотнения в некоторой точке вблизи оси. Предельное решение 

содержит две особые (звуковые) точки (фиг. 3, кривая 8). При попытке 

увеличить высоту центрального тела более критического значения h* в 

решении возникает непроходимая особенность (кривая 7), и оно не 

продолжимо вплоть до оси тела. При h = 1.425 решение может быть 

построено другим способом: гладко пройдя через особую точку вблизи 

вершины тела, оно может  быть продлено к кромке, однако не определено на 

всей поверхности торца (фиг. 3, кривая 8). Таким образом, результаты 

расчетов указывают, что главное приближение решения в теории тонкого 

ударного слоя не зависит непрерывно от высоты тела, а содержит точки 

бифуркации по параметру h. Изучим предельное решение при 1.425h h   

0 00 01

0 1

( ) ( ) ...
( , ) ( ) ..., 0

f f r hf r

g g r h hg r h h h 

  

        

Подставляя данные разложения в уравнение для формы скачка, 

получим уравнения для f00 и f01 с начальными данными такими, чтобы гладко 

пройти через вторую звуковую точку. Так как функция f0’(r) терпит излом 

при ,r r h h   , естественно предположить, что разложение формы скачка 

теряет справедливость вблизи особой точки. При ,r r h h    имеем 
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В этих выражениях введенные константы зависят от начальных данных. 

Относительно G0 и G1 возникают ограничения 

00 0 1( ) 2 , 3f r G r G      
 

Отметим, что условие G1 = -3 позволяет найти звуковую точку и из нее 

начинать расчет уравнения, зная только форму тела. Это же условие 

накладывает ограничение на форму тел, для которых возможно 

существование регулярных звуковых точек и позволяет заранее указать 

количество и расположение звуковых точек для заданной формы тела. Таким 

образом, зная лишь форму поверхности, можно указать, возможны ли для нее 

регулярные звуковые точки и сколько их, а также единственно ли решение в 

главном приближении и зависит ли оно монотонно от параметра задачи, или 

же существуют точки бифуркации. На фиг. 4 показана бифуркация решения 

при критическом значении параметра h = h*, а также при h > h*.  

 

 
Фиг.4 Два варианта продолжения решения через критическую точку: 

кривые 1,2 – h=1.425; 1.7; rs –координата точки бифуркации. 
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Фиг. 5. Положение звуковой точки r* в зависимости от параметра h: 1-2- h = 1.425; 
1.844; кривая I- возможное положение звуковой точки на поверхности торца, кривая 
II - звуковая точка находится на боковой кромке 
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Фиг. б. Разрывные  решения для наклона скачка уплотнения при высотах центрального тела :  
1-5- h = 1.425; 1.434; 1.5; 1.7; 1.8 

 

Фиг.7 Решения для 1 1( )F r  
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На фиг. 5 схематически приведено изменение расположения звуковой 

точки с ростом параметра h; при малых высотах звуковая точка находится на 

краю торца (П), при больших - вблизи вершины тела (I), при этом решение, 

непрерывно зависящее от параметра, существует в ограниченном диапазоне 

высот. Разрывные решения для наклона скачка при высотах центрального 

тела h h  представлены на фиг. 6. 

Заметим, что на расстояниях порядка 1 (2 )~ h


   нарушается 

равномерная пригодность разложений для формы скачка уплотнения. Для 

построения асимптотического разложения вблизи особой точки удобно 

использовать   в качестве малого параметра 
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Используя данные разложения и совершая соответствующий предельный 

переход получим уравнение для F1 
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Решение этой задачи относительно наклона скачка уплотнения следующее 
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Схематически это решение представлено на фиг. 7. При h1 <0, когда 

высота центрального тела меньше критической, решение определено для 

всех r1 и имеет разные наклоны L-, L+ перед и после особой точки. При h1 =0 

решение проходит через седловую точку. При h1>0 производная функции F1 

определена только до некоторой точки, в которой имеет корневую 

особенность. Таким образом, действительно значение h = h* - критическое 

для исследуемого тела. В силу этого, имеет смысл подробнее изучить 

взаимодействие скачка уплотнения с тонким ударным слоем. 

 

 §2. Взаимодействие между скачком уплотнения и основной  

                 частью тонкого ударного слоя 

 

Наклон скачка уплотнения при h h  терпит излом, сглаживание 

которого происходит на размере ( )r O   . Ясно, что на этом же размере 

возмущаются и газодинамические функции. Возмущение давления имеет 

величину ( )p O   , оно передается на поверхность и возмущает 

касательную скорость ( ), ( )r rv O v O     . Изменение толщины пристенной 

струйки тока вызывает возмущения в основной части слоя: 
3 2( ), ( )r yv O v O     . А дополнительная кривизна линий тока порождает 

поперечный перепад давления 3 2( / )p O    . Нетрудно заметить, что при 
1 4   индуцированное давление сопоставимо с исходным возмущением, что 

приводит к процессу взаимодействия между пристенной струйкой, основной 

частью слоя и скачком уплотнения. 

Чтобы построить решение в области взаимодействия, выпишем 

асимптотическое разложение решения задачи вблизи особой точки 
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Если 1 4   ,  то кроме Тейлоровских членов в вышеприведенных 

разложениях появятся дополнительные, обусловленные взаимодействием 
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Давление р0 и как следствие р01 можно определить по формулам 
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Константа L не представляет интереса, поэтому выражение для нее не 

приводится. Величина Н0 постоянна во всем потоке, поэтому, зная u0 и р0, 

находим плотность 
2 2

0 0 0 00 00 01 00 011 1 ( ) ( 2 ) ...p u p Y u p u u           

Вдоль поверхности тела распространяется тонкая струйка, движение в 

которой обусловлено градиентом давления. Исследуем влияние на нее 

возмущения давления р
01
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Давление pw известно при Y=0. Постоянная   зависит от начальных данных: 

u0= rY+..., Y0. Из уравнения Бернулли следует связь между р01 при Y=0 и 

А(r1) 

01 1 1 1( ), 0, ..., ,wp rU A r Y A r r           

Приравнивая значение р01 из основной части тонкого ударного слоя 

его значению в струйке, получаем связь 
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Для замыкания задачи необходимо срастить вертикальные 

составляющие скорости из основной части слоя и на скачке уплотнения. 
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Однако непосредственно выполнить эту операцию не удается, необходимо 

рассмотреть дополнительную область за скачком уплотнения. В ней 

представим решение асимптотическими разложениями 
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Формулируя  задачи относительно u1, v1 и u2, v2 и решая их, получим 
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Граничное условие на скачке выполнено при Y2=0. 

Для того чтобы точно удовлетворить условию на скачке уплотнения, 

необходимо вычислить скорость v0 при  2
2 1 11 2Y F g r

   . Таким образом 

учитывается поправка  в положении скачка. В результате получим 

 



200 

 

2 2
1 1 1 1 1 2 1 1 1 1

( )1( ) , ( )
2

rg
G r F F F G r F F r

r r



 


         

 

если взаимодействие отсутствует, то сращивание даст G2=0. При наличии же 

вытеснения тонкого ударного слоя сращивание скоростей u1, v1 и u2, v2 с 

соответствующими скоростями в основной части дает 2 1( )G A r const   . 

Полученное соотношение замыкает задачу для функций F1  и A. Выполнив 

замену переменных 1 1A r A    и аффинное преобразование 
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1 1, , , ,
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получаем задачу относительно наклона скачка уплотнения и вытеснения 

вблизи звуковой точки 2( ), ( )F R A R   (индекс 2 опускаем) 
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Параметр Г связан с приращением высоты центрального тела. При   

высота тела убывает. Помимо Г задача содержит два независимых параметра 

d и  , зависящих от свойств течения и формы тела. Наклоны k и k+ и 

показатель степени а зависят от d 

1 1 16 1 1 16 1 1, , , ( )
4 4 2 2

d d
k k d r rg

k
  
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Необходимое условие на параметр d: d > 0. Отметим некоторые 

свойства сформулированной задачи о взаимодействии скачка уплотнения, 

тонкого ударного слоя и поверхностной струйки, в частности, помимо 

алгебраически затухающих членов при R  существуют и 

экспоненциально затухающие 

1... ( ) exp ...

1 1( ) exp ...,
2

R
kR R

R
A R

k





     


     
  

 

 

Это означает, что в исследуемой задаче возможна передача 

возмущений вверх по потоку, и закономерно выставлено условие вниз по 

потоку.  

Таким образом, вблизи особой точки возникает область 

взаимодействия между скачком уплотнения, основной частью тонкого 

ударного слоя и тонкой пристенной струйкой. Эта задача решалась численно 

для 1, 15 /16, 3 / 4, 5 / 4, 2 / 3d k k         и различных Г. Расчеты показали 

(фиг. 8), что решение существует, если 0.99      (кривая 5). Это означает, 

что взаимодействие усугубляет процесс разрушения течения при 

выдвижении центрального тела. Физический смысл этого явления 

следующий. За звуковой точкой скачок отклоняется сильнее поперек к 

потоку набегающего газа, вследствие чего подрастает давление за скачком и 

на поверхности тела. Это приводит к торможению пристенной струйки и 

вызывает ее расширение, что, в свою очередь, еще больше отклоняет скачок 

уплотнения поперек к потоку. Поэтому особая точка достигается при 

меньших высотах центрального тела, чем в случае без учета взаимодействия. 

Неожиданным оказывается факт, что для системы уравнений со 

взаимодействием невозможно пройти в локальную область сверхзвуковых 
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скоростей, звуковая точка оказывается особой и для Г> Г* не существует 

решений с указанными асимптотиками.  

 

 
Фиг.8 Решение задачи со взаимодействием для наклона скачка уплотнения,  
кривые 1-5:  Г=-5, -3, -1.5, -1, -0.99. 
 

Так же, как и для исходного уравнения формы скачка, исследуем 

систему вблизи нового критического значения параметра Г*  Снова удобно в 

качестве малого параметра использовать размер  , на котором происходит 

сглаживание решения при 

 . Асимптотическое разложение решения 

при будет иметь вид 
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Подставляя данные разложения в систему уравнений взаимодействия 

и совершая предельный переход 10, (1)R O   получим 
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Постоянные А0 и А2 определяются, а А1 находится, если известно m<0. 

Заметим, что результирующая задача после исключения А3 имеет решение, 

качественно совпадающее с представленным на фиг. 7. Таким образом, в 

окрестности точки 0  взаимодействие вырождается, и решение жестко 

определяется краевым условием при 1R  .  

Роль взаимодействия описанного типа свелась к формированию 

локального, слабо не параллельного течения, в котором снова формируется 

точка разрыва кривизны скачка уплотнения при 

 . 

Следующий характерный режим будет при 
1 4   , при этом 

рассматриваемая область течения - квадратная 
1 2y r   . Возмущения 

скоростей в этой области также одного порядка 2
r yv v   , давление 

3
2p  . Необходимо также учитывать сжимаемость, так как 1

2  . 

Давление на поверхности тела возмущено в члене 2p  , т.е. пристенная 

струйка перестает  участвовать в процессе взаимодействия. Таким образом, 

течение описывается линейными уравнениями Эйлера сжимаемого газа. 

Асимптотические представления решения в этой квадратной области имеют 

вид 
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Подставляя данные разложения в уравнения Эйлера и совершая 

предельный переход, получим 
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В этой системе уравнений Li - неоднородности, обусловленные 

Тейлоровcкими членами разложения решения. Граничные условия для 

давления Р и вертикальной составляющей скорости V после необходимой 

нормировки будут 
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Коэффициенты m и m+ получаются из расчета полной задачи при 

 . 

Данная система уравнений может быть сведена к единственному уравнению 

в частных производных эллиптического типа относительно возмущения 

давления Р. Сделав замену переменных, получим 
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Из сращивания вертикальной составляющей скорости на скачке 

уплотнения Y1 = Ys с ее значением из области уравнений Эйлера возникает 

дополнительное условие к задаче 

1 1
1 2

1

2 2: 2 1 2P A k
Y Y d r

Y


   
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      
 

Задача для давления корректно поставлена при заданной неоднородности в 

уравнении и удовлетворение дополнительному условию в этом случае не 

требуется. Однако функция 2( )r  неизвестна, поэтому для нее должно быть 

выполнено некоторое условие разрешимости, из которого найдутся 2( )r  и 

Р1. Для решения данной задачи можно воспользоваться, например, 

преобразованием Фурье. Однако, чтобы выписать это условие разрешимости, 

надо знать профиль базовой скорости u0 в тонком ударном слое. Детальное 

исследование такой задачи выходит за рамки данной работы, однако выводы 

о подобных течениях уже сделать можно. 
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Выводы главы 5 

 

 Изучено течение совершенного газа, набегающего на почти плоский, 

слегка неровный торец круглого цилиндра, установленного соосно с 

потоком, при больших числах Маха и в предположениях теории тонкого 

ударного слоя. Найдены режимы для волны уплотнения, содержащие 2 

звуковые точки под скачком уплотнения с гладким и негладким решением 

через них. Гладкое решение известно, смотрите монографию Хейза и 

Пробстина [1962] и соответствует переходу от дозвукового режима к 

сверхзвуковому. 

В случае с негладким решением через звуковую точку, в ней рвется 

кривизна формы ударной волны. При дальнейшем увеличении высоты 

центрального тела на торце, решение не продолжимо через звуковую точку и 

должно кардинально перестроиться. То есть решение с разрывом кривизны 

является предельным при нарастании высоты центрального тела. 

 В данном предельном решении оказывается существенным 

взаимодействие между скачком уплотнения, течением в области за скачком и 

тонкой струйкой газа вблизи поверхности тела. Сформулирована и решена 

задача для такого взаимодействия. Однако, оказывается, что такое 

взаимодействие не позволяет пройти в область сверхзвуковых течений, а 

лишь усугубляет и ускоряет глобальную перестройку потока. Чтобы перейти 

в область сверхзвуковых течений рассмотрена еще более мелкая область, в 

которой справедливы уже уравнения Эйлера. 
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ЗАКЛЮЧЕНИЕ 

В диссертации разработана методология исследования асимптотическими 

методами предотрывных и отрывных состояний ламинарных течений 

жидкости и газа около трехмерных тел при больших числах Рейнольдса.  

Показано, что гладкие решения уравнений пространственного пограничного 

слоя стремятся к особому критическому решению (сингулярному пределу) 

при нарастании соответствующих характерных параметров задачи до точки 

бифуркации. Изучены критические состояния вязких отрывных 

пространственных течений жидкости и газа в пограничных слоях с вязко-

невязким взаимодействием и их глобальная перестройка при превышении 

некоторого предельного значения соответствующего параметра задачи.  

Построены топологические картины предельных линий тока на поверхности 

рассмотренных тел в пространственных течениях, которые имеют сложную 

структуру. 

Наиболее важные результаты диссертации: 

1. Изучены предотрывные режимы обтекания вязкой несжимаемой жидкостью 

тонкого  конуса  ( угол полураствора 7,5    ) установленного под углом 

атаки ( 0.6   ), удовлетворительно совпавшие количественно с 

экспериментальными данными ( 7,5 , 4,5 , Re 27.000       ), приведенными 

Чженом [1973]. 

2. Аналитически и численно описаны локальные предотрывные и отрывные 

состояния несжимаемого пограничного слоя на поверхности вытянутого 

эллипсоида вращения, установленного под углом атаки ( 40   ) вблизи 

подветренной линии симметрии. Результаты подтверждаются известными 

расчетами  пограничных слоев [Себеси и др. 1980, 1981], из которых следует 

появление в картине поверхностных линий тока точки, с выходящей из нее 

особой линией, разделяющей области доступности и недоступности для 

жидких частиц. 
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3. Исследовано зарождение отрыва потока несжимаемой вязкой жидкости при 

обтекании тонких осесимметричных тел при воздействии неблагоприятного 

градиента давления, а также изучено взаимодействие вихревой нити с 

двухмерным предотрывным пограничным слоем. Учтено ее влияние на 

зарождение трехмерного отрыва на дне пограничного слоя, при возрастании 

циркуляции нити. 

4. Впервые численно решена классическая задача, сформулированная 

Дэниэльсом [1977], о смешении взаимодействующих пограничных слоев, 

стекающих с задней плоской кромки крыла, имеющих разные скорости на 

внешних границах 0 / 1u u    и различные коэффициенты напряжения 

трения 0 / 1     . Специально разработанный для данной задачи 

численный метод проверен Менгалдо и др. [2015] сопоставлением с 

расчетами полных уравнений Навье-Стокса (расчет обтекания бугорка 

высотой 5% от толщины пограничного слоя, 0,5, Re 400.000M   ).  

5. Описано возбуждение неограниченно нарастающих собственных колебаний 

в локально непараллельном сжимаемом пограничном слое со 

взаимодействием, обтекающем точку излома выпуклой поверхности. 

6. Проанализировано гиперзвуковое невязко-невязкое взаимодействие газа в 

тонком ударном слое со скачком уплотнения вблизи звуковой точки, при 

обтекании почти плоского торца круглого цилиндра.  

По результатам диссертационной работы можно сформулировать целый 

ряд практически важных научных задач, включая нестационарные, которые 

могут быть исследованы только приведенными методами. В частности, 

созданная в диссертации методология использована автором для анализа 

турбулентных пространственных пограничных слоев для дозвуковых 

течений, что подтверждается его последними опубликованными работами. 
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