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Общая характеристика работы

Актуальность темы. Современные технологии нейросетевого рас­
познавания используются в различных сферах жизнедеятельности чело­
века. Они способны облегчить решение ряда прикладных задач, однако
их внедрение ограничивается не только точностью распознавания и скоро­
стью работы, но и соображениями безопасности и конфиденциальности
данных пользователей. Именно эти вопросы выходят на первый план
при распознавании идентификационных документов, банковских карт и
платежных документов, обработке медицинской информации. Один из наи­
более эффективных способов обеспечения безопасности пользовательских
данных предлагает концепция граничных вычислений, при которой вы­
числения выполняются в точке, максимально приближенной к конечному
пользователю, в идеале — на конечном устройстве, где эти результаты и
будут использоваться далее.

Однако конечные устройства чаще всего обладают ограниченной
вычислительной мощностью и объемом доступной оперативной памяти.
Кроме того, повышенные требования предъявляются к их энергоэффектив­
ности, так как часто они работают от аккумулятора (например, смартфоны
и различные носимые устройства) или являются составной частью других
систем, также ограниченных в энергопотреблении (например, беспилот­
ных транспортных средств или элементов интернета вещей). Также вопрос
энергоэффективности нейросетевого распознавания в последнее время при­
влекает все большее внимание из-за возможного негативного влияния на
экологию вследствие затрат энергии на обучение и многократные запуски
глубоких нейронных сетей уже после их внедрения.

Таким образом, разработчикам распознающих систем с одной сторо­
ны необходимо обеспечить достаточно высокую точность распознавания
для успешного решения поставленных задач, которая обычно достигается
за счет усложнения нейросетевых моделей, а с другой — выполнить требо­
вания по энергоэффективности и скорости работы.

Особенно важной является эта задача в случае распознавания в
режиме реального времени, например, при обработке видеопотока: про­
слеживании траекторий объектов, сегментации меняющейся сцены или
извлечении текстовой информации в произвольных условиях.

Для визуального распознавания, как правило, используются моде­
ли, имеющие сверточную архитектуру, то есть состоящие из большого
количества последовательно расположенных сверточных слоев, между ко­
торыми могут включаться слои субдискретизации, нормализации или слои
других типов. Основную вычислительную сложность таких сетей состав­
ляют именно вычисления в сверточных слоях. Для обеспечения высокой
точности распознавания такие модели выполняют несколько миллиардов
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операций аккумулирующего умножения на запуск. Современные мощ­
ные вычислительные устройства имеют частоту в несколько гигагерц и
несколько вычислительных ядер, однако даже они могут рассчитать всего
несколько таких запусков в секунду. Таким образом, задача исследова­
ния вычислительной эффективности сверточных нейросетевых моделей
на сегодняшний день крайне актуальна. В разное время ей занимались
отечественные и зарубежные ученые, такие как Ю. И. Журавлев, В. Л.
Арлазаров, В. А. Сойфер, Ю. В. Визильтер, И. Б. Гуревич, В. Б. Бетелин,
Д. П. Николаев, а также H. Wen, M. Rastegari, A. Farhadi, Y. Lecun, Y.
Bengio, G. Hinton и другие.

Повышение вычислительной эффективности таких моделей возмож­
но из-за наличия в них неявной вычислительной избыточности. Иссле­
дования показывают, что эта избыточность в большей степени связана
с несовершенством существующих методов обучения, а не конкретным
числом нейронов и способом их организации в слои. Процесс обучения ней­
росетевых моделей заключается в поиске минимума некоторой функции
потерь, которая в общем случае является невыпуклой и имеет множество
экстремумов. С теоретической точки зрения такая задача крайне сложна
и не имеет общего решения. Вследствие этого поиск методов снижения
вычислительной избыточности нейросетевых моделей носит эксперимен­
тальный характер. Есть множество методов, снижающих число тех или
иных арифметических операций в нейросетевых моделях, таких как тен­
зорные декомпозиции, обрезка моделей, применение дистилляции знаний
для создания более простых моделей. Эти методы позволяют в разы или
даже на порядки снизить число операций, однако все еще не позволяют до­
стичь желаемой вычислительной эффективности глубоких нейросетевых
моделей при сохранении удовлетворительной точности распознавания.

Одним из наиболее перспективных направлений повышения вы­
числительной эффективности нейросетевых моделей последнего времени
является совместная оптимизация архитектуры нейросетевой модели и
архитектуры вычислительного устройства. Оно требует высокой квали­
фикации специалиста как в области искусственного интеллекта, так
и в области проектирования вычислительных устройств, или создания
междисциплинарной команды ученых. Ведь разработчики нейросетевых
моделей, ограниченные конкретным вычислительным устройством или
классом устройств, вынуждены проектировать модели, опираясь на до­
ступный объем вычислительных ресурсов. Как правило, современные
нейросетевые модели направлены на исполнение на графических процес­
сорах. С другой стороны, разработчики специализированных устройств
выполняют большую работу по низкоуровневому проектированию и обыч­
но рассматривают лишь одну нейросетевую архитектуру, позволяющую
получить высокую точность распознавания. Результирующее устройство
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при этом отличается высокой эффективностью, но может требовать моди­
фикации при малейших изменениях модели. В качестве компромисса были
созданы специализированные тензорные процессоры (например, Google
TPU или Intel VPU), которые могут эффективно исполнять отдельные
классы нейросетевых моделей. Однако они также потребуют модифика­
ции при создании новых классов распознающих архитектур, например, в
настоящее время они не поддерживают исполнение моделей с бинарными
или тернарными весами.

В таких условиях особый интерес представляет смена модели вычис­
лений в элементарных логических элементах нейронной сети — отдельных
слоях или отдельных нейронах. Такие изменения не затрагивают архи­
тектуру сети и все также позволяют строить и использовать модели
разных типов, но могут сделать аппаратную реализацию модели гораз­
до эффективнее, поскольку различные типы нейронов требуют разных
аппаратных и энергетических затрат при реализации и в процессе рабо­
ты. Поскольку существующие модели слоев и нейронов уже доказали свою
эффективность в решении практических задач и позволяют добиться вы­
сокой точности распознавания, данная работа посвящена исследованию их
аппроксимаций, упрощающих последующее создание вычислителя, но при
этом сохраняющих высокую точность работы.

Основные результаты диссертации были получены в процессе выпол­
нения работ по следующим научным грантам РФФИ:

1. 18-07-01384 — «Исследование применимости методов нелинейных
аппроксимаций для оптимизации быстродействия искусственных
нейронных сетей на современнных микропроцессорных архитекту­
рах»

2. 17-29-03297 — «Исследование возможности создания энергоэффек­
тивных аппаратных устройств для мобильных устройств комплек­
сов идентификации и верификации личности в составе систем
технического зрения наземных робототехнических комплексов»

3. 17-29-03240 — «Глубокие нейронные сети с вычислительно упро­
щенной моделью нейрона»

Целью данной работы является разработка и исследование вычис­
лительно-эффективных аппроксимаций нейросетевых моделей, методов их
обучения и оптимизации их вычисления на существующих и перспектив­
ных вычислителях.

Для достижения этой цели были поставлены следующие задачи:
1. Разработать метод аппроксимации вычислительно-интенсивных

частей нейросетевых моделей, исследовать его вычислительную
эффективность и точность.

2. Оценить вычислительную эффективность на различных платфор­
мах.
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3. Разработать методы обучения предложенной аппроксимирующей
структуры.

4. Провести экспериментальную оценку точности предложенного ме­
тода обучения аппроксимированных нейросетевых моделей для
различных нейросетевых архитектур.

5. Разработать комплекс программ, позволяющий моделировать ап­
проксимацию нейросетевых моделей, обучение полученных струк­
тур и проверку результирующего качества работы.

Научная новизна:
1. Предложена новая аппроксимация классического нейрона ней­

роном с морфологической структурой, позволяющая создавать
глубокие нейронные сети с морфологическими слоями и обеспе­
чивающая высокую точность распознавания.

2. Предложен новый метод обучения произвольных, в том числе
биполярных морфологических и целочисленных, аппроксимаций
классических нейросетевых моделей путем послойного преобразо­
вания и дообучения, позволяющий повысить их качество.

3. Впервые показано, что для предложенной аппроксимации метод
послойного преобразования и дообучения позволяет добиться бо­
лее высокого качества работы нейросетевой модели, чем прямое
обучение с помощью метода обратного распространения ошибки и
градиентных методов оптимизации.

4. Проведено оригинальное исследование точностных характеристик
нейросетевых моделей LeNet- и ResNet-подобных архитектур, ис­
пользующих предложенную морфологическую аппроксимацию.

5. Впервые теоретически показано, что нейросетевая модель с до­
статочным числом нейронов биполярного морфологического вида
может приблизить произвольную непрерывную на компакте функ­
цию с любой заранее заданной точностью.

Практическая значимость. Предложенная аппроксимация
позволяют создать нейросетевые модели, подобные по архитектуре класси­
ческим глубоким моделям, но в то же время обладающие принципиально
новыми теоретическими свойствами. Она снижает вычислительную
сложность исходных моделей и потенциально способна повысить их
эффективность.

Разработанные в рамках диссертации методы были реализованы
в виде программных компонентов и внедрены в программное обеспече­
ние «Smart ID Engine», «Smart Code Engine», «Smart Document Engine»,
а также «Smart IDReader» компании ООО «Смарт Энджинс Сервис».
Данные продукты интегрированы в информационную инфраструктуру и
мобильные приложения АО «Тинькофф Банк», а также в ряд информаци­
онных решений государственных структур Российской Федерации. Кроме
того, полученные оценки и результаты моделирования демонстрируют,
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что включение специализированных модулей для элементарных арифме­
тических операций при создании устройств для исполнения нейросетевых
моделей способно повысить эффективность их работы и используются в
АО «МЦСТ» при проектировании новых устройств.

Соответствие диссертации паспорту научной специальности.
В соответствии с формулой специальности 1.2.2 «Математическое модели­
рование, численные методы и комплексы программ» (технические науки)
в работе выполнены разработка, исследование и реализация модели вы­
числительно-эффективного биполярного морфологического нейрона как
аппроксимации классического математического нейрона. Работа соответ­
ствует следующим пунктам паспорта специальности: п. 2 «Разработка,
обоснование и тестирование эффективных вычислительных методов с
применением современных компьютерных технологий», п. 3 «Реализа­
ция эффективных численных методов и алгоритмов в виде комплексов
проблемно-ориентированных программ для проведения вычислительного
эксперимента», п. 7 «Качественные или аналитические методы исследова­
ния математических моделей (технические науки)» и п. 9 «Постановка и
проведение численных экспериментов, статистический анализ их результа­
тов, в том числе с применением современных компьютерных технологий
(технические науки)».

Методология и методы исследования. В диссертационной рабо­
те использовались методы математического анализа, линейной алгебры,
методы численного моделирования и нелинейной теории оптимизации.

Основные положения, выносимые на защиту:
1. Разработана аппроксимация модели математического нейрона и

сверточного слоя: биполярные морфологические нейрон и сверточ­
ный слой, не задействующие умножений в своих вычислительно­
интенсивных частях.

2. Доказано, что нейронная сеть из биполярных морфологических
нейронов может с любой заранее заданной точностью приблизить
любую непрерывную на компакте функцию.

3. Предложен метод обучения аппроксимаций классических нейросе­
тевых моделей путем послойного преобразования и дообучения,
позволяющий повысить их качество.

4. Экспериментально показано, что предложенный метод послойно­
го преобразования и дообучения позволяет добиться высокого
качества работы аппроксимированных нейросетевых моделей на
примере линейно квантованных малобитных и биполярных мор­
фологических нейронных сетей.

5. Разработан комплекс программ, реализующий предложенную в
работе модель биполярного морфологического нейрона, метод по­
слойного дообучения для этой модели и позволяющий оценивать
точностные характеристики результирующих сетей.
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Достоверность полученных результатов подтверждается соответ­
ствием теоретических и экспериментальных результатов, продемонстри­
рованных в работе, успешной апробацией результатов и внедрением в
коммерческие системы распознавания документов.

Апробация работы. Основные результаты работы докладывались
и обсуждались на следующих семинарах и конференциях:

1. Междисциплинарной школе-конференции Института проблем пе­
редачи информации им. А. А. Харкевича Российской академии
наук (ИППИ РАН) «Информационные технологии и системы»
(ИТиС) в 2015 году.

2. Международной конференции «International Conference on
Machine Vision» (ICMV) в 2016, 2019, 2020 годах.

3. международной конференции «International Conference on Pattern
Recognition» (ICPR) в 2020 году.

4. Научном семинаре Лаборатории №11 ИППИ РАН в 2021 году.
5. Международном научно-исследовательском семинаре «Анализ и

понимание изображений (Математические, когнитивные и при­
кладные проблемы анализа изображений и сигналов)» в 2022 году.

Личный вклад. Все основные результаты диссертационной работы
получены и обоснованы автором самостоятельно. Постановка задач и об­
суждение результатов проводились совместно с научным руководителем.
В [2—5] автором предложена аппроксимация классического нейрона мор­
фологической структурой, методы для ее обучения, а также выполнено
экспериментальное исследование ее точности для нейросетевых моделей
различных архитектур, оценки вычислительной эффективности и вырази­
тельной способности предложенной структуры. В [6; 7] автор осуществил
анализ вычислительной эффективности рассматриваемых алгоритмов на
VLIW-платформах, выполнил их доработку и оценки производительности.
В [10; 8] автор предложил методы квантования нейросетевых моделей,
метод послойного преобразования и дообучения таких моделей и про­
вел экспериментальную оценку их вычислительной эффективности. В [9]
автору принадлежит идея разработанной аппаратной архитектуры и
план проведения экспериментов. Исследование аппроксимаций функций
активации биполярных морфологических моделей было выполнено и опуб­
ликовано в [1] без соавторства.

Публикации. Основные результаты по теме диссертации изложены
в 10 печатных изданиях, из которых 1 работа издана в журнале, рекомен­
дованном ВАК, 8 — в научных изданиях, индексируемых Web of Science и
Scopus, 1 — в сборнике трудов конференции. Зарегистрировано 2 програм­
мы для ЭВМ.
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Содержание работы

Во введении обсуждается тема диссертационного исследования,
обосновывается ее актуальность и научная новизна, ставятся цели и за­
дачи работы, а также показывается ее теоретическая и практическая
значимость, и приводятся положения, выносимые на защиту. Введение за­
вершается кратким содержанием диссертационной работы.

Первая глава начинается с рассмотрения нейросетевых моделей
с вычислительной точки зрения. В ней изложены модели отдельного
нейрона, такие как классический математический, морфологический и
спайковый нейроны, модели слоев нейронной сети, а также приведены
примеры нейросетевых архитектур. Рассматриваются основные классы
вычислительных устройств, используемых для вычисления нейросетевых
моделей, их преимущества и недостатки. На практике это чаще всего бы­
вают:

1. Высокопроизводительные серверы, получающие данные с удален­
ных устройств. В этом случае сложность нейросетевой модели не
представляет проблемы, однако возникают задержки, связанные с
каналами связи, а также вопросы к безопасности пересылаемых
данных, которые могут содержать персональную, медицинскую
или финансовую информацию, которая должна оставаться конфи­
денциальной.

2. Непосредственно конечные устройства; чаще всего это будут
пользовательские рабочие станции, мобильные или встраиваемые
устройства. Их использование не несет дополнительных угроз для
конфиденциальности, однако осложняется ограниченностью вы­
числительных ресурсов подобных устройств.

Проблема повышения вычислительной эффективности нейросетевых
моделей на конечных устройствах имеет большое научное и практиче­
ское значение и именно ей посвящена данная работа. Поэтому далее
вводятся две модели конечных устройств и методики оценки вычислитель­
ной эффективности для них, а именно модель логической цепи, которая
соответствует программируемым/специализированным логическим инте­
гральным схемам (ПЛИС/СЛИС), и модель Single Instruction Multiple Data
процессора, отвечающая центральным процессорам мобильных устройств
и рабочих станций.

Оставшаяся часть первой главы посвящена анализу существующих
методов снижения вычислительной трудоемкости нейросетевых моделей
и их классификации. Эти методы можно разделить на две практически
не пересекающиеся группы. Методы первой группы уменьшают число
коэффициентов и вычислительных операций в сети, за счет чего она
также может работать быстрее независимо от вида вычислителя. К ним
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можно отнести тензорные разложения сверток, обрезку моделей, дистил­
ляцию знаний. Методы второй группы ориентируются на возможности
конкретных вычислителей и заменяют одни вычислительные операции и
структуры другими, которые могут быть оптимальнее реализованы и тре­
буют меньше времени для подсчета. Например, малобитные вычисления
эффективны как для центральных процессоров, так и для логических
интегральных схем, а альтернативные эффективно-вычислимые модели
отдельных нейронов и слоев предназначены в основном для логических
интегральных схем. При этом методы из разных групп могут комби­
нироваться и дополнять друг друга. Проведенный анализ показал, что
постоянно усложняющиеся задачи и нейросетевые модели, используемые
для их решения, а также соображения энергоэффективности, безопасно­
сти и качества обслуживания заставляют ученых искать все новые методы
повышения вычислительной эффективности для конечных устройств и
встраиваемых систем. Несмотря на то, что существуют достаточно эф­
фективные решения частных задач, в общем случае они не позволяют
достичь баланса между желаемым качеством распознавания и скоростью
работы. Поэтому цель диссертационной работы актуальна, а задачи по
разработке и исследованию вычислительно-эффективных аппроксимаций
существующих нейросетевых моделей, методов их обучения и оптимизации
их вычисления на существующих и перспективных вычислителях представ­
ляют научный и практический интерес.

Во второй главе была предложена новая структура нейрона, име­
ющая морфологический вид и являющаяся аппроксимацией математи­
ческого нейрона: биполярный морфологический (БМ) нейрон. При этой
аппроксимации положительные и отрицательные значения коэффициентов
и входных сигналов нейрона рассматриваются отдельно, формируя отдель­
ные вычислительные пути для каждой комбинации знаков коэффициентов
и входов. Такая структура позволяет явным образом моделировать процес­
сы возбуждения и торможения в нейроне.

Биполярный морфологический нейрон имеет следующий вид:

𝑓𝐵𝑀 (x, 𝑉, 𝑣) = 𝜙

(︂
exp

𝑁
max
𝑗=1

(ln𝑥+
𝑗 + 𝑣+𝑗 )− exp

𝑁
max
𝑗=1

(ln𝑥+
𝑗 + 𝑣−𝑗 )−

− exp
𝑁

max
𝑗=1

(ln𝑥−
𝑗 + 𝑣+𝑗 ) + exp

𝑁
max
𝑗=1

(ln𝑥−
𝑗 + 𝑣−𝑗 ) + 𝑣0

)︂
,

𝑥+
𝑗 = max(𝑥𝑗 , 0), 𝑥−

𝑗 = max(−𝑥𝑗 , 0)

где x — вектор входных значений длины 𝑁 , 𝑣+, 𝑣− — векторы весовых
коэффициентов длины 𝑁 , 𝑣0 — смещение, 𝜙(·) — нелинейная функция
активации.

Структура БМ нейрона показана на рисунке 1. Функция max позво­
ляет отбрасывать отрицательные значения и сформировать четыре ветки
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𝑥

𝑥+ 𝑦+

𝑥− 𝑦−

𝑦00 𝑧00

𝑦01 𝑧01

𝑦10 𝑧10

𝑦11 𝑧11

𝑧+

𝑧−

𝑧

max(𝑥, 0)

ln(𝑥+)

max(−𝑥, 0)

ln(𝑥−)

max(𝑦+ + 𝑣+)

max(𝑦+ + 𝑣−)

exp(𝑦00)

𝑧00 − 𝑧01

exp(𝑦01)

max(𝑦− + 𝑣+)

max(𝑦− + 𝑣−)

exp(𝑦10)

exp(𝑦11)

𝑧10 − 𝑧11

𝜙(𝑧+ − 𝑧− + 𝑣0)

Рис. 1 — Структура БМ нейрона с вектором входных значений 𝑥, весовыми
коэффициентами 𝑣+, 𝑣−, 𝑣0 и вектором выходных значений 𝑧.

вычислений для различных комбинаций знаков входных значений и ве­
совых коэффициентов. Затем выполняется логарифмирование и основная
морфологическая операция внутри слоя. Ее результаты потенцируются и
аккумулируются для получения выходного значения.

Далее для БМ сетей формулируется и доказывается теорема 1, демон­
стрирующая, что БМ сети имеют такую же выразительную способность,
как и классические многослойные персептроны.

Определение 1. Будем говорить, что функция 𝑔(𝑥) равномерно прибли­
жает 𝑓(𝑥) на компакте 𝐶 с точностью 𝜖 > 0, если

∀𝑥 ∈ 𝐶 : |𝑓(𝑥)− 𝑔(𝑥)| < 𝜖. (1)

Теорема 1. Любая непрерывная на компакте функция 𝑁 переменных
𝑓(𝑥1, ..., 𝑥𝑁 ) может быть равномерно приближена с любой заранее задан­
ной точностью 𝜖 > 0 некоторой нейронной сетью, состоящей только из
БМ нейронов.

Приведем схему доказательства. Рассмотрим одномерный случай, ко­
гда 𝑓(𝑥) определена и непрерывна на отрезке [𝛼, 𝛽]. Построим трехслойную
нейронную сеть следующего вида.

1. Расположим на первом слое 2𝑛 нейронов, вычисляющие линейные
функции

𝜉±𝑖 = ±𝑥+ 𝑎±𝑖 , 𝑖 = 1, . . . , 𝑛,

где 𝑎+𝑖 , 𝑎
−
𝑖 ∈ R — произвольные действительные числа.

2. Расположим на втором слое 𝑛 нейронов, вычисляющих прямо­
угольные импульсы 𝜂𝑖 с основаниями (𝑎−𝑖 ,−𝑎+𝑖 ) высоты 1.
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3. Введем последовательность 𝑥0 = 𝛼, 𝑥1 = 𝛼+ 𝛿, ..., 𝑥𝑛 = 𝛽. Возьмем
𝑎+𝑖 = −𝑥𝑖, 𝑎−𝑖 = 𝑥𝑖−1, где 𝑖 = 1, ..., 𝑛. Расположим на третьем слое
один нейрон, вычисляющий кусочно-постоянную функцию 𝜁(𝑥) =
𝑛

max
𝑖=1

𝑓(𝑥𝑖)𝜂𝑖.

4. Докажем, что можно подобрать такие 𝑛 и 𝛿, что 𝜁(𝑥) равномерно
приближает 𝑓(𝑥) на отрезке [𝛼, 𝛽] с заранее заданной точностью.

Благодаря тому, что БМ нейрон является аппроксимацией классиче­
ского, он может применяться в произвольных нейросетевых архитектурах.
Поэтому далее приводятся оценки числа арифметических операций и вы­
числительной эффективности БМ слоев. Для современных центральных
процессоров использование БМ нейронов с вещественными коэффициен­
тами не позволяет повысить эффективность вычислений, поскольку они
не предусматривают эффективных модулей для реализации отдельных
арифметических операций, однако БМ нейроны могут быть эффектив­
но реализованы для ПЛИС или СЛИС. Для создания такой реализации
использовались аппроксимации для функций активации в БМ нейроне:
аппроксимация Митчелла для реализации логарифмирования и аппрокси­
мация Шраудольфа для реализации потенцирования.

Логарифм, аппроксимированный методом Митчелла, можно задать
следующим выражением:

̂︂log2(𝑥) = ⌊log2 𝑥⌋+
𝑥− 2⌊log2 𝑥⌋

2⌈log2 𝑥⌉ − 2⌊log2 𝑥⌋ .

Экспоненту, аппроксимированную методом Шраудольфа, можно за­
дать следующим выражением:

ˆ︁exp2(𝑥) = 𝑓𝑙𝑜𝑎𝑡(𝑎𝑥+ (𝑏− 𝑐)),

𝑎 = 223, 𝑏 = 127 · 223, 𝑐 = 486411,

а функция 𝑓𝑙𝑜𝑎𝑡 интерпретирует целочисленный аргумент как число, за­
писанное в вещественном формате 𝑏𝑖𝑛𝑎𝑟𝑦32.

Оценки числа вентилей и латентностей для реализации основных
арифметических модулей БМ нейрона приведены в таблице 1. Для их
получения было создано описание основных операций (сложение, взятие
максимума, умножение) на языке Verilog HDL, и была синтезирована вен­
тильная реализация устройств с помощью программного пакета Synopsys
Design Compiler для 16 нм технологических библиотек. Оценки слож­
ности и эффективности реализации двоичных логарифма и экспоненты
сделаны на основе оценок для основных операций. Далее были промоде­
лированы сверточные БМ слои и проведено сравнение с классическими
слоями с помощью полученных вентильных сложностей и латентностей от­
дельных операций. Результаты моделирования для некоторых параметров
сверточных слоев и аппроксимированных функций активации приведены
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Таблица 1 — Оценка числа элементарных арифметических операций, ло­
гических вентилей и латентности (в тактах) для операций в БМ слоях.

Операция #add #max #mul Вент. Лат.
add 1 0 0 2659 3
max 0 1 0 563 2
mul 0 0 1 3247 4̂︂log2 1 0 0 2659 3
ˆ︁exp2 1 0 1 5906 7

в таблице 2. Они показывают, что для слоев с достаточно большим числом
входных и выходных каналов БМ слои используют практически столько
же вентилей, сколько и классические слои, однако имеют латентность на
30-40% ниже. При этом для сверточных слоев с достаточно малым числом
входных каналов и размером фильтров 3× 3 при использовании аппрокси­
мированных функций активации латентность на 12-40% меньше, чем для
классических слоев.

Изложенные в этой главе результаты опубликованы в [1-2; 4-5; 9].

Таблица 2 — Оценка отношения числа вентилей и латентности для клас­
сического и БМ сверточных слоев для двухветочной структуры слоя, где
𝐾×𝐾 – размер ядра свертки, 𝐹 – число выходных, а 𝐶 – входных каналов.

𝐾 𝐹 𝐶 𝑉𝑠𝑡𝑑/𝑉𝐵𝑀 𝐿𝑠𝑡𝑑/𝐿𝐵𝑀

1 16 16 0.74 1.19
1 32 32 0.82 1.29
1 64 64 0.87 1.34
1 128 128 0.89 1.37
1 256 256 0.90 1.38
1 512 512 0.91 1.39
3 16 16 0.89 1.37
3 32 32 0.90 1.39
3 64 64 0.90 1.39
3 128 128 0.91 1.40
3 256 256 0.92 1.40
3 512 512 0.92 1.40

Третья глава посвящена исследованию точностных характеристик
БМ нейронных сетей. В ней показано, что прямое преобразование к
БМ виду и использование классических методов обучения неэффектив­
но, и предлагается оригинальный метод послойного преобразования и
дообучения, использующий аппроксимационную природу БМ нейрона. Он
опирается на два соображения:
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1. Классические нейронные сети способны легко адаптироваться к
небольшим изменениям входных сигналов при обучении, а значит
можно постепенно заменять классические нейроны на БМ и вы­
полнять обучение классической части сети.

2. БМ нейрон аппроксимирует классический нейрон, а значит значе­
ния коэффициентов классического нейрона можно использовать в
качестве начальных значений при обучении БМ модели.

В качестве части нейронной сети, которая будет приближаться на
каждой итерации, рассматривается элементарный блок современных ней­
росетевых архитектур: один слой. Таким образом, в предложенном методе
сначала обучается классическая нейронная сеть, а затем выполняется пре­
образование нейронов каждого слоя к БМ модели, аппроксимируя весовые
коэффициенты классического слоя. Далее полученная нейронная сеть до­
обучается классическими методами, что позволяет нивелировать падение
качества. Преобразование выполняется послойно от первого к последнему
слою. Подробно данный подход показан в Методе 1.

Метод 1: Обучение БМ сети
Входные данные: Обучающая выборка, валидационная выборка.
Выходные данные: БМ нейронная сеть.

1 Обучить классическую нейронную сеть стандартными методами.
2 для всех сверточных и полносвязных слоев выполнить
3 Заменить классические математические нейроны с весовыми

коэффициентами 𝑤 БМ нейронами с весовыми
коэффициентами {𝑣+, 𝑣−, 𝑣0}, где:

𝑣+𝑗 =

{︃
ln𝑤𝑗 , если 𝑤𝑗 > 0,

−∞, иначе,

𝑣−𝑗 =

{︃
ln |𝑤𝑗 |, если 𝑤𝑗 < 0,

−∞, иначе,

𝑣0 = 𝑤0.

4 Обучить полученную нейронную сеть стандартными
методами.

Экспериментально показано, что наилучших результатов можно до­
стичь, если на этапе дообучения выполнять дообучение всей сети, а не
только ее классической части. При этом в случае сверточных нейросетевых
моделей, следует преобразовывать к БМ виду только сверточные слои. В
результате показано, что для LeNet-подобных моделей на выборке MNIST
точность распознавания сопоставима с точностью классических моделей.
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Кроме того, предложенный метод послойного преобразования и до­
обучения может успешно использоваться и с другими аппроксимациями,
например, малобитными целочисленными аппроксимациями нейросетевых
моделей. Такие аппроксимации являются дискретными и не могут быть
обучены с помощью классических градиентных методов, предполагаю­
щих непрерывность оптимизируемых параметров. В случае использования
8-битных целочисленных коэффициентов, представляющих вещественные
числа с фиксированной точкой, и 16-битных аккумуляторов, применение
метода послойного преобразования и дообучения позволило обеспечить
точность распознавания 98.7% при преобразовании сверточных слоев мо­
дели, в то время как точность преобразованной модели без дообучения
составила лишь 48.6%. Время работы преобразованной модели на мобиль­
ном процессоре архитектуры ARM снизилось на 20%.

Таким образом, метод послойного преобразования и дообучения не
ограничен БМ моделями и может успешно применяться в задачах распозна­
вания, например, при обучении квантованных нейронных сетей, которые
широко используются для повышения скорости работы реальных прило­
жений.

Далее БМ модели были апробированы в двух основных категориях
задач технического зрения, которые решаются с помощью нейросетевых
моделей: задачах визуальной классификации и семантической сегмента­
ции. На практике сложность классифицирующих моделей может значи­
тельно варьироваться в зависимости от задачи. Поэтому было рассмотрено
несколько задач, задействующих модели различной сложности. Первая из
них это задача классификации символов машиночитаемой зоны (МЧЗ)
паспортов на реальных данных с помощью LeNet-подобных моделей; слож­
ности таких моделей вполне достаточно для обеспечения высокой точности
классификации, и в то же время они достаточно вычислительно-эффек­
тивные для использования на мобильных и встраиваемых устройствах.
Использованные нейросетевые архитектуры и результаты обучения при­
ведены в таблице 3. Они демонстрируют, что нейросетевые модели с БМ
сверточными слоями имеют высокую точность классификации и могут ис­
пользоваться в практических задачах.

Следующие рассмотренные задачи – это классификация рукописных
цифр выборки MNIST и объектов выборки CIFAR-10 с помощью глубо­
ких моделей ResNet с 22 сверточными слоями. Такие модели являются
достаточно глубокими, чтобы проиллюстрировать возможность использо­
вания БМ слоев в глубоких нейронных сетях, но в то же время достаточно
вычислительно эффективны для использования на мобильных и встраи­
ваемых устройствах.

Точность модели в процессе дообучения на выборке MNIST про­
иллюстрирована на рисунке 2а. По горизонтальной оси отложено число
преобразованных к БМ виду слоев, а по вертикальной — точность такой
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Таблица 3 — Точность распознавания символов МЧЗ с помощью LeNet­
подобных моделей, 𝑝𝑏 – точность классической модели, 𝑝𝑓𝑡 – БМ модели,
обученной с помощью предложенного метода.
Модель Архитектура 𝑝𝑏,% 𝑝𝑓𝑡

CNN3 conv1(8, 3, 3) - relu1 - conv2(30, 5, 5) - relu2 -
conv3(30, 5, 5) - relu3 - dropout1(0,25) - fc1(37)
- softmax1

99.6 99.6

CNN4 conv1(8, 3, 3) - relu1 - conv2(8, 5, 5) - relu2
- conv3(8, 3, 3) - relu3 - dropout1(0,25) -
conv4(12, 5, 5) - relu4 - conv5(12, 3, 3) - relu5
- conv6(12, 1, 1) - relu6 - fc1(37) - softmax1

99.7 99.6

модели. Пунктирной линией показана точность классической сети 99.3%.
Численные результаты обучения представлены в таблице 4. Можно видеть,
что БМ модель c преобразованными и дообученными 19 слоями не уступает
в точности классической, но дальнейшее преобразование снижает точность
до 99.1%.

Точность модели на выборке CIFAR-10 при преобразовании и до­
обучении показана в таблице 4 и проиллюстрирована на рисунке 2б. По
горизонтальной оси отложено число преобразованных к БМ виду слоев,
а по вертикальной — точность такой модели. БМ модель c преобразован­
ными и дообученными 16 слоями не уступает в точности классической, а
при дальнейшем преобразовании точность постепенно снижается до 77.7%
у полностью преобразованной модели. Пунктирной линией показана точ­
ность классической сети 85.3%. Такое снижение точности не слишком
велико и результирующие модели пригодны для классификации. Кроме
того, оно происходит постепенно с ростом числа преобразованных слоев.
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Рис. 2 — Точность классификации БМ ResNet после послойного преобра­
зования и дообучения в зависимости от числа преобразованных слоев a)

на выборке MNIST, б) на выборке CIFAR-10.
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Таблица 4 — Точность распознавания MNIST и CIFAR-10 с помощью
глубоких нейронных сетей на разных этапах послойного дообучения;
𝑝𝑏 — после преобразования и до дообучения, 𝑝𝑓𝑡 — после дообучения.

Преобразовано слоев
Точность, %

MNIST CIFAR-10
𝑝𝑏 𝑝𝑓𝑡 𝑝𝑏 𝑝𝑓𝑡

до преобразования 99.3 85.3
1 61.3 99.5 13.7 85.4
2 99.3 99.4 70.1 86.6
3 94.8 99.4 56.5 88.0
4 99.4 99.4 87.2 89.0
5 14.6 99.3 9.9 88.9
6 98.7 99.5 43.2 89.3
7 73.5 99.4 23.6 89.1
8 98.9 99.3 63.8 89.3
9 94.3 99.4 28.9 86.2
10 91.6 99.4 30.2 85.5
11 99.2 99.4 85.3 86.6
12 95.9 99.3 13.4 86.1
13 80.2 99.1 35.5 86.6
14 67.0 99.3 12.7 85.2
15 49.5 99.3 11.1 85.4
16 80.3 99.3 22.3 85.1
17 11.4 99.2 9.2 83.6
18 73.2 99.3 45.4 83.9
19 91.3 99.3 11.9 83.1
20 59.6 99.1 17.2 82.7
21 11.4 98.9 20.7 79.6
22 85.2 99.1 33.7 77.7

Поэтому, чтобы полностью избавиться от него и сохранить преимущества
БМ моделей, предлагается использовать гибридные (то есть частично пре­
образованные) модели.

Далее была рассмотрена задача семантической сегментации на при­
мере задачи бинаризации исторических документов конкурса Document
Image Binarization Competition (DIBCO) 2017. Примеры фрагментов изоб­
ражений и эталонной бинаризации показаны на рисунке 3а, б. Для решения
этой задачи в диссертационной работе используется модель U-Net, про­
демонстрировавшая лучший результат на конкурсе. Она показана на
рисунке 4. Эта модель была преобразована к БМ виду методом послой­
ного преобразования и дообучения. Фрагмент обработанного с помощью
БМ U-Net изображения по сравнению с результатом работы классическо­
го U-Net показан на рисунке 3в, г.
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а) б)

в) г)

Рис. 3 — Пример бинаризации: а) входное изображение, б) эталонное изоб­
ражение, в) с помощью U-Net, г) с помощью БМ U-Net.
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Рис. 4 — Нейросетевая архитектура U-Net, conv — сверточный слой, copy
— копирование промежуточных результатов, max-pool — слой субдискрети­
зации с операцией максимума, up-sample — сверточный слой, повышающий

размерность, sigmoid — сигмоидальная функция активации.
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Можно видеть, что с визуальной точки зрения качество бинариза­
ции на разных участках изображения неоднородно: в некоторых зонах БМ
U-Net демонстрирует лучший результат, а в некоторых – несколько проиг­
рывает классической модели.

Количественная оценка качества бинаризации с помощью различных
методов представлена в таблице 5. Методы Отсу и Саyволы не являют­
ся нейросетевыми и демонстрируют достаточно посредственное качество
бинаризации по всем приведенным метрикам. Метод 17a, использующий
глубокую полносветочную сеть, и 12, использующий ансамбль из трех
глубоких сетей, заняли второе и третье место в конкурсе DIBCO 2017 соот­
ветственно. Можно видеть, что БМ U-Net уступает классической модели
U-Net, однако все еще значительно превосходит методы Отсу и Сауволы.
Кроме того, в достаточно широком диапазоне параметров он сопоста­
вим по качеству с вторым и третьим решениями конкурса. При этом
качество бинаризации достаточно равномерно снижается с ростом числа
преобразованных сверточных слоев. Поэтому в этой задаче также можно
использовать на практике гибридные модели, позволяющие достичь опти­
мального соотношения эффективности и точности.

Таким образом, полученные результаты показывают, что БМ ней­
роны могут успешно применяться в рассмотренных категориях задач
технического зрения. Изложенные в третьей главе результаты опублико­
ваны в [1-8; 10].

Таблица 5 — Сравнение качества различных методов бинаризации.
Метод FM Fps PSNR DRD
Отсу 77.7 77.9 13.9 15.5

Саувола 77.1 84.1 14.3 8.9
17a (полносверточная

глубокая сеть)
89.7 91.0 17.6 4.4

12 (ансамбль из 3
глубоких сетей)

89.4 91.5 17.6 3.6

U-Net 90.9 92.8 18.2 3.3
БМ-U-Net (10 БМ слоев) 85.8 88.0 17.0 5.1
БМ-U-Net (9 БМ слоев) 87.7 89.5 17.1 4.9
БМ-U-Net (8 БМ слоев) 87.2 89.4 17.3 4.7
БМ-U-Net (7 БМ слоев) 89.0 90.6 17.5 4.2
БМ-U-Net (6 БМ слоев) 88.2 90.2 17.4 4.5
БМ-U-Net (5 БМ слоев) 89.3 91.1 17.5 4.4
БМ-U-Net (4 БМ слоя) 90.5 92.1 18.0 3.6
БМ-U-Net (3 БМ слоя) 90.4 92.5 18.0 3.5
БМ-U-Net (2 БМ слоя) 90.4 92.6 18.0 3.5
БМ-U-Net (1 БМ слой) 90.9 92.4 18.0 3.4
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В заключении приведены основные результаты работы, которые за­
ключаются в следующем:

1. Разработана аппроксимация модели математического нейрона –
биполярный морфологический нейрон, – которая может приме­
няться в сверточных и полносвязных слоях нейросетевых моделей
для упрощения их внутренней структуры. При такой аппрокси­
мации в вычислительно-интенсивных частях слоя остаются лишь
операции взятия максимума и сложения, однако слой дополняет­
ся функциями активации на основе операций потенцирования и
логарифмирования.

2. Аналитическими методами доказано, что нейросетевая модель с
достаточным числом нейронов биполярного морфологического ви­
да может приблизить произвольную непрерывную на компакте
функцию с любой заранее заданной точностью. Это означает, что
биполярные морфологические нейронные сети имеют ту же выра­
зительную способность, что и классические модели.

3. Вычислительно-емкие сверточные биполярные морфологические
слои могут быть эффективно реализованы для ПЛИС/СЛИС.
Оценка числа вентилей и латентности ПЛИС-реализации для БМ
сверточных слоев по сравнению с классическими сверточными
слоями показала, что для слоев с достаточно большим числом
входных и выходных каналов БМ слои используют практически
столько же вентилей, сколько и классические слои, однако име­
ют латентность на 30-40% ниже; для слоев с достаточно малым
числом входных каналов и размером фильтров 3 × 3 при исполь­
зовании аппроксимированных функций активации латентность на
12-40% меньше, чем для классических слоев;

4. Для обучения аппроксимированных нейросетевых моделей пред­
ложен оригинальный метод послойного дообучения, позволивший
получить лучшее качество по сравнению с обучением стандарт­
ными методами для биполярных морфологических нейросетевых
моделей и квантованных 8-битных нейросетевых моделей по ре­
зультатам численных экспериментов.

5. Вычислительным экспериментом показано, что биполярная мор­
фологическая аппроксимация сверточных слоев позволяет снизить
вычислительную избыточность глубоких нейросетевых моделей в
задачах классификации изображений и семантической сегмента­
ции без снижения качества распознавания для гибридных моделей
и ряда полностью преобразованных моделей.

6. Разработан комплекс программ, позволяющий выполнить послой­
ную и обучение аппроксимацию классической модели: обучить
классическую модель, выполнить послойное преобразование к БМ
виду, провести дообучение и оценить результирующее качество.
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Разработанные в рамках диссертации методы были реализова­
ны в виде программных компонентов и внедрены в программное
обеспечение «Smart ID Engine», «Smart Code Engine», «Smart
Document Engine», а также «Smart IDReader» компании ООО
«Смарт Энджинс Сервис». Данные продукты интегрированы в
информационную инфраструктуру и мобильные приложения АО
«Тинькофф Банк», а также в ряд информационных решений
государственных структур Российской Федерации. Кроме того,
полученные оценки и результаты моделирования демонстрируют,
что включение специализированных модулей для элементарных
арифметических операций при создании устройств для исполне­
ния нейросетевых моделей способно повысить эффективность их
работы и используются в АО «МЦСТ» при проектировании новых
устройств.
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