
Федеральное государственное учреждение «Федеральный исследовательский
центр «Информатика и управление» Российской академии наук»

На правах рукописи

Лимонова Елена Евгеньевна

Биполярная морфологическая аппроксимация нейрона
для уменьшения вычислительной сложности глубоких

сверточных нейронных сетей

Специальность 1.2.2 —
«Математическое моделирование, численные методы и комплексы программ»

Диссертация на соискание учёной степени
кандидата технических наук

Научный руководитель:
кандидат технических наук

Арлазаров Владимир Викторович

Москва — 2022

2

Оглавление
Стр.

Введение . 5

Глава 1. Модели программно-аппаратного нейросетевого
распознавания . 13

1.1 Модели нейрона в задачах технического зрения 13
1.1.1 Классическая модель математического нейрона 13
1.1.2 Модель морфологического нейрона 15
1.1.3 Модель спайкового нейрона 17

1.2 Архитектуры искусственных нейронных сетей 19
1.2.1 Основные слои нейросетевых моделей 20
1.2.2 LeNet-подобные нейросетевые архитектуры 21
1.2.3 Семейство нейросетевых архитектур ResNet 23
1.2.4 Обучение нейросетевых моделей 24

1.3 Модели вычислительного устройства 25
1.3.1 Оценка вычислительной эффективности для

специализированных логических интегральных схем . . . 26
1.3.2 Оценка вычислительной эффективности для

SIMD-процессора . 27
1.4 Методы повышения вычислительной эффективности

нейросетевых моделей . 30
1.4.1 Тензорные разложения свертки 32
1.4.2 Обрезка моделей . 32
1.4.3 Малобитные нейронные сети 34
1.4.4 Неклассические модели слоев или нейронов 36

1.5 Выводы по главе 1. Задачи диссертационного исследования . . . 38

Глава 2. Биполярные морфологические нейросетевые модели . . 40
2.1 Биполярный морфологический нейрон 41
2.2 Точность и выразительная способность БМ нейрона 44
2.3 Вычислительная сложность БМ сетей 47
2.4 Оценка эффективности БМ нейронных сетей на ЦП 50
2.5 Оценка эффективности БМ нейронных сетей на ПЛИС и СЛИС . 51

2.5.1 Вещественная арифметика 52

3

Стр.

2.5.2 Элементарные арифметические операции 53

2.5.3 Полиномиальная аппроксимации логарифма 54
2.5.4 Реализация экспоненты . 55
2.5.5 Оценка числа вентилей и латентности для сверточного слоя 56

2.6 Моделирование аппаратной реализации БМ сети на ПЛИС 58
2.6.1 Реализация классического сверточного слоя 60
2.6.2 Реализация БМ сверточного слоя 61

2.7 Быстрые аппроксимации функций активации БМ нейрона 65
2.7.1 Аппроксимация Митчелла 66
2.7.2 Аппроксимация Шраудольфа 67
2.7.3 Оценка вентильной сложности и латентности 68

2.8 Финальная БМ модель . 71
2.9 Выводы по главе 2 . 72

Глава 3. Обучение биполярных морфологических моделей 75
3.1 Классификация рукописных цифр MNIST с помощью БМ моделей 75
3.2 Метод послойного преобразования и дообучения 79

3.2.1 Послойное преобразование и дообучение БМ моделей для
классификации рукописных цифр MNIST 80

3.2.2 Метод послойного дообучения целочисленных моделей . . 82
3.3 Апробация БМ моделей в практических задачах 88

3.3.1 Задачи классификации . 88
3.3.2 Семантическая сегментация 101

3.4 Программный комплекс для моделирования биполярных
морфологических сетей . 107
3.4.1 Общие сведения . 108
3.4.2 Функциональность . 108
3.4.3 Структура и состав программного комплекса 108
3.4.4 Результаты работы программного комплекса 111

3.5 Выводы по главе 3 . 111

Заключение . 113

Список литературы . 115

4

Стр.

Список рисунков . 127

Список таблиц . 130

Приложение А. Свидетельства о государственной регистрации
программ для ЭВМ 132

Приложение Б. Акты о внедрении . 136

5

Введение

Современные технологии нейросетевого распознавания используются в
различных сферах жизнедеятельности человека. Они способны облегчить ре­
шение ряда прикладных задач, однако их внедрение ограничивается не только
точностью распознавания и скоростью работы, но и соображениями безопас­
ности и конфиденциальности данных пользователей. Именно эти вопросы
выходят на первый план при распознавании идентификационных документов,
банковских карт и платежных документов, обработке медицинской инфор­
мации. Один из наиболее эффективных способов обеспечения безопасности
пользовательских данных предлагает концепция граничных вычислений, при
которой вычисления выполняются в точке, максимально приближенной к ко­
нечному пользователю, в идеале — на конечном устройстве, где эти результаты
и будут использоваться далее.

Однако конечные устройства чаще всего обладают ограниченной вычис­
лительной мощностью и объемом доступной оперативной памяти. Кроме того,
повышенные требования предъявляются к их энергоэффективности, так как
часто они работают от аккумулятора (например, смартфоны и различные
носимые устройства) или являются составной частью других систем, так­
же ограниченных в энергопотреблении (например, беспилотных транспортных
средств или элементов интернета вещей). Также вопрос энергоэффективности
нейросетевого распознавания в последнее время привлекает все большее вни­
мание из-за возможного негативного влияния на экологию вследствие затрат
энергии на обучение и многократные запуски глубоких нейронных сетей уже
после их внедрения.

Таким образом, разработчикам распознающих систем с одной сторо­
ны необходимо обеспечить достаточно высокую точность распознавания для
успешного решения поставленных задач, которая обычно достигается за счет
усложнения нейросетевых моделей, а с другой — выполнить требования по энер­
гоэффективности и скорости работы.

Особенно важной является эта задача в случае распознавания в режиме
реального времени, например, при обработке видеопотока: прослеживании тра­
екторий объектов, сегментации меняющейся сцены или извлечении текстовой
информации в произвольных условиях.

6

Для визуального распознавания, как правило, используются модели, име­
ющие сверточную архитектуру, то есть состоящие из большого количества
последовательно расположенных сверточных слоев, между которыми могут
включаться слои субдискретизации, нормализации или слои других типов.
Основную вычислительную сложность таких сетей составляют именно вычис­
ления в сверточных слоях. Для обеспечения высокой точности распознавания
такие модели выполняют несколько миллиардов операций аккумулирующего
умножения на запуск. Современные мощные вычислительные устройства име­
ют частоту в несколько гигагерц и несколько вычислительных ядер, однако
даже они могут рассчитать всего несколько таких запусков в секунду. Таким
образом, задача исследования вычислительной эффективности сверточных ней­
росетевых моделей на сегодняшний день крайне актуальна. В разное время ей
занимались отечественные и зарубежные ученые, такие как Ю. И. Журавлев,
В. Л. Арлазаров, В. А. Сойфер, Ю. В. Визильтер, И. Б. Гуревич, В. Б. Бете­
лин, Д. П. Николаев, а также H. Wen, M. Rastegari, A. Farhadi, Y. Lecun, Y.
Bengio, G. Hinton и другие.

Повышение вычислительной эффективности таких моделей возможно
из-за наличия в них неявной вычислительной избыточности. Исследования по­
казывают, что эта избыточность в большей степени связана с несовершенством
существующих методов обучения, а не конкретным числом нейронов и способом
их организации в слои. Процесс обучения нейросетевых моделей заключается в
поиске минимума некоторой функции потерь, которая в общем случае является
невыпуклой и имеет множество экстремумов. С теоретической точки зрения та­
кая задача крайне сложна и не имеет общего решения. Вследствие этого поиск
методов снижения вычислительной избыточности нейросетевых моделей носит
экспериментальный характер. Есть множество методов, снижающих число тех
или иных арифметических операций в нейросетевых моделях, таких как тен­
зорные декомпозиции, обрезка моделей, применение дистилляции знаний для
создания более простых моделей. Эти методы позволяют в разы или даже на
порядки снизить число операций, однако все еще не позволяют достичь же­
лаемой вычислительной эффективности глубоких нейросетевых моделей при
сохранении удовлетворительной точности распознавания.

Одним из наиболее перспективных направлений повышения вычисли­
тельной эффективности нейросетевых моделей последнего времени является
совместная оптимизация архитектуры нейросетевой модели и архитектуры вы­

7

числительного устройства. Оно требует высокой квалификации специалиста
как в области искусственного интеллекта, так и в области проектирования вы­
числительных устройств, или создания междисциплинарной команды ученых.
Ведь разработчики нейросетевых моделей, ограниченные конкретным вычис­
лительным устройством или классом устройств, вынуждены проектировать
модели, опираясь на доступный объем вычислительных ресурсов. Как правило,
современные нейросетевые модели направлены на исполнение на графических
процессорах. С другой стороны, разработчики специализированных устройств
выполняют большую работу по низкоуровневому проектированию и обычно
рассматривают лишь одну нейросетевую архитектуру, позволяющую получить
высокую точность распознавания. Результирующее устройство при этом от­
личается высокой эффективностью, но может требовать модификации при
малейших изменениях модели. В качестве компромисса были созданы специ­
ализированные тензорные процессоры (например, Google TPU или Intel VPU),
которые могут эффективно исполнять отдельные классы нейросетевых моде­
лей. Однако они также потребуют модификации при создании новых классов
распознающих архитектур, например, в настоящее время они не поддерживают
исполнение моделей с бинарными или тернарными весами.

В таких условиях особый интерес представляет смена модели вычисле­
ний в элементарных логических элементах нейронной сети — отдельных слоях
или отдельных нейронах. Такие изменения не затрагивают архитектуру сети
и все также позволяют строить и использовать модели разных типов, но мо­
гут сделать аппаратную реализацию модели гораздо эффективнее, поскольку
различные типы нейронов требуют разных аппаратных и энергетических за­
трат при реализации и в процессе работы. Поскольку существующие модели
слоев и нейронов уже доказали свою эффективность в решении практических
задач и позволяют добиться высокой точности распознавания, данная работа
посвящена исследованию их аппроксимаций, упрощающих последующее созда­
ние вычислителя, но при этом сохраняющих высокую точность работы.

Основные результаты диссертации были получены в процессе выполнения
работ по следующим научным грантам РФФИ:

1. 18-07-01384 — «Исследование применимости методов нелинейных ап­
проксимаций для оптимизации быстродействия искусственных нейрон­
ных сетей на современнных микропроцессорных архитектурах»

8

2. 17-29-03297 — «Исследование возможности создания энергоэффек­
тивных аппаратных устройств для мобильных устройств комплексов
идентификации и верификации личности в составе систем техническо­
го зрения наземных робототехнических комплексов»

3. 17-29-03240 — «Глубокие нейронные сети с вычислительно упрощенной
моделью нейрона»

Целью данной работы является разработка и исследование вычис­
лительно-эффективных аппроксимаций нейросетевых моделей, методов их
обучения и оптимизации их вычисления на существующих и перспективных
вычислителях.

Для достижения этой цели были поставлены следующие задачи:
1. Разработать метод аппроксимации вычислительно-интенсивных частей

нейросетевых моделей, исследовать его вычислительную эффектив­
ность и точность.

2. Оценить вычислительную эффективность на различных платформах.
3. Разработать методы обучения предложенной аппроксимирующей

структуры.
4. Провести экспериментальную оценку точности предложенного метода

обучения аппроксимированных нейросетевых моделей для различных
нейросетевых архитектур.

5. Разработать комплекс программ, позволяющий моделировать аппрок­
симацию нейросетевых моделей, обучение полученных структур и
проверку результирующего качества работы.

Научная новизна:
1. Предложена новая аппроксимация классического нейрона нейроном с

морфологической структурой, позволяющая создавать глубокие ней­
ронные сети с морфологическими слоями и обеспечивающая высокую
точность распознавания.

2. Предложен новый метод обучения произвольных, в том числе биполяр­
ных морфологических и целочисленных, аппроксимаций классических
нейросетевых моделей путем послойного преобразования и дообучения,
позволяющий повысить их качество.

3. Впервые показано, что для предложенной аппроксимации метод по­
слойного преобразования и дообучения позволяет добиться более вы­
сокого качества работы нейросетевой модели, чем прямое обучение с

9

помощью метода обратного распространения ошибки и градиентных
методов оптимизации.

4. Проведено оригинальное исследование точностных характеристик ней­
росетевых моделей LeNet- и ResNet-подобных архитектур, использую­
щих предложенную морфологическую аппроксимацию.

5. Впервые теоретически показано, что нейросетевая модель с доста­
точным числом нейронов биполярного морфологического вида может
приблизить произвольную непрерывную на компакте функцию с любой
заранее заданной точностью.

Практическая значимость. Предложенная аппроксимация позволяют
создать нейросетевые модели, подобные по архитектуре классическим глубоким
моделям, но в то же время обладающие принципиально новыми теоретически­
ми свойствами. Она снижает вычислительную сложность исходных моделей и
потенциально способна повысить их эффективность.

Разработанные в рамках диссертации методы были реализованы в ви­
де программных компонентов и внедрены в программное обеспечение «Smart
ID Engine», «Smart Code Engine», «Smart Document Engine», а также «Smart
IDReader» компании ООО «Смарт Энджинс Сервис». Данные продукты инте­
грированы в информационную инфраструктуру и мобильные приложения АО
«Тинькофф Банк», а также в ряд информационных решений государственных
структур Российской Федерации. Кроме того, полученные оценки и результаты
моделирования демонстрируют, что включение специализированных модулей
для элементарных арифметических операций при создании устройств для ис­
полнения нейросетевых моделей способно повысить эффективность их работы
и используются в АО «МЦСТ» при проектировании новых устройств.

Соответствие диссертации паспорту научной специальности. В
соответствии с формулой специальности 1.2.2 «Математическое моделирова­
ние, численные методы и комплексы программ» (технические науки) в работе
выполнены разработка, исследование и реализация модели вычислительно­
эффективного биполярного морфологического нейрона как аппроксимации
классического математического нейрона. Работа соответствует следующим
пунктам паспорта специальности: п. 2 «Разработка, обоснование и тестиро­
вание эффективных вычислительных методов с применением современных
компьютерных технологий», п. 3 «Реализация эффективных численных мето­
дов и алгоритмов в виде комплексов проблемно-ориентированных программ для

10

проведения вычислительного эксперимента», п. 7 «Качественные или аналити­
ческие методы исследования математических моделей (технические науки)» и
п. 9 «Постановка и проведение численных экспериментов, статистический ана­
лиз их результатов, в том числе с применением современных компьютерных
технологий (технические науки)».

Методология и методы исследования. В диссертационной работе
использовались методы математического анализа, линейной алгебры, методы
численного моделирования и нелинейной теории оптимизации.

Основные положения, выносимые на защиту:
1. Разработана аппроксимация модели математического нейрона и свер­

точного слоя: биполярные морфологические нейрон и сверточный слой,
не задействующие умножений в своих вычислительно-интенсивных ча­
стях.

2. Доказано, что нейронная сеть из биполярных морфологических ней­
ронов может с любой заранее заданной точностью приблизить любую
непрерывную на компакте функцию.

3. Предложен метод обучения аппроксимаций классических нейросетевых
моделей путем послойного преобразования и дообучения, позволяющий
повысить их качество.

4. Экспериментально показано, что предложенный метод послойного
преобразования и дообучения позволяет добиться высокого качества ра­
боты аппроксимированных нейросетевых моделей на примере линейно
квантованных малобитных и биполярных морфологических нейронных
сетей.

5. Разработан комплекс программ, реализующий предложенную в рабо­
те модель биполярного морфологического нейрона, метод послойного
дообучения для этой модели и позволяющий оценивать точностные ха­
рактеристики результирующих сетей.

Достоверность полученных результатов подтверждается соответствием
теоретических и экспериментальных результатов, продемонстрированных в ра­
боте, успешной апробацией результатов и внедрением в коммерческие системы
распознавания документов.

11

Апробация работы. Основные результаты работы докладывались и об­
суждались на следующих семинарах и конференциях:

1. Междисциплинарной школе-конференции Института проблем переда­
чи информации им. А. А. Харкевича Российской академии наук (ИППИ
РАН) «Информационные технологии и системы» (ИТиС) в 2015 году.

2. Международной конференции «International Conference on Machine
Vision» (ICMV) в 2016, 2019, 2020 годах.

3. международной конференции «International Conference on Pattern
Recognition» (ICPR) в 2020 году.

4. Научном семинаре Лаборатории №11 ИППИ РАН в 2021 году.
5. Международном научно-исследовательском семинаре «Анализ и по­

нимание изображений (Математические, когнитивные и прикладные
проблемы анализа изображений и сигналов)» в 2022 году.

Личный вклад. Все основные результаты диссертационной работы по­
лучены и обоснованы автором самостоятельно. Постановка задач и обсуждение
результатов проводились совместно с научным руководителем. В [1—4] ав­
тором предложена аппроксимация классического нейрона морфологической
структурой, методы для ее обучения, а также выполнено экспериментальное
исследование ее точности для нейросетевых моделей различных архитектур,
оценки вычислительной эффективности и выразительной способности пред­
ложенной структуры. В [5; 6] автор осуществил анализ вычислительной
эффективности рассматриваемых алгоритмов на VLIW-платформах, выполнил
их доработку и оценки производительности. В [7; 8] автор предложил методы
квантования нейросетевых моделей, метод послойного преобразования и дообу­
чения таких моделей и провел экспериментальную оценку их вычислительной
эффективности. В [9] автору принадлежит идея разработанной аппаратной ар­
хитектуры и план проведения экспериментов. Исследование аппроксимаций
функций активации биполярных морфологических моделей было выполнено
и опубликовано в [10] без соавторства.

Публикации. Основные результаты по теме диссертации изложены
в 10 печатных изданиях, из которых 1 работа издана в журнале, рекомендо­
ванном ВАК, 8 — в научных изданиях, индексируемых Web of Science и Scopus,
1 — в сборнике трудов конференции. Зарегистрировано 2 программы для ЭВМ.

12

Объем и структура работы. Диссертация состоит из введения, 3 глав,
заключения. Полный объём диссертации составляет 138 страниц, включая
29 рисунков и 19 таблиц. Список литературы содержит 135 наименований.

Краткое содержание глав. Первая глава посвящена модели про­
граммно-аппаратного нейросетевого распознавания. В ней рассмотрены ос­
новные типы нейронов и слоев, используемые в современных нейросетевых
моделях, и описаны вычислительные платформы, на которых может выполнять­
ся распознавание. Для этих платформ предложены способы оценки аппаратной
сложности и вычислительной эффективности. Приведены различных методов
повышения вычислительной эффективности нейросетевых моделей, а также
сформулированы цель и задачи диссертационного исследования.

Во второй главе предложена аппроксимация классического нейрона: би­
полярный морфологический нейрон. Показан процесс построения сверточных
и полносвязных слоев на основе биполярного морфологического нейрона, при­
ведены оценки их вычислительной сложности для центральных процессоров и
программируемых/специализированных логических интегральных схем. Описа­
ны реализации вычислительных модулей для функций активации биполярного
морфологического нейрона и выполнены оценки числа вентилей и латентности
получающихся сверточных слоев. Рассмотрена модель вычислительного устрой­
ства для нейросетевых моделей предложенного типа.

Третья глава посвящена процессу обучения биполярных морфологиче­
ских моделей. Показано, что прямое преобразование классических моделей
к биполярному морфологическому виду, а также обучение стандартными
методами не подходят для получения распознающих моделей. Предложен
оригинальный метод послойного преобразования и дообучения, позволяющий
успешно обучать биполярные морфологические нейросетевые модели и проде­
монстрирована его эффективность в задачах классификации и семантической
сегментации с помощью глубоких нейронных сетей. Показано, что разра­
ботанный метод обобщается на широких класс аппроксимаций на примере
целочисленных малобитных нейросетевых моделей. Приведено описание про­
граммного комплекса для моделирования биполярных морфологических сетей.

Приложение А содержит информацию о зарегистрированных программах
для ЭВМ, в которых применяются результаты диссертационной работы.

Приложение Б содержит акты о внедрении результатов диссертационной
работы.

13

Глава 1. Модели программно-аппаратного нейросетевого
распознавания

1.1 Модели нейрона в задачах технического зрения

Основной структурной единицей нейросетевых моделей является искус­
ственный нейрон. Первые искусственные нейроны имитировали процессы,
протекающие в биологических нейронах – нервных клетках, из которых состоит
нервная система живых существ и которые способны принимать, обрабатывать
и передавать различные сигналы [11]. Математические модели, описывающие
нервные клетки, известны еще с начала XX века и преимущественно состоят
из систем дифференциальных уравнений, например, модель «интегрировать и
сработать» и ее обобщения [12; 13], модель Ходжкина-Хаксли [14] и др.

Начиная с 60-х годов прошлого века исследователи начали активно
создавать аппаратные модели нейронов, которые называли нейроморфными
устройствами или нейромимами. Например, Л. Хармон [15] и Е. Льюис [16]
предложили электрические цепи, позволяющие симулировать нейрон Ходж­
кина-Хаксли. Однако создание устройств с большим количеством нейронов,
решающих осмысленные задачи, было в то время невозможно. Поэтому были
созданы упрощенные модели нейрона и нейронных структур, воспроизводящие
процессы обработки информации в живых системах. Именно эти модели легли в
основу современных нейросетевых методов распознавания. Наиболее известной
и используемой на практике моделью нейрона является нейрон Мак-Каллока­
Питтса или классический математический нейрон, однако были предложены и
другие модели, которые будут рассмотрены далее в этой главе.

1.1.1 Классическая модель математического нейрона

.
В 1943 году Уоррен Мак-Каллок совместно с Уолтером Питтсом опубли­

ковали статью «A logical calculus of the ideas immanent in nervous activity» [17].

14

Они исследовали нейроны головного мозга с целью построения их математи­
ческой модели, которая могла бы стать основой искусственного интеллекта.
Построенный ими искусственный нейрон был бинарным, т.е. в зависимости
от входных сигналов мог оказываться в возбужденном или невозбужденном
состояниях. Как и биологические нейроны, он имел тело, соединенное синап­
сами с несколькими дендритами, по которым поступали входные сигналы, и
один аксон, служивший выходом. Синапсы дендритов ослабляют или усилива­
ют входные сигналы путем умножения на весовой коэффициент и передают
результат в тело нейрона, которое было представлено в виде сумматора. При
превышении этой суммой некоторого порогового значения нейрон переходил
в возбужденное состояние. Нейрон Мак-Каллока-Питтса описывается следую­
щим выражением:

𝑓(x) = θ

(︃
𝑁∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑤0

)︃
, (1.1)

где x – вектор входных сигналов, w – вектор весов нейрона, θ – пороговая
функция активации:

θ(𝑥) =

{︃
1, 𝑥 ⩾ 0,

0, 𝑥 < 0.
(1.2)

Из таких математических нейронов Мак-Каллок и Питтс построили про­
стейшую нейронную сеть и показали, что она способна вычислять различные
математические функции. Кроме того, они предлагали моделировать и явление
самообучения, наблюдающееся в реальных нейронных сетях, путем изменения
весовых коэффициентов в ответ на определенные последовательности входных
сигналов.

Позднее эта модель была обобщена до искусственного нейрона, использу­
ющего произвольную функцию активации φ (см. Рис. 1.1). Именно эту модель
часто называют классической моделью математического нейрона:

𝑓(x) = φ

(︃
𝑁∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑤0

)︃
. (1.3)

15

𝑥1

𝑥2

𝑥𝑁

1

∑︀𝑁
𝑖=1𝑤𝑖𝑥𝑖 + 𝑤0 𝑓(x)

*𝑤1

*𝑤2

*𝑤𝑁

*𝑤0

φ(·)

Рисунок 1.1 — Схема классического математического нейрона.

1.1.2 Модель морфологического нейрона

В 1990 году Г. Риттер вместе с коллегами предложил альтернативную мо­
дель нейрона и структуры нейронной сети, которые назвал морфологической
моделью нейрона и морфологической нейронной сетью соответственно [18]. В
морфологической модели тело нейрона выполняет не суммирование, а взятие
максимума или минимума. Весовые коэффициенты влияют на входные сигна­
лы не мультипликативно, а аддитивно. Далее найденное значение максимума
или минимума сравнивается с порогом, и, таким образом, выход морфологиче­
ского нейрона является бинарным. Морфологический нейрон можно описать
формулой:

𝑓(x) = θ
(︁
𝑝

𝑁
max
𝑖=1

𝑟𝑖(𝑥𝑖 + 𝑤𝑖) + 𝑤0

)︁
, (1.4)

где x — вектор входных сигналов, w — вектор весов нейрона, θ — пороговая
функция активации, 𝑟𝑖 ∈ {−1, 1} отвечают за воздействие 𝑖-го входного сигна­
ла на нейрон (возбуждение или торможение), а 𝑝 ∈ {−1, 1} определяет знак
выходного сигнала. Морфологический нейрон показан на Рис. 1.2.

Такой нейрон оказывается более вычислительно эффективным, чем клас­
сический математический нейрон, поскольку операции сложения, вычитания и

16

𝑥1

𝑥2

𝑥𝑁

𝑦1

𝑦2

𝑦𝑁

1

max 𝑧 𝑓(x)

+𝑤1

+𝑤2

+𝑤𝑁

*𝑟1

*𝑟2

*𝑟𝑁

Θ(·)*𝑝

+𝑤0

Рисунок 1.2 — Схема морфологического нейрона.

взятия максимума или минимума требуют меньшего числа логических венти­
лей для реализации, чем операция умножения. Это означает, что он является
более энергоэффективным, и требует значительно меньшего времени для вы­
числения.

Дальнейшим развитием морфологического нейрона стала предложенная
Риттером в 2003 году модель морфологического нейрона с дендритами [19]:

𝑓(x) = θ

(︂
𝐾
min
𝑘=1

𝑝𝑘

(︂
min
𝑖,𝑙

(−1)1−𝑙(𝑥𝑖 + 𝑤𝑙
𝑖𝑘)

)︂
+ 𝑤0

)︂
, (1.5)

где x — вектор входных сигналов, w — вектор весов нейрона, θ — пороговая
функция активации, 𝐾 — число дендритов, 𝑙 ∈ {0, 1}, а 𝑝 ∈ {−1, 1} отвечает
за знак выходного сигнала.

Дендриты позволяли более гибко управлять возбуждением и торможени­
ем нейрона, поскольку вычисляли несколько комбинаций входных сигналов с
разными знаками и разными весовыми коэффициентами. Особенностью данной
модели является то, что необходимое количество дендритов устанавливается во
время обучения модели, т.е. дендриты «наращиваются» по мере надобности.
Кроме того, в этой работе было доказано, что с помощью морфологических
нейронных сетей с дендритами можно решить любую задачу классификации с
любой заданной точностью. Однако требуемое количество нейронов при этом
может быть крайне большим, что нивелирует преимущества простоты каждого
отдельного нейрона.

17

Кроме того, эти морфологические модели оказались неспособны обес­
печить качество распознавания, сравнимое с качеством распознавания более
классических моделей. Только недавно исследования морфологических сетей
возобновились: разрабатываются новые методы обучения для существующих
моделей [20; 21], и рассматриваются способы применения этих моделей в реаль­
ных задачах, например, на примере расшифровки электроэнцефалограмм [22].
Также слои из морфологических нейронов с дендритами показывают многообе­
щающие результаты в гибридных моделях, когда морфологические нейроны
используются для извлечения признаков и входят в состав отдельных слоев
сети [23].

1.1.3 Модель спайкового нейрона

Обе рассмотренные модели нейрона хорошо подходили для симулирова­
ния на вычислительных устройствах, однако не воспроизводили одно важное
свойство биологического нейрона: импульсный характер его функционирова­
ния. При передаче реальных сигналов в нервной ткани, входными и выходными
сигналами нейронов являются последовательности импульсов. Первой моделью
спайкового нейрона была модель Алана Ходжкина и Эндрю Хаксли, предло­
женная в 1952 году. Они описали механизмы, лежащие в основе возникновения
и распространения сигналов по аксону. Эта модель является одной из самых
биологически точных моделей, и поэтому она довольно сложна: она содержит
четыре дифференциальных уравнения и достаточно много параметров [24] и
непригодна для задач искусственного интеллекта.

Самая известная модель импульсного нейрона была предложена фран­
цузским физиологом Луи Лапиком в 1907 году. Эта модель называется
«интегрировать и сработать» (англ. integrate-and-fire). Идея этой модели за­
ключается в том, что, когда на вход подается некоторый сигнал, выходной
сигнал возрастает до тех пор, пока не достигнет порогового значения, а потом
резко сбрасывается, и процесс начинается сначала. Недостатком такой модели
является то, что при линейном возрастании входного сигнала частота сраба­
тывания нейрона неограниченно растет, что является некоторой идеализацией
реального нейрона. Для устранения этого недостатка в модель вводится запрет

18

на слишком частые срабатывания. Вторым недостатком является то, что если
входной сигнал не вызвал срабатывание нейрона, то значение выходного сиг­
нала так и останется промежуточным между максимальным и минимальным.
Для устранения последнего недостатка была разработана новая модель «ин­
тегрировать-и-сработать» с утечками (англ. leaky integrate-and-fire neuron). В
этой модели вводится «сопротивление» нейрона, которое вызывает постепен­
ную утечку, благодаря которой выходной сигнал постепенно сбросится, если он
не достиг порога срабатывания [24].

С ростом вычислительной мощности компьютеров и технологий производ­
ства микрочипов возобновился интерес к построению устройств, симулирующих
поведение реальных нейронов. В 2003 году Евгений Ижикевич разработал но­
вый класс моделей нейронов, а именно спайковые модели. Нейроны в них
описываются всего двумя простыми дифференциальными уравнениями. С
одной стороны, они достаточно простые для реализации и вычислительно эф­
фективные, а с другой стороны сохраняют биологическую точность модели
Ходжкина-Хаксли [25].

Для симуляции такие нейронов и нейронных сетей из них был разработан
отдельных класс вычислительных устройств – нейроморфные процессоры. Это
процессоры, которые позволяют эффективно реализовать спайковые нейрон­
ные сети и отличаются крайне низким энергопотреблением. Например, в 2014
году компания IBM выпустила нейроморфный чип TrueNorth, который состоит
из миллиона нейронов, которые могут образовывать 256 миллионов связей. В
2017 году компания Intel представила нейроморфный чип Loihi, который под­
держивает обучение нейросетевых моделей на самом устройстве. В 2020 году
был создан Akida neural processor с приблизительно 1.2 миллиона нейронов,
которые могут образовывать 10 миллиардов связей.

Несмотря на многообразие моделей и активные исследования спайковых
нейросетевых моделей, на сегодняшний день нет стабильных методов обучения,
которые бы позволяли получить достаточно точные решения современных за­
дач распознавания [26]. При этом работы в этой области активно ведутся и
демонстрируют многообещающие результаты [27—29].

19

1.2 Архитектуры искусственных нейронных сетей

После создания нейрона Мак-Каллока-Питтса следующим принципиаль­
ным вопросом стала организация нейронов в единую сеть. Одним из вариантов
стал персептрон, в котором отдельные нейроны были организованы в слои и
каждый нейрон следующего слоя был связан с некоторыми нейронами преды­
дущего. Для обучения использовался метод коррекции ошибки (Ф. Розенблатт,
[30]), а позднее метод обратного распространения ошибки с использованием
различных метрик (Д. Румельхарт, [31]). Несмотря на критику и ограничения
подобной модели (например, не-инвариантный относительно пространственно­
го положения анализ образов), эта модель была способна решать ряд простых
задач.

Другим вариантом организации нейронной сети стали когнитрон (1975)
и неокогнитрон (1980) К. Фукусимы [32]. Неокогнитрон позволял выполнять
инвариантный анализ входного изображения. Для этого использовались нейро­
ны двух типов: S- («простые») и C- («сложные»). «Простые» нейроны были
связаны с некоторой фиксированной областью входных сенсоров и выделя­
ли некоторый конкретный признак. «Сложные» нейроны принимали на вход
выходы «простых» нейронов и анализировали наличие признаков на всем
изображении. Неокогнитрон имел иерархическую структуру и мог включать
несколько слоев из «простых» и «сложных» нейронов. В результате он об­
ладал способностью распознавать объекты на изображении вне зависимости
от их положения и небольших деформаций. Несмотря на то, что приложе­
ния неокогнитрона ограничены только задачами распознавания изображений,
в этих задачах он демонстрировал впечатляющие результаты.

Именно на основе неокогнитрона и модели классического математиче­
ского нейрона основаны современные сверточные нейросетевые архитектуры,
начиная с LeNet-5 [33] и AlexNet [34]. При этом интерес стали представлять
не отдельные нейроны, а целые слои со специальными свойствами, которые
затем комбинировались для создания сети. Таким образом, нейронная сеть мо­
жет быть представлена как направленный граф, вершинами которого являются
слои, а ребра обозначают поток данных.

20

1.2.1 Основные слои нейросетевых моделей

Рассмотрим подробнее устройство отдельных слоев современных нейросе­
тевых моделей. Обычно к ним относят следующие слои:

– cверточный слой;
– полносвязный слой;
– слой субдискретизации;
– нормализующие слои.
Как правило сверточные слои применяются в моделях, которые анализи­

руют визуальную информацию. Такие модели получают на вход изображение.
Цифровое изображение представляет собой трехмерную матрицу, где две раз­
мерности – пространственные координаты, а третья – каналы, которые чаще
всего содержат цветовую информацию. Сверточный слой с входом 𝐼 размера
𝐿×𝑀 ×𝐶 и выходом 𝑂 размера 𝐿×𝑀 ×𝐹 выполняет следующую операцию:

𝑂(𝑙,𝑚, 𝑓) =φ

(︃
𝐶∑︁
𝑐=1

𝐾−1∑︁
Δ𝑙=0

𝐾−1∑︁
Δ𝑚=0

𝐼(𝑙 +∆𝑙,𝑚+∆𝑚, 𝑐)·

· 𝑤(∆𝑙,∆𝑚, 𝑐, 𝑓) + 𝑏(𝑓)

)︂
, 𝑓 = 1, 𝐹 , 𝑙 = 1, 𝐿,𝑚 = 1,𝑀,

(1.6)

где 𝐹 – число фильтров, 𝐶 – число входных каналов, 𝐾×𝐾 – пространственные
размерности фильтра, 𝐿 ×𝑀 × 𝐶 – размер входного изображения, 𝑤 – набор
сверточных фильтров, 𝑏 – вектор коэффициентов сдвига. Будем считать, что
границы изображения 𝐼 корректно дополнены так, чтобы результат имел тот
же размер. Обычно используются следующие функции активации φ:

– ReLU(𝑥) = max(𝑥, 0);

– гиперболический тангенс tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
;

– сигмоидальная sigmoid(𝑥) =
𝑒𝑥

1 + 𝑒𝑥
.

Иногда применение функций активации выделяют в виде отдельного слоя, что­
бы подчеркнуть, что можно использовать разные функции в рамках одной
нейронной сети. Кроме того, именно вычисление свертки в сверточных слоях
обычно занимают больше всего времени в глубоких нейросетевых моделях, а
никак не нелинейное преобразование промежуточных данных.

21

Полносвязные слои можно описать следующим образом:

𝑃 (𝑙) = φ

(︃∑︁
𝑚

𝑊 (𝑙,𝑚) · 𝐼(𝑚) + 𝑏(𝑚)

)︃
, (1.7)

где 𝑃 — вектор выходных значений слоя, 𝐼 — вектор входных значений слоя, 𝑊
— двумерная матрица весовых коэффициентов, 𝑏 — вектор смещения слоя, φ —
функция активации. Для перехода от трехмерной структуры, являющейся вы­
ходом сверточных слоев, к одномерному вектору, способному служить входом
полносвязного слоя, элементы структуры просто перечисляются в любом зара­
нее заданном порядке. Как правило, используются те же функции активации,
что и для сверточных слоев.

Слой субдискретизации с операцией максимума:

𝑆(𝑙,𝑚, 𝑐) = max
0⩽Δ𝑙⩽𝑤𝑥
0⩽Δ𝑚⩽𝑤𝑦

𝐼(𝑙 · 𝑤𝑥 +∆𝑙,𝑚 · 𝑤𝑦 +∆𝑚, 𝑐), (1.8)

где 𝑆(𝑙,𝑚, 𝑐) — выходные значения слоя субдискретизации, 𝐼(𝑙,𝑚, 𝑐) —
𝐶-канальное входное изображения, 𝑤𝑥, 𝑤𝑦 — размеры окна субдискретиза­
ции. В результате применения слоя ширина и высота выходного изображения
уменьшаются. Кроме операции максимума также может использоваться усред­
нение (с весами или нет).

Слой нормализации:

𝑁(𝑥) = γ
𝑥− µ

σ
+ β, (1.9)

где µ и σ определяются как скользящие среднее и среднеквадратичное откло­
нение входных данных 𝑥, а γ и β – обучаемые параметры.

В задачах классификации изображений на выходе модели обычно распола­
гается функция активации softmax(𝑥𝑖) = 𝑒𝑥𝑖∑︀

𝑘 𝑒
𝑥𝑘

, которая вычисляет уверенности
модели в каждом из возможных ответов.

1.2.2 LeNet-подобные нейросетевые архитектуры

Первый сверточный нейросетевой классификатор LeNet-5, архитектура
которого позволила эффективно решать практические задачи распознавания

22

был предложен Яном Лекуном [33]. Он использовал два блока из свертки с
сигмоидальной функцией активации и субдискретизации с взвешенным усред­
нением для извлечения признаков изображения. Далее полученный сигнал
интерпретировался как одномерный и подавался на вход полносвязного пер­
септрона, состоящего из одного слоя с гиперболическим тангенсом. На выходе
сети применялись евклидовы радиально-базисные функции, по одной на каж­
дый класс. Оригинальная архитектура LeNet-5 приведена на рисунке 1.3.

5x5 conv, 6

sigmoid

avg pool(2, 2)

5x5 conv, 16

sigmoid

avg pool(2, 2)

fc(120)

sigmoid

fc(84)

sigmoid

fc(10)

Рисунок 1.3 — Нейросетевая архитектура LeNet-5, где 𝑛×𝑛 conv, 𝑚 — сверточ­
ный слой с 𝑚 фильтрами размера 𝑛 на 𝑛, sigmoid — сигмоидальная функция
активации, avg pool(𝑛, 𝑛) – слой усредняющей субдискретизации с окном 𝑛 на

𝑛, fc(𝑛) — полносвязный слой с 𝑛 нейронами.

Такая архитектура сделала извлекаемые признаки основанными на ло­
кальной области изображения, они стали инвариантными к сдвигу, а благодаря
тому, что в процессе свертки используются одни и те же весовые коэффици­
енты, общее число коэффициентов модели заметно снизилось. Структура из
последовательности сверточных слоев и слоев, снижающих размерность, все

23

еще широко используется в современные нейросетевых моделях. Более позд­
ние исследователи

– cтали использовать для снижения размерности не только субдискрети­
зацию с усреднением, но и субдискретизацию с максимумом или же
свертки с неединичным шагом [34];

– стали использовать в качестве функций активации ReLU [34].
Нейросетевые архитектуры с последовательно исполняемыми блоками из

сверточных слоев и слоев субдискретизации называют LeNet-подобными архи­
тектурами.

Для повышения качества распознавания число таких блоков все увели­
чивалось и увеличивалось. Однако это открыло новую проблему: обучение
моделей с большим количеством последовательных сверточных слоев с по­
мощью метода обратного распространения ошибки не позволяет получить
высокого качества распознавания из-за затухания градиента [35]. Для ее реше­
ния был предложен новый класс нейросетевых моделей – остаточные нейронные
сети ResNet.

1.2.3 Семейство нейросетевых архитектур ResNet

ResNet – это современная модель, которая широко используется на прак­
тике в сложных задачах распознавания. Основной особенностью этой модели
является использование остаточных сквозных соединений между блоками сло­
ев, позволяющее решить проблему затухания градиента в глубоких нейронных
сетях [36; 37]. Она хорошо масштабируется, то есть может включать в себя
разное число остаточных блоков: малое число для простых задач и большее
для более сложных.

В первой версии архитектуры один остаточный блок состоял из после­
довательных сверточного слоя, нормализации, функции активации ReLU, еще
одного сверточного слоя и нормализации. Далее вход 𝑥 и выход блока 𝑓1(𝑥)

складываются и к ним применяется функция активации ReLU, то есть

𝑦 = ReLU(𝑥+ 𝑓1(𝑥)). (1.10)

24

Улучшенный остаточный блок 𝑓2(𝑥) состоит из 6 последовательных слоев
нормализации, активации ReLU, сверточного слоя, нормализации, активации
ReLU и снова сверточного слоя, результат которых складывается с входным
сигналом 𝑥:

𝑦 = 𝑥+ 𝑓2(𝑥). (1.11)

Оба остаточных блока проиллюстрированы на рисунке 1.4. При необходимости
остаточные соединения могут включать в себя сверточный слой для изменения
размерности входного сигнала, чтобы было возможно осуществить сложение с
выходным сигналом.

conv

batch norm

ReLU

conv

batch norm

ReLU

а)

batch norm

ReLU

conv

batch norm

ReLU

conv

б)
Рисунок 1.4 — Остаточные блоки а) первой версии, б) второй версии, где conv
— сверточный слой, ReLU — функция активации, batch norm — слой нормали­

зации.

1.2.4 Обучение нейросетевых моделей

Процесс получения параметров нейронной сети называется обучением. В
задачах распознавания широко распространены алгоритмы обучения по преце­
дентам. Такие алгоритмы используют выборку данных (обучающую выборку)

25

для подбора коэффициентов нейронной сети путем минимизации некоторого
функционала потерь ℒ. Будем называть выборкой набор пар (x,y), где x —
распознаваемый объект, а y — верный ответ для этого объекта.

Тогда для нейронной сети 𝒜 процесс обучения можно записать следую­
щим образом:

𝑤 :
∑︁
𝑖

ℒ(𝒜(x𝑖),y𝑖) +ℛ(𝑤) → min, (1.12)

где ℛ — регуляризирующий функционал. Регуляризация весов может использо­
ваться при обучении нейросетевых моделей для предотвращения переобучения.
Переобученная нейронная сеть хорошо решает задачу распознавания на данных
из обучающей выборки, однако демонстрирует неудовлетворительные резуль­
таты на других данных. Так происходит потому, что обучение нейросетевой
модели — плохо обусловленная оптимизационная задача. Однако регуляриза­
ция не решает проблему переобучения полностью и поэтому для контроля
переобучения используется валидационная выборка, не пересекающаяся с обу­
чающей. Критерием остановки обучения служит значительный рост значения
функционала потерь на валидационной выборке. Финальная оценка качества
нейронной сети происходит с помощью тестовой выборки, также не пересекаю­
щейся с обучающей и валидационной.

Для оценки качества решения задачи распознавания могут использовать­
ся и дополнительные метрики помимо значения функции потерь. Например,
в задачах классификации часто используется точность классификации: доля
объектов тестовой выборки, на которых модель выдала верный ответ.

1.3 Модели вычислительного устройства

Одной из основных характеристик нейросетевой модели является ее вы­
числительная эффективность. Однако понятие эффективности нуждается в
формализации, так как современные вычислительные устройства обладают
довольно сложной архитектурой. Например, они могут поддерживать кон­
вейеризацию, внеочередное исполнение инструкций, иерархическую систему
кеширования данных и т.д. Из-за этого реальное время работы конкретной

26

нейронной сети будет сложным образом зависеть от числа ее параметров и
архитектуры.

Нейросетевые модели могут работать на различных вычислительных плат­
формах:

– на высокопроизводительных серверах, получающих данные с удален­
ных устройств; в этом случае сложность нейросетевой модели может
варьироваться в широких пределах, однако при этом возникают за­
держки, связанные с каналами связи, а также вопросы к безопасности
пересылаемых данных, которые могут содержать персональную, меди­
цинскую или финансовую информацию, которая должна оставаться
конфиденциальной;

– непосредственно на конечных устройствах; чаще всего это будут пользо­
вательские рабочие станции, мобильные или встраиваемые устройства.

Особое значение вычислительная эффективность имеет для вычисли­
тельных платформ конечных устройств. Поэтому в данном разделе будет
рассмотрена оценка вычислительной эффективности в рамках модели специ­
ализированной логической интегральной схемы, отвечающей вычислителям
встраиваемых устройств, а также модели SIMD-процессора, отвечающей цен­
тральным процессорам мобильных устройств или рабочих станций.

1.3.1 Оценка вычислительной эффективности для
специализированных логических интегральных схем

Базовая модель специализированной логической интегральной схемы
(СЛИС) представляет собой логическую цепь, состоящую из логических вен­
тилей.

Логический вентиль — это физическое устройство, которое реализует бу­
леву функцию. Логическая цепь — это направленный ациклический граф, в
котором все вершины, кроме входных, являются логическими вентилями [38].
Это означает, что логическая цепь вычисляет бинарную функцию

𝑓 : 𝐵𝑛 → 𝐵𝑚, 𝐵 ∈ {0, 1}

27

c 𝑚 выходами от 𝑛 переменных. С помощью логических цепей можно реализо­
вать программы без циклов и ветвлений.

Основной характеристикой логических цепей являются размер и глубина.
Размер логической цепи это число вершин в графе цепи, а глубина определя­
ется как число ребер в наиболее длинном пути от любой из входных вершин к
любой из выходных вершин. Размер логической цепи напрямую связан с чис­
лом вентилей, которое требуется для ее реализации, и, таким образом, может
использоваться для оценки энергоэффективности и сложности получающего­
ся устройства. Глубина цепи характеризует задержку прохождения сигнала, то
есть время, необходимое для получения корректного сигнала на выходе при по­
даче нового входного сигнала. Задержку получения выходного сигнала также
называют латентностью и чаще всего измеряют в тактах.

Теперь рассмотрим вычисление некоторой функции 𝑓 , которая может
быть представлена в виде логической цепи. Пусть 𝐹 — логическая цепь, вы­
числяющая функцию 𝑓 , в вершинах которой записаны операции 𝑜𝑝 ∈ ℳ, где
ℳ — множество операций, реализованных c помощью логических вентилей. Вы­
числительную эффективность 𝐹 будем задавать с помощью двух параметров:

1. Общего числа вентилей:

𝑉𝑓 =
∑︁
𝑜𝑝∈ℳ

𝑁𝑜𝑝𝑉𝑜𝑝, (1.13)

где 𝑁𝑜𝑝 — число операций 𝑜𝑝 в цепи 𝐹 , 𝑉𝑜𝑝 — число логических вентилей,
необходимое для реализации операции 𝑜𝑝.

2. Общей латентности:
𝑇 =

∑︁
𝑑∈𝐷(𝐹)

𝑇𝑑, (1.14)

где 𝐷(𝐹) — путь в графе 𝐹 , обеспечивающий наибольшую суммарную
латентность.

1.3.2 Оценка вычислительной эффективности для
SIMD-процессора

Современные центральные процессоры являются сложными устройства­
ми с вычислительными модулями, памятью для хранения данных и команд,

28

а также возможностями для реализации различных типов параллелизма. Для
описания модели SIMD-процессора сначала рассмотрим модель конечного авто­
мата и модель машины c произвольным доступом к памяти.

Конечный автомат

Конечный автомат – это вычислитель с памятью, в которой хранится его
внутреннее состояние. Любое действие конечного автомата предпринимается с
учетом его внутреннего состояния: его можно представить в виде логической
цепи, которая принимает в качестве одного из входов внутреннее состояние и
выдает целевую функцию и новое внутреннее состояние (см. рисунок 1.5).

L
state

output

input

Рисунок 1.5 — Схема конечного автомата L, input — входные сигналы, output
— выходные сигналы, state — внутреннее состояние.

Машина с произвольным доступом к памяти

Машина с произвольным доступом к памяти (RAM-машина) — мо­
дель вычислителя, отвечающая основным свойствам современных центральных
процессором. RAM-машина может быть представлена как два синхронных
связанных конечных автомата, центральный процессор (ЦП) и память с про­
извольным доступом (см. рисунок 1.6) [38]. Память с произвольным доступом
(ППД) — это большое хранилище данных. Центральный процессор также обору­
дован собственным хранилищем данных: регистрами. Однако регистры обычно

29

имеют небольшой размер и их число обычно мало. ЦП может производить опе­
рации только над данными, расположенными в регистрах.

CPU

Random Access Memory

in_word
addr

out_word

cmd

b

0
1

m - 2
m - 1

...

Рисунок 1.6 — Схема RAM-машины.

ЦП циклически декодирует и исполняет команды из памяти с произволь­
ным доступом. Есть пять базовых типов команд:

1. арифметические и логические инструкции,
2. загрузка/выгрузка данных между ППД и регистрами ЦП,
3. инструкции переходов,
4. инструкции ввода/вывода,
5. инструкция остановки.
ППД оперирует словами – элементарными единицами данных. У нее есть

три входных слова, в которых хранятся адрес, данные и команда, и одно выход­
ное слово. Возможные варианты команды: чтение, запись, пустая команда. Во
время чтения память вернет выходное слово (out_word), содержащее данные,
хранящиеся по адресу (addr). При записи входное слово (in_word) будет записа­
но по адресу (addr). Данный тип памяти называется памятью с произвольным
доступом, потому что предполагает, что время доступа к данным не зависит от
их адреса. Объем ППД обычно ограничен некоторой величиной 𝑚 = 2𝑟, слова
имеют фиксированную длину 2𝑏 байт и адресуются 𝑟-битными числами.

Модель SIMD-процессора и оценка вычислительной эффективности

При моделировании современных центральных процессоров RAM-модель
необходимо дополнить для учета возможностей внутреннего параллелизма.
Чаще всего параллелизм на уровне данных поддерживается через SIMD-расши­
рения, которые позволяют выполнить одну и ту же арифметическую операцию

30

над несколькими элементами данных (вектором данных) одновременно. В дан­
ной работе SIMD-инструкции рассматриваются как обычные арифметические
операции, с учетом того, что предварительно необходимо обеспечить загрузку
и подготовку не одной, а нескольких величин. Другие виды параллельности
останутся за рамками данной работы.

Другим отличием ЦП является иерархическая структура памяти. Как
правило, при обработке нейронных сетей, коэффициенты, входные данные и
промежуточные значения не помещаются в регистры и даже L1-кэш, поэто­
му доступу в память необходимо уделить внимание при создании оптимальной
реализации.

В данной работе оценку эффективности алгоритмов на ЦП предлагается
выполнять путем подсчета числа арифметических инструкций каждого типа (с
учетом возможности SIMD обработки данных) и последующего учета латент­
ностей этих инструкций для этого семейства ЦП. Несмотря на то, что такая
оценка не учитывает особенности доступа к памяти, она может быть исполь­
зована для сравнения эффективности методов нейросетевой классификации,
различающихся преимущественно в вычислительной части.

Рассмотрим вычисление функции 𝑓 . Пусть 𝐹 — логическая цепь, вычис­
ляющая функцию 𝑓 , в вершинах которой записаны операции 𝑜𝑝 ∈ ℳ, ℳ —
множество SIMD-операций.

Определим вычислительную эффективность подсчета функции 𝑓 как:

𝑇 =
1

𝑆

∑︁
𝑜𝑝∈ℳ

𝑁𝑜𝑝𝑇𝑜𝑝

𝑁𝑆
𝑜𝑝

, (1.15)

где 𝑁𝑜𝑝 — число операций 𝑜𝑝 в цепи 𝐹 , 𝑆 — число элементов, обрабатываемых
SIMD-устройством, 𝑁𝑆

𝑜𝑝 — число SIMD-устройств для вычисления операции 𝑜𝑝,
𝑇𝑜𝑝 — латентность вычисления операции 𝑜𝑝.

1.4 Методы повышения вычислительной эффективности
нейросетевых моделей

Объем использования нейронных сетей на конечных устройствах неуклон­
но растет. Вычислителями конечных устройств, на которых осуществляется

31

распознавание, чаще всего являются центральные процессоры общего назначе­
ния или программируемые или специализированные логические интегральные
схемы. Центральные процессоры имеют фиксированную архитектуру, которая
не оптимизировалась под решение задач распознавания, поэтому разработчи­
кам приходится решать задачу повышения эффективности использования до­
ступных ресурсов. Программируемые логические интегральные схемы (ПЛИС)
дают разработчику большую свободу в реализации вычислителя для кон­
кретной нейросетевой модели и поиске оптимальной аппаратной архитектуры,
однако они ограничены количеством доступных на плате вентилей того или
иного типа и модулей памяти. Работы на эту тему обычно направлены на повы­
шение эффективности использования вентилей и реализуют уже существующие
нейросетевые архитектуры и методы обучения [39—42].

Когда вычислительная архитектура, оптимальная для некоторой нейросе­
тевой модели или семейства моделей, уже определена, становится возможным
создание СЛИС с необходимыми аппаратными характеристиками. Как прави­
ло, они имеют заданную архитектуру и не поддаются изменению со стороны раз­
работчика. К таким устройствам относятся Google Tensor Processing Unit [43],
Intel Vision Processing Unit [44], Huawei Ascend [45] и др.

Современные методы снижения вычислительной трудоемкости нейросете­
вых моделей можно разделить на две практически не пересекающиеся группы.
Методы первой группы уменьшают число коэффициентов и вычислительных
операций в сети, за счет чего она также может работать быстрее независимо
от вида вычислителя. К ним можно отнести тензорные разложения сверток,
обрезку моделей, дистилляцию знаний. Методы второй группы ориентируются
на возможности конкретных вычислителей и заменяют одни вычислительные
операции и структуры другими, которые могут быть оптимальнее реализованы
и требуют меньше времени для подсчета. Например, малобитные вычисления
эффективны как для центральных процессоров, так и для логических инте­
гральных схем, а альтернативные эффективно-вычислимые модели отдельных
нейронов/слоев предназначены в основном для логических интегральных схем.

Стоит отметить, что на практике методы из разных групп могут комби­
нироваться для достижения желаемой эффективности.

32

1.4.1 Тензорные разложения свертки

Основную вычислительную сложность в сверточных нейросетевых мо­
делях составляет операция свертки входной карты признаков с фильтром в
сверточных слоях. Для снижения вычислительной сложности свертки можно
использовать тензорное разложение фильтра: представление его в виде ком­
позиции нескольких фильтров меньших размерностей. Поскольку обученные
стандартными методами сверточные фильтры чаще всего не имеют точного
тензорного разложения, для их представления в подобном виде нужны специ­
альные методы [46—48].

Например, Ригамонти и др. [46] выполняют аппроксимацию сверточных
фильтров набором композиций одномерных фильтров. Для получения тако­
го набора авторы модифицировали процесс обучения с целью ограничить
пространство всех сверточных фильтров только фильтрами, допускающими
предлагаемое разложение и применили методы декомпозиции тензоров. Анало­
гично в [48] были предложены две другие модификации структуры сверточного
слоя и методы обучения для них. При этом потери качества распознавания в
результате аппроксимации не слишком велики и позволяют использовать по­
лученные модели на практике. В [49] авторы предложили декомпозировать
сверточный слой на этапе обучения, что позволяет использовать стандартные
методы обучения. В дальнейшем были предложены разные подходы к декомпо­
зиции слоев на основе разложения Такера [50; 51], канонического разложения
тензоров [52; 53], разложения тензорного поезда [54; 55] и др. Особое внимание
уделяется стабильности подобных структур и методам ее повышения [53].

1.4.2 Обрезка моделей

Одним из распространенных методов снижения избыточности нейросете­
вых моделей является обрезка – исключение определенных наименее значимых
коэффициентов из модели. Чаще всего незначимые коэффициенты инициали­
зируются нулями. Однако стоит отметить, что эта группа методов хорошо
подходит для уменьшения числа весовых коэффициентов и снижения объема

33

занимаемой моделью памяти, но при этом зачастую не влияет на эффектив­
ность работы, так как убираемые коэффициенты могут быть расположены в
разных частях модели.

Методы обрезки моделей можно разделить на две группы: статические
и динамические. Статические методы модифицируют модель до начала ее ис­
пользования на практике, в то время как динамические методы анализируют
вычислительную сложность модели во время ее работы. Статические мето­
ды могут ориентироваться на величину весовых коэффициентов и исключать
наименьшие коэффициенты, вносящие слабый вклад в работу сети [56; 57].
Другие методы, такие как Optimal Brain Damage [58] и Optimal Brain Surgeon
[59], используют оценку информативности коэффициентов на основе гессиана
функции потерь. Однако для глубоких нейронных сетей это влечет значитель­
ные вычислительные затраты, поэтому были предложены методы, вносящие
дополнительный штраф в функцию потерь для того, чтобы большее число ко­
эффициентов приблизилось к нулю и могло быть далее обрезано [60]. Такие
методы могут обрезать не только отдельные весовые коэффициенты, но и целые
сверточные фильтры, что позволяет повысить вычислительную эффективность
модели [61; 62]. Большинство методов статической обрезки удаляют выбранные
элементы безвозвратно, что, как правило, влечет за собой снижение качества.
В таком случае можно дообучить обрезанную сеть [63], что однако требует до­
ступа к обучающим данным и занимает дополнительное время.

Для того, чтобы не терять содержащуюся в исходной модели информацию,
были разработаны методы динамической обрезки. Этот подход предполагает,
что выбор слоев, фильтров или отдельных нейронов, которые не будут использо­
ваться при запуске, осуществляется непосредственно во время работы сети. Как
правило, в таком случае дообучение сети не требуется. Динамический выбор об­
резаемых элементов производит компонент принятия решения. Например, это
могут быть дополнительные связи, добавленные к исходной сети, или компонен­
ты, оценивающие и изменяющие связи между слоями [64]. Такие компоненты
принятия решения обучаются вместе с основной сетью стандартным методами.
Кроме того, иногда используются сторонние нейросетевые модели для приня­
тия решений [65; 66]. Они показывают хорошие результаты, однако обучаются
с подкреплением, что требует значительных вычислительных ресурсов.

Динамическая обрезка может осуществляться на разных уровнях: на
уровне отдельных каналов [64; 65], слоев [67] или целых блоков сети [68]. Стра­

34

тегии осуществления обрезки могут быть различными. Некоторые алгоритмы
позволяют пропускать при вычислении выбранные слои или блоки слоев [68].
Есть стратегия, при которой в зависимости от входных данных каждый блок
сети, который будет использован при запуске, выбирается из нескольких вариан­
тов [66; 69]. В некоторых случаях компонент принятия решения может досрочно
остановить вычисления, как на уровне каждого блока [70], так и всей модели
в целом [67]. Основным недостатком подхода динамической обрезки является
то, что все вычисления, необходимые для выбора обрезаемых элементов, произ­
водятся непосредственно во время запуска. Это накладывает дополнительные
требования на вычислитель, на котором осуществляется запуск.

1.4.3 Малобитные нейронные сети

Малобитные нейронные сети хранят коэффициенты и используют для
вычислений типы данных малой разрядности, часто целые. Таким образом
вычисления выполняются быстрее, чем в типе данных с единичной точно­
стью. Процесс преобразования вещественных коэффициентов к целым числам
с несколькими нормировочными параметрами называется квантованием. Ши­
роко используются нейронные сети с 8-битными коэффициентами, для них
разработан ряд библиотек для различных вычислительных платформ [71—73].
При этом разрабатываются как системы, целиком использующие целочислен­
ные вычисления и фиксированную схему квантования [74], так и системы
смешанной точности. Например, Кай и Васконселос [75] отмечают, что исполь­
зование единого способа квантования для всех фильтров сети неоптимально
и предлагают выполнить поиск достаточной точности. Они показали, что это
позволяет заметно улучшить результаты классификации по сравнению с одно­
родно квантованными сетями.

Кроме того, ведутся исследования по дальнейшему снижению разряд­
ности. Поскольку при стандартных подходах к квантованию коэффициентов
получающаяся аппроксимация не дифференцируема, прямая конверсия со­
пряжена со снижением качества распознавания, первоочередное значение
приобретают методы повышения качества. В [76] предложили подход к поиску
весов, который позволил улучшить качество для большого набора комбина­

35

ций разрядностей (1, 2, 4 бита для коэффициентов и 1, 2, 4, 8, 32 бита для
промежуточных значений). Чжуан и др. [77] дополнили сеть вспомогательным
модулем полной точности на время обучения. Этот метод позволил повысить ка­
чество классификации или поиска объектов на выборках ImageNet, CIFAR-100
и COCO. В [78] была предложена модель, использующая троичные веса, а так­
же метод обучения для нее. Она не только позволила избавиться от операции
умножения, но и дала возможность контролировать разреженность сети, т.е.
количество нулевых коэффициентов.

Особенно популярны модели с бинарными коэффициентами, поскольку
они могут быть реализованы с меньшим количеством умножений (или без умно­
жений вообще). В ряде задач их использование практически не приводит к
потере качества распознавания по сравнению с моделями с вещественными ко­
эффициентами одинарной точности [79—82]. Подобные решения обеспечивают
высокую скорость исполнения нейросетевых моделей в конкретных задачах, од­
нако имеют ограниченную область применения: чаще всего они подходят только
для разработки программно-аппаратных платформ, которые могут использо­
вать специализированные вычислители на базе FPGA или ASIC.

При этом есть также работы, посвященные использованию малобитных
вещественных типов данных в нейросетевых моделях [83—85]. Основное пре­
имущество в этом случае заключается в повышении точности вычислений за
счет того, что вещественное представление ограничивает относительную ошиб­
ку. Такие модели позволяют даже выполнять обучение в 8-битном типе данных
с плавающей точкой, однако также нуждаются в аппаратной поддержке для
практического использования.

Существует и совсем другой подход к вычислению нейросетевых моделей
с использованием целых чисел, при котором выполняется квантование и при­
ближенное вычисление матричного произведения [86]. В рамках этого подхода
строки левой матрицы подвергаются кодированию, при котором строка разби­
вается на подстроки и каждой из них ставится в соответствие набор ближайших
векторов из нескольких кодовых наборов. На основе столбцов правой матрицы
создаётся таблица предподсчета. Далее с помощью функции агрегации, которая
чаще всего представляет собой просто суммирование нужных значений из таб­
лицы вычисляется приближенный результат произведения матриц. При этом
применяется линейное квантование, чтобы хранить и использовать при вычис­
лениях только целые числа. Функции кодирования могут быть различными,

36

например, в [87] авторы предложили вычислительно-эффективную обучаемую
функцию кодирования, позволяющую легко использовать векторные расши­
рения центральных процессоров. Кроме того, они реализуют вычисления в
8-битном типе данных, используя усреднение вместо суммирования. Однако
данный метод накладывает ограничения на размеры матриц: число строк ле­
вой матрицы должно значительно превосходить число столбцов левой и правой
матриц. Из-за этого область его применения ограничена лишь полносвязными
слоями. Кроме того, совместное обучение и весовых коэффициентов нейросете­
вых моделей, и непосредственно функции кодирования затрудняется тем, что
эта функция недифференцируема, поэтому методы для преобразования моде­
лей к подобному виду без снижения точности только предстоит разработать.

1.4.4 Неклассические модели слоев или нейронов

Также активно разрабатываются модификации отдельных слоев нейрон­
ных сетей с целью снижения их вычислительной сложности или повышения
качества распознавания. Основная идея подобных методов – заменить умноже­
ния на менее вычислительно сложные операции. Например, в модели DeepShift
авторы обучили сеть использовать битовый сдвиг вместо умножения [88]. Бито­
вый сдвиг равноценен умножению на степень двойки и может быть эффективно
реализован вычислителем. В [89] авторы предложили модель MConv сверточ­
ного слоя, который вычисляет операцию псевдоэрозии или псевдодилатации
в скользящем окне, построенные на основе контрагармонического среднего.
Подобные слои были использованы вместо сверточных при распознавании деся­
тичных цифр и не привели к потере качества. В [90] были предложены модели
SMorph и LMorph слоев, вычисляющих псевдоморфологические операции в
скользящем окне, и показано, что их можно обучить для представления ши­
рокого класса признаковых карт.

Другим семейством неклассических моделей слоя стали log-sum-exp
модели, в которых в сверточных слоях применяется соответствующая по­
следовательность: логарифмирование, суммирование с фильтром свертки,
потенцирование [91]. Эта модель замечательна тем, что позволяет использо­
вать методы выпуклой оптимизации при обучении. Далее для повышения

37

качества были разработаны двухветочные log-sum-exp сети, в основе каждой
ветки которых находился log-sum-exp слой, а выход представлял собой раз­
ность двух результатов веток. Для них в [92] было доказано, что нейронная
сеть с нейронами такого вида может аппроксимировать любые непрерывные
функции над выпуклыми компактными множествами с заданной точностью.
При этом, поскольку слой имеет вид разности двух выпуклых функций, и для
него доступен математический аппарат теории оптимизации. Однако подоб­
ные модели все же уступали в качестве классическим и не нашли широкого
практического применения.

Чен и др. в [93] предложили архитектуру AdderNet, в которой моди­
фицировали сверточные слои так, чтобы в них использовалась 𝐿1-норма.
Это значительно упрощает вычисления в сверточных слоях, в то время как
умножения в других слоях остаются. Для подобных сетей был предложен ори­
гинальный метод обучения, который все еще не позволил добиться качества
аналогичных классических сетей. Однако в [94] предложили способ на основе
дистилляции знания, который позволил обучить сверточные слои с 𝐿1-нормой
так, что результирующая сеть работает практически без потери качества на
CIFAR-10, CIFAR-100 и ImageNet, а в [95] предложили подход с постепенной
аппроксимацией 𝐿1-нормы в процессе обучения. Также было эксперименталь­
но показано, что AdderNet может успешно применяться в задаче построения
изображений сверхвысокого разрешения [96], а также в задаче детектирова­
ния объектов [97] при некоторой модификации процесса обучения. Несмотря
на это, на компактных нейросетевых архитектурах, применяющихся на конеч­
ных устройствах, эта модель все еще уступает по качеству классическим, и
поэтому может применяться только в некоторых частях сети [98]. Несмотря на
это, для AdderNet активно разрабатываются высокопроизводительные ПЛИС
и СЛИС имплементации [99; 100]. Позднее Шен и др. [101] модифицировали
модель AdderNet, применив аппроксимацию умножения на основе четверть­
квадратичного умножителя [102], которая позволила им реализовать слои,
использующие только операцию сравнения, взятия модуля и знака величины.
Такие модели вдвое более эффективны по числу вентилей, чем оригиналь­
ный AdderNet и показали большую стабильность в процессе обучения, однако
уступили AdderNet по качеству в задаче классификации на CIFAR10. Другая
модель, в которой вместо умножения используется квадрат разности, была
предложена в [103]. Она представляет собой некоторый компромисс между вы­

38

числительно-эффективной моделью не содержащей умножений, но уступающей
по качеству классической и требующей специальных методов обучения, и соб­
ственно классическими моделями.

1.5 Выводы по главе 1. Задачи диссертационного исследования

В данной главе последовательно рассмотрено устройство нейросетевых
моделей, начиная с моделей отдельного нейрона, моделей слоев разных ти­
пов и заканчивая нейросетевыми архитектурами, которые могут применяться
в практических задачах распознавания. Эти модели состоят из нескольких бло­
ков «сверточный слой-функция активации-слой субдискретизации» в случае
LeNet-подобных моделей или нескольких блоков из сверточных слоев, функ­
ций активации и слоев нормализации с остаточными соединениями в случае
ResNet-подобных архитектур.

На практике распознающие модели чаще всего используются на высо­
копроизводительных серверах или конечных устройствах, где вычислителем
выступают центральные процессоры или специализированные интегральные
схемы. Наиболее актуально повышение вычислительной эффективности ней­
ронных сетей именно для конечных устройств, поэтому в работе представлены
способы оценки вычислительной эффективности для этих платформ.

Далее был проведен анализ уже существующих методов снижения вы­
числительной трудоемкости нейросетевых моделей. Их можно разделить на
две практически не пересекающиеся группы. Методы первой группы умень­
шают число коэффициентов и вычислительных операций в сети, за счет чего
она также может работать быстрее независимо от вида вычислителя. К ним
можно отнести тензорные разложения сверток, обрезку моделей, дистилляцию
знаний. Методы второй группы ориентируются на возможности конкретных вы­
числителей и заменяют одни вычислительные операции и структуры другими,
которые могут быть оптимальнее реализованы и требуют меньше времени для
подсчета. Например, малобитные вычисления эффективны как для централь­
ных процессоров, так и для логических интегральных схем, а альтернативные
эффективно-вычислимые модели отдельных нейронов/слоев предназначены в

39

основном для логических интегральных схем. При этом методы из разных групп
могут комбинироваться для достижения желаемой эффективности.

Однако при этом все еще нет простого и надежного метода создавать ней­
росетевые модели для конечных устройств так, чтобы они могли работать в
режиме реального времени и не представляли для них значимой вычислитель­
ной нагрузки. Существуют достаточно эффективные решения частных задач,
однако в общем случае они не позволяют достичь баланса между желаемым
качеством распознавания и скоростью работы. Поэтому целью данной работы
является разработка и исследование вычислительно-эффективных аппроксима­
ций существующих нейросетевых моделей, методов их обучения и оптимизации
их вычисления на существующих и перспективных вычислителях.

Для достижения этой цели были поставлены следующие задачи:
1. Разработать методы аппроксимации вычислительно-интенсивных ча­

стей нейросетевых моделей и исследовать их точность.
2. Оценить вычислительную эффективность на различных платформах.
3. Разработать методы обучения предложенных аппроксимирующих

структур.
4. Провести экспериментальную оценку точности предложенных методов

для нейросетевых классификаторов различных архитектур.
5. Разработать комплекс программ, позволяющий моделировать аппрок­

симацию нейросетевых моделей, обучение полученных структур и
проверку результирующего качества работы.

40

Глава 2. Биполярные морфологические нейросетевые модели

В этой главе автор предлагает новый метод снижения вычислительной и
аппаратной сложности нейросетевых моделей за счет аппроксимации классиче­
ского математического нейрона.

Классический математический нейрон является основной вычислительной
единицей современных нейронных сетей и задается выражением (1.3):

𝑓(x) = φ

(︃
𝑁∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑤0

)︃
,

где x — вектор входных сигналов, w — вектор весов нейрона, φ(·) — функция
активации, 𝑁 — длина входного и весовых векторов.

Такие нейроны используются в сверточных и полносвязных слоях и,как
правило, именно на них приходятся наибольшее число операций в нейронной
сети. Если предполагать, что нейроны организованы в слои, то число операций
активации (вычисления функции φ(·)) пропорционально длине выходного сиг­
нала, а число операций сложения и умножения — произведению длин входного
и выходного сигналов. Поэтому несмотря на то, что активация может быть
представлена достаточно сложной для вычисления функцией (например, сиг­
моидальной), самой трудозатратной операцией классического математического
нейрона является умножение за счет кратно большего числа повторений.

Основная идея предложенного автором метода снижения вычислительной
сложности заключается в построении аппроксимированных нейронов без опе­
раций умножения. На первом этапе аппроксимации отдельно рассматриваются
положительные и отрицательные значения коэффициентов и входных сигналов
нейрона, формируя отдельные вычислительные пути для каждой комбинации
знаков коэффициентов и входов. Данное действие можно интерпретировать как
явное моделирование процессов возбуждения и торможения, причем каждый
выходной сигнал может вызывать либо возбуждающий, либо тормозящий эф­
фект. Такое поведение напоминает поведение биполярных нейронов в биологии.
Как правило, такие нейроны отвечают за восприятие и встречаются, например,
в сетчатке глаза [104].

На втором этапе аппроксимации операции умножения и сложения на
каждом вычислительном пути заменяются на операции сложения и взятия

41

максимума соответственно. Таким образом, полученный нейрон использует мор­
фологические операции [105; 106].

Предложенную аппроксимированную модель нейрона автор назвал би­
полярным морфологическим нейроном. В данной главе автор рассматривает
точность и выразительную способность таких нейронов, теоретически показы­
вая, что они могут эффективно использоваться вместо классических, исследует
их вычислительную сложность, а также преимущества и недостатки для реа­
лизации на различных устройствах. На основе выявленных недостатков автор
дорабатывает предложенную модель и демонстрирует финальную версию, ко­
торая демонстрирует более высокую эффективность, чем оригинальная.

2.1 Биполярный морфологический нейрон

Впервые идею и модель биполярного морфологического (БМ) ней­
рона автор представил в докладе «Bipolar morphological neural networks:
convolution without multiplication» [4] и далее подробно исследовал в статье
«Bipolar Morphological Neural Networks: Gate-Efficient Architecture for Computer
Vision» [1]. Рассмотрим его построение.

Основной операцией классического математического нейрона является вы­
числение взвешенной суммы

∑︀𝑁
𝑖=1 𝑥𝑖𝑤𝑖, где x — вектор входного сигнала, w —

вектор весов нейрона, а 𝑁 — длина входа. Рассмотрим случай 𝑥𝑖 ⩾ 0 и 𝑤𝑖 ⩾ 0

для 𝑖 = 1, . . . , 𝑁 и введем новые обозначения:

𝑁∑︁
𝑖=1

𝑥𝑖𝑤𝑖 = exp{ln
𝑁∑︁
𝑖=1

𝑥𝑖𝑤𝑖} = (1 + 𝑘) expmax
𝑖

(ln𝑥𝑖 + ln𝑤𝑖) =

= (1 + 𝑘) expmax
𝑖

(𝑦𝑖 + 𝑣𝑖),

(2.1)

где 𝑦𝑖 = ln 𝑥𝑖 это новые входные значения, 𝑣𝑖 = ln𝑤𝑖 — новые весовые коэф­
фициенты,

𝑘 =

𝑁∑︀
𝑗=1

𝑥𝑗𝑤𝑗

𝑀
− 1, (2.2)

𝑀 = max
𝑗

(𝑥𝑗𝑤𝑗). (2.3)

42

Величина 𝑀 обозначает максимальное слагаемое, возникшее в ходе вы­
числений, а 𝑘 — степень его доминирования. При 𝑘 << 1 максимальный вклад
в выходной сигнал будет вносить именно оно. Введем следующую аппрокси­
мацию:

𝑁∑︁
𝑖=1

𝑥𝑖𝑤𝑖 ≈ expmax
𝑖

(𝑦𝑖 + 𝑣𝑖), (2.4)

Теперь рассмотрим взвешенную сумму без ограничения диапазона вход­
ного сигнала и весовых коэффициентов:

𝑁∑︁
𝑖=1

𝑥𝑖𝑤𝑖 =
𝑁∑︁
𝑖=1

𝑝++
𝑖 𝑥𝑖𝑤𝑖 −

𝑁∑︁
𝑖=1

𝑝+−
𝑖 𝑥𝑖|𝑤𝑖| −

𝑁∑︁
𝑖=1

𝑝−+
𝑖 |𝑥𝑖|𝑤𝑖 +

𝑁∑︁
𝑖=1

𝑝−−
𝑖 |𝑥𝑖||𝑤𝑖|, (2.5)

где

𝑝++
𝑖 =

⎧⎨⎩1, если 𝑥𝑖 ⩾ 0 и 𝑤𝑖 ⩾ 0,

0, иначе,

𝑝−+
𝑖 =

⎧⎨⎩1, если 𝑥𝑖 < 0 и 𝑤𝑖 ⩾ 0,

0, иначе,

𝑝+−
𝑖 =

⎧⎨⎩1, если 𝑥𝑖 ⩾ 0 и 𝑤𝑖 < 0,

0, иначе,

𝑝−−
𝑖 =

⎧⎨⎩1, если 𝑥𝑖 < 0 и 𝑤𝑖 < 0,

0, иначе.

Для каждого слагаемого можно считать, что входные значения и весовые
коэффициенты неотрицательны и могут быть приближены с помощью аппрок­
симации (2.4).

Таким образом получим выражение для БМ нейрона:

𝑓𝐵𝑀(x, 𝑉, 𝑣) = φ

(︂
exp

𝑁
max
𝑗=1

(ln𝑥+𝑗 + 𝑣+𝑗)− exp
𝑁

max
𝑗=1

(ln𝑥+𝑗 + 𝑣−𝑗)−

− exp
𝑁

max
𝑗=1

(ln𝑥−𝑗 + 𝑣+𝑗) + exp
𝑁

max
𝑗=1

(ln𝑥−𝑗 + 𝑣−𝑗) + 𝑣0

)︂
,

(2.6)

43

𝑥+𝑗 =

⎧⎨⎩𝑥𝑗, 𝑥𝑗 ⩾ 0,

0, 𝑥𝑗 < 0,

𝑥−𝑗 =

⎧⎨⎩−𝑥𝑗, 𝑥𝑗 < 0,

0, 𝑥𝑗 ⩾ 0,

(2.7)

где x — вектор входных значений длины 𝑁 , 𝑣+, 𝑣− — векторы весовых коэф­
фициентов длины 𝑁 , 𝑣0 — смещение, φ(·) — нелинейная функция активации.
Будем считать, что ln 0 = −∞ и заменим его достаточно большим отрица­
тельным числом в ходе практических вычислений, а exp(−∞) = 0 и не будем
учитывать такие значения в ходе практических вычислений.

Структура БМ нейрона показана на рисунке 2.1. Функция max поз­
воляет отбрасывать отрицательные значения и сформировать четыре ветки
вычислений для различных комбинаций знаков входных значений и весовых
коэффициентов. Далее выполняется логарифмирование и основная морфологи­
ческая операция внутри слоя. Ее результаты потенцируются и аккумулируются
для получения выходного значения.

𝑥

𝑥+ 𝑦+

𝑥− 𝑦−

𝑦00 𝑧00

𝑦01 𝑧01

𝑦10 𝑧10

𝑦11 𝑧11

𝑧+

𝑧−

𝑧

max(𝑥, 0)

ln(𝑥+)

max(−𝑥, 0)

ln(𝑥−)

max(𝑦+ + 𝑣+)

max(𝑦+ + 𝑣−)

exp(𝑦00)

𝑧00 − 𝑧01

exp(𝑦01)

max(𝑦− + 𝑣+)

max(𝑦− + 𝑣−)

exp(𝑦10)

exp(𝑦11)

𝑧10 − 𝑧11

φ(𝑧+ − 𝑧− + 𝑣0)

Рисунок 2.1 — Структура БМ нейрона с вектором входных значений 𝑥, весо­
выми коэффициентами 𝑣+, 𝑣−, 𝑣0 и вектором выходных значений 𝑧.

44

2.2 Точность и выразительная способность БМ нейрона

В предыдущем разделе БМ нейрон рассматривался как аппроксимация
классического нейрона. Однако приближение (2.4) будет достаточно точным
только в случае 𝑘 ≪ 1. Для настоящего нейрона 𝑘 может принимать значе­
ния в диапазоне от 0 до 𝑁 − 1, где 𝑁 — число входов нейрона. В лучшем
случае в сумме (2.2) будет только одно ненулевое слагаемое и тогда 𝑘 = 0,
а в худшем случае все слагаемые будут совпадать с максимальным значени­
ем и 𝑘 = 𝑁 − 1. В этом случае реальное значение выражения (2.4) будет в 𝑁

больше аппроксимированного. Несмотря на это, в работе «Bipolar Morphological
Neural Networks: Gate-Efficient Architecture for Computer Vision» [1] автор пока­
зал, что БМ нейронные сети уже имеют такую же выразительную способность,
как и классические многослойные персептроны. Приведем формальное дока­
зательство.

Теорема 1. Любая непрерывная на компакте функция 𝑁 переменных
𝑓(𝑥1, ..., 𝑥𝑁) может быть равномерно приближена с любой заранее задан­
ной точностью ε > 0 некоторой нейронной сетью, состоящей только из БМ
нейронов.

Прежде чем приступить к доказательству, напомним определения ком­
пакта и равномерного приближения.

Определение 1. Компактом будем называть ограниченное замкнутое мно­
жество точек в пространстве R𝑁 .

Определение 2. Будем говорить, что функция 𝑔(𝑥) равномерно приближает
𝑓(𝑥) на компакте 𝐶 с точностью ε > 0, если

∀𝑥 ∈ 𝐶 : |𝑓(𝑥)− 𝑔(𝑥)| < ε. (2.8)

Доказательство. Рассмотрим одномерный случай. Пусть функция одного пе­
ременного 𝑓(𝑥) определена и непрерывна на отрезке [α,β].

Построим нейронную сеть из БМ нейронов с одном входом, на которое
подается значение 𝑥. Пусть на первом слое расположено 2𝑛 нейронов и первые
𝑛 из них вычисляют значения

ξ+𝑖 = 𝑥+ 𝑎+𝑖 , 𝑖 = 1, . . . , 𝑛, (2.9)

45

где 𝑎+𝑖 ∈ R, 𝑖 = 1, . . . , 𝑛 — произвольные действительные числа. Покажем, что
это возможно. Поскольку у таких нейронов всего один вход, у них 3 весовых
коэффициента: 𝑣+, 𝑣−, 𝑣0. Положим 𝑣+ = 0, 𝑣− = −∞, 𝑣0 = 𝑎+𝑖 . Тогда соглас­
но (2.6)

ξ+𝑖 = φ(exp ln𝑥+ − exp ln𝑥− + 𝑎+𝑗) = 𝑥+ − 𝑥− + 𝑎+𝑖 = 𝑥+ 𝑎+𝑖 , (2.10)

при тождественной функции φ.
Следующие 𝑛 нейронов будут вычислять

ξ−𝑖 = −𝑥+ 𝑎−𝑖 , 𝑖 = 1, . . . , 𝑛, (2.11)

где 𝑎−𝑖 ∈ R, 𝑖 = 1, . . . , 𝑛 — произвольные действительные числа. У этих ней­
ронов также всего один вход и 3 весовых коэффициента: 𝑣+, 𝑣−, 𝑣0. Положим
𝑣+ = −∞, 𝑣− = 0, 𝑣0 = 𝑎−𝑖 . Тогда согласно (2.6)

ξ−𝑖 = φ(− exp ln𝑥+ + exp ln𝑥− + 𝑎−𝑗) = −𝑥+ + 𝑥− + 𝑎−𝑖 = −𝑥+ 𝑎−𝑖 , (2.12)

при тождественной функции φ.
Рассмотрим второй слой сети. На нем будет 𝑛 нейронов, каждый из кото­

рых будет иметь два входа ξ+𝑖 и ξ−𝑖 и вычислять следующее выражение:

η𝑖 = θ(η′
𝑖), (2.13)

где
η′
𝑖 =expmax(lnmax(ξ+𝑖 , 0), lnmax(ξ−𝑖 , 0))−
− expmax

(︀
lnmax(−ξ+𝑖 , 0), lnmax(−ξ−𝑖 , 0)

)︀
− (𝑎+𝑖 + 𝑎−𝑖) =

=max(max(𝑥+ 𝑎+𝑖 , 0)),max(−𝑥+ 𝑎−𝑖 , 0)−
−max(max(−𝑥− 𝑎+𝑖 , 0),max(𝑥− 𝑎−𝑖 , 0))− (𝑎+𝑖 + 𝑎−𝑖).

При этом 𝑣+1 = 𝑣+2 = 0, 𝑣−1 = 𝑣−2 = −∞, 𝑣0 = −(𝑎+𝑖 + 𝑎−𝑖). Результи­
рующее выражение для η′

𝑖 описывает отрицательный треугольный импульс c
основанием (−𝑎+𝑖 , 𝑎

−
𝑖) при 𝑎−𝑖 > −𝑎+𝑖 и положительный с основанием (𝑎−𝑖 ,−𝑎+𝑖)

в противном случае как показано на рисунке 2.2. Высота этого импульса состав­

ляет
|𝑎+𝑖 + 𝑎−𝑖 |

2
.

Определим θ как пороговую функцию активации:

θ(𝑥) =

⎧⎨⎩1, 𝑥 > 0,

0, 𝑥 ⩽ 0.
(2.14)

46

𝑥

𝑦

−𝑎+𝑖 𝑎−𝑖

−|𝑎+𝑖 + 𝑎−𝑖 |
2

а) 𝑎+𝑖 > −𝑎−𝑖

𝑥

𝑦

𝑎−𝑖 −𝑎+𝑖

|𝑎+𝑖 + 𝑎−𝑖 |
2

б) 𝑎+𝑖 < −𝑎−𝑖
Рисунок 2.2 — Треугольные импульсы, описываемые нейронами второго слоя η𝑖.

Тогда выходом второго слоя η𝑖 будут прямоугольные импульсы. По первой тео­
реме Вейерштрасса 𝑓(𝑥) ограничена на [α,β] [107]. Так как БМ нейрон способен
сдвигать результат на постоянную величину коэффициентом 𝑣0, то при тожде­
ственной функции φ без ограничения общности можно считать, что 𝑓(𝑥) > 0 на
всей области определения. Благодаря этому можно рассматривать достаточно
рассматривать только положительные импульсы.

Далее на следующем слое можно составить аппроксимацию функции 𝑓(𝑥),
используя прямоугольные импульсы. Поскольку в качестве области определе­
ния функции 𝑓 рассматривается компакт и функция непрерывна на нем, по
теореме Кантора-Гейне она будет равномерно непрерывна на нем:

∀ε ∃δ(ε) > 0 : ∀|𝑥1 − 𝑥2| < δ → |𝑓(𝑥1)− 𝑓(𝑥2)| < ε. (2.15)

Положим δ1 = δ(ε) и 𝑛 = ⌈(β − α)/δ1⌉. Пусть δ = min((β − α)/𝑛, δ1).
Теперь введем последовательность 𝑥0 = α, 𝑥1 = α + δ, ..., 𝑥𝑛 = β. Возьмем
𝑎+𝑖 = −𝑥𝑖, 𝑎−𝑖 = 𝑥𝑖−1, где 𝑖 = 1, ..., 𝑛. На третьем слое будет один БМ нейрон,
вычисляющий:

ζ = exp
𝑛

max
𝑖=1

(lnmax(η𝑖, 0) + ln 𝑓(𝑥𝑖)) =
𝑛

max
𝑖=1

𝑓(𝑥𝑖)η𝑖. (2.16)

Оценим отклонение ζ(𝑥) от 𝑓(𝑥) в произвольной точке 𝑥 ∈ [α,β]. Пусть
𝑥 ∈ [𝑥𝑘, 𝑥𝑘+1] для некоторого 𝑘 (см. рисунок 2.3).

47

𝑥
𝑥𝑘 𝑥𝑘+1

𝑥

𝑓(𝑥)

Рисунок 2.3 — Кусочно-постоянная аппроксимация 𝑓(𝑥) функцией ζ(𝑥).

|𝑓(𝑥)− ζ(𝑥)| = |𝑓(𝑥)− 𝑓(𝑥𝑘+1)| < ε, (2.17)

так как |𝑥 − 𝑥𝑘+1| < δ. Таким образом, ζ(𝑥) равномерно приближает 𝑓(𝑥) на
отрезке [α,β].

Доказательство для функции 𝑁 переменных можно построить аналогич­
ным образом, рассмотрев сеть из 2𝑁𝑛 нейронов на первом слое, 𝑁𝑛 на втором
слое и единственного нейрона на последнем слое.

2.3 Вычислительная сложность БМ сетей

Теперь сравним число арифметических операций разных типов в БМ и
классических слоях нейронных сетей. Впервые такую оценку автор привел в
докладе «ResNet-like Architecture with Low Hardware Requirement» [3]. Наи­
больший интерес представляют сверточные и полносвязные слои, как слои,
использующие классические математические нейроны, которые могут быть при­
ближены и заменены на биполярные морфологические.

Рассмотрим классический сверточный слой с входом 𝐼𝐿×𝑀×𝐶 и выходом
𝑂𝐿×𝑀×𝐹 . Он выполняет следующую операцию:

𝑂(𝑙,𝑚, 𝑓) =φ

(︃
𝐶∑︁
𝑐=1

𝐾−1∑︁
Δ𝑙=0

𝐾−1∑︁
Δ𝑚=0

𝐼(𝑙 +∆𝑙,𝑚+∆𝑚, 𝑐)·

· 𝑤(∆𝑙,∆𝑚, 𝑐, 𝑓) + 𝑏(𝑓)

)︂
, 𝑓 = 1, 𝐹 , 𝑙 = 1, 𝐿, 𝑚 = 1,𝑀,

(2.18)

где 𝐹 — число фильтров, 𝐶 — число входных каналов, 𝐾 × 𝐾 — простран­
ственные размерности фильтра, 𝐿 × 𝑀 × 𝐶 — размер входного изображения,

48

𝑤 — набор сверточных фильтров, 𝑏 — вектор коэффициентов сдвига. Мы счи­
таем, что границы изображения 𝐼 корректно дополнены так, чтобы результат
имел тот же размер.

Рассмотрим операцию, выполняемую БМ сверточным слоем с таким же
входом и выходом:

𝐽 = φ

⎛⎝∑︁
α

∑︁
β

𝑝α𝑝β exp(ln 𝐼α ⊙ 𝑣β) + b

⎞⎠ ,

где α ∈ {−,+}, β ∈ {−,+}, 𝑝+ = 1, 𝑝− = −1, а ⊙ — операция БМ свертки:

(𝐼 ⊙ 𝑣)𝑛,𝑚,𝑐 =
𝐶

max
𝑐=1

𝐾−1
max
Δ𝑛=0

𝐾−1
max
Δ𝑚=0

(𝐼(𝑛+∆𝑛,𝑚+∆𝑚, 𝑐) + 𝑣(∆𝑘,∆𝑚, 𝑐, 𝑓)) ,

Также введем следующие обозначения для положительной и отрицатель­
ной частей входного сигнала 𝐼:

𝐼+(𝑙,𝑚, 𝑐) = max(𝐼(𝑙,𝑚, 𝑐), 0),

𝐼−(𝑙,𝑚, 𝑐) = max(−𝐼(𝑙,𝑚, 𝑐), 0),
(2.19)

где 𝑙 = 1, 𝐿, 𝑚 = 1,𝑀, 𝑐 = 1, 𝐶.
Рассмотрим классический полносвязный слой с входом 𝐼𝑃 и выходом 𝑂𝑄:

𝑂(𝑞) = σ

(︃
𝑃∑︁

𝑝=1

𝐼(𝑝) · 𝑤(𝑝, 𝑞) + 𝑏(𝑞)

)︃
, 𝑞 = 1, 𝑄, (2.20)

где 𝑃 — число входных значений, 𝑄 — число нейронов в слое, 𝑤 — матрица
весовых коэффициентов полносвязного слоя, 𝑏 — вектор коэффициентов сдвига.

Для БМ полносвязного слоя с тем же входом и выходом:

𝑂(𝑞) = σ

⎛⎝∑︁
α,β

𝑝α𝑝β exp
𝑃

max
𝑝=1

(ln 𝐼α(𝑝) + 𝑣β(𝑝, 𝑞) + 𝑏(𝑞)

⎞⎠ , 𝑞 = 1, 𝑄, (2.21)

Следует отметить, что, несмотря на то, что обработка положительных
и отрицательных значений входного вектора (𝑥+ и 𝑥− в выражении (2.6))
удваивает его длину, суммарно в них будет лишь 𝑁 ненулевых значений. Та­
ким образом, вычисление логарифма потребуется только для этих значений.
С учетом этого в таблицах 1 и 2 приведено число арифметических опера­
ций различных типов для сверточных и полносвязных слоев соответственно.
Однако чтобы оценить вычислительную эффективность БМ слоя необходимо

49

понимать, сколько времени занимает выполнение тех или иных арифметиче­
ских операций и как эти операции можно исполнять (строго последовательно,
с каким-то уровнем параллельности и т.д.), что определяется архитектурой
конкретного вычислителя. Поэтому в следующих разделах будет рассмотрена
производительность БМ нейронов на центральных процессорах и программиру­
емых логических интегральных схемах как наиболее актуальных платформах,
на которых требуется эффективное исполнение нейронных сетей.

Таблица 1 — Число арифметических операций (op) в классическом
(conv) и БМ (BM conv) сверточных слоях. 𝐹 — число фильтров,
𝐶 — число входных каналов, 𝐾 ×𝐾 — пространственные размеры
фильтра, размер входного изображения 𝐿×𝑀 × 𝐶.

op conv BM conv
σ(·) 𝐹𝐿𝑀 𝐹𝐿𝑀

exp 0 4𝐹𝐿𝑀

log 0 𝐶𝐿𝑀

add 𝐹𝐾2𝐶𝐿𝑀 2𝐹 (𝐾2𝐶 + 2)𝐿𝑀

max 0 2𝐹 (𝐾2𝐶 − 1)𝐿𝑀

mul 𝐹𝐾2𝐶𝐿𝑀 0

Таблица 2 — Число арифметических операций (op) в классическом
(fc) и БМ (BM fc) полносвязных слоях. 𝑃 — число входных значе­
ний, 𝑄 — число нейронов в слое.

op fc BM fc
σ(·) 𝑄 𝑄

exp 0 4𝑄

log 0 𝑃

add 𝑄𝑃 2𝑄(𝑃 + 2)

max 0 2𝑄(𝑃 − 1)

mul 𝑄𝑃 0

50

2.4 Оценка эффективности БМ нейронных сетей на ЦП

Современные ЦП используют арифметико-логические устройства (АЛУ)
для таких вычислений как сложение, умножение и операция максимума. Также
на них есть SIMD-расширения с регистрами размера 128-512 бит для векторных
данных. В таблице 3 приведены латентности и пропускные способности для
этих операций для нескольких современных процессоров архитектур x86_64 и
ARM. Можно видеть, что они не различаются для разных операций над веще­
ственными данными, и лишь незначительно отличаются для целочисленных
данных.

Это означает, что основные вычисления в БМ слоях, состоящие из опера­
ций взятия максимума и сложений, не будут работать быстрее, чем вычисления
в классических слоях, при использовании вещественных типов данных.

Кроме того, помимо операций взятия максимума и сложения БМ слои
должны также произвести логарифмирование и потенцирование, а также вы­
полнить вычисление нескольких веток БМ структуры (2 или 4 в зависимости
от входных данных). Из-за этого БМ слои проигрывают по вычислительной
эффективности классическим слоям на ЦП.

Необходимо отметить, что современные процессоры общего назначения
используются для ряда стандартных задач, в которых умножение играет клю­
чевую роль. Поэтому их архитектуры хорошо оптимизированы именно для
выполнения умножения, а не других арифметических операций. В то же время,
число АЛУ общего назначения на ЦП относительно невелико, и они способны
обеспечивать всего несколько результатов вычислений за такт. Так происходит
потому, что архитектура ЦП предназначена для решения множества задач об­
щего назначения, обеспечения взаимодействия со другими вычислительными и
периферийными устройствами и поэтому заметно проигрывает узкоспециализи­
рованными вычислителям, например, графическим ускорителям [108; 109] или
тензорным процессорам [110].

Это означает, что несмотря на то, что БМ нейронные сети не имеют
преимуществ на ЦП относительно классических сетей, они все еще являются
перспективными для специализированных вычислителей, которые могут из­
влечь пользу из использования более простых операций сложения и взятия
максимума.

51

Таблица 3 — Характеристики арифметических операций для скалярных и
векторных (SIMD) типов данных на различных устройствах [111; 112] в фор­
мате латентость/средняя пропускная способность для каждой операции.

Устройство add max mul mul+add

Intel Skylake-X, 4/0.5 4/0.5 4/0.5 -
floating-point 128-bit vector
Intel Skylake-X, 1/0.33 1/0.5 5/0.5 5/0.5
integer 128-bit vector
Intel Skylake-X, 3/1 4/0.5 5/1 -
single-precision floating-point
Intel Coffee Lake, 4/0.5 4/0.5 4/0.5 -
floating-point 128-bit vector
Intel Coffee Lake, 1/0.33 1/0.5 5/0.5 5/0.5
integer 128-bit vector
Intel Coffee Lake, 3/1 4/0.5 5/1 -
single-precision floating-point
ARM Cortex-A57, 5/2 5/2 5/2 -
floating-point 128-bit vector
ARM Cortex-A57, 3/2 3/2 5/1 5/1
integer 128-bit vector
ARM Cortex-A57, 5/2 5/2 5/2 -
single-precision floating-point

2.5 Оценка эффективности БМ нейронных сетей на ПЛИС и
СЛИС

Наиболее многообещающая платформа для БМ нейронных сетей это
ПЛИС и специализированные устройства, поскольку на них можно реализовать
отдельные блоки для операций сложения и максимума, которые будут рабо­
тать быстрее, чем АЛУ общего назначения. Также на них БМ нейроны/слои
можно реализовать в виде 4 параллельных наборов устройств параллельных
для разных вычислительных веток, чтобы ускорить исполнение. Оценим чис­
ло вентилей и латентность, требуемую для операций, которые используются

52

в БМ и классических нейронах. Для этого далее будет рассмотрена реализа­
ция вещественных чисел, элементарных арифметических операций (сложения,
умножения, взятия максимума), а также логарифма и экспоненты. Несмотря
на то, что биполярный морфологический нейрон (2.6) использует операции
натурального логарифма и потенцирования, из соображений вычислительной
эффективности вместо них рассматривалась пара «двоичный логарифм» и «воз­
ведение в степень двойки» эквивалентным образом.

2.5.1 Вещественная арифметика

Вычисления в классических нейросетевых моделях выполняются в ве­
щественных числах. Для представления вещественных чисел в компьютере
наиболее широко употребляются форматы данных, определенные стандартом
арифметики с плавающей точкой IEEE 754. Этот стандарт был разработан Ин­
ститут инженеров электротехники и электроники (IEEE) в 1985 году, а затем
обновлен в 2008 и 2019 годах. Последняя версия стандарта включает в себя [113]:

1. Форматы двоичных и десятичных вещественных данных.
2. Определения арифметических операций: сложение, вычитание, умно­

жение, деление, комбинированное умножение со сложением, квадрат­
ный корень и другие операции.

3. Правила преобразования между целочисленными и вещественными
типами данных. Правила преобразования между различными веще­
ственными типами данных.

4. Правила преобразования вещественных данных к внешним представле­
ниям (например, строкам).

5. Форматы и правила обработки вещественных исключений, включая об­
работку не-числовых данных.

Использование этого стандарта обеспечивает одинаковые результаты вы­
числений для программных, аппаратных или комбинированных реализаций
вещественной арифметики, а также предоставляет единый формат ошибок, не
привязанный к конкретной реализации.

Вещественные числа в двоичных форматах из стандарта IEEE 754 состоят
из 3 упорядоченных полей:

53

1. 1-битный знак числа 𝑆,
2. 𝑤-битовая сдвинутая экспонента 𝐸 = 𝑒+ 𝑏𝑖𝑎𝑠,
3. (𝑡 = 𝑝−1)-битовая мантисса 𝑇 = 𝑑1𝑑2 . . . 𝑑𝑝−1, где 𝑑𝑖 ∈ {0, 1} – двоичные

разряды мантиссы, причем лидирующий разряд 𝑑0 неявным образом
закодирован в экспоненте 𝐸.

Значение 𝑣 вещественного числа получается следующим образом:
1. Если 𝐸 = 2𝑤 − 1 и 𝑇 ̸= 0, тогда 𝑣 является не-числовым значением

(NaN), и значение бита 𝑑1 определяет дальнейшие действия: продолже­
ние вычислений или сигнализирование об ошибке.

2. Если 𝐸 = 2𝑤 − 1 и 𝑇 = 0, тогда 𝑣 = (−1)𝑆 · (+∞).
3. Если 1 ⩽ 𝐸 ⩽ 2𝑤 − 2, тогда число считается нормализованным и

𝑣 = (−1)𝑆 · 2𝐸−𝑏𝑖𝑎𝑠 · (1 + 21−𝑝) · 𝑇 .
4. Если 𝐸 = 0 и 𝑇 ̸= 0, тогда число считается денормализованным и

𝑣 = (−1)𝑆 · 2𝑒𝑚𝑖𝑛 · (0 + 21−𝑝) · 𝑇 , где 𝑒𝑚𝑖𝑛 — минимальное значение
𝑒. Стоит отметить, что денормализованные числа не превышают по
абсолютному значению минимальное нормализованное число.

5. Если 𝐸 = 0 и 𝑇 = 0, тогда 𝑣 = (−1)𝑆 · (+0).
В задачах машинного обучения чаще всего используется двоичный фор­

мат 𝑏𝑖𝑛𝑎𝑟𝑦32. Он использует следующий набор параметров: 𝑤 = 8, 𝑝 = 24,
𝑏𝑖𝑎𝑠 = 127, 𝑒𝑚𝑖𝑛 = −126.

Естественно полагать, что входные данные нейронной сети являют­
ся нормализованными. При правильно заданных параметрах модели, все
промежуточные значения также являются конечными числовыми данными. Де­
нормализованные значения при этом могут возникнуть в результате умножения
или вычитания, однако в нейросетевых моделях их можно считать нулями и не
учитывать. Таким образом, далее в этом разделе рассматриваются только нор­
мализованные вещественные числа.

2.5.2 Элементарные арифметические операции

Оценим число вентилей и латентность, требуемую для арифметических
операций, которые используются в БМ нейроне. Для этого было создано
описание основных операций (сложение, максимум, умножение) на уровне ре­

54

гистровых передач на языке Verilog HDL, и вентильная реализация устройств
была синтезирована с помощью Synopsys Design Compiler для 16 нм технологи­
ческих библиотек. Полученные результаты приведены в таблице 4. Далее была
произведена оценка эффективности реализации двоичных логарифма и экспо­
ненты. Для этого использовалось число необходимых элементарных операций
(в данном случае — сложений, умножений и максимумов) и вычислялась сум­
марная вентильная сложность и суммарная латентность, как будет подробно
показано в двух следующих разделах.

Таблица 4 — Оценка числа элементарных арифметических операций, ло­
гических вентилей и латентности для операций в БМ слоях.

Операция #add #max #mul Вент. Лат., такты

add 1 0 0 2659 3
max 0 1 0 563 2
mul 0 0 1 3247 4
log2 6 0 5 32189 38
exp2 3 0 3 17718 21

2.5.3 Полиномиальная аппроксимации логарифма

Для реализации операции логарифмирования в докладе «ResNet-like
Architecture with Low Hardware Requirement» [3] автор предложил использовать
полиномиальную аппроксимацию, демонстрирующую точность до 4 десятич­
ных знаков после запятой, и имеющую меньшую вычислительную сложность,
чем стандартная реализация. Покажем, как выглядит эта аппроксимация.

Рассмотрим вещественное число 𝑥:

𝑥 = 2𝑒 · (1 + 2−23𝑑1𝑑2 . . . 𝑑23), (2.22)

где 𝑒 — двоичная экспонента, а 𝑑1, . . . 𝑑23 — двоичные разряды мантиссы это­
го числа.

Для него

log2 𝑥 = 𝑒+ log2(1 + 2−23𝑑1𝑑2 . . . 𝑑23) = 𝑒+ log2(1 + 𝑦), (2.23)

55

Это означает, что необходимо приблизить log2(1 + 𝑦) для 𝑦 ∈ [0, 1).
Полиномиальная аппроксимация 5-го порядка выглядит следующим об­

разом:

𝑓(𝑦) = log2(1 + 𝑦) → 𝑓(𝑦) =
5∑︁

𝑖=0

𝐶𝑖𝑦
𝑖. (2.24)

Для определения коэффициентов 𝐶𝑖 была составлена система линейных
уравнений: в трех точках 0, 0.5, 1 значения 𝑓(𝑦) были приравнены значениям
𝑓(𝑦), а значения 𝑓 ′(𝑦) — значениям 𝑓 ′(𝑦). В результате ее решения были получе­
ны значения 𝐶 = {0, 1.44269504, -0.71249131, 0.42046732, -0.1955884, 0.04491735}.
Максимальная ошибка аппроксимации составила около 7 · 10−5 на промежут­
ке [0, 1).

Эта аппроксимация использует всего 5 умножений и 6 сложений при вы­
числении с помощью схемы Горнера (включая вычитание, чтобы получить 𝑒).
При этом считается, что доступ к битам числа для получения значений 𝑆, 𝐸 и
𝑇 реализован аппаратно и не требует дополнительного времени.

На основе этого числа операций была сделана оценка вентильной сложно­
сти и латентности для модуля логарифма:

𝑉𝑙𝑜𝑔 = 6𝑉𝑎𝑑𝑑 + 5𝑉𝑚𝑢𝑙,

𝐿𝑙𝑜𝑔 = 6𝐿𝑎𝑑𝑑 + 5𝐿𝑚𝑢𝑙,
(2.25)

где 𝑉𝑎𝑑𝑑 и 𝐿𝑎𝑑𝑑 — число вентилей и латентность сумматора соответственно,
𝑉𝑚𝑢𝑙 и 𝐿𝑚𝑢𝑙 — число и латентность умножителя соответственно. Оценка, по­
лученная таким образом, не является точной, так как предполагает, что для
каждой операции используется отдельный модуль и все эти модули работают
последовательно, однако позволяет получить общее представление о сложности
логарифмирования. Численные оценки приведены в таблице 4.

2.5.4 Реализация экспоненты

Современные процессоры x86_64 могут включать в себя специальные ин­
струкции для быстрого вычисления экспоненты, как, например, процессоры
Intel [114]. При этом используется таблица предподсчитанных значений и поли­
номиальная аппроксимация второго порядка, а значит ее сложность составляет

56

3 операции сложения и 3 операции умножения, не считая операции доступа по
индексу таблицы. Относительная ошибка такой аппроксимации меньше 2−23, то
есть она дает точные результаты при вычислении в типе 𝑏𝑖𝑛𝑎𝑟𝑦32.

На основе этого числа операций была сделана оценка вентильной сложно­
сти и латентности для модуля экспоненты:

𝑉𝑙𝑜𝑔 = 3𝑉𝑎𝑑𝑑 + 3𝑉𝑚𝑢𝑙,

𝐿𝑙𝑜𝑔 = 3𝐿𝑎𝑑𝑑 + 3𝐿𝑚𝑢𝑙,
(2.26)

где 𝑉𝑎𝑑𝑑 и 𝐿𝑎𝑑𝑑 — число вентилей и латентность сумматора соответственно, 𝑉𝑚𝑢𝑙

и 𝐿𝑚𝑢𝑙 — число и латентность умножителя соответственно.
Оценка, полученная таким образом, не является точной, так как предпола­

гает, что для каждой операции используется отдельный модуль и все эти модули
работают последовательно, однако позволяет получить общее представление о
сложности потенцирования. Численные оценки приведены в таблице 4.

2.5.5 Оценка числа вентилей и латентности для сверточного слоя

Приведем оценку числа вентилей и латентности для классического и
БМ сверточных слоев, методика которой была предложена автором в докладе
«ResNet-like Architecture with Low Hardware Requirement» [3] и далее расширена
на 16 нм устройства в статье «Bipolar Morphological Neural Networks: Gate­
Efficient Architecture for Computer Vision» [1].

Число вентилей для классического и БМ слоев обозначим как 𝑉𝑠𝑡𝑑 и 𝑉𝐵𝑀

соответственно. Латентности обозначим как 𝐿𝑠𝑡𝑑 и 𝐿𝐵𝑀 соответственно. Для
оценок использовалось число операций в слоях (см. таблицу 1) и характеристи­
ки этих операций из таблицы 4. Для расчета числа вентилей рассматривалась
двухветочная структура слоя, которая соответствует использованию активации
ReLU в предыдущем слое, что характерно для ряда современных глубоких ней­
росетевых моделей, как уже обсуждалось в главе 1. Для оценки латентности
использовалась суммарная латентность всех модулей в одной вычислительной
ветке, так как вычисления в ветках могут быть организованы параллельным
образом. Отношение числа вентилей и латентностей для классического и БМ
сверточных слоев с различными параметрами приведено в таблице 5.

57

Таблица 5 — Оценка отношения числа вентилей 𝑉 и латент­
ности 𝐿 для классического (𝑠𝑡𝑑) и БМ (𝐵𝑀) сверточных
слоев для структуры с слоя 2-ветками c 𝐹 выходными ка­
налами, 𝐶 входными каналами и размером ядра свертки
𝐾 ×𝐾.

𝐹 𝐶 𝐾 𝑉𝑠𝑡𝑑/𝑉𝐵𝑀 𝐿𝑠𝑡𝑑/𝐿𝐵𝑀

16 1 1 0.11 0.22
16 16 1 0.52 0.78
32 1 1 0.11 0.22
32 32 1 0.68 1.00
64 1 1 0.11 0.23
64 64 1 0.77 1.17
128 1 1 0.11 0.23
128 128 1 0.84 1.27
256 1 1 0.12 0.23
256 256 1 0.88 1.33
512 1 1 0.12 0.23
512 512 1 0.90 1.37
16 1 3 0.51 0.87
16 16 3 0.85 1.29
32 1 3 0.51 0.88
32 32 3 0.88 1.34
64 1 3 0.51 0.89
64 64 3 0.90 1.37
128 1 3 0.52 0.90
128 128 3 0.91 1.38
256 1 3 0.52 0.90
256 256 3 0.91 1.39
512 1 3 0.52 0.90
512 512 3 0.92 1.40

58

Данные в таблице 5 демонстрируют, что для слоев с достаточно большим
числом входных и выходных каналов БМ слои используют практически столько
же вентилей, сколько и классические слои, однако при этом латентность БМ
слоя меньше на 30-40%.

Необходимо отметить, что на реальном устройстве или ПЛИС не будут
использоваться отдельные вентили для вычисления каждой операции, поэтому
точная оценка будет несколько отличаться от приведенной.

2.6 Моделирование аппаратной реализации БМ сети на ПЛИС

В работе «Hardware Implementation of Classical and Bipolar Morphological
Models for Convolutional Neural Network» [9] при участии автора показаны ре­
зультаты прямого моделирования аппаратной реализации БМ нейронной сети
с точными функциями активации.

Рассмотрим эту реализацию подробнее. Аппаратная реализация нейрон­
ных сетей включает в себя:

1. Внешнюю память для хранения весовых коэффициентов и результатов
промежуточных вычислений.

2. Вычислительное ядро, поэтапно выполняющее вычисления над вход­
ным изображением и фильтрами.

3. Обертку, взаимодействующую с внешней памятью (загрузка и выгруз­
ка пакетов данных, необходимых для вычислений).

Рассматривалась реализация только вычислительного ядра для классиче­
ских и БМ сетей, а обертка для взаимодействия с внешней памятью полагалась
универсальной и не вносящей дополнительных временных/аппаратных затрат.

В качестве модели нейронной сети рассматривалась сеть ResNet, опи­
санная в разделе 1.2.3. Для экспериментов была выбрана модель ResNet-22,
достаточно компактная для применения на мобильных устройствах и во встра­
иваемых системах, но в то же время обеспечивающая достаточно высокое
качество классификации для решения практических задач. Архитектура сети
показана на рисунке 2.4.

59

Рисунок 2.4 — Архитектура ResNet-22, 𝑘 × 𝑘 conv, 𝑓/𝑠 – сверточный слой с 𝑓

фильтрами размера 𝑘×𝑘 и сдвигом 𝑠. Если 𝑠 не указан, предполагается, что он
равен 1, batch norm — слой нормализации, avg pool — слой усредняющей суб­
дискретизации, fc, 10 — полносвязный слой c 10 нейронами. Стрелками указано
направление потока данных, в случае слияния двух потоков, соответствующие
векторы данных складываются. Cлои нормализации и активации внутри оста­

точных блоков опущены для простоты.

60

2.6.1 Реализация классического сверточного слоя

Для реализации сверточного слоя чаще всего используются специальные
устройства, способные умножить два операнда и сложить с третьим операндом,
которые называются FMA (Fused Multiply-Add). На основе таких устройств и
было реализовано вычислительное ядро, которое принимает на вход:

– канал входного изображения (или часть канала),
– канал фильтра,
– сдвиг и коэффициенты нормализации,
– управляющие сигналы (старт ядра, флаг, обозначающий свертку 3× 3,

флаг, обозначающий обработку последнего канала изображения).
Вычислительное ядро состоит из FMA модулей и аккумуляторов, в ко­

торых суммируются результаты вычислений и из которых далее выгружается
результат (см. рисунок 2.5). FMA модуль принимает на вход три операнда типа
𝑏𝑖𝑛𝑎𝑟𝑦32, перемножает первые два между собой, а затем полученное произве­
дение и третий операнд суммируются без промежуточного округления. Работа

FMA

acc acc acc acc

FMA

acc acc acc acc

FMA

acc acc acc acc

FMA

acc acc acc acc

Рисунок 2.5 — Структура вычислительного ядра для классического сверточного
слоя. Обозначения: acc — аккумулятор, FMA — модуль FMA.

61

модуля занимает 4 такта и может быть конвейеризована. Это означает, что
при использовании 4-стадийного конвейера, он способен выдавать результат на
каждом такте. Поэтому резонно использовать 4 аккумулятора для хранения ре­
зультатов на каждый FMA модуль. Такой дизайн оптимальнее для аппаратной
реализации по сравнению с реализацией с одним аккумулятором на каждый
FMA модуль, однако работает несколько дольше, чем четыре 4 FMA, исполь­
зуемые параллельно из-за необходимости заполнить конвейер для достижения
максимальной производительности.

Сигнал старта ядра означает начало вычислений на всех FMA устрой­
ствах. В течение первых 4 тактов после старта, используются одинаковые
элементы фильтра. При этом элементы изображения и значения аккумуляторов
меняются каждый такт. Таким образом, разные элементы изображения умно­
жаются на одни и те же элементы фильтра, а затем произведения суммируются
с соответствующими аккумуляторами. Например, если ядро вычисляет свертку
с фильтром 3×3, то после первых 4 тактов, загружаются следующие элементы
фильтра, и операция повторяется. Когда все элементы фильтра обработаны,
но канал входного изображения не последний, взводится флаг готовности яд­
ра к новой итерации вычислений и начинается обработка следующего канала.
В противном случае начинается этап активации. Во время активации каждый
FMA модуль берет коэффициенты нормализации в качестве второго и третьего
операндов, а значения аккумуляторов — в качестве первого. То есть, через 4
такта все значения аккумуляторов загружены в конвейер FMA модуля, а еще
через 4 такта — обработаны и записаны в аккумуляторы снова. Далее знаковый
бит каждого из аккумуляторов используется в качестве маски для реализации
ReLU. После этого этап вычисления активации заканчивается и снова взводится
флаг готовности к следующей итерации, а обертка внешней памяти выгружает
значения аккумуляторов во внешнюю память.

2.6.2 Реализация БМ сверточного слоя

Реализация БМ сверточного слоя должна включать в себя модули для
подсчета двоичного логарифма, экспоненты и основного блока, вычисляюще­
го максимум сумм.

62

Работа модуля основного блока занимает 3 такта и также была конвей­
еризована. Такой модуль требует в 3 раза меньше аппаратных ресурсов по
сравнению с модулем FMA.

Для возведения в степень двойки использовалась реализация, описанная
в разделе 2.5.4. Модуль экспоненты был конвейеризован и его работа заняла 5
тактов. Стоит отметить, что модуль работает быстрее, чем предполагалось, так
как при создании реального модуля нет нужды выполнять операции (в данном
случае — сложения и умножения) последовательно.

Для вычисления двоичного логарифма использовалась полиномиальная
аппроксимация, описанная в разделе 2.5.3. Модуль конвейеризован и работа­
ет за 16 тактов.

Структура вычислительного ядра БМ слоя аналогична таковой для клас­
сического слоя. После каждой операции суммирования выполняется сравнение
результата с аккумуляторов, и, в случае превосходства, в аккумулятор сохра­
няется новый результат.

Однако в таком ядре необходимо иметь 4 набора аккумуляторов, по одно­
му для каждой вычислительной ветки в (++, +−, −+, −− в выражении (2.6)).
Половина основных модулей в ядре работает с фильтром 𝑣+, а половина — с
фильтром 𝑣−. Конвейеры в них работают также как и в классическом ядре:
обработка запускается 4 раза с различными элементами входного изображения
и одними и теми же элементами фильтра. Стоит отметить, что поскольку лишь
одна из величин log2 𝐼

+ и log2 𝐼
− не равна −∞, достаточно вычислить толь­

ко 2 БМ свертки. Поэтому аккумуляторов используется лишь 8. До обработки
последнего канала входного канала обработка происходит аналогично класси­
ческому слою. Поскольку модуль вычисления логарифма отличается долгой
работой, он помещен в конец вычисления активации. Логарифм входа для пер­
вого сверточного слоя вычисляется отдельно.

После обработки последнего канала выполняется вычисление экспонент
и их суммирование, прибавление сдвига, активация полученных результатов и
логарифмирование. Модули экспоненты и логарифма требуют заметно больше
аппаратных ресурсов, чем основные БМ модули, поэтому было использовано 4
модуля экспоненты и 1 модуль логарифма (см. рисунок 2.6).

Когда все значения в аккумуляторах готовы для операции потенцирова­
ния, эти значения поступают в модули экспоненты, после чего суммируются и

63

max

FMA

acc acc acc acc

exp2

log2

acc acc acc acc

exp2
v0

vj+

max

acc acc acc acc

exp2

acc acc acc acc

exp2

vj-log2 |xj|

Рисунок 2.6 — Структура одного вычислительного модуля для БМ сверточного
слоя. Обозначения: 𝑥 — вектор входных значения БМ нейрона, 𝑣 — вектор весо­
вых коэффициентов БМ нейрона, ⊕ — модуль для вычисления суммы входов,
max — модуль для вычисления максимума входов, exp2 — модуль для вычис­
ления двоичной экспоненты входа, log2 — модуль для вычисления двоичного

логарифма входа, acc — аккумулятор, FMA — модуль FMA.

к ним прибавляется сдвиг. Сумматоры, используетмые на этом этапе — те же,
что выполняют основные вычисления в слое.

Далее выполняется нормализация, для этого используется один FMA мо­
дуль. На выходе знаковый бит результата используется в качестве маски для
реализации ReLU, и, наконец, выполняется логарифмирование, чтобы полу­
чить вход для следующего сверточного слоя. Стоит отметить, что БМ ядро
отличается от классического, в котором результаты оказываются в массиве
аккумуляторов и вычисляются параллельно. БМ ядро выдает результаты по­
следовательно, что требует корректной обработки системой взаимодействия с
внешней памятью.

Кроме того, использование ReLU делает входные сигналы для большей
части слоев неотрицательными. То есть, в выражении (2.6) ненулевыми явля­
ются всего два слагаемых из четырех. Поэтому резонной выглядит идея убрать
два незадействованных массива аккумуляторов. Слои, имеющие и положитель­

64

ные, и отрицательные входы, можно обрабатывать последовательно, запуская
вычисления дважды, а затем суммируя результаты:

𝑟1 = expmax
𝑗

(ln𝑥+𝑗 + 𝑣+𝑗)− expmax
𝑗

(ln𝑥+𝑗 + 𝑣−𝑗),

𝑟2 = expmax
𝑗

(ln𝑥−𝑗 + 𝑣+𝑗)− expmax
𝑗

(ln𝑥−𝑗 + 𝑣−𝑗),

𝑟 = 𝑟1 − 𝑟2 + 𝑣0.

(2.27)

Время работы сверточного слоя, можно вычислить по формуле:

𝑇𝑙𝑎𝑦𝑒𝑟 = 𝐹
𝑀 ×𝑁

𝑚× 𝑛
· [𝐶 · (4𝐾𝑥𝐾𝑦 + 𝑡1) + 𝑡2] , (2.28)

где 𝐹 — число фильтров в слое, 𝐶 — число входных каналов слоя, 𝑀 × 𝑁

— пространственные размеры входного изображения, 𝑚 × 𝑛 — размеры про­
странственной части изображения, которая обрабатывается ядром, 𝐾𝑥 ×𝐾𝑦 —
пространственные размеры фильтра, 𝑡1 — время ожидания обработки входно­
го канала (3 такта для FMA, 2 такта для сумматора), 𝑡2 — время обработки
выходного канала (нормализация в классической сети и потенцирование и сум­
мирование в БМ сети)

В таблице 6 показано полное время вычисления сверточных слоев сети
ResNet-22 для 𝑚× 𝑛 = 8× 8 с частотой устройства 1 ГГц, 𝑀 ×𝑁 × 𝐶 = 32×
32×3 при условии отсутствия задержек, вызванных внешней памятью. Можно
видеть, что необходимость второго прохода для некоторых слоев в версии с
2 массивами аккумуляторов демонстрирует на 10% большую латентность, но
модель с 4 массивами аккумуляторов незначительно отличается по скорости от
классической. Однако версия с 4 массивами аккумуляторов занимает в 1.68 раз
большую площадь и требует заметно больше вентилей, в то время как версия
с 2 массивами аккумуляторов занимает в 1.21 раз большую площадь и в 1.12
раза больше вентилей.

Таблица 6 — Характеристики вычислительных ядер по результатам синтеза.

Классическая
модель

БМ модель с 4
аккумуляторами

БМ модель с 2
аккумуляторами

𝑇𝑙𝑎𝑦𝑒𝑟, мкс 5488 5616 6095
Площадь, мкм2 40780 68395 49267
Число вентилей 154615 229529 173743

65

Таким образом, результаты прямого моделирования для модели ResNet-22
показали, что использование БМ сверточных слоев для полной сети не позво­
ляет получить значительного преимущества относительно классической сети с
2-веточной и даже с 4-веточной структурой.

Этот результат в первую очередь связан с тем, что конвейеризация
арифметико-логических устройств заметно снизила относительное преимуще­
ство модуля аккумулирующего максимума над модулем аккумулирующего
умножения. Это преимущество продолжает наблюдаться для вычислительно­
интенсивных слоев сети с большим числом входных и выходных каналов.
Однако таких слоев в модели ResNet-22 не так много, поэтому для практическо­
го применения выглядит разумным использовать гибридные модели, в которых
лишь часть самых ресурсоемких слоев приводится к БМ виду.

Другой причиной ухудшения характеристик модели БМ слоя относитель­
но классического является медленная работа и большой транзисторный бюджет
точных функций активаций, а также недостаток специализированных модулей
для их реализации на ПЛИС. Эту проблему можно решить путем использо­
вания аппроксимированных функций двоичного логарифма и потенцирования,
что и будет сделано далее.

2.7 Быстрые аппроксимации функций активации БМ нейрона

Оценка и моделирование БМ слоя показали, что есть значения пара­
метров, при которых он уступает классическому слою. Одно из таких мест
— необходимость сложных устройств логарифмирования и потенцирования.
Поэтому в работе «Fast and gate-efficient approximated activations for bipolar
morphological neural networks» [10] автор предложил использовать куда более
простые для реализации аппроксимации Митчелла и Шраудольфа для этих
операций. Рассмотрим их подробнее.

66

2.7.1 Аппроксимация Митчелла

Одной из самых вычислительно-эффективных аппроксимаций двоичного
логарифма является аппроксимация, предложенная Дж. Митчеллом [115]. Он
предложил использовать первый член ряда Маклорена чтобы аппроксимиро­
вать log2(1 + 𝑦):

log2 (1 + 𝑦) ≈ 𝑦.

Тогда
log2 (𝑥) = 𝑒+ 𝑦, (2.29)

где 𝑒 и 𝑦 можно получить с помощью битовых манипуляций над вещественным
числом. Таким образом, вычислительная сложность этой аппроксимации состав­
ляет всего одну операцию сложения. Максимальное по абсолютной величине
отклонение от точной функции двоичного логарифма можно определить анали­
тическим путем, оно составляет 0.08639 на интервале (0, 1). Однако, поскольку
вычисления в нейронных сетях чаще всего можно приближать в широких пре­
делах, эта аппроксимация заслуживает внимания. Аппроксимация Митчелла
проиллюстрирована на Рис. 2.7. Можно видеть, что она представляет собой

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

1.25

1.00

0.75

0.50

0.25

0.00

0.25

Рисунок 2.7 — Сравнение различных реализаций двоичного логарифма.

67

кусочно-линейную функцию, причем концы каждого отрезка расположены в
точках, равных степеням двойки.

Таким образом, аппроксимация двоичного логарифма по Митчеллу тре­
бует в 6 раз меньше сложений и не требует умножений по сравнению с
полиномиальной аппроксимацией.

2.7.2 Аппроксимация Шраудольфа

В 1999 году Н. Шраудольф предложил крайне эффективную для вычисле­
ния аппроксимацию экспоненциальной функции [116], основанную на структуре
двоичных форматов IEEE 754 для представления вещественных чисел. В его
работе рассмотрены данные типа 𝑏𝑖𝑛𝑎𝑟𝑦64 или 𝑑𝑜𝑢𝑏𝑙𝑒, однако предложенный
подход можно легко распространить на 𝑏𝑖𝑛𝑎𝑟𝑦32 данные.

Так как нормализованное вещественное число записывается следующим
образом:

𝑦 = 2𝑒 · (1 + 2−23𝑑1𝑑2 . . . 𝑑23), (2.30)

где 𝑒 — двоичная экспонента, а 𝑑1, . . . 𝑑23 — двоичные разряды мантиссы этого
числа, для вычисления 2𝑥 где 𝑥 — целое, необходимо просто записать 𝑥 + 𝑏𝑖𝑎𝑠

в поле экспоненты, то есть:

𝑖 = 2𝑝−1 (𝑥+ 𝑏𝑖𝑎𝑠) ,

где 𝑖 — непосредственное представление вещественного числа. Напомним, что
𝑏𝑖𝑎𝑠 — это константа, определяемая типом данных и равная 127 для 𝑏𝑖𝑛𝑎𝑟𝑦32.
При использовании не целого 𝑥, эта операция также изменит старшие биты ман­
тиссы. Согласно [116], при это будет осуществляться линейная интерполяция
между соседними экспонентами с целочисленными степенями. Таким образом,
аппроксимация Шраудольфа имеет вид:

𝑖 = 𝑎𝑥+ (𝑏− 𝑐) , (2.31)

где 𝑖 — непосредственное представление вещественного числа, 𝑎 = 223, 𝑏 =

127 · 223, а 𝑐 — поправочный коэффициент, взятый равным 486411.
Эта аппроксимация использует одно целочисленное сложение и одно

вещественное умножение. Максимальное абсолютное отклонение от точной

68

степенной функциии на полуинтервале [0, 1) было определено численно и со­
ставило 0.05798 (см. Рис. 2.8).

0.4 0.6 0.8 1.0 1.2 1.4

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Рисунок 2.8 — Сравнение различных реализаций операции двоичного потенци­
рования.

2.7.3 Оценка вентильной сложности и латентности

Оценки вентильной сложности аппроксимированных модулей логарифма
Митчелла и экспоненты Шраудольфа показаны в таблице 7. Оценки сложности
остальных операций также приведены для иллюстрации.

Можно видеть, что аппроксимация Митчелла требует приблизительно в
12 раз меньше логических вентилей и имеет в 12.7 раз меньшую латентность,
чем полиномиальная аппроксимация логарифма. Аппроксимация двоичной экс­
поненты по Шраудольфу использует в 3 раза меньше операций сложения и
умножения, чем точная реализация и демонстрирует в 3 раза меньшее число
вентилей и латентность.

Приведем оценки числа вентилей и латентности для классического и БМ
сверточных слоев с аппроксимированными функциями активации. Число венти­

69

Таблица 7 — Оценка числа элементарных арифметических операций, ло­
гических вентилей и латентности для операций в БМ слоях.

Операция #add #max #mul Вент. Лат., такты

add 1 0 0 2659 3
max 0 1 0 563 2
mul 0 0 1 3247 4
log2 6 0 5 32189 38

log2 (Митчелл) 1 0 0 2659 3
exp2 3 0 3 17718 21

exp2 (Шраудольф) 1 0 1 5906 7

лей для данных слоев обозначается как 𝑉𝑠𝑡𝑑 и 𝑉𝐵𝑀 соответственно. Латентности
обозначим как 𝐿𝑠𝑡𝑑 и 𝐿̃𝐵𝑀 соответственно. Оценки выполнялись также как и в
разделе 2.5.5, то есть для расчета числа вентилей рассматривалась двухветоч­
ная структура слоя, которая соответствует использованию активации ReLU в
предыдущем слое, что характерно для ряда современных глубоких нейросете­
вых моделей. Для оценки латентности использовалась суммарная латентность
всех модулей в одной вычислительной ветке, так как вычисления в ветках мо­
гут быть организованы параллельным образом. Отношение числа вентилей и
латентностей для классического и БМ сверточных слоев с/без аппроксимацией
активаций приведено в таблице 8.

Данные в таблице 8 демонстрируют, что для слоев с достаточно большим
числом входных и выходных каналов оценки для БМ слои с аппроксимиро­
ванными функциями активации практически не изменились, то есть функции
активации вносят малый вклад как в число вентилей, так и в общую ла­
тентность. Однако для малого числа входных каналов и фильтров 3 × 3

использование аппроксимированных активаций делает латентность БМ слоев
на 12-40% меньше, чем классических. Тем не менее, основной вклад во вре­
мя вычислений вносят именно слои с большим числом входных и выходных
каналов. В нейросетевой модели с остаточной архитектурой ResNet-22, конфигу­
рации слоев которой в том числе рассмотрены в таблице 8, есть лишь несколько
слоев, которые получают значительное преимущество от аппроксимированных
функций активации. Это означает, что повторение эксперимента по прямому

70

Таблица 8 — Оценка отношения числа вентилей и латентности для
классического и БМ сверточных слоев для структуры с слоя 2-ветка­
ми.

𝐹 𝐶 𝐾 𝑉𝑠𝑡𝑑/𝑉𝐵𝑀 𝐿𝑠𝑡𝑑/𝐿𝐵𝑀 𝑉𝑠𝑡𝑑/𝑉𝐵𝑀 𝐿𝑠𝑡𝑑/𝐿̃𝐵𝑀

16 1 1 0.11 0.22 0.21 0.43
16 16 1 0.52 0.78 0.74 1.19
32 1 1 0.11 0.22 0.21 0.43
32 32 1 0.68 1.00 0.82 1.29
64 1 1 0.11 0.23 0.21 0.44
64 64 1 0.77 1.17 0.87 1.34
128 1 1 0.11 0.23 0.21 0.44
128 128 1 0.84 1.27 0.89 1.37
256 1 1 0.12 0.23 0.21 0.44
256 256 1 0.88 1.33 0.90 1.38
512 1 1 0.12 0.23 0.21 0.44
512 512 1 0.90 1.37 0.91 1.39
16 1 3 0.51 0.87 0.67 1.12
16 16 3 0.85 1.29 0.89 1.37
32 1 3 0.51 0.88 0.67 1.12
32 32 3 0.88 1.34 0.90 1.39
64 1 3 0.51 0.89 0.67 1.12
64 64 3 0.90 1.37 0.90 1.39
128 1 3 0.52 0.90 0.67 1.12
128 128 3 0.91 1.38 0.91 1.40
256 1 3 0.52 0.90 0.67 1.12
256 256 3 0.91 1.39 0.92 1.40
512 1 3 0.52 0.90 0.67 1.12
512 512 3 0.92 1.40 0.92 1.40

71

моделированию такой нейронной сети не позволит получить качественно но­
вых результатов.

2.8 Финальная БМ модель

В данном разделе подведем итог проведенному исследованию вычис­
лительной эффективности БМ нейрона и приведем финальную модель, ис­
пользующую аппроксимацию Митчелла для реализации логарифмирования и
аппроксимацию Шраудольфа для реализации потенцирования.

Логарифм, аппроксимированный методом Митчелла, можно задать сле­
дующим выражением:

̂︂log2(𝑥) = ⌊log2 𝑥⌋+
𝑥− 2⌊log2 𝑥⌋

2⌈log2 𝑥⌉ − 2⌊log2 𝑥⌋
. (2.32)

Экспоненту, аппроксимированную методом Шраудольфа, можно задать
следующим выражением:

ˆ︁exp2(𝑥) = 𝑓𝑙𝑜𝑎𝑡(𝑎𝑥+ (𝑏− 𝑐)),

𝑎 = 223, 𝑏 = 127 · 223, 𝑐 = 486411,
(2.33)

где функция 𝑓𝑙𝑜𝑎𝑡 — интерпретирует число как 𝑏𝑖𝑛𝑎𝑟𝑦32.
Тогда один БМ нейрон задается выражением:

𝑓𝐵𝑀(x, 𝑉, 𝑣) = φ

(︂
ˆ︁exp2(𝑁

max
𝑗=1

(̂︂log2(𝑥+𝑗) + 𝑣+𝑗))−ˆ︁exp2(𝑁
max
𝑗=1

(̂︂log2(𝑥+𝑗) + 𝑣−𝑗))−

−ˆ︁exp2(𝑁
max
𝑗=1

(̂︂log2(𝑥−𝑗) + 𝑣+𝑗)) +ˆ︁exp2(𝑁
max
𝑗=1

(̂︂log2(𝑥−𝑗) + 𝑣−𝑗)) + 𝑣0

)︂
,

𝑥+𝑗 =

⎧⎨⎩𝑥𝑗, 𝑥𝑗 ⩾ 0,

0, 𝑥𝑗 < 0,

𝑥−𝑗 =

⎧⎨⎩−𝑥𝑗, 𝑥𝑗 < 0,

0, 𝑥𝑗 ⩾ 0,

(2.34)

где x — вектор входных значений длины 𝑁 , 𝑣+, 𝑣− — векторы весовых коэф­
фициентов длины 𝑁 , 𝑣0 — смещение, φ(·) — нелинейная функция активации.

72

Сверточный слой из БМ нейронов с входом 𝐼𝐿×𝑀×𝐶 и выходом 𝑂𝐿×𝑀×𝐹 :

𝐽 = φ

⎛⎝∑︁
α

∑︁
β

𝑝α𝑝βˆ︁exp2(̂︂log2𝐼α ⊙ 𝑣β) + b

⎞⎠ ,

где α ∈ {−,+}, β ∈ {−,+}, 𝑝+ = 1, 𝑝− = −1, а ⊙ — операция БМ свертки:

(𝐼 ⊙ 𝑣)𝑛,𝑚,𝑐 =
𝐶

max
𝑐=1

𝐾−1
max
Δ𝑛=0

𝐾−1
max
Δ𝑚=0

(𝐼𝑛+Δ𝑛,𝑚+Δ𝑚,𝑐 + 𝑣Δ𝑘,Δ𝑚,𝑐,𝑓) ,

𝐼+ = max(𝐼, 0),

𝐼− = max(−𝐼, 0).
(2.35)

Полносвязный слой из БМ нейронов с входом 𝐼𝑃 и выходом 𝑂𝑄:

𝑂(𝑞) = σ

⎛⎝∑︁
α,β

𝑝α𝑝βˆ︁exp2 𝑃
max
𝑝=1

(̂︂log2𝐼α(𝑝) + 𝑣β(𝑝, 𝑞) + 𝑏(𝑞)

⎞⎠ , 𝑞 = 1, 𝑄, (2.36)

где α ∈ {−,+}, β ∈ {−,+}, 𝑝+ = 1, 𝑝− = −1.
Заданные таким образом слои можно использовать как составную часть

широкого класса нейросетевых моделей, заменив на них классические слои.
Полученные модели будут аппроксимировать исходные, но демонстрировать
меньшую латентность при реализации на ПЛИС/СЛИС. В следующей главе
будет рассмотрено обучение БМ нейронных сетей и приведены эксперименталь­
ные результаты в различных практических задачах.

2.9 Выводы по главе 2

В данной главе представлены следующие результаты:
1. Предложена новая аппроксимация классического математического ней­

рона, имеющая меньшую вычислительную трудоемкость в составе
слоев нейронной сети, впервые изложенная автором в докладе «Bipolar
morphological neural networks: convolution without multiplication» [4] и
подробно описанная в статье «Bipolar Morphological Neural Networks:
Gate-Efficient Architecture for Computer Vision» [1].

73

2. Доказано, что БМ нейронная сеть может приблизить любую непрерыв­
ную на компакте функцию с заданной точностью; результат впервые
опубликован в статье автора «Bipolar Morphological Neural Networks:
Gate-Efficient Architecture for Computer Vision» [1].

3. Приведены оценки вычислительной сложности БМ нейрона в терминах
числа арифметических операций для сверточных и полносвязных слоев
нейронной сети, впервые опубликованные в докладе автора «ResNet­
like Architecture with Low Hardware Requirements» [3].

4. Рассмотрены аппроксимации сложных функций активации БМ нейро­
на, позволяющие дополнительно снизить вычислительную сложность
БМ слоя; приведено количество вентилей и латентности для арифме­
тических операций, использующихся в классическом математическом и
аппроксимированном БМ нейронах; результат впервые опубликован в
статье автора «Fast and gate-efficient approximated activations for bipolar
morphological neural networks» [10].

5. Показано, что для ЦП использование БМ нейронов с вещественными
коэффициентами не позволяет повысить эффективность вычислений,
однако они могут быть эффективно реализованы для ПЛИС/СЛИС:
оценка числа вентилей и латентности ПЛИС-реализации для БМ свер­
точных слоев по сравнению с классическими сверточными слоями
показала, что для слоев с достаточно большим числом входных и выход­
ных каналов БМ слои используют практически столько же вентилей,
сколько и классические слои, однако имеют латентность на 30-40% ни­
же; для слоев с достаточно малым числом входных каналов и размером
фильтров 3 × 3 при использовании аппроксимированных функций ак­
тивации латентность на 12-40% меньше, чем для классических слоев;
результаты опубликованы в докладе автора «ResNet-like Architecture
with Low Hardware Requirements» [3] и статьях «Bipolar Morphological
Neural Networks: Gate-Efficient Architecture for Computer Vision» [1] и
«Fast and gate-efficient approximated activations for bipolar morphological
neural networks» [10].

Таким образом, предложенная автором биполярная морфологическая ап­
проксимация классического математического нейрона:

– переносит основные вычисления на операции взятия максимума и сло­
жения, имеющие более простую аппаратную реализацию и латентность,

74

чем операции сложения и умножения, используемые в классическом
нейроне;

– способна приближать непрерывные функции с заданной точностью так­
же как и классические нейроны;

– может обеспечить меньшую латентность вычислений на программиру­
емых логических интегральных схемах и специализированных вычис­
лителях, что подтверждается выполненными оценками и результатами
моделирования, тем самым позволяя повысить производительность ней­
росетевых моделей.

75

Глава 3. Обучение биполярных морфологических моделей

В предыдущей главе было введено понятие биполярного морфологиче­
ского нейрона и рассмотрена выразительная способность и вычислительная
сложность нейросетевых моделей, состоящих из таких нейронов, на различных
вычислительных платформах. Однако несмотря на то, что по теоретическим
оценкам выразительная способность БМ сетей не хуже, чем у классических
моделей, необходимо проверить, насколько эффективными существующие ар­
хитектуры и подходы к обучению нейронных сетей окажутся для БМ моделей
и доработать их. Для обучения классических нейросетевых моделей использует­
ся алгоритм обратного распространения ошибки и градиентные методы. Такой
подход может применяться и для БМ моделей. Однако из-за использования опе­
рации максимума для каждого нейрона имеется лишь один ненулевой элемент
градиента, то есть лишь один его вес будет обновляться на каждой итерации
обучающего процесса. Поэтому большое количество весов может никогда не об­
новиться после инициализации случайными значениями. Такие веса не будут
нести полезную нагрузку и могут затруднять обучение сети. Кроме того, по­
скольку БМ нейроны преобразуют пространство входных сигналов прежде чем
выполнить вычисления, стандартные случайные распределения, используемые
для классических моделей, могут быть неэффективны для них. Поэтому в дан­
ной главе экспериментально исследуются и дорабатываются методы обучения
БМ сетей, а затем рассматривается возможность их применения в практиче­
ских задачах распознавания.

3.1 Классификация рукописных цифр MNIST с помощью БМ
моделей

Рассмотрим базовую задачу классификации изображений рукописных
символов на выборке MNIST [117] с помощью моделей, преобразованных к бипо­
лярному морфологическому виду. Эта задача считается стандартной и широко
используется для начальной оценки свойств методов распознавания. Примеры
изображений из выборки показаны на рисунке 3.1.

76

Рисунок 3.1 — Примеры изображений из выборки MNIST.

Приведем основные параметры выборки MNIST.
– Число классов: 10.
– Размер изображения: 28× 28 пикселей, серое.
– Полный размер выборки: 60000.
– Размер валидационной выборки: 6000.
– Размер тестовой выборки: 10000.
Рассмотрим две LeNet-подобные нейросетевые модели разной сложности

с типичной для классификаторов архитектурой: CNN1 c одним сверточ­
ным и одним полносвязным слоями и CNN2 с двумя сверточными и двумя
полносвязными слоями. Обозначения, которые использовались для описания
нейросетевых архитектур, приведены в таблице 9, а сами модели продемон­
стрированы на рисунке 3.2.

Таблица 9 — Условные обозначения для слоев нейронных сетей

Обозначение Описание

conv(𝑛, 𝑤𝑥, 𝑤𝑦) сверточный слой с 𝑛 фильтрами размера 𝑤𝑥 × 𝑤𝑦

fc(𝑛) полносвязный слой с 𝑛 нейронами
maxpool(𝑤𝑥, 𝑤𝑦) слой субдискретизации с операцией максимума и ок­

ном размера 𝑤𝑥 × 𝑤𝑦

dropout(𝑝) слой, выполняющий dropout с вероятностью 𝑝

relu функция активации ReLU(𝑥) = max(𝑥, 0)

softmax функция активации softmax(𝑥𝑖) = 𝑒𝑥𝑖/
∑︀

𝑘 𝑒
𝑥𝑘

Для задания БМ нейрона использовалось выражение (2.6) с точными
функциями активации. В этом эксперименте к БМ виду приводились только

77

5x5 conv, 30

ReLU

dropout(0,2)

fc(10)

softmax

а)

5x5 conv, 40

ReLU

maxpool(2, 2)

5x5 conv, 40

ReLU

fc(200)

ReLU

dropout(0,3)

fc(10)

softmax

б)
Рисунок 3.2 — Архитектуры нейросетевых моделей для распознавания рукопис­
ных цифр, a) CNN1, б) CNN2. Стрелками указано направление потока данных.

сверточные слои. Далее было исследовано два подхода к обучению таких мо­
делей:

– с помощью стандартных методов со случайной инициализацией (с рав­
номерным распределением Ксавье [118]);

– с помощью аппроксимации классической модели; согласно выраже­
нию (2.4) БМ нейрон с весовыми коэффициентами {𝑣+, 𝑣−, 𝑣0}𝑁𝑗=1 ап­
проксимирует классический нейрон с весовыми коэффициентами 𝑤𝑁

𝑗=1

78

при:

𝑣+𝑗 =

⎧⎨⎩ln𝑤𝑗, если 𝑤𝑗 > 0,

−∞, иначе,

𝑣−𝑗 =

⎧⎨⎩ln |𝑤𝑗|, если 𝑤𝑗 < 0,

−∞, иначе,

𝑣0 = 𝑤0.

(3.1)

Использованные нейросетевые архитектуры и результаты обучения при­
ведены в таблице 10. Для каждой сети приведены точность классификации
классической модели (𝑝𝑠𝑡), точность классификации БМ модели, обученной
со случайной инициализацией (𝑝𝑟), а также точность модели с первым БМ
слоем, весовые коэффициенты которого получены путем аппроксимации соглас­
но (3.1), а остальные слои — классические (𝑝1𝑎). Можно видеть, что для CNN1

отличие между 𝑝𝑠𝑡 = 98.7 и 𝑝𝑟 = 98.5 невелико, однако 𝑝1𝑎 = 42.5 значитель­
но ниже, чем оба этих значения. Для CNN2 𝑝𝑠𝑡 = 99.5 заметно выше, чем
𝑝𝑟 = 98.7, а 𝑝1𝑎 = 94.9 им уступает, также как и для CNN1. То есть, исполь­
зование аппроксимированных весов без последующего обучения демонстрирует
крайне низкую точность распознавания. Однако и сети обученные со случай­
ной инициализацией заметно проигрывают по точности классическим сетям.
Для преодоления этой проблемы автором был предложен метод послойного до­
обучения, опубликованный в «Bipolar morphological neural networks: convolution
without multiplication» [4] и «Fast Integer Approximations In Convolutional Neural
Networks Using Layer-By-Layer Training» [8]. Этому методу посвящен следую­
щий раздел.

Таблица 10 — Точность классификации на MNIST: 𝑝𝑠𝑡 — классической сети,
𝑝𝑟 — БМ сети, обученной со случайной инициализацией, 𝑝1𝑎 — сети с первым
аппроксимированным БМ слоем и остальными классическими.

Модель Архитектуры 𝑝𝑠𝑡, % 𝑝𝑟, % 𝑝1𝑎, %

CNN1 conv1(30, 5, 5) - relu1 - dropout1(0,2) -
fc1(10) - softmax1

98.7 98.5 42.5

CNN2 conv1(40, 5, 5) - relu1 - maxpool1(2, 2) -
conv2(40, 5, 5) - relu2 - fc1(200) - relu3 -
dropout1(0,3) - fc2(10) - softmax1

99.5 98.7 94.9

79

3.2 Метод послойного преобразования и дообучения

В предыдущем разделе показано, что обучение классическими градиент­
ными методами при помощи алгоритма обратного распространения ошибки
оказалось неэффективным для БМ сетей. Это могло произойти по ряду причин:

– градиент БМ слоя является ненулевым только для весовых коэффици­
ентов, которые в данный момент обеспечили максимальные значения у
нейронов слоя, то есть всего у одного веса для каждого из нейронов;
другие весовые коэффициенты сохранят исходные значения, то есть об­
новление коэффициентов происходит крайне медленно;

– стандартные распределения, используемые для инициализации началь­
ных значений весов, неэффективны для БМ нейронов.

Для решения этих проблем автор предложил метод, использующий ап­
проксимационную природу БМ нейрона. Он опирается на два соображения:

1. Классические нейронные сети способны легко адаптироваться к неболь­
шим изменениям входных сигналов при обучении, а значит можно
постепенно заменять классические нейроны на БМ и выполнять обу­
чение классической части сети.

2. Весовые коэффициенты классического и БМ нейронов связаны выраже­
нием (3.1), а значит эти значения коэффициентов можно использовать
в качестве начальных значений.

В качестве части нейронной сети, которая будет приближаться на каж­
дой итерации, предлагается рассматривать элементарный блок современных
нейросетевых архитектур: один слой. Рассмотрение отдельных нейронов так­
же возможно, однако представляет собой куда более вычислительно затратную
задачу. В то же время, слой сети является достаточно репрезентативным бло­
ком, позволяющим понять преимущества от последовательного преобразования
сети.

Таким образом, в предложенном методе предлагается сначала обучить
классическую нейронную сеть, а затем выполнить преобразование нейронов
каждого слоя к БМ модели, аппроксимируя весовые коэффициенты класси­
ческого слоя согласно выражению (3.1). Далее полученная нейронная сеть
дообучается классическими методами, что позволяет нивелировать падение ка­

80

чества. Преобразование выполняется послойно от первого к последнему слою.
Подробно предложенный подход изложен в Методе 1.

Метод 1: Обучение БМ сети
Входные данные: Обучающая выборка, валидационная выборка.
Выходные данные: БМ нейронная сеть.

1 Обучить классическую нейронную сеть стандартными методами.
2 для всех сверточных и полносвязных слоев выполнить
3 Заменить нейроны типа (1.3) с весовыми коэффициентами 𝑤 БМ

нейронами с весовыми коэффициентами {𝑣+, 𝑣−, 𝑣0}, где:

𝑣+𝑗 =

⎧⎨⎩ln𝑤𝑗, если 𝑤𝑗 > 0,

−∞, иначе,

𝑣−𝑗 =

⎧⎨⎩ln |𝑤𝑗|, если 𝑤𝑗 < 0,

−∞, иначе,

𝑣0 = 𝑤0.

(3.2)

4 Обучить полученную нейронную сеть стандартными методами.

Стоит отметить, что шаги 1-3 Метода 1 можно повторить несколько раз
с разной инициализацией классической сети и выбрать наилучший результат.
Кроме того, на этапе обучения возможно как обучение всей сети, так и только
классической ее части.

3.2.1 Послойное преобразование и дообучение БМ моделей для
классификации рукописных цифр MNIST

Для проверки эффективности метода послойного преобразования и дообу­
чения было проведено сравнение с обучением БМ сети стандартными методами
со случайной инициализацией. Для этого были рассмотрены те же модели CNN1

и CNN2, что и в разделе 3.1.
Они были преобразованы к БМ послойно от первого слоя к последнему

предложенным методом и дообучены. Для задания БМ нейрона использова­

81

лось выражение (2.6) с точными функциями активации, как и в предыдущем
эксперименте.

Было рассмотрено два варианта предложенного метода:
1. Преобразованная к БМ виду часть сети фиксировалась и не обучалась

при дальнейшем преобразовании.
2. Преобразованная к БМ виду часть сети дообучалась вместе с не преоб­

разованной частью.
Первый вариант позволяет выполнять преобразование и дообучение быстрее,
так как зафиксированные весовые коэффициенты не требуют подсчета гради­
ента, однако может демонстрировать меньшее качество распознавания.

Результаты экспериментов приведены в таблице 11. В ней приведены пре­
образуемый слой модели в обозначениях таблицы 9 и точность классификации
символов MNIST сразу после преобразования (𝑝𝑏) и после дообучения (𝑝𝑓𝑡).
В качестве значений 𝑝𝑏 «до преобразования» взяты значения точности клас­
сификации классических сетей. Для последнего слоя модели точность после
дообучения приводится только для случая обучаемых БМ слоев, так как в про­
тивном случае все веса модели оказываются зафиксированы.

Таблица 11 — Точность классификации рукописных цифр на разных этапах
послойного дообучения; 𝑝𝑏 — после преобразования и до дообучения, 𝑝𝑓𝑡 —
после дообучения.

Модель Преобразованная часть
Точность, %

БМ фикс. БМ не фикс.
𝑝𝑏 𝑝𝑓𝑡 𝑝𝑏 𝑝𝑓𝑡

CNN1

до преобразования 98.7 - 98.7 -
conv1 42.5 98.5 38.4 98.8
fc1 26.9 - 19.9 94.0

CNN2

до преобразования 99.5 - 99.5 -
conv1 94.9 99.4 94.6 99.4
conv2 21.3 98.7 36.2 99.4
fc1 10.0 75.0 17.3 99.0
fc2 12.9 - 48.7 97.9

Можно видеть, что 𝑝𝑏 для любого количества преобразованных слоев в
обеих моделях крайне низкое по сравнению с исходным качеством, но это сниже­

82

ние практически нивелируется после дообучения. Кроме того, вариант метода
с фиксированием БМ части моделей демонстрирует более низкую точность рас­
познавания, чем у классической модели, а также чем при дообучении БМ части.
При этом дообучение всей сети целиком позволило преобразовать сверточные
слои (conv1, conv2) без снижения точности относительно классических моделей.
Однако оба варианта не смогли успешно обучить полносвязные слои в обеих
рассмотренных моделях. Несмотря на это, поскольку именно сверточные слои
являются ключевыми в современных нейросетевых моделях, преобразование их
к БМ виду, возможное с высокой точностью благодаря предложенному методу,
представляет значительный интерес.

Стоит отметить, что применение предложенного метода послойного пре­
образования и дообучения не ограничивается БМ моделями. Этот метод не
накладывает условий на вид и форму аппроксимации, которая используется,
и может применяться и в других задачах, где аппроксимируются нейросетевые
модели, а обучение стандартными методами не позволяет добиться высоких
результатов. Одним из важных его применений является создание нейросете­
вых моделей с квантованными малобитными коэффициентами. Вычисления в
них аппроксимируют вычисления в классических моделях и могут быть при­
ближены, однако прямая аппроксимация не позволяет добиться достаточного
качества распознавания. Более подробному рассмотрению этой задачи посвя­
щен следующий раздел.

3.2.2 Метод послойного дообучения целочисленных моделей

Этот раздел посвящен обобщению предложенного метода послойного
дообучения и аппроксимации и проверке его работоспособности в другой
актуальной задаче. В последние годы широкое распространение получили ней­
росетевые модели с квантованными коэффициентами малой разрядности [8;
119—121]. Такие коэффициенты можно представить и обрабатывать как целые
числа, и таким образом повысить скорость их обработки. Например, в [7] автор
показал, что использование 16-битных целых чисел и SIMD-расширений позво­
ляет повысить скорость вычислений на процессорах архитектуры ARM на 40%
без потери качества распознавания. Для большего повышения производитель­

83

ности используется по 1-8 бит на коэффициент, что позволяет им принимать
2-256 дискретных значений. Такие малобитные нейросетевые модели способны
обеспечить высокую скорость работы на платформах x86/x86_64 и ARM [122],
но не Эльбрус. Процессоры архитектуры Эльбрус имеют архитектуру с очень
широким командным словом, которая хорошо подходит для задач с высокой
степенью внутреннего паралеллизма, например, для задач распознавания [6].
Однако в этих процессорах число арифметика-логических устройств для веще­
ственных операций превышает число устройств для целочисленных операций
(даже с учетом SIMD-параллелизма), что приводит к неэффективности 8-бит­
ных нейросетевых моделей, как было показано автором в [5].

Однако преобразование вещественных коэффициентов нейронных сетей
к целым числам из настолько ограниченного диапазона приводит к снижению
качества распознавания без применения дополнительных методов. Обучение
напрямую в малобитных типах данных затруднительно, так как подсчет гради­
ентов и процессы оптимизации определены лишь в непрерывном пространстве
коэффициентов.

Существуют несколько популярных схем квантования, сопоставляющих
вещественному числу 𝑟 его квантованную аппроксимацию 𝑞. Одна из них –
схема с фиксированной точкой, которая выглядит следующим образом:

𝑞 = min(max(
[︀
2𝑏𝑟
]︀
, 𝑞𝑚𝑖𝑛), 𝑞𝑚𝑎𝑥), (3.3)

где [·] обозначает округление к ближайшему целому, 𝑞𝑚𝑖𝑛 и 𝑞𝑚𝑎𝑥 – минимальное
и максимальное значения в квантованной аппроксимации, 𝑏 – число знаков в
двоичной записи числа 𝑟, которое сохраняет данная схема. Обычно это значение
выбирается заранее.

Рассмотрим, как вычисляется квантованнное матричное произведение при
квантовании с фиксированной точкой. Пусть имеется матрица 𝐴 размера 𝑀 на
𝐾 и матрица 𝐵 размера 𝐾 на 𝑁 . Необходимо вычислить 𝐶 = 𝐴𝐵, т.е.

𝑐𝑖𝑗 =
𝐾∑︁
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗 (3.4)

84

Будем обозначать квантованную аппроксимацию вещественного числа 𝑥

как 𝑥̂. Тогда при использовании квантования с фиксированной точкой получим:

𝑐𝑖𝑗 ≈
1

2𝑏
𝑐𝑖𝑗

𝑐𝑖𝑗 =
𝐾∑︁
𝑘=1

𝑎̂𝑖𝑘𝑏̂𝑘𝑗
2𝑏

.
(3.5)

При этом расчет 𝑐𝑖𝑗 может быть выполнен в целых числах, а операция
деления вычислена с помощью битового сдвига на 𝑏 бит. Нейронная сеть с такой
операцией умножения будет работать эффективнее, чем классическая.

Однако несмотря на это, вопрос об обучении квантованных нейронных
сетей представляет большой интерес [119; 123]. Квантованная нейронная сеть
является аппроксимацией исходной, но содержит много последовательных
вычислений, каждое из которых выполнено с некоторой ошибкой, накапливаю­
щейся от слоя к слою. Конечный результат работы квантованной сети может
сильно отличаться от исходной вещественной сети, что негативно сказывается
на качестве распознавания. Классические методы обучения для решения этой
проблемы не подходят, поскольку используют методы оптимизации в непре­
рывном пространстве, а пространство весовых коэффициентов квантованной
сети дискретно.

Метод послойного преобразования и дообучения может использовать­
ся решения этой проблемы, как было показано автором в работе «Fast
Integer Approximations In Convolutional Neural Networks Using Layer-By-Layer
Training» [8]. Для квантованных сетей он сформулирован в Методе 2. Его суть
заключается в том, что на вход поступают обучающая и валидационная вы­
борки, далее обучается вещественная нейронная сеть стандартными методами.
После этого первый слой сети заменяется своей квантованной аппроксимацией
и его весовые коэффициенты фиксируются и больше не участвуют в обучении.
Вещественная часть сети дообучается пока не будет удовлетворен некоторый
критерий остановки, например, пока не прекратится рост качества на валида­
ционной выборке. Шаги 3-4 повторяются до тех пор, пока не будет квантовано
заданное число слоев.

Предложенный метод был опробован экспериментально в задаче клас­
сификации печатных символов паспортов Российской Федерации. В выборке
было 300000 уникальных символов из 36 классов (букв русского алфавита

85

Метод 2: Обучение квантованной сети
Входные данные: Обучающая выборка, валидационная выборка.
Выходные данные: Квантованная нейронная сеть.

1 Обучить классическую нейронную сеть стандартными методами.
2 для всех сверточных и полносвязных слоев выполнить
3 Заменить нейроны типа (1.3) с весовыми коэффициентами 𝑤𝑖

квантованными нейронами с коэффициентами 𝑤̂𝑖:

𝑤̂𝑖 = min(max(
[︀
2𝑏𝑤
]︀
, 𝑞𝑚𝑖𝑛), 𝑞𝑚𝑎𝑥), (3.6)

где [·] обозначает округление к ближайшему целому, 𝑞𝑚𝑖𝑛 и 𝑞𝑚𝑎𝑥

– минимальное и максимальное значения в квантованной
аппроксимации, 𝑏 – параметр аппроксимации. Коэффициенты
𝑤̂𝑖 фиксируются.

4 Обучить полученную нейронную сеть стандартными методами.

и специальных символов, таких как знаки точки и тире). Примеры изобра­
жений приведены на рисунке 3.3. Символы были разделены на обучающую,
валидационную и тестовую выборки из 200000, 30000 и 70000 изображений
соответственно. Обучающая выборка была аугментирована также как описа­
но в [124].

Рисунок 3.3 — Примеры изображений символов паспорта РФ.

Для распознавания использовалась 4-слойная нейронная сеть LeNet­
подобной архитектуры с 2 сверточными слоями с 16 фильтрами 5 × 5 и 2
полносвязными слоями, показанная на рисунке 3.4.

Для обучения использовался метод стохастического градиентого спус­
ка с моментом. Применялась 𝐿1-регуляризация для снижения абсолютных
значений весов, чтобы уменьшить ошибку аппроксимации при квантовании.
Такая вещественная сеть продемонстрировала точность 99.6%. Далее применя­
лась 8-битное квантование с фиксированной точкой со значением параметра

86

5x5 conv, 16

ReLU

5x5 conv, 16

ReLU

fc(50)

tanh

fc(36)

softmax

Рисунок 3.4 — Архитектура нейросетевой модели для распознавания символов
паспорта РФ. Стрелками указано направление потока данных.

𝑏 = 5. При квантовании полученных весовых коэффициентов согласно выраже­
нию (3.6) точность составила лишь 48.6%, что является неудовлетворительным
для практического применения, поэтому был применен метод послойного преоб­
разования и дообучения. Процесс его использования представлен в таблице 12.
Не преобразованная часть сети использовала вещественные числа и дообуча­
лась двумя способами:

1. С инициализацией весовыми коэффициентами базовой сети.
2. С инициализацией случайными значениями.
Можно видеть, что преобразование коэффициентов только первого слоя

уже заметно снизило точность распознавания до 87.1%. После дообучения она
сооставила 99.5% при инициализации вещественными коэффициентами и 99.4%
при случайной инициализации, то есть случайная инициализация проигрывает
по качеству. Данное соотношение оказалось верным для обоих сверточных слоев
нейросетевой модели, однако полносвязные слои лучше обучились при исполь­
зовании случайной инициализации. После преобразования второго сверточного

87

Таблица 12 — Точность классификации символов паспорта РФ на разных
этапах послойного дообучения; 𝑝𝑏 — после квантования и до дообучения, 𝑝𝑓
— после дообучения с инициализацией последующих слоев весовыми коэф­
фициентами вещественной сети, 𝑝𝑟 — после дообучения с инициализацией
последующих слоев случайными коэффициентами.

Преобразованная часть
Точность, %

Ускорение, %
𝑝𝑏, 𝑝𝑓 𝑝𝑟

до преобразования 99.6 -
conv1 87.1 99.5 99.4 2
conv2 77.9 98.7 98.5 20
fc1 65.6 97.4 98.2 23
fc2 80.7 97.0 98.0 25

слоя точность составила лишь 77.9%, применение дообучения позволило повы­
сить его до 98.7%. Квантование полносвязных слоев предложенными методом
продемонстрировала достаточно высокую максимальную точность в 98.0%.

Кроме того, для каждого этапа послойного преобразования и дообучения
помимо точности распознавания было измерено время работы модели на про­
цессоре Samsung Exynos 5422 архитектуры ARM. Умножение 8-битных чисел
выполнялось с расширением в 16-битный тип данных, который затем снова
преобразовывался к 8 битам с помощью битового сдвига. Сложение результиру­
ющих 8-битных произведений выполнялось с насыщением. Результаты также
представлены в таблице 12. Можно видеть, что квантование только сверточ­
ных слоев дало значительное ускорение, которое составило 20%, а квантование
всей модели – 25%.

Таким образом, автор показал, что метод послойного преобразования и
дообучения не ограничен БМ моделями и может успешно применяться в зада­
чах распознавания, например, при обучении квантованных нейронных сетей,
которое широко используются для повышения скорости работы реальных при­
ложений.

88

3.3 Апробация БМ моделей в практических задачах

Итак, в предыдущем разделе было показано, что БМ нейросетевые модели
могут решать базовую задачу классификации символов и предложен метод для
их обучения. Однако на практике многообразие задач компьютерного зрения, в
которых применяются нейросетевые методы, куда шире, а архитектуры исполь­
зуемых моделей варьируются в значительных пределах. Поэтому в этом разделе
БМ модели апробируются в двух основных категории задач, которые решают­
ся с помощью нейросетевых моделей с помощью сетей актуальных архитектур.
Это задачи визуальной классификации и семантической сегментации. В зада­
чах визуальной классификации нейронная сеть получает на вход изображение,
принадлежащее к одному из нескольких заранее определенных классов, и опре­
деляет к какому классу это изображение относится. В случае семантической
сегментации входом модели является изображение, каждый пиксель которого
нужно отнести к одному из нескольких заранее заданных классов. Таким обра­
зом, выходом сети также является изображение.

3.3.1 Задачи классификации

На практике сложность классифицирующих моделей может значительно
варьироваться в зависимости от задачи. Поэтому рассмотрим несколько задач,
задействующих модели различной сложности:

1. Задачу классификации символов машиночитаемой зоны паспортов на
реальных данных с помощью LeNet-подобных моделей; сложности та­
ких моделей вполне достаточно для обеспечения высокой точности
классификации, и в то же время они достаточно достаточно вычисли­
тельно-эффективные для использования на мобильных и встраиваемых
устройствах.

2. Задачу классификации рукописных цифр выборки MNIST с помо­
щью модели ResNet-22, подробно рассмотренной в разделе 1.2.3; такая
модель содержит 22 сверточных слоя и является достаточно глубо­
кой, чтобы проиллюстрировать возможность использования БМ слоев

89

в глубоких нейронных сетях, но в то же время является достаточ­
но вычислительно-эффективной для использования на мобильных и
встраиваемых устройствах. В этой модели 17 из 22 слоев являются
достаточно вычислительно-емкими, чтобы получить преимущество от
использования БМ слоев согласно таблице 8.

3. Более сложную задачу классификации цветных изображений объектов
выборки CIFAR10 также с помощью модели ResNet-22.

Классификация символов машиночитаемой зоны

Машиночитаемая зона паспортов (МЧЗ) и иных документов содержит
информацию об основных реквизитах держателя документа и применяется в
идентификационных документах различных стран. Она представляет собой две
или три строки с символами и ее вид регламентирован стандартом «Doc 9303.
Машиносчитываемые проездные документы», изданным Международной орга­
низацией гражданской авиации [125].

Для эксперимента использовалась закрытая выборка символов машино­
читаемой зоны, извлеченных из реальных изображений идентификационных
документов. Примеры изображений показаны на рисунке 3.5.

Приведем параметры этой выборки.
– Число классов: 37.
– Размер изображения: 21× 17 пикселей, серые.
– Полный размер выборки: около 3,7× 105.
– Размер валидационной выборки: 2,8× 104.
– Размер тестовой выборки: 9,4× 104.
Для задания БМ нейрона использовалось выражение (2.6) с точными

функциями активации. Рассмотренные нейросетевые архитектуры приведены
в таблице 13 и проиллюстрированы на рисунке 3.6, а в таблице 14 показаны ре­
зультаты преобразования и дообучения БМ сети. Для последнего слоя модели
точность после дообучения приводится только для случая обучаемых БМ слоев,
так как в противном случае все веса модели оказываются зафиксированы.

Приведенные результаты показывают, что фиксирование БМ слоев сразу
после преобразования приводит к низкой финальной точности распознавания

90

Рисунок 3.5 — Примеры изображений символов машиночитаемой зоны.

Таблица 13 — Архитектуры LeNet-подобных моделей для классификации
символов МЧЗ.

Модель Архитектура

CNN3 conv1(8, 3, 3) - relu1 - conv2(30, 5, 5) - relu2 - conv3(30, 5, 5)
- relu3 - dropout1(0,25) - fc1(37) - softmax1

CNN4 conv1(8, 3, 3) - relu1 - conv2(8, 5, 5) - relu2 - conv3(8, 3, 3) -
relu3 - dropout1(0,25) - conv4(12, 5, 5) - relu4 - conv5(12, 3,
3) - relu5 - conv6(12, 1, 1) - relu6 - fc1(37) - softmax1

на реальных данных. Это означает, что дообучение БМ слоев имеет принципи­
альное значение для БМ сетей. Использование БМ полносвязных слоев также
значительно снижает точность классификации, как и на выборке MNIST, в то
время как БМ сверточные слои преобразуются без потери точности для обеих
моделей (снижение с 99.7% до 99.6% для CNN4 можно считать незначительным
и близким к значению погрешности). Таким образом, целесообразно всегда до­
обучать БМ слои, а также преобразовывать лишь сверточные слои. При этом
нейронная сеть с БМ сверточными слоями демонстрирует точность классифика­
ции, не уступающую точности классических моделей, и может использоваться
в практических задачах.

91

3x3 conv, 8

ReLU

5x5 conv, 30

ReLU

5x5 conv, 30

ReLU

dropout(0,25)

fc(37)

softmax

а)

3x3 conv, 8

ReLU

5x5 conv, 8

ReLU

3x3 conv, 8

ReLU

dropout(0,25)

5x5 conv, 12

ReLU

3x3 conv, 12

ReLU

1x1 conv, 12

ReLU

fc(37)

softmax

б)
Рисунок 3.6 — Архитектуры нейросетевых моделей для распознавания МЧЗ, a)

CNN3, б) CNN4. Стрелками указано направление потока данных.

92

Таблица 14 — Точность классификации символов МЧЗ на разных этапах
послойного дообучения; 𝑝𝑏 — после преобразования и до дообучения, 𝑝𝑓𝑡 —
после дообучения.

Модель Преобразованная часть
Точность, %

БМ фикс. БМ не фикс.
𝑝𝑏 𝑝𝑓𝑡 𝑝𝑏 𝑝𝑓𝑡

CNN3

до преобразования 99.6 - 99.6 -
conv1 97.8 99.6 83.1 99.6

conv1 - relu1 - conv2 8.6 99.5 21.1 99.6
conv1 - relu1 - conv2 - relu2 -

conv3
3.7 98.8 36.9 99.6

conv1 - relu1 - conv2 - relu2 -
conv3 - relu3 - dropout1 - fc1

12.6 - 27.8 93.4

CNN4

до преобразования 99.7 - 99.7 -
conv1 91.2 99.7 93.7 99.7

conv1 - relu1 - conv2 6.1 99.5 73.8 99.7
conv1 - relu1 - conv2 - relu2 -

conv3
23.6 99.4 70.3 99.7

conv1 - relu1 - conv2 - relu2 -
conv3 - relu3 - dropout1 - conv4

29.6 99.0 77.9 99.6

conv1 - relu1 - conv2 - relu2 -
conv3 - relu3 - dropout1 - conv4

- relu4 - conv5

34.2 98.5 17.1 99.6

conv1 - relu1 - conv2 - relu2 -
conv3 - relu3 - dropout1 - conv4
- relu4 - conv5 - relu5 - conv6

5.8 98.0 90.5 99.6

conv1 - relu1 - conv2 - relu2 -
conv3 - relu3 - dropout1 - conv4
- relu4 - conv5 - relu5 - conv6

-relu6 - fc1

4.7 - 27.6 95.5

93

Классификация рукописных цифр MNIST с помощью глубокой
нейронной сети

В этом разделе рассмотрено преобразование глубокой нейросетевой моде­
ли, решающей задачу классификации рукописных цифр из выборки MNIST, к
БМ виду. Использовалась модель архитектуры ResNet (см. раздел 1.2.3). Это
современная модель, которая широко используется на практике в сложных за­
дачах классификации. Согласно оценке вычислительной эффективности БМ
нейронов наиболее эффективно использовать их на ПЛИС. ПЛИС чаще все­
го используются во встраиваемых системах с низким энергопотреблением и
ограниченной вычислительной мощностью. Поэтому для экспериментов была
выбрана модель ResNet-22, достаточно компактная для применения на мобиль­
ных устройствах и во встраиваемых системах, но в то же время обеспечивающая
достаточно высокое качество классификации для решения практических задач.

Для задания БМ нейрона использовалось выражение (2.6) с точными
функциями активации. Модель БМ-ResNet была обучена методом послойного
преобразования и дообучения. При дообучении веса БМ нейронов не фикси­
ровались, так как их фиксация продемонстрировала стабильное ухудшение
результатов в предыдущих экспериментах.1 Точность модели в процессе до­
обучения показана в таблице 15 и проиллюстрирована на рисунках 3.7 и 3.8,
где показана точность модели после преобразования и до дообучения и точ­
ность после дообучения соответственно. По горизонтальной оси отложено число
преобразованных к БМ виду слоев, а по вертикальной — точность такой моде­
ли. Пунктирной линией показана точность классической сети 99.3%. Можно
видеть, что БМ модель c преобразованными и дообученными слоями 19 слоя
не уступает в точности классической, но дальнейшее преобразование снижает
ее до 99.1%. Такое снижение точности не слишком велико и полученная сеть
вполне пригодна для классификации. Если же оно неприемлемо в конкретной
задаче, возможно использовать гибридную, то есть частично преобразованную
модель, которая не демонстрируют снижения качества распознавания, но со­
храняет преимущества БМ вида для большей части слоев.

1Исходный код эксперимента на языке Python3 доступен по ссылке https://github.com/

SmartEngines/bipolar-morphological-resnet

https://github.com/SmartEngines/bipolar-morphological-resnet
https://github.com/SmartEngines/bipolar-morphological-resnet

94

Таблица 15 — Точность классификации символов MNIST с помощью
глубокой нейронной сети на разных этапах послойного дообучения;
𝑝𝑏 — после преобразования и до дообучения, 𝑝𝑓𝑡 — после дообучения.

Преобразовано слоев Точность, %
𝑝𝑏 𝑝𝑓𝑡

до преобразования 99.3
1 61.3 99.5
2 99.3 99.4
3 94.8 99.4
4 99.4 99.4
5 14.6 99.3
6 98.7 99.5
7 73.5 99.4
8 98.9 99.3
9 94.3 99.4
10 91.6 99.4
11 99.2 99.4
12 95.9 99.3
13 80.2 99.1
14 67.0 99.3
15 49.5 99,3
16 80.3 99.3
17 11.4 99.2
18 73.2 99.3
19 91.3 99.3
20 59.6 99.1
21 11.4 98.9
22 85.2 99.1

все conv слои 99.1

95

Рисунок 3.7 — Точность классификации БМ ResNet на выборке MNIST после
послойного преобразования и до дообучения очередного слоя в зависимости от

числа преобразованных слоев 𝑛.

а) б)
Рисунок 3.8 — Точность классификации БМ ResNet на выборке MNIST после
послойного преобразования и дообучения в зависимости от числа преобразован­

ных слоев 𝑛 в диапазоне а) 0.95-1.00, б) 0.989-0.995.

БМ модель с аппроксимированными функциями активации

Предыдущие эксперименты были выполнены для БМ нейрона с точны­
ми функциями активации, логарифмом и экспонентой. Рассмотрим, как их
аппроксимации, а именно аппроксимация Митчелла ̂︂log2 и аппроксимация

96

Шраудольфа ˆ︁exp2, описанные в разделах 2.7.1 и 2.7.2, повлияют на точность
классификации.

В этом разделе рассматривалась выборка MNIST и нейросетевая модель
ResNet-22, такая же как и в предыдущем разделе. Далее была применена идея
постепенного преобразования модели. В каждом БМ сверточном слое от пер­
вого к последнему:

1. Были заменены операции двоичного логарифма на аппроксимацию
Митчелла, а операция возведения в степень – на аппроксимацию Шра­
удольфа.

2. Преобразованный слой был дообучен стандартными методами.
3. Была оценена полученная точность гибридной модели.
Для реализации дообучения с помощью обратного распространения ошиб­

ки необходимо вычислить градиенты функций ̂︂log2 и ˆ︁exp2. В качестве произ­
водной логарифма Митчелла использовалась кусочно-постоянная функция —
точная производная выражения (2.32). Аппроксимация Шраудольфа задается
через битовые операции и не является дифференцируемой в таком представ­
лении, поэтому в качестве производной использовалась производная точной
функции exp2′(𝑥) = ln 2 · 2𝑥.

Этот эксперимент покажет, как весовые коэффициенты слоев адаптируют­
ся к аппроксимированным версиям функций активации, может ли нейросетевая
модель восстановить свое исходное качество, и, таким образом, охарактери­
зует выразительную силу БМ сети с ̂︂log2 и ˆ︁exp2. Точность после послойного
преобразования и дообучения показана в таблице 16 и проиллюстрирована на
рисунке 3.9. Можно видеть, что точность классификации на тестовой выборке
снизилась с 99.1% до 98.9%. Это означает, что доля ошибок возросла с 0.9%
до 1.1%, что является 1.2-кратным ростом ошибки. Тем не менее, точность пре­
образованной модели все еще достаточно высока. Более того, 17-й слой сети
все еще сохранил исходную точность, а снижение произошло между 17 и 22
слоями, причем это снижение было постепенно нарастающим в зависимости от
числа преобразованных слоев. Это означает, что возможно создание гибридных
моделей с высокой точностью и сохраняющих преимущества БМ вида.

97

Таблица 16 — Точность классификации символов MNIST глубокой
нейронной сетью с аппроксимированными функциями активации на
разных этапах послойного дообучения; 𝑝𝑏 — после аппроксимации
функций активации и до дообучения, 𝑝𝑓𝑡 — после дообучения.

Преобразовано слоев Точность, %
𝑝𝑏 𝑝𝑓𝑡

до преобразования 99.1
1 99.1 99.1
2 99.1 99.1
3 99.0 99.1
4 99.0 99.1
5 99.1 99.1
6 99.1 99.1
7 99.1 99.1
8 99.1 99.1
9 99.1 99.1
10 99.1 99.1
11 99.1 99.1
12 99.0 99.1
13 99.0 99.0
14 99.0 99.1
15 99.0 99.1
16 99.1 99.0
17 99.0 99.1
18 99.0 99.0
19 98.9 99.0
20 98.8 99.0
21 98.8 99.0
22 98.9 98.9

все conv слои 98.9

98

0 5 10 15 20
n

0.9880

0.9885

0.9890

0.9895

0.9900

0.9905

0.9910

Рисунок 3.9 — Точность классификации изображений из выборки MNIST при
послойной замене функций активации аппроксимированными версиями в зави­

симости от числа преобразованных слоев 𝑛.

Классификация объектов CIFAR10 с помощью глубокой нейронной
сети

Рассмотрим более сложную задачу классификации объектов, а имен­
но задачу классификации цветных изображений выборки CIFAR10. Выборка
CIFAR10 содержит изображения объектов 10 различных классов: самолет, авто­
мобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль, грузовик [126].
Ее характеристики:

– Число классов: 10.
– Размер изображения: 32× 32 пикселей, 3-канальное.
– Полный размер выборки: 60000.
– Размер валидационной выборки: 6000.
– Размер тестовой выборки: 10000.
Для решения задачи также использовалась глубокая нейросетевая модель

архитектуры ResNet-22 (см. раздел 1.2.3). Для задания БМ нейрона использо­
валось выражение (2.6) с точными функциями активации. Модель БМ-ResNet

99

была обучена методом послойного преобразования и дообучения, весовые коэф­
фициенты БМ нейронов при дообучении не фиксировались.2

Точность модели после преобразования и до дообучения, а также после до­
обучения показана в таблице 17 и проиллюстрирована на рисунках 3.10 и 3.11
соответственно. По горизонтальной оси отложено число преобразованных к БМ
виду слоев, а по вертикальной — точность такой модели. Пунктирной линией
показана точность классической сети 85.3%. Можно видеть, что БМ модель c
преобразованными и дообученными слоями 16 слоями не уступает в точности
классической, а при дальнейшем преобразовании точность начинает снижаться
до 77.7% у полностью преобразованной модели. Это означает, что доля ошибок
выросла в 1.5 раза, что представляет собой достаточно большой рост ошибки.
Тем не менее, гибридная модель с 16 преобразованными слоями может исполь­
зоваться на практике без ограничений, поскольку не приводит к снижению
качества распознавания.

Рисунок 3.10 — Точность классификации БМ ResNet на выборке CIFAR10 после
послойного преобразования и до дообучения очередного слоя в зависимости от

числа преобразованных слоев 𝑛.

Итак, в этом разделе были рассмотрены три задачи классификации с ис­
пользованием БМ моделей различной сложности. Эксперименты показали, что

2Исходный код эксперимента на языке Python3 доступен по ссылке https://github.com/

SmartEngines/bipolar-morphological-resnet

https://github.com/SmartEngines/bipolar-morphological-resnet
https://github.com/SmartEngines/bipolar-morphological-resnet

100

Таблица 17 — Точность классификации объектов CIFAR10 с по­
мощью глубокой нейронной сети на разных этапах послойного
дообучения; 𝑝𝑏 — после преобразования и до дообучения, 𝑝𝑓𝑡 — по­
сле дообучения.

Преобразовано слоев Точность, %
𝑝𝑏 𝑝𝑓𝑡

до преобразования 85.3
1 13.7 85.4
2 70.1 86.6
3 56.5 88.0
4 87.2 89.0
5 9.9 88.9
6 43.2 89.3
7 23.6 89.1
8 63.8 89.3
9 28.9 86.2
10 30.2 85.5
11 85.3 86.6
12 13.4 86.1
13 35.5 86.6
14 12.7 85.2
15 11.1 85.4
16 22.3 85.1
17 9.2 83.6
18 45.4 83.9
19 11.9 83.1
20 17.2 82.7
21 20.7 79.6
22 33.7 77.7

все conv слои 77.7

101

Рисунок 3.11 — Точность классификации БМ ResNet на выборке CIFAR10 после
послойного преобразования и дообучения в зависимости от числа преобразован­

ных слоев 𝑛.

БМ слои могут успешно применяться при решении задач классификации ре­
альных данных, а также при построении глубоких сверточных моделей. При
этом полностью пребразованные к БМ виду модели продемонстрировали неко­
торое снижение качества распознавания, которое может быть неприемлемо для
некоторых задач, однако их частично преобразованные (гибридные) варианты
имеют качество сопоставимое с качеством исходных моделей, а значит полно­
стью пригодны для использования в реальных задачах.

3.3.2 Семантическая сегментация

Задача семантической сегментации – задача классификации пикселей
изображения, при решении которой каждый пиксель маркируется по принад­
лежности к одной из нескольких категорий. Это задача часто появляется при
анализе биомедицинских изображений, когда нужно отделить одни типы струк­
тур или объектов от других. Одной из основных нейросетевых архитектур,
которые применяются для семантической сегментации является сверточная ар­

102

хитектуры U-Net. Впервые она была предложена для выделения нейронных
структур на изображениях, полученных с помощью электронного микроскопа
в рамках конкурса IEEE International Symposium on Biomedical Imaging (ISBI)
2012 года и показала наилучший результат. На конкурсе ISBI 2015 года, где
участникам предлагалось решить задачу прослеживания клеток, решение с
помощью U-Net также заняло первое место [127]. На сегодняшний день эта
архитектура активно развивается и применяется на практике [128; 129].

Задача бинаризации является частным случаем задачи сегментации пиксе­
лей изображения на два класса: черные и белые. В данном разделе рассмотрена
задача бинаризации исторических документов с конкурса Document Image
Binarization Competition (DIBCO) 2017 [130]. Организаторы предоставили 86
изображений для обучения и 20 изображений для тестирования с эталонно
бинаризованными изображениями (см. пример на рисунке 3.12а, б), а также
утилиты для оценки качества бинаризации.

a)

б)

Рисунок 3.12 — Пример бинаризации: а) входное изображение, б) эталонное
изображение.

Лучшее решение конкурса использовало сверточную нейронную сеть
U-Net [131]. Она состоит из 10 сверточных слоев с размерами ядер 3 × 3

и функциями активации ReLU, а также выходной свертки с ядром размера

103

1 × 1 и сигмоидной функцией активации. Ее архитектура показана на рисун­
ке 3.13. Для получения бинаризованного изображения, выходные величины
модели округлялись.

1
 16 16

32

12
82

12
82

12
82

64
2

64
2

64
2

64

64 3232

64
2

64
2

64
2

16 16 1
32

входное
изображение

выходное

изображение

conv 1x1, sigmoid

up-sample 2x2
max-pool 2x2
copy
conv 3x3, ReLU

Рисунок 3.13 — Нейросетевая архитектура U-Net. Обозначения: conv — сверточ­
ный слой, copy — копирование промежуточных результатов, max-pool — слой
субдискретизации с операцией максимума, up-sample — сверточный слой, повы­

шающий размерность, sigmoid — сигмоидальная функция активации.

Далее изображения из обучающей выборки были подвергнуты осерению
и разделены на блоки 128 × 128. Затем эти блоки были разделены на обуча­
ющую и валидационную выборки. При этом все блоки из одного изображения
помещались либо в обучающую, либо в валидационную выборки. После этого
данные были аугментированы с добавлением сдвигов, шума, контрастирования,
масштабирования и пересечения случайными прямыми. Нейросетевая модель
далее обучалась на этих данных с оптимизатором Adam [132], двоичной кросс­
энтропией в качестве функции потерь и средним значением коэффициента
Жаккара (mIoU) для оценки качества бинаризации. В данной работе именно
это решение было использовано в качестве базового. Пример его работы пока­
зан на рисунке 3.14а.

Далее выполнялось послойное преобразование и дообучение сверточных
слоев. Качество на каждом шаге преобразования показано в таблице 18. Можно
видеть, что для первых двух преобразованных слоев качество практически не
снизилось, для 7 слоев – снизилось слабо, но для всей сети суммарный рост
ошибки составил 1.9 раза. Однако несмотря на это, БМ U-Net все еще демон­
стрирует высокое качество работы, пример бинаризации с его помощью показан

104

на рисунке 3.14б. Можно видеть, что с визуальной точки зрения качество би­
наризации на разных участках изображения неоднородно: в некоторых зонах
БМ-UNet демонстрирует лучший результат, а в некоторых – несколько проиг­
рывает классической модели.

а)

б)

Рисунок 3.14 — Результаты бинаризации: а) с помощью U-Net, б) с помощью
БМ U-Net.

Таблица 18 — Точность БМ U-Net для различного числа
БМ слоев на валидационной выборке.

БМ слоев 0 1 2 3 4 5
mIoU, % 99.36 99.36 99.33 99.23 99.21 99.07
БМ слоев 6 7 8 9 10
mIoU, % 99.11 99.08 99.02 98.85 98.79

Поэтому далее была проведена количественная оценка качества бинариза­
ции. Для этого использовались те же метрики, что в и конкурсе DIBCO 2017,
приведенные в [130]:

1. F-мера (FM)

𝐹𝑀 =
2×𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
, (3.7)

105

где
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 + 𝐹𝑁,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 + 𝐹𝑃,

𝑇𝑃 – число истинно положительных результатов, 𝐹𝑃 – число ошибочно
позитивных результатов, 𝐹𝑁 – число ошибочно негативных результа­
тов.

2. псевдо F-мера (Fps)
Fps считается также как и F-мера, с тем отличием, что использются
псевдо-точность и псевдо-полнота, которые отличаются от точности и
полноты наличием взвешивания [130].

3. PSNR
𝑃𝑆𝑁𝑅 = 10 log

𝐶2

𝑀𝑆𝐸
, (3.8)

где

𝑀𝑆𝐸 =

∑︀𝑀
𝑥=1

∑︀𝑁
𝑦=1(𝐼(𝑥,𝑦)− 𝐼 ′(𝑥,𝑦))2

𝑀𝑁
, (3.9)

а 𝐶 – разность между первым планом и фоном на изображении. PSNR
показывает сходство между изображениями 𝐼 и 𝐼 ′. Большие значения
соотвествуют более близким изображениям.

4. Distance Reciprocal Distortion Metric (DRD)
Эта метрика используется, чтобы оценить визуальное искажение на
бинарных изображениях документов [133]. Она коррелирует с визу­
альным восприятием человека и оценивает искажения для всех пар
пикселей с разными значениям следующим образом:

𝐷𝑅𝐷 =

𝑆∑︀
𝑘=1

𝐷𝑅𝐷𝑘

𝑁𝑈𝐵𝑁
, (3.10)

где 𝑆 – число пар пикселей с разными значениями, 𝑁𝑈𝐵𝑁 – число
неравномерных (не целиком белых или не целиком черных) блоков 8х8
на эталонном изображении 𝐺𝑇 , а 𝐷𝑅𝐷𝑘 – оценка искажения в 𝑘-ой
пары пикселей с разными значениями. Она вычисляется с использо­
ванием нормализованной матрицы коэффициентов размера 5х5 𝑊𝑁𝑚,
приведенной в [133] и равняется взвешенной сумме разностей пикселей

106

эталонного (𝐺𝑇) и оцениваемого изображения (𝐵) в блоке 5х5 с цен­
тром в пикселе 𝑘 с координатами (𝑥, 𝑦):

𝐷𝑅𝐷𝑘 =
2∑︁

𝑖=−2

2∑︁
𝑗=−2

|𝐺𝑇𝑘(𝑖, 𝑗)−𝐵𝑘(𝑥,𝑦)|𝑊𝑁𝑚(𝑖, 𝑗). (3.11)

Количественная оценка качества бинаризации по этим метрикам представ­
лена в таблице 19. Для иллюстрации приведены другие методы бинаризации:
классических методы Отсу и Сауволы, а также еще 2 лучших нейросетевых
решений конкурса. Методы Отсу [134] и Сауволы [135] не являются нейросе­
тевыми и демонстрируют достаточно посредственное качество бинаризации по
всем приведенным метрикам. Решения конкурса кратко описаны в [130]. Ме­
тод 17a занял второе место и в нем использовалась полносверточная глубокая
нейронная сеть, которая запускалась на преобразованном к оттенкам серого и
нормированном изображении. На третьем месте оказался метод под номером
12, в котором использовался ансамбль из 3 глубоких нейросетевых моделей с
архитектурами разной сложности.

Можно видеть, что БМ U-Net уступает классической модели U-Net, однако
все еще значительно превосходит методы Отсу и Сауволы. Однако при этом в
достаточно широком диапазоне параметров он сопоставим по качеству с вторым
и третьим решениями конкурса.

Также можно отметить, что качество бинаризации достаточно равномер­
но снижается с ростом числа преобразованных сверточных слоев. Это означает,
что на практике можно гибким образом выбирать между качеством и слож­
ностью нейронной сети и использовать гибридные частично преобразованные
модели. Таким образом, полученные результаты показывают, что БМ нейроны
могут успешно применяться в задачах семантической сегментации изображе­
ний.

107

Таблица 19 — Сравнение качества бинаризации различными методами.

Метод FM Fps PSNR DRD

Отсу [131] 77.7 77.9 13.9 15.5
Саувола [131] 77.1 84.1 14.3 8.9
U-Net [130] 91.0 92.9 18.3 3.4

17a (полносверточная глубокая
сеть) [130]

89.7 91.0 17.6 4.4

12 (ансамбль из 3 глубоких
сетей) [130]

89.4 91.5 17.6 3.6

U-Net (в данной работе) 90.9 92.8 18.2 3.3
БМ-U-Net (10 БМ слоев) 85.8 88.0 17.0 5.1
БМ-U-Net (9 БМ слоев) 87.7 89.5 17.1 4.9
БМ-U-Net (8 БМ слоев) 87.2 89.4 17.3 4.7
БМ-U-Net (7 БМ слоев) 89.0 90.6 17.5 4.2
БМ-U-Net (6 БМ слоев) 88.2 90.2 17.4 4.5
БМ-U-Net (5 БМ слоев) 89.3 91.1 17.5 4.4
БМ-U-Net (4 БМ слоя) 90.5 92.1 18.0 3.6
БМ-U-Net (3 БМ слоя) 90.4 92.5 18.0 3.5
БМ-U-Net (2 БМ слоя) 90.4 92.6 18.0 3.5
БМ-U-Net (1 БМ слой) 90.9 92.4 18.0 3.4

3.4 Программный комплекс для моделирования биполярных
морфологических сетей

Изложенные выше экспериментальные результаты были получены с помо­
щью разработанного автором программного комплекса, который будет описан
в этом разделе (см. Приложения А).

108

3.4.1 Общие сведения

Программный комплекс носит название «Программа для обучения свер­
точных биполярных морфологических нейронных сетей» и написан на языке
программирования python3. Он предназначения для работы на пользователь­
ских персональных компьютерах с установленным python 3 со следующим
набором пакетов: numpy, os, keras, а также tensorflow. Пакет tensorflow является
оптимизированным программным пакетом для обучения нейросетевых моделей
и может осуществлять вычисления как на центральном процессора, так и на ви­
деокартах с поддержкой CUDA, обеспечивая более высокую скорость работы.

Результирующее программное обеспечение может работать на операцион­
ных системах семейств Windows и Linux.

3.4.2 Функциональность

Программный комплекс обладает следующими возможностями и позво­
ляет:

1. Обучать нейросетевые модели, использующие сверточные БМ слои.
2. Обучать классические нейросетевые модели.
3. Преобразовывать обученные классические сверточные слои к БМ виду.
4. Применять метод послойной аппроксимации и дообучения для преоб­

разования модели к БМ виду.
5. Оценивать точность классических, гибридных и полностью БМ моде­

лей.

3.4.3 Структура и состав программного комплекса

Разработанный автором программный комплекс состоит из следующих
модулей и программ:

– модуль для обучения классических нейросетевых моделей;

109

– модуль для обучения БМ и гибридных нейросетевых моделей;
– модуль для преобразования коэффициентов слоя классической нейросе­

тевой модели к биполярному морфологическому виду;
– модуль, реализующий метод послойного дообучения;
– программа оценки качества биполярной морфологической сети на про­

извольном наборе данных.
Его структурная схема представлена на рисунке 3.15, где прямоугольни­

ками обозначаются модули программного комплекса, а параллелограммами –
их входные данные. Пунктирный прямоугольник обозначает модуль, реализу­
ющий метод послойного преобразования и дообучения, а ромб – условие, при
выполнении которого данный метод закончит работу. Стрелками обозначается
процесс передачи данных на вход модулям или от одного модуля другому. Та­
ким образом, в программном комплексе 5 модулей, взаимодействующих между
собой. Опишем эти модули подробнее.

1. Модуль обучения классических нейросетевых моделей. Он реализует
стандартный подход к обучению моделей и предусматривает задание
архитектуры модели, обучающей и валидационной выборок, вида и
параметров алгоритма градиентного спуска, а также сохранение про­
межуточных результатов на разных шагах обучения. В качестве входа
он получает архитектуру модели в формате tensorflow, параметры обу­
чения и обучающую и валидационную выборки, а в качестве выхода
модуль выдает обученную модель в формате tensorflow.

2. Модуль для преобразования коэффициентов классического сверточ­
ного слоя к БМ виду. Он реализует выражение (3.1) для заданного
сверточного слоя сети. При этом выполняется проверка на близость зна­
чений коэффициентов к нулю и логарифм таких значений заменяется
на достаточно большое отрицательное число. В качестве входа модуль
получает идентификатор сверточного слоя, который нужно преобразо­
вать, а в качестве выхода возвращает модель с преобразованным к БМ
виду слоем.

3. Модуль, реализующий дообучение модели. Он также реализует стан­
дартный подход к обучению моделей, как и модуль 1, и предусматри­
вает задание обучающей и валидационной выборок, вида и параметров
алгоритма градиентного спуска, а также сохранение промежуточных
результатов на разных шагах обучения. В качестве входа модуль полу­

110

Тестовая

выборка

НетВсе заданные слои
преобразованы?

Преобразование
следующего слоя

Дообучение
модели

Оценка

качества модели

Послойное дообучение

Обученная БМ или
гибридная модель

Параметры
обучения

Параметры
дообучения

Обучение
классической

модели

Обучающая и
валидационная

выборки

Обучающая и
валидационная

выборки

Идентификаторы
преобразуемых

слоев

Рисунок 3.15 — Общая схема программного комплекса биполярной морфологи­
ческой аппроксимации.

чает модель с БМ слоями в формате tensorflow, параметры обучения,
обучающую и валидационную выборки, а в качестве выхода возвраща­
ет обученную модель в формате tensorflow.

4. Модуль послойного преобразования и дообучения. Он получает на вход
идентификаторы слоев для преобразования к БМ виду, параметры обу­
чения, а также обучающую и валидационную выборки. Для каждого
преобразуемого слоя он вызывает задействует модуль преобразования
коэффициентов, а затем модуль дообучения, пока все необходимые слои
не будут преобразованы.

111

5. Программа оценки качества нейросетевой модели. Она позволяет найти
точностные характеристики сети на тестовом наборе данных, который
получает в качестве входа вместе с моделью. К этим характеристикам
относится доля верно распознанных примеров, точность и полнота ре­
зультатов классификации для классифицирующих сетей. Для сетей,
осуществляющих семантическую сегментацию, она оценивает индекса
Жаккара, характеризующий среднее отношение пересечения области
найденного объекта с его реальным положением к их объединению.

Для реализации этих модулей также была разработана структура би­
полярного морфологического слоя в виде класса, совместимого с пакетом
tensorflow.

3.4.4 Результаты работы программного комплекса

Используя предложенные модули и программы, можно реализовать пол­
ный цикл аппроксимации классических нейросетевых моделей: их обучение,
послойное преобразование, дообучение, оценку качества распознавания полу­
ченной модели на всех этапах послойного преобразования.

В результате можно выбрать оптимальное число преобразованных слоев
для рассматриваемой задачи и далее интегрировать полученную модель в кон­
кретные приложения.

3.5 Выводы по главе 3

Данная глава посвящена экспериментальному исследованию БМ нейро­
нов и слоев, выполненному с помощью разработанного автором программного
комплекса. В ней изложен оригинальный метод послойного преобразования и
дообучения, опубликованный автором в работе «Fast Integer Approximations
In Convolutional Neural Networks Using Layer-By-Layer Training» [8] и «Bipolar
morphological neural networks: convolution without multiplication» [4]. С ис­

112

пользованием этого метода автор показал, что БМ нейроны могут успешно
применяться:

1. В задачах классификации реальных данных в LeNet-подобных моде­
лях; результат опубликован в докладе «Bipolar morphological neural
networks: convolution without multiplication» [4].

2. В задачах классификации с помощью глубоких нейронных сетей архи­
тектуры ResNet; несмотря на то, что точность классификации падает
с ростом числа преобразованных слоев, приводя к росту ошибки до
1.5 раз, использование частично преобразованных моделей, позволяет
выбирать желаемый баланс между сложностью сети и ее точностью; ре­
зультат изложен автором в работах «ResNet-like Architecture with Low
Hardware Requirement» [3] и «Bipolar Morphological Neural Networks:
Gate-Efficient Architecture for Computer Vision» [1].

3. В задачах семантической сегментации с помощью нейронных сетей ар­
хитектуры U-Net; несмотря на то, что точность сегментации несколько
снижается с ростом числа преобразованных слоев, полученная модель
все еще превосходит не-нейросетевые методы и сопоставима по качеству
с другими нейросетевыми методами; результат впервые продемонстри­
рован автором в докладе «Bipolar Morphological U-Net for Document
Binarization» [2].

Таким образом, автор продемонстрировал, что БМ нейронные сети мо­
гут успешно решать задачи визуальной классификации и семантической
сегментации, которые на сегодняшний день составляют большую долю задач
компьютерного зрения, решаемых нейросетевыми методами.

113

Заключение

Основные результаты работы заключаются в следующем.
1. Разработана аппроксимация модели математического нейрона – бипо­

лярный морфологический нейрон, – которая может применяться в свер­
точных и полносвязных слоях нейросетевых моделей для упрощения
их внутренней структуры. При такой аппроксимации в вычислительно­
интенсивных частях слоя остаются лишь операции взятия максимума
и сложения, однако слой дополняется функциями активации на основе
операций потенцирования и логарифмирования.

2. Аналитическими методами доказано, что нейросетевая модель с доста­
точным числом нейронов биполярного морфологического вида может
приблизить произвольную непрерывную на компакте функцию с любой
заранее заданной точностью. Это означает, что биполярные морфоло­
гические нейронные сети имеют ту же выразительную способность, что
и классические модели.

3. Вычислительно-емкие сверточные биполярные морфологические слои
могут быть эффективно реализованы для ПЛИС/СЛИС. Оценка числа
вентилей и латентности ПЛИС-реализации для БМ сверточных слоев
по сравнению с классическими сверточными слоями показала, что для
слоев с достаточно большим числом входных и выходных каналов БМ
слои используют практически столько же вентилей, сколько и клас­
сические слои, однако имеют латентность на 30-40% ниже; для слоев
с достаточно малым числом входных каналов и размером фильтров
3× 3 при использовании аппроксимированных функций активации ла­
тентность на 12-40% меньше, чем для классических слоев;

4. Для обучения аппроксимированных нейросетевых моделей предложен
оригинальный метод послойного дообучения, позволивший получить
лучшее качество по сравнению с обучением стандартными методами
для биполярных морфологических нейросетевых моделей и кванто­
ванных 8-битных нейросетевых моделей по результатам численных
экспериментов.

5. Вычислительным экспериментом показано, что биполярная морфоло­
гическая аппроксимация сверточных слоев позволяет снизить вычис­

114

лительную избыточность глубоких нейросетевых моделей в задачах
классификации изображений и семантической сегментации без сниже­
ния качества распознавания для гибридных моделей и ряда полностью
преобразованных моделей.

6. Разработан комплекс программ, позволяющий выполнить послойную и
обучение аппроксимацию классической модели: обучить классическую
модель, выполнить послойное преобразование к БМ виду, провести до­
обучение и оценить результирующее качество.
Разработанные в рамках диссертации методы были реализованы в ви­
де программных компонентов и внедрены в программное обеспечение
«Smart ID Engine», «Smart Code Engine», «Smart Document Engine»,
а также «Smart IDReader» компании ООО «Смарт Энджинс Сервис».
Данные продукты интегрированы в информационную инфраструкту­
ру и мобильные приложения АО «Тинькофф Банк», а также в ряд
информационных решений государственных структур Российской Фе­
дерации. Кроме того, полученные оценки и результаты моделирования
демонстрируют, что включение специализированных модулей для эле­
ментарных арифметических операций при создании устройств для
исполнения нейросетевых моделей способно повысить эффективность
их работы и используются в АО «МЦСТ» при проектировании новых
устройств.

115

Список литературы

1. Bipolar Morphological Neural Networks: Gate-Efficient Architecture for
Computer Vision / E. E. Limonova [и др.] // IEEE Access. — 2021. — Т. 9. —
С. 97569—97581.

2. Limonova E., Nikolaev D., Arlazarov V. V. Bipolar Morphological U-Net for
Document Binarization // ICMV 2020. Т. 11605. — International Society for
Optics, Photonics, 2021. — С. 1—9.

3. ResNet-like Architecture with Low Hardware Requirements / E. E. Limonova
[и др.] // ICPR 2020. — IEEE. 2021. — С. 6204—6211.

4. Bipolar morphological neural networks: convolution without multiplication /
E. Limonova [и др.] // ICMV 2019. Т. 11433. — International Society for
Optics, Photonics, 2020. — С. 1—8.

5. Limonova E. E., Neyman-Zade M. I.-O., Arlazarov V. L. Special aspects of
matrix operation implementations for low-precision neural network model on
the Elbrus platform // Bulletin of the South Ural State University, Series:
Mathematical Modelling, Programming and Computer Software. — 2020. —
Т. 13, № 1. — С. 118—128.

6. Performance Evaluation of a Recognition System on the VLIW Architecture
by the Example of the Elbrus Platform / E. E. Limonova [и др.] //
Programming and Computer Software. — 2019. — Т. 45, № 1. — С. 12—17.

7. Николаев Д., Лимонова Е., Ильин Д. Ускорение нейросетевого распо­
знавания образов на SIMD архитектурах // 39-я междисциплинарная
школа-конференция ИТиС 2015. — ИППИ РАН, 2015. — С. 472—483.

8. Fast Integer Approximations In Convolutional Neural Networks Using
Layer-By-Layer Training / D. Ilin, E. Limonova, V. Arlazarov, D. Nikolaev //
ICMV 2016. Т. 10341. — International Society for Optics, Photonics, 2017. —
С. 1—5.

9. Tsoy M. O., Alfonso D. M., Limonova E. E. Hardware Implementation
of Classical and Bipolar Morphological Models for Convolutional Neural
Network // En&T-2021. — IEEE. 2022. — С. 1—5.

116

10. Limonova E. E. Fast and gate-efficient approximated activations for bipolar
morphological neural networks // Информационные технологии и вычис­
лительные системы. — 2022. — № 2. — С. 3—10.

11. Purves D. Neuroscience. — Oxford University Press, 2012. — С. 759.

12. Lapique L. Recherches quantitatives sur l’excitation electrique des nerfs
traitee comme une polarization. // Journal of Physiology and Pathololgy. —
1907. — Т. 9. — С. 620—635.

13. Abbott L. F. Lapicque’s introduction of the integrate-and-fire model neuron
(1907) // Brain research bulletin. — 1999. — Т. 50, № 5/6. — С. 303—304.

14. Hodgkin A. L., Huxley A. F. A quantitative description of membrane current
and its application to conduction and excitation in nerve // The Journal of
physiology. — 1952. — Т. 117, № 4. — С. 500.

15. Harmon L. D. Studies with artificial neurons, I: properties and functions of
an artificial neuron // Kybern. — 1961. — Т. 1, № 3. — С. 89—101.

16. Lewis E. R. The Locus Concept and Its Application to Neural Analogs //
IEEE Transactions on Bio-medical Electronics. — 1963. — Т. 10, № 4. —
С. 130—137.

17. McCulloch W. S., Pitts W. A logical calculus of the ideas immanent in nervous
activity // The bulletin of mathematical biophysics. — 1943. — Т. 5, № 4. —
С. 115—133.

18. Ritter G., Sussner P. An introduction to morphological neural networks //
ICPR 1996. — 1996. — Т. 4. — С. 709—717.

19. Ritter G. X., Iancu L., Urcid G. Morphological perceptrons with dendritic
structure // FUZZ 2003. Т. 2. — IEEE. 2003. — С. 1296—1301.

20. Differential evolution training algorithm for dendrite morphological neural
networks / F. Arce [и др.] // Applied Soft Computing. — 2018. — Т. 68. —
С. 303—313.

21. Dimitriadis N., Maragos P. Advances in the training, pruning and
enforcement of shape constraints of Morphological Neural Networks using
Tropical Algebra // ICASSP 2021. — IEEE. 2021. — С. 3825—3829.

117

22. Dendrite morphological neural networks for motor task recognition from
electroencephalographic signals / J. M. Antelis [и др.] // Biomedical Signal
Processing and Control. — 2018. — Т. 44. — С. 12—24.

23. Hybrid neural networks for big data classification / G. Hernández [и др.] //
Neurocomputing. — 2020. — Т. 390. — С. 327—340.

24. Gerstner W., Kistler W. M. Spiking neuron models: Single neurons,
populations, plasticity. — Cambridge university press, 2002.

25. Izhikevich E. M. Simple model of spiking neurons // IEEE Transactions on
neural networks. — 2003. — Т. 14, № 6. — С. 1569—1572.

26. Deep learning in spiking neural networks / A. Tavanaei [и др.] // Neural
Networks. — 2019. — Т. 111. — С. 47—63.

27. Direct training for spiking neural networks: Faster, larger, better / Y. Wu
[и др.] // Proceedings of the AAAI Conference on Artificial Intelligence.
Т. 33. — AAAI. 2019. — С. 1311—1318.

28. Lu S., Sengupta A. Exploring the connection between binary and spiking
neural networks // Frontiers in Neuroscience. — 2020. — Т. 14. — С. 535.

29. Wang X., Lin X., Dang X. Supervised learning in spiking neural networks: A
review of algorithms and evaluations // Neural Networks. — 2020. — Т. 125. —
С. 258—280.

30. Rosenblatt F. The perceptron: a probabilistic model for information storage
and organization in the brain. // Psychological review. — 1958. — Т. 65,
№ 6. — С. 386—408.

31. Rumelhart, E. D., Mcclelland J. Parallel distributed processing: explorations
in the microstructure of cognition. Volume 1. Foundations. — MIT Press,
1986. — С. 567.

32. Fukushima K., Miyake S., Ito T. Neocognitron: A neural network model for
a mechanism of visual pattern recognition // IEEE transactions on systems,
man, and cybernetics. — 1983. — № 5. — С. 826—834.

33. Gradient-based learning applied to document recognition / Y. LeCun
[и др.] // Proceedings of the IEEE. — 1998. — Т. 86, № 11. — С. 2278—2324.

118

34. Krizhevsky A., Sutskever I., Hinton G. E. Imagenet classification with deep
convolutional neural networks // Advances in neural information processing
systems. — 2012. — Т. 25. — С. 1097—1105.

35. Bengio Y., Simard P., Frasconi P. Learning long-term dependencies with
gradient descent is difficult // IEEE transactions on neural networks. —
1994. — Т. 5, № 2. — С. 157—166.

36. Deep residual learning for image recognition / K. He [и др.] // CVPR 2016. —
IEEE. 2016. — С. 770—778.

37. Identity mappings in deep residual networks / K. He [и др.] // ECCV 2016. —
Springer. 2016. — С. 630—645.

38. Savage J. E. Models of Computation: Exploring the Power of Computing. —
Addison-Wesley Longman Publishing Co., Inc., 1997. — С. 672.

39. Architecture of A Novel Low-Cost Hardware Neural Network / K. Khalil
[и др.] // MWSCAS 2020. — IEEE. 2020. — С. 1060—1063.

40. DSP-Efficient Hardware Acceleration of Convolutional Neural Network
Inference on FPGAs / D. Wang [и др.] // IEEE Transactions on Computer­
Aided Design of Integrated Circuits and Systems. — 2020. — Т. 39, № 12. —
С. 4867—4880.

41. Shawahna A., Sait S. M., El-Maleh A. FPGA-based accelerators of deep
learning networks for learning and classification: A review // IEEE Access. —
2018. — Т. 7. — С. 7823—7859.

42. A survey of FPGA-based neural network inference accelerators / K. Guo
[и др.] // ACM Transactions on Reconfigurable Technology and Systems. —
2019. — Т. 12, № 1. — С. 1—26.

43. Motivation for and Evaluation of the First Tensor Processing Unit / N. Jouppi
[и др.] // IEEE Micro. — 2018. — Т. 38, № 3. — С. 10—19.

44. Intel Movidius Vision Processing Units [Эл. Ресурс], https : //www. intel .
com/content/www/us/en/products/processors/movidius-vpu.html (дата
обращения: 12.11.2022).

45. Technology advancement and growth: A case study of Huawei / C. Yeo
[и др.] // Journal of the Community Development in Asia. — 2020. — Т. 3,
№ 1. — С. 82—91.

https://www.intel.com/content/www/us/en/products/processors/movidius-vpu.html
https://www.intel.com/content/www/us/en/products/processors/movidius-vpu.html

119

46. Learning Separable Filters / R. Rigamonti [и др.] // CVPR 2013. — IEEE.
2013. — С. 2754—2761.

47. Exploiting Linear Structure Within Convolutional Networks for Efficient
Evaluation / E. L. Denton [и др.] // Advances in Neural Information
Processing Systems. Т. 27. — Curran Associates, Inc., 2014. — С. 1269—1277.

48. Jaderberg M., Vedaldi A., Zisserman A. Speeding up Convolutional Neural
Networks with Low Rank Expansions // Proceedings of the British Machine
Vision Conference. — BMVA Press. 2014. — С. 1—13.

49. Jin J., Dundar A., Culurciello E. Flattened convolutional neural networks
for feedforward acceleration // arXiv preprint arXiv:1412.5474. — 2014.

50. Automated Multi-Stage Compression of Neural Networks / J. Gusak [и др.] //
ICCVW 2019. — IEEE. 2019. — С. 2501—2508.

51. Hybrid tensor decomposition in neural network compression / B. Wu [и др.] //
Neural Networks. — 2020. — Т. 132. — С. 309—320.

52. Astrid M., Lee S.-I. Cp-decomposition with tensor power method for
convolutional neural networks compression // BigComp 2017. — IEEE.
2017. — С. 115—118.

53. Stable low-rank tensor decomposition for compression of convolutional neural
network / A.-H. Phan [и др.] // ECCV 2020. — Springer. 2020. — С. 522—539.

54. Tensorizing Neural Networks / A. Novikov [и др.] // Advances in Neural
Information Processing Systems. Т. 28. — Curran Associates, Inc., 2015. —
С. 442—450.

55. Compressing 3DCNNs based on tensor train decomposition / D. Wang
[и др.] // Neural Networks. — 2020. — Т. 131. — С. 215—230.

56. Learning both Weights and Connections for Efficient Neural Network / S. Han
[и др.] // Advances in Neural Information Processing Systems. Т. 28. —
Curran Associates, Inc., 2015. — С. 1135—1143.

57. Exploring sparsity in recurrent neural networks / S. Narang [и др.] // arXiv
preprint arXiv:1704.05119. — 2017.

58. LeCun Y., Denker J., Solla S. Optimal Brain Damage // Advances in
Neural Information Processing Systems. Т. 2. — Morgan-Kaufmann, 1989. —
С. 598—605.

120

59. Hassibi B., Stork D. G., Wolff G. J. Optimal brain surgeon and general
network pruning // IEEE international conference on neural networks 1993. —
IEEE. 1993. — С. 293—299.

60. Muthukrishnan R., Rohini R. LASSO: A feature selection technique in
predictive modeling for machine learning // ICACA 2016. — IEEE. 2016. —
С. 18—20.

61. Sparse convolutional neural networks / B. Liu [и др.] // CVPR 2015. — IEEE.
2015. — С. 806—814.

62. Learning Structured Sparsity in Deep Neural Networks / W. Wen [и др.] //
Advances in Neural Information Processing Systems. Т. 29. — Curran
Associates, Inc., 2016. — С. 2074—2082.

63. Han S., Mao H., Dally W. J. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding // arXiv
preprint arXiv:1510.00149. — 2015.

64. Dynamic channel pruning: Feature boosting and suppression / X. Gao
[и др.] // arXiv preprint arXiv:1810.05331. — 2018.

65. Runtime Neural Pruning / J. Lin [и др.] // Advances in Neural Information
Processing Systems. Т. 30. — Curran Associates, Inc., 2017. — С. 2178—2188.

66. Odena A., Lawson D., Olah C. Changing model behavior at test-time using
reinforcement learning // arXiv preprint arXiv:1702.07780. — 2017.

67. The cascading neural network: building the Internet of Smart Things /
S. Leroux [и др.] // Knowledge and Information Systems. — 2017. — Т. 52,
№ 3. — С. 791—814.

68. Blockdrop: Dynamic inference paths in residual networks / Z. Wu [и др.] //
CVPR 2018. — IEEE. 2018. — С. 8817—8826.

69. Slimmable neural networks / J. Yu [и др.] // arXiv preprint
arXiv:1812.08928. — 2018.

70. Spatially adaptive computation time for residual networks / M. Figurnov
[и др.] // CVPR 2017. — IEEE. 2017. — С. 1039—1048.

71. Gemmlowp: a small self-contained low-precision GEMM library [Эл. ресурс],
https : / / github . com / google / gemmlowp (дата обращения 12.11.2022) /
B. Jacob [и др.]. — 2017.

https://github.com/google/gemmlowp

121

72. The ruy matrix multiplication library [Эл. ресурс], https : //github . com/
google/ruy (дата обращения 12.11.2022). — 2020.

73. Dukhan M., Wu Y., Lu H. QNNPACK: open source library for optimized
mobile deep learning [Эл. ресурс], https://github.com/pytorch/QNNPACK
(дата обращения 12.11.2022). — 2018.

74. Efficient implementation of convolutional neural networks with end to end
integer-only dataflow / Y. Yao [и др.] // ICME 2019. — IEEE. 2019. —
С. 1780—1785.

75. Cai Z., Vasconcelos N. Rethinking differentiable search for mixed-precision
neural networks // CVPR 2020. — IEEE. 2020. — С. 2349—2358.

76. Searching for Low-Bit Weights in Quantized Neural Networks / Z. Yang
[и др.] // Advances in Neural Information Processing Systems. Т. 33. —
Curran Associates, Inc., 2020. — С. 4091—4102.

77. Training quantized neural networks with a full-precision auxiliary module /
B. Zhuang [и др.] // CVPR 2020. — IEEE. 2020. — С. 1488—1497.

78. Deng X., Zhang Z. An Embarrassingly Simple Approach to Training Ternary
Weight Networks // arXiv preprint arXiv:2011.00580. — 2020.

79. Simulate-the-hardware: Training accurate binarized neural networks for low­
precision neural accelerators / J. Li [и др.] // ASPDAC 2019. — Association
for Computing Machinery, New York, United States, 2019. — С. 323—328.

80. Single-bit-per-weight deep convolutional neural networks without batch­
normalization layers for embedded systems / M. D. McDonnell [и др.] //
ACIRS 2019. — IEEE. 2019. — С. 197—204.

81. Forward and backward information retention for accurate binary neural
networks / H. Qin [и др.] // CVPR 2020. — IEEE. 2020. — С. 2250—2259.

82. Li Y., Bao Y., Chen W. Fixed-Sign Binary Neural Network: An Efficient
Design of Neural Network for Internet-of-Things Devices // IEEE Access. —
2020. — Т. 8. — С. 164858—164863.

83. Shifted and squeezed 8-bit floating point format for low-precision
training of deep neural networks / L. Cambier [и др.] // arXiv preprint
arXiv:2001.05674. — 2020.

https://github.com/google/ruy
https://github.com/google/ruy
https://github.com/pytorch/QNNPACK

122

84. Johnson J. Rethinking floating point for deep learning // arXiv preprint
arXiv:1811.01721. — 2018.

85. Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural
Networks / X. Sun [и др.] // Advances in Neural Information Processing
Systems. Т. 32. — Curran Associates, Inc., 2019. — С. 4900—4909.

86. Jegou H., Douze M., Schmid C. Product quantization for nearest neighbor
search // IEEE transactions on pattern analysis and machine intelligence. —
2010. — Т. 33, № 1. — С. 117—128.

87. Blalock D., Guttag J. Multiplying matrices without multiplying // ICML
2021. — PMLR. 2021. — С. 992—1004.

88. Deepshift: Towards multiplication-less neural networks / M. Elhoushi
[и др.] // CVPR 2021. — IEEE. 2021. — С. 2359—2368.

89. Morphological Convolutional Neural Network Architecture for Digit
Recognition / D. Mellouli [и др.] // IEEE Transactions on Neural Networks
and Learning Systems. — 2019. — Т. 30, № 9. — С. 2876—2885.

90. Going beyond p-convolutions to learn grayscale morphological operators /
A. Kirszenberg [и др.] // DGMM 2021. — Springer. 2021. — С. 470—482.

91. Calafiore G. C., Gaubert S., Possieri C. Log-sum-exp neural networks and
posynomial models for convex and log-log-convex data // IEEE transactions
on neural networks and learning systems. — 2019. — Т. 31, № 3. — С. 827—838.

92. Calafiore G. C., Gaubert S., Possieri C. A universal approximation result
for difference of log-sum-exp neural networks // IEEE transactions on neural
networks and learning systems. — 2020. — Т. 31, № 12. — С. 5603—5612.

93. AdderNet: Do we really need multiplications in deep learning? / H. Chen
[и др.] // CVPR 2020. — IEEE. 2020. — С. 1468—1477.

94. Kernel Based Progressive Distillation for Adder Neural Networks / Y. Xu
[и др.] // Advances in Neural Information Processing Systems. Т. 33. —
Curran Associates, Inc., 2020. — С. 12322—12333.

95. Universal Adder Neural Networks / H. Chen [и др.] // arXiv preprint
arXiv:2105.14202. — 2021.

96. AdderSR: Towards Energy Efficient Image Super-Resolution / D. Song
[и др.] // CVPR 2021. — IEEE. 2021. — С. 15643—15652.

123

97. An Empirical Study of Adder Neural Networks for Object Detection / X. Chen
[и др.] // Advances in Neural Information Processing Systems. Т. 34. —
Curran Associates, Inc., 2021. — С. 6894—6905.

98. Searching for Energy-Efficient Hybrid Adder-Convolution Neural Networks /
W. Li [и др.] // CVPR 2022. — IEEE. 2022. — С. 1943—1952.

99. Winograd Algorithm for AdderNet / W. Li [и др.] // ICML 2021. — PMLR.
2021. — С. 6307—6315.

100. Zhu S., Li S., Liu W. iMAD: An In-Memory Accelerator for AdderNet with
Efficient 8-bit Addition and Subtraction Operations // GLSVLSI 2022. —
Association for Computing Machinery, 2022. — С. 65—70.

101. Conjugate Adder Net (CAddNet)-A Space-Efficient Approximate CNN /
L. Shen [и др.] // CVPR 2022. — IEEE. 2022. — С. 2793—2797.

102. Foster G. C. The Method of Quarter-Squares // Nature. — 1889. — Т. 40. —
С. 593—593.

103. EuclidNets: Combining Hardware and Architecture Design for Efficient
Training and Inference / M. Prazeres [и др.] // ICPRAM 2022. — SciTePress,
2022. — С. 141—151.

104. Carlson B. M. Chapter 7 - Special Senses—Vision and Hearing // The Human
Body. — Academic Press, 2019. — С. 177—207.

105. Serra J. Introduction to mathematical morphology // Computer vision,
graphics, and image processing. — 1986. — Т. 35, № 3. — С. 283—305.

106. Davidson J. L., Ritter G. X. Theory of morphological neural networks //
Digital Optical Computing II. Т. 1215. — International Society for Optics,
Photonics. 1990. — С. 378—388.

107. Ильин В. А., Позняк Э. Г. Основы математического анализа. Часть 1. —
Москва : Физматлит, 2004. — С. 646.

108. CPU versus GPU: which can perform matrix computation faster—performance
comparison for basic linear algebra subprograms / F. Li [и др.] // Neural
Computing and Applications. — 2018. — Т. 31. — С. 4353—4365.

109. Buber E., Banu D. Performance analysis and CPU vs GPU comparison for
deep learning // CEIT 2018. — IEEE. 2018. — С. 1—6.

124

110. Wang Y., Wei G.-Y., Brooks D. A systematic methodology for analysis of
deep learning hardware and software platforms // Proceedings of Machine
Learning and Systems. — 2020. — Т. 2. — С. 30—43.

111. Fog A. Instruction tables: Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs [Эл. ресурс],
https://www.agner.org/optimize/microarchitecture.pdf (дата обращения
12.11.2022). — 2017.

112. Cortex-A57 Software Optimization Guide [Эл. ресурс], https://developer.
arm.com/documentation/uan0015/b (дата обращения 12.11.2022).

113. IEEE Standard for Floating-Point Arithmetic // IEEE Std 754-2019 (Revision
of IEEE 754-2008). — 2019. — С. 1—84.

114. Reference Implementations for Intel® Architecture Approximation
Instructions VRCP14, VRSQRT14, VRCP28, VRSQRT28, and VEXP2
[Эл. ресурс], https : / /www . intel . com/content /www/us/ en/developer /
articles / code - sample / reference - implementations - for - ia - approximation -
instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.html (дата обращения
12.11.2022).

115. Mitchell J. N. Computer Multiplication and Division Using Binary
Logarithms // IRE Transactions on Electronic Computers. — 1962. —
Т. EC—11, № 4. — С. 512—517.

116. Schraudolph N. N. A Fast, Compact Approximation of the Exponential
Function // Neural Computation. — 1999. — Т. 11. — С. 853—862.

117. THE MNIST DATABASE of handwritten digits, http://yann.lecun.com/exdb/mnist/.

118. Glorot X., Bengio Y. Understanding the difficulty of training deep
feedforward neural networks // AISTATS 2010. Т. 9. — PMLR, 2010. —
С. 249—256.

119. Incremental network quantization: Towards lossless cnns with low-precision
weights / A. Zhou [и др.] // arXiv preprint arXiv:1702.03044. — 2017.

120. Low-power Computer Vision: Improve the Efficiency of Artificial Intelligence /
G. K. Thiruvathukal [и др.]. — CRC Computer Vision, 2022. — С. 416.

121. Ghimire D., Kil D., Kim S.-h. A Survey on Efficient Convolutional Neural
Networks and Hardware Acceleration // Electronics. — 2022. — Т. 11, № 6.

https://www.agner.org/optimize/microarchitecture.pdf
https://developer.arm.com/documentation/uan0015/b
https://developer.arm.com/documentation/uan0015/b
https://www.intel.com/content/www/us/en/developer/articles/code-sample/reference-implementations-for-ia-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.html
https://www.intel.com/content/www/us/en/developer/articles/code-sample/reference-implementations-for-ia-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.html
https://www.intel.com/content/www/us/en/developer/articles/code-sample/reference-implementations-for-ia-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.html

125

122. Zhu S., Duong L. H. K., Liu W. TAB: Unified and Optimized Ternary,
Binary, and Mixed-Precision Neural Network Inference on the Edge // ACM
Transactions on Embedded Computing Systems. — 2022. — Т. 21, № 5. —
С. 1—26.

123. HAWQ: Hessian aware quantization of neural networks with mixed-precision /
Z. Dong [и др.] // CVPR 2019. — IEEE. 2019. — С. 293—302.

124. Ilin D., Krivtsov V. Creating training datasets for OCR in mobile device
video stream // ECMS 2015. — European Council for Modelling, Simulation,
2015. — С. 516—520.

125. Doc 9303, Machine Readable Travel Documents, Eighth Edition 2021 [Эл.
ресурс], https://www.icao.int/publications/Documents/9303_p3_cons_en.
pdf (дата обращения 12.11.2022).

126. Learning multiple layers of features from tiny images. Technical Report
TR-2009 / A. Krizhevsky, G. Hinton [и др.]. — 2009.

127. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for
Biomedical Image Segmentation // MICCAI 2015. — Cham : Springer
International Publishing, 2015. — С. 234—241.

128. FF-UNet: a U-Shaped Deep Convolutional Neural Network for Multimodal
Biomedical Image Segmentation / A. Iqbal [и др.] // Cognitive
Computation. — 2022. — Т. 14, № 4. — С. 1287—1302.

129. Half-UNet: A Simplified U-Net Architecture for Medical Image
Segmentation / H. Lu [и др.] // Frontiers in Neuroinformatics. — 2022. —
Т. 16.

130. ICDAR2017 Competition on Document Image Binarization (DIBCO 2017) /
I. Pratikakis [и др.] // ICDAR 2017. Т. 01. — 2017. — С. 1395—1403.

131. Bezmaternykh P. V., Ilin D. A., Nikolaev D. P. U-Net-bin: hacking the
document image binarization contest // Computer optics. — 2019. — Т. 43,
№ 5. — С. 825—832.

132. Kingma D. P., Ba J. Adam: A method for stochastic optimization // arXiv
preprint arXiv:1412.6980. — 2014.

https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf

126

133. Haiping Lu, Kot A. C., Shi Y. Q. Distance-reciprocal distortion measure for
binary document images // IEEE Signal Processing Letters. — 2004. — Т. 11,
№ 2. — С. 228—231.

134. Otsu N. A threshold selection method from gray-level histograms // IEEE
transactions on systems, man, and cybernetics. — 1979. — Т. 9, № 1. —
С. 62—66.

135. Sauvola J., Pietikäinen M. Adaptive document image binarization // Pattern
recognition. — 2000. — Т. 33, № 2. — С. 225—236.

127

Список рисунков

1.1 Схема классического математического нейрона. 15
1.2 Схема морфологического нейрона. 16
1.3 Нейросетевая архитектура LeNet-5, где 𝑛× 𝑛 conv, 𝑚 — сверточный

слой с 𝑚 фильтрами размера 𝑛 на 𝑛, sigmoid — сигмоидальная
функция активации, avg pool(𝑛, 𝑛) – слой усредняющей
субдискретизации с окном 𝑛 на 𝑛, fc(𝑛) — полносвязный слой с 𝑛

нейронами. 22
1.4 Остаточные блоки а) первой версии, б) второй версии, где conv —

сверточный слой, ReLU — функция активации, batch norm — слой
нормализации. 24

1.5 Схема конечного автомата L, input — входные сигналы, output —
выходные сигналы, state — внутреннее состояние. 28

1.6 Схема RAM-машины. 29

2.1 Структура БМ нейрона с вектором входных значений 𝑥, весовыми
коэффициентами 𝑣+, 𝑣−, 𝑣0 и вектором выходных значений 𝑧. 43

2.2 Треугольные импульсы, описываемые нейронами второго слоя η𝑖. . . 46
2.3 Кусочно-постоянная аппроксимация 𝑓(𝑥) функцией ζ(𝑥). 47
2.4 Архитектура ResNet-22, 𝑘 × 𝑘 conv, 𝑓/𝑠 – сверточный слой с 𝑓

фильтрами размера 𝑘 × 𝑘 и сдвигом 𝑠. Если 𝑠 не указан,
предполагается, что он равен 1, batch norm — слой нормализации,
avg pool — слой усредняющей субдискретизации, fc, 10 —
полносвязный слой c 10 нейронами. Стрелками указано
направление потока данных, в случае слияния двух потоков,
соответствующие векторы данных складываются. Cлои
нормализации и активации внутри остаточных блоков опущены для
простоты. 59

2.5 Структура вычислительного ядра для классического сверточного
слоя. Обозначения: acc — аккумулятор, FMA — модуль FMA. 60

128

2.6 Структура одного вычислительного модуля для БМ сверточного
слоя. Обозначения: 𝑥 — вектор входных значения БМ нейрона, 𝑣 —
вектор весовых коэффициентов БМ нейрона, ⊕ — модуль для
вычисления суммы входов, max — модуль для вычисления
максимума входов, exp2 — модуль для вычисления двоичной
экспоненты входа, log2 — модуль для вычисления двоичного
логарифма входа, acc — аккумулятор, FMA — модуль FMA. 63

2.7 Сравнение различных реализаций двоичного логарифма. 66
2.8 Сравнение различных реализаций операции двоичного

потенцирования. 68

3.1 Примеры изображений из выборки MNIST. 76
3.2 Архитектуры нейросетевых моделей для распознавания

рукописных цифр, a) CNN1, б) CNN2. Стрелками указано
направление потока данных. 77

3.3 Примеры изображений символов паспорта РФ. 85
3.4 Архитектура нейросетевой модели для распознавания символов

паспорта РФ. Стрелками указано направление потока данных. . . . 86
3.5 Примеры изображений символов машиночитаемой зоны. 90
3.6 Архитектуры нейросетевых моделей для распознавания МЧЗ, a)

CNN3, б) CNN4. Стрелками указано направление потока данных. . . 91
3.7 Точность классификации БМ ResNet на выборке MNIST после

послойного преобразования и до дообучения очередного слоя в
зависимости от числа преобразованных слоев 𝑛. 95

3.8 Точность классификации БМ ResNet на выборке MNIST после
послойного преобразования и дообучения в зависимости от числа
преобразованных слоев 𝑛 в диапазоне а) 0.95-1.00, б) 0.989-0.995. . . 95

3.9 Точность классификации изображений из выборки MNIST при
послойной замене функций активации аппроксимированными
версиями в зависимости от числа преобразованных слоев 𝑛. 98

3.10 Точность классификации БМ ResNet на выборке CIFAR10 после
послойного преобразования и до дообучения очередного слоя в
зависимости от числа преобразованных слоев 𝑛. 99

129

3.11 Точность классификации БМ ResNet на выборке CIFAR10 после
послойного преобразования и дообучения в зависимости от числа
преобразованных слоев 𝑛. 101

3.12 Пример бинаризации: а) входное изображение, б) эталонное
изображение. 102

3.13 Нейросетевая архитектура U-Net. Обозначения: conv — сверточный
слой, copy — копирование промежуточных результатов, max-pool —
слой субдискретизации с операцией максимума, up-sample —
сверточный слой, повышающий размерность, sigmoid —
сигмоидальная функция активации. 103

3.14 Результаты бинаризации: а) с помощью U-Net, б) с помощью БМ
U-Net. 104

3.15 Общая схема программного комплекса биполярной
морфологической аппроксимации. 110

130

Список таблиц

1 Число арифметических операций (op) в классическом (conv) и БМ
(BM conv) сверточных слоях. 𝐹 — число фильтров, 𝐶 — число
входных каналов, 𝐾 ×𝐾 — пространственные размеры фильтра,
размер входного изображения 𝐿×𝑀 × 𝐶. 49

2 Число арифметических операций (op) в классическом (fc) и БМ
(BM fc) полносвязных слоях. 𝑃 — число входных значений, 𝑄 —
число нейронов в слое. 49

3 Характеристики арифметических операций для скалярных и
векторных (SIMD) типов данных на различных устройствах [111;
112] в формате латентость/средняя пропускная способность для
каждой операции. 51

4 Оценка числа элементарных арифметических операций, логических
вентилей и латентности для операций в БМ слоях. 54

5 Оценка отношения числа вентилей 𝑉 и латентности 𝐿 для
классического (𝑠𝑡𝑑) и БМ (𝐵𝑀) сверточных слоев для структуры с
слоя 2-ветками c 𝐹 выходными каналами, 𝐶 входными каналами и
размером ядра свертки 𝐾 ×𝐾. 57

6 Характеристики вычислительных ядер по результатам синтеза. . . . 64
7 Оценка числа элементарных арифметических операций, логических

вентилей и латентности для операций в БМ слоях. 69
8 Оценка отношения числа вентилей и латентности для классического

и БМ сверточных слоев для структуры с слоя 2-ветками. 70

9 Условные обозначения для слоев нейронных сетей 76
10 Точность классификации на MNIST: 𝑝𝑠𝑡 — классической сети, 𝑝𝑟 —

БМ сети, обученной со случайной инициализацией, 𝑝1𝑎 — сети с
первым аппроксимированным БМ слоем и остальными
классическими. 78

11 Точность классификации рукописных цифр на разных этапах
послойного дообучения; 𝑝𝑏 — после преобразования и до
дообучения, 𝑝𝑓𝑡 — после дообучения. 81

131

12 Точность классификации символов паспорта РФ на разных этапах
послойного дообучения; 𝑝𝑏 — после квантования и до дообучения,
𝑝𝑓 — после дообучения с инициализацией последующих слоев
весовыми коэффициентами вещественной сети, 𝑝𝑟 — после
дообучения с инициализацией последующих слоев случайными
коэффициентами. 87

13 Архитектуры LeNet-подобных моделей для классификации
символов МЧЗ. 90

14 Точность классификации символов МЧЗ на разных этапах
послойного дообучения; 𝑝𝑏 — после преобразования и до
дообучения, 𝑝𝑓𝑡 — после дообучения. 92

15 Точность классификации символов MNIST с помощью глубокой
нейронной сети на разных этапах послойного дообучения; 𝑝𝑏 —
после преобразования и до дообучения, 𝑝𝑓𝑡 — после дообучения. . . . 94

16 Точность классификации символов MNIST глубокой нейронной
сетью с аппроксимированными функциями активации на разных
этапах послойного дообучения; 𝑝𝑏 — после аппроксимации функций
активации и до дообучения, 𝑝𝑓𝑡 — после дообучения. 97

17 Точность классификации объектов CIFAR10 с помощью глубокой
нейронной сети на разных этапах послойного дообучения; 𝑝𝑏 —
после преобразования и до дообучения, 𝑝𝑓𝑡 — после дообучения. . . . 100

18 Точность БМ U-Net для различного числа БМ слоев на
валидационной выборке. 104

19 Сравнение качества бинаризации различными методами. 107

132

Приложение А

Свидетельства о государственной регистрации программ для ЭВМ

Программа для обучения сверточных биполярных
морфологических нейронных сетей

Программа предназначена для обучения сверточных биполярных морфо­
логических сетей методом послойной аппроксимации и дообучения. Программа
принимает на вход обучающую, валидационную и тестовую выборки, состоящие
из растровых изображений, параметры нейросетевой архитектуры, а также кон­
фигурационный файл с параметрами метода дообучения. Результатом работы
программы является набор обученных нейронных сетей, в которых сверточные
слои исходной модели последовательно преобразованы к биполярному мор­
фологическому виду и качество работы этих моделей на тестовой выборке.
Основной функцией программы является автоматическое обучение сверточных
биполярных морфологических сетей. Ключевыми отличительными особенно­
стями программы являются: использование метода послойной аппроксимации и
дообучения, который позволяет достичь качества распознавания, сопоставимо­
го с качеством исходной модели; возможность оценки качества распознавания
сверточной биполярной морфологической сети.

Тип ЭВМ: IBM РС совмест. ПК;
ОС: Linux, Mac OS X, Windows.
Язык программирования: Python 3
Объем программы для ЭВМ: 200 Кб

133

134

Программа для распознавания идентификационных карт личности
«Smart IDReader»

Программа предназначена для распознавания текстовых данных на ска­
нах, фотографиях и в видеопоследовательностях идентификационных карт
личности. Особенностью библиотеки Smart IDReader является выполнение всех
функций на вычислительном устройстве без подключения к Интернету. Ос­
новными функциями библиотеки Smart IDReader являются: детектирование
наличие образа документа на изображениях; локализация границ образов до­
кументов на изображениях; идентификация образа документа; выделение на
образе документа информационных зон; распознавание текстовой информа­
ции в информационных зонах; объединение результатов распознавания полей
в нескольких образах одной и той же идентификационной карты личности в
видеопоследовательности.

Тип реализующей ЭВМ: процессоры ARMv7-v8 (AArch32 и AArch64), х86
and х86_64, Эльбрус

Язык программирования: С++
Вид и версия операционной системы: iOS, Android, Windows, Windows

Phone, Linux, Mac OS
Объем программы для ЭВМ: 2,2 Мб

135

136

Приложение Б

Акты о внедрении

Акт о внедрении результатов диссертационной работы в деятельность
OOO «Смарт Энджинс Сервис».

137

Акт о внедрении результатов диссертационной работы в деятельность АО
«МЦСТ».

138

Акт о внедрении результатов диссертационной работы в информационные
системы и мобильные приложения АО «Тинькофф Банк».

	Введение
	Модели программно-аппаратного нейросетевого распознавания
	Модели нейрона в задачах технического зрения
	Классическая модель математического нейрона
	Модель морфологического нейрона
	Модель спайкового нейрона

	Архитектуры искусственных нейронных сетей
	Основные слои нейросетевых моделей
	LeNet-подобные нейросетевые архитектуры
	Семейство нейросетевых архитектур ResNet
	Обучение нейросетевых моделей

	Модели вычислительного устройства
	Оценка вычислительной эффективности для специализированных логических интегральных схем
	Оценка вычислительной эффективности для SIMD-процессора

	Методы повышения вычислительной эффективности нейросетевых моделей
	Тензорные разложения свертки
	Обрезка моделей
	Малобитные нейронные сети
	Неклассические модели слоев или нейронов

	Выводы по главе 1. Задачи диссертационного исследования

	Биполярные морфологические нейросетевые модели
	Биполярный морфологический нейрон
	Точность и выразительная способность БМ нейрона
	Вычислительная сложность БМ сетей
	Оценка эффективности БМ нейронных сетей на ЦП
	Оценка эффективности БМ нейронных сетей на ПЛИС и СЛИС
	Вещественная арифметика
	Элементарные арифметические операции
	Полиномиальная аппроксимации логарифма
	Реализация экспоненты
	Оценка числа вентилей и латентности для сверточного слоя

	Моделирование аппаратной реализации БМ сети на ПЛИС
	Реализация классического сверточного слоя
	Реализация БМ сверточного слоя

	Быстрые аппроксимации функций активации БМ нейрона
	Аппроксимация Митчелла
	Аппроксимация Шраудольфа
	Оценка вентильной сложности и латентности

	Финальная БМ модель
	Выводы по главе 2

	Обучение биполярных морфологических моделей
	Классификация рукописных цифр MNIST с помощью БМ моделей
	Метод послойного преобразования и дообучения
	Послойное преобразование и дообучение БМ моделей для классификации рукописных цифр MNIST
	Метод послойного дообучения целочисленных моделей

	Апробация БМ моделей в практических задачах
	Задачи классификации
	Семантическая сегментация

	Программный комплекс для моделирования биполярных морфологических сетей
	Общие сведения
	Функциональность
	Структура и состав программного комплекса
	Результаты работы программного комплекса

	Выводы по главе 3

	Заключение
	Список литературы
	Список рисунков
	Список таблиц
	Свидетельства о государственной регистрации программ для ЭВМ
	Акты о внедрении

