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Введение

Актуальность темы исследования

Имеющая важное практическое значение задача построения информационных систем

с помощью методов системного анализа в большинстве случаев формулируется и

решается как задача многокритериальной оптимизации. При этом, задача характеризуется

рядом особенностей, которые должны быть учтены для ее эффективного разрешения.

Так, критерии задачи составляют сложную структуру и взаимодействуют друг с

другом, решение о выборе того или иного варианта системы совершается в условиях

недостаточности информации о компонентах системы и изменчивости среды, в которой

проектируемая система функционирует. Следовательно, модель, используемая для решения

задачи построения оптимальной системы, должна иметь функциональную возможность

выражения разнообразных видов взаимодействия между критериями и позволять получать

устойчивое решение в условиях неточных входных данных. Кроме того, модель должна

обладать средствами качественного анализа и быть вычислительно эффективной. Наконец,

желательной является возможность построения модели как на основе взаимодействия с

экспертами и владельцами системы, так и на основе статистических данных.

Центральной задачей системного анализа является задача принятия решений. В

последние годы одним из наиболее активно развивающихся направлений в теории принятия

решений являются методы, основанные на так называемых неаддитивных мерах (емкостях).

Использование этих методов позволяет снять множество ограничений классических

подходов. Так, в многокритериальных задачах становится возможным моделирование

широкого спектра видов взаимодействия между критериями, а в задачах принятия решений

в условиях неопределенности ситуаций, в которых решение принимается в условиях неполной

или неточной информации.

Одним из наиболее перспективных классов моделей, уже зарекомендовавшим себя

во многих примерах практических приложений, являются неаддитивные интегралы, в

частности, интеграл Шоке. Несмотря на обилие публикаций, связанных с применением

интеграла Шоке для моделирования предпочтений, задачи нахождения оптимального

решения в таких моделях на данный момент изучены слабо. Очевидно, решение данных задач

должно проводиться методами математического программирования. В данной диссертации

представлены методы поиска экстремальных значений интеграла Шоке, восполняющие этот

пробел.
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Существенной сложностью при принятии решений является неточность и недостаточ­

ность входных данных. Зачастую, возможно лишь качественное описание анализируемой

задачи, без каких либо количественных оценок. В случае, если такие оценки существуют,

то, как правило, характеризуются лишь интервальными значениями. Такая ситуация часто

встречается на практике, особенно при использовании в качестве входных данных экспертной

информации. Последствием указанного факта является существенное снижение ценности

решения задачи, так как оно либо не соответствует действительности, либо становится

неверным даже при незначительном изменении состояния моделируемой системы. Учитывая,

что в большинстве задач происходит постоянное взаимодействие с окружающей средой,

решение не может считаться практически эффективным, если не производится учет всех

возможных сценариев развития событий. Таким образом, методы, определяющие опти­

мальное решение, должны быть дополнены механизмами, обеспечивающими робастность

получаемого результата.

Степень разработанности темы исследования. На сегодняшний день опублико­

вано значительное число работ, связанных с применением интеграла Шоке в многокри­

териальных задачах принятия решений (см. обзор литературы в [65, 66, 135]). Однако,

вопросы использования интеграла Шоке в задачах многокритериальной оптимизации на

данный момент момент изучены незначительно. Основные результаты в данной области

представлены в работах [54, 56–58, 93–96, 102], а также в работах автора [130, 131]. Вопросы

робастного принятия решений с помощью интеграла Шоке являются новым направлением

в данной области и рассматривались, помимо публикаций автора [132, 133], в работах

[34, 74, 84].

Цели и задачи диссертационной работы. Целью работы является разработка

применительно к задачам системного анализа методов решения многокритериальных задач

оптимизации посредством поиска экстремальных значений интеграла Шоке и использование

их в задачах проектирования информационных систем. Методы должны позволять получить

решение, которое является устойчивым по отношению к изменениям параметров модели, и

может быть найдено даже при неполном описании решаемой проблемы.

Для достижения поставленных целей были решены следующие задачи:

1. Задача проектирования информационной системы сведена к задаче многокритери­

альной оптимизации. Произведен анализ основных характеристик рассматриваемой

задачи, обзор методов многокритериальной оптимизации и теории принятия решений.



9

Поставлена задача поиска экстремальных значений интеграла Шоке, а также ее

робастный вариант.

2. Впервые предложены методы максимизации интеграла Шоке для нелинейных функций

полезности и различных типов емкости. Рассмотрены выпуклый и невыпуклый случай.

3. Для решения невыпуклого случая предложен алгоритм представления произвольной

емкости в виде максимума тотально монотонных емкостей. Это позволило свести задачу

максимизации интеграла Шоке по произвольной емкости к множеству выпуклых задач.

4. Для класса 2-аддитивных емкостей доказана минимальность получаемого разложения

и получена характеризация числа элементов в разбиении заданной емкости.

5. Предложены методы построения сложных моделей, в которых критерии образуют неко­

торую сетевую структуру. Рассмотрены пути предварительного анализа вычислитель­

ной сложности для заданной модели, что позволяет более эффективно использовать

разработанные методы в практических задачах.

6. Получены методы поиска робастного решения для задач, в которых параметры

модели не могут быть определены однозначно. Проанализирована сложность проблемы,

предложен алгоритм нахождения робастного решения. Доказано, что такое решение

является оптимальным по отношению по крайней к одной из емкостей, согласующихся

с изначальными предпочтениями. Проведены численные тесты, подтверждающие

корректность работы алгоритма. Методы робастного программирования применяются

в задачах определения емкости впервые.

7. Детально рассмотрены примеры практического применения разработанных методов

в многокритериальных задачах принятия решений. Рассматриваются варианты

использования в качестве входных данных как массива информации, так и неточных

экспертных оценок.

8. Разработано программное обеспечение, реализующее разработанные теоретические

методы.

Научная новизна. Разработанные автором методы оптимизации интеграла Шоке как

математического инструмента решения многокритериальных задач предлагаются впервые.

Для решения невыпуклых задач в качестве вспомогательного результата также впервые

предложен метод нахождения разложения произвольной емкости на минимальное число
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тотально монотонных составляющих, а также характеризация количества элементов в таком

разложении. Впервые предложено использование методов робастного программирования для

решения проблем связанных с идентификацией емкости.

Теоретическая и практическая значимость. Результаты, изложенные в диссерта­

ции, могут быть использованы для улучшения качества принимаемых решений в широком

спектре задач проектирования информационных систем, особенно в задачах характеризую­

щихся выбором наилучшего решения из большого числа вариантов. Разработанные методы

могут также применяться в многокритериальных задачах принятия решений, задачах

принятия решений в условиях неопределенности, а также динамических задачах принятия

решений и задачах социального выбора. В прикладной части диссертации с позиций си­

стемного анализа рассматриваются две многокритериальные задачи распределения ресурсов

- задача проектирования информационной системы, а также задача выбора оптимальной

стратегии развития организации.

Методология и методы исследования. Представленные в диссертации исследова­

ния основаны на методах системного анализа, математических методах теории принятия

решений, и методах математической оптимизации.

Положения, выносимые на защиту:

1. Задача построения информационной системы как задача многокритериальной

оптимизации.

2. Методы максимизации интеграла Шоке по выпуклым и невыпуклым емкостям.

3. Методы построения сложных моделей с помощью так называемых многошаговых

интегралов Шоке, а также методы анализа вычислительной сложности подобных

конструкций.

4. Методы робастной оптимизации интеграла Шоке для случая, когда емкость определена

не уникально.

5. Примеры практического применения разработанных методов.

Степень достоверности и апробация результатов. Основные результаты

диссертации докладывались на следующих конференциях:

1. 14th International Conference on Information Processing and Management of Uncertainty

in Knowledge-Based Systems. 9-13 июля 2012, Катания, Италия;

2. The 2nd International Conference on Belief Functions, 9-11 мая 2012, Компьень, Франция;
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3. Общемосковский научный семинар «Математические методы анализа оптимальных

решений в экономике, бизнесе и политике». Январь 2012, Высшая школа экономики,

Москва;

4. 32nd Linz Seminar on Fuzzy Set Theory. Decision Theory: Qualitative and Quantitative

Approaches. 1-5 февраля 2011, Линц, Австрия;

5. Научная сессия МИФИ, Москва, 2011;

6. Научная сессия МИФИ, Москва, 2010;

7. Научная сессия МИФИ, Москва, 2009;

8. 12-й Национальный форум информационной безопасности. Москва, 2009;

9. Всероссийская научно-практическая конференция «Информационная среда вуза 21

века». Петрозаводск 2008;

10. Научная сессия МИФИ, Москва, 2008.

Публикации. Материалы диссертации опубликованы в 14 печатных работах, из них

2 статьи в международных рецензируемых журналах [131, 133], 5 статей в журналах,

входящих в «Перечень ведущих научных журналов и изданий, выпускаемых в Российской

Федерации», утвержденный ВАК [20, 24–27], и 8 статей в сборниках трудов международных

и всероссийских конференций [18, 19, 21–23, 129, 130, 132].

Личный вклад автора. Содержание диссертации и основные положения, выносимые

на защиту, отражают персональный вклад автора в опубликованные работы. Подготовка к

публикации некоторых полученных результатов проводилась совместно с соавторами, при

этом вклад диссертанта был определяющим. Все представленные в диссертации результаты

получены лично автором.

Структура и объем диссертации. Диссертация состоит из введения, 3 глав,

заключения и библиографии. Общий объем диссертации 144 страниц, из них 127 страниц

текста, включая 25 рисунков. Библиография включает 142 наименования.
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Глава 1

Системный анализ в задачах проектирования

информационных систем

1.1. Введение в методы и задачи системного анализа

Системный анализ сформировался как синтетическая дисциплина, позволяющая

исследовать и проектировать сложные системы, управлять ими в условиях неполноты

информации, ограниченности ресурсов и дефицита времени. В работе [13] системный анализ

определяется как междисциплинарный курс, обобщающий методологию исследования

сложных технических, природных, и социальных систем. Н.Н. Моисеев пишет[11] о

совокупности методов, основанных на использование ЭВМ и ориентированных на

исследование сложных систем, таким образом подчеркивается важность вычислительного

аспекта проводимого анализа, его направленность на обработку большого объема входных

данных.

В работе [1] отмечается, что центральной проблемой системного анализа является

проблема принятия решения. Применительно к задачам исследования, проектирования,

и управления системами проблема принятия решения связана с выбором определенной

альтернативы в условиях, когда данный выбор требует анализа сложной информации

различной физической природы. Сложность может быть обусловлена многокритериально­

стью задачи, неоднозначностью сценариев развития системы, а также среды, с которой

система взаимодействует, недостаточностью априорной информации о системе, воздействием

случайных факторов в ходе развития системы и прочими условиями.

Ю.И. Дегтярев [3] определяет систему следующим образом: “Системой называется упо­

рядоченная совокупность материальных объектов (элементов), объединенных какими-либо

связями (механическими, информационными), предназначенных для достижения определен­

ной цели и достигающих ее наилучшим (по возможности) образом”. Схожее определение

дается и в работе [13], где авторы говорят о структурированности системы, взаимосвязанно­

сти составляющих ее частей, подчиненности организации всей системы определенной цели.

В книге [1] авторы отмечают еще одну особенность задач системного анализа, а именно,

требование оптимальности принимаемых решений. Иными словами, ставится задача не

просто разрешения той или иной проблемы, а выработки таких рекомендаций, которые бы

гарантировали оптимальность решения.
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В системном анализе выделяются три основных направления. Эти три направления

соответствуют трем этапам, которые всегда присутствуют в исследовании сложных систем:

1. построение модели исследуемого объекта;

2. постановка задачи исследования;

3. решение поставленной математической задачи.

Построение математической модели есть основа всего процесса решения задачи,

центральный этап исследования или проектирования любой системы. От качества модели

зависит результат всех последующих шагов. Не менее важным является и этап решения

поставленной математической задачи. Процесс моделирования может считаться успешным

только тогда, когда модель позволяет выработать ответы на поставленные аналитиком

вопросы и сделать это в рамках доступных ресурсов - временных, вычислительных,

экономических.

1.2. Задачи оптимизации при проектировании систем

В данном разделе рассмотрена задача построения информационных систем различных

типов и приведены ее основные характеристики. На основе проведенного анализа

сформулирован системный подход к решению данной задачи и выполнена постановка задачи

математической оптимизации.

Задачей анализа, проводимого в данной главе, является рассмотрение процесса

построения информационных систем при наличии некоторых ограничений, как правило

носящих экономический характер. Несмотря на то, что задачи, решаемые различными

организациями, существенно разнятся, универсальность предлагаемого в работе подхода и

сопутствующих математических методов позволяет использовать их в широком классе задач,

изменяя лишь компоненты модели и ее структуру, но не общие принципы функционирования

и процесс выработки рекомендаций. В качестве “эталонной” задачи в данной главе

будет проанализирован процесс построения системы защиты данных организации. Задача

построения таких систем встает практически перед каждой организацией, а также

характеризуется рядом факторов, позволяющих говорить о необходимости применения

методов системного анализа для ее решения (см. 1.2.1). В данном разделе будет приведено

общее описание задачи, а в следующей ее анализ с “системных” позиций.

Одним из наиболее широко распространенных методов анализа в области информа­

ционной безопасности является построение так называемого дерева атак - иерархической
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структуры, содержащей все потенциально возможные методы компрометации защищаемой

информации. Более общие угрозы при этом раскладываются на атомарные компоненты, что

позволяет провести детальный анализ последних и оценить уровень рисков, которые они

несут. На следующем этапе оценки на всех уровнях дерева агрегируются, и рассчитывается

итоговый балл. Существенной проблемой является наличие взаимосвязи и взаимозависи­

мости угроз [69], которые вызывают существенные сложности на этапе моделирования

системы, поскольку традиционные (и широко используемые) методы зачастую не позволяют

корректно отображать данные феномены или вовсе игнорируют их присутствие.

Задача построения системы защиты данных формируется при переводе фокуса

анализа с рассмотрения угроз на соответствующие им защитные механизмы. Как правило,

проектирование систем защиты информации всегда производится с учетом доступного

бюджета, поэтому основной задачей архитектора является выявление наиболее опасных

угроз, выбор наиболее подходящих средств защиты из широкого спектра доступных

вариантов, и объединение этих средств для обеспечения наибольшего уровня безопасности.

Многие доступные на рынке средства защиты данных обладают частично пересекающимися

функциями, поэтому приобретение двух частично схожих компонентов может привести

к нерациональному использованию средств. С другой стороны, некоторые защитные

средства способны обеспечить наибольшую степень защищенности только при совместном

использовании, таким образом улучшая общий результат вложений.

Процесс моделирования начинается с построения дерева атак. Эта задача решается

экспертом по информационной безопасности, который старается учесть все возможные

угрозы и определить соответствующие им защитные механизмы. Пример такого графа

представлен на Рис. 3.1.

Вершины, заключенные в рамки, соответствуют составным понятиям, значение которых

определяется путем агрегации оценок на соответствующих дочерних вершинах. Вершины, не

заключенные в рамки, соответствуют управляемым элементам модели, то есть переменным

задачи распределения ресурсов. Их значения непосредственно определяются размером

полученных вложений. Связь финансовых затрат с уровнем “защищенности” определяется

нелинейными соотношениями, определяемыми внутренними характеристиками компонентов

системы. При этом, данные соотношения могут достаточно сильно разниться. Так, сумма

денег, позволяющая установить надежные антивирусы на все рабочие станции небольшой

организации, позволяет в то же время обеспечить установку межсетевого экран лишь

начального уровня. Как правило, данные соотношения характеризуются рядом свойств. Так,

считается, что прирост уровня защищенности уменьшается с ростом стоимости компонента.
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Кроме того, достижение абсолютной защищенности, как правило, невозможно. Подробное

обсуждение характера данных соотношений в задачах ИБ приводится в работе [59].

Защита

Тех. средства Персонал

Офис Хостинг

Серверы офис Физ.
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HR

Проверки

Обучение
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Рис. 1.1. Структура проблемы - категории защитных мероприятий

1.2.1. Особенности задачи и ее характеристики

Многокритериальность. Задача, рассматриваемая в предыдущей главе является

многокритериальной задачей выбора. Целью владельца системы является достижение

наивысшего качества как в работе каждого компонента системы, так и в работе системы

в целом. Ввиду присутствующих, как правило, ограничений экономического характера,

использование наилучших составляющих в каждом элементе системы зачастую является

невозможным. Таким образом, перед владельцем системы ставится задача выбора из

множества возможных альтернатив, обладающих одинаковой стоимостью, но различными

характеристиками. Задача усложняется неочевидной и зачастую нестатичной связью

качества компонентов системы с ее общим качеством. Более подробно данный вопрос

рассматривается ниже.

Сложная структура отношений между критериями. Следующей ключевой

характеристикой решаемой задачи является сложная взаимосвязь критериев друг с другом
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и их влияние на общее качество составляемой ими альтернативы. Иными словами, в задаче

доступны данные не только об отдельных критериях, оказывающих влияние на принимаемые

решения, но и связи критериев друг с другом, зачастую структурированные. В частности, в

примере на Рисунке 3.1, критерии образуют дерево. Данная информация имеет значительное

влияние на процесс принятия решения и помогает построить модель информационной

системы с большей точностью.

Недостаточность информации. Важнейшей характеристикой любой количественной

модели являются ее параметры. Такими параметрами, например, являются значения

относительной важности компонентов системы, а также функции, описывающие связь

входных и выходных характеристик компонентов - к примеру, уже упомянутая зависимость

надежности компонентов системы защиты от их стоимости. Зачастую, параметры модели

определяются на основании реальных данных о поведении моделируемой системы.

Возвращаясь к рассматриваемому примеру, аналитик мог бы использовать статистику

возникновения уязвимостей в различных технических средствах защиты данных, а также

их комбинациях, с тем, чтобы определить какие технические решения являются более

надежными и в какой степени. К сожалению, такие данные доступны не всегда. В этом

случае при построении модели эксперт может полагаться лишь на информацию носящую

неформальный, качественный характер или лишь косвенно связанную с непосредственными

предпочтениями “лица, принимающего решение” (ЛПР). К примеру, зачастую в задачах

построения систем защиты данных единственной доступной информацией являются

требования необходимости наличия определенных компонентов, а также примерное

ранжирование компонентов системы по важности (детально подобная ситуация разобрана в

главе 3.2.1).

Изменчивость среды. Следующей важной характеристикой рассматриваемых систем

является необходимость их функционирования в условиях изменяющихся внешних

воздействий. Таким образом, решение, вырабатываемое моделью, должно обладать

устойчивостью, робастностью. На уровне модели данный факт означает, что разыскиваемое

решение должно удовлетворять некоторому критерию качества (например, быть близким

к оптимальному) для целого множества возможных параметров. Вопросам устойчивости в

системном анализе и оптимизации посвящены многие работы отечественных и зарубежных

авторов, обзор публикаций и полученных в них результатов можно найти в книгах [6, 9, 51].



17

Необходимость наличия средств качественного анализа модели. Необходимость

вычислительной эффективности. Еще одной характеристикой задачи, имеющей,

впрочем, более общий характер, является желательность легкой интерпретации и

трактовки модели. Иными словами, процесс моделирования должен позволять производить

анализ модели с целью выявления ее основных качественных характеристик. При

сильном расхождении таких характеристик с требуемыми, аналитику будет представлена

возможность скорректировать параметры модели для достижения необходимого результата.

Примером таких характеристик может являться определение относительной важности

критериев модели, а также наличия и характера их взаимодействия. Кроме этого, модель

должна обладать и хорошими вычислительными свойствами. С ростом числа критериев

фактор вычислительной эффективности значительно возрастает. К примеру, система на

рисунке 3.1 включает 24 критерия (компонента), следовательно, перед аналитиком стоит

задача поиска в 24-мерном пространстве.

Возможность использования различных источников информации “Лицо, прини­

мающее решение,” является одним из основных понятий в задачах принятия решений. Как

правило, под этим понимается непосредственно человек или организация, перед которой

стоит некоторая задача выбора. Важной особенностью ЛПР является наличие у него

предпочтений, то есть возможности характеризации элементов множества альтернатив как

более или менее предпочтительных. Такие предпочтения неявно предполагают наличие

у ЛПР знания проблемы, понимания ее структуры, связи и важности критериев, и так

далее. Зачастую, ЛПР не располагает подобной информацией, однако ее возможно получить

иными способами. Например, в главе 3.3 рассматривается задача выбора оптимальной

стратегии развития организации в которой предпочтения определяются на основе анализа

большого числа статистических данных о предпочтениях потребителей. Формально, роль

ЛПР в данной задаче выполняет владелец системы, однако, фактически предпочтения

определяются не им. Таким образом, имеет смысл расширить понятие ЛПР и понимать

под этим совокупность всех учитываемых источников информации, которые тем или иным

образом определяют предпочтения на множестве альтернатив.

При этом, обратная связь в системе ЛПР-модель возможна не всегда. Возвращаясь к

примеру из главы 3.3, становится ясно, что решение в таких задачах зачастую принимается

лишь на основе исходных данных, без дальнейшего взаимодействия с ЛПР, которое по

ряду объективных причин невозможно. Очевидно, что в подобных ситуациях на первый
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план выходят вопросы точности описания предпочтений, качество модели и уровень ее

соответствия реальным характеристикам решаемой задачи.

Итоги анализа характеристик задачи

Были выявлены следующие характеристики задачи построения информационных

систем.

1. Многокритериальность;

2. Сложная взаимосвязь критериев с итоговой предпочтительностью - структурирован­

ность, различная важность критериев, взаимодействие критериев;

3. Неопределенность параметров системы;

4. Необходимость получения устойчивого решения;

5. Необходимость наличия средств качественного анализа модели;

6. Необходимость вычислительной эффективности модели;

7. Необходимость возможности построения модели на основании разнообразных данных,

как экспертных, при непосредственном взаимодействии с ЛПР, так и статистических.

1.3. Постановка задачи многокритериальной оптимизации

1.3.1. Общая постановка

Анализ в разделе 1.2 выявил, что задача построения информационных систем

различных типов является задачей многокритериальной оптимизации, обладающей

некоторыми дополнительными характеристиками. Формально общая постановка задачи

может быть выполнена следующим образом. Будут использоваться обозначения:

∙ 𝑁 = {1, . . . , 𝑛} - множество критериев;

∙ 𝑍𝑖 = [0, 𝑧𝑖], 𝑖 ∈ 𝑁 - множества значений критериев. Предполагается, что для

каждого критерия 𝑖 существуют наименее предпочтительное значение 0 и наиболее

предпочтительное значение 𝑧𝑖.

∙ 𝑍 = 𝑍1 × . . .× 𝑍𝑛 - множество альтернатив;

∙ 𝒵0 ⊂ 𝑍 - допустимые альтернативы.
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Предполагается, что множества 𝑍𝑖 являются интервалами, то есть подмножествами

R+. Во многих прикладных задачах, связанных с поиском оптимального решения, такое

предположение является естественным. Так, в проблемах распределения ресурсов значения

[0, 𝑧𝑖] могут быть связаны с вложенными деньгами, временем, количеством рабочей силы,

а в проблемах оптимального расположения с расстоянием. В приложениях, где критерии

принимают нечисловые значения, обычно является возможным построить их численные

представления (для более подробного обсуждения этого вопроса см. [79]). Множество 𝒵0

включает допустимые альтернативы (например, все варианты распределения ресурсов,

не превышающие бюджетного ограничения), а значения 𝑧𝑖 соответствуют максимальному

количеству ресурсов, которое может получить тот или иной критерий.

Задача проектирования информационных систем, таким образом, сводится к задаче

многокритериальной оптимизации (МКО). Поскольку при построении системы ЛПР

очевидно заинтересован в использовании компонентов наилучшего качества, будем считать,

что он заинтересован в максимизации значения всех критериев. Таким образом, получаем

следующую задачу многокритериальной оптимизации:

𝑧1 → max
𝑧1

𝑧2 → max
𝑧2

. . .

𝑧𝑛 → max
𝑧𝑛

𝑧 ∈ 𝒵0.

(1.1)

Оставшаяся часть данного раздела посвящена анализу методов решения задач

многокритериальной оптимизации, а также выбору математической модели решения

поставленной задачи.

1.3.2. Различные методы оптимизации

На сегодняшний день было предложено значительное число методов многокритериаль­

ной оптимизации, которые в целом можно разделить на две группы. Первая группа использу­

ет оператор свертки для перехода от многокритериальной задачи к однокритериальной, в то

время как вторая группа в основном опирается на непосредственное исследование множества

Парето-оптимальных решений, возможно с введением некоторых дополнительных критериев

выбора. Ключевым вопросом при использовании оператора свертки является построения
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такого оператора. Данный вопрос будет подробно рассмотрен в следующей главе. Ниже

приводится обзор второй группы методов.

Общие принципы исследования Парето-оптимальных решений

В теории многокритериальной оптимизации решение обычно определяется как недо­

минируемое множество в пространстве критериев или Парето-оптимальное подмножество

множества альтернатив [9]. В ряде случаев поиск Парето-оптимальных вариантов непосред­

ственно приводит и к нахождению оптимальных вариантов. Однако, построение Паретовой

границы множества альтернатив служит, как правило, лишь начальным этапом выбора

наилучшего варианта решения. В многокритериальных задачах принятия решений под

решением обычно понимается единственная точка Парето-оптимального множества. Такая

точка является максимальной согласно отношению предпочтения, определенного лицом,

принимающим решение. Таким образом, главную роль в многокритериальных задачах

принятия решений играет ЛПР - именно на основе учета его предпочтений выбирается то

Парето-оптимальное решение, которое считается результатом процесса выбора. Механизмы,

разрабатываемые в теории принятия решений направлены на то, чтобы помочь ЛПР в

выборе наиболее предпочтительного для него решения. В связи с этим возникает вопрос

о том, какую информацию о предпочтениях ЛПР может предоставить в качестве входных

данных модели, а также о возможностях корректного отображения этой информации в

модели.

Классификация методов

Методы нахождения оптимального варианта, удовлетворяющего требованиям ЛПР, в

общем виде можно подразделить на процедуры исключения и компенсации [14]. Процедуры

исключения состоят в последовательном уменьшении числа допустимых альтернатив на

основании некоторой дополнительной информации, получаемой от ЛПР. Такой информацией

является например ранжирование критериев задачи по важности, выделение критических

уровней определенных критериев, итд. Процедуры компенсации опираются на принцип

справедливого замещения уступок по одним критериям соответствующим повышением

качества решения по другим критериям.

А.В. Лотов [9] предлагает классифицировать методы поддержки принятия решений на

основе степени и характера участия ЛПР в процессе достижения оптимального выбора.

В контексте расширенного определения понятия ЛПР, данного нами выше, а именно
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понятия под ЛПР совокупности всех учитываемых источников предпочтений на множестве

альтернатив, можно выделить следующие группы:

1. методы, использующие предпочтения ЛПР для построения правила выбора

единственного или небольшого числа Парето-оптимальных решений;

2. интерактивные (итеративные) процедуры решения задачи с участием ЛПР;

3. методы, основанные на аппроксимации Паретовой границы и информировании ЛПР

о ней в том или ином виде; далее ЛПР указывает наиболее предпочтительную

критериальную точку на Паретовой границе; по этой критериальной точке находят

предпочтительное решение.

Методы первой группы основываются на построении некоторого функционального

представления предпочтений, позволяющего с помощью численных методов выбрать

решение или множество решений из допустимых альтернатив. При этом взаимодействие

с ЛПР может как иметь место, например для дальнейшего уточнения решения, или на

стадии построения модели и ее качественного анализа, так и нет. Последние две группы

основаны на взаимодействии с ЛПР в процессе принятия решения. При этом используются

промежуточные результаты, которые призваны помочь получить от ЛПР дополнительную

или уточненную информацию.

1.3.3. Обзор итеративных методов многокритериальной оптимизации

Итеративные многокритериальные методы возникли в 1960-x годах. Принципиальной

особенностью методов является периодическое взаимодействие между ЛПР и алгоритмом

вычисления оптимального решения. Как правило, предполагается что промежуточные

результаты работы программы поиска оптимальной точки будут использованы ЛПР для

представления более точной информации о решаемой задаче. В большинстве случаев речь

идет о выборе определенной точки на участке Парето-оптимального множества. Такой

выбор отражает некоторую информацию об относительной важности критериев и характере

замещения одних критериев другими. Итеративные методы строятся таким образом,

что человек анализирует результаты, полученные алгоритмом на определенном шаге, и

использует их для выражения дальнейших предпочтений, которые являются параметрами

задачи, решаемой на следующей итерации.

Метод, основанный на последовательном сужении множества Парето-оптимальных

точек с помощью информации об относительной важности критериев, получаемой от ЛПР,
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был предложен в работе [12]. Метод является итеративным - предполагается, что на каждой

итерации ЛПР уточняет информацию об относительной важности критериев. Само понятие

важности критериев основано на идее компенсации уступок по одному критерию получением

лучшего значения по другому. При этом количественное соотношение между изменениями в

процессе компенсации позволяет количественно оценить указанную степень важности. Как

отмечают авторы, реализация данного метода в случае бесконечного множества возможных

векторов сопряжена с вычислительными трудностями.

Метод STEM (STEp Method) [35] был разработан в конце 60-х годов О.И. Ларичевым

и его французскими коллегами — Р. Бенайюном, Ж. Монгольфье, и Ж. Терни. Идея

метода STEM состоит в том, чтобы задавать ЛПР как можно более простые вопросы

относительно его предпочтений. Ответы на эти вопросы используются для модификации

критериальных ограничений, которые на каждой итерации задаются некоторым вектором

нижних пороговых значений. Имея некоторое промежуточное решение, ЛПР определяет

критерий, имеющий наиболее неудовлетворительное с его точки зрения значение, и в задачу

поиска Парето-оптимальной точки добавляется ограничение, устанавливающее новое нижнее

пороговое значение такого критерия. После чего процесс анализа повторяется до тех пор,

пока найденное решение не будет признано удовлетворительным.

Метод “Шаг по Паретовой границе” и его развитие, получившее название “метода

достижимых целей”, основаны на визуализации двухкритериальных сечений Паретовой

границы. Этот итеративный метод предназначен для решения задачи многокритериальной

оптимизации (1.1) в случае выпуклой оболочки Эджворта-Парето множества достижимых

векторов. Данный метод, предложенный в 1980-х годах Г.К. Каменевым и А.В. Лотовым [8],

достаточно прост для ЛПР, поскольку требует лишь ответов на простые вопросы и выбора

новой точки, в которой меняются значения только двух критериев. При этом, процесс выбора

новой точки поддерживается графической информацией о Паретовой границе сечения, т.е.

ЛПР может оценивать как норму критериального замещения в любой из точек границы,

так и полное критериальное замещение между любыми двумя точками сечения. Авторами

доказана сходимость метода при гладкости Паретовой границы и правильном поведении

ЛПР, состоящем в выборе наиболее предпочтительной точки на Паретовой границе сечения.

Недостатком метода является его медленная сходимость.

Итоги обзора итеративных методов Ключевой характеристикой итеративных методов

является необходимость возможности взаимодействия алгоритма с ЛПР. Смысл этого

взаимодействия заключается в том, что на каждом этапе процесса принятия решения ЛПР
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использует промежуточные результаты для высказывания новой информации о собственных

предпочтениях. В ряде задач данное требование представляется труднореализуемым. С

одной стороны, данные методы хорошо приспособлены к решению задач, использующих

экспертные знания, и имеют ряд успешных практических применений подтверждающих

данное утверждение (например [88–90]). Особенно хорошо данные методы зарекомендовали

себя в задачах построения систем поддержки принятия решений, используемых экспертами

в различных областях. С другой стороны, в условиях недоступности экспертных знаний, то

есть ситуациях когда решение принимается на основе анализа больших объемов данных

и статистической информации, такое требование может оказаться невыполнимым. Более

того, с точки общих позиций системного анализа такой подход является неоднозначным.

В статье 1977 года Д. Форрестером было введено понятие контринтуитивного поведения

моделей [28]. Согласно аргументам, приводящимся в этой работе, только лишь собственный

опыт и знания являются в значительной мере недостаточными для удовлетворительного

описания состояния сложной системы даже на качественном уровне. Контринтуитивность

поведения модели сложной системы заключается в том, что она реагирует на входные данные

совсем не так, как ожидает ЛПР. Фактически, рассматриваемый принцип говорит о росте

“когнитивных” способностей моделей по мере их усложнения. Таким образом, неочевидно,

всегда ли ЛПР будет обладать достаточными способностями для совершения выбора на

промежуточных этапах итерационного алгоритма.

В дальнейшем предполагается что информация, которой обладает ЛПР, позволяет в

рамках модели полностью определить предпочтительность всех допустимых альтернатив

(однозначно или нет). Однако, поиск наиболее предпочтительного варианта может сам

по себе являться нетривиальным вопросом ввиду большой размерности задачи или очень

большого числа возможных альтернатив. Таким образом, предлагаемые в диссертации

методы позволяют решить две задачи. Во-первых, благодаря большой функциональной

гибкости модели, становится возможным корректно определить предпочтительность всех

допустимых альтернатив, а во-вторых, благодаря возможности реализации алгоритмов

поиска на ЭВМ, решать задачу поиска оптимального варианта системы даже в условиях

очень большого числа вариантов.

1.4. Введение в теорию принятия решений

Целью данного раздела является введение в аксиоматическую теорию принятия

решений. Данный подход предлагает удобный метод характеризации условий, при которых
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для моделирования предпочтений ЛПР может применяться та или иная функциональная

форма (оператор свертки). Конечным результатом раздела является обоснование выбора

интеграла Шоке в качестве модели предпочтений, а также краткая характеристика тех

возможностей, которые использование такой модели представляет аналитику.

1.4.1. Основные задачи теории принятия решений

Фундаментальным вопросом теории принятия решений является задача построения

корректного отображения бинарных отношений (т.н. “предпочтений”) на некотором

абстрактном множестве (“множестве решений”) на отношения между элементами множества

R. Математически, данная задача может быть сформулирована как задача построения

гомоморфизма между структурой ⟨𝑋,<, . . . ⟩, состоящей из абстрактного множества 𝑋

и некоторого числа отношений на этом множестве, и структурой ⟨R,≥, . . . ⟩, состоящей

из подмножества множества действительных чисел R, и привычных отношений, таких

как “>” или “=”. Решение данной проблемы опирается на два основных класса

теорем. Утверждения теорем представимости связывают определенные фундаментальные

характеристики (далее “аксиомы”) исходной структуры с принципиальной возможностью

построения гомоморфизма. Утверждения теорем единственности описывают множество

гомоморфизмов, связывающих характеризованную аксиомами структуру ⟨𝑋,<, . . . ⟩ с одной

и той же структурой ⟨R,≥, . . . ⟩. Рассмотрим следующий пример:

Определение 1. Слабым порядком на множестве 𝑋 называется бинарное отношение <,

если оно

∙ полно, т.е. 𝑓 < 𝑔 или 𝑔 < 𝑓 для всех 𝑓, 𝑔 ∈ 𝑋;

∙ транзитивно, т.е. 𝑓 < 𝑔, 𝑔 < ℎ⇒ 𝑓 < ℎ для всех 𝑓, 𝑔, ℎ ∈ 𝑋.

Теорема 1. Пусть 𝑋 - конечное множество, а < - слабый порядок на этом множестве.

Тогда, существует функция 𝜑 : 𝑋 → R такая, что

𝑓 < 𝑔 ⇐⇒ 𝜑(𝑓) ≥ 𝜑(𝑔). (1.2)

Более того, (1.2) также выполняется для некоторой другой функции 𝜑′ : 𝑋 → R тогда и

только тогда, когда существует возрастающая функция 𝜙 : R→ R такая, что

𝜑′(𝑓) = 𝜙(𝜑(𝑓)), (1.3)

для всех 𝑓 ∈ 𝑋.
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Обобщение данной теоремы до счетных множеств было получено Г. Кантором [39], а для

общего случаяЖ. Дебре [43], что потребовало введения дополнительного условия связанного

с существованием ≻-плотного 1 счетного или конечного подмножества множества 𝑋.

1.4.2. Многокритериальные задачи принятия решений

В общем виде многокритериальная задача принятия решения выглядит следующим

образом:

Определение 2. Многокритериальной задачей принятия решения будем называть

кортеж (𝑋,<), где

1. 𝑋 = 𝑋1,× . . .×𝑋𝑛 - множество “альтернатив”;

2. < - отношение предпочтения на 𝑋.

Также, 𝑁 = {1, . . . , 𝑛} будем называть множеством критериев, а множества 𝑋𝑖, 𝑖 ∈ 𝑁 -

множествами значений критериев.

Одной из наиболее распространенных моделей представления предпочтений в

многокритериальных задачах принятия решений является аддитивная модель.

Определение 3. Будем говорить, что бинарное отношение < на множестве 𝑋 =

𝑋1 × . . . × 𝑋𝑛 представлено аддитивной моделью, если существуют функции ценности

𝑓𝑖 : 𝑋𝑖 ⇒ R, 𝑖 ∈ 𝑁 такие, что для всех 𝑥, 𝑦 ∈ 𝑋 выполняется

𝑥< 𝑦 ⇐⇒
𝑛∑︁

𝑖=1

𝑓𝑖(𝑥𝑖) ≥
𝑛∑︁

𝑖=1

𝑓𝑖(𝑦𝑖). (1.4)

Для ее характеризации введем следующие аксиомы:

P1. < - слабый порядок.

P2. < - (строго) независимое бинарное отношение, то есть для всех 𝑖 и для всех 𝑥𝑖, 𝑦𝑖, 𝑎−𝑖, 𝑏−𝑖

𝑥𝑖𝑎−𝑖 < 𝑥𝑖𝑏−𝑖 ⇐⇒ 𝑦𝑖𝑎−𝑖 < 𝑦𝑖𝑏−𝑖, (1.5)

где индекс −𝑖 означает “все критерии кроме 𝑖-го”. Данная аксиома позволяет ввести

отношения <𝐴 на множествах 𝑋𝐴, 𝐴 ⊂ 𝑁 , которые также являются слабыми

порядками. Будем говорить, что 𝑎𝐴 <𝐴 𝑏𝐴, если 𝑎𝐴𝑥−𝐴 < 𝑏𝐴𝑥−𝐴 для некоторого 𝑥−𝐴 ∈

𝑋−𝐴.

1 см. определение в [52]
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P3. Для всех 𝑖 ∈ 𝑁 , всех 𝑥 ∈ 𝑋, всех 𝑧−𝑖 ∈ 𝑋−𝑖, и всех 𝑎𝑖, 𝑏𝑖 ∈ 𝑋𝑖 таких, что

𝑎𝑖𝑧−𝑖 < 𝑥 < 𝑏𝑖𝑧−𝑖, (1.6)

найдется 𝑐𝑖 ∈ 𝑋𝑖 такое, что 𝑥 ∼ 𝑐𝑖𝑧−𝑖.

P4. Для всех 𝑖 ∈ 𝑁 , любая последовательность {𝑎𝑘𝑖 : 𝑎𝑘𝑖 ∈ 𝑋𝑖, 𝑘 ∈ 𝐾}, где 𝐾 - множество

последовательных натуральных чисел (положительных или отрицательных, конечное

или бесконечное), такая, что существуют 𝑥−𝑖, 𝑦−𝑖 ∈ 𝑋−𝑖, для которых выполняется

𝑥−𝑖 ̸∼−𝑖 𝑦−𝑖 и 𝑎𝑘𝑖 𝑥−𝑖 ∼ 𝑎𝑘+1
𝑖 𝑦−𝑖, и существуют 𝑏𝑖, 𝑐𝑖 ∈ 𝑋𝑖 такие, что 𝑏𝑖 ≻𝑖 𝑎

𝑘
𝑖 ≻𝑖 𝑐𝑖 для всех

𝑘 ∈ 𝐾, конечна.

P5. По крайней мере 3 координаты 𝑖 ∈ 𝑁 являются значимыми, то есть выполняется

𝑥𝑖𝑎−𝑖 ≻ 𝑦𝑖𝑎−𝑖, (1.7)

для некоторых 𝑥𝑖, 𝑦𝑖 ∈ 𝑋 и некоторого 𝑎−𝑖 ∈ 𝑋−𝑖.

Наиболее важными являются аксиомы P1 и P2. Аксиома P2 означает, что если

две альтернативы имеют одинаковую оценку по какому либо критерию, предпочтение

между ними не изменится, если эта оценка изменится на другую, также равную для обеих

альтернатив. Аксиомы P3, P4(аксиома Архимеда), и P5 носят более технический характер

(более подробно см. в [7, 38, 44, 52, 79]).

Теперь становится возможным привести теорему, характеризующую модель с

аддитивной функцией ценности для случая не менее трех критериев (случай 2 критериев

отличается незначительно и будет здесь опущен).

Теорема 2 ([79]). Пусть < - бинарное отношение на 𝑋 = 𝑋1 × 𝑋2 × . . . × 𝑋𝑛, 𝑛 ≥ 3 и

выполняются свойства P1-P5. Тогда, существуют функции 𝑓𝑖 : 𝑋𝑖 ⇒ R, такие, что для

всех 𝑥, 𝑦 ∈ 𝑋 выполняется:

𝑥 < 𝑦 ⇔
𝑛∑︁

𝑖=1

𝑓𝑖(𝑥𝑖) ≥
𝑛∑︁

𝑖=1

𝑓𝑖(𝑦𝑖). (1.8)

Более того, 𝑓1, 𝑓2, . . . , 𝑓𝑛 - интервальные шкалы с общей единицей измерения, то есть (1.8)

также выполняется для некоторых других функций 𝑓 ′
𝑖 : 𝑋𝑖 → R тогда и только тогда,

когда существуют 𝛼, 𝛽1, . . . , 𝛽𝑛, 𝛼 > 0 такие, что

𝑓 ′
𝑖(𝑥𝑖) = 𝛼𝑓𝑖(𝑥𝑖) + 𝛽𝑖, 𝑖 = 1, 2, . . . , 𝑛 (1.9)

для всех 𝑥𝑖 ∈ 𝑋𝑖.
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Популярной моделью представления предпочтений также является взвешенное среднее:

𝑥< 𝑦 ⇐⇒
𝑛∑︁

𝑖=1

𝑝𝑖𝑈(𝑥𝑖) ≥
𝑛∑︁

𝑖=1

𝑝𝑖𝑈(𝑦𝑖), (1.10)

где
∑︀𝑛

𝑖=1 𝑝𝑖 = 1. При этом, коэффициенты 𝑝𝑖 призваны выражать количественную разность

в важности критериев. Ключевой особенностью данной модели является то, что в данном

случае элементы множеств 𝑋1, . . . , 𝑋𝑛 должны быть соизмеримы. В случае аддитивной

модели это требование выполняется при условии 𝑋1 = . . . = 𝑋𝑛 = 𝑌 . Тогда множество

𝑋 имеет вид 𝑋 = 𝑌 𝑛. Впервые характеризация подобной модели была предложена в

[79] (отметим также работы В.В. Подиновского по теории важности критериев [15, 111]).

Для этого аксиомы P1-P5 должны быть дополнены условием инвариантности стандартных

последовательностей. Мы приведем характеризацию из [138], как более интуитивную.

Потребуется ввести дополнительное определение [138]:

Определение 4. Отношение < на 𝑋 = 𝑌 𝑛 не содержит противоречивых компромиссов,

если для всех значимых координат 𝑖 и всех 𝑥−𝑖, 𝑦−𝑖 ∈ 𝑋−𝑖,𝑣−𝑗, 𝑤−𝑖 ∈ 𝑋−𝑗, 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝑌

выполняется следующее свойство:

𝑥−𝑖𝛼4 𝑦−𝑖𝛽

𝑥−𝑖𝛾< 𝑦−𝑖𝛿

𝑣−𝑗𝛼<𝑤−𝑗𝛽

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭⇒ 𝑣−𝑗𝛾<𝑤−𝑗𝛿 (1.11)

Лемма 1. [139] Если отношение < не содержит противоречивых компромиссов, то оно

является (строго) независимым.

Теорема 3 ([138]). Пусть < - бинарное отношение на 𝑋 = 𝑌 𝑛, по крайней мере

две координаты значимы (P5), и выполняется P3. Тогда, два следующих утверждения

эквивалентны:

1. Существуют неотрицательные коэффициенты 𝑝𝑖, 𝑖 ∈ 𝑁,
∑︀𝑛

𝑖=1 𝑝𝑖 = 1, а также

функция 𝑈 : 𝑌 ⇒ R такие, что для всех 𝑥, 𝑦 ∈ 𝑋 выполняется

𝑥< 𝑦 ⇐⇒
𝑛∑︁

𝑖=1

𝑝𝑖𝑈(𝑥𝑖) ≥
𝑛∑︁

𝑖=1

𝑝𝑖𝑈(𝑦𝑖). (1.12)

2. Бинарное отношение < не содержит противоречивых компромиссов и выполняются

P1 и P4.

Кроме того, коэффициенты 𝑝𝑖 определены уникально, а 𝑈 является интервальной шкалой.
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1.4.3. Недостаточность аддитивной модели

Неоспоримым преимуществом аддитивной модели является ее простота. Однако,

является ли система аксиом, лежащая в основе этой модели, достаточно всеобъемлющей?

Перефразируя, возникает вопрос - существуют ли в экономике, системном анализе,

искусственном интеллекте, и других областях задачи, в которых предпочтения противоречат

аксиомам аддитивной модели?

Рассмотрим следующий пример (Табл. 1.1). Приемная комиссия математического

факультета отбирает абитуриентов на вступительных экзаменах в ВУЗ. Необходимо

отобрать 𝑛 лучших кандидатов по результатам 3 экзаменов: алгебры, геометрии, и русского

языка.

Таблица 1.1. Оценки абитуриентов

Рус(r) Гео(g) Алг(a)

A 18 15 19

B 15 18 19

C 15 18 11

D 18 15 11

“Естественным” критерием в многокритериальных задачах является Парето-доминиро­

вание - если некоторый элемент множества альтернатив имеет значения по всем критериям

не худшие, чем у некоторого другого элемента, и превосходит его хотя бы по одному,

то первый элемент является более предпочтительным. Таким образом, получаем 𝐴≻𝐷

и 𝐵≻𝐶. Для определения оставшихся предпочтений допустим, что комиссия опирается

на следующие рассуждения: “Алгебра является наиболее важным критерием. Поскольку

алгебра и геометрия в некотором роде схожие предметы, то будем считать, что при хорошем

результате по алгебре более существенной является оценка по русскому языку, в то время

как при плохом результате, более важной является геометрия”. Таким образом, итоговым

порядком студентов является 𝐴 ≻ 𝐵 ≻ 𝐶 ≻ 𝐷, а аддитивной модели, способной выразить

такие предпочтения, не существует.

𝑣𝑔(18) + 𝑣𝑟(15) + 𝑣𝑎(19) > 𝑣𝑔(15) + 𝑣𝑟(18) + 𝑣𝑎(19)

𝑣𝑔(15) + 𝑣𝑟(18) + 𝑣𝑎(11) > 𝑣𝑔(18) + 𝑣𝑟(15) + 𝑣𝑎(11).
(1.13)

Анализируя рассмотренный пример, замечаем, что нарушенной оказывается именно

аксиома независимости. Интерпретироваться, впрочем, данный факт может по разному.
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В многокритериальных задачах обычно говорят о “взаимодействии” критериев (или

взаимозависимости, как в рассмотренном примере): взаимодополнении, взаимозамещении,

корреляции, и.т.д.

1.5. Интеграл Шоке в задачах принятия решений

Определение 5. Пусть 𝑁 - конечное множество, а 2𝑁 - множество его подмножеств.

Емкостью (неаддитивной мерой, нечеткой мерой) будем называть функцию множества

𝜈 : 2𝑁 → R+ такую, что:

1. 𝜈(∅) = 0;

2. 𝐴 ⊆ 𝐵 ⇒ 𝜈(𝐴) ≤ 𝜈(𝐵), ∀𝐴,𝐵 ∈ 2𝑁 .

Далее также будем предполагать, что емкость нормирована, то есть 𝜈(𝑁) = 1.

Определение 6. Дискретным интегралом Шоке функции 𝒢 : 𝑁 → R+ со множеством

значений {𝑔1, . . . , 𝑔𝑛} по емкости 𝜈 называется

𝐶(𝜈, (𝑔1, . . . , 𝑔𝑛)) =
𝑛∑︁

𝑖=1

(𝑔(𝑖) − 𝑔(𝑖−1))𝜈(𝑗|𝒢(𝑗) > 𝑔(𝑖)), (1.14)

где 𝑔(1), . . . , 𝑔(𝑛) - перестановка 𝑔1, . . . , 𝑔𝑛 такая, что 𝑔(1) ≤ 𝑔(2) ≤ · · · ≤ 𝑔(𝑛), и 𝑔(0) = 0.

Определение 7. Будем говорить, что бинарное отношение < на множестве 𝑋 = 𝑋1×. . .×

𝑋𝑛 представлено интегралом Шоке, если существуют функции ценности 𝑓𝑖 : 𝑋𝑖 ⇒ R, 𝑖 ∈ 𝑁

и емкость 𝜈 такие, что для всех 𝑥, 𝑦 ∈ 𝑋 выполняется

𝑥< 𝑦 ⇐⇒ 𝐶(𝜈, (𝑓1(𝑥1), . . . , 𝑓𝑛(𝑥𝑛))) ≥ 𝐶(𝜈, (𝑓1(𝑦1), . . . , 𝑓𝑛(𝑦𝑛))). (1.15)

Данная модель является непосредственным обобщением аддитивной модели. Вероят­

ность является частным случаем емкости (в таком случае будем говорить об аддитивной

емкости), а интеграл Шоке по такой емкости совпадает с интегралом Лебега.

Для разрешения рассмотренных выше проблем, связанных со слишком сильным

характером условий аксиомы независимости, рядом авторов [92, 112, 119, 139]

было предложено ослабить аксиоматику аддитивной модели. Все упомянутые выше

аксиоматизации были предложены для случая 𝑋 = 𝑌 𝑛 (в контексте задач принятия решений

в условиях неопределенности). Для такого вида множества 𝑋 можно ввести бинарное

отношение на множестве 𝑌 , определив его следующим образом. Для любых 𝑎, 𝑏 ∈ 𝑌 будем
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писать

𝑎<𝑌 𝑏 ⇐⇒ (𝑎, . . . , 𝑎)<(𝑏, . . . , 𝑏), (1.16)

где (𝑎, . . . , 𝑎) и (𝑏, . . . , 𝑏) являются элементами множества 𝑋 все координаты которых равны

𝑎 или 𝑏 соответственно.

Центральным понятием аксиоматизаций интеграла Шоке является понятие комонотон­

ности.

Определение 8. 𝑥, 𝑦 ∈ 𝑋 называются комонотонными, если не существует таких

𝑖, 𝑗 ∈ 𝑁 , что 𝑥𝑖≻𝑌 𝑥𝑗 и 𝑦𝑗 ≻𝑌 𝑦𝑖.

Основным подходом к аксиоматизации интеграла Шоке является ослабление аксиомы

независимости до комонотонной независимости, то есть независимость выполняется только

для тех элементов множества 𝑋, которые являются комонотонными. Ниже приводится более

интуитивный вариант аксиоматизации, предложенный П. Ваккером [138]. Он также основан

на комонотонном ослаблении, в данном случае условия (1.17).

Определение 9. Отношение < на 𝑋 = 𝑌 𝑛 не содержит комонотонных противоречивых

компромиссов, если для всех значимых координат 𝑖 и всех 𝑥−𝑖, 𝑦−𝑖 ∈ 𝑋−𝑖,𝑣−𝑗, 𝑤−𝑖 ∈

𝑋−𝑗, 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝑌 , таких что 𝑥−𝑖𝛼, 𝑦−𝑖𝛽, 𝑥−𝑖𝛾, 𝑦−𝑖𝛿 комонотонны и 𝑣−𝑗𝛼,𝑤−𝑗𝛽, 𝑣−𝑗𝛾, 𝑤−𝑗𝛿

комонотонны выполняется следующее свойство:

𝑥−𝑖𝛼4 𝑦−𝑖𝛽

𝑥−𝑖𝛾< 𝑦−𝑖𝛿

𝑣−𝑗𝛼<𝑤−𝑗𝛽

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭⇒ 𝑣−𝑗𝛾<𝑤−𝑗𝛿. (1.17)

Лемма 2. [139] Если отношение < не содержит комонотонных противоречивых

компромиссов, то оно является (строго) комонотонно независимым.

Также ослабляется и Архимедова аксиома.

P4c. Для всех 𝑖 ∈ 𝑁 , любая последовательность {𝑎𝑘𝑖 : 𝑎𝑘𝑖 ∈ 𝑋𝑖, 𝑘 ∈ 𝐾}, где 𝐾 - множество

последовательных натуральных чисел (положительных или отрицательных, конечное

или бесконечное), такая, что существуют 𝑥−𝑖, 𝑦−𝑖 ∈ 𝑋−𝑖 для которых выполняется

𝑥−𝑖 ̸∼−𝑖 𝑦−𝑖 и 𝑎𝑘𝑖 𝑥−𝑖 ∼ 𝑎𝑘+1
𝑖 𝑦−𝑖, и существуют 𝑏𝑖, 𝑐𝑖 ∈ 𝑋𝑖 такие, что 𝑏𝑖 ≻𝑖 𝑎

𝑘
𝑖 ≻𝑖 𝑐𝑖 для всех

𝑘 ∈ 𝐾, конечна, при условии, что все точки 𝑎𝑘𝑖 𝑥−𝑖 и 𝑎𝑘+1
𝑖 𝑦−𝑖 комонотонны.

Теорема 4 ([138]). Пусть < - бинарное отношение на 𝑋 = 𝑌 𝑛, по крайней мере

две координаты значимы (P5), и выполняется P3. Тогда, два следующих утверждения

эквивалентны:
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1. Существует емкость 𝜈 : 𝑁 ⇒ R, а также функция 𝑈 : 𝑌 ⇒ R такие, что для всех

𝑥, 𝑦 ∈ 𝑋 выполняется

𝑥< 𝑦 ⇐⇒ 𝐶(𝜈, (𝑈(𝑥1), . . . , 𝑈(𝑥𝑛))) ≥ 𝐶(𝜈, (𝑈(𝑦1), . . . , 𝑈(𝑦𝑛))). (1.18)

2. Бинарное отношение < не содержит комонотонных противоречивых компромиссов и

выполняются P1 и P4c.

Кроме того, 𝜈 определена уникально, а 𝑈 является интервальной шкалой.

Аксиоматизация интеграла Шоке для более общего гетерогенного случая 𝑋 = 𝑋1 ×

. . . × 𝑋𝑛 долгое время оставалась открытой задачей, и лишь недавно автором для нее

были получены первые результаты [134]. Таким образом, для использования интеграла

Шоке в многокритериальных задачах необходимо обеспечить соизмеримость критериев

(то есть, в некотором роде свести задачу к случаю 𝑋 = 𝑌 𝑛). На практике идея понятия

соизмеримости сводится к тому, что при построении многокритериальной модели следует

агрегировать не сами оценки по критериям, а уровни “удовлетворенности” ЛПР, связанные

с этими оценками. В литературе по интегралу Шоке на данный момент для преодоления

этой проблемы существует два основных подхода. В первом соизмеримость принимается

как гипотеза (см. например [48, 101]), то есть считается что 𝑋 = 𝑌 𝑛 (см. раздел 1.4.2).

Во втором подходе в процесс моделирования включается дополнительный шаг - построение

соизмеримых функций ценности 𝑓𝑖 : 𝑍𝑖 → R для каждого из критериев (например [65]), то

есть отражение значений 𝑧𝑖 ∈ 𝑍𝑖 = [0, 𝑧𝑖] всех критериев на единую шкалу. В работе [83]

была предложена модификация метода MACBETH[31], который изначально использовался

для построения функций ценности в аддитивных моделях. В дальнейшем предполагаем, что

функции ценности определены.

1.5.1. Интеграл Шоке в многокритериальных задачах принятия решений

Начиная с пионерских работ [72, 73, 103, 105–107, 110, 125–127] интеграл Шоке стал

применяться также и в многокритериальных задачах принятия решений, а в последние

годы получает все более широкое распространение. В многокритериальных задачах интеграл

Шоке позволил существенно расширить язык моделирования предпочтений ЛПР. Вернемся

к рассмотренному ранее примеру.

Итак, согласно правилам, высказанным приемной комиссией, наличие высоких оценок

одновременно по алгебре и геометрии является менее предпочтительным чем наличие
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высоких оценок по алгебре и русскому языку. Рассмотрим емкость, представленную в Табл.

1.2.

Таблица 1.2. 𝜈 = inf𝒫 𝑃 (𝐴)

{Рус} {Гео} {Алг} {Рус,Гео} {Рус,Алг} {Гео,Алг} {Рус,Гео,Алг}

𝜈 0 0.5 0.5 0.5 1 0.5 1

В этом случае выполняется требуемое

𝐶(𝜈, 𝑓1) > 𝐶(𝜈, 𝑓2) > 𝐶(𝜈, 𝑓3) > 𝐶(𝜈, 𝑓4). (1.19)

Отсутствие аддитивности несколько затрудняет анализ и интерпретацию модели. Вместо

“весов” критериев, т.е. значений меры на единичных элементах, в неаддитивном случае

необходимо также учитывать все подмножества множества 𝑁 , в которые входит

интересующий нас критерий. Для проведения такого анализа как правило применяется [105]

широко известный в теории кооперативных игр вектор Шепли2. Значения вектора Шепли

лежат в интервале [0,1], а сумма всех значений равняется единице.

Поскольку наличие высоких оценок одновременно по алгебре и геометрии является

менее предпочтительным, чем наличие высоких оценок по алгебре и русскому языку,

можно сделать вывод о наличии некоторого взаимодействия в парах критериев (Русский,

Алгебра) и (Геометрия, Алгебра). Причем взаимодействие в первой паре является более

“положительным”, то есть получение высоких оценок по обоим предметам в паре приносит

дополнительные преимущества по сравнению с такой же ситуацией для второй пары

критериев. Для анализа взаимодействия критериев индекс Шепли был обобщен на

подмножества 𝑁 произвольного размера, и получил название индекса взаимодействия3.

Важной характеристикой является то, что значения индекса взаимодействия лежат в

диапазоне [−1; 1], где 1 соответствует максимально “положительному” взаимодействию, а -1

максимально “отрицательному”. С помощью введенных инструментов для емкости в таблице

1.2 могут быть получены характеристики, представленные в Табл. 1.3, 1.4. Таким образом,

емкость отражает факт (Табл. 1.3), что Алгебра является более важным предметом, чем

равнозначные Русский и Геометрия.

Как и требовалось, взаимодействие в паре Алгебра-Русский является более

положительным, чем в паре Алгебра-Геометрия, а в паре Геометрия-Русский взаимодействие

2 см. раздел 2.6.1
3 см. раздел 2.6.1
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Таблица 1.3. "Веса"критериев (вектор Шепли)

Рус Гео Алг

𝜑(·) 0.25 0.25 0.5

Таблица 1.4. Взаимодействие критериев (индекс взаимодействия)

Гео Алг

Гео -0.5

Рус 0 0.5

отсутствует (Табл. 1.4). На сегодняшний день были предложены следующие средства

семантического анализа емкостей в многокритериальных задачах [62, 98]:

1. Относительная важность компонентов (аналогично аддитивной модели). Описывается

с помощью вектора Шепли.

2. Взаимодействие компонентов. Взаимодополнение соответствует положительному

значения индекса взаимодействия для группы критериев, а взаимозаменяемость

отрицательному.

3. Необходимость критерия.Данное свойство означает, что низкая оценка по некоторому

критерию приводит к существенному снижению и общей оценки.

4. Достаточность критерия.Достаточность означает, что высокая оценка по данному

критерию приводит к существенному повышению и общей оценки.

5. Обобщением предыдущих двух понятий являются индексы[97], показывающие в какой

степени критерий близок к тому, чтобы бы быть необходимым или достаточным.

Более подробно вопросы использования интегралаШоке в многокритериальных задачах

рассматриваются в разделе 2.6.1, а в разделе 3.1 приводится его сравнение с другими

распространенными методами решения задач принятия решений.
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1.6. Постановка задачи максимизации интеграла Шоке

С учетом вышесказанного сформулируем первую задачу, методам решения которой

посвящена данная диссертация:

𝐶(𝜈, (𝑓1(𝑧1), . . . , 𝑓𝑛(𝑧𝑛))) → max
𝑧

𝑧 ∈ 𝒵0,

(1.20)

где 𝜈 - емкость, 𝑓𝑖(𝑧𝑖) - функции ценности, 𝑧 = (𝑧1, . . . , 𝑧𝑛), 𝒵0 ⊂ R𝑛
+ - замкнутое ограниченное

выпуклое множество. Распространенным примером множества 𝒵0 является:

𝒵0 = {𝑧|
𝑛∑︁

𝑖=1

𝑧𝑖 ≤ 𝐵, 𝑧 ≥ 0}, (1.21)

где 𝐵 - размер бюджетного ограничения. В случаях, когда это возможно, будем писать

𝐶(𝜈, 𝑓(𝑧)) вместо 𝐶(𝜈, (𝑓1(𝑧1), . . . , 𝑓𝑛(𝑧𝑛))).

Второй задачей, решаемой в данной диссертации, является задача робастной

оптимизации интегралаШоке. Данная задача имеет место быть в случае, когда предпочтения

ЛПР не позволяют однозначно определить модель (1.15). В частности, в данном случае

считается, что емкость 𝜈 принадлежит некоторому множесту 𝒰 (см. главу 2.5). В этом случае

задача формулируется следующим образом:

max
𝜈

[︁
max

𝑧
𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝜈, 𝑓(𝑧𝑟))

]︁
→ min

𝑧𝑟

𝜈 ∈ 𝒰

𝑧 ∈ 𝒵0

𝑧𝑟 ∈ 𝒵0,

(1.22)

где 𝒰 - множество емкостей согласующихся с предпочтениями ЛПР.

1.6.1. Интеграл Шоке и Парето-оптимальные решения

В условиях отсутствия информации о предпочтениях ЛПР, “естественным” критерием

в многокритериальных задачах является Парето-доминирование: если некоторый элемент

множества решений имеет значения по всем критериям не худшие, чем у некоторого

другого элемента, и превосходит его хотя бы по одному, то первый элемент является

более предпочтительным. Аддитивная модель, очевидно, обеспечивает выполнение данного

свойства.

Однако, в неаддитивных моделях, учитывающих взаимодействие между критериями,

может возникнуть ситуация, при которой два элемента будут иметь равную оценку, при том,

что один из них Парето-доминирует другой. Рассмотрим следующий пример.
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Таблица 1.5. Пример емкости, нарушающей принцип Парето-доминирования

∅ 1 2 3 12 13 23 123

𝜈 0 0.3 0.3 0.4 0.3 0.6 0.7 1

Допустим, предпочтения ЛПР описываются емкостью, представленной в таблице 1.5.

Сравнивая два вектора

𝑓 = (12, 11, 10), 𝑔 = (12, 11.5, 10), (1.23)

очевидно, что 𝑔 доминирует 𝑓 , однако 𝐶(𝜈, 𝑓) = 𝐶(𝜈, 𝑔) = 10.6.

Существует несколько методов, позволяющих обеспечить соблюдение принципа

Парето-доминирования при использовании интеграла Шоке:

∙ выбрать из множества оптимальных вариантов Парето-оптимальный. Поскольку 𝑓 <

𝑔 ⇒ 𝐶(𝜈, 𝑓) ≥ 𝐶(𝜈, 𝑔), то среди максимизаторов 𝐶(𝜈, 𝑓), 𝑓 ∈ 𝑋0 всегда найдется

Парето-оптимальное решение.

∙ положить 𝒳0 равным множеству Парето-оптимальных точек, то есть задача

максимизации интеграла Шоке будет являться задачей уточнения решения среди

Парето-оптимальных вариантов. Во многих прикладных задачах, такой переход может

быть осуществлен сравнительно легко. Например, в задаче с бюджетным ограничением∑︀
𝑖∈𝑁 𝑧𝑖 ≤ 𝐵 (например, задаче распределения ресурсов, см. Главу 3) достаточно

перейти к множеству
∑︀

𝑖∈𝑁 𝑧𝑖 = 𝐵.

∙ уточнение емкости. Для случая, когда предпочтениям ЛПР удовлетворяет не одна,

а несколько емкостей, в литературе были предложены методы, которые позволяют

“уточнить” емкость, с тем чтобы Парето-доминирование соблюдалось как можно

сильнее [47].

1.6.2. Обзор методов решения задачи максимизации интеграла Шоке

В данном разделе рассмотрим существующие подходы к задаче оптимизации интеграла

Шоке. Основная масса исследований в области до настоящего момента была посвящена

решению многокритериальных версий задач комбинаторной оптимизации. Так, например, в

[57, 58] рассматриваются задачи минимального покрывающего дерева и поиска кратчайшего

пути в графах, где каждое ребро имеет несколько весов. Получающееся в результате дерево

(путь) таким образом характеризуются некоторым вектором. Для того чтобы выбрать из
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различных вариантов наилучший, авторы предлагают использовать интеграл Шоке для

агрегации таких векторов в интегральные оценки. Таким образом, задача формулируется

как задача минимизации интеграла Шоке на дискретном множестве. Авторы предлагают

вариант метода ветвей и границ, где верхняя грань вычисляется с помощью следующего

свойства:

𝐶(𝜈, 𝑓) ≤ ⟨𝑝, 𝑓⟩, 𝑝 ∈ Core(𝜈), (1.24)

где 𝐶(𝜈, 𝑓) - интеграл Шоке по некоторой емкости 𝜈, 𝑓 = {𝑓1, . . . , 𝑓𝑛} - функции весов,

𝜈 - емкость, сопряженная к 𝜈, то есть 𝜈(𝐴) = 1 − 𝜈(𝑁 ∖ 𝐴),∀𝐴 ⊂ 𝑁 , и Core(𝜈) - ядро,

которое (как уже было упомянуто ранее) определяется как множество вероятностей 𝑝

таких, что 𝑝(𝐴) > 𝜈(𝐴),∀𝐴 ∈ 2𝑁 , 𝑝(𝑁) = 𝜈(𝑁). Авторы рассматривают только случай

2-чередующейся(субмодулярной) емкости (т.е. 𝜈(𝐴∪𝐵) +𝜈(𝐴∩𝐵) ≤ 𝜈(𝐴) +𝜈(𝐵)∀𝐴,𝐵 ⊂ 𝑁),

следствием чего является выпуклость интеграла (см. Теорему 5) и непустота ядра Core(𝜈).

Расширение данного подхода было предложено в [53, 54, 56], где авторами представлен

метод вычисления нижней грани без введения предположения о субмодулярности емкости,

и продемонстрировано его применение к многокритериальной задаче о кратчайшем пути в

графе, а также к задачам динамического программирования.

Как было указано в определении 6, использование интеграла Шоке для моделирования

предпочтений предполагает определение функций полезности, определенных на множествах

значений критериев, а также емкости 𝜈, которая определяет связь значений функций

полезности с общей предпочтительностью элементов множества альтернатив. Подход к

оптимизации, предлагаемый авторами в работах [93–95] основывается на иной идее.

В работах предлагается характеризация решений, которые являются потенциально

оптимальными хотя бы для одного возможного значения параметров модели (имеется

ввиду емкость 𝜈, функции полезности предполагаются линейными). Такая характеризация

позволяет выделить подмножество Парето-оптимальных точек, которые потенциально

являются более предпочтительными с точки зрения ЛПР. Авторы отмечают, что подход

является эффективным для задач, в которых число критериев не превышает пяти.

Еще одно приложение интеграла Шоке в задачах комбинаторной оптимизации

было представлено в работах [85, 86]. Авторами решается задача программирования

в ограничениях (constraint programming) для приложения по созданию расписания

экзаменов, удовлетворяющего ряду заданных условий. Анализируемая проблема содержит

три критерия, агрегация которых производится с помощью интеграла Шоке. Целью задачи

является нахождение подмножества допустимого множества, на котором значение интеграла
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лежит в некотором заданном интервале:

𝐶(𝜈, 𝑓(𝑧)) ∈ [𝑦𝑙, 𝑦
ℎ]. (1.25)

Функции 𝑓(𝑧) полагаются кусочно-линейными. Авторами предлагается метод ветвей и

границ и несколько эвристик. Приложения разработанных алгоритмов также представлены

в работе [102].

В работе [96] отмечается сложность задачи поиска экстремальных значений интеграла

Шоке, ввиду невыпуклости, в общем случае, целевой функции такой задачи. Авторы

предлагают использовать ограничиться вычислением приближенного решения, используя

для этого модификацию широко применяемых в задачах невыпуклой оптимизации

генетических алгоритмов. Рассматривается случай 2-аддитивной емкости (см. определение

в главе 2). Представлены также вычислительные примеры и сравнение эффективности

предложенной модификации с эффективностью стандартных генетических методов.

Отмечены вычислительные сложности при решении задач с количеством критериев более

пяти.

Следует также упомянуть некоторые работы, которые не рассматривают напрямую

задачу оптимизации интеграла Шоке, однако достаточно близки к ней. В работах [80] и

[116] рассматривается задача чувствительности интеграла, и решается проблема нахождения

наиболее эффективной стратегии улучшения, то есть стратегии, которая обеспечивала бы

достижение интегралом определенного значения при минимальном изменении значения

критериев. В работе [80] предлагается индекс, который может использоваться для

определения наиболее чувствительного критерия, а в работе [116] предложен подход,

основанный на кусочно-линейности интеграла Шоке, а именно разложении интеграла на

𝑛! линейных составляющих. Функции ценности в обоих статьях полагаются линейными.

Кроме того, в работе [109] рассматривается задача максимизации оператора WOWA,

который является частным случаем интеграла Шоке. Авторы полагают функции ценности

линейными и предлагают решение только для вогнутого случая, показывая, что задача

может быть сведена к задаче линейного программирования.

Наконец, автор в работах [131, 133] рассматривает задачу максимизации интеграла

Шоке без предположений о характере емкости, и для произвольных вогнутых функций

ценности, а также задачу робастного программирования, для случая, когда предпочтения

ЛПР не позволяют однозначно определить емкость 𝜈. Эти результаты более подробно

рассмотрены в последующих главах.
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1.7. Выводы из главы 1

В первой главе были рассмотрены следующие вопросы:

∙ Анализ задачи построения информационных систем и выделение ее основных

характеристик.

∙ Постановка задачи построения информационной системы как задачи многокритериаль­

ной оптимизации.

∙ Классификация и анализ основных методов решения задач многокритериальной

оптимизации.

∙ Рассмотрение традиционных моделей, используемых в задачах принятия решений и

анализ их недостатков.

∙ Применение интеграла Шоке в многокритериальных задачах принятия решений.

∙ Существующие методы оптимизации интеграла Шоке и их недостатки.

На основании проведенного анализа были сделаны следующие выводы

1. Задача построения информационной системы является многокритериальной задачей,

характеризующейся сложной взаимосвязью критериев, недостаточностью информации

о параметрах модели системы, и изменчивостью среды в которой проектируемая

система функционирует.

2. Модель такой системы, используемая для решения рассматриваемой задачи, должна

иметь функциональную возможность выражения разнообразных видов взаимодействия

между критериями, позволять получать устойчивое решение в условиях неточных

входных данных, а также обладать средствами качественного анализа и быть

вычислительно эффективной. В некоторых сценариях является желательным

возможность функционирования модели на основе заданного набора данных, то есть

без взаимодействия с ЛПР.

3. Анализ традиционных моделей, используемых в задачах принятия решений показал,

что независимость является слишком сильным свойством, которое не выполняется

в большом числе практических ситуаций. Ослабление данной аксиомы является

необходимым условием для построения корректных моделей в задачах принятия

решений.
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4. Интеграл Шоке позволяет отражать предпочтения нарушающие независимость. Его

применение существенно расширяет возможности решения многокритериальных задач,

позволяя моделировать разнообразные виды взаимодействия между критериями.

5. На текущий момент методы поиска экстремальных значений интеграла Шоке являются

областью, лишь незначительно представленной в литературе. Все они обладают

существенными ограничениями. Развитие данного направления и создание более

эффективных методов обладают как практической, так и теоретической ценностью.
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Глава 2

Методы оптимизации интеграла Шоке

2.1. Задача поиска максимума интеграла Шоке

2.1.1. Основные теоремы

Введем несколько дополнительных определений и теорем.

Определение 10. Емкость 𝜈 называется 𝑘-монотонной для некоторого 𝑘 ≥ 2, если для

всех семейств из 𝑘 подмножеств 𝐴1, . . . , 𝐴𝑘 выполняется

𝜈(
𝑘⋃︁

𝑖=1

𝐴𝑖) ≥
∑︁

∅≠𝐼⊂1,...,𝑘

(−1)|𝐼|+1𝜈(
⋂︁
𝑖∈𝐼

𝐴𝑖). (2.1)

Емкость называется полностью монотонной, если она 𝑘-монотонна для всех 𝑘 ≥ 2.

2-монотонная функция называется супермодулярной. В случае обратного неравенства

будем говорить о 𝑘-чередующейся емкости. 2-чередующаяся емкость называется

субмодулярной.

Ловас установил связь между свойствами емкости и выпуклостью интеграла Шоке.

Теорема 5 ([91]). Функция 𝜈 : 2𝑁 → 𝑅 является субмодулярной (супермодулярной)

тогда, и только тогда, когда ее расширение Ловаса (интеграл Шоке) является выпуклой

(соответственно вогнутой) на R.

Теорема 5 определяет связь между субмодулярностью емкости и выпуклостью

интеграла Шоке. Дополним данную теорему, расширив ее на случай, когда значения

интегрируемой функции сами являются функциями некоторых переменных, то есть

интегрируемая функция принимает значения {𝑓1(𝑧1), . . . , 𝑓𝑛(𝑧𝑛)}

Теорема 6. Интеграл Шоке 𝐶(𝜈, (𝑓1(𝑧1), . . . , 𝑓𝑛(𝑧𝑛))) по емкости 𝜈 : 2𝑁 → R является

выпуклым ( вогнутым ) на R𝑛, для всех возможных выпуклых(вогнутых) 𝑓𝑖(𝑧𝑖) тогда и

только тогда, когда емкость 𝜈 : 2𝑁 → R является субмодулярной (супермодулярной).

Доказательство. Согласно неравенству Дженсена:

𝐶(𝜈, 𝑓(𝜆1𝑧
1 + 𝜆2𝑧

2)) ≥ 𝐶(𝜈, 𝜆1𝑓(𝑧1) + 𝜆2𝑓(𝑧2)) ≥ 𝜆1𝐶(𝜈, 𝑓(𝑧1)) + 𝜆2𝐶(𝜈, 𝑓(𝑧2)). (2.2)

Первое неравенство выполняется ввиду вогнутости 𝑓𝑖(𝑧𝑖) и неубываемости интеграла

Шоке. Второе неравенство выполняется ввиду вогнутости самого интеграла. Очевидно, что
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второе неравенство выполняется для всех вогнутых функций 𝑓𝑖(𝑧𝑖) только тогда, когда

𝜈 2-монотонна. В противном случае, возможно подобрать 𝑓𝑖(𝑧𝑖) такие, что неравенство

будет нарушено (например линейные). Выпуклый/субмодулярный случай доказывается

аналогично.

Определение 11. Обращение Мебиуса емкости 𝜈 определяется следующим образом

𝑚𝜈(𝐴) =
∑︁
𝐵⊆𝐴

(−1)|𝐴∖𝐵|𝜈(𝐵). (2.3)

Представление интеграла Шоке с заменой емкости на ее обращение Мебиуса

𝐶(𝜈, 𝑓(𝑧)) =
∑︁
𝐴⊆𝑋

𝑚𝜈(𝐴)
⋀︁
𝑖∈𝐴

(𝑓𝑖(𝑧𝑖)). (2.4)

Такое представление позволяет сделать вывод о том, что интеграл Шоке является

непрерывной, недифференцируемой функцией переменных 𝑧1, . . . , 𝑧𝑛. Кроме того, в общем

случае, он не будет и вогнутым, поскольку некоторые из коэффициентов 𝑚𝜈 могут быть

отрицательны.

2.2. Выпуклый случай

2.2.1. Функции ценности

В дальнейшем будем предполагать, что функции ценности отвечают определенным

требованиям. В частности, функции 𝑓𝑖(𝑧𝑖) полагаются:

∙ вогнутыми на R;

∙ неубывающими на [0, 𝑧𝑖];

∙ 𝑓𝑖(0) = 0, 𝑓𝑖(𝑧𝑖) = 1, где 𝑧𝑖 - максимальное значение критерия 𝑖.

Из перечисленных требований следует, что 𝑓𝑖(𝑧𝑖) удовлетворяют условию Липшица на [0, 𝑧𝑖].

Этот факт может быть интерпретирован как невозможность бесконечного приращения

качества критерия в результате конечного вложения. Предположение вогнутости, конечно,

не является обоснованным во всех возможных приложениях, однако является уместным

в большинстве случаев (см. примеры в главе 3). Это ограничение было введено для

улучшения разрешимости модели, а также для связи ее с классическими приложениями

интеграла Шоке в многокритериальных задачах принятия решений (см. теоремы 5 и 6).

Кроме того, в практических приложениях можно использовать функции такие, что 𝑓𝑖(0) =
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0, lim𝑧𝑖→+∞ 𝑓𝑖(𝑧𝑖) = 1. В этом случае, функции удовлетворяют условию Липшица на любом

замкнутом интервале из R+. Семейство таких функций включает также функции вида

1 − 𝑒−𝛼𝑥, которые являются удобными в практическом применении, поскольку могут быть

параметризованы с помощью единственного параметра 𝛼. С другой стороны, для любого

𝜀 > 0 и 𝑧𝑖 найдется 𝛼 такое, что 1 − 𝑒−𝛼𝑧𝑖 < 𝜀, так что такие функции могут послужить в

качестве аппроксимаций функций ценности в предложенной модели(с конечным 𝑧𝑖).

Анализ методов решения задачи (1.20) начнем с рассмотрения более простого частного

случая, при котором емкость 𝜈 2-монотонна. Тогда, согласно теореме 6, интеграл Шоке

является вогнутой функцией на R𝑛.

2.2.2. Определение супердифференциала интеграла Шоке

Определение интеграла Шоке можно переписать в следующем виде:

𝐶(𝜈, (𝑔1, . . . , 𝑔𝑛)) =
𝑛∑︁

𝑖=1

𝑔(𝑖)(𝜈(𝑁(𝑖))− 𝜈(𝑁(𝑖+1))), (2.5)

где 𝑔(1), . . . , 𝑔(𝑛) перестановка элементов 𝑔1, . . . , 𝑔𝑛 такая, что 𝑔(1) ≤ 𝑔(2) ≤ . . . ≤ 𝑔(𝑛), а

𝑁(𝑖) = {(𝑖), . . . , (𝑛)}, 𝐺(𝑛+1) = ∅.

Благодаря такой форме записи, становится очевидным, что интеграл Шоке в каждой

точке 𝑧𝑘 ∈ R𝑛
+ представляет собой взвешенную сумму значений интегрируемой функции:

𝐶(𝜈, 𝑓(𝑧𝑘)) = 𝑝(1)𝑓(1)(𝑧
𝑘
(1)) + . . . + 𝑝(𝑛)𝑓(𝑛)(𝑧

𝑘
(𝑛)), (2.6)

где 𝑓(1)(𝑧𝑘(1)) ≤ . . . ≤ 𝑓(𝑛)(𝑧
𝑘
(𝑛)), а 𝑝(𝑖) = (𝜈(𝑁(𝑖))− 𝜈(𝑁(𝑖+1))).

Таким образом, суперградиент возможно определить следующим образом:

∇𝐶(𝜈, 𝑓(𝑧𝑘)) =

{︂
𝑝1
𝜕𝑓1(𝑧

𝑘
1 )

𝜕𝑧1
, . . . , 𝑝𝑛

𝜕𝑓𝑛(𝑧𝑘𝑛)

𝜕𝑧𝑛

}︂
, (2.7)

где 𝑝𝑖 = (𝜈(𝑁(𝑖)) − 𝜈(𝑁(𝑖+1))). В точках, отличных от точек “излома”, то есть точек

равенства каких либо координат 𝑓𝑖(𝑧𝑖) = 𝑓𝑗(𝑧𝑗), 𝑖 ̸= 𝑗, супердифференциал будет

определяться единственным образом, то есть функция будет дифференцируема при условии

дифференцируемости всех функций 𝑓𝑖(𝑧𝑖). В точках “излома”, супердифференциал можно

охарактеризовать следующим образом.

Теорема 7. Супердифференциал интеграла Шоке 𝐶(𝜈, 𝑓(𝑧)) в некоторой точке 𝑧𝑘 =

{𝑧𝑘1 , . . . , 𝑧𝑘𝑛} такой, что 𝑓𝑖(𝑧
𝑘
𝑖 ) = 𝑓𝑗(𝑧

𝑘
𝑗 ), 𝑖 ̸= 𝑗 для некоторых 𝑖, 𝑗 ∈ 1, . . . , 𝑛, равняется

выпуклой оболочке, натянутой на множество суперградиентов, образованных всеми

возможными в этой точке перестановками 𝑓(1)(𝑧
𝑘
(1)) ≤ . . . ≤ 𝑓(𝑛)(𝑧

𝑘
(𝑛)).
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Для доказательства данной теоремы приведем несколько вспомогательных результатов.

Определение 12. Ядром емкости 𝜈 называется множество аддитивных мер 𝑝 таких,

что

Core(𝜈) = {𝑝 : 𝑝(𝐴) > 𝜈(𝐴), ∀𝐴 ∈ 2𝑁 , 𝑝(𝑁) = 𝜈(𝑁)}. (2.8)

Теорема 8 ([118]). Интеграл Шоке относительно 2-монотонной емкости можно

представить в следующем виде:

𝐶(𝜈, 𝑓(𝑧)) = min
𝑝∈Core(𝜈)

⟨𝑝, 𝑓(𝑧)⟩. (2.9)

Доказательство теоремы 7. Для того чтобы доказать утверждение теоремы, достаточно

заметить, что в точке 𝑧𝑘 минимизирующие вектора 𝑝 из условий теоремы 8 могут быть

найдены как 𝑝(𝑖) = (𝜈(𝑁(𝑖)) − 𝜈(𝑁(𝑖+1))), где 𝑁(𝑖) = {(𝑖), . . . , (𝑛)}, а 𝑓(1)(𝑧
𝑘
(1)) ≤ . . . ≤ 𝑓(𝑛)(𝑧

𝑘
(𝑛))

[91]. В случае равенства значений 𝑓𝑖(𝑧
𝑘
𝑖 ) = 𝑓𝑗(𝑧

𝑘
𝑗 ), 𝑖 ̸= 𝑗 для некоторых 𝑖, 𝑗 ∈ 1, . . . , 𝑛,

перестановка определяется не уникально, следовательно таких векторов будет несколько.

Интеграл, таким образом, будет равен

𝐶(𝜈, 𝑓(𝑧𝑘)) = min⟨𝑝𝑖, 𝑓(𝑧𝑘)⟩, (2.10)

где 𝑝𝑖 - вектора, соответствующие всем возможным перестановкам в точке 𝑧𝑘. Таким образом

([10]),

𝜕𝐶(𝜈, 𝑓(𝑧𝑘)) = Co{
⋃︁
𝑖

𝜕⟨𝑝𝑖, 𝑓(𝑧𝑘)⟩}. (2.11)

2.2.3. Максимизация интеграла Шоке методом проекции суперградиента

Одним из простейших методов максимизации недифференцируемых функций является

метод проекции суперградиента [2]. Рассмотрим следующий вид задачи (1.20):

𝐶(𝜈, (𝑓1(𝑧1), . . . , 𝑓𝑛(𝑧𝑛))) → max
𝑧

𝑧 ∈ 𝒵0

𝑔𝑖(𝑧) ≤ 0, 𝑖 = 1, . . . ,𝑚,

(2.12)

где 𝑔𝑖(𝑧) некоторые выпуклые на 𝒵0 функции, удовлетворяющие условию Липшица.

Минимизирующая последовательность точек строится следующим образом:

𝑧𝑘+1 = 𝒫(𝑧𝑘 + 𝛼𝑘𝑐𝑘), (2.13)
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где 𝛼𝑘 > 0, а

𝑐𝑘 ∈

⎧⎪⎨⎪⎩𝜕𝐶(𝜈, 𝑓(𝑧)), 𝑔𝑖(𝑧𝑘) ≤ 0, 𝑖 = 1, . . . ,𝑚

𝜕𝑔(𝑧𝑘), 𝑔(𝑧𝑘) = max𝑖=1,...,𝑚(𝑔𝑖(𝑧
𝑘) : 𝑔𝑖(𝑧

𝑘) > 0, 𝑖 = 1, . . . ,𝑚).

𝑘 = 1, 2, . . . (2.14)

𝒫(𝑧𝑘 + 𝛼𝑘𝑐𝑘) - точка множества 𝒵0 ближайшая от точки 𝑧𝑘 + 𝛼𝑘𝑐𝑘 , то есть проекция точки

𝑧𝑘 + 𝛼𝑘𝑐𝑘 на множество 𝒵0.

Таким образом, суперградиент выбирается в зависимости от допустимости точки 𝑧𝑘.

Если точка допустима, то выбираем суперградиент целевой функции, то есть движемся в

направлении роста функции. Если же точка не допустима, используем суперградиент любой

из функций ограничений, то есть двигаемся в сторону допустимой области.

𝛼𝑘 выбирается, например, по следующему правилу [2]:

𝛼𝑘 > 0, 𝑘 = 0, 1, . . . ,
∞∑︁
𝑘=0

𝛼1+𝛾
𝑘 =∞,

∞∑︁
𝑘=0

𝛼2
𝑘 <∞, 0 > 𝛾 > 1. (2.15)

Например, 𝛼𝑘 = 𝐶(𝑘 + 1)−𝛼, 𝛼 ∈ (0.5, (1 + 𝛾)−1], 𝐶 = 𝑐𝑜𝑛𝑠𝑡. В численном примере ниже

используется 𝛼𝑘 = (𝑘 + 1)−3/5. Алгоритм максимизации приведен на рисунке 2.1.

2.2.4. Сходимость метода проекции суперградиента для интеграла Шоке

Ниже представлена общая формулировка теоремы о сходимости метода, и проясняются

некоторые особенности, возникающие в контексте анализируемой проблемы.

Теорема 9 ([2]). Пусть 𝒵0 - замкнутое выпуклое множество в R𝑛, 𝐶(𝜈, 𝑓(𝑧)), 𝑔𝑖(𝑧)

определены и выпуклы на некотором открытом выпуклом множестве 𝑊 таком, что

𝒵0 ⊂ 𝑊 (например, 𝑊 = R𝑛). Положим max𝒵0 𝐶(𝜈, 𝑓(𝑧)) = 𝐶*(𝜈, 𝑓(𝑧)) < ∞, а 𝒵* ⊂ 𝒵0

- множество оптимальных точек, непусто и ограничено. Также, положим

sup
𝑧∈𝒵0

sup
𝑐∈𝜕𝐶(𝜈,𝑓(𝑧))∪𝜕𝑔(𝑧)

‖𝑐‖ = 𝐴 ≤ ∞. (2.16)

Тогда последовательность {𝑧𝑘}, определяемая как (2.13),(2.14),(2.15) такова, что

lim
𝑘→∞

𝐶(𝜈, 𝑓(𝑧𝑘)) = 𝐶*(𝜈, 𝑓(𝑧)), lim
𝑘→∞

𝜌(𝑧𝑘,𝒵*) = 0, (2.17)

где 𝜌 - функция расстояния. Альтернативные формулировки данной теоремы могут

быть найдены в [4, 16, 108, 122].

Для выполнения условий Теоремы 9 необходимо показать, что супердифференциал

𝐶(𝜈, 𝑓(𝑧)) ограничен и непуст всюду на 𝒵0. Согласно сделанным ранее предположениям,

функции 𝑓𝑖(𝑧𝑖) таковы, что
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Input: 𝑧0, 𝑓 = 0, 𝑧 = 0, MAXITER

repeat

if 𝐶(𝜈, 𝑓(𝑧𝑘)) > 𝑓 then

𝑓 = 𝐶(𝜈, 𝑓(𝑧𝑘)), 𝑧 = 𝑧𝑘

end

if 𝑔𝑖(𝑧
𝑘) ≤ 0, 𝑖 = 1, . . . ,𝑚 then

if 0 ∈ 𝜕𝐶(𝜈, 𝑓(𝑧𝑘)) then

STOP!

return 𝑧𝑘

end

else

𝑐𝑘 ∈ 𝜕𝐶(𝜈, 𝑓(𝑧𝑘))

end

end

else

𝑐𝑘 ∈ 𝜕𝑔(𝑧𝑘)

end

𝛼𝑘 = (𝑘 + 1)−3/5

𝑧𝑘+1 = 𝒫(𝑧𝑘 + 𝛼𝑘𝑐𝑘)

𝑘 = 𝑘 + 1

until k=MAXITER

return 𝑧, 𝑓

Рис. 2.1. Метод проекции суперградиента

∙ 𝑓𝑖(𝑧𝑖) вогнуты на R;

∙ 𝑓𝑖(0) = 0, 𝑓𝑖(𝑧𝑖) = 1, где 𝑧𝑖 - максимальное значение критерия 𝑖.

Это означает, что 𝜕𝑓𝑖(𝑧𝑖) представляет собой непустое ограниченное множество в каждой

внутренней точке R [108] и, в частности, на [0, 𝑧𝑖]. Следовательно, согласно (2.11),(2.7)

супердифференциал интеграла Шоке также ограничен на 𝒵0.

Отметим, что согласно условиям теоремы, целевая функция должна быть определена на

некотором открытом множестве 𝑊 : 𝒵0 ⊂ 𝑊 . Однако, данное ранее определение интеграла

Шоке предполагает неотрицательность 𝑓𝑖(𝑧𝑖). Это ограничение является несущественным,
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поскольку алгоритм вычисляет значения функции и суперградиента только в точках

принадлежащих 𝒵0 (т.е. после проекции).

2.2.5. Пример решения задачи максимизации интеграла Шоке с помощью

метода проекции суперградиента

Рассмотрим пример максимизации интеграла. Функции полезности заданы следующим

образом:

𝑓1 = 1− 𝑒−3𝑧1 , 𝑓2 = 1− 𝑒−2𝑧2 , 𝑓3 = 1− 𝑒−8𝑧3 . (2.18)

Значения емкости приводятся в Табл. 2.1.

Таблица 2.1. Значения емкости

𝑧1 𝑧2 𝑧3 𝑧1, 𝑧2 𝑧1, 𝑧3 𝑧2, 𝑧3 𝑧1, 𝑧2, 𝑧3

𝜈 0.2 0.2 0.4 0.5 0.6 0.7 1

Область 𝒵0 представляет собой симплекс 𝑧1 + 𝑧2 + 𝑧3 = 1, 𝑧 ≥ 0, проекция любой точки

на который может быть эффективно вычислена [50]. Таким образом,

𝐶(𝜈, 𝑓(𝑧)) → max
𝑧

𝑧1 + 𝑧2 + 𝑧3 = 1

𝑧 ≥ 0.

(2.19)

Положим 𝑧0 = [0.3, 0.2, 0.5], то есть 𝑓2(𝑧2) ≤ 𝑓1(𝑧1) ≤ 𝑓3(𝑧3). Суперградиент вычисляется

следующим образом:

∇𝐶(𝜈, (𝑓1(𝑧
0
1), 𝑓2(𝑧

0
2), 𝑓3(𝑧

0
3))) ={(𝜈({𝑧1, 𝑧3})− 𝜈({𝑧3}))3𝑒−3𝑧01 ,

(𝜈({𝑧1, 𝑧2, 𝑧3})− 𝜈({𝑧1, 𝑧3}))2𝑒−2𝑧02 ,

𝜈({𝑧3})8𝑒−8𝑧03} =

{0.2 * 3𝑒−3𝑧01 , 0.4 * 2𝑒−2𝑧02 , 0.4 * 8𝑒−8𝑧03}.

(2.20)

Вычисление проекции точки 𝑧𝑘 на симплекс 𝒵0 возможно произвести следующим образом:

сначала находится проекция 𝑧𝑝 на плоскость 𝑧1 + 𝑧2 + 𝑧3 = 1. Для этого необходимо решить⎡⎢⎢⎢⎣
1 1 1

1 −1 0

0 1 −1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑧𝑝1

𝑧𝑝2

𝑧𝑝3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1

𝑧𝑘1 − 𝑧𝑘2

𝑧𝑘2 − 𝑧𝑘3

⎤⎥⎥⎥⎦ . (2.21)
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Далее, вычисляется 𝒫(𝑧𝑘)𝑖 =
𝑧𝑞𝑖∑︀𝑁
𝑖=1 𝑧

𝑞
𝑖

, где 𝑧𝑞𝑖 = 𝑚𝑎𝑥(𝑧𝑝𝑖 , 0)1.

В результате запуска алгоритма было получено следующее оптимальное значение

𝑧* = {0.28281518, 0.42444627, 0.29273855}, 𝐶(𝜈, 𝑓(𝑧*)) = 0.704751890663. Скорость сходимости

приведена на Рис. 2.2.
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Рис. 2.2. Сходимость метода проекции суперградиента

2.3. Невыпуклый случай

Рассмотрим теперь общий случай задачи (1.20). В отсутствие 2-монотонности емкости

𝜈 задача становится существенно более сложной ввиду невыпуклости целевой функции.

Помимо применения универсальных алгоритмов глобальной оптимизации, в данной

задаче возможно использовать “комбинаторный” аспект интеграла Шоке. Основной идей

предложенного далее метода является разложение интеграла на вогнутые составляющие,

максимум каждой из которых ищется независимо. Целью является получение следующего

представления:

𝐶(𝜈, 𝑓(𝑧)) =
⋁︁
𝑖

𝐶(𝛽𝑇𝑖 , 𝑓(𝑧)), (2.22)

где 𝜈 - исходная емкость, а 𝛽𝑇𝑖 - 2-монотонные емкости, соответствующие некоторым

множествам 𝑇𝑖. Эти множества образуют разбиение пространства переменных (т.е. R𝑛)

такое, что интеграл является вогнутым в пределах каждого множества. Кроме того,

мы заинтересованы в том, чтобы число таких множеств было минимально. Основными

результатами данного раздела являются:

1 В практической реализации использовался алгоритм, предложенный в [50]
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∙ метод разбиения множества R𝑛 на подмножества 𝑇𝑖 такие, что 𝐶(𝜈, 𝑓(𝑧)) вогнут внутри

каждого подмножества;

∙ метод разложения емкости 𝜈 на множество емкостей 𝛽𝑇𝑖 , биективно соответствующих

множествам 𝑇𝑖, причем 𝐶(𝜈, 𝑓(𝑧)) =
⋁︀

𝑖 𝐶(𝛽𝑇𝑖 , 𝑓(𝑧)) и 𝐶(𝜈, 𝑓(𝑧)) = 𝐶(𝛽𝑇𝑖 , 𝑓(𝑧)) внутри

каждого множества 𝑇𝑖;

∙ доказательство полной монотонности емкостей 𝛽𝑇𝑖 ;

∙ доказательство минимальности разложения для класса 2-аддитивных емкостей.

2.3.1. Разбиение пространства переменных

Один метод разбиения пространства переменных, при котором интеграл является

вогнутым в пределах каждого из элементов разбиения, хорошо известен. Напомним, что

в каждой точке 𝑧 ∈ R𝑛
+ интеграл представляет собой взвешенную сумму значений

интегрируемой функции:

𝐶(𝜈, 𝑓1(𝑧1), . . . , 𝑓𝑛(𝑧𝑛)) = 𝑝1𝑓1(𝑧1) + . . . + 𝑝𝑛𝑓𝑛(𝑧𝑛), (2.23)

где 𝑝(𝑖) = (𝜈(𝑁(𝑖)) − 𝜈(𝑁(𝑖+1))). Из монотонности емкости 𝜈 следует, что все разности

(𝜈(𝑁(𝑖)) − 𝜈(𝑁(𝑖+1))) неотрицательны. Следовательно, интеграл вогнут в пределах областей,

определяемых неравенствами (перестановками) 𝑓(1)(𝑧(1)) 6 . . . 6 𝑓(𝑛)(𝑧(𝑛)). Впрочем, такое

разбиение обладает двумя серьезными недостатками. Во-первых, число элементов разбиения

равняется 𝑛!, а во-вторых, эти элементы могут быть невыпуклыми при условии нелинейных

𝑓𝑖(𝑧𝑖).

Предложенная схема разбиения может быть улучшена, если заметить, что в некоторых

случаях интеграл не теряет вогнутости и на множествах (“кластерах”) составленных

путем объединения подмножеств, соответствующих единичным перестановкам. Размер

и расположение данных кластеров определяются исключительно свойствами емкости

𝜈. На Рис. 2.3 и 2.4 представлены два примера возможных ситуаций для случая

с тремя переменными (т.е. |𝑁 | = 3). 2 Предельными случаями являются случай с

единственным кластером, что соответствует 2-монотонной емкости, то есть выпуклому

случаю, рассмотренному в разделе 2.2, и полное отсутствие кластеров, то есть 𝑛!

2 На рисунке изображены поверхности уровня интеграла Шоке. Допустимой областью является

симплекс 𝒵0 = {𝑧|𝑧1 + 𝑧2 + 𝑧3 = 1}. Область графика соответствует проекции множества 𝒵0 на плоскость

0𝑧1𝑧2. Таким образом, оси соответствуют переменным 𝑧1 и 𝑧2, в то время как 𝑧3 = 1 − 𝑧1 − 𝑧2. Кроме того,

𝑓1 = 𝑓2 = 𝑓3.
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кластеров, каждый из которых включает лишь одно подмножество, соответствующее

некоторой перестановке. При условии выпуклости кластеров, локальные максимумы

внутри каждого из них могут быть найдены с помощью быстрых методов выпуклой

оптимизации. Следовательно, при условии, что число кластеров не слишком велико,

существует возможность существенно снизить время поиска глобального максимума (этот

вопрос более детально рассмотрен далее).
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Рис. 2.3. Три выпуклых кластера

0.0 0.2 0.4 0.6 0.8 1.0
z1

0.0

0.2

0.4

0.6

0.8

1.0

z 2

Рис. 2.4. Шесть выпуклых кластеров

Как было отмечено ранее, интеграл может быть представлен в следующем виде:3

𝐶(𝜈, 𝑓) =
∑︁
𝐴⊆𝑁

𝑚𝜈(𝐴)
⋀︁
𝑖∈𝐴

𝑓𝑖. (2.24)

Важным свойством полностью монотонных мер является неотрицательность коэффициентов

их обращения Мебиуса, 𝑚𝜈(𝐴) ≥ 0,∀𝐴 ⊂ 𝑁 . Это свойство позволяет построить алгоритм,

представленный на Рис. 2.5,2.6,2.7. Основной идей алгоритма является поиск негативных

коэффициентов 𝑚𝜈(𝐴) обращения Мебиуса, и их устранение. Для этого выполняются

следующие шаги:

1. Поиск наименьшего множества 𝐴 такого, что 𝑚𝜈(𝐴) < 0.

2. Для каждого 𝑖 ∈ 𝐴 формируются множества 𝑇𝑖 = 𝑇 0
𝑖 ∩ (

⋂︀
𝑗(𝑓𝑖 < 𝑓𝑗)), 𝑗 ∈ 𝐴 ∖ 𝑖, где

𝑇 0
𝑖 - множества полученные на предыдущей итерации (т.е. на каждом шаге алгоритма

создается более мелкое разбиение).

3 Для упрощения нотации, в этом разделе будем писать 𝑓𝑖 вместо 𝑓𝑖(𝑧𝑖)
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3. Выражение (2.24) преобразуется путем упрощения выражений
⋀︀

𝑖∈𝐴 𝑓𝑖 согласно

определению каждого из полученных множеств 𝑇𝑖.

4. Шаги 1-3 повторяются до тех пор, пока все негативные коэффициенты 𝑚 не будут

устранены.

Отметим использование более сильного отношения “<” в пункте “2”. Это необходимо

для упрощения последующих определений и теорем путем ухода от неопределенности

в упрощении членов
⋀︀

𝑖∈𝐴 𝑓𝑖 выражения (2.24). Поскольку значения интеграла для двух

смежных подмножеств совпадают в точках где 𝑓𝑖 = 𝑓𝑗, то есть:

𝐶(𝜈, (𝑓(1), . . . , 𝑓(𝑖), 𝑓(𝑖+1), . . . , 𝑓(𝑛))) = 𝐶(𝜈, (𝑓(1), . . . , 𝑓(𝑖+1), 𝑓(𝑖), . . . , 𝑓(𝑛))) (2.25)

для всех 𝑓(𝑖) = 𝑓(𝑖+1), такая замена не приводит к потере информации, а элементы разбиения

𝑇𝑖 могут быть впоследствии тривиально расширены, так что их объединение будет равняться

R𝑛.

Input: Results = [ ] // Массив результатов (глобальная переменная)

Input: 𝑇 = ∅ // Ограничения 𝑓𝑖 < 𝑓𝑗

𝑆 = MinNegSet(𝑚)

if 𝑆 ̸= NULL then
Split(𝑚,𝑇, 𝑆)

end

Рис. 2.5. Разбиение емкости

Функция Split(𝑚,𝑇, 𝑆), представленная на Рис. 2.6, рассчитывает коэффициенты

“сокращенных” емкостей (см. далее).

Для множества пар 𝑓𝑖 < 𝑓𝑗, 𝑖, 𝑗 = 1, . . . , 𝑘, функция Closure(𝑇 ) находит все

пары, которые следуют из транзитивности отношения “<”. 4 Функция MinNegSet(𝑚),

представленная на Рис. 2.7, осуществляет поиск наименьшего подмножества 𝑁 имеющего

отрицательный коэффициент в обращении Мебиуса.

Рассмотрим следующий пример. Допустим, интеграл задан как

0.1𝑓1 + 0.1𝑓2 + 0.1𝑓3 + 0.6(𝑓1 ∧ 𝑓2) + 0.6(𝑓1 ∧ 𝑓3) + 0.6(𝑓2 ∧ 𝑓3)− 1.1(𝑓1 ∧ 𝑓2 ∧ 𝑓3). (2.26)

4 Это необходимо, поскольку в численных алгоритмах транзитивность, очевидно, не обеспечивается

“автоматически”. В практической реализации был использован алгоритм Floyd-Warshall (см., например, [78]).

Кроме того, ограничения 𝑓𝑖 < 𝑓𝑗 удобно хранить в виде пар (𝑖, 𝑗).
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begin Split(m,T,S) // Функция расчета п.м. “сокращенных” емкостей

for 𝑖 ∈ 𝑆 do

𝑇 =
⋃︀

𝑅∈𝑇{𝑅 ∩
⋂︀

𝑗(𝑓𝑖 < 𝑓𝑗), 𝑗 ∈ 𝑆 ∖ 𝑖} // 𝑓𝑖 < 𝑓𝑗

𝑇 = Closure(𝑇)

𝑚𝑇 = Reduced(𝑚,𝑇)

𝑆 = MinNegSet(𝑚𝑇)

if 𝑆 ̸= NULL then

Split(𝑚𝑇 , 𝑇, 𝑆) // Рекурсивный вызов

end

else

Results ← 𝑚𝑇 , 𝑇 // Сохранить емкость и множество

end

end

end

Рис. 2.6. Расчет сокращенных емкостей

begin MinNegSet(m) // Поиск наименьшего 𝐴 : 𝑚𝜈(𝐴) < 0

for 𝑖 ∈ 2, . . . , 𝑛 do

for 𝐴 ⊂ 𝑁, |𝐴| == 𝑖 do

if 𝑚𝜈(𝐴) < 0 then

return 𝑆

end

end

end

return NULL

end

Рис. 2.7. Поиск негативных коэффициентов

Выражение содержит элемент с негативным коэффициентом: 𝑚𝜈({1, 2, 3}) = −1.1 < 0. Для

его устранения алгоритм формирует множества (𝑓1 < 𝑓2) ∩ (𝑓1 < 𝑓3), (𝑓2 < 𝑓1) ∩ (𝑓2 < 𝑓3),

(𝑓3 < 𝑓1) ∩ (𝑓3 < 𝑓2), которые позволяют преобразовать выражение(2.26):

∙ 𝜈𝑇1 : 0.2𝑓1 + 0.1𝑓2 + 0.1𝑓3 + 0.6(𝑓2 ∧ 𝑓3) ∼ 𝑓1 < 𝑓2, 𝑓1 < 𝑓3;
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∙ 𝜈𝑇2 : 0.1𝑓1 + 0.2𝑓2 + 0.1𝑓3 + 0.6(𝑓1 ∧ 𝑓3) ∼ 𝑓2 < 𝑓1, 𝑓2 < 𝑓3;

∙ 𝜈𝑇3 : 0.1𝑓1 + 0.1𝑓2 + 0.2𝑓3 + 0.6(𝑓1 ∧ 𝑓2) ∼ 𝑓3 < 𝑓1, 𝑓3 < 𝑓2.

Отметим, что каждое из полученных выражений может рассматриваться как интеграл Шоке

по некоторой новой емкости 𝜈𝑇𝑖 . На Рис. 2.6 формирование этой емкости производится

функцией Reduced(𝑚,𝑇 ).

В следующих определениях и теоремах для множества 𝑇 , образованного как пересечение

открытых гиперплоскостей вида 𝑓𝑖 < 𝑓𝑗, 𝑖, 𝑗 ∈ 𝑁 , будем обозначать как 𝑁2
𝑇 множество

упорядоченных пар (𝑖, 𝑗) таких, что (𝑖, 𝑗) ∈ 𝑁 ×𝑁 , и 𝑇 =
⋂︀

(𝑖,𝑗)∈𝑁2
𝑇
(𝑓𝑖 < 𝑓𝑗).

Определение 13 (Reduced(𝑚,𝑇 )). Для множества 𝑇 =
⋂︀

(𝑖,𝑗)∈𝑁2
𝑇
(𝑓𝑖 < 𝑓𝑗) ̸= ∅, определим

сокращенную емкость 𝜈𝑇 как:

𝑚𝑇 (𝐴) =

⎧⎪⎪⎨⎪⎪⎩
0, ∃(𝑖, 𝑗) ∈ 𝑁2

𝑇 : 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐴∑︀
𝐵⊂{𝑗|𝑖∈𝐴,𝑗 /∈𝐴,(𝑖,𝑗)∈𝑁2

𝑇 }
𝑚𝜈(𝐴 ∪𝐵) @(𝑖, 𝑗) ∈ 𝑁2

𝑇 : 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐴.
(2.27)

Теорема 10. 𝐶(𝜈, 𝑓) = 𝐶(𝜈𝑇 , 𝑓) для всех 𝑓 ∈ 𝑇 .

Доказательство. Для доказательства теоремы достаточно посмотреть на представление

интеграла Шоке через обращение Мебиуса:

𝐶(𝜈, 𝑓) =
∑︁
𝐴⊆𝑁

𝑚𝜈(𝐴)
⋀︁
𝑖∈𝐴

𝑓𝑖, (2.28)

где 𝑚𝜈 : 2𝑁 → R - обращение Мебиуса емкости 𝜈. В точке 𝑓 ∈ 𝑇 , где 𝑇 =
⋂︀

(𝑖,𝑗)∈𝑁2
𝑇
(𝑓𝑖 < 𝑓𝑖)

преобразуем правую часть (2.28) упростив выражения вида
⋀︀

𝑖∈𝐴 𝑓𝑖 с помощью определения

множества 𝑇 . Получаемые коэффициенты 𝑚𝑇 (𝐴) даны в (2.27).

На данном этапе получено требуемое разбиение в пространстве переменных.

Однако, как было указано ранее, элементы разбиения - 𝑇𝑖, могут быть невыпуклыми.

Получаемые в результате “сокращенные” емкости 𝜈𝑇𝑖 полностью монотонны, но не

образуют дизъюнктивного разложения исходной емкости, и, следовательно, не могут быть

использованы для решения (1.20). В частности, невозможно произвести максимизацию

интегралов по каждой из емкостей 𝜈𝑇𝑖 на всем допустимом множестве 𝒵0 и выбрать затем

наибольший результат, поскольку соотношение между 𝐶(𝜈𝑇𝑖 , 𝑓) и 𝐶(𝜈, 𝑓) известно только на

соответствующих множествах 𝑇𝑖, но не в остальных точках пространства. Таким образом, в

принципе, возможна ситуация при которой значение 𝐶(𝜈𝑇𝑖 , 𝑓) превышает значение исходного

интеграла. Несмотря на это, емкости 𝜈𝑇𝐼 имеют большое значение, как будет показано далее.
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2.3.2. Дизъюнктивное разложение емкости

С учетом результатов, полученных в предыдущем разделе, желательным является

нахождение множества емкостей, которые позволили бы представить интеграл в следующем

виде:

𝐶(𝜈, 𝑓) =
⋁︁
𝑖

𝐶(𝛽𝑇𝑖 , 𝑓), (2.29)

где 𝛽𝑇𝑖 - полностью монотонные емкости соотносящиеся с множеством найденных

подмножеств 𝑇𝑖. Для получения этого результата используем биекцию между тремя

множествами мощности 𝑛!:

∙ перестановки 𝑓(1) ≤ · · · ≤ 𝑓(𝑛);

∙ максимальные цепи ∅ ⊂ 𝑌1 ⊂ · · · ⊂ 𝑌𝑛 = 𝑁 ;

∙ меры необходимости 𝒩𝑖 : 2𝑁 → [0, 1] такие, что 𝜈 =
⋁︀𝑛!

𝑖=1𝒩𝑖.

Определение 14 ([49]). Мерой необходимости называется полностью монотонная

емкость, коэффициенты преобразования Мебиуса которой отличны от нуля только на

элементах некоторой максимальной цепи ∅ ⊂ 𝑌1 ⊂ · · · ⊂ 𝑌𝑛 = 𝑁 .

Дизъюнктивное разложение произвольной емкости на 𝑛! мер необходимости было

предложено в работе [45]. Эти емкости определяются следующим образом:

𝑚𝒩 (𝐴) =

⎧⎪⎨⎪⎩0, 𝐴 /∈ 𝒞

𝜈(𝑌𝑖)− 𝜈(𝑌𝑖−1), 𝐴 = 𝑌𝑖 ∈ 𝒞,
(2.30)

где 𝒞 = {∅ ⊂ 𝑌1 ⊂ · · · ⊂ 𝑌𝑛 = 𝑁} - максимальная цепь. При этом,

𝒩 (𝐴) =

⎧⎪⎨⎪⎩𝜈(𝐴), 𝐴 ∈ 𝒞⋁︀
𝐵(𝐴,𝐵∈𝒞 𝜈(𝐵), 𝐴 /∈ 𝒞.

(2.31)

Кроме того, 𝐶(𝜈, 𝑓) =
⋁︀

𝑖 𝐶(𝒩𝑖, 𝑓) где 𝒩𝑖 принадлежит множеству всех мер необходимости

заданных в (2.31).

Расширим это определение на объединения нескольких цепей или, согласно биекции,

нескольких подмножеств, соответствующих перестановкам 𝑓(1)(𝑧(1)) ≤ · · · ≤ 𝑓(𝑛)(𝑧(𝑛)). Будем

называть такие емкости 𝛽𝑇 -мерами.

Определение 15. Для некоторого множества 𝑇 =
⋂︀

(𝑖,𝑗)∈𝑁2
𝑇
(𝑓𝑖 < 𝑓𝑗) ̸= ∅ 𝛽𝑇 -мера

определяется следующим образом:

𝛽𝑇 (𝐴) =

⎧⎪⎪⎨⎪⎪⎩
⋁︀

𝐵(𝐴

𝛽𝑇 (𝐵), ∃(𝑖, 𝑗) ∈ 𝑁2
𝑇 : 𝑖 ∈ 𝐴, 𝑗 /∈ 𝐴

𝜈(𝐴), в противном случае.

(2.32)
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Теорема 11 (Свойства 𝛽𝑇 -мер).

1. Для множества 𝑇𝑖 соответствующего перестановке 𝐿𝑖, 𝛽
𝑇𝑖-мера совпадает с мерой

необходимости, определенной в (2.30).

2. Пусть 𝒞1 и 𝒞2 - две максимальные цепи, соответствующие множествам 𝑇1 и 𝑇2,

и мерам необходимости 𝒩1 и 𝒩2. Тогда, 𝛽𝑇12-мера, соответствующая множеству

𝑇12 = 𝑇1 ∪ 𝑇2 может быть вычислена как :

𝛽𝑇12(𝐴) = 𝒩1(𝐴) ∨𝒩2(𝐴), ∀𝐴 ⊂ 𝑁. (2.33)

3. Для некоторого разбиения 5
⋃︀

𝑖 𝑇𝑖 = R𝑛, где множества 𝑇𝑖 являются объединениями

некоторых подмножеств соответствующих единичным перестановкам 𝜈(𝐴) =⋁︀
𝑖 𝛽

𝑇𝑖(𝐴), ∀𝐴 ⊂ 𝑁 .

4. Соотношение с интегралом по 𝜈:

𝐶(𝜈, 𝑓) = 𝐶(𝛽𝑇 , 𝑓), 𝑓 ∈ 𝑇

𝐶(𝜈, 𝑓) ≥ 𝐶(𝛽𝑇 , 𝑓), 𝑓 ̸∈ 𝑇.
(2.34)

Доказательство. Свойства 1 и 2 следуют непосредственно из определения (2.32) (см. также

(2.31)), а 3 и 4 могут быть легко получены из первых двух. Кроме того, см. доказательство

Теоремы 12.

Теорема 12. Коэффициенты обращения Мебиуса емкости 𝛽𝑇 , где 𝑇 =
⋂︀

(𝑖,𝑗)∈𝑁2
𝑇
(𝑓𝑖 < 𝑓𝑗)

могут быть получены как:

𝑚𝛽(𝐴) =

⎧⎪⎪⎨⎪⎪⎩
0, ∃(𝑖, 𝑗 ∈ 𝑁2

𝑇 ) : 𝑖 ∈ 𝐴, 𝑗 /∈ 𝐴∑︀
𝐵⊂{𝑗|𝑖∈𝐴,𝑗∈𝐴,(𝑖,𝑗)∈𝑁2

𝑇 }
𝑚𝜈(𝐴 ∖𝐵), @(𝑖, 𝑗) ∈ 𝑁2

𝑇 : 𝑖 ∈ 𝐴, 𝑗 /∈ 𝐴.
(2.35)

Доказательство. См. раздел 2.3.4.

Теорема 13. Если для некоторого множества 𝑇 =
⋂︀

(𝑖,𝑗)∈𝑁2
𝑇
(𝑓𝑖 < 𝑓𝑗) сокращенная емкость

𝜈𝑇 полностью монотонна, то таковой является и 𝛽𝑇 .

Доказательство. См. раздел 2.3.4.
5 для того чтобы равенство выполнялось, необходимо расширить множества 𝑇𝑖 путем обратной замены

“<” на “≤”
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2.3.3. Минимальность разложения

2-аддитивный случай

В этом разделе будет доказана минимальность разложения, а также охарактеризована

число элементов в таком разложении для определенного класса емкостей.

Определение 16 ([61]). Емкость 𝜈 называется 𝑘-аддитивной, если для коэффициентов

ее обращения Мебиуса выполняется 𝑚𝜈(𝐴) = 0 для всех 𝐴 ⊂ 𝑁, |𝐴| > 𝑘, и существует

𝐴 ⊂ 𝑁, |𝐴| = 𝑘 такое, что 𝑚𝜈(𝐴) ̸= 0.

Для практических задач хорошим балансом между сложностью и удобством

использования являются 2-аддитивные емкости [61]. Такие емкости позволяют моделировать

взаимодействие в парах критериев, в то же время значительно упрощая процесс описания

модели. Упрощение происходит ввиду того, что 2-аддитивную модель возможно полностью

определить с помощью всего лишь 𝑛+ 𝑛(𝑛−1)
2

значений обращения Мебиуса, вместо обычных

2𝑛 − 1. Отметим, что для 2-аддитивных емкостей полная монотонность эквивалентна

2-монотонности.

На Рис. 2.8 приведена схема построения разбиения полученная в разделах 2.3.1,2.3.2.

1. Построить разбиение пространства переменных: 𝑇𝑖, 𝑖 = 1, . . . ,𝑚, используя

алгоритм на Рис. 2.5,2.6,2.7

2. Сформировать 𝛽𝑇𝑖-меры для каждого подмножества 𝑇𝑖

Рис. 2.8. Схема построения разложения емкости

Теорема 14. Для 2-аддитивных емкостей схема, представленная на Рис. 2.8 оптимальна,

то есть она приводит к дизъюнктивному разложению емкости на минимальное число

2-монотонных емкостей.

Доказательство. См. раздел 2.3.4.

Для некоторой емкости 𝜈 будем обозначать множество всех пар {𝑖, 𝑗}, 𝑖, 𝑗 ∈ 𝑁 таких, что

𝑚𝜈({𝑖, 𝑗}) < 0, как 𝐾. Используя эти пары, построим неориентированный граф, соединяя 2

вершины 𝑖 и 𝑗 ребром, если 𝑚𝜈({𝑖, 𝑗}) < 0. Имеет место следующая теорема:
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Теорема 15. Используя схему на Рис. 2.8, 2-аддитивная емкость может быть разложена

на

|ℬ| = (−1)𝑝𝜒(−1) (2.36)

2-монотонных емкостей, где 𝑝 - число вершин в графе (см. выше), а 𝜒(·) его хроматический

полином.

Доказательство. Число 2-монотонных емкостей в минимальном разложении 2-аддитивной

емкости 𝜈 равняется числу элементов разбиения, полученном на первом шаге схемы

на Рис. 2.8. Для 2-аддитивной емкости, элементы разбиения формируются путем

разделения пространства переменных на полупространства, соответствующие различным

упорядочиваниям пар (𝑓𝑖, 𝑓𝑗). Каждое упорядочивание соответствует множеству линейных

порядков на 𝑁 , где 𝑓𝑖 располагается перед 𝑓𝑗. Построим неупорядоченный граф на основе

всех пар (т.е. вершины 𝑖 и 𝑗 соединены ребром, если существует пара {𝑖, 𝑗} ∈ 𝐾). Заметим,

что каждая ориентация такого графа, то есть изменение всех ребер на ориентированные в том

или ином направлении, соответствует определенному упорядочиванию всех пар. Например,

ребро, направленное из 𝑖 в 𝑗, соответствует паре (𝑓𝑖, 𝑓𝑗) или неравенству 𝑓𝑖 < 𝑓𝑗. Все

возможные ориентации графа соответствуют всем возможным комбинациям упорядочиваний

пар, а ацикличные ориентации соответствуют упорядочиваниям, которые не приводят к

нарушению транзитивности “<”. Отметим, что здесь мы по прежнему используем строгое

отношение, поскольку значения интеграла для смежных подмножеств совпадают в точках

равенства координат (𝑓𝑖 = 𝑓𝑗). Таким образом, исключая ориентации, возможные лишь в

таких точках, мы не ухудшаем качества разбиения. Число ациклических ориентаций для

произвольного графа было получено в работе [124].

Примеры: Пусть 𝑁 = {1, . . . , 15}. Тогда число перестановок элементов в 𝑁 равняется

15! = 1307674368000.

Случай 1: 𝐾 = {{1, 2}, {2, 3}, {1, 3}}, т.е. 𝑚𝜈({1, 2}) < 0,𝑚𝜈({2, 3}) < 0,𝑚𝜈({1, 3}) < 0:

|ℬ| = 3! = 6; (2.37)

Случай 2: 𝐾 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}), {13, 14}}:

|ℬ| = 27 = 128; (2.38)

Случай 3: 𝐾 = {{1, 2}, {1, 3}, {3, 4}, {3, 5}, {5, 6}, {5, 7}, . . . , {13, 14}, {13, 15}}:

|ℬ| = (−1)7(−1)(−1− 1)15−1 = 214 = 16384. (2.39)
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Очевидно, несложно построить пример, в котором число |ℬ| будет велико, возможно

даже 15!, однако отметим, что число элементов в разбиении может оставаться относительно

низким даже когда все критерии демонстрируют “взаимозаменяемость” с некоторыми

другими критериями (Случай 3). В 2-аддитивном случае 𝑚𝜈({𝑖, 𝑗}) = 𝐼𝜈({𝑖, 𝑗}), где ℐ

- индекс взаимодействия, см. раздел 1.5.1. В практических приложениях, полученный

результат может быть использован в качестве предварительной проверки на стадии создания

модели. Если степень “невыпуклости” (т.е. “взаимозаменяемости” между критериями) модели

приводит к ее невычислимости, стоит запросить ЛПР переформулировать структуру модели,

в том случае, если приложение позволяет такую реструктуризацию.

𝑘-аддитивный случай

Формальная характеризация общего 𝑘-аддитивного случая на данный момент остается

открытым вопросом. Здесь будут указаны лишь наиболее существенные различия с

результатами, представленными выше. Для случая 𝑘 > 2 схема на Рис. 2.8 может привести к

субоптимальному результату. Причиной этого является возможность появления полностью

монотонных мер соответствующих невыпуклым объединениям единичных подмножеств

(т.е. подмножеств, соответствующих перестановкам). Такие подмножества не могут быть

получены с помощью схемы на Рис. 2.8. Рассмотрим следующий пример 6:

𝐶(𝜈, 𝑓) = 0.3𝑓1 + 0.3𝑓2 + 0.4𝑓3 − 0.3(𝑓1 ∧ 𝑓2)− 0.3(𝑓2 ∧ 𝑓3) + 0.6(𝑓1 ∧ 𝑓2 ∧ 𝑓3). (2.40)

Начиная разделение с элемента −0.3(𝑓1∧ 𝑓2), получаем следующую декомпозицию (Рис. 2.9)

7:
𝑇1 = {𝑓 |𝑓2 < 𝑓1} 𝐶𝑚𝜈

𝑇1
= 0.3𝑓1 + 0.4𝑓3 + 0.3(𝑓2 ∧ 𝑓3)

𝑇2 = {𝑓 |𝑓1 < 𝑓2, 𝑓3 < 𝑓2} 𝐶𝑚𝜈
𝑇2

= 0.3𝑓2 + 0.1𝑓3 + 0.6(𝑓1 ∧ 𝑓3)

𝑇3 = {𝑓 |𝑓1 < 𝑓2, 𝑓2 < 𝑓3} 𝐶𝑚𝜈
𝑇3

= 0.6𝑓1 + 0.4𝑓3.

(2.41)

Соответствующие 𝛽𝑇 -меры представлены в Табл. 2.2. С другой стороны, если начать

разделение с элемента −0.3(𝑓2 ∧ 𝑓3), результат будет иным (Рис. 2.10):

𝑇1 = {𝑓 |𝑓2 < 𝑓3} 𝐶𝑚𝜈
𝑇1

= 0.3𝑓1 + 0.4𝑓3 + 0.3(𝑓1 ∧ 𝑓2)

𝑇2 = {𝑓 |𝑓1 < 𝑓2, 𝑓3 < 𝑓2} 𝐶𝑚𝜈
𝑇2

= 0.3𝑓2 + 0.1𝑓3 + 0.6(𝑓1 ∧ 𝑓3)

𝑇3 = {𝑓 |𝑓3 < 𝑓2, 𝑓2 < 𝑓1} 𝐶𝑚𝜈
𝑇3

= 0.3𝑓2 + 0.7𝑓3.

(2.42)

Соответствующие 𝛽𝑇 -меры представлены в Табл. 2.3. Отметим, что оба полученных

6 все функции 𝑓𝑖 одинаковы
7 Областью чертежа является, как и ранее, проекция симплекса 𝑧1 + 𝑧2 + 𝑧3 = 1 на плоскость 0𝑧1𝑧2
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Таблица 2.2. 𝛽𝑇 -меры для разложения 1

𝑇𝑖 𝛽𝑇𝑖 [∅, 𝑓1, 𝑓2, 𝑓1𝑓2, 𝑓3, 𝑓1𝑓3, 𝑓2𝑓3, 𝑓1𝑓2𝑓3]

𝑓2 < 𝑓1 [ 0, 0.3, 0, 0.3, 0.4, 0.7, 0.4, 1 ]

𝑓1 < 𝑓2, 𝑓3 < 𝑓2 [ 0, 0, 0.3, 0.3, 0. , 0. , 0.4, 1 ]

𝑓1 < 𝑓2, 𝑓2 < 𝑓3 [ 0, 0 , 0, 0, 0.4, 0.4, 0.4, 1 ]

Таблица 2.3. 𝛽𝑇 -меры для разложения 2

𝑇𝑖 𝛽𝑇𝑖 [∅, 𝑓1, 𝑓2, 𝑓1𝑓2, 𝑓3, 𝑓1𝑓3, 𝑓2𝑓3, 𝑓1𝑓2𝑓3]

𝑓2 < 𝑓3 [ 0, 0.3, 0, 0.3, 0.4, 0.7, 0.4, 1 ]

𝑓1 < 𝑓2, 𝑓3 < 𝑓2 [ 0, 0, 0.3, 0.3, 0. , 0. , 0.4, 1 ]

𝑓3 < 𝑓2, 𝑓2 < 𝑓1 [ 0. , 0.3, 0. , 0.3, 0. , 0.3, 0. , 1. ]

f1

f 2

Рис. 2.9. Результат разделения

при старте с (𝑓1 ∧ 𝑓2)

f1

f 2

Рис. 2.10. Результат разделения

при старте с (𝑓2 ∧ 𝑓3)

f1

f 2

Рис. 2.11.

Оптимальное

разделение

разложения не минимальны. Минимальное разложение состоит из двух подмножеств:

𝑇13 = {𝑓 |(𝑓2 < 𝑓3) ∪ (𝑓2 < 𝑓1)}

𝑇2 = {𝑓 |𝑓1 < 𝑓2, 𝑓3 < 𝑓2}.
(2.43)

Несмотря на то, что множество 𝑇13 не выпукло (см Рис. 2.11), и, следовательно, не может

быть получено с использованием схемы на Рис. 2.8, возможно получить 𝛽𝑇 -меру для него

как 𝛽𝑇13 = 𝛽𝑇1 ∨ 𝛽𝑇3 , Табл. 2.4.

Отметим, что проблема переразделения не оказывает влияния на корректность

получаемого результата, лишь увеличивая вычислительную сложность проблемы (ввиду
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Таблица 2.4. 𝛽𝑇 -мера для множества 𝑇13

𝑇𝑖 𝛽𝑇𝑖 [∅, 𝑓1, 𝑓2, 𝑓1𝑓2, 𝑓3, 𝑓1𝑓3, 𝑓2𝑓3, 𝑓1𝑓2𝑓3]

(𝑓2 < 𝑓3) ∪ (𝑓2 < 𝑓1) [ 0, 0.3, 0, 0.3, 0.4, 0.7, 0.4, 1 ]

увеличения числа вогнутых проблем, которые необходимо решить для нахождения

глобального максимума).

2.3.4. Доказательства

Лемма 3. Пусть 𝐴 ⊂ 𝑁, 𝑇 =
⋂︀

(𝑖,𝑗)∈𝑁2
𝑇
(𝑓𝑖 < 𝑓𝑗) ̸= ∅ и существует (𝑖, 𝑗) ∈ 𝑁2

𝑇 : 𝑖 ∈ 𝐴, 𝑗 /∈ 𝐴,

и 𝐶 - наибольшее подмножество 𝐴 такое, что 𝑚𝛽(𝐶) ̸= 0, т.е. @(𝑖, 𝑗) ∈ 𝑁2
𝑇 : 𝑖 ∈ 𝐶, 𝑗 /∈ 𝐶.

Тогда, для любого подмножества 𝐷 ⊂ 𝐴 выполняется либо

𝑚𝛽(𝐷) = 0, (2.44)

либо

𝐷 ⊂ 𝐶. (2.45)

Доказательство. Заметим, что 𝐶 = 𝐴∖∪(𝑖,𝑗)∈𝑁2
𝑇
𝑖 для всех (𝑖, 𝑗) ∈ 𝑁2

𝑇 таких, что 𝑖 ∈ 𝐴, 𝑗 /∈ 𝐴.

Тогда, все подмножества 𝐷 ⊂ 𝐴,𝐷 ̸⊂ 𝐶 содержат элемент 𝑖 такой, что 𝑗 /∈ 𝐷. Следовательно,

𝑚𝛽(𝐷) = 0. Если 𝐷 не включает такого элемента, то 𝐷 ⊂ 𝐶.

Доказательство теоремы 12. Сначала покажем, что для всех множеств 𝐴 ⊂ 𝑁 таких, что

@(𝑖, 𝑗) ∈ 𝑁2
𝑇 : 𝑖 ∈ 𝐴, 𝑗 /∈ 𝐴,

𝑚𝛽(𝐴) =
∑︁

𝐵⊂{𝑗|𝑖∈𝐴,𝑗∈𝐴,(𝑖,𝑗)∈𝑁2
𝑇 }

𝑚𝜈(𝐴 ∖𝐵) (2.46)

равнозначно 𝛽𝑇 (𝐴) = 𝜈(𝐴). Выберем произвольное множество 𝐴, для которого выполняется

@(𝑖, 𝑗) ∈ 𝑁2
𝑇 : 𝑖 ∈ 𝐴, 𝑗 /∈ 𝐴. В уравнении

𝛽𝑇 (𝐴) =
∑︁
𝐵⊂𝐴

𝑚𝛽(𝐵) (2.47)

возможны два типа множеств 𝐵 ⊂ 𝐴. Либо ∃(𝑖, 𝑗) ∈ 𝑁2
𝑇 : 𝑖 ∈ 𝐵, 𝑗 /∈ 𝐵, и тогда 𝑚𝛽(𝐵) = 0,

или @(𝑖, 𝑗) ∈ 𝑁2
𝑇 : 𝑖 ∈ 𝐵, 𝑗 /∈ 𝐵, и тогда 𝑚𝛽(𝐵) определяется согласно (2.46). Заметим, что

для каждого множества 𝐵 такого, что 𝑚𝛽(𝐵) = 0, существует единственное 𝐶 такое, что

𝐵 ⊂ 𝐶 = 𝐵∪ (
⋃︀

(𝑖,𝑗)∈𝑁2
𝑇
𝑗) ⊂ 𝐴 для всех (𝑖, 𝑗) ∈ 𝑁2

𝑇 : 𝑖 ∈ 𝐵, 𝑗 /∈ 𝐵. В этом случае, коэффициент

обращения Мебиуса 𝑚𝛽(𝐶) определяется согласно (2.46) и будет включать 𝑚𝜈(𝐵) в качестве
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слагаемого. Таким образом,

𝛽𝑇 (𝐴) =
∑︁
𝐵⊂𝐴

𝑚𝛽(𝐵) =
∑︁
𝐵⊂𝐴

𝑚𝜈(𝐵). (2.48)

Теперь покажем, что 𝑚𝛽(𝐴) = 0⇒ 𝛽𝑇 (𝐴) =
⋁︀

𝐵(𝐴

𝛽𝑇 (𝐵) для всех 𝐴 таких, что ∃(𝑖, 𝑗) ∈ 𝑁2
𝑇 : 𝑖 ∈

𝐴, 𝑗 /∈ 𝐴. Более того, 𝛽𝑇 (𝐴) =
⋁︀

𝐵(𝐴

𝛽𝑇 (𝐵) = 𝛽𝑇 (𝐶) = 𝜈(𝐶), где 𝐶 = 𝐴 ∖
⋃︀

(𝑖,𝑗)∈𝑁2
𝑇
𝑖, (𝑖, 𝑗) ∈

𝑁2
𝑇 : 𝑖 ∈ 𝐴, 𝑗 /∈ 𝐴. Согласно Лемме 3, вся масса сконцентрирована на подмножествах

множества 𝐶 = 𝐴 ∖
⋃︀

(𝑖,𝑗)∈𝑁2
𝑇
𝑖, следовательно, 𝛽𝑇 (𝐿) = 𝛽𝑇 (𝐶) для всех 𝐶 ⊂ 𝐿 ⊂ 𝐴. В то

же время, для любого 𝑀 ⊂ 𝐴,𝑀 ̸⊂ 𝐶,𝐶 ̸⊂ 𝑀 , 𝑚𝛽(𝑀) = 0 и 𝛽𝑇 (𝑀) = 𝛽𝑇 (𝐷), где 𝐷 -

наибольшее подмножество, входящее в 𝐶 такое, что 𝐷 ⊂ 𝑀 . Из монотонности 𝜈 следует

𝜈(𝐷) ≤ 𝜈(𝐶), и значит 𝛽𝑇 (𝑀) ≤ 𝛽𝑇 (𝐶), а следовательно, 𝛽𝑇 (𝐴) = 𝛽𝑇 (𝐶) =
⋁︀

𝐵(𝐴

𝛽𝑇 (𝐵).

Доказательство теоремы 13. Критерием полной монотонности является неотрицатель­

ность всех коэффициентов обращения Мебиуса. Покажем, что 𝑚𝛽 является перестановкой

𝑚𝑇 . Сначала покажем, что число элементов равных нулю одинаково в обоих случаях:

𝑚𝑇 (𝐴) = 0, ∃(𝑖, 𝑗) ∈ 𝑁2
𝑇 : 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐴

𝑚𝛽(𝐴) = 0, ∃(𝑖, 𝑗) ∈ 𝑁2
𝑇 : 𝑖 ∈ 𝐴, 𝑗 /∈ 𝐴.

(2.49)

Зафиксируем координаты, соответствующие 𝑖, 𝑗 для всех (𝑖, 𝑗) ∈ 𝑁2
𝑇 в характеристических

векторах всех элементов из 2𝑁 . Очевидно, число векторов, которые могут быть образованы

различными комбинациями значений оставшихся координат, не будет зависеть от того,

равняются ли зафиксированные координаты 0 или 1. Следовательно, число элементов

равных нулю одинаково в обращениях Мебиуса обоих емкостей. Теперь покажем, что

значения

𝑚𝑇 (𝐴) =
∑︁

𝐵⊂{𝑗|𝑖∈𝐴,𝑗 /∈𝐴,(𝑖,𝑗)∈𝑁2
𝑇 }

𝑚𝜈(𝐴 ∪𝐵), @(𝑖, 𝑗) ∈ 𝑁2
𝑇 : 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐴 (2.50)

биективно соответствуют значениям

𝑚𝛽(𝐴) =
∑︁

𝐵⊂{𝑗|𝑖∈𝐴,𝑗∈𝐴,(𝑖,𝑗)∈𝑁2
𝑇 }

𝑚𝜈(𝐴 ∖𝐵), @(𝑖, 𝑗) ∈ 𝑁2
𝑇 : 𝑖 ∈ 𝐴, 𝑗 /∈ 𝐴. (2.51)

Достаточно заметить, что 𝐴 = 𝐴 ∪ 𝐶, где 𝐶 = {𝑗|𝑖 ∈ 𝐴, 𝑗 /∈ 𝐴, (𝑖, 𝑗) ∈ 𝑁2
𝑇} = {𝑗|𝑖 ∈ 𝐴, 𝑗 ∈

𝐴, (𝑖, 𝑗) ∈ 𝑁2
𝑇}.

Для доказательства Теоремы 14 введем несколько новых понятий. Емкости 𝒩𝑖

определены в (2.30) и образуют дизъюнктивное разложение емкости 𝜈.
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Определение 17. Емкости 𝒩1 и 𝒩2 будем называть не-∨2𝑚-соединимыми, если емкость

𝒩1 ∨ 𝒩2 не 2-монотонна, и не существует емкостей 𝒩𝑖, 𝑖 = 1, . . . , 𝑘 таких, что (𝒩1 ∨

𝒩2)
⋁︀

𝑖=1,...,𝑘𝒩𝑖 2-монотонна.

Поскольку рассматриваемые емкости 2-аддитивны, коэффициенты их обращений

Мебиуса отличны от нуля только для множеств вида {𝑎, 𝑏}, т.е. для множеств мощности

2. Обозначим множество всех неупорядоченных пар {𝑎, 𝑏}, имеющих отрицательный

коэффициент в обращении Мебиуса, как 𝐾. Иными словами,

𝐾 = {{𝑎, 𝑏}|𝑚𝜈({𝑎, 𝑏}) < 0}. (2.52)

Для упрощения нотации будем писать 𝑎𝑏 вместо {𝑎, 𝑏} и 𝑌 𝑎 вместо 𝑌 ∪ {𝑎}.

Обозначим подмножество 𝑁 , составленное из элементов, входящих хотя бы в одну

пару из 𝐾, как 𝑁𝐾 . В следующих доказательствах будем обозначать частичные порядки

на 𝑁𝐾 , порожденные различными комбинациями упорядочиваний (с помощью отношения

<) пар из 𝐾, как 𝑃𝑖. Отметим, что не каждая комбинация порождает частичный порядок

(см. доказательство Теоремы 15). Элементы 𝑁 , не входящие ни в одну из пар в 𝐾, не

оказывают влияния на 2-монотонность емкости, и следовательно, могут быть исключены

из рассмотрения.

Покажем, что возможно найти по крайней мере (−1)𝑝𝜒(−1) (см. Теорему 15) мер

необходимости, которые попарно не-∨2𝑚-соединимы. В частности, покажем, что каждому

частичному порядку возможно поставить в соответствие меру необходимости таким

образом, что эти меры будут попарно не-∨2𝑚-соединимы. Предположим также, что

граф, составленный из пар из 𝐾 не содержит несвязных частей. В противном случае,

доказательство, приведенное ниже, может быть применено для каждой такой части в

отдельности. В этом случае, общее число мер, получаемых в результате будет равняться

произведению числа мер для каждой из связных компонент (см. доказательство Теоремы 15,

кроме того, известно, что хроматический полином несвязного графа может быть рассчитан

как произведение хроматических полиномов его связных компонент (см., например, [114])).

Каждый частичный порядок 𝑃𝑖, соответствующий некоторой комбинации упорядочива­

ний в парах из 𝐾, может иметь несколько линейных расширений. В доказательствах будем

выбирать расширение в соответствии со следующим правилом. Пронумеруем все элементы,

входящие в пары из 𝐾 от 1 до 𝑚. Для некоторого частичного порядка, если 2 или более

элемента несравнимы, то в линейном расширении поставим раньше тот, который имеет

наименьший индекс.
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Лемма 4. Для любых двух цепей 𝒞1 ∼ 𝑃1, 𝒞2 ∼ 𝑃2 найдется (возможно пустое) множество

𝑌 ⊂ 𝑁𝐾 и элементы 𝑎, 𝑏 ∈ 𝑁𝐾 такие, что 𝑌 𝑎 ∈ 𝒞1, 𝑌 𝑏 ∈ 𝒞2. Если 𝑎 и 𝑏 таковы, что

{𝑎, 𝑏} /∈ 𝐾, тогда 𝑌 𝑎𝑏 /∈ 𝒞1, 𝑌 𝑎𝑏 /∈ 𝒞2 и найдутся элементы 𝑐, 𝑑 ∈ 𝑁𝐾 ∖ 𝑌 такие, что

{𝑎, 𝑐} ∈ 𝐾, {𝑏, 𝑑} ∈ 𝐾.

Доказательство. Выберем две случайные цепи 𝒞1 и 𝒞2, относящиеся к разным частичным

порядкам 𝑃1 и 𝑃2. Положим 𝑌 = ∅. Рассмотрим следующие элементы выбранных цепей:

𝑌 𝑐1𝑖 ∈ 𝒞1, 𝑌 𝑐2𝑖 ∈ 𝒞2, 𝑖 = 1. Положим, что эти элементы равны. Тогда, добавим элемент 𝑐11 к

множеству 𝑌 и перейдем к рассмотрению следующих элементов 𝑌 𝑐1𝑖 ∈ 𝒞1, 𝑌 𝑐2𝑖 ∈ 𝒞2, 𝑖 = 2.

Предположим, на некотором шаге 𝑖 нашлись элементы 𝑌 𝑐1𝑖 ∈ 𝒞1, 𝑌 𝑐2𝑖 ∈ 𝒞2 такие, что 𝑐1𝑖 ̸= 𝑐2𝑖 .

Если такие элементы не нашлись, цепи идентичны.

Предположим, {𝑐1𝑖 , 𝑐2𝑖 } ∈ 𝐾. Тогда требуемые элементы найдены. В противном случае,

{𝑐1𝑖 , 𝑐2𝑖 } /∈ 𝐾, проверим, выполняется ли 𝑌 𝑐1𝑖 𝑐
2
𝑖 /∈ 𝒞1, 𝑌 𝑐1𝑖 𝑐

2
𝑖 /∈ 𝒞2. Если это условие выполняется,

требуемые элементы найдены. В противном случае возможны два варианта. Предположим

𝑌 𝑐1𝑖 𝑐
2
𝑖 ∈ 𝒞1, 𝑌 𝑐1𝑖 𝑐

2
𝑖 ∈ 𝒞2. Тогда, добавим 𝑐1𝑖 , 𝑐

2
𝑖 к множеству 𝑌 и перейдем к рассмотрению

следующих элементов цепей (т.е., на позицию 𝑖 = 𝑖 + 2). Заметим, что в таком случае все

пары, включающие 𝑐1𝑖 и 𝑐2𝑖 , одинаково упорядочены в частичных порядках 𝑃1 и 𝑃2. Если 𝑌 𝑐1𝑖 𝑐
2
𝑖

входит только в одну из цепей, например, 𝑌 𝑐1𝑖 𝑐
2
𝑖 ∈ 𝒞1, 𝑌 𝑐1𝑖 𝑐

2
𝑖 /∈ 𝒞2, тогда рассмотрим элементы

с индексом 𝑖 = 𝑖+ 1, которые будут иметь вид 𝑌 𝑐1𝑖 𝑐
2
𝑖 ∈ 𝒞1, 𝑌 𝑐2𝑖 𝑐

2
𝑖+1 ∈ 𝒞2. Добавим элемент 𝑐2𝑖 к

множеству 𝑌 и повторим рассуждения для пары 𝑌 𝑐1𝑖 ∈ 𝒞1, 𝑌 𝑐2𝑖+1 ∈ 𝒞2. Как и ранее, отметим,

что все пары, включающие 𝑐2𝑖 одинаково упорядочены в обоих частичных порядках. Если

на некоторой итерации достигнут конца цепей, а требуемая комбинация элементов так и

не будет найдена, то все пары элементов в 𝐾 одинаково упорядочены, а значит цепи 𝒞1
и 𝒞2 соответствуют одному и тому же частичному порядку, что противоречит исходному

утверждению.

Предположим, что множества 𝑌 𝑎 и 𝑌 𝑏 такие, что {𝑎, 𝑏} /∈ 𝐾,𝑌 𝑎𝑏 /∈ 𝐶1, 𝑌 𝑎𝑏 /∈ 𝐶2 были

найдены. Если для какого либо из элементов 𝑎 и 𝑏 не найдется элементов 𝑐 и 𝑑, 𝑐, 𝑑 ∈ 𝑁𝐾 ∖𝑌

таких, что {𝑎, 𝑐} ∈ 𝐾 и {𝑏, 𝑑} ∈ 𝐾, то все элементы 𝑐𝑖, 𝑑𝑗 такие, что {𝑎, 𝑐𝑖} ∈ 𝐾, {𝑏, 𝑑𝑗} ∈ 𝐾

принадлежат множеству 𝑌 . Следовательно, по крайней мере один из элементов 𝑎 и 𝑏 должен

иметь наименьший порядковый номер в множестве 𝑁𝐾 ∖ 𝑌 (согласно приведенному выше

правилу). Следовательно, 𝑌 𝑎𝑏 ∈ 𝐶1 или 𝑌 𝑎𝑏 ∈ 𝐶2, что также является противоречием.

Следствие 1. Заметим, что по построению все пары, включающие элементы из 𝑌

одинаково упорядочены в обоих цепях (линейных расширениях). Следовательно, либо
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существуют {𝑤1, 𝑤2} ∈ 𝐾,𝑤1, 𝑤2 ∈ 𝑁𝐾 ∖ 𝑌 , либо цепи соответствуют одному и тому

же частичному порядку.

Лемма 5. Емкости 𝒩1 и 𝒩2 не-∨2𝑚-соединимы, если существуют 𝑌 𝑎 ∈ 𝒞1, 𝑌 𝑏 ∈ 𝒞2, где

𝒞1, 𝒞2 - максимальные цепи такие, что 𝒩1 ∼ 𝒞1,𝒩2 ∼ 𝒞2, {𝑎, 𝑏} ∈ 𝐾.

Доказательство. 2-монотонность определяется как

𝜈(𝐴 ∪𝐵)− 𝜈(𝐴)− 𝜈(𝐵) + 𝜈(𝐴 ∩𝐵) ≥ 0, ∀𝐴,𝐵 ⊂ 𝑁. (2.53)

Запишем это условие для элемента вида 𝑌 𝑎𝑏:

𝜈(𝑌 𝑎𝑏)− 𝜈(𝑌 𝑎)− 𝜈(𝑌 𝑏) + 𝜈(𝑌 ) ≥ 0. (2.54)

Поскольку 𝜈 2-аддитивна, для всех 𝐴 ⊂ 𝑁 выполняется[61]:

𝜈(𝐴) =
∑︁
𝑖,𝑗∈𝐴

𝜈(𝑖𝑗)− (|𝐴| − 2)
∑︁
𝑖∈𝐴

𝜈(𝑖). (2.55)

Таким образом,

𝜈(𝑌 𝑎𝑏)− 𝜈(𝑌 𝑎)− 𝜈(𝑌 𝑏) + 𝜈(𝑌 ) =

=
∑︁
𝑖,𝑗∈𝑌

𝜈(𝑖𝑗) +
∑︁
𝑖∈𝑌

𝜈(𝑖𝑎) +
∑︁
𝑖∈𝑌

𝜈(𝑖𝑏) + 𝜈(𝑎𝑏)− (|𝑌 𝑎𝑏| − 2)
∑︁
𝑖∈𝑌 𝑎𝑏

𝜈(𝑖)−

−
∑︁
𝑖,𝑗∈𝑌

𝜈(𝑖𝑗)−
∑︁
𝑖∈𝑌

𝜈(𝑖𝑎) + (|𝑌 𝑎| − 2)
∑︁
𝑖∈𝑌 𝑎

𝜈(𝑖)−

−
∑︁
𝑖,𝑗∈𝑌

𝜈(𝑖𝑗)−
∑︁
𝑖∈𝑌

𝜈(𝑖𝑏) + (|𝑌 𝑏| − 2)
∑︁
𝑖∈𝑌 𝑏

𝜈(𝑖)+

+
∑︁
𝑖,𝑗∈𝑌

𝜈(𝑖𝑗)− (|𝑌 | − 2)
∑︁
𝑖∈𝑌

𝜈(𝑖) =

=𝜈(𝑎𝑏)− 𝜈(𝑎)− 𝜈(𝑏) = 𝑚𝜈(𝑎𝑏) < 0.

(2.56)

И, согласно определению 𝒩 -мер (см. (2.31)) и условиям леммы, 𝒩1∨𝒩2(𝑌 𝑎𝑏)−𝒩1∨𝒩2(𝑌 𝑎)−

𝒩1 ∨𝒩2(𝑌 𝑏) +𝒩1 ∨𝒩2(𝑌 ) ≤ 𝜈(𝑌 𝑎𝑏)− 𝜈(𝑌 𝑎)− 𝜈(𝑌 𝑏) + 𝜈(𝑌 ) < 0.

Из определения 𝒩 -мер следует
⋁︀

𝑖=1,...,𝑛!𝒩𝑖(𝑌 𝑎𝑏) ≤ 𝜈(𝑌 𝑎𝑏) и
⋁︀

𝑖=1,...,𝑛!𝒩𝑖(𝑌 ) ≤ 𝜈(𝑌 ).

Следовательно, неравенство выполняется для любых сочетаний (𝒩1 ∨ 𝒩2)
⋁︀

𝑖=1,...,𝑘𝒩𝑖, т.е.

(𝒩1 ∨ 𝒩2)
⋁︀

𝑖=1,...,𝑘𝒩𝑖(𝑌 𝑎𝑏) − (𝒩1 ∨ 𝒩2)
⋁︀

𝑖=1,...,𝑘𝒩𝑖(𝑌 𝑎) − (𝒩1 ∨ 𝒩2)
⋁︀

𝑖=1,...,𝑘𝒩𝑖(𝑌 𝑏) + (𝒩1 ∨

𝒩2)
⋁︀

𝑖=1,...,𝑘𝒩𝑖(𝑌 ) < 0. Следовательно, емкости 𝒩1 и 𝒩2 не-∨2𝑚-соединимы.

Отметим, что поскольку {𝑎, 𝑏} ∈ 𝐾, из условий леммы следует, что 𝒞1 и 𝒞2 соответствуют

различным частичным порядкам.
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Лемма 6. Емкость 𝒩1∨𝒩2 не 2-монотонна если найдутся 𝑌 𝑎 ∈ 𝒞1, 𝑌 𝑏 ∈ 𝒞2, 𝑌 𝑎𝑏 /∈ 𝒞1, 𝑌 𝑎𝑏 /∈

𝒞2, {𝑎, 𝑏} /∈ 𝐾, где 𝒩1 ∼ 𝒞1,𝒩2 ∼ 𝒞2, 𝒞1 ∼ 𝑃1, 𝒞2 ∼ 𝑃2, а 𝑃1 и 𝑃2 различные частичные порядки.

Доказательство. 𝑌 𝑎𝑏 не принадлежит максимальной цепи соответствующей 𝒩1 или 𝒩2.

Следовательно, 𝒩1 ∨ 𝒩2(𝑌 𝑎𝑏) = max(𝒩1(𝑌 𝑎𝑏),𝒩2(𝑌 𝑎𝑏)) = max(𝒩1(𝑌 𝑎),𝒩2(𝑌 𝑏)) =

max(𝜈(𝑌 𝑎), 𝜈(𝑌 𝑏)) (см. (2.31)). Кроме того, 𝒩1 ∨ 𝒩2(𝑌 ) = 𝜈(𝑌 ), поскольку по построению 𝑌

входит по крайней мере в одну из цепей. Без ущерба общности, предположим 𝜈(𝑌 𝑎) ≥ 𝜈(𝑌 𝑏).

Следовательно,

𝒩1 ∨𝒩2(𝑌 𝑎𝑏)−𝒩1 ∨𝒩2(𝑌 𝑎)−𝒩1 ∨𝒩2(𝑌 𝑏) +𝒩1 ∨𝒩2(𝑌 ) =

= max(𝜈(𝑌 𝑎), 𝜈(𝑌 𝑏))− 𝜈(𝑌 𝑎)− 𝜈(𝑌 𝑏) + 𝜈(𝑌 ) =

= −
∑︁
𝑖,𝑗∈𝑌

𝜈(𝑖𝑗)−
∑︁
𝑖∈𝑌

𝜈(𝑖𝑏) + (|𝑌 𝑏| − 2)
∑︁
𝑖∈𝑌 𝑏

𝜈(𝑖) +
∑︁
𝑖,𝑗∈𝑌

𝜈(𝑖𝑗)− (|𝑌 | − 2)
∑︁
𝑖∈𝑌

𝜈(𝑖) =

=
∑︁
𝑖∈𝑌

[𝜈(𝑖)− 𝜈(𝑖𝑏)] + (|𝑌 | − 1)𝜈(𝑏) =

=
∑︁
𝑖∈𝑌

[𝜈(𝑖) + 𝜈(𝑏)− 𝜈(𝑖𝑏)]− 𝜈(𝑏).

(2.57)

Теперь рассмотрим множества 𝑌 𝑏𝑐 и 𝑌 𝑐 такие, что {𝑏, 𝑐} ∈ 𝐾. Согласно лемме 4, такая пара

множеств всегда может быть найдена. Из монотонности 𝜈 следует:

𝜈(𝑌 𝑏𝑐) ≥ 𝜈(𝑌 𝑐)∑︁
𝑖,𝑗∈𝑌 𝑏𝑐

𝜈(𝑖𝑗)− (|𝑌 𝑏𝑐| − 2)
∑︁
𝑖∈𝑌 𝑏𝑐

𝜈(𝑖) ≥
∑︁
𝑖,𝑗∈𝑌 𝑐

𝜈(𝑖𝑗)− (|𝑌 𝑐| − 2)
∑︁
𝑖∈𝑌 𝑐

𝜈(𝑖)

𝜈(𝑏𝑐)− 𝜈(𝑏)− 𝜈(𝑐) ≥
∑︁
𝑖∈𝑌

[𝜈(𝑖)− 𝜈(𝑖𝑏)] + (|𝑌 | − 1)𝜈(𝑏)

𝜈(𝑏𝑐)− 𝜈(𝑏)− 𝜈(𝑐) ≥
∑︁
𝑖∈𝑌

[𝜈(𝑖) + 𝜈(𝑏)− 𝜈(𝑖𝑏)]− 𝜈(𝑏)

(2.58)

Поскольку {𝑏, 𝑐} ∈ 𝐾, выполняется 𝑚𝜈(𝑏𝑐) = 𝜈(𝑏𝑐) − 𝜈(𝑏) − 𝜈(𝑐) < 0. Следовательно,∑︀
𝑖∈𝑌 [𝜈(𝑖) + 𝜈(𝑏)− 𝜈(𝑖𝑏)]− 𝜈(𝑏) < 0. Таким образом, емкость 𝒩1 ∨𝒩2 не 2-монотонна.

Лемма 7. Емкости 𝒩1 и 𝒩2 не-∨2𝑚-соединимы если найдется 𝑌 𝑎 ∈ 𝒞1, 𝑌 𝑏 ∈ 𝒞2, 𝑌 𝑎𝑏 /∈

𝒞1, 𝑌 𝑎𝑏 /∈ 𝒞2, {𝑎, 𝑏} /∈ 𝐾, где 𝒩1 ∼ 𝒞1,𝒩2 ∼ 𝒞2, 𝒞1 ∼ 𝑃1, 𝒞2 ∼ 𝑃2, а 𝑃1 и 𝑃2 - различные

частичные порядки.

Доказательство. Согласно утверждению леммы 6, емкость 𝒩1 ∨ 𝒩2 не 2-монотонна.

Покажем, что емкость (𝒩1 ∨𝒩2)
⋁︀

𝑖=1,...,𝑘𝒩𝑖 также не 2-монотонна. Ранее было доказано, что

если 𝑌 𝑎𝑏 не входит ни в одну из цепей, соответствующих емкостям 𝒩1 и 𝒩2, выполняется

следующее:

𝒩1 ∨𝒩2(𝑌 𝑎𝑏)−𝒩1 ∨𝒩2(𝑌 𝑎)−𝒩1 ∨𝒩2(𝑌 𝑏) +𝒩1 ∨𝒩2(𝑌 ) =

= max(𝜈(𝑌 𝑎), 𝜈(𝑌 𝑏))− 𝜈(𝑌 𝑎)− 𝜈(𝑌 𝑏) + 𝜈(𝑌 ) < 0.
(2.59)
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Поскольку 𝑌 принадлежит по крайней мере одной из этих цепей, единственным способом

обратить неравенство является увеличение значения (𝒩1 ∨ 𝒩2)
⋁︀

𝑖=1,...,𝑘𝒩𝑖(𝑌 𝑎𝑏). Это может

быть произведено путем добавления к дизъюнкции еще одной меры необходимости,

соответствующей цепи, в которую входит 𝑌 ′𝑎𝑏 и не входит 𝑌 𝑎𝑏, где 𝑌 ′ = 𝑌 ∖ 𝑦,

а 𝑦 - произвольный элемент 𝑌 . В то же время, значение 𝜈(𝑌 ′𝑎𝑏) должно превышать

max(𝜈(𝑌 𝑎), 𝜈(𝑌 𝑏)). Однако, в таком случае условия одной из лемм 5 или 6 выполняются для

добавленной меры необходимости и обоих изначальных емкостей (достаточно рассмотреть

пары ((𝑌 ′𝑎)𝑏, (𝑌 ′𝑎)𝑦) и ((𝑌 ′𝑏)𝑎, (𝑌 ′𝑏)𝑦)), так что получаемая емкость вновь не будет

2-монотонной.

Другим вариантом является добавление меры необходимости, соответствующей цепи, в

которую входит 𝑌 𝑎𝑏. Рассмотрим пары множеств (𝑌 𝑎𝑏, 𝑌 𝑎𝑥1) и (𝑌 𝑎𝑏, 𝑌 𝑏𝑧1), где 𝑌 𝑎𝑥1 и 𝑌 𝑏𝑧1 -

следующие элементы в цепях, соответствующих емкостям 𝒩1 и 𝒩2 (см Рис. 2.12). Возможны

следующие варианты:

1. {𝑥1, 𝑏} ∈ 𝐾 или {𝑧1, 𝑎} ∈ 𝐾. Выполняются условия леммы 5.

2. {𝑥1, 𝑏} /∈ 𝐾, {𝑧1, 𝑎} /∈ 𝐾.

Рассмотрим пары (𝑌 𝑎𝑥1, 𝑌 𝑎𝑏) и (𝑌 𝑏𝑧1, 𝑌 𝑎𝑏) (в особом случае 𝑥1 = 𝑧1 рассмотрим

пары (𝑌 𝑎𝑧1, 𝑌 𝑎𝑏), (𝑌 𝑎𝑏, 𝑌 𝑏𝑧1), и (𝑌 𝑧1𝑎, 𝑌 𝑧1𝑏)). Множества 𝑌 𝑎𝑏𝑥1 и 𝑌 𝑎𝑏𝑧1 должны

принадлежать объединению цепей соответствующих емкостям 𝒩1 ∨ 𝒩2 ∨ . . .. В

противном случае, возможно применить лемму 6. Следовательно, необходимо добавить

к дизъюнкции меры необходимости, соответствующие цепям, в которые входят эти

множества. Однако, после такого добавления будут сформированы три новые пары

множеств, для которых будут выполняться условия одной из лемм 5 и 6. Это

пары (𝑌 𝑎𝑥1𝑥2, 𝑌 𝑎𝑏𝑥1), (𝑌 𝑎𝑏𝑥1, 𝑌 𝑎𝑏𝑧1) и (𝑌 𝑎𝑏𝑧1, 𝑌 𝑎𝑧1𝑧2). Следовательно, потребуется

вновь добавить очередные меры необходимости, соответствующие цепям, в которые

входят эти меры. Продолжая этот процесс, в итоге получим структуру, включающую

объединения всех элементов из цепей 𝑌 ⊂ 𝑌 𝑎 ⊂ . . . ⊂ 𝑁𝐾 (подцепь 𝒞1) и 𝑌 ⊂

𝑌 𝑏 ⊂ . . . ⊂ 𝑁𝐾 (подцепь 𝒞2). Такая структура является дистрибутивной решеткой [36].

Следовательно, в ней существуют два элемента 𝑌 𝑎𝑍𝑤1 и 𝑌 𝑏𝑍𝑤2, где 𝑍 ⊂ 𝑁𝐾 ∖ 𝑌 𝑤1𝑤2

и {𝑤1, 𝑤2} ∈ 𝐾 (см. следствие 1). Таким образом, выполняются условия леммы 5.

Процесс проиллюстрирован на Рис. 2.12. В левой части рисунка представлен случай, когда

все элементы 𝑧𝑖, 𝑖 = 1, . . . , 𝑘 и 𝑥𝑖, 𝑖 = 1, . . . , 𝑘 различны, а в правой более общий. Выделенные

рамками множества образуются при добавлении новых мер необходимости.
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Рис. 2.12. Формирование множеств путем объедения максимальных цепей

Доказательство теоремы 14. Леммы 4,5,7 показывают, что для 2-аддитивной емкости 𝜈

и множества пар {𝑖, 𝑗} ∈ 𝐾 возможно найти по крайней мере одну меру необходимости

для каждого частичного порядка, соответствующего некоторой комбинации упорядочиваний

этих пар так, что все найденные меры попарно не-∨2𝑚-соединимы. В то же время,

результатом работы алгоритма, представленного на Рис. 2.5,2.6,2.7 является именно такое

число 2-монотонных емкостей (см. Теорему 15). Следовательно, полученное разложение

минимально.
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2.4. Оптимизация в сетевой структуре

При моделировании сложной практической задачи принятия решений, естественным

является разложение ее на составляющие, которые, в свою очередь, возможно разложить

на еще более мелкие части, и так далее. В контексте многокритериальной задачи можно

говорить о декомпозиции интегральной оценки на критерии, которые могут состоять

из суб-критериев, которые в свою очередь также может быть возможно разделить на

составляющие, и.т.д. Получаемая в результате модель представляет собой направленный

ациклический граф с корневой вершиной (в простейшем случае дерево). Вершины, не

имеющие дочерних соответствуют переменным модели, а корневая вершина модели,

не имеющая родительской, содержит интегральную оценку, нахождение оптимального

значения которой является целью задачи. Пример такого графа представлен на Рис. 2.13.

Родительские вершины агрегируют значения дочерних вершин с помощью интеграла Шоке.

В этом разделе будет рассмотрен вопрос использования представленных ранее методов

оптимизации в контексте подобных сетевых структур. В частности, рассматриваются

следующие вопросы:

∙ Сохраняется ли вогнутость при композиции интегралов?

∙ Как рассчитывается супеградиент такой композиции?

∙ Каковы последствия присутствия невыпуклых вершин в модели?

Первый вопрос тривиален. Поскольку интегралШоке является неубывающей функцией,

то и любая композиция интегралов по 2-монотонным емкостям будет вогнутой при условии

вогнутости всех функций 𝑓𝑖(𝑧𝑖).

Ответ на второй вопрос также может быть получен с легкостью. Рассмотрим граф

на Рис. 2.13. Выберем точку 𝑧0 = (𝑧01 , . . . , 𝑧
0
6). Интегралы 𝐶𝜈2 , 𝐶𝜈3 , 𝐶𝜈4 приобретают в ней

следующий вид

𝐶𝜈2 = 𝑝5𝑓5(𝑧
0
5) + 𝑝6𝑓6(𝑧

0
6)

𝐶𝜈3 = 𝑝3𝑓3(𝑧
0
3) + 𝑝4𝑓4(𝑧

0
4)

𝐶𝜈2 = 𝑝1𝑓1(𝑧
0
1) + 𝑝2𝑓2(𝑧

0
2) + 𝑝3𝑓3(𝑧

0
3),

(2.60)

где 𝑝𝑖 рассчитываются как и прежде (см. раздел 2.2.2). Таким образом, интеграл 𝐶𝜈1

равняется

𝐶𝜈1 = 𝑝12𝐶𝜈2 + 𝑝13𝐶𝜈3 + 𝑝14𝐶𝜈4

= 𝑝12𝑝1𝑓1(𝑧
0
1) + 𝑝12𝑝2𝑓2(𝑧

0
2) + 𝑝12𝑝3𝑓3(𝑧

0
3)+

+ 𝑝13𝑝3𝑓3(𝑧
0
3) + 𝑝13𝑝4𝑓4(𝑧

0
4) + 𝑝14𝑝5𝑓5(𝑧

0
5) + 𝑝14𝑝6𝑓6(𝑧

0
6).

(2.61)
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Рис. 2.13. Пример композиции интегралов.

Таким образом, в каждой точке 𝑧 ∈ R𝑛
+ композиция интегралов представляет собой

взвешенную сумму (с возможно неуникальными коэффициентами 𝑝𝑖), а ее суперградиент

обладает свойствами уже рассмотренными в разделе 2.2.2. Оптимизацию всей иерархии,

таким образом, можно проводить с помощью, например, метода проекции суперградиента

(Рис. 2.1).

Допустим теперь, что в модели присутствует некоторое количество невыпуклых

интегралов (т.е. интегралов по не 2-монотонным емкостям). Напомним, что метод,

представленный в разделе 2.3, позволяет получить разложение произвольной емкости на

полностью монотонные меры, и сопутствующее разложение пространства переменных на

подмножества, внутри которых интеграл сохраняет вогнутость. Возвращаясь к примеру на

Рис. 2.13, предположим, что интеграл 𝐶𝜈4 является невыпуклым. Тогда, его разложение

содержит подмножества множества 𝑍5 × 𝑍6, где 𝑍5 и 𝑍6 - множества значений переменных

𝑧5 и 𝑧6. Очевидно это разбиение может быть расширено на общее пространство всей модели

- 𝑍1 × 𝑍2 × 𝑍3 × 𝑍4 × 𝑍5 × 𝑍6. В случае, если интеграл 𝐶𝜈2 также является невыпуклым, его

разложение будет содержать подмножества множества 𝑍2 × 𝑍1. Тогда общее пространство

модели будет разбито на 4 элемента, соответствующие различным комбинациям элементов

разложения интегралов 𝐶𝜈4 и 𝐶𝜈2 :

∙ {𝑧 : 𝑓5(𝑧5) ≤ 𝑓6(𝑧6)}
⋂︀
{𝑧 : 𝑓1(𝑧1) ≤ 𝑓2(𝑧2)};

∙ {𝑧 : 𝑓5(𝑧5) ≤ 𝑓6(𝑧6)}
⋂︀
{𝑧 : 𝑓2(𝑧2) ≤ 𝑓1(𝑧1)};

∙ {𝑧 : 𝑓6(𝑧6) ≤ 𝑓5(𝑧5)}
⋂︀
{𝑧 : 𝑓1(𝑧1) ≤ 𝑓2(𝑧2)};
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∙ {𝑧 : 𝑓6(𝑧6) ≤ 𝑓5(𝑧5)}
⋂︀
{𝑧 : 𝑓2(𝑧2) ≤ 𝑓1(𝑧1)}.

Таким образом, в принципе, для любой модели возможно получить разложение общего

пространства на подмножества такие, что целевая функция модели (в корневой вершине)

будет вогнута на каждом из них. Следовательно, проблема может быть решена аналогично

проблеме максимизации единственного невыпуклого интеграла (см. раздел 2.3), а именно

путем образования всех возможных комбинаций полностью монотонных мер из разложений

каждого невыпуклого интеграла, входящего в модель.

Может показаться, что процесс разложения становится более сложным по мере

продвижения к корневой вершине структуры. Например, допустим, что емкость 𝜈1 не

2-монотонна. В этом случае элементы разбиения пространства переменных (множества 𝑇𝑖)

будут описываться неравенствами вида:

𝐶(𝜈2, (𝑓5(𝑧5), 𝑓6(𝑧6))) ≤ 𝐶(𝜈3, (𝑓3(𝑧3), 𝑓4(𝑧4))), (2.62)

которые достаточно сложны. Однако, непосредственное вычисление этих множеств не

требуется ни на каком этапе расчета модели. Схема, представленная на Рис. 2.8 и

алгоритм на Рис. 2.5,2.6,2.7 зависят не от значений аргументов интеграла, а только от их

относительного порядка. Результатом процедуры разбиения является множество емкостей,

а фундаментальное соотношение (2.34) гарантирует, что соответствующие интегралы, то

есть интегралы по этим емкостям, не будут превышать значений исходного интеграла для

любых значений аргументов. Следовательно, при оптимизации не требуется ограничивать

допустимые множества рамками соответствующих элементов разбиения.

Наконец, отметим, что вычислительная сложность, измеряемая числом задач выпуклого

программирования, которые необходимо решить для нахождения глобального максимума,

очень быстро увеличивается при росте числа элементов в разбиениях невыпуклых

интегралов, входящих в модель. Более эффективные методы расчета иерархических

невыпуклых моделей, таким образом, могут стать актуальной темой для последующих

исследований.

2.5. Определение параметров модели и робастная оптимизация

Интеграл Шоке является одним из наиболее функциональных средств, применяемых

в задачах принятия решений. Однако, компенсация за подобную выразительность также

является весьма значительной. Тогда как аддитивную модель (взвешенное среднее) с

𝑛 критериями можно полностью определить задав всего 𝑛 − 1 значений параметров,
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полная характеризация модели, основанной на интеграле Шоке, потребует определения

2𝑛 − 2 значений емкости. Очевидно, этот факт является существенным затруднением уже

при небольших значениях 𝑛. Кроме того, интерпретация значений емкости достаточна

нетривиальна. Данный вопрос стал предметом широкого обсуждения в литературе, а методы

его решения были предложены целым рядом авторов. Основной идеей предложенных

методов является представление информации о предпочтениях ЛПР в форме ограничений

(как правило линейных) на множестве емкостей. Серьезным недостатком такого подхода,

особенно сильно проявляющимся в практических задачах, является невозможность получить

единственную емкость, согласующуюся с заданной информацией. Как правило, проблема

возникает вследствие неполноты и неточности исходных данных. Вторым источником

подобной неопределенности может стать наличие нескольких источников информации или

экспертов (см. примеры в разделе 3). Результатом этого является возможность определить

лишь некоторое подмножество допустимых емкостей 𝒰 , элементы которого должны быть

подвергнуты дополнительной фильтрации, то есть требуется дальнейшее уточнение.

Обзор разработанных на сегодняшний день средств представления информации о

предпочтениях опубликован в работе [63]. Существующие на данный момент методы (см.

раздел 2.6), позволяют выражать относительную важность критериев, силу и характер их

взаимодействия, и некоторые дополнительные характеристики, такие как необходимость и

достаточность. Дополнительное уточнение, позволяющее выбрать единственную емкость из

множества допустимых, как правило основывается на оптимизации некоторой функции на

множестве 𝒰 .

В некоторых случаях существует возможность использовать обучающее множество -

некоторый набор альтернатив, оценка которых вручную проводится ЛПР. Одним из первых

методов определения емкости при наличии такой информации стал традиционный метод

наименьших квадратов [103]. Искомая емкость является решением следующей задачи:∑︁
𝑧∈𝒪

[𝐶(𝜈, 𝑓(𝑧))− 𝑦(𝑧)]2 → min
𝜈∈𝒰

, (2.63)

где 𝑦(𝑧) - оценки элементов обучающего множества 𝒪, полученные от ЛПР. В работах

[98] и [100] были представлены варианты развития этого подхода, также основанные

на использовании обучающего множества. Случай интервальных 𝑦(𝑧) был рассмотрен

Беляковым в работе [32], где показывается, что ℓ1 аппроксимация может быть эффективно

получена путем переформулирования задачи в виде задачи линейного программирования.

В недавно опубликованной работе [128] был предложен подход, основанный на применении

логистической регрессии.
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Во второй группе работ вместо аппроксимации предлагается использование критериев

из теории информации. Например, в [76] автором предлагается использовать для

определения емкости ее дисперсию. При этом искомая емкость минимизирует

1

|𝑁 |
∑︁
𝑖∈𝑁

∑︁
𝑆⊂𝑁∖𝑖

(|𝑁 | − |𝑆| − 1)!|𝑆|!
|𝑁 |!

(︃∑︁
𝑇⊂𝑆

𝑚𝜈(𝑇 ∪ 𝑖)− 1

|𝑁 |

)︃2

→ min
𝜈∈𝒰

. (2.64)

Решением данной задачи является “наименее специфичная” емкость, то есть емкость

обладающая минимальной дисперсией, из множества 𝒰 . Вариация этого метода, в котором

искомая емкость максимизирует так называемую ℓ1-энтропию, была предложена в работе

[81].

Следующая группа методов основана на аппроксимации некоторой “эталонной” емкости.

Качество аппроксимации измеряется с помощью различных функций расстояния. Примером

ранней публикации, содержащих методы этой группы, является [142], где искомая емкость

полагается частично известной. В работе [77] вводятся три различные функции расстояния,

а в качестве эталонной емкости используется равномерно распределенная (𝜈(𝐴) = |(𝐴)|
|𝑁 | ,∀𝐴 ⊂

𝑁).

Двумя основными недостатками всех вышеперечисленных подходов являются

сложность интерпретации и отсутствие робастности. Как указывается в работе [84],

выбор емкости путем оптимизации некоторой функции “не вполне удовлетворителен,

поскольку ЛПР обычно не понимает смысла оптимизируемого выражения. Таким образом,

использование подобных методов вводит в задачу дополнительную информацию, источником

которой является не ЛПР”.

Проблема робастности стала обсуждаться в литературе сравнительно недавно. Так,

в работах [29, 82, 84] были введены два вида отношений предпочтения: необходимое,

соответствующее случаю, когда один объект предпочтительнее другого при всех возможных

сценариях (т.е. емкостях), и возможное, соответствующее случаю, когда хотя бы одна

емкость позволяет сделать такой вывод. Иными словами, для некоторых 𝑥, 𝑦 ∈ 𝑍

𝑥 <𝑁 𝑦 ⇔ 𝐶(𝜈, 𝑓(𝑥)) ≥ 𝐶(𝜈, 𝑓(𝑦)),∀𝜈 ∈ 𝒰 , (2.65)

где <𝑁 - отношение необходимого предпочтения, и

𝑥 <𝑃 𝑦 ⇔ ∃𝜈 ∈ 𝒰 : 𝐶(𝜈, 𝑓(𝑥)) ≥ 𝐶(𝜈, 𝑓(𝑦)), (2.66)

где <𝑃 - отношение возможного предпочтения. В работе [84] предлагается обобщение этого

подхода, при котором функции ценности также полагаются переменными:

𝑥 <𝑁 𝑦 ⇔ 𝐶(𝜈, 𝑓(𝑥)) ≥ 𝐶(𝜈, 𝑓(𝑦)),∀𝜈 ∈ 𝒰 , 𝑓 ∈ ℱ , (2.67)
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где ℱ это множество возможных функций ценности. Авторами делается предположение о

кусочно-линейном характере этих функций, на основе чего строится эвристика, позволяющая

найти решение следующей задачи:

𝐶(𝜈, 𝑓(𝑦))− 𝐶(𝜈, 𝑓(𝑥)) → max
𝜈,𝑓

𝜈 ∈ 𝒰

𝑓 ∈ ℱ .

(2.68)

В случае, если оптимальное значение задачи неположительно, 𝐶(𝜈, 𝑓(𝑥)) ≥ 𝐶(𝜈, 𝑓(𝑦)),∀𝜈 ∈

𝒰 , 𝑓 ∈ ℱ , а следовательно, 𝑥 <𝑁 𝑦.

К сожалению, отношение необходимого предпочтения может быть неполным, то

есть могут существовать элементы, несравнимые с помощью <𝑁 . В этом разделе будет

предложен метод, который позволяет получить робастное решение, не обладая в то же время

недостатками предыдущих подходов. Его основой являются понятия потери и ценности

информации.

В завершение, отметим, что задача выбора емкости из некоторого допустимого

множества принципиально не отличается от аналогичной задачи для аддитивных моделей. В

свою очередь, такая задача является хорошо изученной в статистике и теории вероятностей.

Подробная информация по данному вопросу может быть найдена в работах [71, 75, 141].

2.6. Задача определения емкости

2.6.1. Методы представления информации

Процесс определения емкости подразумевает представление информации о предпо­

чтениях, полученной от ЛПР, в качестве ограничений на множестве емкостей. Ниже

приводятся классы информации, для которых на данный момент разработаны методы такого

представления.

Важность критериев. Наиболее естественной характеристикой элементов многокритери­

альной модели является, очевидно, относительная важность критериев. Репрезентация

такой информации в моделях, основанных на интеграле Шоке, схожа с аддитивным

случаем, однако, ввиду неаддитивности, не может быть целиком произведена только с

помощью значений емкости на единичных элементах множества 𝑁 . Вместо этого, во

внимание принимаются все его подмножества.

Взаимодействие критериев. Более сложным аспектом предпочтений является совмест­

ное влияние критериев. В частности, критерии могут как дополнять друг друга,
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что также называется положительной синергией, так и быть взаимозаменяемыми

(отрицательная синергия), или же независимыми.

Необходимые и достаточные критерии. В некоторых случаях модель включает крите­

рии, важность которых настолько велика, что объекты, имеющие низкую оценку по

такому критерию, будут неизбежно низко оценены ЛПР. Такие критерии называются

необходимыми (в англоязычной литературе “veto”). Обратной ситуацией является

случай, при котором высокая оценка по какому либо из критериев автоматически га­

рантирует и высокую общую оценку данного объекта. Такие критерии будем называть

достаточными (“favor”). Обобщая эти понятия, будем говорить о степени достаточности

или необходимости рассматриваемого критерия (см. далее).

Обучающее множество. В некоторых случаях, ЛПР может непосредственно выразить

свои предпочтения по отношению к небольшому числу объектов. Как правило речь

идет о простом ранжировании, то есть выделении более и менее предпочтительных

объектов.

Представленные ниже методы были изначально разработаны для бихевиористского

анализа емкостей, то есть для получения их семантической интерпретации в контексте задач

принятия решений. Однако, с их помощью возможно сформулировать также и обратную

задачу определения емкости (см. [98] и процитированные в ней работы).

Определение 18 ([121]). Вектором Шепли называется аддитивная мера 𝜑 : 2𝑁 → [0, 1]

определяемая как:

𝜑𝜈(𝑖) =
∑︁

𝑇⊂𝑁∖𝑖

(|𝑁 | − |𝑇 | − 1)!|𝑇 |!
|𝑁 |!

[𝜈(𝑇 ∪ 𝑖)− 𝜈(𝑇 )]. (2.69)

Альтернативное выражение через коэффициенты обращения Мебиуса:

𝜑𝑚(𝑖) =
∑︁

𝑇⊂𝑁∖𝑖

1

|𝑇 |+ 1
𝑚(𝑇 ∪ 𝑖). (2.70)

Значения вектораШепли могут интерпретироваться в качестве относительной важности

критериев в многокритериальной задаче. Формально, вектор показывает средний вклад

каждого из критериев во все подмножества 𝑁 . Как следует из определения, сумма значений

вектора Шепли по всем критериям равняется единице. В Табл. 2.5 приводятся варианты

использования вектора Шепли в задаче определения емкости (𝛿𝑆𝐻 - коэффициент порога

чувствительности, небольшая положительная величина). Возможно также непосредственное

выражение важности некоторого критерия - 𝜑𝜈(𝑖) = 𝑘 или 𝜑𝜈(𝑖) ∈ [𝑘𝑙, 𝑘𝑢], хотя, как и в
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Таблица 2.5. Моделирование важности критериев

Характеристика Выражение

Критерий 𝑖 важнее критерия 𝑗 𝜑𝜈(𝑖)− 𝜑𝜈(𝑗) > 𝛿𝑆𝐻

Критерии 𝑖 и 𝑗 равнозначны −𝛿𝑆𝐻 6 𝜑𝜈(𝑖)− 𝜑𝜈(𝑗) 6 𝛿𝑆𝐻

аддитивном случае, такой подход обладает серьезными методологическими недостатками

(см., например, [37]).

Техника измерения характера и силы взаимодействия в парах критериев была впервые

предложена в работе [106], и позднее обобщена на группы произвольного размера в [61].

Определение 19. Индексом взаимодействия множества 𝑇 ⊂ 𝑁 называется:

𝐼𝜈(𝑇 ) =

|𝑁 |−|𝑇 |∑︁
𝑘=0

𝜉
|𝑇 |
𝑘

∑︁
𝐾⊂𝑍∖𝑇,|𝐾|=𝑘

∑︁
𝐿⊂𝑇

(−1)|𝑇 |−|𝐿|𝜈(𝐿 ∪𝐾), (2.71)

где

𝜉𝑝𝑘 =
(|𝑁 | − 𝑘 − 𝑝)!𝑘!

(|𝑁 | − 𝑝 + 1)!
. (2.72)

Для практических задач наиболее значимым является выражение индекса для пар

критериев {𝑖, 𝑗}:

𝐼𝜈(𝑖𝑗) =
∑︁

𝑇⊂𝑁∖𝑖𝑗

𝜉2|𝑇 | [𝜈(𝑇 ∪ 𝑖𝑗)− 𝜈(𝑇 ∪ 𝑖)− 𝜈(𝑇 ∪ 𝑗) + 𝜈(𝑇 )] . (2.73)

Альтернативное выражение через коэффициенты обращения Мебиуса:

𝐼𝑚(𝑖𝑗) =
∑︁

𝑇⊂𝑁∖𝑖𝑗

1

|𝑇 |+ 1
𝑚(𝑇 ∪ 𝑖𝑗). (2.74)

Индекс взаимодействия для единичных элементов совпадает с вектором Шепли. Индекс

может использоваться для анализа уровня взаимодействия между элементами множества

𝑇 . Значения индекса находятся в диапазоне [−1, 1], при этом 1 соответствует максимально

положительному взаимодействию (взаимодополнение), а -1, соответственно, максимально

отрицательному (взаимозамещение). В Табл. 2.6 приводятся варианты использования

индекса в задачах определения емкости.

Для моделирования необходимых и достаточных критериев используется следующий

подход [60]. Если некоторый критерий 𝑖 является необходимым, то

𝜈(𝐴) = 0 ∀𝐴 ̸⊃ 𝑖. (2.75)
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Таблица 2.6. Моделирование взаимодействия критериев

Характеристика Выражение

Критерии 𝑖 и 𝑗 дополняют друг друга 0 6 𝐼𝜈(𝑖, 𝑗) 6 1

Критерии 𝑖 и 𝑗 дополняют друг друга сильнее чем 𝑘 и 𝑙 𝐼𝜈(𝑖, 𝑗)− 𝐼𝜈(𝑘, 𝑙) > 𝛿𝐼

Взаимодействие в парах критериев 𝑖 и 𝑗 и 𝑘 и 𝑙 одинаково −𝛿𝐼 6 𝐼𝜈(𝑖, 𝑗)− 𝐼𝜈(𝑘, 𝑙) 6 𝛿𝐼

Если же некоторый критерий 𝑖 является достаточным, то

𝜈(𝐴) = 1 ∀𝐴 ⊃ 𝑖. (2.76)

Обобщением предыдущих двух понятий являются индексы[97], показывающие в какой

степени критерий близок к тому, чтобы быть необходимым или достаточным. Примеры

использования индекса необходимости в задачах определения емкости приведены в Табл.

2.7.

необх(𝜈, 𝑖) = 1−
∑︁

𝐴⊂𝑁∖𝑖

1

(𝑛− 1)
(︀
𝑛−1
𝑡

)︀𝜈(𝐴)

достат(𝜈, 𝑖) =
∑︁

𝐴⊂𝑁∖𝑖

1

(𝑛− 1)
(︀
𝑛−1
𝑡

)︀𝜈(𝐴)− 1

𝑛− 1

(2.77)

Таблица 2.7. Моделирование степени необходимости или достаточности критериев

Характеристика Выражение

Критерий 𝑖 более необходим, чем 𝑗 необх(𝜈, 𝑖)− необх(𝜈, 𝑗) ≥ 𝛿𝑓𝑣

Критерий 𝑖 более достаточен, чем 𝑗 достат(𝜈, 𝑖)− достат(𝜈, 𝑗) ≥ 𝛿𝑓𝑣

В случае, если в задаче существует возможность использования обучающего множества,

ЛПР, как правило, предоставляет информацию об относительной предпочтительности

элементов этого множества. В рамках задачи определения емкости такая информация

представима в качестве линейных ограничений (поскольку интеграл линеен по 𝜈), см. Табл.

2.8.

Таблица 2.8. Использование обучающего множества

Характеристика Выражение

Элемент 𝑥 предпочтительнее элемента 𝑦 𝐶(𝜈, 𝑓(𝑥))− 𝐶(𝜈, 𝑓(𝑦)) > 𝛿𝐿𝑆

Элементы 𝑥 и 𝑦 равнозначны по мнению ЛПР −𝛿𝐿𝑆 6 𝐶(𝜈, 𝑓(𝑥))− 𝐶(𝜈, 𝑓(𝑦)) 6 𝛿𝐿𝑆
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2.6.2. Множество неопределенности

Выразив всю доступную информацию в виде ограничений на множестве емкостей,

получаем множество допустимых емкостей 𝒰 . В соответствии с терминологией робастной

оптимизации, будем называть его множеством неопределенности. С помощью механизмов,

описанных в предыдущем разделе, множество 𝒰 может быть характеризовано следующим

образом:

𝒰 :

Информация о предпочтениях ЛПР

𝜑𝜈(𝑖)− 𝜑𝜈(𝑗) > 𝛿𝑆𝐻 , 𝑖, 𝑗 ∈ 1, . . . , 𝑛

. . .

− 𝛿𝑆𝐻 6 𝜑𝜈(𝑖)− 𝜑𝜈(𝑗) 6 𝛿𝑆𝐻 , 𝑖, 𝑗 ∈ 1, . . . , 𝑛

. . .

𝐼𝜈(𝑖, 𝑗)− 𝐼𝜈(𝑘, 𝑙) > 𝛿𝐼 , 𝑖, 𝑗 ∈ 1, . . . , 𝑛

. . .

− 𝛿𝐼 6 𝐼𝜈(𝑖, 𝑗)− 𝐼𝜈(𝑘, 𝑙) 6 𝛿𝐼 , 𝑖, 𝑗 ∈ 1, . . . , 𝑛

. . .

𝐶(𝜈, 𝑓(𝑧𝑖))− 𝐶(𝜈, 𝑓(𝑧𝑗)) > 𝛿𝐿𝑆, 𝑖, 𝑗 ∈ 1, . . . , 𝑛

. . .

− 𝛿𝐿𝑆 6 𝐶(𝜈, 𝑓(𝑧𝑖))− 𝐶(𝜈, 𝑓(𝑧𝑗)) 6 𝛿𝐿𝑆, 𝑖, 𝑗 ∈ 1, . . . , 𝑛

. . .

𝜈(𝐴) = 1,∀𝐴 ⊃ достаточные критерии

𝜈(𝐴) = 0,∀𝐴 ̸⊃ необходимы критерии

Технические ограничения

𝜈(∅) = 0

𝜈(𝑁) = 1

𝜈(𝐵) ≥ 𝜈(𝐴) ∀𝐵 ⊂ 𝐴 ⊂ 𝑁

Дополнительные ограничения

𝑘 − аддитивность. Не всегда возможна.

(2.78)
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Поскольку все индексы, рассмотренные в предыдущем разделе являются линейными

функциями 𝜈, множество 𝒰 представляет собой многогранник в пространстве R2𝑛

+ .

Размерность может быть снижена до 2𝑛 − 2 путем исключения координат ∅ и 𝑁 ,

значения которых фиксированы. В более общей постановке, возможно считать 𝒰 замкнутым,

ограниченным, выпуклым множеством. Для выяснения того, содержит ли множество

допустимых емкостей хотя бы один элемент, необходимо решить задачу вида:

0 → min
𝜈

𝜈 ∈ 𝒰 .
(2.79)

Если же множество допустимых емкостей пусто, предпочтения, выраженные ЛПР содержат

противоречия или не могут быть выражены с помощью интеграла Шоке (более подробно

в [63, 99]). Случай, когда множество 𝒰 содержит более одной емкости является предметом

рассмотрения этого раздела и подробно проанализирован далее.

2.7. Задача робастной оптимизации

Если информация о предпочтениях ЛПР позволяет сузить круг допустимых емкостей до

единственной точки, проблема принятия оптимального решения формулируется следующим

образом:

𝐶(𝜈, 𝑓(𝑧))→ max
𝑧

𝑧 ∈ 𝒵0,

(2.80)

где 𝒵0 - как и ранее, множество допустимых альтернатив. Оптимальным решением

является некоторый элемент этого множества, максимизирующий значение интеграла

(см. раздел 2.1). Однако, в случае, если предпочтениям ЛПР соответствует более

одной емкости, сформулировать задачу в виде (2.80) невозможно, и требуется

использование дополнительных средств, позволяющих учитывать все множество допустимых

емкостей. В качестве такого средства будем использовать критерий минимаксных потерь

(minimax-regret), предложенный в [117]. В контексте решаемой задачи он обладает

следующими важными преимуществами перед обычным минимаксным критерием [140],

наиболее широко применяемым в робастной оптимизации:

∙ критерий минимаксных потерь более полно использует доступную информацию;

∙ как следствие, результат оптимизации менее “пессимистичен”.

Для применения минимаксного критерия требуется и используется только ординальная

информация. Однако, использование интеграла Шоке подразумевает построение функций
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ценности на интервальных шкалах [83]. Таким образом, использование минимаксного

критерия приводит к потери существенной части доступной информации. Следовательно,

получаемый результат, как правило, излишне пессимистичен. В связи с этим, подход,

основанный на критерии минимаксных потерь, представляется более подходящим для

решения исследуемой задачи. Функция потерь имеет следующий вид:

ℛ(𝜈𝑟𝑒𝑎𝑙, 𝑧𝑟) = max
𝑧∈𝒵0

𝐶(𝜈𝑟𝑒𝑎𝑙, 𝑓(𝑧))− 𝐶(𝜈𝑟𝑒𝑎𝑙, 𝑓(𝑧𝑟)), (2.81)

где 𝑧𝑟 - “робастное решение”, а 𝜈𝑟𝑒𝑎𝑙 - емкость, наиболее соответствующая реальности.

Поскольку ЛПР не обладает достаточной информацией для определения этой емкости 8,

оптимизационная задача приобретает следующий вид:

max
𝜈

[︁
max

𝑧
𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝜈, 𝑓(𝑧𝑟))

]︁
→ min

𝑧𝑟

𝜈 ∈ 𝒰

𝑧 ∈ 𝒵0

𝑧𝑟 ∈ 𝒵0,

(RP)

где 𝒰 - множество неопределенности, т.е. множество емкостей согласующихся с

предпочтениями ЛПР. Целью является минимизация максимального отклонения от

оптимального решения при всех возможных сценариях. Это непрерывная минимакс задача

с переменными 𝜈, 𝑧, и 𝑧𝑟.

Отметим, что такая постановка является, в некотором смысле, обобщением принципа

необходимых и достаточных предпочтений. Предположим,

max
𝜈

[︁
max

𝑧
𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝜈, 𝑓(𝑧𝑟*))

]︁
= 0. (2.82)

Тогда, точка 𝑧𝑟* является, очевидно, не менее необходимо предпочтительной, чем остальные

точки множества 𝒵0, то есть 𝑧𝑟* <𝑁 𝑧 для всех 𝑧 ∈ 𝒵0 и для всех 𝜈 ∈ 𝒰 . Однако, подобная

точка существует не всегда. Задачу (RP) в этом случае можно рассматривать в качестве

задачи поиска точки, которая наилучшим образом аппроксимирует наиболее необходимо

предпочтительный элемент.

Методически важным является вопрос о том, соответствуют ли разности между

значениями интегралов Шоке по разным емкостям одним и тем же “интервалам” на исходном

множестве 𝑍? В противном случае сравнение значений потерь между разными емкостями не

8 На самом деле, подобная емкость является лишь абстракцией. В прикладных задачах параметры

будут претерпевать постоянные изменения под действием среды.
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будет иметь смыла. Иными словами, для любых 𝑥, 𝑦 ∈ 𝑍 должно выполняться

𝐶(𝜈1, 𝑓(𝑥))− 𝐶(𝜈1, 𝑓(𝑦)) = 𝐶(𝜈2, 𝑓(𝑥))− 𝐶(𝜈2, 𝑓(𝑦))⇔ 𝑑1(𝑥, 𝑦) = 𝑑2(𝑥, 𝑦), (2.83)

где 𝑑𝑖 - функции расстояния (“силы предпочтения”) для отношений <1 и <2, порождаемых

на множестве 𝑍 емкостями 𝜈1 и 𝜈2. Легко удостовериться, что выражение (2.83) верно.

По определению интервальной шкалы для любых 𝑢, 𝑣, 𝑤, 𝑧 ∈ 𝑍 таких, что 𝑑(𝑢,𝑣)
𝑑(𝑤,𝑧)

= 𝑘

выполняется 𝐶(𝜈,𝑢)−𝐶(𝜈,𝑣)
𝐶(𝜈,𝑤)−𝐶(𝜈,𝑧)

= 𝑘. Таким образом, для того чтобы показать истинность (2.83)

достаточно удостовериться, что для любых 𝜈 ∈ 𝒰 существуют точки 𝑥 и 𝑦 такие, что

𝐶(𝜈, 𝑓(𝑥))− 𝐶(𝜈, 𝑓(𝑦)) = 𝑐𝑜𝑛𝑠𝑡. В качестве таких точек, очевидно, можно взять любую пару

точек, таких что 𝑓1(𝑥1) = . . . = 𝑓𝑛(𝑥𝑛) и 𝑓1(𝑦1) = . . . = 𝑓𝑛(𝑦𝑛). Значения интеграла Шоке в

таких точках будут одинаковы при любой емкости 𝜈.

Лемма 8. Функция ℛ*(𝑧𝑟) = max𝜈∈𝒰 [max𝑧∈𝒵0 𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝜈, 𝑓(𝑧𝑟))] является выпуклой

по 𝑧𝑟, если все 𝜈 ∈ 𝒰 2-монотонны.

Доказательство. Поскольку при любой фиксированной 2-монотонной 𝜈 функция max𝑧∈𝒵0 𝐶(𝜈, 𝑓(𝑧))−

𝐶(𝜈, 𝑓(𝑧𝑟)) является выпуклой по 𝑧𝑟, функция

ℛ*(𝑧𝑟) = max
𝜈∈𝒰

[︂
max
𝑧∈𝒵0

𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝜈, 𝑓(𝑧𝑟))

]︂
(2.84)

также выпукла.

Лемма 9. Функция

ℛ(𝜈, 𝑧𝑟) = max
𝑧∈𝒵0

𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝜈, 𝑓(𝑧𝑟)) (2.85)

выпукла по 𝜈.

Доказательство. Поскольку интеграл Шоке линеен по 𝜈, достаточно показать, что

max𝑧 𝐶(𝜈, 𝑓(𝑧)) выпукла по 𝜈:

max
𝑧

𝐶(𝜆1𝜈1 + 𝜆2𝜈2, 𝑓(𝑧)) = 𝐶(𝜆1𝜈1 + 𝜆2𝜈2, 𝑓(𝑧*))

= 𝜆1𝐶(𝜈1, 𝑓(𝑧*)) + 𝜆2𝐶(𝜈2, 𝑓(𝑧*))

6 𝜆1 max
𝑧

𝐶(𝜈1, 𝑓(𝑧)) + 𝜆2 max
𝑧

𝐶(𝜈2, 𝑓(𝑧)),

(2.86)

где 𝑧* - точка максимума интеграла Шоке по емкости 𝜆1𝜈1 +𝜆2𝜈2. Поскольку max𝑧 𝐶(𝜈, 𝑓(𝑧))

выпукла по 𝜈, а 𝐶(𝜈, 𝑓(𝑧𝑟)) линейна по 𝜈, получаем, что max𝑧 𝐶(𝜈, 𝑓(𝑧))−𝐶(𝜈, 𝑓(𝑧𝑟)) выпукла

по 𝜈.
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Известно, что выпуклая функция достигает максимума на выпуклом множестве в

экстремальной точке этого множества, следовательно задача (RP) может быть переписана в

виде:

max
𝜈𝑖

[︁
max

𝑧
𝐶(𝜈𝑖, 𝑓(𝑧))− 𝐶(𝜈𝑖, 𝑓(𝑧𝑟))

]︁
→ min

𝑧𝑟

𝜈𝑖 ∈ 𝒰𝑒𝑥𝑡

𝑧 ∈ 𝒵0

𝑧𝑟 ∈ 𝒵0,

(2.87)

где 𝒰𝑒𝑥𝑡 - множество экстремальных точек (а в случае многогранника вершин) 𝒰 .

К сожалению, ввиду большой размерности множества 𝒰 , количество вершин

многогранника является слишком большим для их полного перебора. Подробное

исследование вопроса числа вершин многогранника всех емкостей и некоторые нижние

оценки этого числа опубликованы в работах [41, 68]. Несколько лучше дело обстоит

для 𝑘-аддитивных емкостей при небольших значениях 𝑘 [42]. Отметим, впрочем, что

дополнительные ограничения, наложенные на множество емкостей (см. (2.78)), видимо

приводят к резкому увеличению числа вершин. Так, известно, что многогранники,

содержащие все 2-аддитивные емкости, имеют 𝑛2 вершин [42]. Однако, добавляя

ограничения, описывающие линейное упорядочивание всех критериев по важности (1 < . . . <

𝑛) получим 32 и 232 вершины, для 𝑛 = 3 и 𝑛 = 4 соответственно.

С учетом указанных осложнений, задача (RP) как правило требует проведения

некоторого дополнительного анализа для выбора стратегии ее решения. Среди численных

экспериментов, завершающих этот раздел, приводятся также и случаи, в которых условия

были подобраны так, что задачу было возможно решить полным перебором вершин.

2.8. Анализ предлагаемого подхода

2.8.1. Оптимальность робастного решения и ценность информации

Теорема 16. Пусть 𝒰 - выпуклое замкнутое множество такое, что все 𝜈 ∈ 𝒰

2-монотонны. Тогда решение 𝑧𝑟* задачи (RP) также является точкой глобального

максимума 𝐶(𝜈𝑟, 𝑓(𝑧)), 𝑧 ∈ 𝒵0 для некоторых 𝜈𝑟 ∈ 𝒰 .

Доказательство. Рассмотрим конечномерное представление задачи (RP):

max
𝜈𝑖∈𝒰𝑒𝑥𝑡

[︂
max
𝑧∈𝒵0

𝐶(𝜈𝑖, 𝑓(𝑧))− 𝐶(𝜈𝑖, 𝑓(𝑧𝑟))

]︂
→ min

𝑧𝑟∈𝒵0

. (2.88)
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Это выражение может быть переписано следующим образом:

max
𝜆∈Λ

∑︁
𝜆𝑖

[︂
max
𝑧∈𝒵0

𝐶(𝜈𝑖, 𝑓(𝑧))− 𝐶(𝜈𝑖, 𝑓(𝑧𝑟))

]︂
→ min

𝑧𝑟∈𝒵0

, (2.89)

где Λ = {𝜆|𝜆 ≥ 0,
∑︀

𝜆𝑖 = 1} - вероятность, |Λ| = |𝒰𝑒𝑥𝑡|. Функция

ℱ(𝜆, 𝑧𝑟) =
∑︁

𝜆𝑖

[︂
max
𝑧∈𝒵0

𝐶(𝜈𝑖, 𝑓(𝑧))− 𝐶(𝜈𝑖, 𝑓(𝑧𝑟))

]︂
(2.90)

вогнута по 𝜆 при каждом фиксированном 𝑧𝑟 ∈ 𝒵0, и выпукла по 𝑧𝑟 для всех 𝜆 ∈ Λ. Множества

Λ и 𝒵0 компактны. Следовательно,

min
𝑧𝑟∈𝒵0

max
𝜆∈Λ
ℱ(𝜆, 𝑧𝑟) = max

𝜆∈Λ
min
𝑧𝑟∈𝒵0

ℱ(𝜆, 𝑧𝑟), (2.91)

что позволяет получить следующую двойственную задачу:

min
𝑧𝑟∈𝒵0

∑︁
𝜆𝑖

[︂
max
𝑧∈𝒵0

𝐶(𝜈𝑖, 𝑓(𝑧))− 𝐶(𝜈𝑖, 𝑓(𝑧𝑟))

]︂
→ max

𝜆∈Λ
, (2.92)

или, эквивалентно,∑︁
𝜆𝑖 max

𝑧∈𝒵0

𝐶(𝜈𝑖, 𝑓(𝑧))− max
𝑧𝑟∈𝒵0

𝐶(
∑︁

𝜆𝑖𝜈𝑖, 𝑓(𝑧𝑟)) → max
𝜆∈Λ

. (2.93)

Отметим, что оптимальная точка 𝑧𝑟 в (2.93) также является точкой максимума интеграла

Шоке по отношению к некоторой емкости 𝜈𝑟 =
∑︀

𝜆𝑖𝜈𝑖, принадлежащей множеству 𝒰 .

Теорема также может быть тривиально обобщена на случай выпуклого 𝒰 . Общий

случай, без допущения 2-монотонности, будет рассмотрен ниже (Теорема 18).

Выражение (2.93) позволяет сделать два важных наблюдения. Во-первых, выбор

оптимального решения путем минимизации максимальных потерь эквивалентен выбору

решения, максимизирующего интеграл Шоке по некоторой “робастной” емкости 𝜈𝑟,

согласующейся с предпочтениями ЛПР:

𝑧𝑟* = argmin
𝑧𝑟

max
𝜈
ℛ(𝜈, 𝑧𝑟) = argmax

𝑧
𝐶(𝜈𝑟, 𝑧). (2.94)

Иными словами, если множество неопределенности включает лишь 2-монотонные емкости,

выбор оптимального варианта путем решения (RP) означает выбор варианта, глобально

оптимального по некоторой емкости 𝜈𝑟 из множества 𝒰 . Отметим, что класс 2-монотонных

емкостей также включает аддитивные емкости, то есть вероятности. Как будет показано в

дальнейшем, ситуация в общем случае несколько отлична, поскольку интеграл 𝐶(𝜈, 𝑓(𝑧𝑟)) не

всегда вогнут по 𝑧𝑟.

Второе наблюдение носит более интерпретационный характер. В работе [113] выражение

(2.93) называется ожидаемой ценностью полной информации, с той разницей, что в (2.93)

распределение 𝜆 не фиксировано. В этом контексте, минимизация максимальных потерь

может рассматриваться как минимизация максимальной ожидаемой стоимости информации.
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2.8.2. Сравнение с методами, основанными на других критериях

Важным различием между критерием минимаксных потерь и подходами, основанными

на оптимизации некоторой функции, например дисперсии (такие методы рассмотрены в

разделе 2.5), является то, что большинство этих методов не учитывает функции полезности,

используемые в модели. Это означает, в частности, что подходы, основанные только на

значениях емкости, не могут гарантировать качество получаемого с их помощью решения.

Рассмотрим следующий пример. Требуется найти оптимальное решение следующей

задачи с тремя критериями. Без ущерба общности, предположим, что функции полезности

определены и задаются выражениями вида 𝑓𝑖(𝑧𝑖) = 1 − 𝑒−3𝑧𝑖 . Множество допустимых

альтернатив представляет собой симплекс 𝒵0 = {𝑧|
∑︀

𝑧 = 1}. Более того, введем

дополнительно требование 2-аддитивности емкости. Имеется следующая информация о

предпочтениях ЛПР:

1 < 2 < 3

𝐼𝜈(1, 2) ≥ 0

𝐼𝜈(1, 3) ≥ 0

𝐼𝜈(2, 3) ≥ 0.

(2.95)
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Эти условия могут быть представлены в виде следующего множества неопределенности

(положим значение порога чувствительности равным 0.05):

𝒰 :

Предпочтения ЛПР

𝜑(1)− 𝜑(2) ≥ 0.05

𝜑(2)− 𝜑(3) ≥ 0.05

𝐼𝜈(1, 2) ≥ 0

𝐼𝜈(1, 3) ≥ 0

𝐼𝜈(2, 3) ≥ 0

Технические ограничения

𝜈(∅) = 0

𝜈(𝑁) = 1

𝜈(𝐵) ≥ 𝜈(𝐴) ∀𝐵 ⊂ 𝐴 ⊂ 𝑁

Дополнительные ограничения

𝜈 2− аддитивна.

(2.96)

Методы, основанные на минимизации дисперсии или расстояния до “равномерной” емкости

[76, 77] приводят к одинаковому результату (Табл. 2.9) 9.

Таблица 2.9. Емкость, полученная минимизацией дисперсии/расстояния

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

𝜈𝑚𝑣 0 0.3833 0.3333 0.2833 0.7167 0.6667 0.6167 1

Проблема нахождения оптимального решения приобретает следующий вид:

𝐶(𝜈𝑚𝑣, 𝑓(𝑧)) → max

𝑧 ∈ 𝒵0,
(2.97)

а ее решением является точка 𝑧*𝑚𝑣 = (0.3824, 0.3359, 0.2817).

Множество неопределенности 𝒰 представляет собой многогранник с 14 вершинами

(Табл. 2.10).

9 Вычисления проводились с использованием пакета kappalab [64]
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Таблица 2.10. Вершины множества неопределенности U

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

𝜈1 0. 0.3833 0.05 0. 0.4333 0.3833 0.6167 1

𝜈2 0. 0.3333 0. 0. 0.4333 0.3333 0.5667 1

𝜈3 0. 0. 0. 0. 0.4333 0.3333 0.2333 1

𝜈4 0. 0.3833 0.3333 0.2833 0.7167 0.6667 0.6167 1

𝜈5 0. 0.1 0.3333 0. 0.4333 0.6667 0.3333 1

𝜈6 0. 0. 0.2333 0. 0.4333 0.5667 0.2333 1

𝜈7 0. 0. 0. 0. 0.55 0.45 0. 1

𝜈8 0. 0. 0. 0. 0.9 0.1 0. 1

𝜈9 0. 0. 0. 0.2333 0.6667 0.3333 0.2333 1

𝜈10 0. 0.05 0. 0.2833 0.7167 0.3333 0.2833 1

𝜈11 0. 0.05 0. 0. 1. 0.05 0. 1

𝜈12 0. 0.9 0. 0. 1. 0.9 0. 1

𝜈13 0. 0.95 0.05 0. 1. 0.95 0.05 1

𝜈14 0. 0.525 0.475 0. 1. 0.525 0.475 1

Как было указано ранее, функция потерь достигает максимального значения в вершине

𝒰 . В частности,

ℛ(𝜈1, 𝑧
*
𝑚𝑣) = 0.0175 ℛ(𝜈8, 𝑧

*
𝑚𝑣) = 0.0707

ℛ(𝜈2, 𝑧
*
𝑚𝑣) = 0.0179 ℛ(𝜈9, 𝑧

*
𝑚𝑣) = 0.0187

ℛ(𝜈3, 𝑧
*
𝑚𝑣) = 0.0337 ℛ(𝜈10, 𝑧

*
𝑚𝑣) = 0.0153

ℛ(𝜈4, 𝑧
*
𝑚𝑣) = 0. ℛ(𝜈11, 𝑧

*
𝑚𝑣) = 0.1396

ℛ(𝜈5, 𝑧
*
𝑚𝑣) = 0.029 ℛ(𝜈12, 𝑧

*
𝑚𝑣) = 0.1884

ℛ(𝜈6, 𝑧
*
𝑚𝑣) = 0.0337 ℛ(𝜈13, 𝑧

*
𝑚𝑣) = 0.2226

ℛ(𝜈7, 𝑧
*
𝑚𝑣) = 0.0262 ℛ(𝜈14, 𝑧

*
𝑚𝑣) = 0.1172

(2.98)

Учитывая, что max𝑧∈𝒵0 𝐶(𝜈13, 𝑓(𝑧)) = 0.9027 и min𝑧∈𝒵0 𝐶(𝜈13, 𝑓(𝑧)) = 0, точка 𝑧*𝑚𝑣, в которой

𝐶(𝜈13, 𝑧
*
𝑚𝑣) = 0.6801, таким образом достаточно сильно удалена от оптимума (значение в ней

меньше оптимального почти на 25%).
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Робастным решением задачи является точка 𝑧𝑟 = (0.4976, 0.3363, 0.1660), в которой

функция потерь принимает следующие значения:

ℛ(𝜈1, 𝑧
𝑟) = 0.0828 ℛ(𝜈8, 𝑧

𝑟) = 0.0881

ℛ(𝜈2, 𝑧
𝑟) = 0.0878 ℛ(𝜈9, 𝑧

𝑟) = 0.0777

ℛ(𝜈3, 𝑧
𝑟) = 0.1345 ℛ(𝜈10, 𝑧

𝑟) = 0.0608

ℛ(𝜈4, 𝑧
𝑟) = 0.0147 ℛ(𝜈11, 𝑧

𝑟) = 0.1345

ℛ(𝜈5, 𝑧
𝑟) = 0.1205 ℛ(𝜈12, 𝑧

𝑟) = 0.1048

ℛ(𝜈6, 𝑧
𝑟) = 0.1345 ℛ(𝜈13, 𝑧

𝑟) = 0.1345

ℛ(𝜈7, 𝑧
𝑟) = 0.1061 ℛ(𝜈14, 𝑧

𝑟) = 0.0683

(2.99)

Соответствующая “робастная” емкость 𝜈𝑟 приводится в Табл. 2.11.

Таблица 2.11. “Робастная” емкость

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

𝜈𝑟 0 0.5035 0.0644 0 0.8138 0.6513 0.1028 1

2.9. Решение задачи полубесконечного программирования

Задача (RP) может быть переписана как задача полубесконечного программирования:

𝑡 → min

max
𝑧

𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝜈, 𝑓(𝑧𝑟)) ≤ 𝑡, ∀𝜈 ∈ 𝒰

𝑧 ∈ 𝒵0

𝑧𝑟 ∈ 𝒵0.

(SIP)

Для решения задачи (SIP) будем использовать так называемый метод “замены” (идея

впервые предложена в алгоритме Ремеза[17]). Основой данного метода является решение

вместо задачи (SIP) последовательности задач вида:

𝑡 → min

max
𝑧

𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝜈, 𝑓(𝑧𝑟)) ≤ 𝑡, ∀𝜈 ∈ 𝒰𝑘

𝑧 ∈ 𝒵0

𝑧𝑟 ∈ 𝒵0.

(SIP-F)
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где 𝒰𝑘 - конечная аппроксимация 𝒰 , т.е. 𝒰𝑘 ⊂ 𝒰 , |𝒰𝑘| <∞, и

𝒰0 ⊂ 𝒰1 ⊂ . . . ⊂ 𝒰 . (2.100)

Задача(SIP-F) является конечномерной, следовательно, нахождение ее решения проще,

чем решения задачи (SIP). Предположим, на очередном шаге были найдены оптимальная

точка 𝑧𝑟𝑘, значение целевой функции в которой равняется 𝑡𝑘. В этой точке алгоритм ищет

решение(решения) 𝜈𝑘+1 “внутренней” задачи:

ℛ(𝜈𝑘+1, 𝑧𝑟𝑘) = max
𝑧∈𝒵0

𝐶(𝜈, 𝑧)− 𝐶(𝜈, 𝑧𝑟𝑘) → max
𝜈∈𝒰

. (InP)

В случае, когда ℛ(𝜈𝑘+1, 𝑧𝑟𝑘) > 𝑡𝑘, формируется улучшенная аппроксимация множества 𝒰 :

𝒰𝑘+1 = 𝒰𝑘
⋃︀

𝜈𝑘+1, и алгоритм переходит на следующую итерацию. Если же, напротив,

ℛ(𝜈𝑘+1, 𝑧𝑟𝑘) ≤ 𝑡𝑘, алгоритм завершает свою работу, а точка 𝑧𝑟𝑘 является решением задачи

(SIP). Доказательство сходимости метода “замены” может быть найдено, например, в [70].

Алгоритм, представленный на Рис. 2.14, включает два основных этапа: решение

“внутренней” задачи (InP), и решение “внешней” задачи (SIP-F). Решение внутренней задачи,

в свою очередь, состоит из четырех этапов, представленных в виде функций ScanList,

DomCapacity, UppBound, и LocalSearch, на Рис. 2.15 и 2.16. Внутренняя задача(InP) является

наиболее сложным и вычислительно затратным этапом алгоритма, поскольку это задача

выпуклой максимизации (см. лемму 9). Проанализируем эту задачу более детально.

2.9.1. Внутренняя задача

Поиск по интервалу

Теоретически, задача (InP) может быть решена путем непосредственной проверки

значений целевой функции во всех экстремальных точках 𝒰 (в случае, когда 𝒰 -

многогранник). Однако, как уже было указано, такой подход может быть нереализуемым

ввиду крайне высокой вычислительной сложности, причиной которой является высокая

размерность множества неопределенности. Следовательно, применение данного метода

возможно лишь при определенных условиях. В общем случае, будем использовать метод,

основанный на свойствах интеграла Шоке, который сочетает метод ветвей и границ и

дискретизационные техники. Внутренняя задача (InP) может быть переписана в следующем

виде:

max
𝜈∈𝒰(𝜀)

[︁
max

𝑧
𝐶(𝜈, 𝑓(𝑧))− 𝜀

]︁
→ max

𝜀

𝒰(𝜀) = {𝜈|𝐶(𝜈, 𝑓(𝑧𝑟)) = 𝜀}

𝑧 ∈ 𝒵0.

(2.101)
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Input: 𝑡𝑘 = 0,𝒰 , 𝑧𝑟𝑘 = 𝑧𝑐,𝒰𝑘 = ∅, 𝑍𝑘 = ∅, 𝑘 = 0

repeat

ScL = ScanList(𝒰 , 𝑧𝑟𝑘)

for 𝜀 ∈ ScL do

𝜈max = DomCapacity(𝒰 , 𝜀, 𝑧𝑟𝑘)

𝑍𝑘 ← UppBound(𝜈max,𝒵0, 𝑡
𝑘, 𝜀) // Добавить точки в массив

end

if 𝑍𝑘! = ∅ then

𝒰𝑘= LocalSearch(𝑍𝑘)

if 𝒰𝑘! = ∅ then

𝒰𝑘 = 𝒰𝑘−1 ∪ 𝒰𝑘

𝑧𝑟𝑘+1 = SolveMMax(𝒰𝑘)

end

else

STOP! // Решение найдено

end

end

else

STOP! // Решение найдено

end

k = k+1

until k == MAXITER

STOP!

Рис. 2.14. Метод “замены”

Ввиду линейности интеграла по емкости, множества 𝒰(𝜀) являются гиперплоскостями.

В каждой точке 𝑧𝑟 значение 𝜀 находится в интервале [𝜀 = min𝜈∈𝒰 𝐶(𝜈, 𝑓(𝑧𝑟)),

max𝜈∈𝒰 𝐶(𝜈, 𝑓(𝑧𝑟)) = 𝜀], поэтому, для определения верхней грани целевой функции в задаче

(2.101), требуется произвести поиск по интервалу [𝜀, 𝜀]. Отметим, что в особом случае 𝑧𝑟 = 𝑧𝑐,

где 𝑧𝑐 = {𝑧|𝑓𝑖(𝑧𝑖) = 𝑓𝑗(𝑧𝑗),∀𝑖, 𝑗 = 1, . . . , 𝑛}, интервал, ввиду идемпотентности интеграла
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begin ScanList(z,Step) // Поиск min/max 𝐶(𝜈, 𝑓(𝑧)), 𝜈 ∈ 𝒰 в точке z

𝜀 = max𝜈∈𝒰 𝐶(𝜈, 𝑓(𝑧))

𝜀 = min𝜈∈𝒰 𝐶(𝜈, 𝑓(𝑧))

for i = 1 to Step do

ScL ← 𝜀𝑘 + 𝑖(𝜀𝑘 − 𝜀𝑘)/Step // Добавить точки в массив

end

return ScL

end

begin DomCapacity(𝒰 , 𝜀, 𝑧) // Поиск наименьшей доминирующей 𝜈max

for 𝐴 ⊂ 𝑁 do

𝜈max(𝐴) = max 𝜈(𝐴), 𝜈 ∈ 𝒰 , 𝐶(𝜈, 𝑓(𝑧)) = 𝜀

end

return 𝜈max

end

Рис. 2.15. Основные функции

Шоке, сокращается до единственной точки 𝜀𝑐 = 𝐶(𝜈, 𝑓(𝑧𝑐)):

max
𝑧

𝐶(𝜈, 𝑓(𝑧))− 𝜀𝑐 → max
𝜈

𝑧 ∈ 𝒵0

𝜈 ∈ 𝒰 .

(2.102)

Функция 𝜑(𝜀) = max𝜈∈𝒰(𝜀)(max𝑧 𝐶(𝜈, 𝑓(𝑧)) − 𝜀) не является выпуклой или вогнутой по

𝜀, поэтому в точках 𝑧𝑟 ̸= 𝑧𝑐 будем проводить поиск путем дискретизации [𝜀, 𝜀] (функция

ScanList на Рис. 2.15), т.е. будем производить поиск в точках min𝜈∈𝒰 𝐶(𝜈, 𝑓(𝑧𝑟𝑘)) = 𝜀1 < . . . <

𝜀𝑁 = max𝜈∈𝒰 𝐶(𝜈, 𝑓(𝑧𝑟𝑘)) для некоторого достаточно большого 𝑁 . В точке 𝑧𝑟𝑘 ∈ 𝒵0:

∙ определим значения max𝜈∈𝒰 𝐶(𝜈, 𝑓(𝑧𝑟𝑘)) и min𝜈∈𝒰 𝐶(𝜈, 𝑓(𝑧𝑟𝑘));

∙ сформируем множества 𝒰(𝜀𝑖), 𝑖 = 1, . . . , 𝑁 ,

(2.101) таким образом сводится к множеству задач вида (2.102):

max
𝑧

𝐶(𝜈, 𝑓(𝑧))− 𝜀𝑖 → max
𝜈

𝑧 ∈ 𝒵0

𝜈 ∈ 𝒰(𝜀𝑖),

(2.103)
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begin UppBound(𝜈max,𝒵0, 𝑡, 𝜀) // Найти максимумы 𝐶(𝜈max, 𝑓(𝑧))

ℬ(𝜈max) = CapDecomposition(𝜈max)

for 𝜈 ∈ ℬ(𝜈max) do

(𝐶*, 𝑧*) = MaxChoquet(𝜈,𝒵0)

if 𝐶* − 𝜀 > t then // Сравнить значение потерь с текущим

Z ← 𝑧* // Добавить точку в массив

end

end

return Z

end

begin LocalSearch(𝑍,𝒰 ,𝒵0, 𝑡) // Поиск в окрестностях 𝑧 ∈ 𝑍

for 𝑧 ∈ 𝑍 do

for 𝑧 ∈ Neighbourhood(z) do

𝜈 = max𝐶(𝜈, 𝑓(𝑧)), 𝜈 ∈ 𝒰

if max𝑧∈𝒵0 𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝜈, 𝑓(𝑧𝑟)) > 𝑡 then

𝒰 ← 𝜈 // Добавить точку в массив

end

end

end

return 𝒰
end

Рис. 2.16. Основные функции 2

для всех 𝜀𝑖, 𝑖 = 1, . . . , 𝑁 . Каждая из этих задач также является задачей выпуклой

максимизации, однако становится возможным определить верхнюю грань целевой функции.

Обозначим как 𝜈max
𝑖 наименьшую емкость, доминирующую все емкости 𝜈 ∈ 𝒰(𝜀𝑖), т.е.

𝜈max
𝑖 (𝐴) = max𝜈∈𝒰(𝜀𝑖) 𝜈(𝐴) для всех 𝐴 ⊂ 𝑁 (функция DomCapacity на Рис. 2.15). Тогда, из

неубываемости интеграла по 𝜈 следует:

max
𝜈∈𝒰(𝜀𝑖)

𝐶(𝜈, 𝑓(𝑧)) ≤ 𝐶(𝜈max
𝑖 , 𝑓(𝑧)), (2.104)
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для всех 𝑧 ∈ 𝒵0. Следовательно, интеграл по 𝜈max
𝑖 позволяет найти верхнюю грань в задаче

(2.103). 𝜈max
𝑖 в общем случае не является 2-монотонной, поэтому задача

𝐶(𝜈max
𝑖 , 𝑓(𝑧)) → max

𝑧

𝑧 ∈ 𝒵0

(2.105)

будет являться задачей глобальной оптимизации. Метод решения такой задачи с

помощью декомпозиции емкости на полностью монотонные составляющие (функция

CapDecomposition на Рис. 2.16) был детально рассмотрен в разделе 2.3.

Нахождение верхней грани и локальный поиск

Предположим, что 𝑡𝑘 и 𝑧𝑟𝑘 являются решениями задачи (SIP-F), полученными на

итерации 𝑘. Обозначим множество точек множества решений (2.105), в которых значение

функции потерь больше, чем 𝑡𝑘 как 𝑍𝑘+1:

𝑍𝑘+1 = {𝑧|𝑧 = argmax
𝑧∈𝒵0

𝐶(𝜈max
𝑖 , 𝑓(𝑧)),

max
𝑧∈𝒵0

𝐶(𝜈max
𝑖 , 𝑓(𝑧))− 𝐶(𝜈max

𝑖 , 𝑓(𝑧𝑟𝑘)) > 𝑡𝑘,

𝑖 = 1, . . . , 𝑁}.

(2.106)

Множество 𝑍𝑘+1 используется на стадии ветвления. В частности, целевая функция (InP)

может достигать глобального максимума только в точках, лежащих в окрестностях

элементов из 𝑍𝑘+1: {𝑧|𝐶(𝜈max
𝑖 , 𝑓(𝑧)) − 𝜀𝑖 ≥ 𝑡𝑘, 𝑖 = 1, . . . , 𝑁}. Все эти окрестности являются

выпуклыми, и могут быть аппроксимированы с помощью некоторых простых множеств,

например эллипсоидов, центрами которых являются точки из 𝑍𝑘+1. Поскольку в общем

случае 𝜈max
𝑖 /∈ 𝒰 , необходимым является проведение поиска в этих окрестностях (функция

LocalSearch на Рис. 2.16) с целью нахождения емкостей из 𝒰 являющихся решением

следующей задачи:

𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝜈, 𝑓(𝑧𝑟𝑘)) → max
𝜈

𝜈 ∈ 𝒰

𝑧 ∈ {𝑧|𝐶(𝜈max
𝑖 , 𝑓(𝑧))− 𝜀𝑖 ≥ 𝑡𝑘, 𝑖 = 1, . . . , 𝑁}

𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝜈, 𝑓(𝑧𝑟𝑘)) > 𝑡𝑘.

(2.107)

Ввиду относительно небольшого размера окрестностей {𝑧|𝐶(𝜈max
𝑖 , 𝑓(𝑧)) − 𝜀𝑖 ≥ 𝑡𝑘, 𝑖 =

1, . . . , 𝑁}, они могут быть эффективно дискретизированы (также возможно использование

случайного поиска). Задача (2.107), таким образом, сводится к серии задач линейного
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программирования. Решения задачи (2.107) образуют множество 𝒰𝑘+1. На финальном шаге

формируется новая аппроксимация 𝒰𝑘+1:

𝒰𝑘+1 = 𝒰𝑘 ∪ 𝒰𝑘+1, (2.108)

после чего алгоритм переходит к решению внешней задачи (SIP-F). При условии достаточно

большого 𝑁 , будем считать задачу решенной, если на некоторой итерации все верхние

грани не будут превышать значения целевой функции, то есть множество 𝑍𝑘+1 будет

пустым. Вторым критерием остановки является пустота множества 𝒰𝑘+1, что означает,

что на текущем шаге не было найдено емкостей из 𝒰 значение функции потери для

которых бы превышало найденное на предыдущей итерации. Последним критерием является

остановка алгоритма после выполнения максимального числа итераций (MAXITER).

Скорость сходимости может быть улучшена путем использования более мелкой сетки на

этапах, использующих дискретизацию. Отметим, что в численных экспериментах (см раздел

2.9.3) алгоритм сходился (по критерию 𝑍𝑘+1 = ∅) всего за несколько итераций даже при

использовании очень грубых аппроксимаций в задаче (2.107).

2.9.2. Внешняя задача

При условии 2-монотонности всех емкостей в множестве 𝒰𝑘, задача (SIP-F) является

задачей выпуклой минимизации по 𝑧𝑟 и, следовательно, может быть эффективно решена с

использованием стандартных методов для решения минимакс задач (или задач нелинейной

оптимизации) (см., например, [4, 5, 115, 122], а также раздел 2.1 где рассмотрены методы

максимизации интеграла Шоке).

В случае, когда некоторые емкости в 𝒰𝑘 не 2-монотонны, в задаче (SIP-F) существует

несколько локальных экстремумов, и ее решение требует применения методов глобальной

оптимизации. Предложим метод, опирающийся на свойства интеграла Шоке, что позволяет

получить алгоритм, сходящийся к глобальному решению за конечное число итераций

(которое, впрочем, может быть достаточно значительным).

Теорема 17. Глобальный максимум в задаче (SIP-F) может быть найден путем решения

не более 𝑛! задач выпуклой минимизации.

Доказательство. Напомним, что интеграл Шоке по произвольной емкости может быть

представлен как (см. раздел 2.3.2):

𝐶(𝜈, 𝑓(𝑧)) =
⋁︁

𝒩𝑖∈ℬ(𝜈)

𝐶(𝒩𝑖, 𝑓(𝑧)), (2.109)
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где 𝒩𝑖 - полностью монотонные меры необходимости, биективно соответствующие

множествам 𝐿𝑖 = {𝑧|𝑓(1)(𝑧(1)) ≤ . . . ≤ 𝑓(𝑛)(𝑧(𝑛))}.

Таким образом, (SIP-F) может быть переписана в следующем виде:

𝑡 → min

max
𝑧

𝐶(𝜈, 𝑓(𝑧))− max
𝒩𝑖∈ℬ(𝜈)

𝐶(𝒩𝑖, 𝑓(𝑧𝑟)) ≤ 𝑡, ∀𝜈 ∈ 𝒰𝑘

𝑧 ∈ 𝒵0

𝑧𝑟 ∈ 𝒵0,

(2.110)

что для точек 𝑧𝑟 лежащих внутри множеств 𝐿𝑖 эквивалентно следующему:

𝑡 → min

max
𝑧

𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝒩𝑖, 𝑓(𝑧𝑟)) ≤ 𝑡, ∀(𝜈,𝒩𝑖) ∈ (𝒰𝑘,ℵ𝑖(𝒰𝑘))

𝑧 ∈ 𝒵0

𝑧𝑟 ∈ 𝒵0,

(2.111)

где ℵ𝑖(𝒰𝑘) состоит из мер необходимости 𝒩𝑖 соответствующих 𝐿𝑖 для каждого 𝜈 из 𝒰𝑘 (см.

(2.30)).

Предположим, 𝑧𝑟𝑖 является решением задачи (2.111), а 𝑡*𝑖 соответствующим значением

целевой функции. Возможны два случая. Либо 𝑧𝑟𝑖 ∈ 𝐿𝑖, и тогда 𝑧𝑟𝑖 также является локальным

решением (SIP-F) в соответствии с приведенными выше аргументами, или 𝑧𝑟𝑖 принадлежит

некоторому другому подмножеству 𝐿𝑗. В этом случае, для множества соответствующих мер

необходимости ℵ𝑗(𝒰𝑘) и всех ограничений (2.111) выполняется

max
𝑧

𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝒩𝑖, 𝑓(𝑧)) ≥ max
𝑧

𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝒩𝑗, 𝑓(𝑧)). (2.112)

Следовательно, значение целевой функции задачи (SIP-F) в точке 𝑧𝑟𝑖 не превышает 𝑡*𝑖 .

Иными словами, решив (2.111) для всех возможных ℵ𝑗(𝒰𝑘) (соответствующих 𝑛! множествам

𝐿𝑖) и выбрав решения с наименьшим 𝑡*𝑖 получаем все глобальные минимумы проблемы (2.111)

и только их.

Отметим, что существует возможность более эффективного нахождения решения,

использую в (2.109- 2.111) разложение 𝜈 ∈ 𝒰𝑘 на меньшее число частей - т.е. множества 𝑇𝑖 и

емкости 𝛽𝑇𝑖 (см. раздел 2.3.2) вместо множеств 𝐿𝑖 и мер необходимости 𝒩𝑖. Более детальное

изучение этого вопроса оставлено для последующих исследований.

Становится возможным расширить теорему 16 до общего случая.
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Теорема 18. Решение 𝑧𝑟* задачи (RP) также является локальным максимумом

𝐶(𝜈𝑟, 𝑓(𝑧)), 𝑧 ∈ 𝒵0 по некоторой 𝜈𝑟 ∈ 𝒰 .

Доказательство. Заметим, что из доказательства теоремы 17 следует, что “робастная”

емкость лежит внутри многогранника с вершинами 𝒩 1
𝑖 ,𝒩 2

𝑖 , . . . ∈ ℵ𝑖(𝒰𝑘) (сравним (2.111)

и (2.87)). Следовательно, она может быть представлена как

𝒩 𝑟 =
∑︁
𝑗

𝜆*
𝑗𝒩

𝑗
𝑖 . (2.113)

𝒩 𝑟 в общем случае не принадлежит множеству неопределенности 𝒰 . Однако, возможно

построить емкость 𝜈𝑟 ∈ 𝒰 такую, что 𝒩 𝑟 является одной из мер необходимости,

составляющих 𝜈𝑟. По определению 𝒩 -мер, 𝜈𝑖(𝐴) = 𝒩𝑖(𝐴) для всех 𝐴 ∈ 𝒞𝑖. Следовательно,

для 𝒩 𝑟 возможно построить требуемую емкость 𝜈𝑟 ∈ 𝒰 следующим образом: 𝜈𝑟 =
∑︀

𝜆*
𝑖 𝜈𝑖.

Теорема 17 гарантирует, что 𝑧𝑟* = arg max𝐶(𝒩 𝑟, 𝑓(𝑧𝑟)) является максимумом 𝐶(𝜈𝑟, 𝑓(𝑧𝑟)),

хотя и только локальным.

2.9.3. Численные эксперименты

Анализ, проведенный в предыдущих разделах, показывает, что выбор схемы решения

задачи робастной оптимизации (RP) должен основываться на характеристиках множества

неопределенности 𝒰 . В частности, в случаях, когда число экстремальных точек невелико,

предпочтительным является метод с непосредственной проверкой значений функции потерь

во всех точках, то есть непосредственное решение (2.87) полным перебором вершин. Такие

случаи, как правило, возникают при использовании 𝑘-аддитивных емкостей с низкими

значениями 𝑘, особенно 2-аддитивных. Напротив, метод “замены” лучше подходит для

емкостей с высокими значениями 𝑘.

Для иллюстрации разработанных методов были проведены 2 серии экспериментов.

Результаты для метода полного перебора представлены в Табл. 2.12 и 2.13. Обозначения:

𝑆ℎ𝑎𝑝𝑙𝑒𝑦 - параметры задачи, где “1-0.2” означает, что значение вектора Шепли для первого

критерия было положено равным 0.2, 𝑧𝑟* - точка решения,ℛ - оптимальное значение функции

потерь, |𝒰 𝑒𝑥𝑡| - число вершин 𝒰 . В этих тестах также использовалось дополнительное

ограничение в виде требования 2-аддитивности. Функции 𝑓𝑖(𝑧𝑖) были положены равными

1−𝑒−3𝑧𝑖 , а множество 𝒵0 было задано как 𝑧 = {𝑧|
∑︀

𝑧 = 1, 𝑧 ≥ 0}. Поиск экстремальных точек

производился с использованием библиотеки cddlib [55]. Отметим, что число экстремальных

точек 𝒰 быстро возрастает, но все же остается приемлемым для использования полного

перебора. Значение функции потерь выше в менее определенных задачах, но снижается по

мере того, как описание модели становится более точным.
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Таблица 2.12. Численные тесты для метода полного перебора, n=4, 𝒰 - 2-аддитивные емкости, без

ограничений на 2-монотонность

Shapley 𝑧𝑟* ℛ |𝒰𝑒𝑥𝑡|

1-0.2 (0.0679, 0.3107, 0.3107, 0.3107) 0.3439 60

1-0.2, 2-0.3 (0.0926, 0.1792, 0.3641, 0.3641) 0.2856 68

1-0.2, 2-0.3, 3-0.1 (0.1878, 0.2792, 0.0233, 0.5097) 0.1391 72

Таблица 2.13. Численные тесты для метода полного перебора, n=5, 𝒰 - 2-аддитивные емкости, без

ограничений на 2-монотонность

Shapley 𝑧𝑟* ℛ |𝒰𝑒𝑥𝑡|

1-0.2 (0.0328, 0.2418, 0.2418, 0.2418, 0.2418) 0.4344 140

1-0.2, 2-0.3 (0.3570, 0.2927, 0.1168, 0.1168, 0.1168) 0.3366 228

1-0.2, 2-0.3, 3-0.1 (0.0850, 0.4138, 0.0805, 0.2104, 0.2104) 0.2648 648

Численные тесты алгоритма “замены” проводились для 𝑛 = 3, 4, 6(sic!), а результаты,

где это было возможно, сравнивались с результатами, полученными с помощью метода,

использующего полный перебор вершин. Результаты эксперимента представлены в Табл.

2.14, 2.15 и 2.16 (соотв. 𝑛 = 3, 4, 6). Обозначения: 𝑧ℎ, 𝑡ℎ - результат, полученный с

использованием метода “замены”, и время работы алгоритма (в секундах), 𝑧𝑏, 𝑡𝑏 - результат

и время выполнения для метода полного перебора. Для 𝑛 = 6 приводятся только

результаты с использованием метода “замены”, поскольку начиная с 𝑛 = 5 поиск вершин

во всех экспериментах не завершился в течении 24 часов. Во всех тестах было введено

дополнительное ограничение - 2-монотонность емкостей10. Вычисления проводились на Intel

Core 2 Duo 2.2 GHz CPU.

Таблица 2.14. Численные тесты алгоритма 2.14, n=3, 𝒰 - 2-монотонные

Shapley 𝑧ℎ 𝑧𝑏 𝑡ℎ(𝑠) 𝑡𝑏(𝑠)

1-0.2 (0.2229, 0.3885, 0.3885) (0.2229, 0.3885, 0.3885) 0.487 0.281

2-0.3 (0.3504, 0.2990, 0.3504) (0.3504, 0.2990, 0.3504) 0.617 0.335

3-0.8 (0.2112, 0.2112, 0.5774) (0.2112, 0.2112, 0.5774) 1.269 0.082

10 Использование ограничений, характеризующих 2-монотонность становится затруднительным в

задачах большой размерности. В работе [33] предлагается метод эффективного представления таких

ограничений. В программной реализации автора существенные преимущества были получены путем

использования разреженных матриц.
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Таблица 2.15. Численные тесты алгоритма 2.14, n=4, 𝒰 - 2-монотонные

Shapley 𝑧ℎ 𝑧𝑏 𝑡ℎ(𝑠) 𝑡𝑏(𝑠)

1-0.2 (0.1780, 0.2739, 0.2739, 0.2739) (0.1780, 0.2739, 0.2739, 0.2739) 2.0 14.6

2-0.3 (0.2386, 0.2839, 0.2386, 0.2386) (0.2386, 0.2839, 0.2386, 0.2386) 11.8 12.8

3-0.8 (0.1246, 0.1246, 0.6260, 0.1246) (0.1246, 0.1246, 0.6260, 0.1246) 13.8 1.3

1-0.2, 2-0.3 (0.2416, 0.2582, 0.2500, 0.2500) (0.2416, 0.2582, 0.2500, 0.2500) 10.6 37.1

1-0.7, 2-0.1 (0.4834, 0.0991, 0.2086, 0.2086) (0.4834, 0.0991, 0.2086, 0.2086) 9.4 7.3

1-0.2, 2-0.3, 3-0.1 (0.2587, 0.2802, 0.1738, 0.2871) (0.2587, 0.2802, 0.1738, 0.2871) 19.7 78.9

1-0.5, 2-0.3, 3-0.1 (0.3551, 0.3223, 0.1612, 0.1612) (0.3551, 0.3223, 0.1612, 0.1612) 15.1 35.1

Таблица 2.16. Численные тесты алгоритма 2.14, n=6, 𝒰 - 2-монотонные

Shapley 𝑧ℎ 𝑧𝑏 𝑡ℎ(𝑠) 𝑡𝑏(𝑠)

2-0.2 (0.2286, 0.1542, 0.1542, 0.1542, 0.1542, 0.1542) - 294.2 -

2-0.3 (0.1607, 0.1961, 0.1607, 0.1607, 0.1607, 0.1607) - 625.7 -

3-0.8 (0.0547, 0.0547, 0.7263, 0.0547, 0.0547, 0.0547) - 716.4 -

1-0.2, 2-0.3 (0.1869, 0.1735, 0.1598, 0.1598, 0.1598, 0.1598) - 611.5 -

1-0.7, 2-0.1 (0.5923, 0.1299, 0.0694, 0.0694, 0.0694, 0.0694) - 455.1 -

1-0.2, 2-0.3, 3-0.1 (0.1709, 0.1833, 0.1083, 0.1791, 0.1791, 0.1791) - 545.2 -

1-0.5, 2-0.3, 3-0.1 (0.3559, 0.3173, 0.1746, 0.0506, 0.0506, 0.0506) - 592.3 -

1-0.2, 2-0.3, 3-0.1, 4-0.2 (0.1696, 0.1809, 0.1402, 0.1696, 0.1696, 0.1696) - 659.4 -

Во всех проведенных экспериментах разработанный алгоритм “замены” сходился к

глобальному решению задачи (RP). При этом, время его выполнения росло значительно

медленнее, чем при использовании метода полного перебора, хотя и экспоненциально (10x

замедление при увеличении размерности на 1). Отметим, что библиотека cddlib реализована

на языке C++, в то время как алгоритм автора был написан на существенно более медленном

языке Python, поэтому время выполнения может быть значительно улучшено.
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2.10. Выводы из главы 2

В главе 2 были изложены основные результаты диссертации.

1. Впервые предложены методы максимизации интеграла Шоке для различных видов

функций полезности и типов емкости. Рассмотрены выпуклый и невыпуклый случай.

2. Для решения невыпуклого случая впервые предложен алгоритм представления

произвольной емкости в виде максимума минимального числа тотально монотонных

емкостей. Это позволило свести задачу максимизации интегралаШоке по произвольной

емкости к множеству выпуклых задач.

3. Для класса 2-аддитивных емкостей доказана минимальность получаемого разложения

и получена характеризация числа элементов в разбиении заданной емкости.

4. Предложены методы построения сложных моделей, в которых критерии образуют неко­

торую сетевую структуру. Рассмотрены пути предварительного анализа вычислитель­

ной сложности для заданной модели, что позволяет более эффективно использовать

разработанные методы в практических задачах.

5. Получены методы поиска робастного решения для задач, в которых параметры

модели не могут быть определены однозначно. Проанализирована сложность проблемы,

предложен алгоритм нахождения робастного решения. Доказано, что такое решение

является оптимальным по отношению по крайней к одной из емкостей, согласующихся

с изначальными предпочтениями. Проведены численные тесты, подтверждающие

корректность работы алгоритма. Методы робастного программирования применяются

в проблемах определения емкости впервые.

Результаты главы 2 опубликованы в работах [20, 24, 27, 130–133].
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Глава 3

Практическое применение

В разделе 1.4.3 были рассмотрены простейшие примеры случаев, в которых

предпочтения ЛПР противоречили фундаментальным аксиомам аддитивной модели.

Следствием таких противоречий является невозможность точного моделирования данных

предпочтений. Для решения данной проблемы было предложено использование интеграла

Шоке. В разделе 2 автором были представлены методы оптимизации интеграла

Шоке, с помощью которых становится возможным решение задач поиска оптимального

решения. В заключительном разделе диссертации рассматриваются примеры использования

разработанных методов в практических задачах. Рассматриваются две многокритериальные

задачи: в первой определение параметров модели производится на основании неточной

экспертной информации, а во второй на основании большого количества реальной

информации о предпочтениях, зачастую конфликтующих. Вступительная часть раздела

посвящена сравнению интеграла Шоке с другими методами, применяющимися в

многокритериальных задачах принятия решений.

3.1. Сравнение интеграла Шоке с другими методами

Как было указано ранее, интеграл Шоке по аддитивной емкости сводится к интегралу

Лебега, то есть, в конечномерном случае, к взвешенному среднему. Таким образом, интеграл

Шоке является непосредственным обобщением аддитивной модели. В теории принятия

решений используется также и большое число других функциональных моделей таких,

например, как максимин. Оказывается, что наиболее распространенные критерии также

являются частными случаями интеграла Шоке. Рассмотрим следующие функции:

∙ min - минимум;

∙ max - максимум;

∙ OS𝑘 - порядковая статистика;

∙ WAM𝑤 - взвешенное среднее с вектором весов 𝑤;

∙ OWA𝑤 - упорядоченное взвешенное среднее с вектором весов 𝑤,
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где OS𝑘 определяется как функция, возвращающая 𝑘-й наименьший аргумент, в частности

OS1 = min,OS𝑛 = max , а OWA𝑤(𝑥1, . . . , 𝑥𝑛) =
∑︀𝑛

𝑖=1 𝑥(𝑖)𝑤𝑖, где, как и прежде, 𝑥(1) ≤ . . . ≤ 𝑥(𝑛).

Связь интеграла Шоке с перечисленными функциями описывает следующей теоремой.

Теорема 19 ([67]). Частные случаи интеграла Шоке:

∙ 𝐶𝜈 = min тогда, и только тогда, когда 𝜈(𝑁) = 1, 𝜈(𝐴) = 0,∀𝐴 ( 𝑁 ;

∙ 𝐶𝜈 = max тогда, и только тогда, когда 𝜈(𝐴) = 1, ∀𝐴 ⊂ 𝑁 ;

∙ 𝐶𝜈 = OS𝑘 тогда, и только тогда, когда 𝜈(𝐴) = 0 ∀|𝐴| < 𝑘, 𝜈(𝐴) = 1 ∀|𝐴| ≥ 𝑘;

∙ 𝐶𝜈 = WAM𝑤 тогда, и только тогда, когда емкость 𝜈 аддитивна. 𝜈({𝑖}) = 𝑤𝑖;

∙ 𝐶𝜈 = OWA𝑤 тогда, и только тогда, когда емкость 𝜈 симметрична (то есть ∀𝐴,𝐵 ⊂

𝑁 ; |𝐴| = |𝐵| ⇒ 𝜈(𝐴) = 𝜈(𝐵)) и 𝑤𝑖 = 𝜈(𝐴𝑛−𝑖+1)− 𝜈(𝐴𝑛−𝑖), 𝑖 = 2, . . . , 𝑛 и 𝑤1 = 1−
∑︀𝑛

𝑖=2𝑤𝑖,

где 𝐴𝑖 - любое подмножество 𝑁 такое, что |𝐴𝑖| = 𝑖.

В контексте многокритериальных задач принятия решений теорема 19 гарантирует,

что интеграл Шоке способен выразить все предпочтения, которые возможно отразить

с помощью функций min,max,OS𝑘,WAM𝑤,OWA𝑤. Интересным является также вопрос

сравнения выразительных возможностей каждой из перечисленных функций. В главе 2.6.1

рассматривались некоторые виды характеристик многокритериальных объектов, наиболее

значимыми среди которых являются относительная важность критериев, характер и сила

взаимодействия между критериями, а также степень необходимости или достаточности

некоторого критерия. Поскольку все анализируемые функции являются частными случаями

интеграла Шоке, для них были получены [67] аналитические выражения вектора Шепли,

индекса взаимодействия, а также индекса необходимости. Эти результаты позволяют

получить наглядное представление о выразительных способностях каждой функции (Табл.

3.1). Очевидно, понятие важности критерия неприменимо к симметричным функциям, то

есть к функциям таким, что

𝐹 (𝑥2, 𝑥1, 𝑥3, . . . , 𝑥𝑛) = 𝐹 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛)

𝐹 (𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑥1) = 𝐹 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛).
(3.1)

Кроме того, по определению достаточности критерия, никакой из критериев не является

достаточным при агрегации с помощью min, и, в тоже время, все критерии являются

достаточными при агрегации с помощью max.

Результаты в Табл. 3.1 позволяют сделать следующие выводы:
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Таблица 3.1. Вектор Шепли, индекс взаимодействия, и индекс достаточности для функций

𝐶𝜈 ,min,max,OS𝑘,WAM𝑤,OWA𝑤

Важность критерия 𝑖 Взаимодействие критериев 𝑖, 𝑗 Достаточность критерия 𝑗

𝐶𝜈 𝜑𝑛𝑢(𝑖) (см. (2.69)) 𝐼𝜈(𝑖𝑗) (см. (2.73)) достат(𝜈, 𝑗) (см. (2.77))

WAM𝑤 𝑤𝑖 0 1
2

+
𝑛𝑤𝑗−1

2(𝑛−1)

OWA𝑤 симметричная 𝑤1−𝑤𝑛

𝑛−1
1

𝑛−1

∑︀
𝑖=1 𝑛(𝑖− 1)𝑤𝑖

min симметричная 1
𝑛−1

никакой

max симметричная − 1
𝑛−1

любой

OS𝑘 симметричная 0, если 𝑘 ̸= 1, 𝑛 𝑘−1
𝑛−1

∙ Ни одна из функций min,max,OS𝑘,WAM𝑤,OWA𝑤 не может использоваться для

моделирования силы и характера взаимодействия критериев.

∙ Функции min,max,OS𝑘,OWA𝑤 ввиду их симметричности не позволяют моделировать

относительную важность критериев.

∙ Функции min,max,OS𝑘,OWA𝑤 не могут использоваться для моделирования различных

уровней достаточности некоторого критерия.

Таким образом, по уровню возможностей выражения предпочтений ЛПР интегралШоке

существенно превосходит все наиболее часто используемые в многокритериальных задачах

методы.

3.2. Пример использования: построение модели на основе

экспертной информации

Рассмотрим варианты возможного практического применения разработанных методов

на примере задачи проектирования информационной системы. В данном примере целью

является построение системы защиты данных в рамках ограничений экономического

характера. Одним из наиболее широко распространенных методов анализа в области

информационной безопасности является построение так называемого дерева атак -

иерархической структуры, содержащей все потенциально возможные методы компрометации

защищаемой информации. Более общие угрозы при этом раскладываются на атомарные
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компоненты, что позволяет провести детальный анализ последних и оценить уровень рисков,

которые они несут. На следующем этапе оценки на всех уровнях дерева агрегируются, и

рассчитывается итоговый балл. Существенной проблемой является наличие взаимосвязи

и взаимозависимости угроз [69], которые вызывают существенные сложности на этапе

моделирования системы, поскольку традиционные (и широко используемые) методы

зачастую не позволяют корректно отображать данные феномены или вовсе игнорируют их

присутствие (см. 3.1). В таком контексте, применение интеграла Шоке позволяет строить

значительно более реалистичные и эффективные модели систем ИБ.

Задача построения системы защиты данных формируется при переводе фокуса

анализа с рассмотрения угроз на соответствующие им защитные механизмы. Как правило,

проектирование систем защиты информации всегда производится с учетом доступного

бюджета, поэтому основной задачей архитектора является выявление наиболее опасных

угроз, выбор наиболее подходящих средств защиты из широкого спектра доступных

вариантов, и объединение этих средств для обеспечения наибольшего уровня безопасности.

Многие доступные на рынке средства защиты данных обладают частично пересекающимися

функциями, поэтому приобретение двух частично схожих компонентов может привести

к нерациональному использованию средств. С другой стороны, некоторые защитные

средства способны обеспечить наибольшую степень защищенности только при совместном

использовании, таким образом улучшая общий результат вложений. Интеграл Шоке хорошо

подходит для моделирования как первого, так и второго случая (взаимозаменимость и

взаимодополнение критериев), так что его использование в данной задаче выглядит вполне

обоснованным.

Процесс моделирования начинается с построения дерева атак. Эта задача решается

экспертом по информационной безопасности, который старается учесть все возможные

угрозы и определить соответствующие им защитные механизмы. Пример такого графа

представлен на Рис. 3.1.

Вершины, заключенные в рамки, соответствуют составным понятиям, значение

которых определяется путем агрегации оценок на их дочерних вершинах. Вершины, не

заключенные в рамки, соответствуют управляемым элементам модели, то есть переменным

задачи распределения ресурсов. Их значения непосредственно определяются размером

полученных вложений. Связь непосредственных затрат с уровнем “удовлетворенности”

(или, в данном контексте, защищенности) определяется функциями ценности таких

вершинах. Введение таких функций необходимо, поскольку, как указывалось ранее,

значения различных элементов модели не являются соизмеримыми. Так, сумма денег,
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позволяющая установить надежные антивирусы на все рабочие станции небольшой

организации, позволяет в то же время купить межсетевой экран лишь начального уровня.

Для построения таких функций используется модифицированный метод MACBETH [83].

Несомненно, полученные функции ценности являются лишь приближениями реальных,

однако взамен они позволяют применять эффективные методы оптимизации при анализе

задачи оптимального распределения ресурсов. В области информационной безопасности

как правило на функции накладываются некоторые дополнительные ограничения. Так,

считается, что прирост уровня защищенности уменьшается с ростом стоимости компонента,

что означает вогнутость функций. Кроме того, функции возможно лишь асимптотически

приближаются к максимальному значению. Подробное обсуждение характера функций

ценности в задачах ИБ приводится в работе [59]. При решении практических задач,

определение функций ценности может потребовать значительного объема времени (см.,

например, [30]) и в данном примере будет опущено, так как целью является лишь

демонстрация методов оптимизации. Для упрощения представления, функции ценности всех

компонентов кроме вершины “IdM система” (см. далее) положены равными 𝑣(𝑧) = 1− 𝑒−3𝑧.

Защита

Тех. средства Персонал

Офис Хостинг

Серверы офис Физ.
защита

Раб.
станции

Обновления

Журналы

Адм.
доступ

Адм. аудит

Офис. сеть
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Изолирование

NIDS

IPS

Шифрование

Физ.
защита

Сеть

Серверы

Тех. средства

Упр. доступом

Политика
безоп.

Ограничение
прав

Учет
пользователей

Выполнение
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Сильная
аутент.

IdM
система
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HR

Проверки

Обучение
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Рис. 3.1. Структура проблемы - категории защитных мероприятий
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3.2.1. Определение параметров модели на основе экспертной информации

В разделе 3.3 модель предпочтений строится на основе большого числа реальных

данных. К сожалению, такие данные доступны не всегда. В этом случае, при построении

модели, эксперт может полагаться лишь на информацию носящую неформальный,

качественный характер, или лишь опосредованно связанную с непосредственными

предпочтениями ЛПР. В данном примере, для приближения его к реальной задаче,

предполагается, что ЛПР способен предоставить лишь очень ограниченный объем

информации о важности и взаимодействии компонентов модели (см. таблицы в разделе

3.2.4). Единственной доступной информацией в таком случае становились требования

необходимости и достаточности, а также примерное ранжирование компонентов по важности

(см., например, Табл. 3.11). Рассмотрим в качестве примера один из элементов дерева атак

(Рис. 3.2).

Офис. сеть

Firewall

Изолирование

NIDS

IPS

Шифрование

Рис. 3.2. Фрагмент дерева атак

В качестве источников информации экспертом могут использоваться данные об

атаках на системы организации в предыдущие годы, рекомендации, приводимые в

стандартах по защите информации (PCI DSS, ГОСТ Р ИСО/МЭК 17799—2005,

и другие), наконец, аналитические отчеты компаний, занимающихся исследованием

киберпреступности. Например, в отчетах за 2010-2011 года приводятся следующие факты:

∙ 77% (по другим данным 92%) атак производятся из за пределов сети организации

[120, 137].

∙ Причиной 83% атак является наличие уязвимости в защите доступных извне ресурсов

организации, только 17% атак являются направленными [137].



103

∙ После первоначальной компрометации одного из узлов сети, атакующий будет

искать новые цели в атакуемой сети и распространять проникновение. Атака может

распространиться на небольшую сеть (1-20 устройств) в течении 10 минут [136].

∙ Наиболее успешным путем сбора данных после проникновения является перехват

данных при передаче, а не получение несанкционированного доступа к хранилищам

информации. Путем перехвата трафика атакующий зачастую получает доступ к

аутентификационной и другой ценной информации, передаваемой в незашифрованном

виде [136].

∙ 76% всех похищенных в 2010 году данных были похищены с серверов компаний и только

22% с пользовательских устройств [137].

∙ При анализе более 2000 инцидентов связанных с некорректной конфигурацией

межсетевых экранов (Firewall), в 99% случаев отсутствовали правила семантической

фильтрации и динамического блокирования [136].

∙ Список наиболее важных сетевых угроз в 2011 году [136]:

1. простые пароли;

2. передача ценной информации в незашифрованном виде;

3. перехват данных путем искусственного перенаправления трафика через узел

атакующего;

4. передача незашифрованных данных через поддельную точку беспроводного

доступа, контролируемую злоумышленником;

5. некорректная настройка межсетевого экрана, позволяющая осуществить доступ к

внутренним ресурсам организации;

6. хранение ценной информации вне специально защищенного сегмента сети.

∙

Основными рекомендациями по защите данных являются (в скобках находится

соответствующий компонент системы защиты):

1. фильтрация трафика поступающего из за пределов сети организации (Firewall);
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2. при компрометации узла корпоративной сети, наиважнейшей задачей является

предотвращение дальнейшего развития атаки, в частности ограничение доступа к

наиболее чувствительным сегментам сети (Firewall, изолирование);

3. при условии компрометации узла корпоративной сети, необходимо не допустить

перехвата атакующим данных передаваемых между другими узлами (Firewall,

изолирование, шифрование);

4. при условии компрометации узла корпоративной сети, необходимо не позволить

атакующему спровоцировать передачу данных с других узлов на скомпрометированный

(Firewall, изолирование, шифрование);

5. необходимо проводить семантический анализ трафика и динамическое блокирование

подозрительных адресов (Firewall, IPS, NIDS);

6. общая рекомендация - ввиду оппортунистического характера атак, предпочтительным

является наличие хотя бы умеренных средств защиты для всех видов атак, нежели

сильных средств для одних видов, и слабых или отсутствующих для других.

Данная информация является основой как для построения собственно ветви дерева

атак (Рис. 3.2), так и для ранжирования критериев по важности, и определения характера

их взаимодействия. В данном примере задача имеет пять критериев - межсетевой экран

(Firewall), меры по изолированию сегментов сети, средства шифрования данных, система

обнаружения атак (NIDS), и система семантического анализа трафика (IPS).

Критерии в паре (Firewall,IPS) являются взаимодействующими в следующем смысле:

наилучшим образом межсетевой экран будет функционировать только при наличии

качественной системы семантического анализа трафика, поскольку в этом случае становится

возможной динамическая блокировка подозрительных адресов. Таким образом, при

фиксированных значениях прочих критериев для достижения наибольшего значения

защищенности необходимо наличие высоких оценок по обоим критериям в этой паре

одновременно.

Схожее взаимодействие наблюдается и в паре (Firewall,NIDS), однако в меньшей

степени. Так, если при наличии надежного межсетевого экрана (Firewall) существует

возможность купить либо только систему IPS, либо только систему NIDS, то выбор будет

сделан в пользу первой. В то же время, если такой выбор делается в условиях менее

надежного межсетевого экрана, то, напротив, более предпочтительной является именно NIDS
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система. Поскольку ее взаимозависимость с межсетевым экраном слабее, чем у системы

IPS, покупка последней в такой ситуации приведет лишь к незначительному приросту

защищенности (например, дешевый межсетевой экран может вообще не иметь технической

возможности для подключения IPS системы).

Суммируя информацию, представленную выше, получаем следующее качественное

описание структуры критериев:

Firewall ≻𝐶 Изолирование ≻𝐶 Шифрование ≻𝐶 IPS ∼𝐶 NIDS

(Firewall,IPS) ≻𝐼 (Firewall,NIDS) ≻𝐼 0,
(3.2)

где ≻𝐶 - отношение “важности” критериев, а ≻𝐼 - отношение “взаимодействия” критериев.

В качестве примера рассмотрим 6 вариантов, представленных в Табл. 3.2

Таблица 3.2. Пример систем защиты данных

Firewall Изолирование Шифрование IPS NIDS

A 20 21 20 20 20

B 21 20 20 20 20

C 20 20 20 15 10

D 20 20 20 10 15

E 10 20 20 10 15

F 10 20 20 15 10

Согласно выраженным предпочтениям, получаем

𝐴 ≻ 𝐵 ≻ 𝐶 ≻ 𝐷 ≻ 𝐸 ≻ 𝐹, (3.3)

что, очевидно, не может быть выражено с помощью аддитивной модели:

𝐶 ≻ 𝐷 ⇒ 𝑢𝐼𝑃𝑆(15) + 𝑢𝑁𝐼𝐷𝑆(10) > 𝑢𝐼𝑃𝑆(10) + 𝑢𝑁𝐼𝐷𝑆(15)

𝐸 ≻ 𝐹 ⇒ 𝑢𝐼𝑃𝑆(15) + 𝑢𝑁𝐼𝐷𝑆(10) < 𝑢𝐼𝑃𝑆(10) + 𝑢𝑁𝐼𝐷𝑆(15).
(3.4)

Предпочтения ЛПР, рассмотренные в данном примере возможно выразить с

помощью интеграла Шоке. При этом, емкость, согласующаяся с предпочтениями (при

заданных функциях ценности), будет не уникальна, однако качественные характеристики

“подходящих” емкостей будут одинаковы. Согласно методам, описанным в разделе 2.6.1,

данной информацией соответствует множество емкостей, заданное ограничениями в Табл.

3.3 и 3.4.
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Таблица 3.3. Данные о важности критериев

Ограничение Интерпретация

𝜑(Firewall)− 𝜑(Изолирование) ≥ 𝛿𝑆𝐻
Критерий “Firewall” более важен чем

“Изолирование”

𝜑(Изолирование)− 𝜑(Шифрование) ≥ 𝛿𝑆𝐻
Критерий “Изолирование” более важен

чем “Шифрование”

𝜑(Шифрование)− 𝜑(NIDS) ≥ 𝛿𝑆𝐻
Критерий “Шифрование” более важен

чем “NIDS”

−𝛿𝑆𝐻 ≤ 𝜑(NIDS)− 𝜑(IPS) ≤ 𝛿𝑆𝐻
Критерий “NIDS” и “IPS” приблизительно

равнозначны

Таблица 3.4. Данные о взаимодействии критериев

Ограничение Интерпретация

ℐ(Firewall,NIDS) ≥ 𝛿𝐼𝐼
Критерии “Firewall” и “NIDS” дополняют

действие друг друга.

ℐ(Firewall, IPS)− ℐ(Firewall,NIDS) ≥ 𝛿𝐼𝐼

Критерии “Firewall” и “IPS” дополняют

действие друг друга сильнее, чем крите­

рии “Firewall” и “NIDS”.

Наконец, рекомендация о предпочтительности установки защитных средств умеренного

качества, но закрывающих при этом все потенциальные векторы атаки, перед защитой от

лишь небольшого числа угроз с помощью сильных средств, позволяет сделать вывод о

вогнутости целевой функции, а следовательно, 2-монотонности емкости. Данное свойство

распространяется на все интегралы, входящие в модель, за исключением вершины “Упр.

доступом”, которая рассмотрена ниже.

3.2.2. Прочие параметры модели и результаты

Критерием принятия решения в задаче является значение целевой функции в

вершине “Защита”. Двумя основными направлениями инвестиций предлагается считать

защитные мероприятия технического характера (“Технические средства”) и мероприятия,

направленные на работу с сотрудниками организации (“Персонал”). Данные направления в

свою очередь разделяются на подкатегории, и.т.д. Управляемыми переменными являются
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23 концевые вершины графа. Задача имеет два вида ограничений - общий объем бюджета и

ограничения, описывающие максимальный размер вложений в отдельные компоненты. Ниже

будет рассмотрено поведение модели при различных сочетаниях указанных ограничений.

Для демонстрации методов из раздела 2.3 в модель введена вершина с заведомо

невыпуклой емкостью - “Упр. доступом”. Невыпуклость емкости позволяет смоделировать

выбор, который может сделать ЛПР для обеспечения контроля доступа в организации.

Первым вариантом является установка комплексной системы управления доступом “Idm

система”, а вторым - самостоятельная реализация всех ее функций. Таким образом, среди

дочерних вершин “Упр. доступом” вершина “Idm система” взаимозаменима с каждой из

вершин “Политика безопасности”(SP), “Ограничение прав”(AL), “Учет пользователей”(UM),

“Выполнение политик”(PC), и “Сильная аутентификация”(SA). Кроме того, внедрение IdM

системы считается достаточным для обеспечения требуемого уровня защиты, в то время

как остальные пять компонентов являются достаточными только при условии совместного

размещения. Иными словами (см. раздел 2.6.1), 𝜈(𝐴) = 1, ∀𝐴 ⊂ 𝑁, 𝐼𝑑𝑀 ∈ 𝐴, в то время как

𝜈(𝐴) = 1, ∀𝐴 ⊂ 𝑁, {𝑆𝑃,𝐴𝐿,𝑈𝑀,𝑃𝐶, 𝑆𝐴} ∈ 𝐴. Причиной появления двух вариантов для ЛПР

является значительная стоимость комплексных систем управления доступом. Таким образом

функция ценности вершины “Idm система” была положена равной 1−𝑒−𝑧, а остальных вершин

1− 𝑒−3𝑧.

Векторы оптимального распределения для различных размеров бюджетного ограниче­

ния представлены в Табл. 3.5 и 3.6 1. Для рассмотренной ранее вершины “Упр. доступом”

полученные результаты показывают, что наилучшим выбором является установка комплекс­

ной системы управления доступом (отметим, что в общем случае наилучший вариант

может изменяться при изменении размера бюджетного ограничения). Поскольку робастная

емкость в вершине “Упр. доступом” является невыпуклой (т.е. не 2-монотонной), задача

будет иметь несколько локальных максимумов. Емкость в рассмотренном примере может

быть разложена на 32 вогнутых компонента, каждый из которых соответствует некоторому

локальному максимуму. ЛПР может быть также заинтересован в рассмотрении результатов,

которые могли бы быть получены при выборе второго варианта, то есть самостоятельной

реализации компонентов системы управления доступом. Результаты, позволяющие провести

такой анализ, приводятся в Табл. 3.7.

1 Программный код, использовавшийся для моделирования и расчетов рассматривается в разделе 3.4
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Таблица 3.5. Абсолютная величина вложений

Компонент B = 1 B = 8 B = 16 B = 20

Firewall 0.0932 0.4232 0.8162 1.0018

Секционирование 0.0867 0.4232 0.8147 1.0015

NIDS 0 0.3456 0.723 0.9036

IPS 0.0067 0.3456 0.723 0.9241

Шифрование 0.0867 0.4042 0.7873 0.9856

Обновления 0.1371 0.4764 0.8643 1.0597

Лог-сервер 0.0249 0.3563 0.7409 0.9353

Защищенный адм. 0.0242 0.3563 0.7375 0.9155

Ревизии защиты 0.0249 0.3563 0.7409 0.9353

Физ. защита офиса 0.0166 0.3912 0.7353 0.9253

Раб. станции офис 0.0576 0.3912 0.7758 0.9663

Физ. защита хостинг 0.0251 0.3538 0.732 0.9257

Сеть хостинг 0.0673 0.4086 0.7913 0.9801

Серверы хостинг 0.0673 0.4086 0.7912 0.9801

Политика безопасности 0 0 0 0

Контроль привилегий 0 0 0 0

Управление пользователями 0 0 0 0

Контроль выполнения политики 0 0 0 0

Сильная аутентификация 0 0 0 0

IdM 0.2817 1.5288 2.6687 3.2427

Аудит 0 0.2823 0.6777 0.8685

Проверки персонала 0 0.1544 0.5239 0.7152

Обучение 0 0.297 0.6782 0.8669

Мотивация 0 0.2968 0.6782 0.8669
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Таблица 3.6. Процентная доля вложений

Компонент B = 1 B = 8 B = 16 B = 20

Firewall 9.32 5.29 5.10 5.01

Секционирование 8.67 5.29 5.09 5.01

NIDS 0 4.32 4.52 4.52

IPS 0.67 4.32 4.52 4.62

Шифрование 8.67 5.05 4.92 4.93

Обновления 13.71 5.95 5.40 5.30

Лог-сервер 2.49 4.45 4.63 4.68

Защищенный адм. 2.42 4.45 4.61 4.58

Ревизии защиты 2.49 4.45 4.63 4.68

Физ. защита офиса 1.66 4.89 4.60 4.63

Раб. станции офис 5.76 4.89 4.85 4.83

Физ. защита хостинг 2.51 4.42 4.58 4.63

Сеть хостинг 6.73 5.11 4.95 4.90

Серверы хостинг 6.73 5.11 4.95 4.90

Политика безопасности 0 0 0 0

Контроль привилегий 0 0 0 0

Управление пользователями 0 0 0 0

Контроль выполнения политики 0 0 0 0

Сильная аутентификация 0 0 0 0

IdM 28.17 19.11 16.68 16.21

Аудит 0 3.53 4.24 4.34

Проверки персонала 0 1.93 3.27 3.58

Обучение 0 3.71 4.24 4.33

Мотивация 0 3.71 4.24 4.33
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Таблица 3.7. Значение глобальной целевой функции для различных вариантов в вершине “Упр.

доступом”

Размера бюджета Использование IdM Использование отдельных компонентов

B=1 0.1498 0.1294

B=8 0.6906 0.6515

B=16 0.9014 0.8772

B=20 0.9443 0.9272

3.2.3. Итоги примера задачи распределения ресурсов

Полученные результаты свидетельствуют о корректном распределении ресурсов

моделью - во внимание принимается как относительная важность компонентов, так и

их взаимодействие. Ввиду использования одинаковых функций ценности и 2-монотонных

емкостей, распределение в основном стремится к равномерному (рис. 3.3). Существенное

отличие наблюдается в поведении значений критериев, входящих в вершину “Упр. доступом”

- значения 5 критериев остаются равными 0 (толстая пурпурная линия в нижней

части графика), в то время как IdM система управления доступом, напротив, получает

значительную долю ресурсов (желтая линия в верхней части графика).
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5

0

5

10

15

20

25

30

Рис. 3.3. Процентное распределение ресурсов при различных размерах бюджета
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3.2.4. Параметры модели

Таблица 3.8. Параметры вершины “Защита”

вершина вес необходимость достаточность

Технические средства да нет

Персонал да нет

Таблица 3.9. Параметры вершины “Технические средства”

вершина вес необходимость достаточность

Офис да нет

Хостинг да нет

Таблица 3.10. Параметры вершины “Хостинг”

вершина вес необходимость достаточность

Сеть хостинга да нет

Серверы на хостинге 50 да нет

Физ. защита хостинга нет нет

Таблица 3.11. Параметры вершины “Офис”

вершина вес необходимость достаточность

Сеть офиса да нет

Серверы в офисе 40 да нет

Физ. защита офиса нет нет

Рабочие станции офиса нет нет

Серверы≻Сеть≻Рабочие станции≻Физ. Защита
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Таблица 3.12. Параметры вершины “Сеть офиса”

вершина вес необходимость достаточность

Секционирование нет нет

Firewall 40 нет нет

Шифрование нет нет

NIDS нет нет

IPS нет нет

Firewall≻Секционирование≻Шифрование≻NIDS∼IPS

FW+IPS ≻ FW+NIDS ≻ 0

Таблица 3.13. Параметры вершины “Серверы офиса”

вершина вес необходимость достаточность

Лог сервер нет нет

Система обновлений да нет

Защищенный адм. доступ нет нет

Процедуры ревизии нет нет

Лог сервер + Процедуры ревизии ≻ 0

Таблица 3.14. Параметры вершины “Персонал”

вершина вес необходимость достаточность

Тех. средства да нет

Организационные меры нет нет

Тех. Средства ≻ Организационные меры
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Таблица 3.15. Параметры вершины “Тех. средства - персонал”

вершина вес необходимость достаточность

Контроль доступа да нет

Аудит нет нет

Контроль доступа ≻ Аудит

Таблица 3.16. Параметры вершины “Контроль доступа”

вершина вес необходимость достаточность

Сильная аутентификация нет нет*

Контроль привилегий да нет*

Политика безопасности нет нет*

Контроль выполнения политики нет нет*

Управление аккаунтами нет нет*

IdM нет да

Контроль привилегий ≻ Управление аккаунтами ∼ Политика безопасности ≻ Контроль

выполнения политики ≻ Сильная аутентификация

Idm + Сильная аутентификация ≻ 0, Idm + Контроль привилегий ≻ 0, IdM + Политика

безопасности ≻ 0, Idm + Контроль выполнения политики ≻ 0, IdM + Управление аккаунтами

≻ 0

* Первые пять критериев совместно достаточны.

Таблица 3.17. Параметры вершины “Организационные меры”

вершина вес необходимость достаточность

Проверки персонала нет нет

Обучение 50 нет нет

Мотивация нет нет

Обучение ≻ Проверки персонала ≻ Мотивация
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3.3. Пример использования: построение модели на основании

набора данных

Многокритериальные задачи принятия решений встречаются во многих областях

человеческой деятельности - системном анализе (см. главу 1.1), финансовом анализе [123],

планировании энергосетей [46], телекоммуникациях [40], экологии [104], и многих других.

Особенно важное значение такие задачи имеют в экономике. Анализ многокритериальных

предпочтений позволяет компаниям лучше понимать структуру потребностей потребителей

и развивать предлагаемые продукты в соответствии с запросами рынка. В данной главе

представлен пример использования разработанных в диссертации методов в задаче выбора

оптимальной стратегии развития предприятия. Применение интеграла Шоке в таких

задачах позволяет учитывать разнообразные виды взаимодействия между критериями,

что приводит к значительно более точному моделированию предпочтений потребителей, и

позволяет получить дополнительную информацию при анализе данных. Примером подобного

исследования является статья [87], некоторые результаты которой рассматриваются ниже.

3.3.1. Описание и анализ исходных данных

В статье [87] авторами проводится анализ более 10000 отелей Гонконга с помощью

рецензий2, оставленных посетившими их путешественниками. Каждая рецензия содержит

оценки по следующим критериям:

∙ соотношение цена-качество;

∙ расположение;

∙ комфорт сна;

∙ качество комнаты;

∙ чистота;

∙ сервис,

а также суммарную оценку. Оценки выставляются по шкале от 1 (неудовлетворительно) до 5

(отлично). Пользователи, оставляющие рецензии, делятся на категории по регионам, а также

по целям путешествия. (Табл. 3.18)

2 рецензии расположены на сайте www.tripadvisor.com
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Таблица 3.18. Характеризация анализируемого множества

Тип путешественника Регион
Набор данных

HK2010 HK2011

Бизнес

Азия 340 344

Европа 357 349

Америка 162 176

Океания 77 86

Пара

Азия 706 828

Европа 1030 986

Америка 375 433

Океания 398 500

Семья

Азия 652 995

Европа 233 246

Америка 163 214

Океания 179 286

Итого 10115

Для анализа связи оценок по отдельным критериям с итоговой общей оценкой, авторами

используется четыре регрессионные модели - арифметическое среднее(AM), взвешенное

арифметическое среднее(WAM), упорядоченное взвешенное среднее(OWA), и интеграл

Шоке(Choquet). Параметры модели ищутся путем минимизации максимального значения

абсолютного отклонения данных от предсказанных значений, (то есть минимизации ℓ1

нормы). Качество моделирования измерялось с помощью величины среднего абсолютного

отклонения значений модели от реальных данных. Результаты представлены в Табл. 3.19.

На основании набора данных HK2011 авторами было проведено так называемое

“профилирование”, то есть построение модели, основанной на интеграле Шоке, для

различных категорий путешественников (см. Табл. 3.18). Полученные для каждой категории

емкости анализировались на предмет выявления наиболее значимых факторов и характера

их взаимодействия.

Анализируя таблицы 3.20,3.21,3.22, и 3.23, авторы делают выводы о различиях в

предпочтениях между различными категориями путешественников. Большое значение при

этом имеет и страна происхождения - так, качество комнаты имеет большое значение
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Таблица 3.19. Величина среднего абсолютного отклонения для различных моделей

Модель
Набор данных

HK2010 HK2011

AM 0.0676 0.0656

WAM 0.0643 0.0636

OWA 0.0658 0.0639

Choquet 0.0541 0.0518

Таблица 3.20. Относительная важность критериев для различных категорий путешественников

Тип Регион
Критерии оценки

Цена Расположение Комфорт Комната Чистота Сервис

Бизнес

Азия 0.192 0.125 0.108 0.075 0.142 0.358

Европа 0.117 0.100 0.083 0.075 0.308 0.317

Америка 0.217 0.217 0.017 0.183 0.100 0.267

Океания 0.317 0.233 0.200 0.150 0.033 0.067

Пара

Азия 0.250 0.133 0.150 0.150 0.183 0.133

Европа 0.208 0.125 0.192 0.200 0.133 0.142

Америка 0.208 0.092 0.117 0.133 0.258 0.192

Океания 0.133 0.108 0.092 0.158 0.283 0.225

Семья

Азия 0.208 0.125 0.083 0.242 0.150 0.192

Европа 0.139 0.089 0.103 0.231 0.228 0.211

Америка 0.125 0.192 0.100 0.150 0.208 0.225

Океания 0.100 0.100 0.217 0.250 0.067 0.267

для бизнес путешественников из Европы и пар из Северной Америки и Океании, в то

время как для бизнес путешественников из Азии, Европы, Северной Америки, и семей

из Океании наибольшее значение имеет качество сервиса. Выявляется также и характер

взаимодействия между критериями в различных группах. Например, Табл. 3.21 показывает,

что предпочтения бизнес путешественников из Северной Америки выявляют положительное

взаимодействие между критериями “качество комнаты” и “сервис”. Следовательно, оба эти

критерия должны иметь хорошие оценки для получения наилучшего результата в этой

группе. С другой стороны, критерии “качество комнаты” и “цена-качество” взаимодействуют
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Таблица 3.21. Индексы взаимодействия для категории "Бизнес"

Регион Индекс взаимодействия

Азия

Расположение Комфорт Комната Чистота Сервис

Цена -0.067 -0.192 -0.108 0.100 -0.267

Расположение -0.067 0.017 0.142 -0.025

Комфорт -0.058 0.100 0.100

Комната 0.017 0.017

Чистота -0.358

Европа

Расположение Комфорт Комната Чистота Сервис

Цена 0.008 -0.033 0.092 0.133 -0.200

Расположение 0.175 -0.200 -0.075 0.092

Комфорт -0.158 -0.033 0.050

Комната 0.092 0.175

Чистота -0.117

Сев. Америка

Расположение Комфорт Комната Чистота Сервис

Цена 0.200 -0.050 -0.217 0.117 -0.050

Расположение -0.050 -0.217 0.117 -0.050

Комфорт 0.033 0.033 0.033

Комната 0.033 0.367

Чистота 0.300

Океания

Расположение Комфорт Комната Чистота Сервис

Цена 0.333 0.417 -0.500 -0.083 -0.167

Расположение -0.583 0.167 0.083 0.000

Комфорт 0.083 0.000 0.083

Комната 0.083 0.167

Чистота -0.083

отрицательно, следовательно, хорошая оценка по обоим критериям одновременно не

приводит к значительному преимуществу перед случаями, в которых лишь один из критериев

имеет высокую оценку.
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Таблица 3.22. Индексы взаимодействия для категории "Пара"

Регион Индекс взаимодействия

Азия

Расположение Комфорт Комната Чистота Сервис

Цена 0.133 0.008 0.008 -0.283 0.133

Расположение -0.075 -0.075 -0.033 0.050

Комфорт -0.033 0.092 0.008

Комната 0.258 -0.158

Чистота -0.033

Европа

Расположение Комфорт Комната Чистота Сервис

Цена -0.042 -0.042 -0.042 0.125 0.000

Расположение -0.083 0.000 0.167 -0.042

Комфорт -0.167 0.000 -0.042

Комната -0.250 0.125

Чистота -0.042

Сев. Америка

Расположение Комфорт Комната Чистота Сервис

Цена -0.042 -0.083 -0.083 0.208 0.000

Расположение 0.000 0.000 -0.042 0.083

Комфорт 0.125 0.000 -0.042

Комната -0.083 0.042

Чистота -0.083

Океания

Расположение Комфорт Комната Чистота Сервис

Цена -0.108 0.100 -0.233 0.267 -0.025

Расположение -0.142 0.058 -0.025 -0.067

Комфорт -0.067 -0.067 -0.108

Комната -0.067 0.380

Чистота -0.108

3.3.2. Постановка задачи

Методы, разработанные в данной диссертации позволяют дополнить рассмотренный

пример механизмами определения наилучшего плана действий по развитию гостиницы для

повышения удовлетворенности путешественников (что в свою очередь должно привести
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Таблица 3.23. Индексы взаимодействия для категории "Семья"

Регион Индекс взаимодействия

Азия

Расположение Комфорт Комната Чистота Сервис

Цена 0.042 -0.042 -0.083 0.125 -0.042

Расположение 0.000 0.125 0.000 -0.167

Комфорт -0.042 -0.083 0.167

Комната -0.042 0.042

Чистота 0.000

Европа

Расположение Комфорт Комната Чистота Сервис

Цена 0.033 0.103 0.242 -0.064 -0.314

Расположение 0.019 -0.092 0.019 0.019

Комфорт -0.022 0.033 -0.133

Комната -0.272 0.144

Чистота 0.283

Сев. Америка

Расположение Комфорт Комната Чистота Сервис

Цена 0.017 -0.025 -0.067 -0.067 0.142

Расположение -0.150 0.058 -0.192 0.267

Комфорт 0.017 0.183 -0.025

Комната 0.225 -0.233

Чистота -0.150

Океания

Расположение Комфорт Комната Чистота Сервис

Цена 0.067 0.150 -0.100 -0.017 -0.100

Расположение 0.150 -0.100 -0.017 -0.100

Комфорт -0.017 0.067 -0.350

Комната -0.183 0.400

Чистота 0.150

к росту прибыли). Каждый из 12 профилей (см. Табл. 3.20) соответствует определенной

емкости. Построив функции ценности для всех критериев, то есть функции, связывающие

объем инвестиций, вложенных в улучшение определенных характеристик отеля с уровнем

“удовлетворенности” этими характеристиками, становится возможным сформулировать
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задачу по определению оптимального плана развития в рамках некоторого бюджета3.

Возможно как развитие, направленное на одну выбранную группу путешественников, так

и на все одновременно. В первом случае, задача формулируется как задача максимизации

интеграла Шоке по фиксированной емкости (раздел 2), а во втором как задача робастной

оптимизации (раздел 2.7).

Оптимальное развитие для заданного профиля

Выберем в качестве цели оптимизации профиль “Семья из Европы”. В контексте

рассматриваемой проблемы такой выбор означает, что руководство отеля использует

маркетинговые методы для привлечения как можно большего числа путешественников

именно такого типа. Данные, представленные в таблицах 3.20 и 3.23, соответствуют

4-аддитивной емкости 𝜈𝐸𝐹 , значения ненулевых коэффициентов обращения Мебиуса которой

представлены в Табл. 3.24, где V соответствует критерию “цена”, L - “месторасположение”,

Sl - комфорт сна, R - комната, C - чистота, и Ser - сервис.

Таблица 3.24. 𝑚𝐸𝐹
𝜈 для профиля "Семья из Европы"

𝐴 𝑚𝐸𝐹
𝜈 (𝐴) 𝐴 𝑚𝐸𝐹

𝜈 (𝐴) 𝐴 𝑚𝐸𝐹
𝜈 (𝐴) 𝐴 𝑚𝐸𝐹

𝜈 (𝐴)

{V} 0.000001 {L,Ser} 0.033069 {V,R,C} -0.023473 {V,L,Sl,C} 0.142052

{L} 0.086235 {Sl,R} 0.050276 {V,R,Ser} -0.504424 {V,L,Sl,Ser} -0.115394

{Sl} 0.043420 {Sl,C} 0.128610 {V,C,Ser} -0.001023 {V,L,R,C} -0.202216

{R} 0.096253 {Sl,Ser} -0.036244 {L,Sl,R} 0.053705 {V,L,R,Ser} 0.203788

{C} 0.118703 {R,C} -0.096252 {L,Sl,C} -0.057805 {V,L,C,Ser} -0.128589

{Ser} 0.054011 {R,Ser} 0.450415 {L,Sl,Ser} 0.132092 {V,Sl,R,C} -0.115228

{V,L} 0.049766 {C,Ser} 0.512979 {L,R,C} 0.082769 {V,Sl,R,Ser} 0.111461

{V,Sl} 0.159818 {V,L,Sl} -0.026657 {L,R,Ser} -0.036534 {V,Sl,C,Ser} -0.213096

{V,R} 0.520255 {V,L,R} -0.053231 {L,C,Ser} -0.051123 {V,R,C,Ser} 0.059302

{V,C} 0.001023 {V,L,C} 0.128589 {Sl,R,C} -0.050276 {L,Sl,R,C} -0.053705

{V,Ser} -0.000000 {V,L,Ser} -0.049766 {Sl,R,Ser} -0.057451 {L,Sl,R,Ser} -0.167254

{L,Sl} -0.018543 {V,Sl,R} -0.047893 {Sl,C,Ser} -0.135786 {L,Sl,C,Ser} 0.103269

{L,R} -0.082769 {V,Sl,C} 0.071044 {R,C,Ser} -0.272006 {L,R,C,Ser} 0.069971

{L,C} -0.009143 {V,Sl,Ser} -0.017766 {V,L,Sl,R} 0.051660 {Sl,R,C,Ser} 0.109111

3 возможны и более сложные характеризации задачи, например внесение в целевую функцию значения

прибыли.
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При решении задачи на практике, следующей задачей становится определение функций

ценности для каждого из критериев. Сделать это можно, например, с помощью модификации

метода MACBETH [83]. Данный шаг требует большого количества информации, и достаточно

трудоемок. Кроме того, для демонстрации методов, разработанных в диссертации, он не

играет существенной роли, поэтому ограничимся выбором некоторых произвольных функций

ценности. Для критериев L,Sl,R,C,Ser положим функции ценности равными 1 − 𝑒−3𝑧, а для

критерия V равной 1 − 𝑒−𝑧. Интерпретация функций ценности для критериев L,Sl,R,C,Ser

очевидна - путем произведения вложений, руководство отеля может улучшать различные

характеристики, такие, например, как качество комнат. Интерпретация функции ценности

для критерия “цена”(V) несколько иная - поскольку зависимость удовлетворенности от цены

не прямая, как в случае других критериев, а обратная, низкие значения цены должны

приводить к высоким уровням удовлетворенности. Однако, снижение цен означает также

снижение прибыли, то есть, в некотором смысле, затраты, вложения. Аргумент функции

ценности по данному критерию, таким образом, интерпретируется как доля прибыли,

которой готов пожертвовать владелец, для привлечения большего числа путешественников

с помощью низких цен.

Таким образом, задача нахождения оптимального решения может быть сформулирована

следующим образом:

𝐶(𝜈𝐸𝐹 , 𝑓(𝑧)) → max
𝑧

𝑧 ∈ 𝒵0,

(3.5)

где 𝑓1(𝑧1) = 1 − 𝑒−𝑧1 , 𝑓𝑖(𝑧𝑖) = 1 − 𝑒−3𝑧𝑖 , 𝑖 = 2, . . . , 6. Множество допустимых вариантов

описывается бюджетным ограничением 𝒵0 =
∑︀6

𝑖=1 𝑧𝑖 = 3, и ограничениями на размер

вложений в отдельные критерии 𝑧𝑖 ≤ 2, 𝑖 = 1, . . . , 6.

Емкость 𝜈𝐸𝐹 не является 2-монотонной, а следовательно, задача (3.5) представляет

собой задачу глобальной оптимизации. С помощью методов, описанных в разделе 2.3, в

частности алгоритма 2.6, основанного на теоремах 12, 13, целевая функция может быть

разложена на 193 вогнутых компонента, а глобальным максимумом данной задачи является

точка

𝑧* = (0, 0.4318804953, 0.1798737568, 0.6509266170, 0.8686595654, 0.8686595654), (3.6)

в которой целевая функция достигает значения 0.8734358709. Анализируя полученное

значение с помощью таблиц 3.20, 3.23, замечаем, что критерии “чистота”(C) и “сервис”(Ser)

получили наибольшую долю ресурсов, ввиду их положительного взаимодействия и

высоких значений вектора Шепли. Доля критерия “цена”(V), ввиду его отрицательного
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взаимодействия с большинством критериев и более медленно возрастающей функции

ценности, равняется нулю. Объемы вложений в остальные критерии согласуются со

значениями вектора Шепли и индексов взаимодействия.

Оптимальное развитие для всех профилей одновременно

Рассмотрим теперь случай, когда руководство отеля ориентируется не на строго

определенный сегмент рынка, а на всех путешественников, соответствующих какому либо

из двенадцати представленных в таблице 3.20 профилей. В этом случае, сформулировать

задачу в виде (3.5) становится невозможным, поскольку конфликтующие предпочтения

различных групп потребителей порождают различные емкости. Так, наиболее важным

критерием для бизнес путешественников из Азии является “сервис” (см. Табл. 3.20), при этом

критерий “цена” для них сравнительно неважен. Диаметрально противоположная ситуация

наблюдается для бизнес путешественников из Океании, для которых “цена” стоит на первом

месте, а критерий “сервис” практически не играет никакой роли.

Для более формальной демонстрации этого факта рассмотрим отклонения от

глобальных максимумов для всех 12 профилей в точке максимума интеграла по емкости 𝜈𝐸𝐹 ,

то есть в точке (3.6) - Табл. 3.25. Как можно заметить, значения отклонений для многих

профилей достаточно существенны, особенно для путешественников из группы “Бизнес”,

что наглядно свидетельствует о конфликте предпочтений между этими категориями и

категорией “Семья из Европы”.

Целью руководства отеля является нахождение компромиссной стратегии, которая

привела бы к решению, близкому к оптимальному для всех типов путешественников

одновременно. Задача поиска оптимального плана развития, таким образом, может быть

сформулирована как задача робастного программирования:

max
𝜈

[︁
max

𝑧
𝐶(𝜈, 𝑓(𝑧))− 𝐶(𝜈, 𝑓(𝑧𝑟))

]︁
→ min

𝑧𝑟

𝜈 ∈ 𝒰

𝑧 ∈ 𝒵0

𝑧𝑟 ∈ 𝒵0,

(3.7)

где 𝒰 - множество неопределенности, включающее емкости, соответствующие каждому из

12 полученных профилей. Решением задачи (3.7) является точка робастного максимума

𝑧𝑟* = (0.0529768, 0.3278665, 0.6371665, 0.6767075, 0.6285753, 0.6767075). (3.8)
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Таблица 3.25. Величины отклонения от максимумов в точке максимума интеграла по емкости 𝜈𝐸𝐹

Цель путешествия Регион Глобальный максимум 𝐶(𝜈, 𝑓(𝑧)) Отклонение от максимума

Бизнес

Азия 0.793474 0.176377

Европа 0.859954 0.093403

Америка 0.934892 0.211068

Океания 0.950213 0.223935

Пара

Азия 0.796063 0.152489

Европа 0.760756 0.138856

Америка 0.717298 0.119152

Океания 0.917491 0.069126

Семья

Азия 0.747109 0.1065

Европа 0.873436 0.

Америка 0.851353 0.091003

Океания 0.945709 0.094994

Отклонения от глобальных максимумов, соответствующих различным емкостям, представ­

лены в Табл. 3.26. Отклонения сравнительно невелики, таким образом решение задачи

(3.7) позволило получить план развития гостиницы, удовлетворяющий запросам всех групп

путешественников. Более того, сравнивая таблицы 3.25 и 3.26, отметим, что величина

отклонения снизилась практически для всех рассматриваемых профилей, в то время как

для профиля “Семья из Европы” она поднялась лишь очень незначительно.

Исследование функций ценности

В предыдущих разделах предполагается, что функции ценности критериев определены

однозначно. В практических задачах построение функций ценности производится, например,

с помощью метода MACBETH [30, 31, 83]. Важным с практической точки зрения также

является вопрос о чувствительности итоговых результатов к небольшим изменениям

функций ценности. Анализ данного вопроса возможно провести путем запуска алгоритмов

из главы 2 с использованием различных входных данных. Например, параметризуем

функции ценности 𝑓𝑖(𝑧𝑖) = 1 − 𝑒−𝛼𝑖𝑧𝑖 с помощью параметров 𝛼𝑖 и произведем поиск

решения для различных вариантов значений данных параметров (на практике, как правило,

параметры будут находиться в некотором небольшом диапазоне). Параметры 𝛼𝑖 регулируют
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Таблица 3.26. Величины отклонения от максимумов в точке робастного решения

Цель путешествия Регион Глобальный максимум 𝐶(𝜈, 𝑓(𝑧) Отклонение от максимума

Бизнес

Азия 0.793474 0.081537

Европа 0.859954 0.048406

Америка 0.934892 0.091306

Океания 0.950213 0.098071

Пара

Азия 0.796063 0.098071

Европа 0.760756 0.098071

Америка 0.717298 0.055459

Океания 0.917491 0.098071

Семья

Азия 0.747109 0.067890

Европа 0.873436 0.031623

Америка 0.851353 0.039094

Океания 0.945709 0.098071

уровень “пологости” функций ценности - большие значения 𝛼𝑖 соответствуют более быстро

возрастающим функциям (Рисунок 3.4). В рамках решаемой задачи скорость роста функции

ценности интерпретируется как величина улучшения качества критерия при получении

единицы вложений.

Координаты вектора параметров соответствуют функциям ценности критериев (Цена,

Расположение, Комфорт, Комната, Чистота, Сервис). В разделе 3.3.2 использовалось

следующее значение вектора 𝛼: 𝛼 = (1, 3, 3, 3, 3, 3). Рассмотрим, как изменяется оптимальное

робастное распределение при некоторых других вариантах вектора 𝛼: (1,3,3,3,3,3),

(3,1,3,3,3,3), (3,3,1,3,3,3), (3,3,3,1,3,3), (3,3,3,3,1,3), (1,3,3,3,3,1).

Анализируя диаграммы на рисунке 3.5, можно сделать вывод о том, что важность

критериев “Комната”, “Сервис”, “Чистота”, и “Цена”, в особенности первых двух, является

большей по сравнению с важностью критериев “Расположение” и “Комфорт”. Даже при

значительно более пологой функции ценности (𝛼𝑖 = 1), иными словами, при значительно

большей стоимости улучшения по данным критериям, оптимальными являются вложения,

заметно отличные от нуля. В то же время, критерии “Расположение” и “Комфорт” полностью

игнорируются при увеличении стоимости улучшения показателей по данным критериям.



125

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Значение параметра

α = 1

α = 2

α = 3

Рис. 3.4. Параметризация функций ценности

Это наблюдение подтверждается также при анализе оптимальных решений для

следующих векторов параметров 𝛼: (1,2,3,1,2,3), (3,2,1,3,2,1), (1,3,1,1,3,1), (3,1,3,3,1,3),

(1,3,1,3,1,3), (3,1,2,3,1,2), (2,3,1,2,3,1).

В частности, для всех векторов 𝛼, где 𝛼6 = 1 (критерий “Сервис”), оптимальное

распределение характеризуется заметно выраженным преобладанием компонента “Сервис”,

иными словами, “пологая” функция ценности “компенсируется” засчет большего вложения

ресурсов (см. Рисунки 3.6, 3.7). Похожая картина наблюдается и для критерия “Комната” -

Рисунок 3.8. Для остальных критериев подобного эффекта не наблюдается.
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Рис. 3.5. Анализ влияния отдельных функций ценности на итоговое распределение
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Рис. 3.6. Анализ влияния отдельных функций ценности на итоговое распределение - 2

Оптимальные точки задачи робастной оптимизации (3.7), изображенные на Рисунках

3.5,3.6,3.7,3.8, представлены в таблице 3.27.

3.4. Программное обеспечение

Методы разработанные в рамках диссертации были реализованы в виде программного

обеспечения на языке Python. Поддерживается ввод весов компонентов системы, степеней их

взаимодействия, а также требований необходимости и достаточности. Возможно построение

визуального графа модели. Программа рассчитывает параметры емкости, находит робастное
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Рис. 3.7. Анализ влияния отдельных функций ценности на итоговое распределение - 3
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Рис. 3.8. Анализ влияния отдельных функций ценности на итоговое распределение - 4

решение и позволяет регулировать значения бюджетного ограничения. Исходные коды

доступны по адресу http://code.google.com/p/choquet-robust-optimization.

Ниже приводятся наиболее значимые из реализованных функций. Основные методы

представлены в Табл. 3.28. Информация о структуре проблемы сохраняется в текстовых

конфигурационных файлах в формате, представленном на Рис. 3.9. В квадратных скобках

содержится номер вершины. Поле name соответствует названию вершины, поле subnodes

содержит список дочерних вершин, shapley_order - информацию об относительной

важности критериев (дочерних вершин), ii_order - информацию о силе и характере

взаимодействия критериев (см. раздел 2.6.1), utility - максимальный объем ресурсов,
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Таблица 3.27. Решения задачи (3.7) для различных значений 𝛼

𝛼 Цена Расположение Комфорт Комната Чистота Сервис

(1,3,3,3,3,3) 0.053511 0.327901 0.635454 0.677074 0.628986 0.677074

(3,1,3,3,3,3) 0.690122 0 0.690122 0.619631 0.380493 0.619631

(3,3,1,3,3,3) 0.483188 0.734589 0 0.734589 0.313046 0.734589

(3,3,3,1,3,3) 0.640244 0.640244 0.585323 0.177273 0.561366 0.395550

(3,3,3,3,1,3) 0.516984 0.735905 0.215315 0.735905 0.059986 0.735905

(3,3,3,3,3,1) 0.627833 0.627833 0.432798 0.571030 0.571030 0.169476

(1,2,3,1,2,3) 0.030965 0.293141 0.502826 1.189531 0.502782 0.480755

(3,2,1,3,2,1) 0.514236 0.771353 0 0.341154 0.151618 1.221639

(1,3,1,1,3,1) 0.202192 0.365540 0 1.096621 0.239026 1.096621

(3,1,3,3,1,3) 0.631709 0.658109 0.631709 0.539236 0 0.539236

(1,3,1,3,1,3) 0.813114 0.586662 0 0.662507 0.275210 0.662507

(3,1,2,3,1,2) 0.535703 0.533281 0.803554 0.450985 0 0.676477

(2,3,1,2,3,1) 0.725079 0.483386 0 0.449076 0.090968 1.251491

который может получить вершина, function - функция ценности вершины, fgrad

- ее производная. Вычисление множества емкостей, согласующихся с информацией,

предоставленной ЛПР, производится с помощью функций представленных в Табл. 3.29.

Решение иерархических задач (раздел 2.4) производится с помощью функций в Табл. 3.30.

Поиск робастного решения (раздел 2.5) с помощью функций в Табл. 3.31. Некоторые

дополнительные функции приведены в Табл. 3.32.

Таблица 3.28. Основные методы программного обеспечения

Название функции Действие

choquet Расчет интеграла Шоке по заданной емкости и точке

mobius Расчет преобразования Мебиуса заданной емкости

choquet-gradient Расчет суперградиента в заданной точке

to-bel Генерация 𝛽-емкости по заданному набору неравенств

cap-dnf Поиск вогнутых компонентов емкости

max-choquet Максимизация интеграла Шоке
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[20]

name="Parent"

subnodes=32,33,34,35

shapley_order=32~34<33~35

ii_order=(32,33)<0

[35]

name="Child"

utility=(10,1)

function=0.1*x

fgrad=0.1

Рис. 3.9. Фрагмент конфигурационного файла

Таблица 3.29. Выражение информации о предпочтениях

Название функции Действие

shapley Вычисление векторов ограничений с коэффициентами вектора

Шепли

int-index Вычисление векторов ограничений с коэффициентами индекса

взаимодействия

necessity Вычисление векторов ограничений с коэффициентами необходимых

критериев

limits Вычисление векторов технических ограничений емкости

convexity Вычисление векторов ограничений, соответствующих

2-монотонности

k-additivity Вычисление векторов ограничений, соответствующих

𝑘-аддитивности

Поиск решения в сетевых структурах
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Таблица 3.30. Поиск решения в иерархических структурах

Название функции Действие

node-val Расчет весов всех управляемых вершин в транзитивном замыкании

заданной вершины

max-tree Максимизация целевой функции в заданной вершине

Таблица 3.31. Поиск робастного решения

Название функции Действие

sip Основной цикл алгоритма 2.14

solve-mmax Решение дискретной минимакс задачи

xrdiscr Дискретизация интервала [𝑚𝑖𝑛𝜈𝐶(𝜈, 𝑓(𝑧𝑟)),𝑚𝑎𝑥𝜈𝐶(𝜈, 𝑓(𝑧𝑟))]

xrscan Поиск 𝜈max и нахождение глобальных максимумов

robust_id Поиск “робастной емкости”

nc_primary Решение основной робастной задачи

nc_dual Решение двойственной робастной задачи

Таблица 3.32. Вспомогательные методы

Название функции Действие

mobiusB Расчет преобразования интегрируемых значений, представляющего

интеграл в виде, линейно зависящем от емкости

choquet-perm Расчет перестановки критериев в заданной точке

WFL Алгоритм Floyd-Warshall

zeta Преобразование, обратное к преобразованию Мебиуса

convert2kadd Уменьшение размерности матрицы ограничений для 𝑘-аддитивной

задачи

convert2nadd Увеличение размерности матрицы ограничений до 2𝑛

parse_node_config Чтение конфигурационного файла с структурой графа,

ограничениями, и функциями полезности
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3.5. Выводы из главы 3

В главе 3 были рассмотрены два примера практического применения разработанных

методов.

Во первом примере были продемонстрированы пути решения многокритериальных

задач, характеризующихся неполной и неточной входной информацией. Был проведен

анализ системы защиты информации, структура компонентов которой формировалась

на основании аналитической информации, носящей достаточно общий и абстрактный

характер. Было показано, что интеграл Шоке имеет значительное преимущество перед

традиционными подходами, не способными моделировать различные виды взаимодействия

между критериями. Методы, разработанные в диссертации, были использованы при расчете

агрегированной оценки иерархической структуры, содержащей 23 критерия, и нахождении

оптимального вектора распределения инвестиций, позволяющего достичь наилучшего

уровня защищенности при заданном ресурсном ограничении.

Во втором примере для определения параметров модели использовался массив реальных

данных, состоящий из более чем 10000 многокритериальных оценок отелей Гонконга. Как и

ожидалось, модель, основанная на интеграле Шоке показала значительно лучший результат,

чем прочие методы, применяемые в многокритериальных задачах принятия решений.

Методы нахождения экстремальных значений интеграла Шоке, представленные в главе 2,

позволили дополнить анализ многокритериальных предпочтений рекомендациями по выбору

оптимальной стратегии развития, то есть такого распределения заданного бюджета между

критериями задачи, которое позволило бы получить результат, наиболее удовлетворяющий

выявленным предпочтениям. Были предложены решения, направленные на нахождение

оптимальной стратегии как для одного ЛПР (группы потребителей), так и для нескольких

одновременно (в этом случае был применен робастный подход).

Полученные результаты свидетельствуют о высоком уровне практической применимо­

сти разработанных методов. Результаты главы 3 опубликованы в статьях [20, 23–27, 27, 129,

131].
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Заключение

Целью данной работы являлась разработка применительно к задачам системного ана­

лиза при проектировании информационных систем методов решения многокритериальных

задач оптимизации посредством поиска экстремальных значений интеграла Шоке. Анализ

литературы показал, что известные на данный момент подходы обладают серьезными

ограничениями и недостатками. В диссертации были решены следующие задачи:

1. Задача проектирования информационной системы сведена к задаче многокритери­

альной оптимизации. Произведен анализ основных характеристик рассматриваемой

задачи, обзор методов многокритериальной оптимизации и теории принятия решений.

Поставлена задача поиска экстремальных значений интеграла Шоке, а также ее

робастный вариант.

2. Впервые предложены методы максимизации интеграла Шоке для нелинейных функций

полезности и различных типов емкости. Рассмотрены выпуклый и невыпуклый случай.

3. Для решения невыпуклого случая предложен алгоритм представления произвольной

емкости в виде максимума тотально монотонных емкостей. Это позволило свести задачу

максимизации интеграла Шоке по произвольной емкости к множеству выпуклых задач.

4. Для класса 2-аддитивных емкостей доказана минимальность получаемого разложения

и получена характеризация числа элементов в разбиении заданной емкости.

5. Предложены методы построения сложных моделей, в которых критерии образуют неко­

торую сетевую структуру. Рассмотрены пути предварительного анализа вычислитель­

ной сложности для заданной модели, что позволяет более эффективно использовать

разработанные методы в практических задачах.

6. Получены методы поиска робастного решения для задач, в которых параметры

модели не могут быть определены однозначно. Проанализирована сложность проблемы,

предложен алгоритм нахождения робастного решения. Доказано, что такое решение

является оптимальным по отношению по крайней к одной из емкостей, согласующихся

с изначальными предпочтениями. Проведены численные тесты, подтверждающие

корректность работы алгоритма. Методы робастного программирования применяются

в задачах определения емкости впервые.
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7. Детально рассмотрены примеры практического применения разработанных методов

в многокритериальных задачах принятия решений. Рассматриваются варианты

использования в качестве входных данных как массива информации, так и неточных

экспертных оценок.

8. Разработано программное обеспечение, реализующее разработанные теоретические

методы.

Полученные в диссертации результаты могут быть использованы для улучшения

качества принимаемых решений в широком спектре задач проектирования информационных

систем, особенно в задачах характеризующихся выбором наилучшего решения из большого

числа вариантов. Разработанные методы могут также применяться в многокритериальных

задачах принятия решений, задачах принятия решений в условиях неопределенности,

а также динамических задачах принятия решений и задачах социального выбора.

Предложенные методы обладают твердой теоретической основой, и, как продемонстрировано

в прикладной части диссертации, где с позиций системного анализа рассматриваются

две многокритериальные задачи распределения ресурсов - задача проектирования

информационной системы, а также задача выбора оптимальной стратегии развития

организации, могут успешно применяться на практике.

Основными направлениями будущих исследований являются улучшение механизмов

формализации доступной информации в виде ограничений на множестве емкостей.

Перспективным представляется перенос результатов из многокритериальных задач в

другие типы задач принятия решений. С технической точки зрения интересной является

задача характеризации дизъюнктивного разложения произвольной емкости на полностью

монотонные меры. Наконец, планируется провести дальнейшие исследования в области

робастных аспектов проблемы, в частности, улучшения вычислительных аспектов подхода.

Будет проведено также и совершенствование программного обеспечения для обеспечения

возможности использования методики широким кругом лиц.
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