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Введение

Системы анализа и распознавания документов занимают значительное ме­
сто в таких областях науки, как искусственный интеллект, теория принятие
решений, и распознавание образов. Большой вклад в развитие данного науч­
ного направления внесли отечественные и зарубежные ученые М.А. Айзерман,
В.Л. Арлазаров, Э.М. Браверман, Ю.В. Визильтер, И.Б. Гуревич, С.Ю. Жел­
тов, Ю.И. Журавлев, А.Б. Мерков, А.Б. Петровский, В.А. Сойфер, Ян Ле­
кун (Франция), Чэн-Линь Лю (КНР), Коити Кисэ (Япония), Джеффри Хин­
тон (Канада) и другие.

Использование смартфонов и планшетных компьютеров для решения за­
дач оптимизации бизнес-процессов в корпоративных системах и процессов в си­
стемах государственного управления привели к новому витку развития систем
компьютерного зрения, оперирующих на мобильных устройствах. Повышенный
интерес к реализации корпоративного делопроизводства на основе мобильного
документооборота, а также необходимость осуществления ввода документов в
условиях с неконтролируемыми условиями съемки, повышают требования к си­
стемам распознавания, автоматического ввода и анализа документов с исполь­
зованием мобильных устройств.

Изображения, полученные при помощи мобильных устройств, обладают
рядом характерных особенностей и искажений, таких, как недостаточное раз­
решение, недостаточная либо неравномерная освещенность, смазывание, дефо­
кусировка, блики на отражающей поверхности плоских объектов и другими.
Подобные особенности входных изображений повышают требования к мобиль­
ным системам оптического распознавания и создают потребность в новых ме­
тодах и алгоритмах, обладающих большей устойчивостью. Разработке мето­
дов распознавания образов, учитывающих особенности малоформатных циф­
ровых камер, посвящены работы таких авторов, как Д.П. Николаев, О.А. Сла­
вин, Д.С. Ватолин, V. Lepetit, T. Geraud, R. Manmatha, D. Doermann, X. Bai,
D. Karatzas, M. Iwamura и других. В то же время недостаточно изученными
являются модели и методы использования видеопотока в качестве цифрово­
го представления распознаваемого объекта, и методы повышения качества си­
стем оптического распознавания путем использования множества гомогенных
наблюдений распознаваемого объекта. Таким образом, дальнейшее исследова­
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ние и развитие математических моделей и методов использования видеопотока
в качестве цифрового представления объекта в контексте систем оптического
распознавания является актуальным.

Основные результаты диссертации были получены в процессе выполнения
работ по следующим научным грантам РФФИ:

– № 18-07-01387 – «Модели и методы построения систем оптического распо­
знавания видеопотока с использованием обратных связей, функционирующим
в в условиях ограниченных вычислительных ресурсов»;

– № 17-29-03370 – «Методы биометрической идентификации в реальном
времени на мобильном устройстве по удостоверяющей фотографии»;

– № 17-29-03170 – «Исследование быстродействующих методов и алгорит­
мов обработки изображений и оптического распознавания для использования
в мобильных устройствах с ограниченной вычислительной производительно­
стью»;

– № 15-07-06520 – «Методы контроля подлинности документов и их фраг­
ментов в гибридных системах обработки, передачи и хранения документов»;

– № 14-07-00730 – «Математическое моделирование шумовых помех при
распознавании»;

– № 13-07-12172 – «Распознавание документов удостоверяющих личность
с помощью веб камер и камер мобильных устройств».

Целью данной работы является разработка математических моделей, ме­
тодов улучшения характеристик систем распознавания объектов в видеопотоке
путем комбинирования результатов обработки множества входных наблюдений.

Для достижения поставленной цели необходимо было решить следующие
задачи:

1. Провести анализ принципов построения современных систем распозна­
вания документов;

2. Построить математическую модель системы распознавания объекта в
видеопотоке, позволяющую исследовать качественные характеристики резуль­
тата и время, необходимое для его получения;

3. Исследовать влияние характеристик входных данных на выбор оп­
тимальной стратегии комбинирования результатов распознавания одиночных
изображений;
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4. Разработать алгоритм комбинирования результатов оптического распо­
знавания строкового объекта и провести экспериментальный анализ его харак­
теристик;

5. Разработать метод останова процесса распознавания объекта в видео­
потоке в рамках построенной математической модели системы;

6. Разработать алгоритм останова процесса распознавания строкового объ­
екта и провести экспериментальны анализ его характеристик;

7. Реализовать разработанные методы и алгоритмы для их внедрения в
промышленные системы распознавания объектов в видеопотоке.

Методология и методы исследования основаны на системном анали­
зе, математическом моделировании, математической статистике и теории при­
нятия решений.

Основные положения, выносимые на защиту:
1. Построена математическая модель системы распознавания объекта в

видеопотоке с блоком комбинирования результатов распознавания одиночных
кадров и с блоком принятия решения об останове;

2. Экспериментально показано преимущество правила максимальной оцен­
ки как стратегии комбинировании покадровых результатов классификации объ­
екта в видеопоследовательностях, не содержащих ошибок локализации и сегмен­
тации объекта;

3. Разработан алгоритм комбинирования результатов распознавания стро­
кового объекта, учитывающий альтернативные варианты классификации от­
дельных символов;

4. Разработан метод останова процесса распознавания объекта в видео­
потоке на основе порогового отсечения оценки ожидаемого расстояния между
текущим и следующим интегрированными результатами распознавания;

5. Разработан алгоритм моделирования интегрированного результата рас­
познавания на следующем шаге и вычисления оценки расстояния между те­
кущим и следующим интегрированными результатами для применения метода
останова.

Научная новизна:
1. Предложена новая математическая модель системы распознавания объ­

екта в видеопотоке, позволяющая проводить совместное исследование каче­
ственных характеристик результата распознавания и времени, необходимого
для получения результата;
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2. Выполнено оригинальное исследование влияния характеристик вход­
ных данных на выбор оптимальной стратегии комбинирования покадровых ре­
зультатов, применительно к задаче классификации объекта в видеопоследова­
тельности;

3. Разработан новый алгоритм комбинирования результатов распознава­
ния строкового объекта, учитывающий альтернативные варианты классифика­
ции отдельных символов;

4. Предложен новый метод останова процесса распознавания произвольно­
го объекта в видеопотоке, рассматривающий данный процесс как монотонную
задачу останова и основывающийся на оценке ожидаемого расстояния между
текущим и следующим интегрированными результатами;

5. Разработан новый алгоритм останова процесса распознавания строково­
го объекта в видеопотоке, основанный на оценке ожидаемого расстояния меж­
ду текущим и следующим интегрированными результатами, вычисляемой по
накопленным наблюдениям.

Практическая значимость. Разработанная в рамках диссертации мо­
дель системы распознавания объектов в видеопотоке, а также разработанные
методы и алгоритмы комбинирования результатов распознавания строковых
объектов и останова процесса распознавания были реализованы в виде про­
граммных компонентов и внедрены в программное обеспечение «Smart 3D OCR
MRZ» и «Smart PassportReader» компании ООО «Смарт Энджинс РУС», а так­
же «Smart IDReader» компании ООО «Смарт Энджинс Сервис». Данные про­
дукты интегрированы в информационную инфраструктуру ряда коммерческих
организаций, а также в ряд информационных решений государственных струк­
тур Российской Федерации.

Достоверность полученных результатов подтверждается согласованно­
стью разработанных алгоритмов, методов и математических моделей с экспери­
ментальными результатами, представленными в работе, успешной апробацией
результатов и внедрением в коммерческие системы распознавания документов.

Апробация работы. Основные результаты работы докладывались на
следующих семинарах и конференциях:

1. 7th International Workshop on Camera Based Document Analysis and
Recognition (CBDAR 2017), Киото, Япония, 2017;

2. 10th International Conference on Machine Vision (ICMV 2017), Вена, Ав­
стрия, 2017;
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3. Международный научно-исследовательский семинар «Анализ и пони­
мание изображений (Математические, когнитивные и прикладные проблемы
анализа изображений и сигналов)», Москва, Россия, 2019.

Личный вклад. Все результаты, изложенные в диссертации, принадле­
жат лично автору. В совместных работах автор принимал непосредственное
участие в выборе направления и задач исследований, в построении математи­
ческих моделей и обсуждении результатов экспериментальных исследований.

Публикации. Основные результаты по теме диссертации изложены в 14
публикациях, в том числе: 6 изданы в журналах, рекомендованных ВАК, 3 – в
сборниках трудов конференций (входящих в международные базы цитирования
Scopus и Web of Science), 2 патента на полезную модель и 3 свидетельства о
государственной регистрации программы для ЭВМ.

Объем и структура работы. Диссертация состоит из введения, четы­
рех глав и заключения. Полный объем диссертации составляет 109 страниц,
включая 18 рисунков и 7 таблиц. Список литературы содержит 139 наименова­
ний.

Краткое содержание глав. Первая глава посвящена анализу принци­
пов построения современных систем распознавания документов. Рассматривает­
ся автоматический ввод документов как одна из основных задач, возникающих
в рамках электронного и мобильного документооборота. Описаны основные ком­
поненты таких систем и их свойства. Показано, что современные работы, свя­
занные с автоматическим вводом и распознаванием документов на мобильных
устройствах, рассматривают фотографию документа как его электронное пред­
ставление и отмечают трудности, связанные с подготовкой образа документа к
распознаванию и с самим распознаванием.

Во второй главе предложена новая математическая модель системы опти­
ческого распознавания объекта в видеопотоке с блоком комбинирования резуль­
татов распознавания объекта на одиночных изображениях и с блоком останова
процесса распознавания. Предложена постановка задачи распознавания в рам­
ках такой системы.

Третья глава посвящена разработке алгоритма комбинирования (интегра­
ции) результатов распознавания строкового объекта в видеопотоке в рамках
модели результата, учитывающей альтернативные варианты классификации
отдельных символов. Описана постановка задачи, формальное описание алго­
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ритма, а также представлены результаты сравнительного экспериментального
исследования предложенного алгоритма и алгоритма ROVER.

В четвертой главе предложен новый метод останова процесса распозна­
вания объекта в видеопотоке на основе порогового отсечения оценки ожидае­
мого расстояния между текущим и следующим интегрированными результата­
ми, и представлен новый алгоритм останова распознавания строчного объекта.
Рассмотрена формальная постановка задачи останова процесса распознавания,
предложен метод, полученный путем рассмотрения задачи как монотонной за­
дачи останова. Представлены результаты сравнительного экспериментального
исследования предложенного алгоритма и других правил останова, предложен­
ных ранее для подобных задач. Показано преимущество предложенного алго­
ритма перед другими методами.
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Глава 1. Анализ принципов современных систем распознавания
документов

1.1 Автоматический ввод документов

Документационное обеспечение управления производством, или делопро­
изводство [1] является неотъемлемой частью любого предприятия и заключает­
ся в создании, учете, хранении и организации движения документов. Комплекс
работ по организации движения документов в организации называется доку­
ментооборотом, в него входит ввод, прием, регистрация, рассылка, контроль
исполнения, формирование дел, хранение и повторное использование и т.п. Для
автоматизации делопроизводства на предприятиях вводится электронный доку­
ментооборот – единый механизм по работе с документами в электронном виде.

Согласно официальной формулировке в законодательстве РФ документом
называется материальный носитель с зафиксированной на нем в любой форме
информацией в виде текста, звукозаписи, изображения и (или) их сочетания, ко­
торый имеет реквизиты, позволяющие его идентифицировать, и предназначен­
ный для передачи во времени и в пространстве в целях общественного исполь­
зования и хранения [2]. Близким к понятию документа, особенно в контексте
электронного документооборота, является понятие формы как набора информа­
ционных полей (реквизитов), имеющего определенную логическую структуру,
а также логическое и визуальное представление.

Одним из аспектов электронного документооборота является автоматиче­
ский ввод документов – метод автоматизированного ввода данных с использова­
нием заранее определенных шаблонов и конфигураций документов. Автомати­
ческий ввод документов возник как альтернатива ручному вводу для минимиза­
ции типографических ошибок и временных затрат. Типичный технологический
процесс автоматического массового ввода документов на предприятии можно
описать следующими этапами:

1. Распределение потока документов на пакеты для отдельной обработки.
2. Оцифровка документов в обрабатываемом пакете, т.е. преобразование

документа с бумажного или иного физического носителя в электрон­
ный вид. В случае документов на бумажных носителях данный этап
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чаще всего представляет собой сканирование пакета документов при
помощи высокоскоростного промышленного сканера.

3. Подготовка оцифрованных документов к распознаванию, т.е. примене­
ние методов первичной обработки электронной информации. В случае
сканированных изображений бумажных документов данный этап вклю­
чает применение методов обработки изображений, повышающих точ­
ность распознавания.

4. Применение методов распознавания для преобразования информации,
содержащейся в документе, в электронный вид для дальнейшего ис­
пользования в системе электронного документооборота. Данный этап
иногда включает в себя выделение некоторых полей (реквизитов) доку­
мента, для которых результат распознавания признан системой распо­
знавания сомнительным или недостоверным, с последующей верифика­
цией и коррекцией оператором.

5. Сохранение полученного электронного документа в базе данных и/или
экспорт в удобный для электронной обработки формат, такой как XML,
PDF, CSV и т.п.

Распределение потока документов на отдельные, независимо обрабатыва­
емые пакеты представляет собой начальную стадию технологического процесса
автоматического ввода документов и заключается в разбиении потока докумен­
тов на части ограниченного размера и/или группировку документов по типу.
Здесь и далее под типом документа подразумевается именованная совокупность
его логической структуры (заголовок, множество полей (реквизитов) с опре­
деленными семантическими и синтаксическими свойствами) и структуры его
представления на бумажном или ином физическом носителе.

Оцифровка документа является определяющим этапом для технологии
автоматического ввода документов и представляет собой преобразование доку­
мента с физического носителя в электронный вид, удобный для дальнейшей
обработки. К примеру, в случае оцифровки документов при помощи сканирова­
ния, для плоского (чаще всего – бумажного) документа строится его цифровое
описание в виде цветного (многоканального), либо полутонового (одноканаль­
ного) изображения с глубиной цвета и разрешением, которые регулируются в
зависимости от технологических возможностей сканирующего устройства и от
особенностей дальнейших алгоритмов обработки изображения документа. Дру­
гим примером оцифровки документа является его видео- или фотосъемка при
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помощи камеры мобильного устройства, имеющая место в случае необходимо­
сти осуществлять эффективный ввод документов в нестационарном режиме. В
этом случае электронным образом документа является его цифровая фотогра­
фия либо видеопоток, содержащий упорядоченную последовательность кадров,
на каждом из которых отображен документ или его часть.

Методы первичной обработки электронной информации, такие как обра­
ботка цифровых изображений, анализ и установление связей между информа­
тивными частями кадров в видеопотоке и т.д., применяются для облегчения
задач выделения информативных областей цифрового образа документа и по­
вышения точности распознавания. После первичной обработки в работу всту­
пают методы определения логической структуры документа, выделения цифро­
вых образов информационных полей (реквизитов) с последующим распознава­
нием. В зависимости от природы вводимых документов системы автоматическо­
го ввода документов используют методы оптического распознавания символов
(Optical character recognition, OCR) [3], распознавания штрих-кодов (Barcode
recognition, BCR) [4] и т.п. Методы оптического распознавания символов иногда
подразделяют по функциональной направленности на методы распознавания
печатных символов и печатного текста, рукопечатных символов, рукописных
символов и рукописного текста, а также методы распознавания меток (к при­
меру, в анкетах с множественным выбором, избирательных бюллетенях и т.д.).
В случае, если заранее известны синтаксические и/или семантические свойства
полей (реквизитов) документа, после распознавания может производиться ав­
томатическая коррекция результатов (к примеру, для коррекции результатов
распознавания поля «Фамилия» может использоваться полный, либо неполный
частотный словарь фамилий [5]. В некоторых системах автоматического ввода
документов после того, как получен результат распознавания поля, производит­
ся анализ достоверности результата с последующей верификацией и коррекцией
оператором [6; 7].

1.2 Мобильный документооборот

Начиная с 2000-х годов появляется широкий интерес к методам автомати­
ческого ввода документов с использованием мобильных устройств. Обусловлено
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это быстро растущими вычислительными возможностями таких широко распро­
страненных мобильных устройств, как «смартфоны» и портативные планшет­
ные компьютеры, а также увеличивающимися техническими возможностями
цифровых камер, установленных на этих устройствах. Интерес к системам элек­
тронного документооборота и, в частности, к методам автоматического ввода
документов, применительно к мобильным устройствам также обусловлен разви­
тием систем распространения мобильных приложений, как корпоративных, так
и нацеленных на широкую публику. Согласно опросу пользователей мобильных
устройств, который проводился в США в 2014 году компанией Radium One [8],
88.2% опрошенных пользуются своими смартфонами чаще, чем 10 раз в день,
35.5% – более 40 раз в день.

В корпоративном секторе повышается интерес к реализации делопроиз­
водства (или его части) на основе мобильного документооборота – разновид­
ности электронного документооборота, пользователи которого получают воз­
можность производить операции с электронными документами при помощи
различных мобильных устройств. Согласно опросу, который проводился компа­
нией Litera Corp. в 2013-м году, 97% опрошенных профессиональных работни­
ков сферы бизнеса используют персональные, либо корпоративные мобильные
устройства для хранения и обработки документов [9]. Естественным образом
встает задача реализации систем автоматического ввода документов, исполь­
зующих цифровые камеры мобильных устройств в качестве «сканирующего»
устройства – оцифровка документа производится путем видео- или фотосъем­
ки оригинала.

Среди обычных пользователей таких мобильных устройств, как смартфо­
ны или планшетные компьютеры, возрастает интерес к приобретению товаров и
услуг, совершая транзакции через интернет-сервисы, доступные с персональных
мобильных устройств. Согласно ранее упомянутому опросу [8] 61% опрошенных
пользователей смартфонов хотя бы раз совершали мобильную покупку в тече­
ние последних 6-ти месяцев. Согласно опросу 2014-го года, проводившемуся в
18-ти европейских стран, 77% опрошенных хотя бы один раз в жизни соверша­
ли мобильную покупку (против 72% в 2013-м году) [10]. В большинстве случаев
заключение таких сделок подразумевает ввод данных некоторых документов (к
примеру, документа, удостоверяющего личность, реквизиты банковской карты
и т.д.), причем ввод этих данных зачастую требуется производить неоднократ­
но, т.к. хранение этих данных в памяти мобильного устройства может привести
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к утечке данных и их использованию злоумышленниками. Хранение чувстви­
тельных персональных данных на интернет-серверах строго ограничивается за­
конодательством [11] и также, хоть и в меньшей степени, подвержено атакам со
стороны мошенников. Это приводит к тому, что методы автоматического ввода
документов, ориентированные на мобильные устройства, приобретают актуаль­
ность не только в корпоративной сфере, но и в сфере массовой электронной
коммерции.

Еще одним двигателем, благодаря которому возрастает актуальность си­
стем мобильного документооборота и мобильного распознавания документов,
выступает роль комплекса процедур «Знай своего клиента» (англ. know your
customer, KYC), согласно которому биржевым и банковским организациям а
также другим финансовым институтам необходима точная идентификация кли­
ента или контрагента для проведения финансовых операций. В рамках соответ­
ствия требованиям, собирательно относящихся к принципу «Знай своего клиен­
та» ([12; 13]), клиентоориентированные финансовые организации вынуждены
прибегать к идентификации пользователей и контрагентов при осуществлении
каждой операции. Так как доля операций, осуществляемых удаленно при по­
мощи мобильных устройств, растет, необходимость удаленной идентификации
пользователей влечет к необходимости проводить удаленный анализ докумен­
тов, в том числе документов, удостоверяющих личность.

Поскольку внедрение технологических, социальных и коммерческих про­
цессов, основанных на использовании мобильных устройств и технологий, в
условиях современного мира уже является обыденностью, системы автомати­
ческого ввода и анализа документов на мобильных устройствах продолжают
вытеснять традиционные стационарные системы, и развитие технологий анали­
за документов с применением мобильных устройств и в условиях аппаратных
ограничений, связанных с ними, является актуальной задачей.

1.3 Системы распознавания документов

Целью данного обзорного раздела является выделение основных этапов
обработки изображений документов, характерных для систем автоматического
ввода, и описание их особенностей.
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1.3.1 Цифровой образ документа

Классические системы распознавания и автоматического ввода докумен­
тов предполагают использование сканированного изображения документа в ка­
честве его оцифрованного представления. Изображение в процессе оцифровки
генерируется при помощи планшетного либо протяжного сканера, и характе­
ризуется рядом особенностей: такое изображение, как правило, имеет высокое
разрешение, поскольку разрешающая способность современных сканеров позво­
ляют генерировать изображение с несколькими тысячами точек на дюйм. Осве­
щение документа в подобных сканерах, как правило, равномерное, поскольку
обеспечивается гомогенной искусственной подсветкой, и геометрический образ
документа максимально соответствует оригиналу с точностью до небольших
искажений в рамках расширенной группы движения.

Подавляющее большинство работ, связанных с автоматическим вводом и
распознаванием документов на мобильных устройствах, рассматривают фото­
графию документа как его электронное представление и отмечают трудности,
связанные с подготовкой образа документа к распознаванию и с самим распо­
знаванием [14].

Изображения документов, получаемые с камеры мобильного устройства
обладают гораздо более низким качеством, чем изображения, получаемые с
традиционного цифрового сканера. В случае мобильных устройств на этапе
подготовки изображения к распознаванию приходится сталкиваться с такими
проблемами, как неравномерное освещение сцены, проективные искажения до­
кумента, нелинейные искажения документа (вызванные, к примеру, изгибом
бумажного носителя), искажения, обусловленные движением камеры, зашумле­
ние, дефокусировка [15]. Все эти условия приводят к тому, что традиционные
методы предварительной обработки изображения, применяемые в системах ав­
томатического ввода документов с использованием цифровых сканеров не да­
ют необходимого эффекта и появляется необходимость в специальных методах,
позволяющих увеличить точность и надежность распознавания.
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1.3.2 Поиск и локализация документа

Первичной задачей обработки изображения документа в системе распозна­
вания является точный поиск документа на изображении. Как правило, данный
этап также пересекается с задачей идентификации типа документа. В некото­
рых выделенных случаях данный этап опускается (в случае, когда тип докумен­
та полностью известен и изображение документа не имеет пространственных
искажений ввиду специфики процесса оцифровки), однако в большинстве слу­
чаев этот этап необходим для дальнейшего анализа содержимого документа.
Основными проблемами, с которыми приходится сталкиваться на этапе поиска
документа на оцифрованном изображении, являются искажения изображения –
как геометрические (наклоны, вращения, проективные искажения, нелинейные
искажения), так и пиксельные (шумы оцифровки, яркостные искажения ввиду
неравномерного освещения и т.п.).

Основные подходы к определению наклона документа на изображения
можно разделить на две группы: глобальные и локальные [16]. Глобальные под­
ходы анализируют признаки, вычисляемые по всему изображению, такие как
гистограммы проекций объектов изображения на различные оси, прямые на гра­
ницах областей изображения и т.п. Локальные подходы используют признаки,
значимые только в ограниченных областях изображения, к примеру, общие оси
соседних компонент связности текста. После этого на основе локально вычис­
ленных оценках наклона документа принимается решение о глобальном значе­
нии оценки наклона. В работе [17] локальная оценка наклона вычисляется при
помощи поиска направления с наибольшим количеством переходов от черного
к белому и обратно в локальном окне бинаризованного изображения, содер­
жащего текст. В работах [18; 19] описаны методы оценки локального наклона,
также использующие геометрические свойства бинаризованного изображения
текста. В работе [18] предлагается производить поиск цепочек компонент связ­
ности, которые соответствуют словам или частям слов или текстовых строк,
при помощи метода наращивания регионов [20] и выбирать направление в окне
согласно направлениям этих цепочек. В работе [19] предлагается метод, осно­
ванный на анализе направлений штрихов отдельных букв. В работах [21—23]
угол наклона документа определяется при помощи преобразования Хафа [24],
для поиска прямых на изображения документа. В работе [25] метод определения



17

наклона опирается на утверждение о том, что для компонент документа, содер­
жащих текст и другие типичные элементы (штрих-коды, таблицы и т. п.) ос­
новная ось охватывающего прямоугольника минимальной площади совпадает с
направлением компоненты. Предлагаемый алгоритм поиск прямоугольника ми­
нимальной площади для отдельно взятой компоненты достаточно эффективен
и опирается на метод следования вдоль границы компоненты, описанный в [26].

Достаточно большое внимание уделяется задаче проективного исправле­
ния изображения документа, полученного с камеры мобильного устройства
[27—31]. Большинство методов исправления перспективных (проективных) ис­
кажений изображения основаны на детектировании исчезающей точки перспек­
тивы (vanishing point). Эти методы включают в себя поиск линий и точек пере­
сечения этих линий на изображении, либо текстурный и частотный анализ со­
ставляющих изображения [32]. Для поиска исчезающей точки перспективы или
линий документа в свою очередь используется поиск границ документа (если на
изображении присутствует весь документ, либо целиком одна из его страниц),
либо поиск линий текстовых строк. Поиск линий на изображениях – задача
хорошо описанная в литературе [33], для ее решения предложено множество
методов, основанных на применении алгоритма RANSAC [34], поиске прямых
методом наименьших квадратов [35], а также быстрого преобразования Хафа
[24].

Некоторые методы основаны на анализе направлений текстовых линий
(эти методы необходимы в случаях, когда границы документа не попадают в
кадр). В работе [36] предлагается метод, основанный на анализе компонент связ­
ности (символов) на изображении. Ректификация (исправление проективного
искажения) в предложенном методе производится отдельно для каждой тексто­
вой строки на основе аппроксимации ее базовых линий.

Помимо методов, анализирующих отдельные элементы документов с це­
лью ректификации изображения (т.е. частично сводящих задачу локализации
документа к определению параметров частных геометрических искажений), по­
является и другой класс методов, связанных с непосредственно локализацией
образа страницы документа целиком. Одним из подходов к локализации стра­
ницы документа по его визуальному представлению является использование
обобщение метода Виолы и Джонса [37] как решающего дерева сильных клас­
сификаторов [38; 39] для детектирования образа страницы целиком в условиях
ограниченных перспективных искажений. Однако наиболее широко используе­
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мым подходом здесь стоит отметить подход поиска опорных точек (keypoints
или feature points). Мотивацией к применению данного подхода для решения
этой задачи является их устойчивость к различного рода помехам и искажениям
изображения, которые могут существенно понизить точность работы алгорит­
мов структурного и геометрического анализа [40].

Описанные подходы, сами по себе успешно используемые для анализа
изображений документов на отдельных изображениях, вообще говоря не обоб­
щены на случай множества изображений одного и того же документа, и, таким
образом, относятся к статическим системам распознавания объектов. Рассмат­
ривая видеопоток как цифровой образ распознаваемого объекта данные подхо­
ды нуждаются в соответствующей адаптации.

1.3.3 Сегментация изображения документа

Следующим этапом после поиска и локализации документа на изображе­
нии является сегментация (уже ректифицированного) изображения документа
на составные части. Постановка данной задачи зависит от структуры докумен­
та и от дальнейших методов обработки, однако из них можно выделить две
крупные задачи, которые редко пересекаются и в большинстве систем распо­
знавания представляют собой два независимых этапа:

1. Сегментация изображения документа на отдельные фрагменты – тек­
стовые блоки, текстовые поля, строки, параграфы, фигуры и формулы,
печати и т.п.;

2. Сегментация изображения текстовой строки или текстового поля на
отдельные символы/графемы.

Поскольку сегментация изображения документа на информационные
фрагменты в значительной степени зависит как от структуры самого докумен­
та, так и от специфики конкретных систем распознавания, в литературе наблю­
дается широкий спектр методов и подходов, предлагаемых для решения этой за­
дачи. Для сегментации изображения на крупные гомогенные информационные
блоки предлагаются методы комбинаторного анализа прямолинейных элемен­
тов, детектируемых при помощи морфологического анализа изображения [41],
декомпозиция изображения документа при помощи оптимального накладыва­
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ния множества Гауссовых ядер [42], либо использование полностью сверточных
искусственных нейронных сетей (ИНС) для выделения пикселей, соответству­
ющих тому или иному сегментируемому фрагменту [43]. Также развиваются
структурные методы поиска текстовых строк на основе поиска путей в яркост­
ном графе [44] и методы, частично использующие техники машинного обучения
для детектирования границ текстовых строк [45].

Отдельно стоит выделить подход к поиску текстовых строк и отдельных
слов, наиболее широко обсуждаемый в литературе в течении нескольких послед­
них лет, а именно подход «word spotting», или «text in the wild». Этот подход
образовался в рамках более общей задачи поиска текста на произвольных есте­
ственных изображениях. В рамках решения более общей задачи появился ряд
методов, позволяющий выделять участки изображения, содержащие символы,
графемы, слова и текстовые строки целиком, в условиях пиксельных и гео­
метрических искажений. Методы включают как структурный анализ участков
изображения с последующим комбинаторным выбором участков, обладающих
признаками текста [46—48], использование техник машинного обучения локаль­
ных признаков текста [48—50], а также глобальное использование глубоких свер­
точных ИНС для выделения пикселей текста на произвольном изображении [49;
51—53].

Одной из самых сложных задач распознавания текста, и, в частности,
систем распознавания документов, остается задача сегментация изображения
текстовой строки на отдельные символы [54; 55]. Процедура сегментация на
отдельные символы, помимо общих искажений, которые претерпевает изобра­
жение документа (влекущих за собой «склейки» соседних символов и графем
и другие проблемы), затруднена большим многообразием шрифтов и гарнитур,
используемых для печати текстовых полей документов. В традиционных систе­
мах распознавания документов для задачи сегментации текстовой строки на
отдельные символы использовалась бинаризация изображения текстовой стро­
ки (либо глобальная бинаризация всего изображения документа) с последую­
щим анализом «черных» компонент связности. Однако в условиях искажений,
характерных для изображений, полученных при помощи камеры мобильного
устройства, данный метод перестал быть актуальным, поскольку подбор уни­
версальных параметров бинаризации, при которых минимизируется количество
«склеек» и «разрезов», чрезвычайно затруднен. Наиболее широко используемые
подходы к этой задаче без бинаризации включают анализ проекции изображе­
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ния текстовой строки на горизонтальную ось, расстановку предварительных
разрезов строки и применение динамического программирования с использо­
ванием значимости разрезов и оценок достоверности распознавания символов
между разрезами в качестве составных частей финальной метрики «качества»
сегментации [56; 57]. Другие методы используют техники машинного обучения
для обучаемой расстановки разрезов между символами/графемами: использо­
вание сверточных ИНС и рекуррентных LSTM-сетей («long short-term memory
networks») позволяет уменьшить количество эвристических параметров алго­
ритма сегментации и, в то же время, увеличить устойчивость к искажениям [56].

Также стоит отметить, что популярность среди исследователей набира­
ют методы распознавания текстовых строк, полностью исключающих явную
сегментацию на отдельные символы. В данных подходах предполагается объ­
единение глубоких сверточных ИНС с LSTM-сетями для обучения алгоритма
распознавания целиком слов, без промежуточных этапов [58; 59]. Такие мето­
ды позволяют значительно повысить устойчивость алгоритма к искажениям
входного изображения, и позволяют расширить домен применения алгоритма
(к примеру, на задачу распознавания рукописных строк, текста, напечатанно­
го сложно сегментируемым языком, таким как персидский или арабский, или
строк исторических документов со сложно сегментируемыми каллиграфически­
ми шрифтами). Однако сложность обучения нейросетевых моделей, решающих
настолько общую задачу, и высокая трудоемкость алгоритма распознавания
каждой строки пока не позволяют использовать данные подходы в практиче­
ских реализациях систем распознавания, особенно принимая во внимание аппа­
ратные ограничения систем распознавания изображения на мобильных устрой­
ствах.

1.3.4 Распознавание одиночных символов

Оптическое распознавание объектов вообще и, в частности, печатных или
рукописных символов, является одной из наиболее важных задач компьютер­
ного зрения. За последние несколько десятилетий возник значительный спектр
методов, применяемых для решения задачи распознавания образов различных
объектов. В классическом представлении системы распознавания по свойствам
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информации, используемой в процессе распознавания, подразделяются на си­
стемы без обучения, системы на основе обучения, детерминированные, вероят­
ностные, логические, структурные и комбинированные [60].

Искусственные нейронные сети (ИНС), механизм, изначально направлен­
ный на моделирование биологических систем, на данный момент являются од­
ним из наиболее эффективных механизмов распознавания образов и, в част­
ности, распознавания символов. В ряде отдельных задач данный метод пока­
зывает себя способным конкурировать с системой восприятия образов челове­
ком [61]. В качестве мотивации искусственных нейронных сетей использовалась
упрощенная модель мозга [62]. Современные исследования и разработки, веду­
щиеся в области машинного обучения, продолжают развивать архитектуры и
методики обучения ИНС, предназначенные для решения разнообразных задач.
Фундаментальным прорывом в области анализа изображений при помощи ИНС
стало предложение сверточных ИНС.

Сверточная ИНС была впервые предложена Яном Лекуном [63], и ее
архитектура предполагала два сверточных слоя, два прореживающих слоя и
нескольких полносвязных слоев для формирования результата. Такая архитек­
тура позволила сделать отклик ИНС инвариантным к координатному сдвигу
исходного сигнала, а обработку признаков — одинаковой для разных локаль­
ных областей входного изображения. На основе оригинальной идеи сверточных
ИНС построено множество нейросетевых архитектур, приспособленных для ре­
шения конкретных задач, к примеру, AlexNet [64], в которой также предложен
распределенный способ обучения на нескольких графических сопроцессорах;
ZFNet [65], в которой за счет увеличения размера средних сверточных слоев
был улучшен подбор гиперпараметров, а также был предложен вариант визуа­
лизации сети; VGGNet [66], в рамках которой было показано, что глубина сети
является важной компонентой качества в задаче классификации масштабных
изображений; и другие архитектуры [67—69].

Использование сверточных ИНС в настоящий момент является наиболее
точным методом распознавания изображений, и в ряде отдельных задач этот
метод показывает результаты, способные конкурировать с человеком [61]. Тем
не менее сверточные ИНС могут показывать неустойчивый результат при мини­
мальных изменениях входного изображения [70; 71], даже если эти изменения
касались всего лишь одного пикселя [72]. Еще одной проблемой сверточных
ИНС, связанной с предыдущей, является их чрезмерная «самоуверенность»
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(overconfidence) — оценки, выдаваемые сверточными ИНС на некорректно рас­
познанных изображениях могут быть неотличимы от оценок, содержащихся в
правильных результатах [73].

Применение сверточных ИНС в мобильных системах распознавания до­
кументов накладывает дополнительные ограничения, связанные с высокой, по
сравнению с некоторыми другими методами, вычислительной трудоемкостью
их использования, которая значительно возрастает при увеличении размерно­
сти входа. Для того, чтобы использовать сверточные ИНС в системах распо­
знавания документов, использующих несколько изображений (к примеру, рас­
познавания объектов в видеопотоке), необходима разработка высокоэффектив­
ных методов комбинации полученных результатов распознавания отдельных
изображений.

1.3.5 Пост-процессинг и языковые модели

В задаче распознавания текстовых полей документов будет ошибкой огра­
ничиться конкатенацией независимых результатов классификации символов,
поскольку для многих полей известна синтаксическая и семантическая структу­
ра. Совокупность представлений о допустимых символах в определенных знако­
местах текстового поля, о их взаимозависимостях внутри поля и о зависимостях
между значениями разных текстовых полей одного и того же документа, будем
называть контекстом текстового поля. Построение алгоритмов контекстно-зави­
симого уточнения результатов распознавания как правило зависит от специфи­
ки задачи, и в этой области постоянно предлагаются новые подходы к решению
конкретных прикладных задач [74; 75]. Таким образом статистическая коррек­
ция («пост-обработка» или «пост-процессинг») результатов распознавания яв­
ляется одним из важнейших компонентов современных систем оптического рас­
познавания документов.

Контекст поля документа, как правило, включает в себя следующие ком­
поненты:

1. синтаксис: правила, регулирующие структуру текстового представле­
ния поля;



23

2. семантика поля: правила, основывающиеся на смысловой интерпрета­
ции поля или его составных частей;

3. семантика связей: правила, основывающиеся на структурной и смыс­
ловой связи поля с другими полями документа.

Существует множество алгоритмов статистической пост-обработки резуль­
татов распознавания, отличающихся в используемых языковых моделях распо­
знаваемого объекта, в алгоритмах непосредственного исправления результата
распознавания и в областях применимости. Среди наиболее известных и широ­
ко используемых методов можно выделить: методы, опирающиеся на скрытые
марковские модели (Hidden Markov Models, HMM) [76; 77], конечные автома­
ты, N-граммные и словарные методы [5; 78], а также механизмы, использую­
щие взвешенные конечные преобразователи (Weighted Finite-State Transducers,
WFST) [79].

Располагая информацией о семантической и синтаксической структуре
документа и распознаваемого поля, можно построить специализированный ал­
горитм пост-обработки для каждого конкретного поля. Однако, принимая во
внимание необходимость поддержки и развития систем распознавания и слож­
ность их разработки, особый интерес представляют методы и инструменты, поз­
воляющие с минимальными усилиями (со стороны разработчиков системы рас­
познавания) построить достаточно хороший алгоритм пост-обработки, который
бы работал с обширным классом документов и полей. Методика настройки и
поддержки такого алгоритма была бы унифицирована, а изменяемым компонен­
том структуры алгоритма были бы только семантика и синтаксис обрабатывае­
мого поля. Достаточно общая модель, позволяющая построить универсальный
алгоритм пост-обработки результатов распознавания, описана в работе [79]. Мо­
дель опирается на структуру данных взвешенных конечных преобразователей
(Weighted Finite-State Transducers, WFST).

Преимуществами данного подхода является его общность и гибкость. Мо­
дель ошибок, к примеру, может быть без труда расширена таким образом, чтобы
учесть удаления и добавления символов (для этого всего лишь стоит добавить
в модель ошибок переходы с пустым выходным или входным символом соответ­
ственно). Однако у такой модели есть и существенные недостатки. Во-первых,
языковая модель здесь должна быть представлена в виде конечного взвешен­
ного конечного преобразователя. Для сложных языков такой автомат может
получиться довольно громоздким, и в случае изменения или уточнения языко­
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вой модели будет необходимо его перестроение. Также необходимо заметить,
что композиция трех преобразователей в качестве результата имеет, как прави­
ло, еще более громоздкий преобразователь, а эта композиция вычисляется каж­
дый раз при запуске пост-обработки одного результата распознавания. Ввиду
громоздкости композиции, поиск оптимального пути на практике приходится
выполнять эвристическими методами [79], такими как A*-search [80].

1.3.6 Оценка достоверности распознавания

При оценке качества систем и алгоритмов распознавания используются
такие понятия как точность и уверенность. Точность системы распознавания
отражает вероятность (оценку вероятности) правильного распознавания объек­
та. Так как истинное значение вероятности правильного распознавания в общем
случае определить нельзя, точность систем распознавания обычно оценивается
вычислением апостериорной вероятности правильного распознавания на неко­
тором заранее заданном пакете входных данных. Такой «референтный» пакет
данных часто является основой для постановки задачи распознавания: при за­
данном референтном пакете данных задача распознавания может быть сфор­
мулирована как задача максимизации апостериорной вероятности правильного
ответа для объектов из этого пакета данных.

Еще одним важным показателем качества работы системы распознавания
объектов является ее уверенность (в некоторых источниках также использует­
ся схожий термин «надежность распознавания» или «достоверность распозна­
вания», для того, чтобы уменьшить возможные коллизии терминов в дальней­
шем будет использоваться термин «оценка достоверности»). В системах рас­
познавания объектов различного уровня сложности часто возникают задачи
моделирования взаимодействия системы с пользователем, а также взаимодей­
ствия подсистем между собой. Одним из важнейших аспектов таких моделей
взаимодействия является реакция системы на ошибки распознавания. Оценка
достоверности системы распознавания отражает ее способность априорно оце­
нить степень точности собственного результата.

Задача оценки достоверности результатов распознавания в рамках единой
модели взаимодействия системы автоматической обработки документов была
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рассмотрена в работе [6]. В указанной работе автор описал схему построения
функции оценки эффективности правила отбраковки, исходя из вычисленных
апостериорных вероятностей ошибок классификатора и стоимостей этих оши­
бок, задаваемых извне. Также были рассмотрены простейшие правила отбраков­
ки результата распознавания (правило первой альтернативы, правило двух аль­
тернатив) и сформулированы общие принципы построения комплексных правил
отбраковки. В данном разделе будет представлена попытка реализации обще­
го метода построения функции достоверности и соответствующего ей решаю­
щего правила, основываясь на заранее определенных предикторах (признаках
достоверности), вычисляемых по вектору альтернатив классификатора или по
исходному изображению, минимизируя при этом штрафной функционал.

Исследование методов оптимальной отбраковки результатов распознава­
ния продолжаются как в сторону построения методов отбраковки для отдель­
ных классификаторов, так и в сторону моделирование оптимальных схем от­
браковки в системах с несколькими классификаторами, либо в системах чело­
веко-машинного взаимодействия [81].

1.3.7 Использование множества входных изображений

Для задачи распознавания одиночного объекта в видеопотоке при суще­
ствующем решении задачи распознавания одиночного объекта на одном кадре
можно руководствоваться двумя основными подходами:

1. Производить первоначальное совмещение изображений объектов, после
чего производить распознавание совмещенного объекта;

2. Производить распознавание изображения объекта на каждом отдель­
ном кадре, после чего решать задачу комбинирования (интеграции) ре­
зультатов распознавания.

Системы, предполагающие использование мобильных устройств в зада­
чах автоматического ввода документов, располагают рядом преимуществ как с
точки зрения пользователя, так и с точки зрения постановки задачи распознава­
ния образов. В системе автоматического ввода документов, которая использует
цифровые камеры мобильных устройств в качестве сканирующего устройства,
оцифровка документа производится путем видео- или фотосъемки оригинала.
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В случае видеосъемки документа цифровым представлением документа явля­
ется не единственное изображение, а последовательность кадров, содержащих
образ одного и того же документа (или его фрагмента), что обеспечивает воз­
можность производить многократное распознавание одного и того же объекта в
видеопотоке в реальном времени, увеличивая тем самым точность и надежность
распознавания.

При этом использование мобильных устройств в задачах распознавания и
автоматического ввода документов сопряжено с рядом проблем: помимо низких
вычислительных мощностей мобильных устройств, к этим проблемам следу­
ет отнести широкий спектр искажений, возникающих вследствие особенностей
оптической схемы малоформатных камер мобильных устройств [82], а также
вследствие особенностей процесса съемки документа при помощи мобильного
устройства [15; 83]. Часть ошибок распознавания, связанных с этими проблема­
ми, можно решить при помощи многократного распознавания одного и того же
объекта, при этом естественным образом возникает задача выбора оптимальной
стратегии комбинирования результатов покадрового распознавания.

В зависимости от используемой модели результата классификации объ­
екта и от интерпретации оценок классификатора рассматриваются различные
методы комбинирования. Для модели результата классификации в виде пары
⟨σ,𝑞⟩, где σ – метка класса, а 𝑞 – показатель уверенности классификатора (без
альтернатив), используется схема голосования с выбором лучшего ответа с мак­
симизацией некоторого количественного критерия. Обобщенный критерий при­
веден в работе [84]:

𝑆𝑐𝑜𝑟𝑒 (⟨σ,𝑞⟩) = α · 𝐹𝑟𝑒𝑞(σ) + (1− α) · 𝑞, (1.1)

где 𝐹𝑟𝑒𝑞(σ) — частота класса σ среди ответов комбинируемых классификато­
ров, а α — обучаемый параметр алгоритма. Распространенным методом, осно­
вывающимся на голосовании классификаторов и применяющийся в системах
распознавания речи при помощи комбинирования нескольких алгоритмов, а
также для комбинирования результатов распознавания текстовых строк [85;
86], является метод ROVER (Recognizer Output Voting Error Reduction) [87].

На рисунке 1.1 представлены примеры текстовых полей в видеопотоке, и в
Таблице 1 приведены соответствующие покадровые результаты распознавания,
а также интегрированные методом ROVER [87] результаты и их изменение во
времени.



27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

...
12

...
12

Рисунок 1.1 — Примеры изображений текстовых полей в видеопотоке из
пакета данных MIDV-500 [88] (видеоклипы TS07, поле 1, и HA10, поле 2)

Таблица 1 — Примеры покадровых и интегрированных результатов
распознавания текстовых полей. Верные результаты выделены.

# Покадровый Интегрированный Покадровый Интегрированный
1 {RE0CZ {RE0CZ - -
2 HUD“ {RE0CZ I -
3 M0N E0CZ W -
4 FREDEZ RE0CZ A- -
5 ‘REZIZ RE0CZ 3" J" .l -
6 MM RE0CZ “(MEN -
7 FREDEZ FRE0EZ SPECIMEN E-
8 FREDEZ FREDEZ SPECIMEN MEN
9 FREDEZ FREDEZ SPECIMEN CIMEN
10 FREDEZ FREDEZ SPICIUEN SPCIMEN
11 FREDEZ FREDEZ SPECIMEN SPECIMEN
12 RREDEZ FREDEZ .- SPECIMEN
... ... ... ... ...

В случае более общей модели результата классификации, с интерпретаци­
ей оценок принадлежности 𝑞𝑘 в рамках Байесовской модели (т.е. оценка принад­
лежности 𝑞𝑘 есть апостериорная оценка условной вероятности принадлежности
образа 𝑥𝑖 к классу σ𝑘), описываются различные правила комбинации [89; 90].
Базовые правила описаны в работе [90], которая признается фундаментальным
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трудом, связанным с задачей объединения результатов различных классифи­
каторов в рамках Байесовской модели. Опишем эти правила, но в применении
к задаче объединения результатов классификации нескольких образов одним
классификатором:

1. Правило произведения:

Prod(𝑋)(σ) = 𝑃 (σ|𝑋) =
1

𝑃 (σ)𝑁−1

𝑁∏︁
𝑖=1

𝐶Σ(𝑋𝑖)(σ); (1.2)

2. Правило суммы:

Sum(𝑋)(σ) =
1

𝑁

𝑁∑︁
𝑖=1

𝐶Σ(𝑋𝑖)(σ); (1.3)

3. Правило минимума:

Min(𝑋)(σ) =

(︂
𝑁

min
𝑖=1

𝐶Σ(𝑥𝑖)(σ)

)︂
·
(︃

𝐾∑︁
𝑘=1

𝑁
min
𝑖=1

𝐶Σ(𝑥𝑖)(σ𝑘)

)︃−1
; (1.4)

4. Правило максимума:

Max(𝑋)(σ) =
(︁

𝑁
max
𝑖=1

𝐶Σ(𝑥𝑖)(σ)
)︁
·
(︃

𝐾∑︁
𝑘=1

𝑁
max
𝑖=1

𝐶Σ(𝑥𝑖)(σ𝑘)

)︃−1
; (1.5)

5. Правило медианы:

Med(𝑋)(σ) =

(︂
𝑁

med
𝑖=1

𝐶Σ(𝑥𝑖)(σ)

)︂
·
(︃

𝐾∑︁
𝑘=1

𝑁

med
𝑖=1

𝐶Σ(𝑥𝑖)(σ𝑘)

)︃−1
. (1.6)

В случае с интерпретацией оценок 𝑞𝑘 как нечетких свидетельств принад­
лежности к классам либо абстрактных показателей уверенности, используют­
ся методы комбинирования основанные на теории Демпстера-Шафера [91; 92].
Также в работах, затрагивающих гетерогенные методы объединения результа­
тов классификаторов, рассматриваются стратегии взвешивания уровней значи­
мости классификаторов [93], методы обучения правил комбинирования, учиты­
вающие статистические особенности объединяемых классификаторов [94—96]
и методы, не привязанные к статистическим особенностям классификаторов,
но использующие аппарат мультимножеств для построения модели групповой
классификации объектов [97; 98].
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Несмотря на большое количество описанных методов комбинирования ре­
зультатов распознавания, полученных при помощи различных методов, подхо­
дам к комбинированию результатов распознавания различных изображений од­
ного и того же объекта в литературе уделяется недостаточного внимания. При
этом эта задача является одной из ключевых задач при построении систем рас­
познавания объектов в видеопотоке.

Помимо задачи комбинирования результатов распознавания объектов на
отдельных изображениях, при распознавании видеопотоке возникает также но­
вая задача – задача останова процесса распознавания. Задача останова про­
цесса распознавания является особенно актуальной применительно к системам
компьютерного зрения и распознавания документов, оперирующих в реальном
времени на мобильных устройствах [99—101], в которых время, необходимое
для получения итогового результата настолько же важно, как и точность этого
результата.

С точки зрения системной композиции процесс распознавания объектов в
видеопотоке, при котором отдельные кадры распознаются независимо и комби­
нируются в единый результат, может рассматриваться как «anytime»-алгоритм
(алгоритм с отсечением по времени: итерационный вычислительный алгоритм,
который способен выдать наилучшее на данный момент решение в любое время,
если процесс вычислений не доводится до естественного останова) [102]. Можно
считать, что среди свойств «anytime»-алгоритмов процесс распознавания в ви­
деопотоке обладает свойством возможности прерывания (interruptibility) (т.е.
процесс может быть остановлен после обработки любого кадра и текущий ин­
тегрированный результат может быть принят за итоговый) и свойством моно­
тонности (monotonicity) (т.е. качество интегрированных результатов в среднем
не ухудшается). При этом процесс распознавания объекта в видеопотоке мо­
жет не обладать свойством определимого качества (recognizable quality), т.е.
качество текущего результата может быть неизвестно и невычислимо в мо­
мент исполнения алгоритма. Стоит отметить, что существуют другие приме­
ры «anytime»-алгоритмов в распознавании и компьютерном зрении, к примеру,
алгоритмы, способные выдать частичный результат: сначала для объектов, наи­
более хорошо поддающихся распознаванию, и прогрессируя к более сложным
объектам [103].

Задача останова в ее более общей постановке хорошо рассмотрена в лите­
ратуре по математической статистике и теории принятия решений [104—107].
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Изучены такие варианты задачи останова, как задача о разборчивой невесте
[108], задача о продаже дома [109], задача оптимизации среднего (также извест­
на как задача 𝑆𝑛/𝑛

1) [110] и другие.
Одна из хорошо изученных задач останова, задача о вычитке [106; 111], мо­

жет быть рассмотрена как наиболее близкая по содержанию к задаче останова
процесса распознавания объекта в видеопотоке. Задача формулируется следую­
щим образом: некоторая рукопись была оцифрована с количеством ошибок 𝑀 .
Для оцифрованной версии рукописи может быть проведена серия вычиток, каж­
дая 𝑖-я из них исправляет 𝑋𝑖 ошибок и обладает фиксированной стоимостью 𝑐.
Каждая ошибка, присутствующая в финальной версии текста также привносит
некоторый штраф. Задача после 𝑖-й вычитки состоит в принятии решения о том,
что текущую версию оцифрованной рукописи следует подать на публикацию,
либо процесс вычиток следует продолжить, с целью минимизации суммарной
ожидаемой стоимости. Для этой задачи было предложено несколько вариантов
решения [111; 112], опирающихся на различные предположения о распределени­
ях 𝑀 и 𝑋𝑖. У этой задачи также есть другие варианты постановки, такие, как
задача о автоматическом тестировании программного обеспечения [113].

Между задачами о вычитке и задачей останова процесса распознавания в
видеопотоке можно заметить несколько сходств: распознавание объекта произ­
водится на нескольких кадрах, и для того, чтобы получить очередной результат
распознавания, должен быть уплачен некоторый штраф (выраженный, к при­
меру, во времени, которое необходимо для пред-обработки очередного кадра и
проведения очередной итерации алгоритма распознавания объекта). Исходя из
предположения, что на каждом шаге процесса определен некоторый аккуму­
лированный результат распознавания, после обработки каждого кадра должно
быть принято решения либо заплатить стоимость очередного наблюдения и про­
должить процесс распознавания в надежде, что результат будет улучшен, или
остановить процесс и вывести текущий результат. В данном случае ожидаемый
убыток может быть представлен в виде линейной комбинации ожидаемого ко­
личества обработанных кадров и расстояния между ожидаемым результатом
распознавания объекта до истинного значения (в терминах некоторой заранее
определенной метрики).

Существуют также и важные отличия между этими задачами, на которые
следует обратить внимание:
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1. В большинстве формулировок задачи о вычитке предполагается, что
𝑋𝑖 принимает неотрицательные значения, т.е. каждая вычитка либо
исправляет некоторое количество ошибок, либо, по крайней мере, не
привносит новых. В задаче распознавания объекта нет гарантии того,
что результат распознавания на следующем кадре, ровно как и интегри­
рованный результат после обработки следующего кадра, будет всегда
ближе к истинному значению. С другой стороны, можно предположить,
что алгоритмы интеграции результатов распознавания (см. главу 3)
обычно конструируются таким образом, чтобы результаты распознава­
ния множества версий одного и того же объекта в среднем обладают
большей точностью, чем результат распознавания одного изображения
объекта.

2. Решения задачи о вычитке или ее вариаций, как правило, опираются
на возможность лица, принимающего решение, оценить стоимость, ко­
торая будет уплачена в случае принятия решения об останове, либо
оценить разницу в стоимостях останова на соседних этапах, посколь­
ку наблюдаемое значение 𝑋𝑖 имеет прямой вклад в функцию штра­
фа. Напротив, в случае процесса распознавания объекта в видеопото­
ке, расстояние от вновь полученного результата до истинного значения
может только оцениваться, опираясь на методы оценки уверенности ре­
зультатов распознавания. Подобные оценки могут обладать свойством
чрезмерной уверенности [114; 115], либо вовсе быть недоступны лицу,
принимающему решение.

Подробное обсуждение задачи о вычитке представлено в работе [111] и
показано, что оптимальное правило останова для данной задачи может быть
быть построено с использованием понятие о монотонных задачах останова.
Теория монотонных задач останова подробно описана в [116] и [106] и также
будет использоваться в данной работе для построения метода останова процесса
распознавания объекта в видеопотоке.
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1.4 Выводы по аналитической части

Развитие систем автоматического ввода документов и систем оптическо­
го распознавания объектов обусловлено развитием большого количества дисци­
плин, таких как обработка изображений, компьютерное зрение, машинное обу­
чение, проектирование систем программного обеспечения, а также развитием
вычислительной техники, в том числе мобильных вычислительных устройств.
Каждая из этих дисциплин оказывает влияние на эффективность отдельных
компонент и подсистем, а тренды развития отдельных дисциплин определяют
спектр алгоритмов, применяемых для решения частных задач, возникающих в
сфере автоматического анализа и распознавания документов.

В литературе значительное внимание уделяется вопросам систем обработ­
ки изображений документов, алгоритмам поиска документов и их фрагментов
на изображениях, методам сегментации изображений документов, детектиро­
ванию и классификации различных объектов и реквизитов документа. Живой
интерес к разработке высокоточных алгоритмов, решающих эти задачи, нали­
чие публикаций в течении нескольких последних лет в крупных журналах и
на профильных конференциях свидетельствует об актуальности данной темы.
При этом внимание уделяется как структурным методам анализа изображений
и их фрагментов, так и методам основанным целиком на машинном обучении.
В особенности следует отметить тренд последних 3–4 лет к применению мето­
дов глубокого обучения для решения сложно поставленных задач, таких как
целиковый поиск текстовых фрагментов на естественных изображениях и рас­
познавания строки текста целиком минуя отдельно выделенный этап сегмента­
ции на отдельные символы. Однако стоит отметить, что несмотря на то, что
данные методы показывают достаточно приемлемую точность распознавания и
устойчивость к шумам входных данных, применение такого рода алгоритмов в
промышленных системах распознавания и автоматического ввода документов
затруднено их высокой трудоемкостью. Высокие вычислительные требования
подобного рода методов делает их применение особенно неоправданным в кон­
тексте мобильных вычислительных устройств.

Распознавание объектов в видеопотоке является относительно новой те­
мой в контексте систем распознавания и автоматического ввода документов.
Существуют описанные в литературе теоретические подходы к групповой клас­
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сификации многопризнаковых объектов и отдельные работы по попыткам при­
менения многократного распознавания и к комбинации результатов выходов
классификаторов, однако подробное изучение методов повышения точности рас­
познавания объектов за счет многократного распознавания остается актуальной
и малоизученной темой. При этом рассматривая видеопоток, а не одиночное
изображение, как цифровой образ распознаваемого объекта, задача комбини­
рования результатов распознавания различных наблюдений одного и того же
объекта является ключевой.

Отдельной актуальной темой является задача останова процесса распозна­
вания объектов в видеопотоке, имеющая критическое значение применительно
к системам компьютерного зрения и распознавания документов, оперирующих
в реальном времени на мобильных устройствах. Хотя в литературе известны
и теоретически проработаны большое количество различных задач останова,
необходимо уделить внимание способам применения этой теории в системах
распознавания объектов в видеопотоке.

1.5 Задачи диссертационной работы

На основе проведенного анализа основных принципов современных систем
автоматического ввода документов и систем оптического распознавания доку­
ментов, сформулированы следующие актуальные задачи для диссертационной
работы:

1. Построить математическую модель системы распознавания объекта в
видеопотоке, позволяющую исследовать качественные характеристики
результата и время, необходимое для его получения;

2. Исследовать влияние характеристик входных данных на выбор опти­
мальной стратегии комбинирования результатов распознавания;

3. Разработать алгоритм комбинирования результатов оптического распо­
знавания строкового объекта и провести анализ его характеристик;

4. Разработать метод останова процесса распознавания объекта в видео­
потоке в рамках построенной математической модели системы;

5. Разработать алгоритм останова процесса распознавания строкового
объекта и провести экспериментальны анализ его характеристик.
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Глава 2. Модель системы распознавания объектов в видеопотоке
мобильного устройства

2.1 Введение

Внедрение технологических, социальных и коммерческих процессов, ос­
нованных на использовании мобильных устройств и технологий, в условиях
современного мира уже является обыденностью. Системы технического зрения
с использованием мобильных технологий, к примеру, системы автоматического
ввода и анализа документов на мобильных устройствах продолжают вытеснять
традиционные стационарные системы, и развитие технологий технического зре­
ния с применением мобильных устройств и в условиях аппаратных ограниче­
ний, связанных с ними, становится все более актуальной задачей.

Классические системы распознавания и автоматического ввода предпо­
лагают использование сканированного изображения или фотографии объекта
в качестве его оцифрованного представления. При использовании мобильных
устройств для оцифровки образов распознаваемых объектов возникает допол­
нительная возможность использовать видеопоток цифровой камеры помимо от­
дельных фотографий или кадров. Процесс съемки фотографии объекта при
помощи современных мобильных устройств предполагает этап «наведения» опе­
ратором объектива камеры на объект с отображением кадров видеопотока на
экране устройства в реальном времени для контроля оператора. В случае, если
обработка изображения производится с одного изображения, информация, кото­
рая содержится в захваченных предварительных кадрах используется лишь кос­
венно (оператором). При рассмотрении цельного видеопотока в качестве циф­
рового образа объекта появляется возможность использовать гораздо больше
визуальной информации [99]. Схема рассматриваемых систем автоматического
ввода документов в видеопотоке представлена на рисунке 2.1.

Использование видеопотока позволяет решать задачи, недоступные для
решения при анализе одиночной фотографии. Внешние условия съемки могут
привести к тому, что распознаваемый объект сильно искажен на одиночном
изображении [15]. Примером является блик от протяженного источника све­
та, проявляющийся на глянцевой поверхности плоского объекта (см. рис. 2.2).
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покадровых результатов
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Критерий останова

Да

б) Схема обработки зон

Рисунок 2.1 — Схема обработки кадра в системе распознавания документов в
видеопотоке. Слева (а) – общая схема, справа (б) – схема блока обработки

зоны документа (обведен пунктиром на общей схеме).

Поскольку в видеопотоке геометрическое положение снимаемого объекта, как
правило, меняется между кадрами, блик также «сдвигается», что позволяет
получить информацию о скрываемом объекте на другом кадре видеопотока.
Существуют также важный класс объектов, детектирование и распознавание
которых невозможно на одиночных снимках — к примеру, голографические эле­
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Рисунок 2.2 — Процесс съемки идентификационного документа при помощи
мобильного устройства (в качестве документа используется макет

идентификационной карты Германии).

менты защиты, которые на единичных изображениях могут быть неотличимы
от бликов или рисунков [15].

В таких условиях возникает задача выбора оптимальной стратегии комби­
нирования результатов покадрового распознавания. Данная задача в литерату­
ре практически не описана, и наиболее близкий спектр методов касается задачи
комбинирования результатов распознавания одного и того же объекта, но раз­
ными классификаторами [85; 89; 90]. Помимо базовых стратегий объединения
оценок в работах, затрагивающих гетерогенные методы объединения результа­
тов классификаторов, рассматриваются стратегии взвешивания уровней значи­
мости классификаторов [93], методы обучения правил комбинирования, учиты­
вающие статистические особенности объединяемых классификаторов [94; 96]
и методы, не привязанные к статистическим особенностям классификаторов,
но использующие аппарат мультимножеств для построения модели групповой
классификации объектов [97; 98].

Главным отличием видеопотока как цифрового образа распознаваемого
объекта является тот факт, что для одного и того же объекта рассматрива­
ется последовательность наблюдений, которые отличаются между собой. Рас­
смотрим причины, по которым результат распознавания объекта может быть
ошибочным, исходя из предположения, что система действует всегда детерми­
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нировано, т.е. в любой момент времени и при любых внешних условиях резуль­
таты распознавания одного и того же набора входных данных всегда совпадают.
Таким образом любая ошибка является следствием неспособности системы раз­
личить объект того или иного класса. Ошибки распознавания можно условно
разделить на три группы:

1. Ошибки, обусловленные несовершенством алгоритма распознавания,
т.е. ошибки, являющиеся «внутренними» с точки зрения системы распо­
знавания объектов и которые могут проявляться даже при идеальном
функционировании других подсистем. Данный класс ошибок является
безусловным атрибутом любой системы распознавания, вне зависимо­
сти от модели входа.

2. Ошибки, обусловленные дефектами предварительной обработки. Си­
стема распознавания одиночного изображения, как правило, является
одной из подсистем некоторого комплекса и изображения, подаваемые
на вход системе распознавания формируются в результате действия
других подсистем (см. рис. 2.3). Как следствие, могут возникнуть ошиб­
ки, связанные с несовершенством предшествующих подсистем. К при­
меру, пусть в результате разбиения изображения текстовой строки на
изображения отдельных символов была допущена ошибка, в следствии
которой положение правой границы изображения латинской буквы «P»
было найдено некорректно, в результате чего на изображении буквы
была утеряна перемычка между двумя горизонтальными штрихами.
Изображение, полученное в результате, с точки зрения системы распо­
знавания одиночного символа, может быть неотличимо от латинской
буквы «F».

3. Ошибки, обусловленные шумом среды. Возникают такие ошибки в слу­
чае, если в условиях внешней среды, в которой находится распознава­
емый объект, изображение этого объекта становится неотличимым от
изображения объекта другого класса. К примеру, предположим, что
производится съемка фотографии документа, удостоверяющего лич­
ность, содержащего поле «Имя» с истинным значением «HANNA». Дан­
ное поле начертано на белом фоне и документ покрыт защитной глян­
цевой поверхностью. В момент съемки на документе проявился блик от
внешнего источника света, полностью закрывший букву «H» и оставив­
ший изображения остальных букв неизменными. Таким образом, изоб­
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ражение данного поля будет неотличимо от изображение поля «ANNA»
на аналогичном документе.

Рисунок 2.3 — Пример ошибочной сегментации текстовой строки на
отдельные символы в условиях размытости изображения и дефектов,

связанных с защитным голографическим слоем документа.

По отношению к системе распознавания одиночного изображения ошиб­
ки, связанные с шумом среды либо с дефектами предварительной обработки,
являются следствием искажения входного изображения. Обладая возможность
использовать несколько наблюдений объекта можно ожидать, что влияние шу­
ма среды и дефектов предварительной обработки на эти наблюдения будут
различны. Однако даже при фиксировании системы распознавания одиночно­
го объекта, вне зависимости от предварительной обработки, остаются ошибки,
обусловленные несовершенством модели классификации. Современные иссле­
дования показывают, что наиболее высокоэффективный метод распознавания
изображений, сверточные нейронные сети [63; 64], который в ряде отдельных
задач показывает результаты, способные конкурировать с человеком [61], тем
не менее может показывать неустойчивый результат при минимальных измене­
ниях входного изображения [70; 71], даже если эти изменения касались всего
лишь одного пикселя [72]. Так, даже используя наиболее точный метод распозна­
вания, но обладая единственным входным изображением объекта, невозможно
отделить полезный сигнал от шума, влияние которого может кардинальным
образом поменять результат.

Таким образом, рассматривая в качестве цифрового образа объекта не
одиночное изображение, а видеопоток, появляется возможность уменьшить вли­
яние ошибок за счет вариативности шума применительно к отдельным кадрам
видеопотока, которой не обладают классические системы распознавания объек­
тов.

Одним из методов, позволяющих производить анализ множества изобра­
жений одной и той же сцены с целью уменьшить влияние шума оптической
системы и дефектов, связанных с неконтролируемыми условиями съемки, яв­
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ляется техника «супер-разрешения» — процесс получения изображения высо­
кого разрешения из нескольких изображений того же объекта с более низким
разрешением. Данной задаче уделялось большое внимание в литературе и пред­
ложено большое количество подходов, принимающих во внимание специфику
финальной задачи обработки изображения и распознавания объекта или сцены
[117; 118]. Однако как было отмечено ранее, дальнейшая обработка получен­
ного единого изображения объекта остается подверженной ошибкам алгоритма
распознавания, в частности, неустойчивости сверточных нейронных сетей.

2.2 Модель системы распознавания объектов в видеопотоке

Рассмотрим модель системы распознавания одиночного объекта 𝑥. Пусть
задано множество, содержащее 𝐾 классов 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝐾}. К примеру, рас­
сматривая задачу распознавания отдельных символов поля «Фамилия» паспор­
та гражданина Российской Федерации, множество классов представляет собой
русский алфавит с добавленными к нему символами пробела и дефиса. Рас­
сматривая задачу типизации страницы документа на изображении после лока­
лизации ее границ и проективного исправления, множеством классом может
выступать коллекция типов страниц документов, доступных для дальнейшей
обработки. Отдельно следует упомянуть, что иногда в задачах распознавания
объектов и явлений допускается наличие «пустого класса», который должен
быть ответом системы распознавания на входное изображение объекта, о кото­
ром системе не известно, либо на изображение, которое не содержит объекта.

Пусть задано изображение объекта 𝐼(𝑥) из некоторого множества всевоз­
можных изображений I и в рамках модели взаимодействия системы распозна­
вания с пользователем/оператором (либо с другими компонентами системы)
существует класс 𝑐*(𝑥) ∈ 𝐶, к которому принадлежит объект 𝑥. Задача распо­
знавания изображения одиночного объекта состоит в определении этого класса.
Результат работы системы распознавания в общем виде представим как всюду
определенное отображение из множества классов 𝐶 в множество оценок при­
надлежности: 𝑓 : 𝐶 → R. Учитывая, что множество классов 𝐶 содержит ровно
𝐾 элементов:

𝑓 (𝐼(𝑥)) = {(𝑐1, 𝑞1), (𝑐2, 𝑞2), . . . , (𝑐𝐾 , 𝑞𝐾)} , (2.1)
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где 𝑞𝑖 ∈ R, 𝑖 ∈ {1, . . . , 𝐾} — вещественные оценки принадлежности объек­
та 𝑥 к классу 𝑐𝑖 ∈ 𝐶 при условии, что наблюдается изображение объекта
𝐼(𝑥). В качестве окончательного решения классификации принимается класс
𝑐* (𝐼(𝑥)) = arg max 𝑓 (𝐼(𝑥)). Тривиальная схема системы распознавания объек­
та в рамках описанной модели представлена на рис. 2.4.

Система распознавания объекта на
одиночном изображении

Классификация одиночного
изображения

I(x) f(̂I(x))
argmax

c*(I(x))

Рисунок 2.4 — Тривиальная схема системы распознавания одиночного
объекта.

Если исключить из рассмотрения процесс валидации результатов распо­
знавания и процесс обучения параметров системы распознавания (в случае,
если для решения задачи классификации используются методы машинного обу­
чения, к примеру, искусственные нейронные сети), и рассматривать непосред­
ственно процесс распознавания, то такая система распознавания является ста­
тической и не предполагает обратных связей.

Рассмотрим теперь задачу распознавания объекта 𝑥 в видеопотоке. Видео­
поток генерируется при помощи некоторого захватывающего устройства, предо­
ставляющего последовательность кадров, каждый из которых является незави­
симым изображением объекта 𝑥. В условиях фиксированного количества кад­
ров можно рассматривать задачу распознавания объекта в видеопотоке как ста­
тическую систему, аналогичную представленной на рис. 2.4, но с более сложной
моделью входа. Тогда последовательность из 𝑁 кадров можно рассматривать
как множество изображений объекта 𝑥: I(𝑥) = {𝐼1(𝑥), 𝐼2(𝑥), . . . , 𝐼𝑁(𝑥)} ⊂ I.
При этом модель выхода системы остается неизменной.

Реализации такой системы могут отличаться подходами к интеграции дан­
ных. Возможно тривиальное рассмотрение процесса классификации как «чер­
ного ящика», обрабатывающего сразу множество изображений (схема на рис.
2.5а). Другие варианты частично или полностью используют методы распозна­
вания одиночных изображений объекта и осуществляют интеграцию либо на
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уровне входных изображений (рис. 2.5б), либо на уровне результатов распозна­
вания каждого отдельного изображения (рис. 2.5в).

а) Система распознавания множества изображений
объекта

Классификация множества
изображений

I(x) f(̂I(x))

б) Система распознавания множества изображений с
предварительной интеграцией изображений

Классификация
одиночного изображения

I(x) f(̂I(x))Интеграция
изображений

в) Система распознавания множества изображений с
интеграцией результатов распознавания одиночных

изображений

Классификация
одиночного

изображения

I(x) f(̂I(x))Цикл по
изображениям
i	=	1,	...,	N

Ii(x)

Конец цикла i

f(̂Ii(x))

Интеграция результатов
распознавания одиночных

образов

f(̂I1(x)),	f(̂I2(x)),	...,	f(̂IN(x))

I(x)

argmax

argmax

argmax

c*(I(x))

c*(I(x))

c*(I(x))

Рисунок 2.5 — Варианты статических систем распознавания множества
изображений объекта.

Однако представленные статические модели системы распознавания объ­
екта в видеопотоке не в полной мере отражают сценарий распознавания при
помощи мобильного устройства — поскольку данные модели предполагают в
качестве входа лишь множество кадров, без упорядочения, и не предполагают
изменения состояния системы в процессе съемки. Также в условиях аппарат­
ных ограничений мобильных устройств хранение и обработка множества изоб­



42

ражений может быть нецелесообразна или невозможна. Для того, чтобы более
точно соответствовать процессу распознавания объекта в видеопотоке мобиль­
ного устройства предлагается рассмотреть динамическую модель с дискретным
временем.

Для целей формализации представим видеопоток как генерирующаяся во
времени последовательность изображений объекта. Таким образом, задано дис­
кретное время 𝑡 = 0, 1, 2, . . . и видеопоток, содержащий изображения наблю­
даемого объекта 𝐼𝑡(𝑥) ∈ I. Подобная дискретная модель видеопотока соответ­
ствует принципам представления кодированного видеопотока в программных
системах [119].

Для определения системы распознавания объекта в видеопотоке, который
генерируется независимо, необходимо определить модель обслуживания, кото­
рая бы являлась промежуточным слоем между видеопотоком и непосредствен­
ным потоком обрабатываемых системой распознавания изображений. Наиболее
тривиальной является схема обслуживания, при которой изображения, генери­
руемые во время обработки системой распознавания предыдущего изображе­
ния, сбрасываются. В случае, если возможно хранение коллекции изображений
альтернативной моделью является схема обслуживания с буфером, позволяю­
щим накапливать входящие изображения и выдавать их по запросу системы в
произвольный момент времени, без ограничений, связанных с дискретизацией
генерации изображений источником. С точки зрения непосредственно системы
распознавания последовательности изображений набор методов и алгоритмов
распознавания и интеграции результатов не зависят от схемы обслуживания,
поэтому в рамках данной работы в дальнейшем будем предполагать, что в лю­
бой момент времени 𝑡 может быть захвачено «текущее» изображение 𝐼𝑡(𝑥), а в
периоды загрузки системы изображения могут сбрасываться.

Система распознавания поддерживает некоторое внутреннее состояние
𝑠𝑡 ∈ S, изменяющееся во времени. Время ∆𝑡, необходимое для получения
обновленного результата после ввода очередного образа 𝐼𝑡(𝑥), в общем слу­
чае является функцией от изображения и внутреннего состояния системы:
∆𝑡 = ∆(𝐼𝑡(𝑥), 𝑠𝑡), которая может быть невычислима в момент времени 𝑡. Резуль­
тат распознавания, учитывающий информацию, которая содержится в изобра­
жении, которое было захвачено в момент времени 𝑡, может быть доступен толь­
ко в момент времени 𝑇 (𝑡) = 𝑡 + ∆𝑡.
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В начальный момент времени 𝑡 = 0 инициализировано внутреннее состо­
яние системы 𝑠0. Пусть в момент времени 𝑡 происходит захват изображения
𝐼𝑡(𝑥), которое подается на модуль распознавания 𝑓 . Результат распознавания
𝑓(𝐼𝑡(𝑥)) становится доступным в момент времени 𝑡′ > 𝑡 и регистрируется в
модуле памяти системы (т.е. становится частью состояния 𝑠𝑡′). После этого про­
исходит комбинирование результатов распознавания изображений объекта, на­
копленных на текущий момент, и в момент времени 𝑇 (𝑡) > 𝑡′ происходит вывод
результата распознавания 𝑅𝑇 (𝑡). После вывода результата происходит захват
очередного изображения 𝐼𝑇 (𝑡)(𝑥) и процесс продолжается. Таким образом, ре­
зультат 𝑅𝑇 (𝑡) учитывает информацию, которая содержится в изображениях с
индексами 0, 𝑇 1(0), 𝑇 2(0), . . . , 𝑡 (под надстрочным знаком функции 𝑇 (𝑡) подра­
зумевается не возведение в степень, а множественная композиция функции).
Качество результата характеризуется близостью результата 𝑅𝑇 (𝑡) к истинному
значению ν(𝑥) объекта 𝑥, согласно некоторой метрике. Схема описанной систе­
мы распознавания представлена на рис. 2.6.

Методы выделения признаков и классификации объектов, применимые в
статических системах (см. рис. 2.5) также применимы и в динамической модели,
однако динамическая модель системы распознавания объекта в видеопотоке об­
ладает рядом специфических свойств. В первую очередь необходимо отметить
усиленное влияние производительности алгоритмов распознавания одиночного
изображения на выход системы. Действительно, уменьшение времени ∆𝑡, необ­
ходимого для распознавания одного изображения 𝐼𝑡(𝑥), позволяет обработать
большее количество информации об объекте 𝑥 за одно и то же абсолютное вре­
мя (т.е. за одно и то же время с точки зрения пользователя/оператора). Помимо
этого в рамках подобной системы возникают задачи, нетипичные для традици­
онных систем распознавания объектов на изображениях. Первой такой задачей
является получение результата 𝑅𝑇 (𝑡) – задача комбинирования (интеграции) ре­
зультатов распознавания одного и того же объекта на разных изображениях
в единый результат. Второй задачей является останов процесса распознавания
– поскольку захват изображений может быть не ограничен естественным об­
разом, в момент времени 𝑇 (𝑡) возникает задача принятия решения о том, что
процесс захвата следует прекратить и накопленный к текущему моменту ре­
зультат принять за окончательный.
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Блок захватаx It(x) Блок
распознавания

Модуль
памяти

Блок
интеграции Блок останова

F(It(x))

RT(t)
Рисунок 2.6 — Схема системы распознавания объекта в видеопотоке с

остановом.

В качестве функционала эффективности системы в момент останова
𝑡 = 𝑡stop предлагается рассматривать линейную комбинацию:

𝑎 · ρ(𝑅𝑡stop,ν(𝑥)) + 𝑏 ·𝑊 (𝑡𝑠𝑡𝑜𝑝), (2.2)

где 𝑎, 𝑏 – константы, ρ(𝑅𝑡,ν(𝑥)) – расстояние от интегрированного результа­
та 𝑅𝑡 до истинного значения ν(𝑥), характеризующая качество результата, а
𝑊 (𝑡) – штрафная функция от времени. Частным случаем штрафной функции
𝑊 (𝑡) является количество обработанных изображений:

𝑊 (𝑡) = max{𝑖 | 𝑇 𝑖(0) 6 𝑡}. (2.3)

2.3 Задача интеграции результатов распознавания объектов

Основной задачей традиционных систем распознавания объектов является
максимизация точности распознавания (т.е. максимизация доли «правильных»
классификаций объектов). Задача интеграции результатов распознавания объ­
ектов состоит в максимизации точности результата распознавания множества
различных изображений одного и того же объекта при заданных результатах
распознавания одиночных изображений.

На рисунке 2.7б представлены примеры последовательностей изображе­
ний одного и того же объекта, подверженные характерным искажениям, кото­
рые можно отнести к шуму среды: искажениям, связанным с оптической схемой
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малоформатных цифровых камер, аберрациям, бликам и отражениям внутри
оптической системы, цифровому шуму, неравномерной или недостаточной осве­
щенностью сцены, расфокусировке изображения и «смазанности» ввиду дви­
жения оптического сенсора относительно носителя, бликам от внешнего источ­
ника освещения, геометрическим искажениям, таким как проективные искаже­
ния изображения объекта или нелинейные искажения, вызванные изгибами бу­
мажного носителя, помехам, создаваемым голографическим защитным слоем и
др. [15; 83] На рисунке 2.7а также представлены примеры последовательностей
изображений объекта, подверженные дефектом предварительной обработки, в
данном случае, ошибкам поиска и локализации объекта на входном кадре, ошиб­
кам анализа структуры и локализации текстовых строк, ошибкам сегментации
текстовых строк на отдельные символы [56].

а) б)

Рисунок 2.7 — Примеры последовательностей изображений объектов с
дефектами предварительной обработки, порождающей изображение (а) и без
дефектов предварительной обработки, но при воздействии шума среды (б).

Для формализации постановки задачи интеграции с точки зрения моде­
ли системы распознавания объекта в видеопотоке положим, что задан набор
объектов 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑀} мощности 𝑀 и набор видеопоследовательностей

𝐵 = {I1(𝑥𝑏1), I2(𝑥𝑏2), . . . , I𝐻(𝑥𝑏𝐻)} (2.4)

мощности 𝐻, где 𝑏ℎ – индекс объекта из множества 𝑋 для каждо­
го ℎ ∈ {1, 2, . . . , 𝐻}, и каждая видеопоследовательность Iℎ(𝑥𝑏ℎ) =

{𝐼ℎ1(𝑥𝑏ℎ), 𝐼ℎ2(𝑥𝑏ℎ), . . . , 𝐼ℎ𝑁ℎ
(𝑥𝑏ℎ)} – последовательность изображений объекта
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𝑥𝑏ℎ ∈ 𝑋, которые могут быть подвержены шумам среды и дефектами пред­
варительной обработки (см. раздел 2.1). Также задано множество классов
𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝐾} и информация об идеальной принадлежности каждого
объекта к соответствующему классу ν : 𝑋 → 𝐶.

Задачу распознавания объекта в видеопотоке можно сформулировать как
поиск классифицирующей функции 𝐹 : I* → 𝐶, максимизирующей точность
распознавания [120]:

𝑉𝐹 (𝐵) =
1

𝐻

𝐻∑︁
ℎ=1

[︂
𝐹 (Iℎ(𝑥𝑏ℎ)) = ν(𝑥𝑏ℎ)

]︂
→ max

𝐹
. (2.5)

Более частная задача интеграции результатов распознавания одиночных
объектов предполагает функцию интегрирования результатов распознавания
𝑅 : (R𝐶)* → R𝐶 , преобразующую последовательность результатов распознава­
ния одиночных изображений в единый результат распознавания видеопоследо­
вательностей (здесь R𝐶 — множество всевозможных отображений из множества
классов 𝐶 в множество оценок R, т.е. множество всевозможных результатов
классификации). Поскольку финальным ответом распознавания видеопоследо­
вательности является класс, соответствующий максимальной оценке в резуль­
тате распознавания 𝐹 (I) = arg max𝑅(𝑓(I)) (см. раздел 2.2), постановка задачи
интеграции строится на основе (2.5) и приобретает вид:

𝑉𝑅(𝐵) =
1

𝐻

𝐻∑︁
ℎ=1

[︂
arg max𝑅

(︁
𝑓(Iℎ(𝑥𝑏ℎ))

)︁
= ν(𝑥𝑏ℎ)

]︂
→ max

𝑅
. (2.6)

В идеальном случае классифицирующая функция 𝐹 или функция инте­
грирования результатов 𝑅 должна обладать возможностью фильтровать выбро­
сы, появляющиеся во входном потоке данных из-за шума среды или дефектов
предварительной обработки, и обладать возможностью проводить фильтрацию
шума классификатора, нивелируя случайные внутренние ошибки.

Нетрудно заметить, что подход к интеграции как к задаче построения
классифицирующей функции 𝐹 можно свести к задаче построения функции
𝑅 интегрирования результатов, применив имеющийся метод классификации
одиночных изображений объектов. Альтернативными подходами являются, к
примеру, техники «супер-разрешения» [118], осуществляющие пиксельное сопо­
ставление множества входных изображений I(𝑥) и построение единого «идеаль­
ного» изображения объекта, которое впоследствии классифицируется. Однако
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стоит заметить, что ввиду особенностей наиболее точного существующего в на­
стоящий момент метода классификации изображений — сверточных нейронных
сетей — а именно, его неустойчивости к случайным пиксельным искажениям, в
рамках настоящей работы будут рассматриваться методы построения функции
интеграции 𝑅 результатов распознавания одиночных изображений.

В литературе задача объединения результатов классификации одиночных
объектов обычно рассматривается в контексте методов получения более точной
классификации путем объединения результатов нескольких разных классифи­
каторов [89; 121; 122]. В зависимости от используемой модели результата класси­
фикации объекта и от интерпретации оценок классификатора рассматриваются
различные методы комбинирования.

Задача комбинирования результатов классификации объектов можно
быть рассмотрена как задача коллективного принятия решения. Введем по­
нятие предиктора достоверности результата классификатора как веществен­
нозначную функцию 𝑝(𝐼(𝑥), 𝑓), отражающую степень уверенности в том, что
результат классификации изображения 𝐼(𝑥) функцией 𝑓 будет верным. В каче­
стве предикторов имеет смысл использовать вычислимые характеристики изоб­
ражений, заведомо влияющие на точность классификации [123], такие как оцен­
ка смазывания и уровня фокусировки [115], оценка уровня шума, артефактов
оцифровки [124] и пр. (такие предикторы можно считать априорными, посколь­
ку они опираются непосредственно на характеристики входных изображений).
Другой класс предикторов обуславливаются значениями оценок классифика­
ции (апостериорные предикторы), связанные с понятием оценки достоверности
результата распознавания [7; 125]. Примером широко используемого апостери­
орного предиктора достоверности является значение оценки первой (максималь­
ной) альтернативы [6]:

𝑝(𝐼(𝑥), 𝑓) = max 𝑓(𝐼(𝑥)). (2.7)

Пусть задан некоторый предиктор достоверности. Тогда задача инте­
грации результатов распознавания последовательности изображений I(𝑥) =

{𝐼1(𝑥), . . . , 𝐼𝑁(𝑥)} мощности 𝑁 может быть рассмотрена как задача коллек­
тивного принятия решения с 𝑁 экспертами, оценки уровней компетентности
которых являются функциями от значений предиктора достоверности. Стоит
заметить, что уровни компетентности экспертов в данной модели являются от­
ражением входных данных – т.к. именно характеристики отдельных наблюде­
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ний (т.е. отдельные изображения 𝐼1(𝑥), . . . , 𝐼𝑁(𝑥)) необходимы для оценки зна­
чимости экспертов.

Важным вопросом в рамках этой задачи является вопрос о целесообраз­
ности использования голосования нескольких экспертов вместо использования
мнения самого компетентного эксперта [126; 127]. Переходя к частной задаче
этот вопрос формулируется следующим образом: при каких моделях входных
данных в задаче комбинирования результатов распознавания следует выбирать
ту или иную стратегию комбинирования?

Для ответа на этот вопрос предлагается провести экспериментальное ис­
следование. Были подготовлены четыре набора данных, характеристики кото­
рых приведены в таблице 2. Наборы данных MRZ-MSEGM и MRZ-CLEAN со­
держат видеопоследовательности результатов распознавания символов машино­
читаемой зоны международных документов [83]. Наборы данных ICN-MSEGM
и ICN-CLEAN содержат видеопоследовательности результатов распознавания
символов поля «Номер» платежных банковских карт, выполненного при помо­
щи индент-печати. Изображениям символов в рассматриваемых тестовых набо­
рах свойственен широкий спектр искажений: неравномерная или недостаточная
освещенность, цифровой шум, расфокусировка и «смазанность» ввиду движе­
ния оптического сенсора относительно носителя, блики от внешнего источника
света и помехи, создаваемые голографическим защитным слоем документа и
др. Результат распознавания каждого отдельного образа символа получен при
помощи сверточных нейронных сетей, обученных отдельно для символов маши­
ночитаемой зоны и для символов поля «Номер» платежных банковских карт,
на отдельных обучающих наборах изображений с применением метода аугмен­
тации данных [128]. Наборы данных MRZ-MSEGM и ICN-MSEGM содержат
ошибки, вызванные некорректной или недостаточно точной работой алгоритмов
локализации документа и алгоритмов сегментации текстовых строк. Наборы
MRZ-CLEAN и ICN-CLEAN являются подмножествами соответствующих на­
боров MRZ-MSEGM и ICN-MSEGM, не содержащим подобных ошибок. Таким
образом, в наборах данных MRZ-CLEAN и ICN-CLEAN каждая видеопоследо­
вательность содержит образы строго одного и того же символа, без каких-либо
дефектов сегментации.

На представленных тестовых наборах данных проведено сравнение базо­
вых стратегий комбинирования классификаторов, представленных в обзорной
главе: правило произведения (1.2), суммы (1.3), минимума (1.4), максимума
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Таблица 2 — Характеристики тестовых наборов данных MRZ-MSEGM,
MRZ-CLEAN, ICN-MSEGM и ICN-CLEAN.

Характеристика набора данных MRZ-MSEGM MRZ-CLEAN
Мощность множества классов 𝐶 37

Общее количество образов символов 637874 631530
Точность распознавания отдельных изоб­
ражений, %

96.7357 96.8994

Количество видеопоследовательностей 7581 7508

Минимальная длина I(𝑥) 3

Максимальная длина I(𝑥) 223

Средняя длина I(𝑥) 21

Характеристика набора данных ICN-MSEGM ICN-CLEAN
Мощность множества классов 𝐶 10

Общее количество образов символов 31580 29166
Точность распознавания отдельных изоб­
ражений, %

90.9816 96.8936

Количество видеопоследовательностей 1898 1748

Минимальная длина I(𝑥) 3

Максимальная длина I(𝑥) 25

Средняя длина I(𝑥) 12

(1.5) и медианы (1.6). Точность распознавания видеопоследовательности симво­
ла является относительная доля видеопоследовательностей, для которых иде­
альный ответ совпадает с классом, получившим максимальную оценку согласно
тому или иному правилу комбинирования. Дополнительно проведено сравнение
базовых правил комбинирования с методом голосования (1.1), обобщенным сле­
дующим образом:

Vote(α)(𝑓(I(𝑥)))(𝑐) =

= α ·
1

𝑁

𝑁∑︁
𝑖=1

1I𝑐(𝑥)(𝐼𝑖(𝑥)) + (1− α) · 𝑁
max
𝑖=1

(︁
1I𝑐(𝑥)(𝐼𝑖(𝑥)) · 𝑝(𝐼𝑖(𝑥), 𝑓)

)︁
, (2.8)

где I𝑐(𝑥) = {𝐼(𝑥) ∈ I(𝑥) | 𝑓(𝐼(𝑥)) = 𝑐} – подмножество элементов видео­
последовательности, для которых выбором классификатора является класс 𝑐,
1I𝑐(𝑥)(𝐼(𝑥)) – индикаторная функция принадлежности образа 𝐼(𝑥) к подмно­
жеству I𝑐(𝑥), а 𝑝(𝐼(𝑥), 𝑓) – предиктор достоверности. В качестве предиктора
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достоверности использовался апостериорный предиктор «правило первой аль­
тернативы» (2.7)

На рисунке 2.8 представлены сравнительные значения точности распо­
знавания видеопоследовательностей с использованием правил комбинирования
(1.2), (1.3), (1.4), (1.5), (1.6) и (1.1) на тестовых наборах данных MRZ-MSEGM,
MRZ-CLEAN, ICN-MSEGM и ICN-CLEAN. Горизонтальная ось графиков со­
ответствует значениям параметра α правила комбинирования (1.1). Точность
распознавания с использованием остальных правил комбинирования представ­
лены горизонтальными линиями.

а) MRZ-MSEGM б) MRZ-CLEAN

в) ICN-MSEGM г) ICN-CLEAN

Рисунок 2.8 — Сравнение точности распознавания видеопоследовательностей
символов с использованием базовых стратегий комбинирования.

На рисунке 2.8 продемонстрирована значительная разница в оптимальном
выборе стратегии комбинирования в зависимости от модели входных данных:
на тестовых наборах, в которых встречаются ошибки локализации и сегмен­
тации символов, более высокую точность распознавания видеопоследователь­
ностей обеспечивают правило произведения (1.2), голосование (1.1) и правило
суммы (1.3) (рис. 2.8а, 2.8в). При этом на тестовых наборах, в которых та­
кого типа ошибки были исключены (рис. 2.8б, 2.8г), более высокую точность
распознавания обеспечивает правило максимума (1.5). Другими словами, при
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рассмотрении данной задачи как задачи коллективного принятия решения, в
случае более строгой модели входных данных (с отсутствием ошибок локализа­
ции и сегментации символов) выгоднее доверять единственному компетентному
эксперту, нежели чем коллективному мнению нескольких экспертов.

При наличии ошибок локализации и сегментации символов устойчивость
предикторов достоверности уменьшается, что в свою очередь увеличивает раз­
ницу между оценками компетентности экспертов (которые конструируются на
основе значений предикторов) и действительными значениями компетентности
экспертов (которые соответствуют апостериорным вероятностям принятия пра­
вильного решения). В таком случае выбор эксперта с максимальным уровнем
компетентности чаще бывает ошибочным и таким образом разница между уров­
нем действительной компетентности выбранного эксперта и уровнями компе­
тентности остальных экспертов сокращается. Таким образом оптимальность
выбора наилучшего (с точки зрения устойчивого предиктора видеопоследова­
тельности достоверности) отсутствуют покадрового ошибки результата локали­
зации и в случае, сегментации когда в символов, соответствует более широкому
положению теории коллективного принятия решения [126; 129], согласно кото­
рому нарушение первой части утверждения Кондорсе (при увеличении коли­
чества экспертов вероятность коллективного принятия правильного решения
увеличивается, если для каждого эксперта вероятность принятия правильного
индивидуального решения выше, чем вероятность принятия неправильного ре­
шения) происходит при увеличении разницы между уровнями компетентности
максимально компетентного эксперта и остальных.

Из результатов проведенного эксперимента можно сделать вывод, что в
случае построения системы распознавания объекта в видеопотоке для выбо­
ра стратегии комбинирования результатов необходимо руководствоваться не
только моделью результатов распознавания объекта, но и моделью шума вход­
ных данных. При этом, в случае фиксированной модели шума входных данных
для интеграции результатов классификации одиночных объектов можно поль­
зоваться результатами исследований, которые были направлены на комбиниро­
вание различных классификаторов с целью максимизации точность распознава­
ния одного объекта. В то же время, прямое применение рассмотренных правил
комбинирования невозможно в случае, если модель результата распознавания
объекта более сложна, чем простой результат классификации (2.1). В качестве
примера такого объекта можно назвать текстовую строку, для которой клас­
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сификация производится независимо для каждого символа. Задаче интеграции
таких объектов будет посвящена глава 3.

2.4 Задача останова

Модель системы распознавания объекта в видеопотоке (см. рис. 2.6) не
предполагает ограничения на количество входных изображений, а поскольку
основной целью системы распознавания объектов является автоматизация вво­
да, важным параметром является абсолютное время (т.е. время с точки зре­
ния оператора), необходимое для получения окончательного результата распо­
знавания. В отличие от процесса съемки фотографии, видеопоток естествен­
ным образом не ограничен во времени. Отсюда следует задача останова, кото­
рая заключается в принятии решения о том, что вновь полученный результат
𝑓
(︀{︀

𝐼0(𝑥), 𝐼𝑇 1(0)(𝑥), 𝐼𝑇 2(0)(𝑥), . . . , 𝐼𝑡(𝑥)
}︀)︀

в момент времени 𝑇 (𝑡) можно считать
окончательным и цикл захвата изображений можно прекратить. При распо­
знавании сложных объектов, которые состоят из множества независимо распо­
знаваемых объектов, решение об останове распознавания отдельных объектов
влияет на время ∆𝑡, необходимое для распознавания составного объекта, а зна­
чит и на количество информации, обрабатываемой в рамках общей системы.
Таким образом, задача останова (тесно связанная с задачей интеграции) явля­
ется важным аспектом системы распознавания в видеопотоке, в особенности в
рамках взаимодействия с другими подсистемами, объектом распознавания ко­
торых в совокупности является составной объект, такой как текстовое поле или
документ в целом.

В простейшем виде правило останова можно представить в виде преди­
ката, действующего на видеопоследовательности: 𝑃 : I* → {0, 1}. Истинность
предиката влечет остановку процесса захвата и распознавания изображений:

𝑃 ({𝐼1(𝑥), 𝐼2(𝑥), . . . , 𝐼𝑛(𝑥)}) =

{︃
1 : решение об останове;

0 : продолжение работы.
(2.9)

Пусть I(𝑥) = {𝐼1(𝑥), 𝐼2(𝑥), . . . , 𝐼𝑁(𝑥)} — последовательность изображений
объекта 𝑥 ∈ 𝑋, а I(𝑛)(𝑥) = {𝐼1(𝑥), 𝐼2(𝑥), . . . , 𝐼𝑛(𝑥)} ⊆ I(𝑥) — префикс этой после­
довательности, имеющий длину 𝑛 6 𝑁 . Обозначим через 𝐷𝑃 (I(𝑥)) количество
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изображений, которые будут обработаны системой распознавания до срабаты­
вания правила останова (2.9):

𝐷𝑃 (I(𝑥)) = min
[︁
𝑁,min

{︁
|I(𝑛)(𝑥)|

⃒⃒
𝑛 ∈ {1, 2, . . . , 𝑁} ∧ 𝑃 (I(𝑛)(𝑥))

}︁]︁
. (2.10)

С учетом правила останова при обработке видеопоследовательности I(𝑥)

на распознавание подаются только изображения из подпоследовательности
I(𝑃 )(𝑥) = I(𝐷𝑃 (I(𝑥)))(𝑥), и исходный набор видеопоследовательностей (2.4) прини­
мает вид 𝐵(𝑃 ) = {I(𝑃 )

1 (𝑥𝑏1), I
(𝑃 )
2 (𝑥𝑏2), . . . , I

(𝑃 )
𝐻 (𝑥𝑏𝐻)}.

Для формализации задачи останова воспользуемся общей моделью взаи­
модействия системы распознавания с пользователем, которая используется в
задачах определения достоверности результата распознавания объекта [6; 81]
и для оценки эффективности работы системы использует функционал, описан­
ный в экономических терминах. Пусть 𝑊𝑐 — стоимость ввода корректного ре­
зультата распознавания объекта, 𝑊𝑒 — стоимость ввода ошибочного результата,
и 𝑊𝑓 — стоимость распознавания одного изображения объекта. Тогда функция
эффективности правила останова может быть записана в виде средней стоимо­
сти работы системы:

𝑊𝐹,𝑃 (𝐵) = 𝑊𝑐 ·𝑉𝐹 (𝐵(𝑃 ))+𝑊𝑒 ·
(︁

1− 𝑉𝐹 (𝐵(𝑃 ))
)︁

+𝑊𝑓 ·
1

𝐻

(︃
𝐻∑︁
ℎ=1

𝐷𝑃 (I(𝑥))

)︃
, (2.11)

где 𝑉𝐹 (𝐵(𝑃 )) — точность распознавания видеопоследовательностей с учетом
останова по правилу 𝑃 (2.9), вычисляемая согласно (2.5) (аналогично в случае
интеграции результатов распознавания одиночных объектов точность вычисля­
ется согласно (2.6)).

Упрощая выражение (2.11) и принимая во внимание константность 𝑊𝑒

приходим к общей постановке задачи останова как к задаче поиска правила
останова, оптимизирующего функционал эффективности:

𝑊𝐹,𝑃 (𝐵) = 𝑉𝐹 (𝐵(𝑃 )) · (𝑊𝑐 −𝑊𝑒) + 𝑊𝑓 ·
1

𝐻

(︃
𝐻∑︁
ℎ=1

𝐷𝑃 (I(𝑥))

)︃
→ min

𝑃
. (2.12)

Аналогичный функционал эффективности строится с учетом функцио­
нала точности (2.6) в рамках задачи интеграции результатов распознавания
одиночных объектов.

В контексте распознавания объектов в видеопотоке задача останова про­
цесса распознавания является достаточно новой и малоизученной. Более подроб­
но данная задача, а также метод ее решения, будут рассмотрены в главе 4.
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2.5 Выводы по главе

В данной главе были показаны свойства задачи распознавания объекта в
видеопотоке. Представлены различные способы формализации системы распо­
знавания в видеопотоке и построена модель динамической системы с модулем
комбинирования покадровых результатов распознавания и модулем останова.
Были показаны свойства динамической системы распознавания объектов в ви­
деопотоке и предложены постановки задачи интеграции результатов распозна­
вания нескольких наблюдений одного и того же объекта и задачи останова в
контексте таких систем.

Задача интеграции (комбинирования) результатов распознавания несколь­
ких наблюдений одного и того же объекта рассмотрена как задача коллектив­
ного принятия решения. Показано, что модель входных данных может влиять
на выбор оптимальной стратегии комбинирования. Согласно проведенному экс­
периментальному исследованию, на тестовых наборах данных, в которых встре­
чаются дефекты предварительной обработки изображения, такие правила ком­
бинирования как голосование и правило произведения. В то же время на тесто­
вых наборах, в которых такого типа ошибки были исключены, более высокую
точность распознавания видеопоследовательности обеспечивает правило мак­
симума. В терминах коллективного принятия решения, в случае более строгой
модели входных данных (т.е. при распознавании множества изображений с ми­
нимальным вкладом дефектов предварительной обработки) выгоднее доверять
единственному наиболее компетентному эксперту, нежели чем коллективному
мнению нескольких экспертов.

Описана задача останова процесса распознавания объекта в видеопото­
ке, возникающая ввиду отсутствия естественного ограничения на количество
получаемых наблюдений во времени. Задача является новой применительно к
системам оптического распознавания объектов.
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Глава 3. Интеграция результатов распознавания строкового объекта
в видеопотоке

3.1 Введение

Распознавание таких объектов как параграфы текста, текстовые строки,
поля документов, и т.п., сопряжено с набором сложностей, в особенности если
источником изображения является камера мобильного устройства. В подобных
условиях съемки изображениям характерны искажения, такие как дефокуси­
ровка, смазывание, блики на светоотражающих поверхностях, недостаточное
разрешения для достаточной точности алгоритмов распознавания символов и
др. [15; 130; 131]. На рисунке 3.1 представлен пример блика на документе и его
влияния на изображения текстовых полей, извлеченных из последовательных
кадров видеопотока.

Рисунок 3.1 — Фрагмент кадра с бликом на отражающей поверхности
документа (слева) и извлеченные изображения текстовых полей на кадрах

видеопотока (справа). Изображения из пакета данных MIDV-500 [88]
(клип HA39, поле 3)

Одним из преимуществ использования видеопотока при распознавании
объектов является возможность обработки множества кадров в реальном вре­
мени, т.е. распознавания одного и того же объекта многократно, таким обра­
зом увеличивая финальную точность распознавания. Стоит также отметить,
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что выбор единственного наилучшего результата в некоторых случаях может
не являться приемлемой стратегией, так как в видеопотоке документа может
не оказаться кадра с полностью видимым объектом. Таким образом, появляет­
ся необходимость в изучении методом комбинирования нескольких результатов
распознавания.

Целями данной главы являются построение модели результата распозна­
вания строкового объекта, учитывающей альтернативные варианты классифи­
кации одиночных объектов, и на ее основе построение алгоритма интеграции
результатов распознавания строковых объектов. В разделе 3.2 будет описана
модель результата распознавания одиночного и строкового объектов, исполь­
зуемая в дальнейшем для построения алгоритма. В разделе 3.3 приведена по­
становка задачи интеграции результатов распознавания строковых объектов. В
разделе 3.4 приводится предлагаемый алгоритм, и в разделе 3.5 представлено
его экспериментальное исследование.

3.2 Модель результата распознавания строкового объекта

Рассмотрим модель результата распознавания одиночного объекта. Пусть
происходит классификация изображения 𝐼 некоторого объекта 𝑐 на один из
𝐾 классов из множества 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝐾} при помощи модуля класси­
фикации 𝑓 . В классической постановке результатом классификации являет­
ся один из классов 𝑓(𝐼) = 𝑐𝑓 , где 𝑐𝑓 ∈ 𝐶, и задача распознавания одиноч­
ного объекта состоит в максимизации апостериорной вероятности совпадения
класса 𝑐𝑓 с истинным значением 𝑐. В более общей постановке модуль клас­
сификации 𝑓 ставит входному изображению 𝐼 в соответствие множество пар
𝑓(𝐼) = {(𝑐1, 𝑞1), (𝑐2, 𝑞2), . . . , (𝑐𝐾 , 𝑞𝐾)}, где 𝑞𝑖 – оценка принадлежности объекта
к классу 𝑐𝑖. Финальным результатом распознавания является класс, соответ­
ствующий максимальной оценке принадлежности:

𝑓(𝐼) = arg max{𝑓(𝐼)} ∈
{︂
𝑐𝑓

⃒⃒⃒⃒ (︁
(𝑐𝑓 , 𝑞𝑓) ∈ 𝑓(𝐼)

)︁
∧
(︃
𝑞𝑓 = max

(𝑐,𝑞)∈𝑓(𝐼)
𝑞

)︃}︂
. (3.1)

В случае, если существует несколько пар (𝑐𝑓 1, 𝑞𝑓), (𝑐𝑓 2, 𝑞𝑓), . . . с равным
максимальным значением оценки принадлежности, в качестве ответа для берет­
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ся один из классов согласно принятой конвенции (к примеру, класс с минималь­
ным индексом в множестве 𝐶). Модель результата распознавания одиночного
объекта (3.1) является вариантом модели результата Алгоритмов Вычисления
Оценок (АВО, [132]) и также является наиболее широко используемой моделью
в методах оптического распознавания изображений при помощи сверточных
нейронных сетей [64].

Для определения результата распознавания строкового объекта необхо­
димо ввести понятие пустого класса λ, обозначающего отсутствие одиночного
объекта. Расширенным результатом классификации одиночного объекта будем
считать отображение 𝑎 : 𝐶∪{λ} → [0, 1] из множества классов, объединенного с
меткой пустого класса λ в множество оценок принадлежности. Каждая оценка
принадлежности является вещественным числом от 0 до 1 и сумма оценок при­
надлежности равна единице. Таким образом задается множество всевозможных
результатов распознавания одиночного объекта 𝐶:

𝐶
def
=

{︃
𝑎 ∈ [0, 1]𝐶∪{λ}

⃒⃒⃒⃒
⃒ ∑︁

𝑐∈𝐶∪{λ}
𝑎(𝑐) = 1

}︃
. (3.2)

На множестве всевозможных результатов распознавания одиночного объ­
екта 𝐶 можно задать метрику следующим образом:

ρ𝐶(𝑎, 𝑏)
def
=

1

2

∑︁
𝑐∈𝐶∪{λ}

|𝑎(𝑐)− 𝑏(𝑐)|, ∀𝑎, 𝑏 ∈ 𝐶. (3.3)

Легко убедиться, что функция ρ𝐶(𝑎, 𝑏) обладает свойствами действитель­
ной метрики:

1. ρ𝐶(𝑎, 𝑏) = 0 ⇔ ∀𝑐 ∈ 𝐶 ∪ {λ} : 𝑎(𝑐) = 𝑏(𝑐) ⇔ 𝑎 = 𝑏, следовательно,
аксиома тождества выполняется;

2. ∀𝑐 ∈ 𝐶 ∪ {λ} : |𝑎(𝑐) − 𝑏(𝑐)| = |𝑏(𝑐) − 𝑎(𝑐)| ⇒ ρ𝐶(𝑎, 𝑏) = ρ𝐶(𝑏, 𝑎),
следовательно, аксиома симметрии выполняется;

3. ∀𝑥, 𝑦 ∈ R : |𝑥 + 𝑦| 6 |𝑥|+ |𝑦| ⇒
⇒ ∀𝑐 ∈ 𝐶 ∪ {λ} : |𝑎(𝑐)− 𝑑(𝑐)| 6 |𝑎(𝑐)− 𝑑(𝑐)|+ |𝑑(𝑐)− 𝑏(𝑐)| ⇒
⇒ ρ𝐶(𝑎, 𝑏) 6 ρ𝐶(𝑎, 𝑑) + ρ𝐶(𝑑, 𝑏), следовательно, неравенство треуголь­
ника также выполняется.

Стоит отметить, что метрика ρ𝐶(𝑎, 𝑏) соответствует манхэттенской метри­
ке в пространстве векторов над упорядоченным множеством 𝐶∪{λ}. Поскольку
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для 𝑎 и 𝑏 сумма значений при всех 𝑐 ∈ 𝐶 ∪ {λ} равна единице, множество зна­
чений функции ρ𝐶(𝑎, 𝑏) является отрезком [0, 1].

Обозначим через λ̂ «пустой результат»:

λ̂
def
= {(λ, 1), (𝑐1, 0), (𝑐2, 0), . . . , (𝑐𝐾 , 0)} . (3.4)

Результатом 𝑋 распознавания строкового объекта будем называть строку
над множеством 𝐶 ∖ {λ̂} , т.е. элементом 𝑋 ∈ X, где X def

= (𝐶 ∖ {λ̂})*. Строка 𝑋

представляет собой последовательность результатов распознавания одиночных
объектов 𝑋 = 𝑥1𝑥2 . . . 𝑥𝑛, где 𝑥𝑖 ∈ 𝐶 ∖ {λ̂}, длиной строки |𝑋| = 𝑛 называется
количество элементов в этой последовательности. Обозначение 𝑋𝑖...𝑗 относится
к подстроке строки 𝑋, включающей элементы 𝑥𝑖𝑥𝑖+1 . . . 𝑥𝑗−1𝑥𝑗 для 1 6 𝑖 6 𝑗 6

𝑛. При 𝑖 > 𝑗 подстрока 𝑋𝑖...𝑗 соответствует пустой строке λ̂ нулевой длины.
Введем понятие элементарного редакционного изменения 𝑇 как пары

(𝑎, 𝑏) ̸= (λ̂, λ̂), где 𝑎, 𝑏 ∈ 𝐶. Редакционное изменение 𝑇 = (𝑎, 𝑏), применительно
к строке 𝑋, соответствует:

1. замене элемента 𝑥𝑖 = 𝑎 в строке 𝑋 на элемент 𝑏, если 𝑏 ̸= λ̂;
2. удалению элемента 𝑥𝑖 = 𝑎 из строки 𝑋, если 𝑏 = λ̂;
3. вставке элемента 𝑏 в строку 𝑋, если 𝑎 = λ̂.
Рассмотрим две произвольные строки 𝑋, 𝑌 ∈ X конечной длины. Редак­

ционным предписанием называется последовательность элементарных редакци­
онных изменений 𝑇𝑋,𝑌 = 𝑇1𝑇2 . . . 𝑇𝐿, переводящая строку 𝑋 в строку 𝑌 . Весом
редакционного предписания будем считать сумму расстояний (в терминах мет­
рики ρ𝐶) между парами объектов, участвующих в элементарных редакционных
изменениях 𝑇𝑖 = (𝑎𝑖, 𝑏𝑖) предписания 𝑇𝑋,𝑌 :

𝑤(𝑇𝑋,𝑌 )
def
=

𝐿∑︁
𝑖=1

ρ𝐶(𝑎𝑖, 𝑏𝑖). (3.5)

Метрика на множестве результатов распознавания строковых объектов X
задается как минимальный вес редакционного предписания, переводящего одну
строку в другую:

ρX(𝑋, 𝑌 ) = min{𝑤(𝑇𝑋,𝑌 )}. (3.6)

Метрика ρX (3.6) может рассматриваться как одно из реализаций Обоб­
щенного Расстояния Левенштейна (Generalized Levenshtein Distance, [133]), и
обладает свойствами действительной метрики при условии, что ρ𝐶 (3.3) также
ими обладает [134].



59

Для расчета расстояния между двумя результатами распознавания стро­
ковых объектов ρX(𝑋,𝑌 ) можно воспользоваться следующей рекуррентной схе­
мой. Пусть 𝑑(𝑖, 𝑗)

def
= ρX(𝑋1...𝑖, 𝑌1...𝑗) – расстояние между префиксами строк 𝑋 и

𝑌 , имеющими длины 𝑖 и 𝑗 соответственно. Тогда

𝑑(0, 0) = 0,

𝑑(𝑖, 0) =
𝑖∑︁

𝑘=1

ρ𝐶(𝑥𝑘, λ̂),

𝑑(0, 𝑗) =

𝑗∑︁
𝑘=1

ρ𝐶(λ̂, 𝑦𝑘),

𝑑(𝑖, 𝑗) = min

⎧⎪⎪⎨⎪⎪⎩
ρ𝐶(𝑥𝑖, λ̂) + 𝑑(𝑖− 1, 𝑗),

ρ𝐶(λ̂, 𝑦𝑗) + 𝑑(𝑖, 𝑗 − 1),

ρ𝐶(𝑥𝑖, 𝑦𝑗) + 𝑑(𝑖− 1, 𝑗 − 1)

⎫⎪⎪⎬⎪⎪⎭ ,

(3.7)

и искомому значению метрики ρX(𝑋, 𝑌 ) соответствует значение 𝑑(|𝑋|, |𝑌 |).
Стоит отметить, что максимальным возможным значением метрики

ρX(𝑋, 𝑌 ) является максимум длин строк 𝑋 и 𝑌 (при использовании ρ𝐶 (3.3)
в качестве метрики на множестве результатов распознавания одиночных объ­
ектов). При этом, поскольку ρX является частным случаем Обобщенного Рас­
стояния Левенштейна, существует способ построить нормализованный вариант
этой метрики, с сохранением аксиом тождества, симметрии и неравенства тре­
угольника [134]:

ρ̃X(𝑋, 𝑌 )
def
=

2 · ρX(𝑋, 𝑌 )

α · (|𝑋|+ |𝑌 |) + ρX(𝑋, 𝑌 )
, (3.8)

где α – максимально возможный вес элементарной вставки или удаления. Для
случая метрики ρ𝐶 (3.3): α = max{ρ𝐶(𝑎, λ̂), ρ𝐶(λ̂, 𝑏), 𝑎, 𝑏 ∈ 𝐶} = 1.

Помимо Обобщенного Расстояния Левенштейна существуют и другие под­
ходы к сравнению строковых объектов, такие как алгоритм динамической
трансформации временной шкалы (Dynamic Time Warping, DTW [133; 135]).
В классической постановке, однако, алгоритм DTW предполагает соответствие
граничных компонентов строковых объектов, не предполагает штрафа за встав­
ку и удаление компонентов, и не обладает свойствами метрики (не гарантирует
выполнение неравенства треугольника).
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3.3 Задача интеграции результатов распознавания строкового
объекта

Рассмотрим задачу распознавания строкового объекта в видеопосле­
довательности. На вход системе подается последовательность изображений
𝐼1, 𝐼2, . . . , 𝐼𝑁 строкового объекта ν ∈ 𝐶*. При помощи модуля 𝐹 распознава­
ния строкового объекта на одиночном изображении каждому из изображений
ставится в соответствие результат распознавания 𝐹 (𝐼𝑖) ∈ X. В рамках рассмат­
риваемой модели будем полагать, что в исходном результате распознавания
строкового объекта оценки принадлежности, соответствующие пустому классу
λ равны нулю:

𝐹 (𝐼𝑖) = 𝑋𝑖, 𝑋𝑖 ∈ X,
𝑋𝑖 = 𝑥𝑖1𝑥

𝑖
2 . . . 𝑥

𝑖
𝑛𝑖
,

𝑥𝑖𝑗(λ) = 0, ∀𝑗 ∈ {1, . . . , 𝑛𝑖}.
(3.9)

Задача состоит в комбинировании результатов 𝑋1, 𝑋2, . . . , 𝑋𝑁 с некоторы­
ми весами 𝑤1, 𝑤2, . . . , 𝑤𝑁 в единый результат 𝑋 ∈ X, минимизирующий рассто­
яние по некоторой метрике до истинного значения ν. Поскольку 𝑋 ∈ X являет­
ся строкой над множеством 𝐶 ∖ {λ̂}, а ν – строкой над множеством классов 𝐶,
для определения расстояния между ними необходимо провести дополнительную
конвертацию. Наиболее естественным способом является приведение истинного
значения ν в вид строки ν̂ ∈ X:

ν = ν1ν2 . . .ν𝑛ν
, ν𝑗 ∈ 𝐶

ν̂ = ν̂1ν̂2 . . . ν̂𝑛ν
, ν̂𝑗 ∈ 𝐶 ∖ {λ̂},

ν̂𝑗
def
= {(λ, 0), (𝑐1, 0), (𝑐2, 0), . . . , (ν𝑗, 1), . . . , (𝑐𝐾 , 0)},

(3.10)

и в качестве расстояния от интегрированного результата 𝑋 до истинного зна­
чения ν использовать расстояние ρX(𝑋, ν̂) (3.6), либо его нормализованный ва­
риант ρ̃X(𝑋, ν̂) (3.8).

Однако, с точки зрения практического применения, важна также возмож­
ность получить финальный результат распознавания строкового объекта (по
аналогии с финальным результатом (3.1) для одиночного объекта). Для полу­
чения финального результата можно воспользоваться следующей двухэтапной
процедурой:



61

1. На первом этапе каждому компоненту 𝑥𝑗 ∈ 𝐶 ∖ {λ̂} интегрированного
результата 𝑋 = 𝑥1𝑥2 . . . 𝑥𝑛𝑋

ставится в соответствие либо класс 𝑐𝑥𝑗
∈ 𝐶

с максимальной оценкой принадлежности 𝑥𝑗(𝑐𝑥𝑗
), либо пустой класс λ,

если его оценка 𝑥𝑗(λ) превышает некоторый порог θ:

𝑥̄𝑗 =

⎧⎨⎩ arg max
𝑐∈𝐶

𝑥𝑗(𝑐), если 𝑥𝑗(λ) < θ,

λ, если 𝑥𝑗(λ) > θ.
(3.11)

2. На втором этапе из полученной строки 𝑥̄1𝑥̄2 . . . 𝑥̄𝑛𝑋
удаляются все ком­

поненты 𝑥̄𝑗 = λ. Результирующую строку 𝑋̄θ ∈ 𝐶* можно использовать
в качестве финального результата распознавания строкового объекта.

В качестве расстояния от интегрированного результата 𝑋 до ис­
тинного значения ν теперь можно использовать расстояние Левенштейна
levenshtein(𝑋̄θ,ν) [133] или его нормализованный вариант [134]:

ρ𝐿(𝑋̄θ,ν) =
2 · levenshtein(𝑋̄θ,ν)

|𝑋̄θ|+ |ν|+ levenshtein(𝑋̄θ,ν)
. (3.12)

Задача интеграции строковых объектов была рассмотрена в работе [87] в
контексте распознавания речи. Вместо интеграции результатов распознавания
нескольких изображений 𝐼1, 𝐼2, . . . , 𝐼𝑁 при помощи единого модуля распозна­
вания 𝐹 , в [87] рассматривается интеграция результатов распознавания одного
«изображения» 𝐼 различными системами распознавания 𝐹1, 𝐹2, . . . , 𝐹𝑁 . Данные
постановки задач можно считать схожими с точностью до модели шума: инте­
грация результатов распознавания строкового объекта в видеопоследователь­
ности направлена на фильтрацию компоненты шума в исходных изображениях
𝐼1, 𝐼2, . . . , 𝐼𝑁 (обусловленной неточностью входных данных, ошибками предва­
рительной обработки и пр.) и ее влияние на результат работы модуля распозна­
вания 𝐹 , тогда как интеграция результатов различных модулей распознавания
направлена на фильтрацию шума, привнесенного самими модулями распозна­
вания 𝐹1, 𝐹2, . . . , 𝐹𝑁 .

Помимо распознавания речи, подход, представленный в [87], также приме­
нялся для комбинирования множества классификаторов в задачах оптического
распознавания печатных [85] и рукописных [136] текстов.

Подход, описанный в [87] носит название ROVER (Recognizer Output
Voting Error Reduction) и предполагает двухмодульную схему, представленную
на рисунке 3.2. Не первом этапе модуль выравнивания приводит все входные
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строковые объекты к виду строк одинаковой длины, производя соответствую­
щие вставки пустого класса λ оптимальным образом. На втором этапе модуль
голосования выбирает класс для каждого компонента результирующей строки
на основе линейной комбинации частоты возникновения и оценки достоверно­
сти, порожденной модулем распознавания.

F(I1)

F(I2)

F(IN)

...
Модуль 

выравнивания
Модуль 

голосования
X

Рисунок 3.2 — Двухмодульная схема подхода ROVER [87]

Модель одиночного результата распознавания строки в подходе ROVER
[87] представляет собой пару из строки над множеством классов распознавания
одиночных объектов и оценки достоверности модуля распознавания, т.е. объект
из множества 𝐶* × R.

Для построения алгоритма интеграции результатов распознавания стро­
кового объекта с расширенной моделью одиночного результата, рассмотрим по­
становку задачи выравнивания строк вида (3.9).

Пусть заданы 𝑁 строк 𝑋1, . . . , 𝑋𝑁 , где 𝑋𝑖 ∈ X, и |𝑋𝑖| = 𝑛𝑖 > 0:

𝑋1 = 𝑥11𝑥
1
2 . . . 𝑥

1
𝑛1

𝑋2 = 𝑥21𝑥
2
2 . . . 𝑥

2
𝑛2

. . .

𝑋𝑁 = 𝑥𝑁1 𝑥
𝑁
2 . . . 𝑥𝑁𝑛𝑁

(3.13)

Под выравниванием заданного множества строк будем понимать функ­
цию align : {1, . . . , 𝑁} × {1, . . . , 𝑁

max
𝑖=1

𝑛𝑖} → {1, . . . ,
∑︀𝑁

𝑖=1 𝑛𝑖}. Функция align(𝑖, 𝑗)

задает номер компонента выходной «интегрированной» строки, в значение кото­
рого вносит вклад компонент 𝑥𝑖𝑗. Для каждой входной строки значения функ­
ции align для отдельных компонент строки различны и сохраняют порядок:
∀𝑖 ∈ {1, . . . , 𝑁},∀𝑗 ∈ {1, . . . , 𝑛𝑖 − 1} : align(𝑖, 𝑗) < align(𝑖, 𝑗 + 1).
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Введем также функцию match : {1, . . . , 𝑁} × {1, . . . ,∑︀𝑁
𝑖=1 𝑛𝑖} → 𝐶, зада­

ваемую следующим образом:

match(𝑖, 𝑘)
def
=

{︃
𝑥𝑖𝑗, если align(𝑖, 𝑗) = 𝑘,

λ̂, если @𝑗 : align(𝑖, 𝑗) = 𝑘
. (3.14)

Задача выравнивания состоит в поиске функции выравнивания align та­
кой, чтобы достичь минимального значения штрафного функционала:

∑︁
𝑘

∑︁
𝑖1<𝑖2

ρ𝐶(match(𝑖1, 𝑘),match(𝑖2, 𝑘))→ min, (3.15)

отражающего суммарное попарное расстояние между результатами распознава­
ния одиночных объектов, вносящих вклад в одни и те же компоненты интегри­
рованного результата.

Для обобщения модуля голосования (см. рис. 3.2), выбирающего класс
для каждого компонента результирующей строки, введем семейство функций
комбинирования результатов распознавания одиночных объектов 𝑟(𝑁):

𝑟(𝑁) : 𝐶𝑁 × (R+
0 )𝑁 → 𝐶 ∖ {λ̂}. (3.16)

Функция 𝑟(𝑁) принимает на вход 𝑁 результатов распознавания одиночных
объектов 𝑎1, 𝑎2, . . . , 𝑎𝑁 таких, что ∃𝑖 : 𝑎𝑖 ̸= λ̂, и набор ассоциированных с ни­
ми неотрицательных весов 𝑤1, 𝑤2, . . . , 𝑤𝑁 , отражающих значимость результата,
таких, что

∑︀𝑁
𝑖=1𝑤𝑖 > 0.

Тогда функция интеграции результатов распознавания строковых объек­
тов 𝑅(𝑁) принимает вид:

𝑅(𝑁)(𝑋1, 𝑋2, . . . , 𝑋𝑁 , 𝑤1, 𝑤2, . . . , 𝑤𝑁) = 𝑟
(𝑁)
1 𝑟

(𝑁)
2 𝑟

(𝑁)
2 . . . 𝑟(𝑁)

𝑛𝑅
, (3.17)

где 𝑛𝑅 = max
𝑖,𝑗

align(𝑖, 𝑗), а каждая компонента результирующей строки вычис­

ляется с использованием функции комбинирования (3.16) и в соответствии с
результатом выравнивания (3.14):

𝑟
(𝑁)
𝑗 = 𝑟(𝑁) (match(1, 𝑗)),match(2, 𝑗), . . . ,match(𝑁, 𝑗), 𝑤1, 𝑤2, . . . , 𝑤𝑁) . (3.18)

В общем случае точное решение задачи (3.15) предполагает расчет схемы
динамического программирования (по аналогии со схемой расчета Обобщенного
Расстояния Левенштейна (3.7)) с трудоемкостью, экспоненциально зависящей
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от количества входных строк 𝑁 (поскольку при расчете необходимо исполь­
зовать результат подзадач выравнивания строк 𝑋11...𝑖1, 𝑋21...𝑖2, . . . , 𝑋𝑁 1...𝑖𝑁 для
всех кортежей (𝑖1, 𝑖2, . . . , 𝑖𝑁) ∈ {1, . . . , 𝑛1}×{1, . . . , 𝑛2}× . . .×{1, . . . , 𝑛𝑁}). При
расчете данной схемы также можно использовать эвристические алгоритмы по­
иска кратчайшего пути, такие как 𝐴*-поиск [137]. В следующем разделе будет
представлен алгоритм интеграции результатов распознавания строковых объ­
ектов, с аппроксимацией функционала выравнивания методом, используемым
в подходе ROVER [87].

3.4 Алгоритм интеграции результатов распознавания строкового
объекта

При расчете интегрированного результата распознавания строкового
объекта порождается набор промежуточных интегрированных результатов
𝑅(1)(𝑋1, 𝑤1), . . . , 𝑅

(𝑖−1)(𝑋1, . . . , 𝑋𝑖−1, 𝑤1, . . . , 𝑤𝑖−1), где результат 𝑅(𝑖−1) исполь­
зуется для решения задачи выравнивания на шаге 𝑖. На первом шаге алгоритма:

𝑅(1)(𝑋1, 𝑤1) = 𝑋1. (3.19)

На каждом последующем 𝑖-м шаге алгоритма строится оптималь­
ное выравнивание строк 𝑋𝑖 и 𝑅(𝑖−1)(𝑋1, . . . , 𝑋𝑖−1, 𝑤1, . . . , 𝑤𝑖−1) при помо­
щи схемы динамического программирования, аналогичной (3.7). Пусть
𝑑(𝑙,𝑚)

def
= ρX

(︀
𝑋𝑖1...𝑙, 𝑅

(𝑖−1)(𝑋1, . . . ,𝑋𝑖−1, 𝑤1, . . . , 𝑤𝑖−1)1...𝑚
)︀
, а 𝑃𝑝(𝑙,𝑚) – вспо­

могательные функции для 𝑝 ∈ {1,2,3}. Расчет 𝑑(𝑙,𝑚) и 𝑃𝑝(𝑙,𝑚) производится
согласно следующей процедуре:

𝑑(0, 0) = 0, 𝑑(𝑙, 0) =
𝑙∑︁

𝑘=1

ρ𝐶(𝑥𝑖𝑘, λ̂), 𝑑(0,𝑚) =
𝑚∑︁
𝑘=1

ρ𝐶(λ̂, 𝑟
(𝑖−1)
𝑘 ),

𝑃1(𝑙,𝑚) = ρ𝐶(𝑥𝑖𝑙, λ̂) + 𝑑(𝑙 − 1,𝑚),

𝑃2(𝑙,𝑚) = ρ𝐶(λ̂, 𝑟(𝑖−1)𝑚 ) + 𝑑(𝑙,𝑚− 1),

𝑃3(𝑙,𝑚) = ρ𝐶(𝑥𝑖𝑙, 𝑟
(𝑖−1)
𝑚 ) + 𝑑(𝑙 − 1,𝑚− 1),

𝑑(𝑙,𝑚) = min{𝑃1(𝑙,𝑚), 𝑃2(𝑙,𝑚), 𝑃3(𝑙,𝑚)}.

(3.20)

Для расчета результата интеграции на 𝑖-м шаге 𝑅(𝑖)(𝑋1, . . . , 𝑋𝑖, 𝑤1, . . . , 𝑤𝑖)

введем две вспомогательные функции 𝑡𝑋 : {0, . . . , 𝑛𝑖 + 𝑛𝑅𝑖−1
} → {1, . . . , 𝑛𝑖}
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и 𝑡𝑅 : {0, . . . , 𝑛𝑖 + 𝑛𝑅𝑖−1
} → {1, . . . , 𝑛𝑅𝑖−1

}, расчет которых производится по
следующей рекуррентной процедуре:

𝑡𝑋(0) = 𝑛𝑖,

𝑡𝑅(0) = 𝑛𝑅𝑖−1
,

𝑡𝑋(𝑘 + 1) =

⎧⎪⎪⎨⎪⎪⎩
𝑡𝑋(𝑘), если

𝑃2(𝑡𝑋(𝑘), 𝑡𝑅(𝑘)) = 𝑑(𝑡𝑋(𝑘), 𝑡𝑅(𝑘))∧
∧ 𝑃1(𝑡𝑋(𝑘), 𝑡𝑅(𝑘)) ̸= 𝑑(𝑡𝑋(𝑘), 𝑡𝑅(𝑘))

𝑡𝑋(𝑘) + 1, в остальных случаях,

𝑡𝑅(𝑘 + 1) =

{︃
𝑡𝑅(𝑘), если 𝑃1(𝑡𝑋(𝑘), 𝑡𝑅(𝑘)) = 𝑑(𝑡𝑋(𝑘), 𝑡𝑅(𝑘))

𝑡𝑅(𝑘) + 1, в остальных случаях.

(3.21)

Интегрированный результат на 𝑖-м шаге рассчитывается следующим об­
разом:

𝑛𝑅𝑖
= min {𝑘 : 𝑡𝑋(𝑘) = 𝑡𝑅(𝑘) = 0} ,

𝑅(𝑖)(𝑋1, . . . , 𝑋𝑖, 𝑤1, . . . , 𝑤𝑖) = 𝑟
(𝑖)
1 𝑟

(𝑖)
2 . . . 𝑟(𝑖)𝑛𝑅𝑖

,

𝑟
(𝑖)
𝑘 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑟(2)
(︁
𝑟
(𝑖−1)
𝑡𝑅(𝑡(𝑘))+1, λ̂,𝑊𝑖−1, 𝑤𝑖

)︁
, если 𝑡𝑋(𝑡(𝑘)) = 𝑡𝑋(𝑡(𝑘)− 1),

𝑟(2)
(︁
λ̂, 𝑥𝑖𝑡𝑋(𝑡(𝑘))+1,𝑊𝑖−1, 𝑤𝑖

)︁
, если 𝑡𝑅(𝑡(𝑘)) = 𝑡𝑅(𝑡(𝑘)− 1),

𝑟(2)
(︁
𝑟
(𝑖−1)
𝑡𝑅(𝑡(𝑘))+1, 𝑥

𝑖
𝑡𝑋(𝑡(𝑘))+1,𝑊𝑖−1, 𝑤𝑖

)︁
, в остальных случаях,

(3.22)

где 𝑊𝑖
def
=
∑︀𝑖

𝑘=1𝑤𝑘, вспомогательная функция 𝑡(𝑘)
def
= 𝑛𝑅𝑖

− 𝑘 + 1 а функция
𝑟(2) – функция интеграции двух результатов распознавания одиночных объек­
тов (3.16).

Следует отметить, что рамках предлагаемого алгоритма от функции ин­
теграции 𝑟(𝑁) (3.16) требуется следующее свойство:

𝑟(𝑁)(𝑎1, . . . , 𝑎𝑁 , 𝑤1, . . . , 𝑤𝑁) =

= 𝑟(2)(𝑟(𝑁−1)(𝑎1, . . . , 𝑎𝑁−1, 𝑤1, . . . , 𝑤𝑁−1), 𝑎𝑁 , 𝑤1 + . . . + 𝑤𝑁−1, 𝑤𝑁). (3.23)

В случае, если используемая функция 𝑟 не обладает свойством (3.23), про­
цедура выравнивания остается неизменной, а интегрированный результат на
шаге 𝑖 необходимо вычислять для каждого компонента результирующей стро­
ки по формуле (3.18), предварительно восстановив функции align и match (3.14)
в явном виде.
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В рамках данной диссертационной работы в качестве функции 𝑟 предла­
гается использовать взвешенное среднее, обладающее свойством (3.23):

𝑟(𝑁)(𝑎1, . . . , 𝑎𝑁 , 𝑤1, . . . , 𝑤𝑁)(𝑐) =
1

𝑊𝑁

𝑁∑︁
𝑖=1

𝑎𝑖(𝑐) · 𝑤𝑖, ∀𝑐 ∈ 𝐶 ∪ {λ}. (3.24)

В форме псевдокода процедура интеграции результатов распознавания
строкового объекта представлена в виде Алгоритма 1.

Трудоемкость вычисления функций ρ𝐶 (3.3) и 𝑟 (3.24) составляет 𝑂(𝐾),
где 𝐾 – количество классов, на которое происходит классификация каждого
одиночного объекта. Поскольку верхняя оценка на длину результирующей стро­
ки 𝑅 после выполнения 𝑖-й итерации алгоритма составляет 𝑂

(︁∑︀𝑖
𝑗=1 |𝑋𝑖|

)︁
6

𝑂
(︀
𝑖 ·max𝑖

𝑗=1 |𝑋𝑖|
)︀
, трудоемкость каждой итерации алгоритма можно оценить

как 𝑂(𝑀 2𝑁𝐾), где 𝑀 = max𝑁
𝑖=1 |𝑋𝑖|, и общую трудоемкость Aлгоритма 1 как

𝑂(𝑀 2𝑁 2𝐾).

3.5 Экспериментальные результаты

В данном разделе будут продемонстрированы результаты эксперименталь­
ного исследования работы алгоритма интеграции результатов распознавания
строковых объектов, представленного в разделе 3.4. В качестве объекта рас­
познавания рассматривалось текстовое поле документа, удостоверяющего лич­
ность.

Экспериментальное исследование проводилось на открытом пакете дан­
ных MIDV-500 [88], содержащем видеоролики 50 документов, удостоверяющих
личность, различных типов (по 10 видеороликов для каждого документа, по 30
кадров в видеоролике) с размеченными идеальными позициями и значениями
текстовых полей. Были проанализированы 4 группы полей: даты, записанные
цифрами и знаками препинания, номер документа, строки машиночитаемой зо­
ны (MRZ, Machine-Readable Zone) и компоненты имени держателя документы,
записанные латинским алфавитом.

Рассматривались только кадры, на которых документ целиком присут­
ствует в кадре (следовательно видеопоследовательности в рассматриваемом
подмножестве пакета данных имели разную длину, от 1 до 30 кадров). Для
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Алгоритм 1 Алгоритм интеграции результатов распознавания строкового
объекта: расчет 𝑅(𝑁)(𝑋1, 𝑋2, . . . , 𝑋𝑁 , 𝑤1, 𝑤2, . . . , 𝑤𝑁)
Require: 𝑁 > 0 and ∀𝑖 ∈ {1, . . . , 𝑁} : |𝑋𝑖| > 0

1: 𝑅← 𝑋1

2: 𝑊 ← 𝑤1

3: for 𝑖 = 2 to 𝑁 do
4: 𝑑(0, 0)← 0

5: 𝑝(0, 0)← 0 {метка пути}
6: for 𝑘 = 1 to |𝑋𝑖| do
7: 𝑑(𝑘, 0)← 𝑑(𝑘 − 1, 0) + ρ𝐶(𝑥

𝑖
𝑘, λ̂) {𝑋𝑖 = 𝑥𝑖

1𝑥
𝑖
2 . . . 𝑥

𝑖
|𝑋𝑖|}

8: 𝑝(𝑘, 0)← 1 {путь 1 – выравнивание 𝑥𝑖
𝑘 и пустого символа}

9: end for
10: for 𝑘 = 1 to |𝑅| do
11: 𝑑(0, 𝑘)← 𝑑(0, 𝑘 − 1) + ρ𝐶(λ̂, 𝑟𝑘) {𝑅 = 𝑟1𝑟2 . . . 𝑟|𝑅|}
12: 𝑝(𝑘, 0)← 2 {путь 2 – выравнивание 𝑟𝑘 и пустого символа}
13: end for
14: for 𝑙 = 1 to |𝑋𝑖| do
15: for 𝑚 = 1 to |𝑅| do
16: 𝑃1 ← ρ𝐶(𝑥

𝑖
𝑙, λ̂) + 𝑑(𝑙 − 1,𝑚)

17: 𝑃2 ← ρ𝐶(λ̂, 𝑟𝑚) + 𝑑(𝑙,𝑚− 1)

18: 𝑃3 ← ρ𝐶(𝑥
𝑖
𝑙, 𝑟𝑚) + 𝑑(𝑙 − 1,𝑚− 1)

19: 𝑑(𝑙,𝑚) = min{𝑃1, 𝑃2, 𝑃3}
20: if 𝑃1 = 𝑑(𝑙,𝑚) then
21: 𝑝(𝑙,𝑚)← 1

22: else if 𝑃2 = 𝑑(𝑙,𝑚) then
23: 𝑝(𝑙,𝑚)← 2

24: else
25: 𝑝(𝑙,𝑚)← 3 {путь 3 – выравнивание 𝑥𝑖

𝑙 и 𝑟𝑚}
26: end if
27: end for
28: end for
29: 𝑅′ ← ∅ {пустая строка}
30: 𝑇𝑋 ← |𝑋𝑖|
31: 𝑇𝑅 ← |𝑅|
32: while 𝑇𝑋 > 0 or 𝑇𝑅 > 0 do
33: if 𝑝(𝑇𝑋 , 𝑇𝑅) = 1 then
34: 𝑅′ ← 𝑟(λ̂, 𝑥𝑖

𝑇𝑋
,𝑊,𝑤𝑖)𝑅

′ {вставка нового элемента в начало 𝑅′}
35: 𝑇𝑋 ← 𝑇𝑋 − 1

36: else if 𝑝(𝑇𝑋 , 𝑇𝑅) = 2 then
37: 𝑅′ ← 𝑟(𝑟𝑇𝑅

, λ̂,𝑊,𝑤𝑖)𝑅
′

38: 𝑇𝑅 ← 𝑇𝑅 − 1

39: else
40: 𝑅′ ← 𝑟(𝑟𝑇𝑅

, 𝑥𝑖
𝑇𝑋

,𝑊,𝑤𝑖)𝑅
′

41: 𝑇𝑋 ← 𝑇𝑋 − 1

42: 𝑇𝑅 ← 𝑇𝑅 − 1

43: end if
44: end while
45: 𝑅← 𝑅′

46: 𝑊 ←𝑊 + 𝑤𝑖

47: end for
48: return 𝑅
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того, чтобы минимизировать эффекты нормализации и обеспечить более ясное
представление результатов, каждый клип был дополнен до 30 кадров путем по­
вторения клипа с начала (таким образом, все анализируемые клипы имели одну
и ту же длину 30).

Каждое поле вырезалось из исходного изображения при помощи проек­
тивного преобразования, согласно совместной разметке идеальных границ до­
кумента и координат текстового поля, с добавленными отступами, равными
30% от наименьшей стороны текстового поля. Размер вырезаемых изображе­
ний текстовых полей соответствовал разрешению 300 точек на дюйм. Каждое
вырезанное текстовое поле распознавалось при помощи компонента системы
Smart IDReader [99], отвечающего за распознавание единичной текстовой стро­
ки, с расширенной моделью результата (3.9).

В качестве расстояния между интегрированным результатом распознава­
ния текстового поля и его истинным значением использовалось нормализован­
ное расстояние Левенштейна ρ𝐿 (3.12) между истинным значением и текстовой
строкой, полученной при помощи процедуры (3.11), описанной в разделе 3.3.
Все сравнения значений символов проводились вне зависимости от регистра, а
также латинская буква «O» считалась идентичной цифре «0».

В рамках данного экспериментального исследования Алгоритм 1, работа­
ющий в рамках расширенной модели результата распознавания строкового объ­
екта, был сравнен с аналогом, работающим в рамках классической модели. Для
каждой группы текстовых полей и для каждой видеопоследовательности про­
водилась интеграция методом ROVER, где в качестве входных данных исполь­
зовались простые текстовые строки, сформированные процедурой (3.11), при­
мененной к покадровым результатам распознавания. Порог θ значения оценки
пустого символа (3.11) и для контрольного метода ROVER и для Алгоритма 1
был равен 0.6.

На рисунке 3.3 представлены результаты работы сравниваемых алгорит­
мов для четырех групп текстовых полей набора данных MIDV-500. Можно от­
метить, что для каждой группы полей интеграция Алгоритмом 1 полных ре­
зультатов распознавания (т.е. с учетом альтернативных вариантов распознава­
ния каждого одиночного символа) достигает меньшего значения ошибки чем
интеграция методом ROVER (учитывающим только первые альтернативы рас­
познавания каждого символа), вне зависимости от длины последовательности
интегрируемых результатов.
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Рисунок 3.3 — Результаты работы алгоритмов интеграции для четырех групп
текстовых полей набора данных MIDV-500

Таблица 3 — Достигнутое расстояние между интегрированным результатом
распознавания и истинным значением без интеграции, методом ROVER и при
помощи Алгоритма 1

Метод интеграции
Номер кадра (длина последовательности интегрируемых результатов)

3 6 9 12 15 18 21 24 27

Без интеграции 0.136 0.154 0.160 0.157 0.168 0.159 0.165 0.166 0.150

Интеграция методом ROVER 0.125 0.096 0.083 0.075 0.070 0.069 0.069 0.069 0.067

Интеграция Алгоритмом 1 0.115 0.089 0.078 0.071 0.066 0.065 0.066 0.066 0.064

На рисунке 3.4 представлены результаты работы алгоритмов совместно
для всех четырех групп полей. Достигнутые средние значения расстояния меж­
ду интегрированным результатом распознавания текстового поля и его истин­
ным значениям для различных длин интегрируемого префикса видеопоследо­
вательности представлены в таблице 3.
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Рисунок 3.4 — Результаты работы алгоритмов интеграции для текстовых
полей набора данных MIDV-500
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3.6 Выводы по главе

В главе была рассмотрена задача комбинирования нескольких результа­
тов распознавания строкового объекта с целью увеличения точности финально­
го результата распознавания. Была описана модель результата распознавания
строкового объекта, учитывающая альтернативные варианты классификации
одиночных объектов и был представлен алгоритм интеграции результатов рас­
познавания строковых объектов в рамках описанной модели.

По результатам проведенного экспериментального исследования можно
сделать следующие выводы:

1. Методы интеграции результатов распознавания строковых объектов
позволяют достичь значительного увеличения точности финального ре­
зультата распознавания объекта при анализе видеопоследовательности.

2. Метод ROVER, в оригинале предназначающийся для комбинирования
результатов распознавания одного и того же образа объекта нескольки­
ми алгоритмами распознавания, применим также для комбинирования
результатов распознавания различных образов одного и того же объек­
та с использованием единого модуля распознавания.

3. И метод ROVER, принимающий на вход результаты распознавания
строковых объектов в виде строк над множеством 𝐶 классов значе­
ния одиночных объектов, так и Алгоритм 1, принимающий на вход
результаты распознавания строковых объектов в расширенной моде­
ли (3.9), показывают значительное улучшение точности интегрирован­
ного результата при увеличении количества использованных кадров.
В задаче распознавания текстовых полей документов, удостоверяющих
личность, Алгоритм 1 показывает более высокую точность работы, чем
прямое применение алгоритма ROVER.

4. По форме графиков зависимости расстояния между интегрированным
результатом и истинным значением от количества использованных кад­
ров (см. рис. 3.3 и 3.4) можно судить о том, что интеграция обладает
свойством убывающей доходности (согласно терминологии алгоритмов
«anytime» [102]). Это свойство является важным для решения задачи
останова распознавания объекта в видеопоследовательности.



72

Глава 4. Задача останова процесса распознавания объекта в
видеопотоке

4.1 Введение

Помимо задачи интеграции результатов распознавания объекта в услови­
ях множественных наблюдений, при обработке видеопотока возникает задача
оптимального останова. Проблема останова особенно актуальна применитель­
но к системам компьютерного зрения, производящим распознавания объектов
в реальном времени на мобильном устройстве [99]. В таких системах время
получения результата распознавания зачастую так же важно, как и точность
результата.

В данной главе будет рассмотрена задача останова процесса распознава­
ния объекта в видеопотоке. В разделе 4.2 предлагается формальная постановка
задачи останова распознавания объекта в видеопотоке как задачи принятия ре­
шения об останове итеративного процесса, в предположении, что оценки уверен­
ности результатов распознавания недоступны. В разделе 4.3 описываются свой­
ства монотонных задач останова, и в разделе 4.4 предлагается метод решения
задачи в представленной постановке, путем ее сведения к монотонной задаче.
В разделе 4.5 приводятся результаты экспериментального исследования, демон­
стрирующие эффективность предложенного метода для задачи распознавания
текстового поля документа.

4.2 Формальная постановка задачи

Рассмотрим задачу распознавания объекта в видеопотоке. Пусть X обозна­
чает множество всевозможных значений распознаваемого объекта (к примеру,
множество строк над некоторым фиксированным алфавитом в случае распозна­
вания текстовых полей), с заданной на нем метрикой ρ : X×X → [0,+∞). В ви­
деопотоке производится распознавание объекта с истинным значением 𝑋* ∈ X.
Процесс распознавания предполагает, что последовательность случайных ре­
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зультатов распознавания X = (𝑋1, 𝑋2, . . .) наблюдается лицом, принимающим
решение, один результат за один шаг процесса, и каждое наблюдение 𝑥𝑖 ∈ X
является реализацией 𝑋𝑖. Будем считать, что 𝑋1,𝑋2, . . . имеют одинаковое сов­
местное распределение с 𝑋*. В рамках данной постановки мы предполагаем,
что оценки достоверности результатов распознавания объекта недоступны.

Определим также семейство функций интеграции нескольких результатов
распознавания, возвращающих в качестве значения единый интегрированный
результат: 𝑅(𝑛) : X𝑛 → X. В любой момент 𝑛 доступны результаты наблюде­
ния 𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛 и может быть получен интегрированный результат
𝑅𝑛 = 𝑅(𝑛)(𝑥1, . . . ,𝑥𝑛). Процесс может быть остановлен в любое время 𝑛 > 0 со
следующей функцией штрафа:

𝑐𝑒 · ρ(𝑅𝑛, 𝑋
*) + 𝑐𝑓 · 𝑛, (4.1)

где 𝑐𝑒 > 0 обозначает стоимость ошибки распознавания в терминах расстояния
до истинного значения, а 𝑐𝑓 > 0 обозначает стоимость каждого наблюдения. По­
скольку 𝑐𝑒 и 𝑐𝑓 являются положительными константами, без изменения структу­
ры задачи оптимизации функция штрафа может быть определена следующим
образом:

𝐿𝑛
def
= ρ(𝑅𝑛, 𝑋

*) + 𝑐 · 𝑛, 𝑐 = 𝑐𝑓/𝑐𝑒. (4.2)

Значение функции штрафа при останове на шаге 𝑛 = 0 (т.е. в случае, если
ни одного наблюдения не было получено) можно считать бесконечным.

Задача состоит в выборе шага, на котором следует остановить процесс
наблюдения так, чтобы минимизировать ожидаемый штраф. Формализуем эту
постановку при помощи нотации, используемой в [106]. Правило останова может
быть определено как последовательность функций:

Φ
def
= (ϕ0,ϕ1(𝑥1),ϕ2(𝑥1, 𝑥2),ϕ3(𝑥1, 𝑥2, 𝑥3), . . .) , (4.3)

где ∀𝑛 : 0 6 ϕ𝑛(𝑥1, . . . , 𝑥𝑛) 6 1. Функция ϕ𝑛(𝑥1, . . . ,𝑥𝑛) отражает условную
вероятность останова на шаге 𝑛 при условии, что шаг 𝑛 был достигнут (т.е. при
условии полученных наблюдений 𝑋1 = 𝑥1, . . . ,𝑋𝑛 = 𝑥𝑛).

Пользуясь правилом останова Φ и последовательность наблюдений
X можно определить случайное время останова 𝑁 . Обозначим через
𝑃 (𝑁 = 𝑛 | X = (𝑥1,𝑥2, . . .)) функцию вероятности останова на шаге 𝑛

при заданной последовательности наблюдений X. Эта функция выражается
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через правило останова Φ (4.3) следующим образом:

𝑃 (𝑁 = 0 | X = (𝑥1, 𝑥2, . . .)) = ϕ0,

𝑃 (𝑁 = 𝑛 | X = (𝑥1, 𝑥2, . . .)) = ϕ𝑛(𝑥1, . . . ,𝑥𝑛)×

×
𝑛−1∏︁
𝑗=1

(1−ϕ𝑗(𝑥1, . . . ,𝑥𝑗)) ∀𝑛 ∈ {1,2, . . .},

𝑃 (𝑁 =∞ | X = (𝑥1, 𝑥2, . . .)) = 1−
∞∑︁
𝑗=0

𝑃 (𝑁 = 𝑗 | X = (𝑥1, 𝑥2, . . .)).

(4.4)

В обратную сторону, при заданном случайном времени останова 𝑁 пра­
вило останова для 𝑛 ∈ {0,1, . . .} также может быть выражено в виде условной
вероятности останова на шаге 𝑛 при заданной последовательности наблюдений
X и при условии, что процесс не останавливался на более ранних шагах:

ϕ𝑛(𝑋1, . . . ,𝑋𝑛) = 𝑃 (𝑁 = 𝑛|𝑁 > 𝑛,X = (𝑥1,𝑥2, . . .)). (4.5)

Задача состоит в выборе правила останова Φ, доставляющего минимум
функционалу ожидаемого убытка 𝑉 (Φ), который может быть выражен следу­
ющим образом:

𝑉 (Φ) = E(𝐿𝑁(𝑋1, . . . ,𝑋𝑁)) (4.6)

4.3 Оптимальный останов и монотонные задачи останова

4.3.1 Оптимальное правило останова

Поскольку метрика ρ не может принимать отрицательных значений,
∀𝑛 : 𝐿𝑛 > 𝑐 · 𝑛, а также поскольку 𝑐 является положительной константой,
верны следующие утверждения:

E(inf
𝑛
𝐿𝑛) > −∞,

lim
𝑛→∞

𝐿𝑛 > 𝐿∞
(4.7)
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В случае, если утверждения (4.7) верны можно показать [105; 106], что
оптимальное правило останова существует и следует принципу оптимальности.

Обозначим через 𝑉 *𝑛 минимальный ожидаемый убыток при любом прави­
ле останова 𝑁 таком, что 𝑃 (𝑁 > 𝑛) = 1, т.е. при любом правиле останова,
достигающем шага 𝑛:

𝑉 *𝑛 (𝑥1, . . . ,𝑥𝑛) = ess inf
𝑁>𝑛

E𝑛(𝐿𝑁), (4.8)

где под E𝑛(·) для краткости подразумевается условное ожидание при заданном
наборе наблюдений вплоть до 𝑛-го шага E( · | 𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛). В (4.8)
используется существенный инфимум, поскольку в общем случае существует
более чем счетное множество правил останова 𝑁 > 𝑛 и инфимум несчетного
множества случайных величин может быть неизмерим [106]. Таким образом,
(4.8) означает, что 𝑃 (𝑉 *𝑛 (𝑥1, . . . ,𝑥𝑛) 6 E𝑛(𝐿𝑁)) = 1 для всех 𝑁 > 𝑛 и если 𝑍 –
любая другая случайная величина, такая, что ∀𝑁 > 𝑛 : 𝑃 (𝑍 6 E𝑛(𝐿𝑁)) = 1,
то 𝑃 (𝑍 6 𝑉 *𝑛 (𝑥1, . . . ,𝑥𝑛)) = 1.

Принцип оптимальности предполагает, что принимать решение об остано­
ве на шаге 𝑛 оптимально тогда и только тогда, когда убыток в таком случае
равен минимальному ожидаемому убытку для всех правил останова, достигаю­
щих шага 𝑛. Связь между минимальным ожидаемым убытком для всех правил
останова 𝑁 > 𝑛 и для всех правил останова, не останавливающихся на ша­
ге 𝑛 (т.е., достигающих шага 𝑛 + 1) может быть выражена в виде равенства
оптимальности:

𝑉 *𝑛 = min{𝐿𝑛,E𝑛(𝑉 *𝑛+1)}. (4.9)

Пользуясь утверждениями (4.7) может быть доказано [106], что равен­
ство (4.9) выполняется и что следующее правило останова является оптималь­
ным:

𝑁 * = min{𝑛 > 0 : 𝐿𝑛 6 E𝑛(𝑉 *𝑛+1)}. (4.10)

Другими словами, принцип оптимальности определяет правило (4.10),
останавливающее процесс распознавания на первом шаге 𝑛, таком, что убы­
ток при останове на нем не превышает ожидаемый убыток при любом правиле
останова, который достигает шага 𝑛.
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4.3.2 Монотонные задачи останова

Особый класс задач останова, класс монотонных задач [106; 116], опре­
деляется следующим образом. Пусть 𝐴𝑛 обозначает событие {𝐿𝑛 6 E𝑛(𝐿𝑛+1)}.
Задача останова называется монотонной, если выполняется:

𝐴0 ⊂ 𝐴1 ⊂ 𝐴2 ⊂ . . . . (4.11)

Условие (4.11) означает, что если на каком-то шаге 𝑛 значение функции
убытка не превосходит ожидаемый убыток на следующем шаге, то это же будет
верно и на всех последующих шагах.

Рассмотрим следующее правило останова, которое носит название «близо­
рукого правила» («myopic rule», «one-stage look-ahead rule»):

𝑁𝐴 = min{𝑛 > 0 : 𝐿𝑛 6 E𝑛(𝐿𝑛+1)}. (4.12)

Правило 𝑁𝐴 останавливает процесс на шаге 𝑛 если текущее значение функ­
ции убытка не превосходит значения убытка при останове на шаге 𝑛+1. Можно
показать [106; 116], что в случае, если задача останова монотонна и если у нее
существует конечный горизонт (т.е. для некоторого фиксированного 𝑇 < ∞
все правила останова должны останавливаться на шаге 𝑇 ), тогда близорукое
правило (4.12) является оптимальным.

Для построения правила останова процесса распознавания объекта в ви­
деопотоке в следующем разделе будут сформулированы условия, при которых
задача можно считать монотонной, по крайней мере начиная с некоторого шага,
и будет предложено правило останова, аппроксимирующее поведение близору­
кого правила (4.12).

4.4 Предлагаемый метод

Сформулируем следующее требование к функциям интеграции 𝑅(𝑛): ожи­
даемое расстояние между двумя соседними интегрированными результатами
распознавания не возрастает со временем:

E(ρ(𝑅𝑛,𝑅𝑛+1)) > E(ρ(𝑅𝑛+1, 𝑅𝑛+2)) ∀𝑛 > 0. (4.13)
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В терминологии алгоритмов «anytime» [102] требование (4.13) означает,
что задача обладает свойством убывающей доходности. Пользуясь таким пред­
положением о функциях интеграции 𝑅(𝑛) можно показать, что задача останова
(4.6) с функцией убытка (4.2) становится монотонной начиная с некоторого ша­
га.

Действительно, обозначим через 𝐵𝑛 событие {E𝑛(ρ(𝑅𝑛, 𝑅𝑛+1)) 6 𝑐} и рас­
смотрим задачу останова (4.6) начиная с шага 𝑛, на котором событие 𝐵𝑛 впер­
вые произошло. События, рассматриваемые в условии монотонности (4.11) при­
нимают следующий вид:

𝐴𝑛 : {ρ(𝑅𝑛, 𝑋
*) + 𝑐𝑛 6 E𝑛(ρ(𝑅𝑛+1,𝑋

*)) + 𝑐𝑛 + 𝑐} =

= {ρ(𝑅𝑛, 𝑋
*)− E𝑛(ρ(𝑅𝑛+1, 𝑋

*)) 6 𝑐}.
(4.14)

При фиксированном 𝑋*, на шаге 𝑛, пользуясь неравенством треугольни­
ка можно получить соотношение между расстоянием от текущего результата
распознавания до истинного значения, ожидаемым расстоянием до результата
на следующем шаге и ожидаемым расстоянием от следующего результата до
истинного значения:

ρ(𝑅𝑛, 𝑋
*) 6 E𝑛(ρ(𝑅𝑛, 𝑅𝑛+1)) + E𝑛(ρ(𝑅𝑛+1, 𝑋

*))⇒
⇒ ρ(𝑅𝑛, 𝑋

*)− E𝑛(ρ(𝑅𝑛+1, 𝑋
*)) 6 E𝑛(ρ(𝑅𝑛, 𝑅𝑛+1)).

(4.15)

Если правая часть неравенства, полученного в (4.15) не превышает кон­
станты 𝑐, то и левая часть также не превышает 𝑐, и, следовательно, если про­
исходит событие 𝐵𝑛, то и событие 𝐴𝑛 (4.14) также должно произойти. Более
того, используя предположение (4.13) мы можем получить, что если событие
𝐵𝑛 произойдет, то и событие 𝐵𝑛+1 также произойдет. Таким образом,

∀𝑛 > 0 : 𝐵𝑛 ⊂ 𝐴𝑛, 𝐵𝑛 ⊂ 𝐵𝑛+1. (4.16)

Из этого следует, что начиная с шага 𝑛, на котором событие 𝐵𝑛 произо­
шло впервые, события 𝐴𝑛, 𝐴𝑛+1, 𝐴𝑛+2 . . . также произойдут, а значит задача
останова может рассматриваться как монотонная начиная с этого шага, из чего
следует оптимальность близорукого правила (4.12) среди всех правил останова,
достигающих шага 𝑛 в случае, если задача имеет конечный горизонт.

Рассмотрим теперь правило останова, предписывающее лицу, принимаю­
щему решение, остановить процесс распознавания в случае, если произошло
событие 𝐵𝑛:

𝑁𝐵 = min{𝑛 > 0 : E𝑛(ρ(𝑅𝑛,𝑅𝑛+1)) 6 𝑐}. (4.17)
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Если правило 𝑁𝐵 требует останова на шаге 𝑛, то и правило 𝑁𝐴 потре­
бует останова на этом шаге, а поскольку задача становится монотонной начи­
ная с шага 𝑛, решение правила 𝑁𝐴 является оптимальным, а значит и опти­
мальное правило 𝑁 * также потребует останова на этом шаге. Более того, если
ρ(𝑅𝑛, 𝑋

*)−E𝑛(ρ(𝑅𝑛+1, 𝑋
*)) > 𝑐, то правило 𝑁𝐵 не останавливает процесс, так­

же как и правило 𝑁 *, следующее принципу оптимальности. Следовательно, в
случае если предположение (4.13) верно, правило 𝑁𝐵 никогда не остановится
раньше времени, и если правило требует останова, то решение об останове оп­
тимально.

Рисунок 4.1 — Разница поведений предлагаемого правила останова 𝑁𝐵

(основанного на оценке ожидаемого расстояния от текущего интегрированного
результата распознавания до следующего) и оптимального правила

останова 𝑁 *

На рисунке 4.1 графически показаны сходства и различия правил остано­
ва 𝑁𝐵 и 𝑁 * при различных соотношениях между событиями 𝐴𝑛 и 𝐵𝑛. Множе­
ство ситуаций, при которых 𝑁𝐵 продолжает процесс, а 𝑁 * может остановить
процесс, обусловлено двумя основными недостатками 𝑁𝐵:

1. Правило опирается на оценку разницы значений функции убыт­
ка используя неравенство треугольника, и, следовательно, явля­
ется неэффективным в случае, если точность интегрированных
результатов распознавания ухудшается со временем (т.е. если
ρ(𝑅𝑛, 𝑋

*)− E𝑛(ρ(𝑅𝑛+1, 𝑋
*)) < 0);
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2. Решение принимается путем порогового отсечения ожидаемого значе­
ния метрики, что в общем случае может не быть ограничено сверху.

В предлагаемом методе будем предполагать, что метрика, задаваемая на
множестве всевозможных результатов распознавания объекта, ограничена свер­
ху (т.е. ∃𝐺 : ∀𝑥,𝑦 ∈ X : 0 6 ρ(𝑥,𝑦) 6 𝐺) и что функции интеграции 𝑅(𝑛)

порождают результаты, которые в среднем не ухудшаются во времени:

E(ρ(𝑅𝑛,𝑋
*)) > E(ρ(𝑅𝑛+1,𝑋

*)) ∀𝑛 > 0. (4.18)

Тем самым, для решения задачи останова (4.6) с функционалом убытка
(4.2) предлагается использовать следующий метод:

1. Оценить ожидаемое расстояние (в терминах метрики ρ) от текущего
интегрированного результата распознавания объекта 𝑅𝑛 (известного на
шаге 𝑛) до неизвестного результата 𝑅𝑛+1 на следующем шаге;

2. Принимать решение об останове процесса на шаге 𝑛, производя поро­
говое отсечение расстояния, оцененного в пункте 1, таким образом ап­
проксимируя поведение правила 𝑁𝐵.

В общем случае выбор метода прогнозирования следующего интегриро­
ванного результата распознавания объекта (или оценки ожидаемого расстоя­
ния между ним и текущим интегрированным результатом) может зависеть от
природы функций интеграции 𝑅(𝑛) и от других специфических характеристик
задачи.

Построим на основе предложенного метода алгоритм останова процесса
распознавания строкового объекта. Пусть заданы функции интеграции резуль­
татов распознавания строкового объекта 𝑅(𝑛) (которые могут быть реализова­
ны при помощи метода ROVER или при помощи Алгоритма 1). В качестве
метрики ρ на строковых объектах предлагается использовать нормализованное
обобщенное расстояние Левенштейна [134]. Для того, чтобы аппроксимировать
поведение правила останова 𝑁𝐵, на 𝑛-м шаге процесса необходимо вычислять
оценку ожидаемого расстояния между соседними интегрированными резуль­
татами распознавания ∆𝑛

def
= E𝑛(ρ(𝑅𝑛, 𝑅𝑛+1)), имея доступ к наблюдениям

𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛. Для вычисления оценки предлагается провести модели­
рование следующего интегрированного результата исходя из предположения,
что новое наблюдение будет близко к уже полученным на предыдущих шагах
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наблюдениям:

∆̂𝑛
def
=

1

𝑛 + 1

(︃
δ+

𝑛∑︁
𝑖=1

ρ(𝑅𝑛, 𝑅(𝑥1,𝑥2, . . . ,𝑥𝑛,𝑥𝑖))

)︃
, (4.19)

где δ – внешний настраиваемый параметр.
В форме псевдокода алгоритм останова процесса распознавания стро­

кового объекта представлен как Алгоритм 2. При использовании модели ре­
зультата распознавания строкового объекта с альтернативными вариантами
классификации одиночных объектов, рассмотренной в третьей главе, верхняя
оценка длин интегрированных результатов 𝑅𝑛 и 𝑅𝑛+1 составляет 𝑂(𝑀𝑛), где
𝑀 = max𝑛

𝑖=1 |𝑋𝑖|. Поскольку трудоемкость прямого вычисления обобщенного
расстояния Левенштейна между строками 𝑋 и 𝑌 составляет 𝑂(|𝑋| · |𝑌 | · 𝐾),
где 𝐾 – количество классов, на которое происходит классификация каждого
одиночного объекта, трудоемкость Алгоритма 2 составляет 𝑂(𝑀 2𝑛3𝐾). Сле­
дует отметить, что трудоемкость алгоритма может быть снижена как путем
использования упрощенных моделей результата распознавания строкового объ­
екта, так и при помощи эвристических алгоритмов приближенного вычисления
обобщенного расстояния Левенштейна.

Алгоритм 2 Алгоритм принятия решения об останове процесса распознавания
строкового объекта на основе полученных наблюдений 𝑋1, 𝑋2, . . . , 𝑋𝑛, их весов
𝑤1, 𝑤2, . . . , 𝑤𝑛, а также внешних параметров δ и 𝑐
Require: 𝑛 > 0 and ∀𝑖 ∈ {1, . . . , 𝑛} : |𝑋𝑖| > 0

1: 𝑅𝑛 ← 𝑅(𝑛)(𝑋1, 𝑋2, . . . , 𝑋𝑛, 𝑤1, 𝑤2, . . . , 𝑤𝑛) {интегрированный результат на шаге 𝑛}
2: 𝑊𝑛 ←

∑︀𝑛
𝑖=1𝑤𝑖 {суммарный вес наблюдений на шаге 𝑛}

3: Δ̂𝑛 ← δ

4: for 𝑖 = 1 to 𝑛 do
5: 𝑅𝑛+1 ← 𝑅(2)(𝑅𝑛, 𝑋𝑖,𝑊𝑛, 𝑤𝑖)

6: Δ̂𝑛 ← Δ̂𝑛 + ρ𝐿(𝑅𝑛+1, 𝑅𝑛)

7: end for
8: Δ̂𝑛 ← Δ̂𝑛/(𝑛+ 1)

9: if Δ̂𝑛 6 𝑐 then
10: return ОСТАНОВ
11: else
12: return ПРОДОЛЖИТЬ ПРОЦЕСС
13: end if
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4.5 Экспериментальные результаты

В данном разделе будут продемонстрированы результаты эксперименталь­
ного исследования метода останова процесса распознавания объекта в видеопо­
токе, представленного в разделе 4.4. В качестве объекта распознавания рассмат­
ривается текстовое поля документа, удостоверяющего личность. В простейшем
случае результат распознавания текстового поля (элемент множества X) можно
представить виде строки над некоторым фиксированным алфавитом.

Для того, чтобы применить модель, описанную в разделе 4.2, необходимо
определить метрику ρ и функции интеграции 𝑅(𝑛) для множества строк X. В
качестве метрики на множестве строк, также как и в экспериментальном иссле­
довании, представленном в главе 3 (см. раздел 3.5), предлагается использовать
нормализованное расстояние Левенштейна [134]:

ρ𝐿(𝑥,𝑦)
def
=

2 · levenshtein(𝑥,𝑦)

|𝑥|+ |𝑦|+ levenshtein(𝑥,𝑦)
, (4.20)

где |𝑥| — длина строки 𝑥, и levenshtein(𝑥,𝑦) — расстояние Левенштейна между
строками 𝑥 и 𝑦. Значения этой метрики заключены в отрезке [0, 1] и ее норма­
лизация выполнена с сохранением неравенства треугольника.

В качестве функций интеграции 𝑅(𝑛) использовался алгоритм ROVER [87],
описание которого приведено в разделе 3.3. Для имплементации метода требует­
ся ввести порог θ оценки пустого класса, учитывающийся в модуле голосования.
В проведенных экспериментах, так же как и в экспериментальной части главы 3
(см. раздел 3.5), использовалось значение порога θ = 0.6.

Экспериментальное исследование проводилось на открытом пакете дан­
ных MIDV-500 [88], содержащем видеоролики 50 документов, удостоверяющих
личность, различных типов (по 10 видеороликов для каждого документа, по 30
кадров в видеоролике) с размеченными идеальными позициями и значениями
текстовых полей. Были проанализированы 4 группы полей: даты, записанные
цифрами и знаками препинания, номер документа, строки машиночитаемой зо­
ны (MRZ, Machine-Readable Zone) и компоненты имени держателя документы,
записанные латинским алфавитом.

Рассматривались только кадры, на которых документ целиком присут­
ствует в кадре (следовательно видеопоследовательности в рассматриваемом
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подмножестве пакета данных имели разную длину, от 1 до 30 кадров). Для
того, чтобы минимизировать эффекты нормализации и обеспечить более ясное
представление результатов, каждый клип был дополнен до 30 кадров путем по­
вторения клипа с начала (таким образом, все анализируемые клипы имели одну
и ту же длину 30).

Каждое поле вырезалось из исходного изображения при помощи проек­
тивного преобразования, согласно совместной разметке идеальных границ до­
кумента и координат текстового поля, с добавленными отступами, равными
10% от наименьшей стороны текстового поля. Размер вырезаемых изображений
текстовых полей соответствовал разрешению 300 точек на дюйм. Каждое выре­
занное текстовое поле распознавалось при помощи библиотеки распознавания
с открытым исходным кодом Tesseract (версии 3.05.01 и 4.0.0) [138] используя
параметры по умолчанию для английского языка. Все сравнения значений сим­
волов проводились вне зависимости от регистра, а также латинская буква «O»
считалась идентичной цифре «0».

В таблице 4 для каждой группы текстовых полей приведены количество
уникальных полей в пакете данных MIDV-500, общее количество изображений
текстовых полей (среди всех кадров, на которых документ целиком присутству­
ет в кадре), а также средняя длина последовательности кадров. Таблица 4 так­
же приводит среднее расстояние между результатом 𝑋𝑖 распознавания одиноч­
ного кадра и истинным значением 𝑋*, и между интегрированным результатом
для видеоролика и истинным значением 𝑋* перед дополнением (𝑅last) и после
дополнения (𝑅30), в терминах метрики ρ𝐿 (4.20).

На рисунке 4.2 проиллюстрированы средние расстояния, по метрике ρ𝐿
(4.20), от интегрированных результатов распознавания текстовой строки в ви­
деопотоке до истинного значения, при анализе использовались все текстовые
поля. Можно заметить, что ошибка значительно уменьшается во времени для
всех групп полей, что может рассматриваться как практическое обоснование
предположения (4.18).

На рисунке 4.3 продемонстрировано убывание разницы между расстоя­
ниями от соседних интегрированных результатов распознавания до истинного
значения (E(ρ(𝑅𝑛,𝑋

*)) − E(ρ(𝑅𝑛+1,𝑋
*))) во времени, среднего расстояния ∆𝑛

между соседними интегрированными результатами распознавания и его оцен­
ки ∆̂𝑛 (4.19). В проведенных экспериментах использовалось значение настраи­
ваемого параметра (4.19) δ = 0.2. Хотя правило останова 𝑁𝐵 (4.17) является
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Таблица 4 — Средние значения метрики ρ𝐿 до истинных значений для
результатов распознавания при помощи библиотеки Tesseract [138] текстовых
полей пакета данных MIDV-500 [88]. 𝑋𝑖 – результат распознавания одиночного
кадра, 𝑅last – интегрированный результат распознавания видеоролика,
полученный при помощи модификации алгоритма ROVER, 𝑅30 –
интегрированный результат распознавания дополненного видеоролика,
полученный при помощи модификации алгоритма ROVER

Дата
Номер
документа

Строки
MRZ

Имя
(латиница)

Все
поля

Уникальных полей 91 48 30 79 248
Всего клипов 824 436 260 719 2239
Всего изображений 17735 9329 5096 15587 47747
Средняя длина клипа 21.523 21.397 19.600 21.679 21.325
Tesseract v3.05.01:
E(ρ𝐿(𝑋𝑖, 𝑋

*)) 0.360 0.422 0.258 0.443 0.388
E(ρ𝐿(𝑅last, 𝑋

*)) 0.244 0.326 0.162 0.338 0.281
E(ρ𝐿(𝑅30, 𝑋

*)) 0.246 0.323 0.164 0.336 0.280
Tesseract v4.0.0:
E(ρ𝐿(𝑋𝑖, 𝑋

*)) 0.238 0.287 0.339 0.250 0.262
E(ρ𝐿(𝑅last, 𝑋

*)) 0.123 0.160 0.277 0.125 0.149
E(ρ𝐿(𝑅30, 𝑋

*)) 0.125 0.163 0.279 0.127 0.151

грубой аппроксимацией близорукого правила 𝑁𝐴 (4.12), однако можно отметить
как практическую обоснованность предположения (4.13), так и обоснованность
оценки ∆̂𝑛 (4.19) начиная с шага 𝑛 = 2, для целей поставленной задачи. Аппрок­
симацию правила останова 𝑁𝐵 теперь будем строить при помощи порогового
отсечения оценки ∆̂𝑛.

Для того, чтобы оценить эффективность правила останова может быть по­
строен профиль эффективности, графически показывающий зависимость сред­
него количества обработанных наблюдений и соответствующего среднего рас­
стояния от полученного интегрированного результата в момент останова до ис­
тинного значения, варьируя стоимость наблюдения 𝑐. Подобный профиль эф­
фективности отражает размен между временем, необходимым для обработки
видеопоследовательности, и точностью полученного результата распознавания,
а также позволяет визуально сравнить различные стратегии останова.
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Рисунок 4.2 — Средние расстояния от покадрового результата распознавания
текстовой строки и от интегрированного результата распознавания в

видеопотоке до истинного значения, по метрике ρ𝐿 (4.20). Распознавание
текстовых полей производилось при помощи библиотеки

Tesseract v3.05.01 (слева) и v4.0.0 (справа)

В качестве контрольного правила использовалось простое правило под­
счета 𝑁𝐾 , которое требует останавливать процесс распознавания на фиксиро­
ванном шаге 𝐾. Дополнительно исследовались два варианта правила останова,
описанных в [139]. Поскольку оригинальная работа опирается на использова­
ние показателей уверенности результата распознавания, которые недоступны в
рамках исследуемой в этой главе модели, правило останова, описанное в [139],
вырождается в пороговое отсечение размера наибольшего кластера идентичных
результатов распознавания, накопленных к моменту 𝑛. Таким образом, постро­
ено два контрольных правила останова: 𝑁𝐶𝑋 , производящий пороговое отсече­
ние размера наибольшего кластера идентичных результатов покадрового рас­
познавания 𝑥1, . . . , 𝑥𝑛, и 𝑁𝐶𝑅, аналогично рассматривающий интегрированные
результаты распознавания 𝑅1, . . . , 𝑅𝑛. Наконец, правило останова 𝑁𝐵 (4.17), по­
строенное в данной главе, оценивающее на шаге 𝑛 ожидаемое расстояние ∆𝑛 до
следующего интегрированного результата и останавливающее процесс в момент,
когда эта оценка становится меньше или равной порогу. Правило останова 𝑁𝐵

действует только начиная с шага 𝑛 = 2 (т.е. с шага, на котором оценка ∆̂𝑛 (4.19)
становится более обоснованной).
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Рисунок 4.3 — Убывание среднего расстояния между соседними
интегрированными результатами распознавания и его оценка, при значении

настраиваемого параметра δ = 0.2. Распознавание текстовых полей
производилось при помощи библиотеки

Tesseract v3.05.01 (слева) и v4.0.0 (справа)

Рисунок 4.4 иллюстрирует эффективность правил останова для всех групп
текстовых полей, распознаваемых при помощи библиотеки Tesseract (версии
3.05.01 и 4.0.0). Более низкое положение кривой отражает большую эффектив­
ность правила останова. Можно отметить, что с среднем предлагаемое правило
останова 𝑁𝐵 (4.17) обладает большей эффективностью, чем другие исследован­
ные методы. Стоит отметить, что метод останова 𝑁𝐵 (4.17) обладает высокой
эффективностью без каких-либо модификаций для двух различных версий биб­
лиотеки Tesseract, использующих различные поколения алгоритмов распозна­
вания текстовой строки.

В таблице 5 показано среднее расстояние от интегрированного результата
до правильного ответа в момент останова, которое может быть достигнуто при
помощи исследованных правил останова, при распознавании текстовых полей
при помощи библиотеки Tesseract v3.05.01. Колонки таблицы 5 отражают целе­
вые интервалы для значений среднего количество использованных наблюдений
(т.е. среднего количества обработанных кадров), строки таблицы соответствуют
правилам останова, и каждая ячейка содержит результат замера с наименьшим
средним количеством наблюдений, попадающим в данный интервал. Некоторые
ячейки таблицы не содержат данных (помечены символом ∅) – это означает, что
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Рисунок 4.4 — Сравнительное исследование эффективности правил останова:
график зависимости среднего расстояния между полученным результатом в

момент останова и истинным значением от среднего количества обработанных
кадров до останова, при изменяющейся стоимости наблюдения 𝑐, при

значении настраиваемого параметра δ = 0.2. Распознавание текстовых полей
производилось при помощи библиотеки

Tesseract v3.05.01 (слева) и v4.0.0 (справа)

соответствующее правило останова не способно достичь среднего количества об­
работанных кадров в соответствующем интервале для рассматриваемого набора
входных данных (поскольку обладает более дискретной природой). Можно сде­
лать вывод, что почти во всех целевых интервалах правило останова 𝑁𝐵 (4.17)
показывает лучший результат среди исследуемых альтернатив. Подобный ре­
зультат также наблюдается при распознавании текстовых полей при помощи
библиотеки Tesseract v4.0.0 (результаты представлены в таблице 6).

Профили эффективности правил останова для отдельных групп полей
(Дата, Номер документа, MRZ строка, Имя (латиница)) представлены на ри­
сунке 4.5.
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Рисунок 4.5 — Профили эффективности правил останова, для различных
групп полей. Распознавание текстовых полей производилось при помощи

библиотеки Tesseract v3.05.01 (слева) и v4.0.0 (справа)
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Таблица 5 — Достигнутые значения среднего расстояния от интегрированного
результата до идеального значения в момент останова, в терминах метрики
ρ𝐿, распознавание проводилось при помощи Tesseract v3.05.01

Правило
останова

Измеряемый
параметр

Целевой интервал среднего количества наблюдений 𝐸(𝑁)

3± 0.5 4± 0.5 5± 0.5 6± 0.5 7± 0.5 8± 0.5 9± 0.5 10± 0.5 11± 0.5

𝑁𝐶𝑋

E(𝑁)
∅ ∅ ∅ ∅ ∅

7.727
∅ ∅ ∅

E(ρ𝐿(𝑅𝑁 , 𝑋
*)) 0.298

𝑁𝐶𝑅

E(𝑁) 3.230
∅ ∅

5.909
∅

8.375
∅ ∅

10.560

E(ρ𝐿(𝑅𝑁 , 𝑋
*)) 0.329 0.306 0.292 0.286

𝑁𝐾

E(𝑁) 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000

E(ρ𝐿(𝑅𝑁 , 𝑋
*)) 0.347 0.329 0.315 0.308 0.300 0.295 0.294 0.288 0.287

𝑁𝐵

E(𝑁) 2.509 3.558 4.527 5.521 6.531 7.691 8.554 9.715 10.830

E(ρ𝐿(𝑅𝑁 , 𝑋
*)) 0.351 0.322 0.302 0.292 0.285 0.282 0.280 0.278 0.278

Таблица 6 — Достигнутые значения среднего расстояния от интегрированного
результата до идеального значения в момент останова, в терминах метрики
ρ𝐿, распознавание проводилось при помощи Tesseract v4.0.0

Правило
останова

Измеряемый
параметр

Целевой интервал среднего количества наблюдений 𝐸(𝑁)

3± 0.5 4± 0.5 5± 0.5 6± 0.5 7± 0.5 8± 0.5 9± 0.5 10± 0.5 11± 0.5

𝑁𝐶𝑋

E(𝑁)
∅ ∅

5.332
∅ ∅

8.471
∅ ∅

10.901

E(ρ𝐿(𝑅𝑁 , 𝑋
*)) 0.195 0.170 0.162

𝑁𝐶𝑅

E(𝑁) 2.936
∅

5.099
∅

6.920
∅

8.594 10.103
∅

E(ρ𝐿(𝑅𝑁 , 𝑋
*)) 0.227 0.201 0.180 0.167 0.164

𝑁𝐾

E(𝑁) 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000

E(ρ𝐿(𝑅𝑁 , 𝑋
*)) 0.237 0.213 0.197 0.191 0.185 0.180 0.178 0.171 0.171

𝑁𝐵

E(𝑁) 2.580 3.551 4.571 5.539 6.683 7.742 8.771 9.779 10.726

E(ρ𝐿(𝑅𝑁 , 𝑋
*)) 0.224 0.188 0.174 0.165 0.161 0.161 0.158 0.158 0.157
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4.6 Выводы по главе

В главе была рассмотрена задача останова процесса распознавания объек­
та в видеопотоке, что является важной и новой задачей, особенно актуальной
при разработке систем оптического распознавания, предназначенных для рабо­
ты на мобильном устройстве. Была предложена формальная постановка задачи,
следующая классической формулировке задачи останова и предложен метод,
рассматривающий процесс распознавания объекта в видеопотоке как процесс,
останов в котором становится монотонным начиная с определенного шага.

На основе предложенного метода был разработан алгоритм останова про­
цесса распознавания строкового объекта в видеопотоке, в котором оценка рас­
стояния между текущим и следующим интегрированными результатами вычис­
ляется путем моделирования следующего интегрированного результата с ис­
пользованием уже накопленных наблюдений.

Метод был экспериментально апробирован в задаче распознавания тексто­
вых полей документов, удостоверяющих личность, на открытом пакете данных
MIDV-500 и с использованием широко доступной библиотеки распознавания
текстовых полей Tesseract с открытым исходным кодом. Было продемонстриро­
вано, что предложенное правило останова является более эффективным, чем
пороговое отсечение количества обработанных кадров или пороговое отсечение
размеров максимального кластера идентичных результатов, несмотря на то, что
в модели не участвуют оценки уверенности результатов распознавания.
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Заключение

Основные результаты работы заключаются в следующем.
1. Построена математическая модель системы распознавания объекта в ви­

деопотоке с блоком комбинирования покадровых результатов распознавания и
с блоком принятия решения об останове. В качестве функционала эффективно­
сти системы была рассмотрена линейная комбинация расстояния от интегриро­
ванного результата распознавания до истинного значения объекта и штрафной
функции от времени от момента начала процесса съемки до останова. Данная
модель позволяет рассматривать систему распознавания объекта в видеопотоке
как итерационный вычислительный процесс, который способен выдать в любое
время наилучшее на данный момент решение, и прекратить захват новых изоб­
ражений согласно заданному правилу останова.

2. Выполнено оригинальное исследование влияния характеристик вход­
ных данных на выбор оптимальной стратегии комбинирования покадровых ре­
зультатов классификации в рамках задачи распознавания одиночного символа
в видеопотоке. Показано, что если в последовательности обрабатываемых изоб­
ражениях одиночного изображения отсутствуют ошибки предварительной обра­
ботки (такие, как ошибки локализации и сегментации символов), более высокую
точность финального результата обеспечивает правило максимальной оценки.
Для видеопоследовательностей, в которых встречаются ошибки локализации и
сегментации символов, более высокую точность финального результата обеспе­
чивают правила произведения оценок, правило голосования и правило суммы
оценок.

3. Разработан новый алгоритм комбинирования результатов распознава­
ния строкового объекта, учитывающий альтернативные варианты классифика­
ции отдельных символов (компонентов строкового объекта). Экспериментально
показано, что предложенный алгоритм способен обеспечить более высокую точ­
ность интегрированного результата по сравнению с методом интеграции резуль­
татов распознавания как строк над множеством классов значений компонентов,
применительно к задаче распознавания текстовой строки в видеопотоке.

4. Была рассмотрена задача останова процесса распознавания объекта в
видеопотоке, что является важной и новой задачей, особенно актуальной при
разработке систем оптического распознавания, предназначенных для работы на



91

Таблица 7 — Достигнутые наилучшие значения среднего расстояния от
интегрированного результата до идеального значения в момент останова;
результаты распознавания интегрированы при помощи Алгоритма 1

Метод
останова

Наилучшая точность при ограничении среднего числа кадров
6 3 6 4 6 5 6 6 6 7 6 8

𝑁𝐶𝑋 ∅ 0.083 0.080 0.078 0.073 0.072

𝑁𝐶𝑅 0.096 0.084 0.080 0.077 0.074 0.072

𝑁𝐾 0.115 0.104 0.097 0.089 0.084 0.082

Алг. 2 0.092 0.082 0.076 0.073 0.072 0.070

мобильных устройствах. Разработан новый метод останова процесса распозна­
вания объекта в видеопотоке на основе порогового отсечения оценки ожидаемо­
го расстояния между текущим и следующим интегрированными результатами.
Метод разработан исходя из предположения о том, что задача останова про­
цесса распознавания становится монотонной начиная с некоторого шага. На
основе разработанного метода предложен новый алгоритм останова процесса
распознавания строкового объекта в видеопотоке, в котором оценка вычисляет­
ся путем моделирования следующего интегрированного результата с использо­
ванием уже накопленных наблюдений. Было продемонстрировано, что в задаче
распознавания текстовых строк предложенное правило останова является более
эффективным, чем пороговое отсечение количества обработанных кадров или
пороговое отсечение размеров максимального кластера идентичных результа­
тов.

5. Совместное использование разработанных алгоритмов (Алгоритм 1 ком­
бинирования результатов распознавания строковых объектов, учитывающий
альтернативные варианты классификации символов, и Алгоритм 2 останова
процесса распознавания строки) позволяет достичь большей точности распозна­
вания при том же среднем количестве обработанных изображений. В таблице 7
показаны достигнутые наилучшие значения среднего расстояния от результа­
та до истинного значения при различных ограничениях на среднее количество
обработанных кадров, с интегрирование результатов Алгоритмом 1 и при ис­
пользовании рассмотренных алгоритмов останова, включая Алгоритм 2.

6. Результаты работы в качестве программных компонентов систем рас­
познавания документов в видеопотоке были внедрены в программное обеспече­
ние «Smart 3D OCR MRZ» и «Smart PassportReader» компании ООО «Смарт
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Энджинс РУС», а также «Smart IDReader» компании ООО «Смарт Энджинс
Сервис». Данные продукты интегрированы в информационную инфраструкту­
ру ряда коммерческих организаций, а также в ряд информационных решений
государственных структур Российской Федерации.

Основные результаты по теме диссертации изложены в 14 публикациях, в
том числе: 6 изданы в журналах, рекомендованных ВАК, 3 – в сборниках трудов
конференций (входящих в международные базы цитирования Scopus и Web of
Science), 2 патента на полезную модель и 3 свидетельства о государственной
регистрации программы для ЭВМ.
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