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Общая характеристика работы
Актуальность

Получение новых результатов во многих научных областях нераз-
рывно связано со всесторонним анализом огромных накопленных
неоднородных массивов данных с привлечением самых современных
инфраструктурных ресурсов и передовых вычислительных средств –
высокопроизводительных кластеров и дата-центров – в рамках ком-
плексных междисциплинарных исследований. Поэтому необходимо
развитие соответствующих методов, которые в последние годы рас-
сматривают в рамках отдельной дисциплины – науки о данных1.
Указанная исследовательская область находится на стыке матема-
тического моделирования, математической статистики, машинного
обучения и вычислительных алгоритмов, используемых для эффек-
тивной обработки даже неструктурированных наблюдений2.

Создание методов и алгоритмов анализа данных для эффектив-
ного использования в прикладных задачах с реализацией на совре-
менных высокопроизводительных вычислительных ресурсах зача-
стую невозможно без развития математических моделей, описыва-
ющих функционирование сложных систем и статистические законо-
мерности эволюции различных процессов в них. В рамках матема-
тического моделирования можно выявлять новые знания об объекте
на основе используемой модели (прямая задача) либо осуществить
выбор модели (оценивание неизвестных параметров) на основании
известных данных (обратная задача). Решение первой из них ориен-
тировано на выявление или прогнозирование, например, экстремаль-
ных характеристик описываемого объекта. В рамках решения вто-
рой выбирается некоторая модель, например, определяется семей-
ство (класс) вероятностных распределений, а его параметры опреде-
ляются с использованием различных статистических методов, кото-
рые разрабатываются в том числе с учетом неоднородности наблюде-
ний, особенностей аналитических процедур выбора моделей высокой
размерности и оценивания их параметров, необходимости проверки
сложных гипотез.

Процесс накопления данных зачастую протекает в условиях
неопределенности, обусловленной: а) стохастическим характером ин-
тенсивностей потоков информативных событий и взаимодействием
большого числа не поддающихся исчерпывающему прогнозированию
факторов, которые можно считать случайными; б) неоднородностью
или нестационарностью изучаемых закономерностей; в) неполнотой

1Critchlow T., Kleese van Dam K. (Eds.) Data-Intensive Science. – London, UK:
Chapman and Hall/CRC, 2013. – 446 p.

2Bzdok D., Altman N., Krzywinski M. Statistics versus machine learning //
Nature Methods, 2018. Vol. 15. Iss. 4. P. 232–233.
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получаемой информации, в частности, из-за стохастического харак-
тера поведения внешней среды. Указанные обстоятельства ведут
к необходимости изучения вероятностно-статистических характери-
стик данных, прежде всего, с использованием смешанных вероят-
ностных моделей наблюдаемых процессов. А именно, в качестве ба-
зового семейства распределений выбирается весьма широкий класс,
функция распределения которого имеет вид H(x) = EPF (x,y). Здесь
через EP обозначено математическое ожидание относительно некото-
рой вероятностной меры P, которая задает смешивающее распреде-
ление, обычно определяемое на основе анализа данных о поведении
внешних факторов (окружающей среды), F (x,y) – некоторая функ-
ция распределения со случайным вектором параметров y, называе-
мая смешиваемым распределением или ядром. Ключевым вопросом
построения подобных математических моделей является аналитиче-
ское обоснование вида ядра на основе предельных теорем теории
вероятностей и математической статистики, а также развитие мето-
дов оценивания его параметров, являющихся случайными величи-
нами. Подобная комбинация параметрических и непараметрических
методов3,4 и составляет суть развиваемых в диссертации полупара-
метрических подходов к анализу неоднородных данных.

В качестве основы для определения аналитического вида ядра и
построения смешанных моделей в диссертации использован аппарат
математической статистики для выборок случайного объема и соот-
ветствующие предельные теоремы для сумм и максимумов случай-
ных величин, а также различные возникающие при этом смешанные
распределения. Значительный вклад в развитие указанных областей
внесли российские математики, среди которых А.Н. Колмогоров5,
Б. В. Гнеденко6, И.А. Ибрагимов иЮ.В. Линник7, Ю.В. Прохоров8,
A.Н. Ширяев9, Р.Л. Добрушин10, В.М. Золотарев11, В. В. Калаш-

3Bickel P. J., Ritov Y. Non- and semiparametric statistics: compared and
contrasted // Journal of Statistical Planning and Inference, 2000. Vol. 91. Iss. 2.
P. 209–228.

4Han Z.-C., Lin J.-G., Zhao Y.-Y. Adaptive semiparametric estimation for
single index models with jumps // Computational Statistics & Data Analysis, 2020.
Vol. 151. Art. No. 107013.

5Колмогоров А.Н. Избранные труды. Том 2: Теория вероятностей и матема-
тическая статистика. – М.: Наука, 2005 –581 с.

6Гнеденко Б.В., Колмогоров А.Н. Предельные распределения для сумм неза-
висимых случайных величин. – М.-Л.: ГИТТЛ, 1949. –264 с.

7Ибрагимов И.А., Линник Ю.В. Независимые и стационарно связанные ве-
личины. – М.: Наука, 1965. – 524 с.

8Прохоров Ю.В. Избранные труды. – М.: Торус Пресс, 2012. – 775 с.
9Ширяев А.Н. Вероятность-1. – М.: МЦНМО, 2017. – 552 с.

10Добрушин Р.Л Лемма о пределе сложной случайной функции // Успехи
математических наук. – 1955. – T. 10. Вып. 2. – С. 157–159.

11Zolotarev V. Modern Theory of Summation of Random Variables. – Utrecht:
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ников12, В. В. Петров13, В.М. Круглов14, В.Ю. Королев15.
В теоремах со случайным объемом выборки в качестве предель-

ных законов для распределений сумм и максимумов или для неодно-
родных и нестационарных случайных блужданий выступают смеси
распределений, предельные в случае выборок неслучайного объема,
в том числе сдвиг-масштабные нормальные смеси. При этом удобны-
ми аппроксимациями для них как с аналитической, так и с вычисли-
тельной точек зрения являются конечные смеси15,16. Известны мно-
гочисленные применения смешанных вероятностных моделей в раз-
личных прикладных задачах: для описания процессов в турбулент-
ной плазме, при анализе финансовых данных, в процессе обработки
изображений в медицине, в ряде социологических исследований.

Одним из наиболее эффективных методов оценивания парамет-
ров смешанных моделей является итерационная процедура, называ-
емая EM-алгоритмом, которая была детально описана и исследова-
на А. Демпстером, Н. Лейрдом и Д. Рубиным17 в 1977 году. При
этом подобный метод получения оценок максимального правдоподо-
бия применялся еще в 1958 году Х. Хартли при работе с неполными
данными, но и по настоящий момент многочисленные модификации
алгоритма являются важными инструментами анализа данных18.

Различные разновидности базового метода разрабатывались в
разное время исследователями по всему миру с целью преодоления
известных недостатков классического EM-алгоритма. Построенные
на его основе процедуры используются в задачах кластеризации, ре-
грессии, обработки цензурированных и усеченных данных, оценива-
ния параметров различных распределений и процессов, в том числе
с организацией параллельных вычислительных алгоритмов и обуче-
нием нейронных сетей. Однако в процессе модификации обычно со-
храняется общий принцип наличия E- (от expectation) и M-шагов

VSP, 1997. – 412 p.
12Kalashnikov V. Geometric Sums: Bounds for Rare Events with Applications. –

Dordrecht: Kluwer Academic Publishers, 1997, 270 p.
13Петров В.В. Суммы независимых случайных величин. – М.: Наука, 1972. –

416 с.
14Круглов В.М., Королев В.Ю. Предельные теоремы для случайных сумм. –

М.: Издательство Московского университета, 1990. – 269 с.
15Королев В.Ю. Вероятностно-статистические методы декомпозиции вола-

тильности хаотических процессов. – М.: Издательство Московского универси-
тета, 2011. – 512 с.

16McLachlan G. J., Lee S.X., Rathnayake S. I. Finite Mixture Models // Annual
Review of Statistics and Its Application, 2019. Vol. 6. P. 355–378.

17Dempster A., Laird N., Rubin D. Maximum likelihood estimation from
incompleted data // Journal of the Royal Statistical Society. Series B, 1977. Vol. 39.
Iss. 1. P. 1–38.

18Wu X., Kumar V., Quinlan J., et al. Top 10 algorithms in data mining //
Knowledge and Information Systems, 2008. Vol. 14. Iss. 1. P. 1–37.
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(от maximization). Например, в стохастическом (SEM) варианте ал-
горитма19,20 вводится дополнительный S-этап (от stochastic). Он
предназначен, в частности, для противодействия свойству жадно-
сти классического алгоритма – а именно, выбору методом в качестве
оценки локального максимума, который расположен наиболее близ-
ко к начальному приближению, но может не являться глобальным.
Именно данная модификация использована для оценивания пара-
метров в слоях глубокой смешанной гауссовской модели, предложен-
ной в статье21 Дж.МакЛахлана, одного из ведущих мировых спе-
циалистов по конечным смесям и задачам классификации. Можно
также отметить, что классический метод обучения нейронных сетей
на основе обратного распространения ошибки является специальным
случаем обобщенного EM-алгоритма22.

Ряд модификаций направлен на повышения скорости сходимо-
сти. Так, в статье23 предложено введение дополнительного «зашум-
ляющего» этапа, улучающего эффективность метода примерно на
10–15%. Идея введения подобной модификации основана на явлении
стохастического резонанса, которое хорошо известно в области ста-
тистической обработки сигналов. Однако определение параметров
зашумляющих данных основывается на специальных множествах и
теоремах для условных математических ожиданий, которые весьма
трудно использовать на практике – прежде всего, с точки зрения ав-
томатизации и программной реализации этапа зашумления. Однако
сам подход может рассматриваться в качестве перспективного для
повышения эффективности методов анализа данных.

EM-алгоритм может быть использован для обнаружения и отсле-
живания эволюции структуры формирующих стохастических про-
цессов в рамках процедуры, называемой методом скользящего разде-
ления смесей (СРС)14. Он основан на смешанных вероятностных мо-
делях конечномерных распределений наблюдаемого процесса и пред-
ставляет собой обобщение метода дисперсионного анализа (в рамках
модели со случайными факторами) на временные ряды. С помощью
СРС-метода возможно осуществить естественную декомпозицию во-
латильности (изменчивости) анализируемого процесса на диффузи-

19Broniatowski M., Celeux G., Diebolt J. Reconnaissance de mélanges de densités
par un algorithme d’apprentissage probabiliste // Data Analysis and Informatics,
1983. Vol. 3. P. 359–373.

20Nielsen S. F. Stochastic EM algorithm: Estimation and asymptotic results //
Bernoulli, 2000. Vol. 6. P. 457–489.

21Viroli C., McLachlan G. J. Deep Gaussian mixture models // Statistics and
Computing, 2019. Vol. 29. Iss. 1. P. 43–51.

22Audhkhasi K., Osoba O., Kosko B. Noise-enhanced convolutional neural
networks // Neural Networks, 2016. Vol. 78. P. 15–23.

23Osoba O., Mitaim S., Kosko B. The noisy Expectation-Maximization
algorithm // Fluctuation Noise Letters, 2013. Vol. 12. Iss. 3. Art. No. 1350012.
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онную (случайную) и динамическую (трендовую) компоненты. Та-
ким образом, возникает естественное разложение суммарного трен-
да процесса на локальные компоненты, наличие которых обуслов-
лено разными факторами. Кроме того, возможно отследить эволю-
цию данных факторов во времени. Для этого процедуры типа EM-
алгоритма используются в режиме скользящего окна для оценива-
ния неизвестных параметров конечномерных распределений наблю-
даемого процесса. С помощью СРС-метода впервые удалось опреде-
лить число процессов (в среднем от 3 до 5), формирующих ионно-
звуковую турбулентность в плазме. Также получены значимые ре-
зультаты в области анализа волатильности финансовых индексов.

Востребованы подходы к моделированию различных процессов и
с помощью стохастических дифференциальных уравнений (СтДУ) и
методов Монте-Карло. Существенный вклад в развитие данной об-
ласти внесли В.С. Пугачев, И.Н. Синицын и В.И. Синицын24,25,26,
К.К. Сабельфельд27,28, А. В. Зорин29,30, С.А. Майоров31.

Одним из возможных классов СтДУ для описания различных
процессов являются dX(ω, t) = a(ω, t)dt+ b(ω, t)dW (ω, t), традици-
онно называемые в физике уравнениями Ланжевена. Коэффициенты
a(ω, t) и b(ω, t) являются случайными функциями, а W (ω, t) пред-
ставляет собой винеровский процесс. Такие СтДУ и их обобщения
широко используются в финансовой математике32, океанологии33,

24Пугачев В.С., Синицын И.Н. Теория стохастических систем. – М.: Логос,
2004. – 1000 с.

25Синицын И.Н. Канонические представления случайных функций и их при-
менение в задачах компьютерной поддержки научных исследований. – М.: Торус
Пресс, 2009. – 768 с.

26Синицын И.Н., Синицын В.И. Лекции по нормальной и эллипсоидальной
аппроксимации распределений в стохастических системах. – М.: Торус Пресс,
2013. – 479 с.

27Сабельфельд К.К. Методы Монте-Карло в краевых задачах. – Новосибирск:
Наука, 1989. – 280 с.

28Sabelfeld K.K. Stochastic simulation algorithms for solving narrow escape
diffusion problems by introducing a drift to the target // Journal of Computational
Physics. – 2020. – Vol. 410. – Art. No. 109406.

29Зорин А.В., Федоткин М.А. Методы Монте-Карло для параллельных вы-
числений. – М.: Издательство Московского университета, 2013. –192 с.

30Федоткин М.А., Зорин А.В. Стохастические модели процессов адаптивного
управления конфликтными потоками неоднородных требований // Теория веро-
ятностей и ее применения, 2020. Т. 65. Вып. 1. С. 163–164.

31Kurbanismailov V. S., Maiorov S.A., Ragimkhanov G.B., Khalikova Z.R.Monte
Carlo simulation of electron drift characteristics in an inert gas with mercury vapor
// Journal of Physics: Conference Series, 2020. Vol. 1697. Iss. 1. Art. No. 012233.

32Ширяев А.Н. Основы стохастической финансовой математики. Т. 1. Факты.
Модели. – М.: МЦНМО, 2016. – 440 c.

33Belyaev K., Kuleshov A., Tuchkova N., Tanajura C.A. S. An optimal data
assimilation method and its application to the numerical simulation of the ocean
dynamics // Mathematical and Computer Modelling of Dynamical Systems, 2018.
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физике плазмы34,35. Однако функциональный вид коэффициентов
для реальных данных обычно неизвестен, поэтому в диссертации
рассмотрена задача статистического оценивания их распределений.

Из вида уравнения Ланжевена следует, что в каждый момент вре-
мени распределение приращений случайного процесса, удовлетворя-
ющего этому уравнению, является смесью нормальных законов, что
ведет к необходимости развития методов их исследования и оцени-
вания параметров. При этом необходимо учитывать, что статистиче-
ские закономерности поведения рассматриваемых процессовX(ω, t),
a(ω, t), b(ω, t) изменяются во времени нерегулярным образом, ре-
зультатом чего является отсутствие универсального смешивающего
закона. Однако информация об их эволюции может быть использо-
вана для нетривиального – за счет характеристик, получаемых на
основе математической модели, а не некоторого функционального
преобразования исходных наблюдений – расширения признакового
пространства для повышения эффективности алгоритмов анализа
данных. Указанная задача оценивания распределений параметров
рассмотрена в диссертации с точки зрения разработки соответству-
ющих полупараметрических статистических методов.

С развитием вычислительных мощностей методы машинного обу-
чения и нейронные сети, особенно глубокие, стали одним из наиболее
востребованных и эффективных инструментов всестороннего анали-
за данных36. Существенный вклад в их развитие внесли М. Розен-
блатт37, В.Н. Вапник и А.Я. Червоненкис38, Я. Лекун, И. Бенджио
и Дж. Хинтон39. Подобные процедуры успешно применяются для
обработки наблюдений в самом широком спектре областей, включая
метеорологию, финансы, медицину и многие другие. При этом по-
лучение прорывных результатов обеспечивается не только постро-
ением различных архитектур и настройкой гиперпараметров40, то
есть величин, которые не изменяются в процессе обучения – мето-

Vol. 1. Iss. 24. P. 12–25.
34Sexty D.Calculating the equation of state of dense quark-gluon plasma using the

complex Langevin equation//Physical Review D, 2019.Vol. 100.Iss. 7.Art. No. 074503.
35Espinos D.O., Zhidkov A., Kodama R. Langevin equation for coulomb

collision in non-Maxwellian plasmas // Physics of Plasmas, 2018. Vol. 25. Iss. 7.
Art. No. 072307.

36Jordan M. I., Mitchell T.M. Machine learning: Trends, perspectives, and
prospects // Science, 2015. Vol. 349. Iss. 6245. P. 255–260.

37Grenander U., Rosenblatt M. Statistical analysis of stationary time series. –
Providence, USA: American Mathematical Society, 2008. – 308 p.

38Вапник В.Н., Червоненкис А.Я. Теория распознавания образов. – М.: Нау-
ка, 1974. –416 с.

39LeCun Y., Bengio Y.,Hinton G. Deep learning // Nature, 2015. Vol. 521.
Iss. 7553. P. 436–444.

40Bergstra J., Bengio Y. Random Search for Hyper-Parameter Optimization //
Journal of Machine Learning Research, 2012. Vol. 13. P. 281–305.
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дов оптимизации, количества скрытых слоев и нейронов в них. Весь-
ма эффективным является комплексный подход на основе развития
сложных математических моделей, применения ансамблей гибрид-
ных инструментов обработки данных и различных способов нетри-
виального расширения признакового пространства, не требующих
увеличения объема тренировочных данных, но существенным обра-
зом повышающих качество обучения.

Реализация подобных алгоритмов для решения научных за-
дач требует значительных высокопроизводительных вычислитель-
ных ресурсов41. В частности, достигнуты существенные успехи за
счет использования для проведения расчетов, помимо центрального
процессора, графических карт – прежде всего на основе программно-
аппаратной архитектуры NVIDIA CUDA42. Применение гетерогенных
вычислений43 для быстрой параллельной обработки данных в науч-
ных исследованиях востребовано в силу их относительно низкой сто-
имости, сочетающейся со значительной производительностью, воз-
можностью реализации достаточно точных численных методов, а
также с повышением эффективности обучения нейронных сетей, на-
пример, в гидрологическом и гидродинамическом моделировании,
геопространственном анализе данных, медицинской диагностике в
режиме реального времени, моделировании катастрофических при-
родных явлений, симуляции физических процессов.

Цель и задачи диссертационной работы
Зачастую для описания реальных процессов в различных обла-

стях используются модели, которые не учитывают случайность объ-
ема получаемой информации (размеров выборок) или интенсивности
ее накопления, а также существенные отклонения от классических
законов распределения. Все это может вести к существенным слож-
ностям в интерпретации результатов, получаемых на основе подоб-
ных моделей, и даже их некорректности. Кроме того, функциональ-
ный вид моделей обычно заранее неизвестен, и для их построения
необходимо использовать минимум апостериорных предположений.

Поэтому основной целью диссертации является создание ком-
41Iosup A., Ostermann S., Yigitbasi M.N., Prodan R., Fahringer T.,

Epema D.H. J. Performance analysis of cloud computing services for many-tasks
scientific computing // IEEE Transactions on Parallel and Distributed Systems, 2011.
Vol. 22. Iss. 6. P. 931–945.

42Che S., Boyer M., Meng J., Tarjan D., Sheaffer J.W., Skadron K. A
performance study of general-purpose applications on graphics processors using
CUDA // Journal of Parallel and Distributed Computing, 2008. Vol. 68. Iss. 10.
P. 1370–1380.

43Brodtkorb A.R., Dyken C., Hagen T.R., Hjelmervik J.M., Storaasli O.O. State-
of-the-art in heterogeneous computing // Scientific Programming, 2010. Vol. 185.
Iss. 1. P. 1–33.
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плекса смешанных вероятностных моделей и полупараметрических
методов анализа неоднородных данных, исследование их аналити-
ческих свойств, разработка эффективных вычислительных алгорит-
мов оценивания и прогнозирования параметров этих моделей, а так-
же применение данного комплекса для решения прикладных задач
в различных предметных областях.

Для ее достижения необходимо решить следующие задачи:
– определить вид смешанных законов, являющихся предельными

для распределений максимума и суммы элементов выборок случай-
ного объема, и исследовать их свойства;
– создать комплекс полупараметрических методов анализа неодно-

родных данных для построения смешанных вероятностных моделей;
– разработать программные комплексы, реализующие предложен-

ные методы оценивания параметров математических моделей и их
прогнозирования на основе статистических процедур, алгоритмов
машинного обучения и нейронных сетей;
– применить разработанные методы и программные продукты для

решения задач анализа реальных данных в прикладных областях.

Методы исследования
В работе использованы оригинальные подходы и процедуры,

предложенные и развиваемые в диссертации, в том числе:
– полупараметрические методы статистического моделирования,

включая СРС-метод, процедуру статистического оценивания рас-
пределений случайных параметров стохастических дифференциаль-
ных уравнений Ланжевена, а также алгоритм определения связности
компонент для выявления числа структурных процессов в данных;
– метод расширения признакового пространства для повышения

точности обучения нейронных сетей за счет использования парамет-
ров смешанных вероятностных моделей;
– версии бутстреп-процедур для имитационного моделирования;
– модифицированный подход классической теории экстремальных

значений – метод превышения порогового значения.
Применяются и такие классические методы исследования, как:

– аналитический аппарат теории вероятностей и математической
статистики для смешанных распределений и выборок случайного
объема;
– методы параметрического и непараметрического статистическо-

го оценивания;
– проверка статистических гипотез;
– методы функционального анализа, линейной алгебры и оптими-

зации;
– методы вычислительной статистики, алгоритмы машинного обу-

чения и нейронные сети.
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Для создания комплекса программных решений, предназначен-
ных для автоматизации моделирования, проведения анализа данных
и возможности обработки значительных объемов массивов наблюде-
ний, использованы языки программирования MATLAB и Python, а так-
же современные высокопроизводительные вычислительные ресурсы.

Научная новизна и основные результаты диссертации
В диссертации разработаны эффективные полупараметрические

методы построения математических моделей процессов на основе
анализа динамически формируемых массивов неоднородных дан-
ных, объединяющие в себе:
– строгие теоретические обоснования вида используемых в универ-

сальных вероятностных моделях смешиваемых и смешивающих рас-
пределений, базирующиеся на предельных теоремах теории вероят-
ностей;
– развитие методологии полупараметрического статистического

оценивания этих семейств с использованием дискретных аппрокси-
маций смешивающих распределений и метода скользящего разделе-
ния смесей;
– использование параметров получаемых вероятностных моделей

для нетривиального расширения признакового пространства в ме-
тодах машинного обучения и нейронных сетях с целью повышения
точности их работы;
– развитие методов исследования тонкой стохастической структу-

ры процессов в различных прикладных областях с помощью разло-
жения изменчивости на трендовые и диффузионные компоненты.

Разработанные подходы к построению вероятностных моделей
ориентированы на ситуацию недостатка или отсутствия априорной
информации о физической природе исследуемых процессов помимо
простейших предположений о возможной формальной структуре на-
блюдений: результат может быть представлен в виде суммы, про-
изведения или максимума нескольких случайных величин. В дис-
сертации показано, что такие простейшие предположения во многих
ситуациях позволяют определить семейство аналитический вид сме-
шиваемых распределений – ядер – в итоговой смешанной модели,
а смешивающее распределение может быть определено с помощью
непараметрических статистических процедур.

На защиту выносятся следующие новые научные результаты:
1. Смешанные вероятностные модели для выборок со случайным
объемом на основе: а) нового варианта центральной предельной тео-
ремы для сумм со случайным числом независимых и необязательно
одинаково распределенных слагаемых; б) схемы максимума для вы-
борок, объем которых описывается важным для прикладных задач
семейством обобщенных отрицательных биномиальных распределе-
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ний; в) обобщения теоремы Реньи (закона больших чисел для слу-
чайных сумм) для математического моделирования редких событий.
2. Доказательства устойчивости в метрике Леви дисперсионно-
сдвиговых и конечных сдвиговых смесей нормальных распределе-
ний относительно возмущений параметров смешивающего распреде-
ления, обосновывающие корректность полупараметрических вычис-
лительных процедур разделения смесей этих семейств распределе-
ний.
3. Комплекс полупараметрических методов анализа неоднородных
данных и результаты аналитического исследования некоторых их
свойств в моделях аддитивного зашумления конечными смесями и
округления наблюдений.
4. Полупараметрический подход к статистическому оцениванию
распределений случайных коэффициентов стохастических диффе-
ренциальных уравнений Ланжевена.
5. Статистическая методология построения моделей сгруппирован-
ных скрытых наблюдений при заданных характерных точках их эм-
пирической функции распределения.
6. Комплекс методов и алгоритмов статистической идентификации
и классификации экстремальных наблюдений на основе обобщенных
отрицательных биномиальных распределений числа наблюдений и
обобщенных гамма-моделей для данных.
7. Программные комплексы для автоматизации обработки масси-
вов неоднородных данных на высокопроизводительных вычисли-
тельных ресурсах, реализующие разработанные полупараметриче-
ские методы; решение с их помощью некоторых задач математиче-
ского моделирования в физике плазмы, селенологии, метеорологии,
океанологии.

Полученные результаты соответствуют следующим пунктам
паспорта специальности 05.13.18 – математическое модели-
рование, численные методы и комплексы программ:
– результат 1: «Разработка новых математических методов моде-

лирования объектов и явлений» (п. 1 паспорта);
– результаты 2, 3: «Развитие качественных и приближенных ана-

литических методов исследования математических моделей» (п. 2);
– результаты 4–6: «Разработка, обоснование и тестирование эф-

фективных вычислительных методов с применением современных
компьютерных технологий» (п. 3);
– результат 7: «Реализация эффективных численных методов и ал-

горитмов в виде комплексов проблемно-ориентированных программ
для проведения вычислительного эксперимента» (п. 4) и «Комплекс-
ные исследования научных и технических проблем с применением
современной технологии математического моделирования и вычис-
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лительного эксперимента» (п. 5).

Теоретическая и практическая значимость
Результаты диссертации являются одновременно фундаменталь-

ными и прикладными, а проведенные исследования – комплексными
и имеющими ярко выраженный междисциплинарный характер. Раз-
работанные методы анализа данных и вычислительные процедуры
основываются на полученных в диссертации математических резуль-
татах, включая предельные теоремы теории вероятностей и матема-
тической статистики. При этом они ориентированы на эффективное
применение в различных прикладных областях, что продемонстри-
ровано в диссертации на примерах анализа реальных данных.

Апробация работы и внедрение
Результаты работы представлялись на международных и россий-

ских научных конференциях и семинарах по тематике исследований,
в том числе:
– заседание секции ученого совета Федерального исследователь-

ского центра «Информатика и управление» Российской академии
наук: 2020 г.;
– научный семинар кафедры математической статистики фа-

культета вычислительной математики и кибернетики МГУ имени
М.В. Ломоносова «Теория риска и смежные вопросы»: 2012–2020 гг.;
– научный семинар Института вычислительной математики

им. Г.И. Марчука Российской академии наук: 2020 г.;
– научный семинар Института прикладных математических иссле-

дований Федерального исследовательского центра «Карельский на-
учный центр Российской академии наук»: 2020 г.;
– научный семинар кафедры прикладной математики Института

математики, естественных и компьютерных наук Вологодского го-
сударственного университета: 2020 г.;
– International Seminar on Stability Problems for Stochastic Models

and International Workshop «Applied Problems in Theory of
Probabilities and Mathematical Statistics related to modeling of
information systems» (ISSPSM): 2012–2014, 2018, 2020 гг. [78–82];
– European Conference on Modelling and Simulation (ECMS): 2013–

2015, 2017 гг. [34, 39,42,44];
– International Conference of Numerical Analysis and Applied

Mathematics (ICNAAM): 2013–2016 гг. [?, 28, 33,43,47,57];
– International Conference on Modern Techniques of Plasma

Diagnostics and their Application: 2014 г. [61, 75];
– International Congress on Ultra Modern Telecommunications and

Control Systems (ICUMT): 2015, 2018 гг. [27, 31,46];
– International Scientific Conference on Information Technologies and

Mathematical Modelling (ITMM): 2015, 2016 гг. [35, 56];
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– International Conference on Distributed Computer and
Communication Networks: Control, Computation, Communications
(DCCN): 2016, 2018, 2019 гг. [36, 37,52];
– International Conference of Artificial Intelligence, Medical

Engineering, Education (AIMEE): 2018, 2020 гг. [62];
– International Symposium «Intelligent Systems» (INTELS):

2018 г. [63];
– International Symposium on Computer Science, Digital Economy

and Intelligent Systems (CSDEIS): 2019, 2020 гг. [51];
– Международная Звенигородская конференция по физике плазмы

и управляемому термоядерному синтезу: 2013, 2015 гг. [76, 77];
– Международная научно-методическая конференция «Ин-

форматизация инженерного образования» (ИНФОРИНО): 2014,
2016 гг. [64, 65];
– Всероссийская конференция (с международным участием)

«Информационно-телекоммуникационные технологии и матема-
тическое моделирование высокотехнологичных систем»: 2016,
2018 гг. [29, 70];
– Всероссийская научная конференция «Ломоносовские чтения»:

2018–2020 гг. [71];
– Всероссийский Симпозиум по прикладной и промышленной ма-

тематике: 2014, 2015, 2019 гг. [66, 68,69];
– Всероссийская научно-практическая конференция с междуна-

родным участием «Актуальные проблемы глобальных исследований:
Россия в глобализирующемся мире»: 2019 г. [67];
– научная конференция «Тихоновские чтения»: 2015 г. [73].
Основные результаты диссертации получены автором в рамках

научных проектов, поддержанных грантами Президента России для
молодых кандидатов наук, Российского научного фонда, Россий-
ского фонда фундаментальных исследований, НЦМУ «Московский
центр фундаментальной и прикладной математики» и стипендиями
Президента России.

Результаты прошли апробацию и внедрены в Институте об-
щей физики им. А.М. Прохорова Российской академии наук для ре-
шения задач вероятностно-статистического моделирования процес-
сов в экспериментах с турбулентной плазмой в стеллараторе Л-2М,
в Институте океанологии им. П.П. Ширшова Российской академии
наук для анализа статистических закономерностей в метеорологи-
ческих и океанологических данных, а также излагаются в ряде тем
учебного курса «Прикладной многомерный статистический анализ»
Центра компетенций Национальной технологической инициативы по
технологиям хранения и анализа больших данных на базе МГУ име-
ни М.В. Ломоносова.
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Публикации
Материалы диссертации опубликованы в 82 печатных рабо-

тах [1–82], из них:
– 31 статья в журналах, включенных в перечень ВАК [1–25,30,32,

48–50,53];
– 51 статья в изданиях, индексируемых базами Web of Science Core

Collection и/или Scopus [4–8,11,12,14,18–21,24,26–63], включая жур-
налы первого и второго квартилей [24,26,45,52,54,55].

Получены 39 свидетельств о государственной регистрации про-
грамм для ЭВМ [83–121], зарегистрированные в Федеральной служ-
бе по интеллектуальной собственности (Роспатент).

Личный вклад автора
Основные результаты диссертации получены автором самосто-

ятельно. В работах [9, 10, 15–22, 33, 34, 42, 46–53, 62, 63, 67–69, 72, 80]
А.К. Горшениным выполнены постановка исследовательских за-
дач, определение ключевых концепций и методов решения, а так-
же проведен всесторонний анализ полученных результатов. В рабо-
тах [11–14,23–27,35–41,43–45,54–61,70,71,73–77,79,81,82] А.К. Гор-
шениным развиты математические модели, методы и вычислитель-
ные алгоритмы анализа реальных данных с реализацией в виде про-
граммных решений и их приложениями к обработке наблюдений из
прикладных областей. В программах [115–121] А.К. Горшениным ре-
ализованы алгоритмы анализа данных в виде значимых компонентов
зарегистрированных инструментов.

Структура и объем диссертации
Диссертация состоит из введения, 7 глав, содержащих 33 пара-

графа, заключения, списка литературы из 458 источников, 28 таб-
лиц, 175 рисунков и 30 вычислительных алгоритмов. Объем диссер-
тации составляет 355 страниц.
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мулированы цели, задачи, методы исследования и основные резуль-
таты диссертации.

В первой главе рассмотрены вероятностно-статистические мо-
дели на основе выборок, объем которых является случайной вели-
чиной с обобщенным отрицательным биномиальным законом. Они
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ориентированы на анализ распределений максимального элемента и
суммы всех наблюдений при неограниченном росте объема выборки.
Для данных моделей доказаны предельные теоремы, устанавливаю-
щие вид соответствующих предельных распределений.

В §1.1 вводится понятие смешанного распределения вероятностей
и описываются его базовые свойства. В §1.2 определяется обобщение
отрицательного биномиального распределения.
Определение 1.1. Случайная величина (с. в.) Nr,γ,µ, r > 0, γ ∈ R,
µ > 0, имеет дискретное распределение, называемое обобщенным
отрицательным биномиальным (GNB) и для всех целых значений k
определяемое вероятностями

P(Nr,γ,µ = k) =
1

k!

∞∫
0

e−zzkfGGr,γ,µ(x) dz,

то есть является смешанным пуассоновским со смешивающим обоб-
щенным гамма-распределением (GG) fGGr,γ,µ(x) = |γ|µr

Γ(r)
xγr−1e−µx

γ

, x > 0.

Здесь r и γ являются параметрами формы, а µ > 0 – масштаба.
Для данного распределения выписаны рекуррентные представления
и формулы для математического ожидания и дисперсии (утвержде-
ния 1.1 и 1.2).

В §1.3 доказана теорема об асимптотическом распределении мак-
симальной порядковой статистики в выборке, объем которой явля-
ется обобщенной отрицательной биномиальной с. в.

Здесь и далее символ d
= обозначает равенство по распределению,

Wλ, λ > 0 – с. в. с распределением Вейбулла, Qr,k – с. в. с распреде-
лением Снедекора-Фишера, Gr,γ,µ, r > 0, γ ∈ R, µ > 0, и Gr,µ– с. в. с
обобщенным и классическим гамма-распределениями.

Теорема 1.1. Пусть n ∈ N, r, γ, µ > 0, и Nr,γ,µ/nγ – с. в.,
имеющая обобщенное отрицательное биномиальное распределение.
Пусть X1, X2, . . . – независимые одинаково распределенные с. в. с
общей функцией распределения (ф. р.) F (x). Предположим, что
sup{x : F (x) < 1} = ∞ и существует такое число λ > 0, что при
любом x > 0 справедливо соотношение lim

y→∞
1−F (xy)
1−F (y) = x−λ. Тогда

lim
n→∞

sup
x>0

∣∣∣∣∣P
(

max{X1, . . . , XNr,γ,µ/nγ }
F−1(1− 1

n
)

< x

)
− Fλ,γ,µ,r(x)

∣∣∣∣∣ = 0,

где

Fλ,γ,µ,r(x) =

∞∫
0

e−zx
−λ
fGGr,γ,µ(z) dz ≡ P(Mλ,γ,µ,r < x), x > 0,

16



при этом Mλ,γ,µ,r
d
=
Gr,λγ,µ
Wλ

d
=

(
Gr,γ,µ
W1

)1/λ
d
= µ−1/λγ

(
Gr,1
Wγ

)1/λγ

,

и все с. в. являются независимыми.

Величина λ в данном случае имеет смысл параметра масштаба.
Для важного частного случая – классического отрицательного би-
номиального распределения – предельная ф. р. имеет простой функ-
циональный вид.
Теорема 1.2. Пусть выполнены условия теоремы 1.1, однако объем
выборки задается отрицательной биномиальной с. в. Nr,pn с пара-
метрами r > 0 и pn = min{q, µ/n}, где q ∈ (0, 1), n ∈ N, µ > 0. Тогда

lim
n→∞

sup
x>0

∣∣∣∣P(max{X1, . . . , XNr,pn }
F−1(1− 1

n
)

< x

)
− Fλ,µ,r(x)

∣∣∣∣ = 0,

где Fλ,µ,r(x)=

(
µxλ

1 + µxλ

)r
≡ P(Mλ,µ,r < x), x>0, Mλ,µ,r

d
=
G

1/λ
r,µ

Wλ

d
=

(
Qr,1
µr

)1/λ

,

и все с. в. являются независимыми.
Пусть с. в. Zr,1

d
=
(
1+ 1−r

r Q1−r,r
)
, Sγ,1 – с. в. со строго устойчивым

распределением, а Πλ – с. в. c распределением Парето. Предельное
распределение в теореме 1.1 обладает следующими свойствами.
Теорема 1.3. Распределение с. в. Mλ,γ,µ,r представимо в виде:
(i) Если r ∈ (0, 1], то Mλ,γ,µ,r

d
= (µZr,1)

−1/λγ ·Wλγ/Wγ .
(ii) Если γ ∈ (0, 1], то Mλ,γ,µ,r

d
=
(
(µr)−1Sγ,1 ·Qr,1

)1/λγ .
(iii) Если γ ∈ (0, 1] и r ∈ (0, 1], то Mλ,γ,µ,r

d
= Πλ

(
Sγ,1Z

1/γ
r,1

)−1/λ
.

(iv) Если r ∈ (0, 1] и λγ ∈ (0, 1], то
Mλ,γ,µ,r

d
= |X| ·

√
2W1 · (µ1/λγWλSλγ,1Z

1/λγ
r,1 )−1.

Теорема 1.4. Если r ∈ (0, 1], µ > 0 и λγ ∈ (0, 1], то ф. р. Fλ,γ,µ,r(x)
является смешанной экспоненциальной и безгранично делимой.

Теорема 1.5. Для моментов порядка 0 < δ < λ с. в. Mλ,γ,µ,r спра-
ведливо следующее представление:

EMδ
λ,γ,µ,r = Γ

(
r +

δ

λγ

)
Γ
(

1− δ

λ

)(
µδ/λγΓ(r)

)−1

.

Теорема 1.6. Пусть в условиях теоремы 1.1 случайные величины
X1, X2, . . . имеют одинаковое распределение Парето вида

F (x) = 1− c

axλ + c
, x > 0,

для a > 0, c > 0 и λ > 0.Тогда для любого x ∈ R∣∣∣∣P
([

a

c(n− 1)

]1/γ

max
16k6Nr,γ,µ/nγ

Xk < x

)
−Fλ,γ,µ,r(x)

∣∣∣∣ 6 ∣∣∣ xλ − 1

xλ(n− 1) + 1

∣∣∣·Γ(r + 1
γ

)

µ1/γΓ(r)
.
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При выполнении условий теоремы 1.2 получен явный вид пре-
дельной ф. р. и для произвольных порядковых статистик (теоре-
ма 1.7). Кроме того в предположении существования плотностей
у элементов выборки, выборочные квантили имеют распределение
Стьюдента в качестве предельного (теорема 1.8).

В §1.3 доказан закон больших чисел для сумм с обобщенным
отрицательным биномиальным распределением (обобщение теоремы
Реньи). Здесь и далее символ =⇒ обозначает слабую сходимость.

Теорема 1.9. Пусть для с. в. X1, X2, . . . (не обязательно незави-
симых и одинаково распределенных) при n → ∞ выполнено условие

n−β
n∑
j=1

Xj =⇒ a для некоторых конечных параметров β > 0 и a > 0.

Пусть величины r > 0, γ и µ > 0 произвольны. Пусть для каж-
дого n ∈ N Nr,γ,µ/nγ – с. в., имеющая обобщенное отрицательное
биномиальное распределение, независимая от последовательности
X1, X2, . . . Тогда

aµβ/γ

nβ

Nr,γ,µ/nγ∑
j=1

Xj =⇒ Gr,γ/β,1
d
= G

β/γ
r,1 при n→∞.

Результаты §1.3 используются в главе 6 для обоснования вида
вероятностно-статистических моделей реальных метеорологических
и океанологических процессов и идентификации экстремальных на-
блюдений.

В §1.4 доказан новый вариант центральной предельной теоре-
мы (теорема 1.10) для сумм со случайным числом независимых и
необязательно одинаково распределенных слагаемых в схеме серий,
в которой в качестве предельных распределений возникают произ-
вольные нормальные смеси. Пусть {Xn,j}j>1, n ∈ N, схема серий по-
строчно независимых необязательно одинаково распределенных с. в.
с ф. р. Fn,j(x). Обозначим Sn,k = Xn,1 + ... + Xn,k, n, k ∈ N. Неза-
висимость строк {Sn,k}k>1 не предполагается. Пусть µn,j = EXn,j ,
σ2
n,j = DXn,j , причем 0 < σ2

n,j < ∞, n, j ∈ N. Обозначим An,k =

µn,1 + ... + µn,k, B2
n,k = σ2

n,1 + ... + σ2
n,k. Положим an,k = An,k,

b2n,k = B2
n,k, n, k ∈ N.

Теорема 1.10. Пусть выполнено случайное условие Линдеберга: для
любого ε > 0

lim
n→∞

E

(
1

B2
n,Nn

Nn∑
j=1

∫
|x−µn,j |>εBn,Nn

(x− µn,j)2dFn,j(x)

)
= 0.

Тогда сходимость Zn ≡ (Sn,Nn − cn)d−1n =⇒ Z при n → ∞ имеет
место для некоторых cn ∈ R и dn > 0 тогда и только тогда, когда
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существует слабо относительно компактная последовательность
пар {(U ′n, V ′n)}n>1, такая что

P(Z < x) = EΦ

(
x− V ′n
U ′n

)
, x ∈ R, n ∈ N,

и выполнено условие lim
n→∞

L2 ((Un, Vn), (U ′n, V
′
n)) = 0, где Un =

bn,Nndn
−1, Vn = (an,Nn − cn)dn

−1 и Φ(·) обозначает функцию рас-
пределения стандартного нормального закона.

Данная теорема используется в главе 4 для обоснования вида
вероятностных моделей размеров частиц лунного реголита.

Результаты главы опубликованы в работах [24,37,38,45,54,55].
Вторая глава посвящена исследованию аналитических свойств

смешанных моделей на основе нормальных и гамма-распределений.
В §2.1 описан метод скользящего разделения смесей и предложено
его использование в качестве базовой процедуры для статистической
оценки распределений случайных коэффициентов в стохастическом
дифференциальном уравнении Ланжевена вида dX(ω t) = a(ω, t)dt+
b(ω, t)dW (ω, t), которое определяет некоторый случайный процесс
X(ω, t), где W (ω, t) – винеровский процесс, а коэффициенты сдвига
(дрейфа) a(ω, t) и масштаба (диффузии) b(ω, t) – случайны. Пусть
n > 1 и t0 = 0 < t1 < . . . < tn – моменты времени, в которые наблю-
дается процесс X(ω, t). Для простоты предположим, что ti−ti−1 = 1
для любого i > 1. Тогда можно использовать дискретную аппрок-
симацию P (X(ω, ti)−X(ω, ti−1) < x) ≈

∑K
k=1 pkΦ

(
(x− ak)b−1k

)
, то

есть модель конечной смеси нескольких нормальных распределений
с параметрами, изменяющимися при переходе от ti к ti+1. Для их ста-
тистического оценивания используется метод скользящего разделе-
ния смесей. На основе получаемых оценок коэффициентов возможно
содержательно расширять признаковое пространство в методах ма-
шинного обучения за счет использования характеристик адекватных
математических моделей. Соответствующие примеры рассмотрены в
§5.2 для экспериментальных физических данных.

В §2.2 приведены сведения о важных модификациях EM-
алгоритма – медианных, которые ведут к робастным оценкам, а так-
же стохастических, позволяющих эффективнее выбирать в качестве
решений глобальные, а не локальные максимумы, а также сформули-
рована теорема об общих свойствах стохастического EM-алгоритма.
Получены формулы для итерационных шагов метода скользящего
разделения конечных гамма-смесей (утверждение 2.2), а также рас-
смотрен пример их применения для анализа данных биржевой книги
заявок.

В §2.2 и §2.3 рассмотрены две важные модели возмущений па-
раметров смеси – добавления и расщепления компоненты – и при-
ведены асимптотически оптимальные критерии проверки гипотез о
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числе компонент смеси (теоремы 2.2 и 2.3) и устойчивости конечных
масштабных смесей нормальных законов относительно смешиваю-
щего распределения в них (теоремы 2.4–2.7) В §2.4 и §2.5 эти ре-
зультаты развиваются для задач устойчивости конечных сдвиговых
и дисперсионно-сдвиговых смесей нормальных законов относительно
изменений параметров смешивающего распределения. В §2.4 полу-
чены оценки устойчивости конечных сдвиговых смесей нормальных
законов по отношению к изменениям смешивающего параметра (тео-
ремы 2.8–2.11).

Предположим, что каждое из независимых наблюдений
X1, . . . , Xn имеет распределение типа конечной сдвиговой смеси
нормальных законов G(x) = EΦ(x − V ), где Φ(·) – ф. р. стандарт-
ного нормального закона и V – дискретная с. в., принимающая
значения ai с вероятностями pi. Модели добавления и расщепления
компоненты могут быть представлены в виде Gp(x) = EΦ(x − Vp),
где дискретная случайная величина Vp определяется для каждой
из моделей по-разному. Для них в данном параграфе получены в
явном виде двусторонние оценки, связывающие расстояния Леви,
которое будет обозначаться L(·, ·), между смесями и смешивающими
законами.

В качестве примера рассмотрим один из результатов для моде-
ли добавления компоненты, в которой наблюдения имеют распре-
деление Gp(x) = (1 − p)

∑k
i=1 piΦ(x − ai) + pΦ(x − a), где все ве-

личины ai ∈ R, pi > 0, i = 1, . . . , k, считаются известными, а a и
p являются параметрами модели, при этом a ∈ R, 0 6 p 6 1. Без
ограничения общности можно считать, что выполнены соотношения
a0 6 a 6 a1 6 a2 6 . . . 6 ak, означающие, что рассматривают-
ся конечные математические ожидания. Поэтому параметр a0 мо-
жет полагаться известным. Данной модели соответствует дискрет-
ная случайная величина Vp, принимающая значения ai c вероятно-
стями pi(1− p) и a с вероятностью p.

Теорема 2.8. В модели добавления компоненты

C
[1]
1 (ak, a0)L(G,Gp) 6 L(V, Vp) 6 C

[1]
2 (ak, a0)L1/2(G,Gp),

где C [1]
1 (ak, a0) = max

{
1,

√
2π

ak −min{0, a0}

}
,

C
[1]
2 (ak, a0) = ϕ−1/2

(
ak + |ak| −min{0, a0}

)(
1 +

1√
2π

)1/2

, j = 1, 2.

Теоремы 2.8–2.11 обосновывают корректность аппроксимации
произвольных сдвиговых нормальных смесей, которые в общем слу-
чае не являются идентифицируемыми, конечными аналогами в за-
даче их статистического разделения (оценивания параметров).
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В §2.5 получены результаты об устойчивости дисперсионно-
сдвиговых смесей нормальных законов вида

Φα,σ,F (x) =

∞∫
0

Φ

(
x− αu
σ
√
u

)
dF (u), α ∈ R, σ > 0,

где F (u) – ф. р. положительной с вероятностью единица с. в., отно-
сительно возмущений смешивающего распределения.
Теорема 2.12. Предположим, что F1 и F2 – ф. р. с точками ро-
ста, расположенными на неотрицательной полуоси, и по крайней
мере ф. р. F1 имеет плотность, ограниченную некоторым числом
0 < a <∞. Тогда L(Φα,σ,F1 ,Φα,σ,F2) 6 2(1 + a)L(F1, F2).

Таким образом, близость смешивающих распределений в смыс-
ле расстояния Леви необходимо влечет и близость соответствую-
щих смесей. Полученные результаты могут быть использованы для
обоснования вычислительных процедур разделения дисперсионно-
сдвиговых смесей нормальных законов.

В §2.6 разработаны теоретические подходы к устранению оши-
бок в специальной смешанной модели округления данных. Пусть
X1, X2, . . . – независимые одинаково распределенные с. в. с неиз-
вестным математическим ожиданием EX < +∞; ε1, ε2, . . . – неза-
висимые одинаково распределенные с. в. с математическим ожида-
нием Eε < +∞; X1, X2, . . . и ε1, ε2, . . . являются независимыми;
Yj =

[
Xj + εj + 1

2

]
для всех j = 1, 2, . . . представляют собой округ-

ление значения суммы случайных величин Xj + εj до ближайшего
целого сверху (при этом запись [·] соответствует целой части выраже-
ния) с математическим ожиданием EY < +∞. В этих предположе-
ниях получены оценки для математического ожидания наблюдений
в предположении зашумления конечными смесями нормальных (тео-
рема 2.13) и гамма-распределений (теорема 2.15). Построены дове-
рительные интервалы для неизвестного математического ожидания
в этих случаях с использованием уточненной оценки для дисперсии
(теоремы 2.14 и 2.16). Приведем формулировки ряда полученных
результатов.

Теорема 2.13. Пусть случайные величины εj, j = 1, 2, . . ., име-
ют распределение типа конечной k-компонентной смеси нормаль-
ных законов с параметрами a, σ и p. Тогда |EY − EX | 6 A +(
1 + 1

4π2σ2

)
e−2π2σ2

, где A = max(|a1|, . . . , |ak|), σ = min(σ1, . . . , σk).

Теорема 2.14. В условиях и обозначениях теоремы 2.13 и в пред-
положении, что случайные величины Xj

п. н.
= EX , j = 1, 2, . . ., до-

верительный интервал для EX уровня 1 − α, 0 < α < 1, имеет

21



вид
[
ÊX − f(a,σ, α, n), ÊX + f(a,σ, α, n)

]
, где ÊX = 1

n

n∑
j=1

[
EX + εj + 1

2

]
,

f(a,σ, α, n) =
z1−α

2√
n

(√
A2 + Σ2 + 1

2

)
+ A + 1

π

(
1 + 1

4π2σ2

)
e−2π2σ2

, z1−α2 –(
1− α

2

)
-квантиль стандартного нормального распределения,

A = max(|a1|, . . . , |ak|), Σ = max(σ1, . . . , σk), σ = min(σ1, . . . , σk).

Соответствующие соотношения во всех случаях зависят только
от «экстремальных» значений параметров смесей, но не от числа
компонент и весов в распределении зашумляющих наблюдений.

Результаты главы опубликованы в работах [1, 14,34,74,79].
В третьей главе разработаны алгоритмы анализа данных, в ос-

нову которых положен метод скользящего разделения смесей. В §3.1
получены явные линейные и матричные выражения для моментных
характеристик конечных нормальных смесей в СРС-методе (теоре-
мы 3.1 и 3.2). Ниже приведена формулировка одной из них.
Теорема 3.2. Моменты случайной величины Zn с распределением
типа конечной нормальной смеси для использования в СРС-методе
в матричной записи имеют следующий вид:
– математическое ожидание: EZn = pn aTn ;
– дисперсия: DZn = pn

(
Dan aTn +Dσn σ

T
n

)
− (pn aTn )2;

– коэффициент ассиметрии:

γZn =
pnD2

an aTn + 3pnDan Dσn σTn + 2 (pn aTn )
2

(pn (Dan aTn +Dσn σTn )− (pn aTn )
2)3/2

−

−3 ·
pn aTn pnDan aTn + pn aTn pnDσn σTn

(pn (Dan aTn +Dσn σTn )− (pn aTn )
2)3/2

;

– коэффициент эксцесса:

κZn =
pn
(
D3

an aTn + 6D2
σn

Dan aTn + 3D3
σn

σTn
)

(pn (Dan aTn +Dσn σTn )− (pn aTn )
2)2

− 3−

−
4EZn pnDan

(
Dan aTn + 3Dσn σTn

)
+ 6 (EZn)2 pn

(
Dan aTn +Dσn σTn

)
− 3 (EZn)4

(pn (Dan aTn +Dσn σTn )− (pn aTn )
2)2

,

где pn =
(
p1, . . . , pk(n)

)
, an =

(
a1, . . . , ak(n)

)
, σn =

(
σ1, . . . , σk(n)

)
,

а Dan = diag
{
a1, . . . , ak(n)

}
и Dσn = diag

{
σ1, . . . , σk(n)

}
– диагональные

матрицы с соответствующими элементами.
Эти величины существенным образом используются для анализа

вероятностно-статистической структуры процессов в турбулентной
плазме (§5.2 и §5.3) и теплообмене между океаном и атмосферой
(§6.5).

В §3.2 предложен адаптивный алгоритм выделения полезного
сигнала на фоне шума в смешанных нормальных моделях, полу-
чен аналитический вид оценок параметров в линейной и матрич-
ной формах (теоремы 3.3 и 3.4). Введем следующие обозначения:
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Ã = ã 1k̃×1, Σ̃ = σ̃ 1k̃×1, E =
k⊕
r=1

1k̃×1, ã = (a1, . . . , ak̃), σ̃ =

(σ2
1 , . . . , σ

2
k̃
), p̂r = (p̂(r−1)k̃+1, . . . , p̂rk̃), âr = (a(r−1)k̃+1, . . . , ark̃), σ̂r =

(σ2
(r−1)k̃+1

, . . . , σ2
rk̃

), p̃−1r = (p̃−11 , . . . , p̃−1
k̃

), r = 1, k; p = (p1, . . . , pk),
a = (a1, . . . , ak), Σ = (σ1, . . . , σk), p̂ = (p̂1 · · · p̂k), â = (â1 · · · âk),
σ̂ = (σ̂1 · · · σ̂k). Оператор

⊕
соответствует прямой сумме матриц,

таким образом, E имеет блочно-диагональную структуру (элемента-
ми являются векторы размера k̃×1, состоящие из единиц). В теореме
ниже символ ◦ обозначает произведение Адамара.
Теорема 3.4. Оценки метода наименьших квадратов (МНК) пара-
метров неизвестного смешанного распределения сигнала X на фоне
смешанного гаусовского шума имеют вид:

p = k̃−1 [(p̃−1
1 p̃−1

2 · · · p̃−1
k

)
◦ p̂
]
E , a = k̃−1

(
â E − Ã11×k

)
,

Σ = k̃−1
(
σ̂ E − Σ̃ 11×k

)
.

На примере рассмотрения набора тестовых выборок с различны-
ми комбинациями сигнала и шума продемонстрировано, что предло-
женный адаптивный алгоритм позволяет эффективно решать задачу
определения параметров полезного сигнала. Важную роль в данной
процедуре играют методы получения оценок максимального правдо-
подобия – они требуют тонкой настройки и оказывают существенное
влияние на результаты анализа. Для тестовых выборок ошибка RMSE
в абсолютном большинстве случаев не превышает 1 вне зависимости
от соотношений между параметрами сигнала и шума, при этом нор-
мализация данных не производилась. Полученные результаты могут
быть полезны в задачах обработки данных различных эксперимен-
тов, например, в физике или медицине.

В §3.3 разработан алгоритм последовательной идентификации
(определения локальной связности) компонент смесей вероятност-
ных распределений. В его основу положена комбинация жадного ал-
горитма поиска числа компонент и методов кластеризации (напри-
мер, k- или c-средних). Данный метод используется для статистиче-
ского определения числа формирующих процессов в турбулентной
плазме в §5.2, а также для статистического оценивания распределе-
ний случайных коэффициентов СтДУ Ланжевена для потоков тепла
между океаном и атмосферой в §6.5. Предложенная процедура мо-
жет быть естественным образом расширена и на случай многомер-
ных смешанных распределений.

В §3.4 предложен двухэтапный метод детектирования событий в
потоке данных на основе анализа динамической компоненты диспер-
сии изучаемого процесса. На примере задачи неинвазивного опреде-
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ления областей активности в головном мозге продемонстрирована
эффективность его использования в медицинских приложениях.

В §3.5 предложен метод повышения точности СРС-
аппроксимаций с помощью конечных нормальных смесей на
основе искусственного зашумления наблюдений для повышения
качества структурного анализа неизвестных процессов в реальных
информационных системах. Для этого в исходные данные вносится
дополнительная компонента, имеющая нормальное распределение с
заданными параметрами. Метод позволяет выявить краткосрочную
изменчивость стохастического процесса в случае сложной внут-
ренней структуры данных. Для модельных задач в метеорологии
и тестировании производительности программного обеспечения
продемонстрировано улучшение интерпретируемости результатов
СРС-анализа.

Результаты главы опубликованы в работах [4, 7, 14, 32, 33, 36, 41,
44,48,50,53,66,68], получены свидетельства о государственной реги-
страции программы для ЭВМ [90,100,114,115].

В четвертой главе рассмотрена задача моделирования распре-
делений размеров пылевых частиц лунного реголита, возникающих
в результате различных воздействий, при которых развиваются как
взрывные процессы разлета частиц с их дроблением, так и спекание
в экзотермических плазмохимических реакциях синтеза.

В §4.1 теоретические результаты §1.4 существенно используют-
ся для обоснования корректности использование логнормальных
моделей в разработанных статистических процедурах (на основе
бутстреп-подхода в §4.2 и минимизации статистики χ2 в §4.3) обра-
ботки всех доступных 317 проб лунного реголита, представленных в
каталоге NASA, которые были доставлены миссиями «Аполлон-11, 12,
14–17» и «Луна 24». Продемонстрировано высокое согласие предло-
женных логнормальных смешанных моделей с данными просеивания
частиц лунного реголита.

В §4.4 проиллюстрирована взаимозависимость математического
ожидания и среднего квадратического отклонения приближающих
вероятностных моделей (бутстреп-метод) для всех проб в φ-шкале,
традиционно используемой в геологии (верхние графики на рисун-
ке 1). Два нижних графика демонстрируют разбиение параметриче-
ского пространства методами k-медоид и нечеткой кластеризации.
Соответствующие методы формализованы в виде единого алгорит-
ма обработки данных в §4.5. Подобный анализ параметров может
использоваться, например, для соотнесения с химическим составом
проб или иными характеристиками реголита.

Разработанные подходы могут быть успешно использованы как
для исследований в рамках подготовки новых космических миссий,
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Рис. 1. – Кластеризация параметров аппроксимирующих смесей
так и при решении задач из других предметных областей, в которых
неизвестные наблюдения сгруппированы, но заданы лишь некоторые
характерные точки эмпирической функции распределения.

Результаты главы опубликованы в работах [12, 45], получе-
ны свидетельства о государственной регистрации программы для
ЭВМ [109,110,112].

В пятой главе описываются разработка и применение различ-
ных методов анализа данных на основе конечных смесей вероятност-
ных распределений и их скользящего разделения в комбинации с
нейросетевыми подходами для моделирования и изучения структуры
процессов, наблюдаемых в экспериментах с турбулентной плазмой.

В §5.1 исследован подход к анализу данных плазменной тур-
булентности на основе аппроксимации спектров с помощью конеч-
ных сдвиг-масштабных смесей вероятностных распределений. Для
нескольких серий спектров, полученных для разных режимов низ-
кочастотной плазменной турбулентности, продемонстрирована эф-
фективность использования предложенного метода, на основании
которого удалось решить важные для прикладной области задачи:
осуществить идентификацию амплитудного спектра с определени-
ем формы гармоник в нем и разделением на компоненты, выявить
повторяемость стохастических процессов с характерными средними
частотами полуширины спектра, а также определить значения таких
физических показателей функционирования плазмы, как величина
радиального электрического поля и фазовые скорости флуктуаций.

В §5.2 развивается вероятностно-статистический подход к анали-
зу эволюции характеристик микротурбулентности в переходном про-
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цессе электронно-циклотронного резонансного (ЭЦР) нагрева плаз-
мы. С помощью процедуры выявления локальной связности, предло-
женной в §3.3, и СРС-метода проведено определение числа форми-
рующих компонент (и их изменения во времени) для нескольких ан-
самблей экспериментальных данных. Продемонстрированы возмож-
ность получения содержательных физических результатов при ис-
следовании переходного процесса, возбуждаемого в плазме стеллара-
тора Л-2М при включении импульса дополнительного ЭЦР нагрева,
на основе анализа моментных характеристик (математическое ожи-
дание, дисперсия, коэффициенты асимметрии и эксцесса) смешанной
вероятностной модели для приращений наблюдений исходного про-
цесса. На рисунке 2 продемонстрирован эффект от использования
указанных характеристик, полученных с помощью математической
модели, в качестве дополнительных входных данных, используемых
при прогнозирования значений экспериментальных рядов с помо-
щью нейронных сетей. Результаты лучшей конфигурации (модель
для приращений наблюдений) сравниваются с точностями, получен-
ными при обучении только исходных данных (1), с добавлением вы-
борочных моментов (2), а также моментов для вероятностной моде-
ли, аппроксимирующей исходные экспериментальные данные (3).
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Рис. 2. – Относительный прирост точности прогнозирования
В §5.3 представлены методы прогнозирования значений подоб-

ных моментных характеристик. Предложены нейросетевые архитек-
туры для решения задач классификации и регрессии как для се-
тей прямого распространения, так и для рекуррентных модифика-
ций. Продемонстрировано построение совместных (векторных) про-
гнозов для всех четырех рассматриваемых моментных характери-
стик. Методы и подходы, описанные в §5.2 и §5.3, важны для раз-
вития вероятностно-статистического подхода к описанию эволюции
турбулентных процессов в магнитоактивной высокотемпературной
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плазме.
Результаты главы опубликованы в работах [2, 13, 17, 18, 20, 26, 40,

43,50,51,60,61,69,75–77,82], получены свидетельства о государствен-
ной регистрации программы для ЭВМ [83–87,89,95,100,103,107,113,
119,120].

Шестая глава посвящена разработке вероятностных моделей
(на основе теоретических результатов §1.3) и методов исследования
метеорологических (осадки и их интенсивности) и океанологических
(турбулентные потоки тепла между океаном и атмосферой) данных.
Особое внимание уделяется вопросам выявления экстремальных на-
блюдений в рассматриваемых пространственно-временных рядах.
Используются как статистические подходы для оценивания неиз-
вестных параметров, так и широкий набор алгоритмов машинного
обучения и нейронных сетей для решения задач заполнения пропус-
ков и прогнозирования.

В §6.1 на основе k-ичной дискретизации исходных непрерывных
данных об объемах осадков решена задача построения вероятност-
ных и нейросетевых прогнозов для подобного рода наблюдений. Про-
демонстрирована достаточно высокая точность: до 97,1% успехов
для однодневных и до 90,1% для двухдневных прогнозов для би-
нарных паттернов и до 92,2% успехов для однодневных и до 81,7%
для двухдневных прогнозов для k-ичных при k = 10. При этом
для анализа использованы исключительно базовые статистические
данные об объемах осадков и не привлекаются какие-либо дополни-
тельные сведения о метеорологических условиях. Продемонстриро-
вана эффективность использования метода случайного поиска для
выбора оптимальной конфигурации гиперпараметров для метеоро-
логических данных. Полученные решения могут быть эффективно
реализованы в виде программных инструментов анализа данных в
рамках исследовательских сервисов цифровых платформ.

В §6.2 решена задача выбора в достаточной степени универсаль-
ных с точки зрения эффективности применения в произвольных
географических регионах методов машинного обучения для запол-
нения пропусков в пространственно-временных метеорологических
данных. Наилучшие результаты при последовательном решении за-
дач классификации и регрессии получены для экстремального гра-
диентного бустинга. Данный метод обеспечивает высокий базовый
уровень точности при схожих настройках гиперпараметров по срав-
нению с другими алгоритмами. За счет тонкой настройки и допол-
нительного расширения признакового пространства, могут быть по-
лучены и более высокие значения, в том числе и иными методами
машинного обучения. Созданные инструменты могут быть успеш-
но использованы и для иных видов наблюдений, например данных
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экологического мониторинга окружающей среды.
В §6.3 предложено и обосновано использование вероятностных

моделей на основе классических и обобщенных отрицательных би-
номиальных и гамма-распределений для длительностей «дождли-
вых» периодов (интервалов времени, в которые осадки регистриро-
вались непрерывно) и соответствующих им объемов осадков. Проде-
монстрировано высокое соответствие моделей с реальными данны-
ми. Разработан эффективный метод функционального оценивания
параметров GNB- и GG-распределений (§1.1).

Рассмотрим GNB-распределение в качестве примера. Пусть по-
строена гистограмма для исходных данных – длительностей «дожд-
ливых» периодов. Они могут принимать только целочисленные зна-
чения, что учитывается при разбиении интервала возможных зна-
чений (столбцы располагаются в целых точках). Пусть Nb – число
столбцов одинаковой единичной ширины, h – вектор их высот, при-
чем каждая компонента hi ∈ [0, 1] для всех номеров i = 1, Nb. Вели-
чины hi определяются как отношение числа наблюдений, попавших
в соответствующий интервал, к общему числу элементов в выборке,
поэтому сумма площадей под столбиками равна 1.

Для поиска оценок r̂, γ̂ и µ̂ параметров GNB-распределения необ-
ходимо решить одну из следующих оптимизационных задач:

– в метрике `1: arg min
r,γ,µ

Nb∑
k=1

∣∣∣∣ 1k! ∞∫
0

e−zzkfGGr,γ,µ(z)dz − hk
∣∣∣∣;

– в метрике `2: arg min
r,γ,µ

√
Nb∑
k=1

(
1
k!

∞∫
0

e−zzkfGGr,γ,µ(z)dz − hk
)2

;

– в метрике `∞: arg min
r,γ,µ

max
k=1,Nb

∣∣∣∣ 1k! ∞∫
0

e−zzkfGGr,γ,µ(z)dz − hk
∣∣∣∣.

Обобщенная теорема Реньи (теорема 1.9, доказанная в §1.3), ис-
пользована для обоснования появления дополнительного параметра
(показателя степени в экспоненте) как индикатора неоднородности
данных за счет глобальных климатических тенденций. Предложен
метод оценивания неизвестных параметров a и β в указанной теоре-
ме, продемонстрировано высокое согласие с реальными метеороло-
гическими данными. Полученные результаты являются основой для
разработки методов статистического определения экстремальности
осадков.

В §6.4 разработаны статистические методы и алгоритмы обнару-
жения и идентификации экстремальных наблюдений в различных
временных рядах на примере осадков и их интенсивностей. Пред-
ложены восходящий и нисходящий методы определения пороговых
уровней, развивающие подходы классической теории экстремальных
значений на основе теорем Пикандса–Балкемы–Де Хаана и Реньи
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(§1.3). Создан метод классификации наблюдений, относящий каж-
дое из них к стандартному либо абсолютно, промежуточно и отно-
сительно экстремальным классам на основе проверки в скользящем
режиме статистических гипотез об однородности выборки из объе-
мов и интенсивностей.

А именно, рассмотрим некоторое число l ∈ N, 1 6 l < M , и неко-
торую подпоследовательность номеров i1, i2, . . . , il ⊂ [1,M ]. Обозна-
чим T γl = V γi1 + V γi2 + . . . + V γil , T

γ = V γ1 + V γ2 + . . . + V γM . Пусть
V1, . . . , VM – суммарные объемы осадков за M «дождливых» перио-
дов. Для проверки гипотезы H0: «объемы осадков Vi1 , Vi2 , . . . , Vil не
являются аномально большим относительно V1 + . . . + VM» может
быть использована статистика SRGG =

(M−l)Tγl
l(Tγ−Tγl )

, которая в случае
ее справедливости имеет распределение Снедекора-Фишера с пара-
метрами lr и (M − l)r. В случае, если SRGG > qlr,(M−1)r(1− α), где
qlr,(M−1)r(1 − α) – квантиль уровня (1 − α), α ∈ (0, 1), соответству-
ющего распределения Снедекора-Фишера, гипотеза H0 отвергается,
а суммарный вклад величин Vi1 , Vi2 , . . . , Vil должен быть признан
экстремально большим. Уровень значимости критерия равен α.

Описанная процедура может быть дополнительно модифициро-
вана за счет метода скользящего окна. Задавая ширину окна равной
m 6M и сдвигая каждый раз на один элемент в направлении астро-
номического времени, с помощью статистики SRGG, полагая в ней
l = 1, можно последовательно проверить экстремальность каждого
объема отностительно остальных в описанном выше смысле. Тогда
каждое наблюдение считается: абсолютно экстремальным, если ока-
зывается аномальным во всехm случаях; промежуточным экстрему-
мом, если он признается аномальным более чем в половине случаев
(то есть не меньше чем на dm/2e положениях окна); относительно
экстремальным, если оказывается аномальным хотя бы один раз, но
не более, чем в половине случаев; стандартным, если они не было
распознано как экстремальное ни на одном из положений окна.

На рисунке 3 приведено сравнение результатов анализа осадков в
Элисте с помощью данной процедуры (отмечены маркерами различ-
ных видов) и выводов на основе модифицированного метода превы-
шения порогового значения в восходящем и нисходящем вариантах
(красная сплошная и зеленая пунктирная линии, соответственно).

С использованием асимптотического распределения экстремаль-
ных наблюдений Fλ,µ,r(x) (теорема 1.2 в §1.3) разработан подход к
определению экстремальных суточных объемов как превышающих
квантили выбранных уровней данного распределения. Предложены
процедуры оценивания его параметров. Например, при известном
значении параметра r МНК-оценки величин λ и µ имеют следую-
щий вид:
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Рис. 3. Сравнение методов определения экстремальности данных

µ̂LS = exp

{
1

m− 1

(m−1∑
j=1

log
j1/r

m1/r − j1/r
− λ̂LS

∑m−1

j=1
logX∗(j)

)}
,

λ̂LS =

m−1∑
j=1

logX∗(j)

(log
j1/r

m1/r − j1/r

)m−1

−
m−1∑
k=1

log
k1/r

m1/r − k1/r

×

×
(
(m− 1)

m−1∑
j=1

(
logX∗(j)

)2
−
(
m−1∑
j=1

logX∗(j)

)2)−1

.

Эти методы могут быть эффективно использованы и для дру-
гих пространственно-временных метеорологических и иных данных,
удовлетворяющих минимальным модельным предположениям, свя-
занным с отрицательной биномиальностью числа наблюдений и их
гамма-распределенностью. Создание подобных инструментов необ-
ходимо для прогнозирования потенциально опасных явлений и про-
цессов в глобальных климатических моделях. В частности, стати-
стические оценки параметров вероятностных моделей могут быть
использованы для расширения признакового пространства в зада-
чах машинного обучения без необходимости увеличения объема ис-
ходных данных.

В §6.5 продемонстрировано применение СРС-подхода для анали-
за статистических закономерностей во временной эволюции тепло-
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вых потоков между океаном и атмосферой. Показано, что основная
компонента с небольшой дисперсией может сопровождаться стоха-
стически развивающимися и исчезающими компонентами с большой
дисперсией. Отмечен ряд закономерностей во временной изменчиво-
сти моментных характеристик приращений значений процесса теп-
ловых потоков. Развитый в диссертации метод на основе процедуры
скользящего разделения смесей и алгоритма определения связности
компонент использован для статистического оценивания коэффи-
циентов стохастического дифференциального уравнения Ланжевена
для скрытых и явных потоков тепла.

На рисунке 4 приведен пример определения статистической
структуры процесса теплообмена. На верхнем графике продемон-
стрирована эволюция во времени параметров распределений коэф-
фициента сдвига (дрейфа) a(ω, t) в уравнении Ланжевена, а на ниж-
нем – вклад каждой из структурных составляющих в общее развитие
процесса (веса компонент).

Рис. 4. Оценки распределения сдвига (Гольфстрим, явные потоки)

На основании упорядочивания весов и дисперсий предложен ме-
тод определения доли экстремальных наблюдений в рассматривае-
мых временных рядах. Продемонстрирована эффективность исполь-
зования разработанного для осадков и их интенсивностей модифици-
рованного метода превышения порогового значения для выявления
аномальных данных и при анализе океанологических рядов. Описан
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метод анализа характеристик распределений локальных трендов в
потоках тепла с помощью аппроксимации обобщенными отрицатель-
ным биномиальным и гамма-распределениями.

Результаты главы опубликованы в работах [5, 6, 11, 14, 19, 21,
24, 25, 29, 30, 35, 37, 38, 49, 52, 54, 54–57, 62, 70, 71, 73, 81], получе-
ны свидетельства о государственной регистрации программы для
ЭВМ [90,94,94,96–99,101–103,106,108,108,111,116,121].

В седьмой главе рассматриваются программные решения и
комплексы, которые использовались для анализа неоднородных дан-
ных и визуализации результатов в главах 3–6.

В §7.1 представлены графические интерфейсы для запуска СРС-
метода и визуального представления его результатов с помощью ди-
намической и диффузионых компонент, моментных характеристик
и квантилей, в том числе с помощью анимированных графиков. Эти
инструменты созданы с помощью языка программирования пакета
MATLAB.

В §7.2 описаны функциональные возможности разработанных
приложений для анализа распределений длительностей и объемов
осадков, реализующих методы оценивания параметров обобщенных
отрицательных биномиальных и гамма-распределений, которые бы-
ли описаны в §6.3.

В §7.3 предложена информационная технология исследования
стохастических процессов в плазме на основе спектрального ана-
лиза, которая включает в себя инструменты первичной обработки
и подготовки данных для анализа, различные модификации EM-
алгоритмов, функции для бутстреп-анализа и визуализации резуль-
татов. Обсуждаются структура и общая схема функционирования
разработанного программного обеспечения.

В §7.4 рассмотрены вопросы реализации развиваемых в диссер-
тации методов в рамках онлайн-системы для анализа информацион-
ных потоков с использованием разнообразных вероятностных моде-
лей на основе гетерогенных вычислений, которая может предложить
широкие функциональные возможности для различных групп иссле-
дователей.

В §7.5 обсуждаются вопросы трансформации отдельных про-
граммных решений, в том числе описанных в предшествующих
разделах, в научно-образовательные сервисы цифровых платформ
в полном соответствии с направлениями реализации Стратегии
научно-технологического развития Российской Федерации, програм-
мой «Цифровая экономика» и общемировыми трендами на цифро-
визацию науки как отрасли.

Результаты главы опубликованы в работах [2–4,8–10,16,22,28,30,
31,42,47,48,63–65,67,72], получены свидетельства о государственной
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регистрации программы для ЭВМ [86,88–93,104,105,117,118].
В Заключении кратко описаны проведенные исследования, по-

лученные результаты и перспективы их дальнейшего использования.
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ЭВМ № 2017662540 от 10.11.2017.
98. Горшенин А.К. Программа оценивания параметров обобщенного от-
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рицательного биномиального распределения на основе функционально-
го подхода. Свидетельство о государственной регистрации программ для
ЭВМ № 2018619090 от 30.07.2018.
99. Горшенин А.К. Программа оценивания параметров обобщенного
гамма-распределения на основе функционального подхода. Свидетель-
ство о государственной регистрации программ для ЭВМ № 2018619794
от 10.08.2018.

100. Горшенин А.К. Программа скользящего разделения конечных сме-
сей гамма-распределений с оптимизацией на основе векторных вычисле-
ний. Свидетельство о государственной регистрации программ для ЭВМ
№ 2018619795 от 10.08.2018.

101. Горшенин А.К. Программа классификации экстремальных объемов
осадков. Свидетельство о государственной регистрации программ для
ЭВМ № 2018619796 от 10.08.2018.

102. Горшенин А.К. Программный модуль статистического определения
экстремальных пороговых уровней для максимумов дневных объемов
осадков. Свидетельство о государственной регистрации программ для
ЭВМ № 2018619922 от 14.08.2018.

103. Горшенин А.К. Программный модуль визуализации точности обуче-
ния нейронных сетей. Свидетельство о государственной регистрации про-
грамм для ЭВМ № 2018619923 от 14.08.2018.

104. Горшенин А.К. Программа статистического анализа распределений
объемов осадков за дождливые периоды с графическим пользователь-
ским интерфейсом. Свидетельство о государственной регистрации про-
грамм для ЭВМ № 2018661221 от 04.09.2018.

105. Горшенин А.К. Программа статистического анализа распределений
длительностей дождливых периодов с графическим пользовательским ин-
терфейсом. Свидетельство о государственной регистрации программ для
ЭВМ № 2018661222 от 04.09.2018.

106. Горшенин А.К. Программа двухэтапного определения аномальных
интенсивностей осадков. Свидетельство о государственной регистрации
программ для ЭВМ № 2018665545 от 06.12.2018.

107. Горшенин А.К. Программа анализа статистических свойств микро-
турбулентности в переходном процессе при электронно-циклотронном ре-
зонансном нагреве плазмы. Свидетельство о государственной регистрации
программ для ЭВМ № 2019615238 от 22.04.2019.

108. Горшенин А.К. Программа анализа вероятностных характеристик
данных метеорологических станций в пакетном режиме. Свидетельство
о государственной регистрации программ для ЭВМ № 2019664376 от
06.11.2019.

109. Горшенин А.К. Программа кластеризации параметров вероятностной
аппроксимации распределений размеров частиц лунного реголита. Свиде-
тельство о государственной регистрации программ для ЭВМ№ 2019664471
от 07.11.2019.

110. Горшенин А.К. Программа аппроксимации вероятностных распреде-
лений размеров частиц лунного реголита. Свидетельство о государствен-
ной регистрации программ для ЭВМ № 2019664472 от 07.11.2019.
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111. Горшенин А.К. Программа аппроксимации вероятностных распреде-
лений характеристик локальных трендов в турбулентных потоках тепла
между океаном и атмосферой. Свидетельство о государственной регистра-
ции программ для ЭВМ № 2019664808 от 13.11.2019.

112. Горшенин А.К. Программный комплекс статистического анализа
сгруппированных скрытых наблюдений с заданными характерными точ-
ками эмпирической функции распределения. Свидетельство о государ-
ственной регистрации программ для ЭВМ № 2020666605 от 11.12.2020.

113. Горшенин А.К. Программный модуль визуализации точности нейро-
сетевых прогнозов для экспериментальных данных стелларатора Л-2М и
их статистических характеристик. Свидетельство о государственной реги-
страции программ для ЭВМ № 2020666991 от 18.12.2020.

114. Горшенин А.К. Программа статистического оценивания распреде-
лений случайных коэффициентов стохастического дифференциального
уравнения Ланжевена. Свидетельство о государственной регистрации про-
грамм для ЭВМ № 2020622795 от 24.12.2020.

115. Горшенин А.К., Королев В.Ю. Программный модуль поиска моментов
начала движения по миограмме с помощью анализа динамической компо-
ненты. Свидетельство о государственной регистрации программ для ЭВМ
№2015618672 от 13.08.2015.

116. Горшенин А.К., Королев В.Ю. Программный модуль предсказания
осадков на основе исторических паттернов. Свидетельство о государствен-
ной регистрации программ для ЭВМ №2016618887 от 09.08.2016.

117. Горшенин А.К., Кузьмин В.Ю. Программный модуль асинхронной
конвейерной обработки данных на основе медианной модификации EM-
алгоритма для системы поддержки научных исследований. Свидетель-
ство о государственной регистрации программ для ЭВМ № 2017663370
от 30.11.2017.

118. Горшенин А.К., Кузьмин В.Ю. Программный модуль асинхронной
конвейерной обработки данных на основе сеточных методов для систе-
мы поддержки научных исследований. Свидетельство о государственной
регистрации программ для ЭВМ № 2017663371 от 30.11.2017.

119. Горшенин А.К., Кузьмин В.Ю. Программа векторного прогнозиро-
вания временных рядов с использованием нейронных сетей. Свидетель-
ство о государственной регистрации программ для ЭВМ № 2019665119 от
20.11.2019.

120. Горшенин А.К., Кузьмин В.Ю. Программа нейросетевого прогнози-
рования экспериментальных данных стелларатора Л-2М с использовани-
ем статистического расширения признакового пространства. Свидетель-
ство о государственной регистрации программ для ЭВМ № 2020667241 от
21.12.2020.

121. Горшенин А.К., Лебедева М.А., Лукина С.С. Программа заполне-
ния пропусков в данных с использованием методов машинного обуче-
ния. Свидетельство о государственной регистрации программ для ЭВМ
№ 2019664807 от 13.11.2019.

42


