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СПИСОК СОКРАЩЕНИЙ 

АВК    – алгоритм вложенных контуров. 

БД       – база данных. 

ГО       – глубокое обучение. 

ИИ – искусственный интеллект. 

МЖ     – молочная железа. 

ОИ      – область интереса. 

ПО      – программное обеспечение. 

РМЖ  – рак молочной железы. 

УЗИ  – ультразвуковое исследование. 

ЭВМ  – электронная вычислительная машина. 

ACR  – American college of radiology (Американская коллегия радиологии). 

AUC  – area under the curve (площадь под кривой ошибок). 

CAD  – computer-aided diagnosis (системы компьютерной диагностики). 

ELM  – extreme learning machine (методы экстремального обучения). 

FCM  –  fuzzy classifier means (метод нечетких c-средних). 

GLCM – gray-level co-occurrence matrix (матрицы смежности уровней серого). 

IoU  – intersection over union (пересечение над объединением). 

K-NN  – K-nearest neighbor (K-ближайших соседей). 

LBP  – local binary patterns (локальные бинарные шаблоны). 

MLP  – multilayered perceptron (многослойный перцептрон). 

ROC   – receiver operating characteristic (кривая ошибок). 

SVM   – support vector machine (метод опорных векторов). 

PSO  – particle swarm optimization (оптимизация роем частиц). 
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ВВЕДЕНИЕ 

Актуальность темы. Рак молочной железы (РМЖ) представляет собой 

агрессивный вид злокачественных опухолей, характеризующийся высокими 

показателями заболеваемости и смертности [1]. В настоящее время маммография 

является единственным методом раннего выявления РМЖ, демонстрирующим 

повышение выживаемости пациенток [2]. Результатом маммографии являются 

суммационные изображения молочной железы (МЖ) - маммограммы. Данный тип 

изображений характерен для любых методик рентгенографии, когда 

рентгеновский пучок испускается рентгеновской трубкой, проходит через 

трехмерную анатомическую область, частично поглощаясь ее компонентами, и, в 

итоге, достигает двумерного аналогового или цифрового детектора.  

Проблемой таких изображений является то, что различные структуры, 

располагающиеся на разной глубине, могут проецироваться на одни и те же точки 

на получающемся двумерном изображении (суммация), что сильно затрудняет их 

последующий анализ. Особой проблемой является широкий диапазон плотности 

тканей, окружающих патологическое образование. Если она значительно 

отличается от таковой объекта интереса, то его проекция на получаемом 

изображении определяется достаточно четко. В противном случае она становится 

нечеткой, либо объект полностью перекрывается тенью окружающих структур. 

Все это приводит к утрате текстуры, характерной для патологических очагов, и, 

соответственно, к сложностям при визуальном выявлении мелких и атипичных 

проявлений РМЖ, особенно на фоне плотной паренхимы органа, которые часто 

упускаются из виду и диагностируют позже, на более поздних стадиях, что 

ухудшает прогноз.  

В связи с этим актуальной является проблема разработки алгоритмов 

автоматической обработки слаботекстурных суммационных изображений, в 

особенности способных идентифицировать низкоинтенсивные изменения 

небольших размеров. 

Степень разработанности темы. Современный уровень развития 

математических методов обработки результатов измерений [3] и вычислительной 
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техники обеспечил широкое применение методов цифровой обработки 

медицинских изображений, позволяющих обнаруживать широкий круг 

патологических изменений, применение которых в клинической практике 

перспективно для первичной обработки маммографических изображений [4]. 

Значительный вклад в развитие методов обнаружения и диагностики РМЖ 

внесен такими учеными, как С.К. Терновой, А.Н. Ручай, В.И. Кобер, Н.И. 

Рожкова, Ю.А. Подгорнова, С.С. Садыков, P. Oza, H. Boulehmi, T.V. Bartolotta, Z. 

Zhuang, Z. Klimonda, B. Bahareh, S.N. Yu, F. Eddaoudi, S. Padhi, Z. Huo и др. 

Современные подходы к автоматической обработке маммографических 

изображений можно разделить на четыре группы используемых методов. 

К первой группе относятся методы на основе адаптивного порога, которые в 

разное время разрабатывали A. Qayyum, N. Singh и др. Их преимущество 

заключается в том, что определяется порог для градации яркости локальной 

области изображения, который способен выделить отличающиеся от фона 

интересующие объекты. Однако данный контекст характерен только для 

типичных случаев изменений МЖ на однородном фоне, в то время как широкая 

вариабельность, как размеров изменений, так и их положения затрудняют выбор 

размера окна обработки для расчета адаптивного порога. 

Ко второй группе относятся методы на основе анализа областей 

изображения, предложенные, в том числе, Ю.А. Подгорновой, С.С. Садыковым и 

др. Использование подобных подходов делает сегментацию устойчивой к 

изменениям интенсивности, так как динамически определяются критерии 

сходства пикселей на основе локальных характеристик (зачастую текстурных) 

изображения. Однако они зависят от правильности выбора первоначальной точки 

приближения (предварительной кластеризации изображения). Кроме того, 

результат работы данных методов может быть неустойчив, когда фон имеет 

текстурные признаки, схожие с признаками исследуемого объекта. 

Третья группа методов, основанная на анализе краев или контурного поиска 

на изображении, когда производится поиск градиентного перепада яркости на 

нем, предложена S.S. Yasiran, N. Al-Najdawi и др. Такой подход раскрывает 

очертания визуальных данных и аналогичен человеческому восприятию 

изображения. Главным недостатком таких методов является чувствительность к 
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шуму и невозможность правильно анализировать плавные переходы. 

Перечисленные выше три группы методов обработки изображений, как 

правило, включают в себя использование фильтров предварительной обработки 

(например, удаление шума или увеличение контраста изображения) для 

улучшения эффективности получаемых результатов. Тем не менее, использование 

подобной предобработки приводит к искажению границ исследуемого объекта и к 

большей потере текстурных характеристик изображения. 

Четвертая группа методов обработки маммографических изображений 

основана на применении методов машинного обучения, включая сети глубокого 

обучения, которые заключаются в извлечении классифицирующих признаков из 

изображения и последующем отнесении анализируемых областей к заданным 

классам, разрабатываемые Н.И. Рожковой, Li H., Jafari Z. и др. 

Использование сетей глубокого обучения на сегодняшний день оказалось 

одним из перспективных способов сегментации изображений из-за способности 

автоматически извлекать признаки изображения и обрабатывать сложные данные. 

Однако они сталкиваются с некоторыми серьезными проблемами, которые 

тормозят их дальнейшее развитие. Например, результат прогнозирования может 

быть недостаточно устойчив из-за уровня обобщения модели – сложности 

обобщить новые ситуации или контексты, которые не были представлены в 

обучающих выборках данных. Кроме того, сама модель часто недостаточно 

обоснована, так как отсутствует интерпретируемость обученной модели, а 

обучающих данных не всегда достаточно. 

При этом сегментация медицинских изображений является 

междисциплинарной областью, в развитии которой должны участвовать как 

врачи, так и эксперты в области цифровой обработки изображений. Кроме того, 

опухоли МЖ часто дают сложную, атипичную и многовариантную картину со 

значительным перекрыванием между доброкачественными и злокачественными 

процессами, в результате отсутствие обширных специализированных знаний об 

особенностях процессов развития изменений МЖ затрудняет понимание 

специалистами по разработке компьютерных систем диагностики РМЖ всей 

глубины клинических потребностей. 
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Проведенный анализ состояния проблемы обработки маммографических 

изображений предопределили выбор темы диссертационной работы, постановку 

цели и задач исследования. 

Целью диссертационного исследования является разработка и улучшение 

алгоритмов обработки и анализа суммационных маммографических изображений 

для повышения точности и достоверности неинвазивной диагностики рака 

молочной железы. 

Для достижения поставленной цели решаются следующие задачи: 

1. Разработать алгоритм обнаружения подозрительных изменений молочной 

железы на маммограммах. 

2. Провести анализ эффективности предложенного алгоритма обнаружения 

изменений в сравнении с моделью глубокого обучения. 

3. Разработать методику сегментации подозрительных изменений на 

маммографических изображениях. 

4. Развить методики классификации подозрительных изменений на 

маммограммах. 

5. Разработать метод обнаружения скоплений кальцинатов на 

маммографических изображениях. 

6. Разработать методику классификации доброкачественных и 

злокачественных кальцинатов на маммографических изображениях. 

Объект исследования – маммографические изображения пациенток с 

раком молочной железы и здоровых женщин. 

Предмет исследования – методы цифрового анализа и обработки 

маммографических изображений. 

Методология и методы исследования. Для решения поставленных задач и 

получения основных научно-практических результатов использованы методы 

диагностики РМЖ (маммография), методы математического анализа, 

математического моделирования, методы машинного обучения, системный 

подход к анализу и синтезу алгоритмов автоматической обработки медицинских 

изображений. Теоретические результаты получены с использованием 
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аналитических методов диагностики РМЖ, теории статистических решений и 

численных методов расчета на ЭВМ с использованием программного пакета 

Matlab версии 2020b, теории вероятностей и математической статистики. 

Экспериментальные исследования проведены с использованием натурных данных 

скрининга РМЖ и специально разработанного автором программного 

обеспечения (ПО). 

Научная новизна работы состоит в следующем: 

1. Предложен новый метод обнаружения патологических изменений на 

маммограммах на основе алгоритма вложенных контуров и рассматриваемой 

модели образований, позволяющий повысить чувствительность маммографии в 

выявлении рака молочной железы. 

2. Разработана оригинальная методика сегментации подозрительных 

изменений на маммографических изображениях, основанная на предложенной 

модели, где модуль градиента растет в направлении от вершины образования к 

его границе, и не искажающий границы исследуемого объекта, а также 

впоследствии не влияющий на извлечение текстурных и/или геометрических 

признаков изменений молочной железы.  

3. Разработан новый метод обнаружения кальцинатов на маммографических 

изображениях, обеспечивающий повышение чувствительности маммографии в 

выявлении рака молочной железы. 

4. Разработана новая методика классифицирования доброкачественных и 

злокачественных скоплений кальцинатов на маммографических изображениях, 

отдельно учитывающая скопления кальцинатов в сосудах в виде модели 

линейных объектов и обеспечивающая снижение частоты ложноположительных 

откликов алгоритма вложенных контуров. 

Практическая значимость результатов работы. Продемонстрировано, 

что использование разработанных методик и алгоритмов улучшает качество 

анализа маммографических изображений. На основе данных методов может быть 

реализована система компьютерной диагностики образований на ранней стадии, 

способствующая поддержке принятия решений о необходимости и стратегии 

дальнейшего обследования пациента. 
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Реализованная методика на основе алгоритма вложенных контуров 

потенциально способна обнаруживать типичные образования на более ранней 

стадии. Это имеет высокую важность, так как стадия опухоли на момент 

постановки диагноза представляет собой один из важнейших факторов, 

непосредственно влияющих на выживаемость пациенток. 

В целом, внедрение разработанных алгоритмов в клиническую практику 

может способствовать повышению выживаемости пациенток за счет улучшения 

выявляемости различных вариантов РМЖ в более ранней стадии. 

Достоверность обусловлена соответствием результатов, полученных путем 

аналитического и численного моделирования, результатам экспериментальных 

исследований, выполненных в рамках данной работы и другими исследователями. 

Эффективность разработанных алгоритмов подтверждена натурными 

испытаниями и повторяемостью результатов на больших объемах 

экспериментальных данных, полученных в период 2016-2024 гг. 

Фактические данные, протоколы исследований, использованные методы, 

статистические данные, приведенные в работе в виде таблиц, диаграмм и 

результатов статистической обработки, логичность изложения, объем, и 

достоверность представленных материалов позволяют заключить, что научные 

положения исследования и его выводы являются достоверными. 

Соответствие диссертации паспорту научной специальности. В 

соответствии с формулой специальности 1.2.2 «Математическое моделирование, 

численные методы и комплексы программ» (технические науки), в работе 

выполнены разработка, исследование и реализация алгоритмов и методов 

обнаружения, сегментации и классификации патологических изменений МЖ на 

маммографических изображениях на основе предложенной модели функции 

яркости образования. Работа соответствует следующим пунктам паспорта 

специальности: п. 2. «Разработка, обоснование и тестирование эффективных 

вычислительных методов с применением современных компьютерных 

технологий», п. 3. «Реализация эффективных численных методов и алгоритмов в 

виде комплексов проблемно-ориентированных программ для проведения 

вычислительного эксперимента», п. 8. «Комплексные исследования научных и 

технических проблем с применением современной технологии математического 
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моделирования и вычислительного эксперимента» и п. 9. «Постановка и 

проведение численных экспериментов, статистический анализ их результатов, в 

том числе с применением современных компьютерных технологий (технические 

науки)». 

Апробация работы. Основные результаты диссертационного исследования 

были доложены и обсуждены на следующих научно-технических и научно-

медицинских конференциях: Европейских конференциях «Компьютер-

ассистированная лучевая диагностика и хирургия» (CARS) (Гейдельберг, 2016), 

(Берлин, 2018), (Ренн, 2019), (Мюнхен, 2020), (Мюнхен, 2021); Международной 

конференции по микроволновым технологиям, антеннам и электронным системам 

(COMCAS) (Тель-Авив, 2017); IX и X международных конгрессах «Невский 

радиологический форум – 2017 и 2018» (Санкт-Петербург, 2017 и 2018); 

конференции Европейского общества специалистов по ультразвуковой 

диагностике (EUROSON) (Познань, 2018). 

Исследования автора в 2022-2023 гг. и 2024 г. получили финансовую 

поддержку Российского научного фонда (проекты 22-71-10070 и 24-21-00031, 

соответственно). 

Личный вклад. Все основные результаты диссертационной работы 

получены и обоснованы автором самостоятельно. Постановка задач и обсуждение 

результатов проводились совместно с научным руководителем и научным 

консультантом. Личный вклад соискателя состоит в разработке методов [1-7], 

алгоритмов [1; 15-17; 20; 22], написании программ [23-25] и обработке 

экспериментальных данных, анализе литературных источников. Весь материал, 

представленный в работах [1-7; 10-12; 14-17; 20; 22], проанализирован и 

статистически обработан автором самостоятельно. В [1-2; 5; 11; 14; 15-17; 20] 

автором проведены аналитические построения и математическое моделирование, 

получены основные результаты и сформулированы выводы. Учитывая, что 

обработку значительного объёма экспериментальных данных невозможно 

провести единолично, роль диссертанта, в работах [4; 8-10; 13; 18-19; 21] 

заключалась в систематизации данных, участии в проведении эксперимента. По 

этой же причине многие публикации диссертанта имеют соавторство. Источники 

указанные в квдаратных скобках соотвествуют списку публикаций автора. 
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Помощь научного консультанта потребовалась для грамотного формирования 

базы данных маммографических изображений, последующей их разметки при 

разработке и тестировании разрабатываемых методов, а также для выделения 

признаков различных вариантов рака молочной железы и интерпретации 

полученных результатов оценки эффективности алгоритмов и методов для 

определения их значимости и возможности применения в клинической практике. 

Публикации. Основные результаты диссертационного исследования 

опубликованы в 22 научных публикациях, из них 1 работа в журнале, 

рекомендованном ВАК, 6 публикаций в научных изданиях, индексируемых Web 

of Science и Scopus по группе научных специальностей диссертации, включая 4 

статьи в изданиях Q1 и Q2 квартиля, 8 – в трудах конференций, всего 11 

публикаций в изданиях категории К1 и К2 и приравненных к ним, получено 3 

свидетельства о государственной регистрации программы для ЭВМ. 

Внедрение результатов исследования в практику. Разработанные 

алгоритмы были реализованы в составе программного комплекса обработки 

медицинских изображений и получены соответствующие свидетельства о 

государственной регистрации программы для ЭВМ: 

1. «Электронная экспертная система дифференциальной диагностики 

кистозных и солидных образований молочной железы на ультразвуковых 

изображениях (версия 1.0)». Свидетельство о регистрации программы для ЭВМ 

№ 2021662649 от 02.08.2021.  

2. «Электронная экспертная система дифференциальной диагностики 

доброкачественных и злокачественных солидных образований молочной железы 

на ультразвуковых изображениях (версия 1.0)». Свидетельство о регистрации 

программы для ЭВМ № 2021662473 от 29.07.2021.  

3. «Программа для обработки данных скрининга молочной железы». 

Свидетельство о регистрации программы для ЭВМ № 2023611125 от 17.01.2023. 

Структура и объем работы. Диссертация состоит из введения, трех глав, 

заключения, выводов, практических рекомендаций и списка литературы. 

Диссертация изложена на 155 страницах машинописного текста, содержит 23 

таблицы и 53 рисунка. Список литературы включает 175 источников. 
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Положения, выносимые на защиту: 

1. Предложен алгоритм вложенных контуров, который обеспечивает 

эффективное обнаружение подозрительных изменений МЖ на маммограммах при 

широком диапазоне соотношения яркостей образования и фона. 

2. Разработана методика сегментации подозрительных образований на 

маммографических изображениях без искажения границ исследуемого объекта, 

позволяющая повысить точность классификации на основе методов машинного 

обучения. 

3. Предложен метод обнаружения кальцинатов на маммографических 

изображениях, обеспечивающий эффективное обнаружение признаков раннего 

рака молочной железы. 

4. Разработана методика классификации доброкачественных и 

злокачественных кальцинатов на маммографических изображениях, 

способствующая поддержке принятия клинических решений. 

 

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ 

Во введении обоснованы актуальность работы, цель и задачи исследований, 

объект, предмет и методы исследований, научная новизна, научная и 

практическая значимость, защищаемые положения, представлены апробация 

работы и личный вклад соискателя. 

В первой главе анализируются особенности маммографических 

изображений МЖ, даются основные характеристики различных типов 

образований на них. Приводятся данные о частоте их выявления врачами-

рентгенологами в процессе маммографического скрининга РМЖ. 

Представлены результаты исследований, которые показывают, что 

интерпретация рентгенологами маммограмм приводит к большому количеству 

ложноотрицательных случаев. Для уменьшения ошибки изображения МЖ 

должны анализироваться несколько раз. В связи с этим утверждается 

необходимость разработки систем автоматической диагностики изменений МЖ. 
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Приводится обсуждение различных методов обнаружения, сегментации 

изменений и их дальнейшей классификации. Описываются основные принципы 

обработки маммограмм. 

На основе проведенного анализа состояния проблемы обработки 

медицинских изображений и методов классификации на основе машинного 

обучения ставится цель, и формулируются задачи диссертационного 

исследования. 

Вторая глава посвящена разработке новых методик и алгоритмов 

обработки маммографических изображений, а также обнаружению различных 

вариантов изменений и их дифференцированию. При этом исследуется 

эффективность существующих алгоритмов, предлагаются их модификации и 

некоторые качественно новые методы. 

Представлены наборы данных маммографии (маммограммы), на которых 

тестировались предложенные методики и характеристики изменений, 

включенных в анализ. 

Третья глава посвящена изложению результатов тестирования 

предложенных методик, численных экспериментов и их обсуждению.  

Представлены таблицы с результатами работы каждой из предложенных 

методик с расчетом оценки эффективности для каждого из типов изменений, а 

также представлены единичные случаи, на которых алгоритмы дают 

ложноположительные результаты. 

В заключении изложены основные результаты исследования, выводы и 

рекомендации по их использованию.  
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1. АНАЛИЗ И СИНТЕЗ МЕТОДОВ ОБРАБОТКИ  

МАММОГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ 

1.1. Маммограмма, ее виды и характеристики 

Маммограмма — это рентгеновское изображение молочных желез, 

полученное с помощью очень низких доз рентгеновского излучения. Существуют 

пленочные и цифровые маммограммы, отличие между которыми состоит в том, 

что при выполнении плёночной маммографии рентгеновские лучи, проходя 

сквозь ткани молочной железы, попадают на рентгеновскую плёнку. В случае 

цифровой маммографии изображение выводится на экран монитора и сохраняется 

в компьютере графическим файлом. 

Цифровая маммография в настоящее время набирает популярность, так как 

позволяет подвергнуть полученные изображения обработке различными 

программами, например, изменять яркость или контрастность, масштабировать. 

Но при этом цифровая маммография имеет и свои недостатки, так как не 

позволяет получить изображение со столь же высоким пространственным 

разрешением, как плёночная, к тому же, не каждое медицинское учреждение 

имеет подобную аппаратуру.  

Отдельной проблемой является постобработка цифровых маммограмм на 

системе, в результате они становятся более контрастными, что может облегчать 

визуализацию отдельных видов изменений (например, кальцинатов), но в то же 

время осложнять визуализацию изменений других видов (например, 

низкоинтенсивных теней). На рис. 1 представлена оцифрованная с помощью 

сканера пленочная маммограмма, на рис. 2-3 — маммограммы, полученные с 

помощью цифрового маммографа. 
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Рис. 1. Оцифрованная с помощью сканера пленочная маммограмма. 

 

В процессе маммографического обследования выделяют два ключевых типа 

проекций: стандартные и дополнительные. Стандартные проекции обеспечивают 

оптимальное покрытие молочной железы и используются для проведения 

скрининговых диагностик. Дополнительные проекции используются, когда 

требуется улучшить визуализацию подозрительного участка. 

Обычно используют две стандартных проекции: краниокаудальную (когда 

трубка расположена вверху, рентгеновский луч направлен вертикально вниз) (CC) 

и медиолатеральную косую (когда трубка расположена сверху и снаружи от 

пациентки, а луч направлен косо вниз и внутрь) (MLO). 

На рис. 2 представлены маммограммы в стандартных проекциях. В качестве 

нестандартных могут выполняться 90-градусные, расщепленные маммограммы, 

маммограммы с увеличением и др. 
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                                а)                               б) 

Рис. 2. Цифровые: а) краниокаудальная маммограмма; б) медиолатеральная косая 

маммограмма. 

 

Важной особенностью маммографии является крайне широкий диапазон 

соотношения яркости патологических очагов и фона. В соответствии с 

международной классификацией ACR, разделяют четыре типа плотности МЖ:  

A – молочные железы, в которых преобладает жировая ткань, а содержание 

железисто-фиброзной ткани составляет менее 25% от общей площади 

железистого треугольника. 

B – размазанное распределение железисто-фиброзной ткани, занимающее от 

25 до 50% площади железистого треугольника. 

C – молочные железы с неоднородными участками железисто-фиброзной 

ткани, охватывающими от 51 до 75% площади железистого треугольника. 

Переходная складка 

Грудные мышцы 

Сосок 

Сосок 
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D – очень плотная структура, где процент железисто-фиброзной ткани 

превышает 75% от площади железистого треугольника. 

На рис. 3 представлены примеры маммограмм MLO различной степени 

плотности.  

 

  

                              а)                               б) 
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                           в)                              г) 

Рис. 3. Примеры маммограмм MLO различной степени плотности: а) ACR A; б) 

ACR В; в) ACR С; г) ACR D. 

1.2. Типы изменений МЖ, которые могут соответствовать РМЖ 

Следующей проблемой маммографии является крайне широкий спектр 

изменений, которые могут соответствовать РМЖ. При этом ряд РМЖ может 

перекрываться по своим визуальным характеристикам с широким кругом 

доброкачественных процессов. Выделяют следующие маммографические 

варианты РМЖ. 

Звездчатые (спикулизированные) образования являются наиболее часто 

наблюдаемым маммографическим вариантом РМЖ (рис. 4). 
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                                                    а)                                 б) 

Рис. 4. Медиолатерально-косые (MLO) изображения: а) гистологически 

подтвержденный протоковый рак; б) та же пациентка, 90° боковое изображение; в 

области выявленного позднее РМЖ определяется неспецифическое образование 

(стрелка). 

 

Изменения структуры паренхимы, по сути, представляют собой образования 

с небольшим и плотным центром и длинными спикулами (рис. 5). Несмотря на то, 

что доброкачественные радиальные рубцы могут иметь схожий внешний вид, все 

такие изменения должны быть верифицированы морфологически, поскольку в 

противном случае их невозможно надежно дифференцировать с помощью 

рентгенологических методов. 
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Рис. 5. 90° маммограмма: отмечается область измененной структуры паренхимы 

(стрелка) на жировом фоне (гистологически верифицированная протоковая 

карцинома). 

 

Изменения неправильной формы с нечеткими контурами также являются 

вариантом спикулизированных изменений с короткими спикулами (рис. 6). 

Проблема в том, что различные доброкачественные образования, 

преимущественно очаговые фиброзы и фиброзированные инволютивные 

фиброаденомы, могут иметь схожую картину. 

Дольчатые и округлые изменения с полностью или частично четкими 

контурами могут быть относительно редким проявлением умеренно- или 

высокодифференцированного РМЖ (около 5%) с преимущественно 

экспансивным ростом, однако их часто ошибочно расценивают как 

доброкачественные изменения (рис. 7). 



23 

  

Рис. 6. Маммограмма в кранио-каудальной (CC) проекции: визуализируется 

небольшое непальпируемое образование с нечеткими контурами (гистологически 

верифицированная протоковая карцинома; стрелка). 

 

  

Рис. 7. Маммограмма MLO: отмечается округлое образование с почти четкими 

контурами на фоне паренхимы жировой плотности (ACR A) (гистологически 

верифицированная протоковая карцинома; стрелка). 

 

Частично визуализируемые изменения обычно располагаются в областях, 

частично выходящих за пределы стандартных маммографических проекций, и 

a

) 

б

) 

a

) 

б

) 
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поэтому на полученных изображениях они визуализируются не полностью, т.е. 

определенная часть такого изменения остается за пределами изображения (рис. 8). 

 

  

Рис. 8. Маммограмма MLO: отмечается частично визуализируемое 

спикулизированное образование (верифицированная протоковая карцинома, 

стрелка). 

 

Области асимметрии обычно видны на маммограммах и в большинстве 

случаев соответствуют доброкачественным изменениям. Однако некоторые РМЖ, 

особенно с инфильтративным ростом или узловые РМЖ на плотном фоне, могут 

определяться лишь как область асимметрии (рис. 9). 



25 

  
       а)                                б) 

Рис. 9. Маммограммы MLO: а) в правой молочной железе определяется область 

асимметрии (гистологически верифицированная протоковая карцинома; стрелка); 

б) нормальная левая МЖ. 

 

Нечетко видимые или невидимые образования на фоне плотной паренхимы 

ACR C-D могут быть серьезной проблемой для интерпретации маммограмм (рис. 

10). Эта ситуация является основной причиной интервальных раков. Более того, 

паренхима МЖ ACR C-D обычно представляется тяжистой при пальпации, что 

значительно затрудняет клиническое обследование органа и дает много 

ложноположительных результатов. 

a

) 

б

) 

в

) 
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Рис. 10. Маммограмма СС: на фоне неоднородно плотной паренхимы (ACR C) 

изменений визуально не определяется. Стрелкой показана область расположения 

крупного (размером около 3 см) образования. 

 

Узловая форма РМЖ составляет около 94-99% всех инвазивных случаев [5]. 

Наиболее частым проявлением инвазивного узлового РМЖ, видимым на 

маммограммах, является объемное образование. Этот тип изменения характерен 

не менее чем для 56-90% всех случаев РМЖ [6]. Приблизительно одна треть 

некальцифицированных раков проявляется в виде спикулизированных 

образований, 25 % — в виде образований с нечетким контуром, 25 % — в виде 

менее специфичных округлых, овальных или дольчатых образований и менее 10% 

— в виде округлых, овальных или дольчатых образований с четким контуром и 

5% – как участки изменений структуры плотной паренхимы без явного 

образования [7]. Само по себе образование является неспецифическим признаком 

и может соответствовать как доброкачественной, так и злокачественной 

патологии молочной железы. Несмотря на то, что типичные характеристики 

доброкачественных и злокачественных образований значительно различаются, 

существует широкая серая зона, включающая изменения обоих типов. Эта 
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проблема особенно важна для небольших изменений, которые могут иметь очень 

схожий и неспецифический вид. 

Еще одним вариантом маммографических проявлений РМЖ являются 

кальцинаты. Кальцинаты представляют собой небольшие интенсивные «точки» - 

отложения солей кальция, которые могут встречаться в любой части МЖ. Данный 

тип изменений также может служить признаком как доброкачественной, так и 

злокачественной патологии МЖ. 

По геометрическим признакам кальцинаты можно разделить на несколько 

групп (табл. 1). 

Рассмотренное разнообразие, как типов изменений, так и степеней 

плотности МЖ требует использования универсальных методов компьютерной 

диагностики РМЖ, которые учитывали бы не только особенности структуры МЖ, 

но и способ получения маммограммы (проекцию, способ получения — пленочная 

/ цифровая). 

При этом заранее неизвестная форма, количество и положение образований, 

а также наличие волокнистых тяжей и/или сосудистых структур, перекрывающих 

образования, значительно усложняют разработку методов автоматического 

выявления очага. 

Таблица 1. Типы кальцинатов. 

Доброкачественные 

Обызвествленный 

осадок 

 

Дистрофические 

 

Округлые 

 

Палочковидные 

 

Сосудистые 

 

Точечные 

 

Хлопьевидные 

 

Яичная 

скорлупа 
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Подозрительные 

Аморфные 

 

Крупные 

гетерогенные 

 

Мелкие 

линейные 

 

Мелкие 

линейные 

ветвящиеся 

 
Мелкие 

полиморфные 

 
 

 

 

1.3. Алгоритмы обнаружения и сегментации образований на 

маммографических изображениях 

Автоматическое обнаружение подозрительных областей на маммограммах 

важно для второго или последующего прочтения. Такой подход, как известно, 

способен повысить выявляемость РМЖ на 5-15 % [8].  

Пороговые методы, используемые для сегментации изображений в течение 

многих лет, неэффективны при классификации опухолей МЖ из-за высокой 

погрешности [9]. Исследования показали, что интерпретация маммограмм 

рентгенологами привела к большому количеству ложноотрицательных случаев 

[10]. Чтобы уменьшить эту ошибку, маммограммы должны быть 

проанализированы повторно другим специалистом, что повышает 

чувствительность на 9,0% [11]. Однако этот процесс занимает много времени и 

сопряжен с определенными затратами. 

Системы компьютерного анализа (CAD) широко используются в качестве 

вспомогательного инструмента для рентгенологов в обнаружении и диагностике 

РМЖ [12-14]. Внедрение компьютерной диагностики позволяет уменьшить 

количество ошибок, увеличить точность и снизить время, затрачиваемое на саму 
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диагностику [15]. Общая компьютерная система диагностики, включающая этапы 

сегментации, выделения признаков и классификации, была разработана для 

помощи медицинским экспертам в диагностике РМЖ [16]. Компьютерная 

диагностика является важным этапом в обработке маммограмм и считается более 

эффективной, чем традиционные медицинские методы [17]. Таким образом, 

автоматическая сегментация изображений является очень важным этапом в 

разработке CAD [18]. 

Методы сегментации маммографических изображений можно 

сгруппировать в три категории: классическая сегментация [19], сегментация на 

основе машинного обучения [20] и методы глубокого обучения [21]. Так как 

методы глубокого обучения являются быстро развивающимися и вызывают 

наибольший интерес в настоящее время, то они будут рассмотрены в отдельной 

подглаве диссертации. Кроме того, классические методики делятся на три 

категории: а) сегментация, основанная на анализе областей исследуемого 

изображения; б) сегментация на основе использования порогирования; в) 

сегментация, с использованием анализе контуров (краев объектов). Кроме того, 

методы машинного обучения разделяются на два вида: обучение без учителя и 

обучение с учителем. 

На рис. 11 показана схема, иллюстрирующая подходы к сегментации и 

классификации изменений на маммографических изображениях. 



30 

 

Рис. 11. Схема, иллюстрирующая подходы к сегментации и классификации 

изменений МЖ на маммограммах. 

 

1.3.1. Сегментация РМЖ на основе анализа областей 

Senthilkumar и др. [22] сформулировали методологию алгоритма 

сегментации по регионам для выявления РМЖ. Всего из базы данных MIAS было 

использовано 40 изображений маммограмм, и для удаления шума из изображений 

маммограмм использовался медианный фильтр. Для повышения точности 

сегментации изображения маммограммы были улучшены с использованием 

адаптивного выравнивания гистограммы с ограниченным контрастом (CLAHE) и 

методом детектора углов Харриса. Предложенный метод дал точность 

сегментации 93,0%.  

Berber и др. [23] предложили метод сегментации контура образования МЖ 

для цифровых маммограмм. Предлагаемый метод основан на классическом 



31 

алгоритме разрастания областей (seeded region growing). Данный метод был 

оценен с использованием 260 маммограмм и достиг точности 95,06%.  

Petrick и др. [24] разработали подход, сочетающий адаптивное усиление 

контрастности и региональную сегментацию образований МЖ на маммограммах. 

Изображения были подвергнуты предварительной обработке для повышения 

контрастности с использованием плотности распределения функции яркости и 

был удален шум с помощью фильтра Гаусса. Метод показал высокую точность 

сегментации, которая составила 98%. 

Nanayakkara и др. [25] развили автоматический метод сегментация границы 

МЖ на маммографических изображениях. Метод, примененный для анализа 

кожной линии и сегментации МЖ, основывался на модифицированном алгоритме 

быстрого сопоставления (fast matching) и морфологических операциях. Этот 

метод был протестирован на 136 маммографических изображениях из базы 

данных mini-MIAS, где шум был подавлен с помощью чередующегося 

последовательного фильтра. В результате предложенный метод показал 

чувствительность 99,2% и точность сегментации 99,0%. 

А. Shrivastava и др. [26] развили автоматизированный метод сегментации 

цифровой маммограммы с использованием алгоритма роста рассредоточенной 

области и скользящего окна. В данном методе применяется полностью 

автоматизированная технология для выявления подозрительных образований на 

маммограммах. Для удаления грудных мышц с изображений использовалась 

техника скользящего окна. Также для выделения области интереса применялся 

алгоритм разрастания области. Изображения были взяты из базы данных MIAS, и 

предложенный подход продемонстрировал точность сегментации в 91,3%. 

Isa и Siong [27] разработали метод автоматической сегментации и 

обнаружения изменений на маммограммах. Данный метод основывается на 

разрастании области на изображениях, учитывая два типа пикселей: пиксели, 

относящиеся к образованию, и пиксели, представляющие окружающий фон. 

Контраст изображения был улучшен с помощью предобработки. Процесс 

разрастания областей (region growing) основывается на локальном статистическом 
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анализе текстуры. Эффективность метода была протестирована на 322 

маммограммах из базы данных MIAS, где были достигнуты показатели 

чувствительности 94,59% и 3,9% ложных срабатываний. 

Kaitouni и др. [28] разработали сегментацию опухоли МЖ и удаление 

грудной мышцы на основе скрытой марковской модели и регионарного 

разрастания. Задача предлагаемого метода заключалась в отделении изображения 

грудных мышц от изображений МЖ и извлечении признаков из опухолей МЖ. 

Метод состоит из двух этапов: а) порогирование по методу Отцу и б) метод k-

средних на основе классификации изображений. Маммографические изображения 

были получены из базы данных MIAS. Сообщается, что точность и ошибка 

составляют 91,92% и 8,07%, соответственно.  

В работе [29] было предложено автоматическое обнаружение образований 

МЖ с использованием оптимизированной методики разрастания областей (seeded 

region growing). Из сегментированных изображений были извлечены текстурные 

характеристики, включая матрицу смежности уровней серого (grey-level co-

occurrence matrix) и матрицу длин серий на уровне серого (grey-level run length 

matrix), которые затем использовались в качестве входных данных для нейронной 

сети с прямой связью. Метод основан на подходе обучения с учителем, при этом 

учитываются обучающие наборы эмпирических параметров контуров объектов. 

Эффективность данного подхода была проверена на 300 маммографических 

изображениях из базы данных DDSM, при этом для уменьшения шума в 

изображениях применялся Гауссов фильтр. Чувствительность и специфичность 

предложенного метода составили 98,1% и 97,8% соответственно. Кроме того, 

эффективность сегментации составила 90% на основе индекса Жаккара. 

Подгорнова и др. [30] провели сравнительное исследование алгоритмов 

сегментации для выявления микрокальцинатов на маммограммах. Метод был 

проверен на 250 изображениях маммограмм, извлеченных из набора данных 

MIAS. В исследовании использовались алгоритм сегментации по водоразделам 

(watershed), средний сдвиг (mean shift) и сегментация k-средних. Результаты 

показывают, что сегментация по водоразделам правильно определила только 18% 
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объектов, и 94% соответствовали ложным обнаружениям. Кроме того, метод 

среднего сдвига позволил правильно обнаружить 39,22% очагов при 60,8% 

ложных обнаружений. Напротив, сегментация k-средних правильно определила 

42,8% при 57,2% ложных обнаружений.  

Сегментация МЖ на цифровых маммограммах и обнаружение 

подозрительных изменений были предложены в работе [31]. Данный метод 

основывается на автоматизированной подходе к сегментации маммограмм с 

использованием морфологических методов, что позволяет эффективно устранять 

шумы, возникающие при оцифровке. Изображения маммограмм были взяты из 

набора данных mini-MIAS, и для удаления шума из изображений маммограмм 

использовался медианный фильтр. Точность определения области составила 95%. 

Pereira и др. [32] предложили методику сегментации РМЖ на 

маммограммах, применяющую вейвлет-анализ и генетические алгоритмы. Для 

тестирования методики были использованы маммограммы полученные из базы 

данных DDSM, где шумовая составляющая на изображениях была подавлена с 

применением фильтра Винера. Сегментация изменений МЖ была проведена с 

помощью различных методов, включая пороговую обработку, вейвлет-

преобразование и генетические алгоритмы. Среднее значение и стандартное 

отклонение правильности сегментации составили в 79,2 ± 8%.  

Soomro и Choi [33] предложили метод надежных активных контуров (robust 

active contours) для сегментации изображений маммограмм. Предлагаемый метод 

выявляет зоны с высокой интенсивностью на маммограммах, основываясь на 

определении бимодального набора уровней. Эффективность метода оценивалась с 

применением маммограмм из набора данных mini-MIAS. Для оценки его 

производительности использовались показатели точности и полноты. Точность 

метода составила 96,72%, полнота — 97,22%. 

Сегментация изображения маммограммы с использованием сегментации 

водораздела и классификации с использованием классификатора k-ближайших 

соседей (k-NN) была предложена в работе [34]. Матрицы смежности уровней 

серого, основанные на характеристике текстуры Харалика, были извлечены из 60 
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маммографических изображений. Для проверки предлагаемого метода 

использовалась база данных MIAS, а для удаления шума применялся фильтр 

Собеля. Предложенный метод дал точность сегментации 83,33%. 

Wei и др. [35] предложили сегментацию области МЖ на маммограммах с 

использованием сегментации водораздела (watershed). Метод объединяет два 

подхода: пороговый и морфологический. В рамках этого метода проводится 

предварительная оценка области интереса МЖ и определение местоположения её 

границы. В итоге было случайным образом выбрано 204 маммограммы из базы 

данных DDSM, где для удаления шума использовался медианный фильтр. 

Предложенный метод дал точность 95%.  

В работе [36] был предложен автоматический метод сегментации 

образования МЖ с использованием алгоритма водораздела, контролируемого 

маркерами, для локализации образований МЖ и удаления грудных мышц. На 

маммограмме были выделены фоновые маркеры, предназначенные для 

определения локализации области интереса, содержащей РМЖ. Эта методика 

прошла испытания на 120 маммограммах, взятых из базы данных MIAS, где шум 

был удален с помощью фильтра Собеля. Сообщалось, что точность обнаружения 

очага предлагаемым методом составляет 90,83%, а ROC-кривая — 91,3%.  

Hatanaka и др. [37] разработали автоматический способ выявления 

образований на маммограммах, основываясь на частичной потери области 

интереса. Образования с частичной потерей идентифицируются на основе их 

сходства с секторной моделью с помощью сопоставления шаблонов. Этот подход 

был проверен на 335 маммографических снимках, где шум был удален с помощью 

фильтра Собеля. Сообщается, что чувствительность составляет 90%, а частота 

ложноположительных результатов — 0,2% на изображение. Кроме того, 

комбинация этих двух методов улучшила частоту истинно положительных 

обнаружений до 97%. 

Shareef [38] предложил подход к обнаружению РМЖ, основанный на 

трансформации водораздела (watershed transformation). В данном исследовании 

применялись два вида медицинских изображений: 33 ультразвуковых снимка и 33 
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рентгеновских маммограммы. Чувствительность составила 90,47%, 

специфичность — 75%, а точность — 84,848% для обоих типов изображений. 

Liu и др. [39] разработали полностью автоматизированную методику для 

выявления и сегментации изменений на маммограммах. Этот подход включает 

автоматическое обнаружение подозрительных участков и состоит из двух этапов: 

создание шаблона и сопоставление областей маммографического изображения с 

данным шаблоном. Так же используется метод адаптивного порогирования, 

основанный на принципе максимальной энтропии, для преобразования 

характеристик изображения. Для отделения подозрительных изменений на 

маммограмме от фона применялся метод разрастания областей. Исследование 

проводилось на 70 маммограммах из базы данных DDSM, и предложенный метод 

продемонстрировал чувствительность равную 97,2% при 1,83% ложных 

срабатываний на изображение. 

Zhang и др. [40] разработали метод автоматической сегментации изменений 

МЖ на маммограммах. В этом методе сегментация применялась ко всему 

изображению маммограммы сразу, что устраняло потребность в ручном 

выделении и разделении областей интереса. Пиксели с максимальными 

значениями яркости использовались в качестве начального приближения. В 

методе использовалось 40 маммограмм, полученных из базы данных MIAS. 

Предложенный метод дал частоту истинноположительных обнаружений 90% и 

частоту ложноположительных обнаружений — 1,3%. 

A.K. Mohideen и др. [41] предложили метод усиления контраста для 

маммографических изображений с использованием улучшенной сегментации 

водораздела. Метод включает в себя три стадии: а) выделение области интереса 

МЖ и устранение артефактов; б) установление зон грудных мышц с 

использованием адаптивного порогового метода; в) усовершенствованная 

методика разделения водоразделов для анализа маммографических изображений. 

Изображения были взяты из набора данных MIAS, и достигнутая точность 

классификации составила 92%. 
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Qian и др. [42] представили метод, основанный на вейвлет-преобразовании 

и нейронных сетях с применением фильтрации Калмана, для сегментации 

опухолей по областям на маммограммах. Данный подход был использован для 

обнаружения 200 зон интереса на изображениях, обладающих схожими 

признаками. Метод включает адаптивные модули, что позволяет повысить 

качество компьютерной диагностики. Эти модули использовали 

четырехканальное вейвлет-преобразование с нейронной сетью, а не 

двухканальную декомпозицию и реконструкцию. ROC-кривая составила 93% — с 

адаптивным модулем и 86% — без адаптивного модуля.  

Jothilakshmi и Raaza [43] предложили эффективный подход для 

обнаружения РМЖ и классификации изменений на доброкачественные и 

злокачественные с использованием метода опорных векторов (multi-SVM). 

Сегментация области была выполнена на основе методов разделения и слияния 

сегментированных изображений маммограмм. В исследовании использовалось 50 

маммограмм из базы данных min-MIAS, где был предварительно устранён шум с 

помощью медианного фильтра. Из области интереса были извлечены текстурные 

характеристики, основанные на матрице смежности уровней серого. Для 

классификации изображений применялся метод опорных векторов, что позволило 

достичь точности 94%. 

Сегментация маммограммы на основе поиска контуров и классификации 

образований с помощью нейронной сети была предложена в работе [44]. База 

данных состоит из 3762 цифровых маммограмм, полученных из совместной базы 

данных MAGIC-5. Признаки, извлеченные из изображений, имеют два атрибута: 

геометрические признаки и признаки формы. Признаки были извлечены из 

области интереса, и использовались в качестве входных данных для 

контролируемой нейронной сети. Для обнаружения очаговых изменений ROC-

кривая составила 85,6 ± 0,8%. 

Анализ исследований демонстрирует, что наиболее распространённым 

классическим методом сегментации является метод разрастания регионов. Этот 

метод применяется довольно часто благодаря разнообразным подходам, которые 
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он предлагает. В то же время медианный фильтр является наиболее популярным 

среди фильтров. Тем не менее, исследования указывают на то, что фильтр Гаусса 

обеспечивает более высокую точность по сравнению с другими типами фильтров. 

Однако, главным недостатком метода разрастания областей является 

зависимость от правильного выбора первоначальной точки приближения, с 

которой будет производится разрастание, и данный подход будет давать 

неудовлетворительные результаты при плотной паренхиме когда фон имеет 

схожую текстуру и цвет с исследуемым очагом, а изменения визуально не 

определяются. 

1.3.2. Сегментация РМЖ на основе пороговых методов 

В исследовании [45] был представлен инновационный метод сегментации 

маммограмм с применением фрактальной адаптивной пороговой обработки, 

разработанный для раннего выявления РМЖ. Изображения были получены из 

базы данных MIAS, и для снижения уровня шума использовался медианный 

фильтр. Также были проведены улучшения изображений с целью повышения их 

качества. Сегментация, основанная на фракталах, продемонстрировала хорошие 

результаты в выявлении образований на маммограммах. 

Selvamurugan и Sundararaj [46] предложили метод обнаружения РМЖ с 

использованием адаптивного определения порога. Предлагаемый метод 

использует грубую и тонкую сегментацию. Грубая сегментация была выполнена с 

применением нечеткой C-сегментации гистограммы, в то время как тонкая 

сегментация осуществлялась через адаптивное пороговое значение окна. 

Извлеченные параметры включают такие параметры, как площадь, округлость, 

корреляция интенсивности пикселей, эксцентриситет и энтропия интенсивности. 

Для классификации образований на доброкачественные и злокачественные 

использовались методы опорных векторов (SVM) и k-ближайших соседей (k-NN). 

Достигнутая точность составила 91,5% — для SVM и 70,0% — для 

классификатора k-NN.  

В работе [47] была предложена методика автоматической сегментации МЖ 

и выявления РМЖ на маммограммах, использующая методы опорных векторов 
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(SVM). Процесс включает три основных этапа: а) сегментацию области интереса 

МЖ; б) удаление мягких тканей груди; в) классификацию маммограмм на 

нормальные и патологические. Для удаления грудных мышц с маммографических 

изображений были использованы пороговый метод Отцу и обнаружения краев. 

Изображения для анализа были получены из базы данных MIAS, где шум был 

подавлен с помощью медианного фильтра. Характеристики изображения 

извлекались из области интереса с использованием матриц смежности уровней 

серого (GLSM). Для классификации маммограмм был применен алгоритм SVM. 

Данный подход продемонстрировал высокую точность, достигнув 96,55%, с 

чувствительностью 96,97% и специфичностью 96,29%. 

Была предложена сегментация очагов на цифровых маммограммах с 

использованием оптимального глобального порога с использованием метода Отцу 

[48]. Метод включает три стадии: создание изображения; предварительная 

обработка изображения; сегментация изображения. Данный метод был 

протестирован на 50 маммографических изображениях из базы данных DDSM, 

при этом для борьбы с шумом использовался медианный фильтр, а улучшение 

качества изображения осуществлялось с помощью оптимальной глобальной 

пороговой обработки. 

Bayati и El-Zaart [49] предложили подход к обнаружению и сегментации 

РМЖ на маммографических изображениях. В этом методе применяется ручное 

определение порогового значения и усреднение для выявления опухолевой ткани 

на двух маммографических снимках. Данный подход основан на использовании 

метода максимального среднего и минимальной дисперсии для детекции опухоли. 

В работе [50] был представлен метод пороговой сегментации для выявления 

патологий в маммографии. Данный подход позволяет определить область 

образования, основываясь на морфологическом пороге. Метод прошел испытания 

на 55 маммограммах из базы данных mini-MIAS, которые были предварительно 

улучшены с помощью медианного фильтра и адаптивного выравнивания 

гистограммы с ограничением контраста (CLAHE). Точность сегментации 

составила 94,54%, а доля ложноположительных результатов — 5,45%.  
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В работе [51] предложен метод выявления подозрительных изменений на 

маммограммах с применением адаптивной пороговой обработки, основанной на 

анализе с несколькими разрешениями. Этот подход сочетает в себе адаптивную 

глобальную и адаптивную локальную пороговую сегментацию. Эффективность 

метода была подтверждена на 170 маммограммах из базы данных mini-MIAS, где 

для снижения уровня шума применялся морфологический фильтр. 

Singh и др. [52] разработали метод сегментации РМЖ, основывающийся на 

пороговом значении для всего изогбражения и его отдельных областей. 

Гауссовский шум устранялся с помощью Винеровской фильтрации, а 

нормализация изображений проводилась с использованием сжатия гистограммы. 

Глобальное пороговое значение по методу Отцу использовалось для сегментации 

объектов в области интереса. Данный метод был реализован и протестирован в 

среде MATLAB на 50 маммограммах для выделения области интереса. 

Результаты показывают точность 82% и частоту ошибок 18%. 

Neto и др. [53] предложили автоматическую сегментацию очагов МЖ на 

маммограммах с использованием метода оптимизации роя частиц (particle swarm 

optimisation) и кластеризации графов, которая делится на два метода: а) 

пороговый и б) использование эволюционных алгоритмов. Всего из базы данных 

DDSM было выбрано 100 изображений, где для удаления шума из маммограмм 

был применен фильтр усреднения. Предложенный метод дал точность 

сегментации 95,2%.  

Sivaramakrishna и др. [54] разработали метод автоматической сегментации 

плотности изображения в маммографии. Этот подход использует оптимальный 

порог Киттлера для определения плотности МЖ на маммограммафических 

изображениях. Исследование проводилось на 32 изображениях, и коэффициент 

корреляции Спирмена колебался от 0,92 до 0,95, при этом средняя плотность 

маммограмм составила 6,9%. 

Jenefer и Cyrilraj [55] предложили мультиклассовую сегментацию 

патологической ткани МЖ с использованием текстурных признаков. Текстурные 

признаки были использованы для коррекции смещения, чтобы сгладить 
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неоднородность интенсивности. Предложенный метод тестировался на 

маммограммах полученных из базы данных MIAS и продемонстрировал точность 

97% и специфичность 97,03%.  

Автоматическую сегментацию и классификацию образований на 

маммограммах представили в работе [56]. Разработанный метод включает три 

стадии обработки изображения: а) предварительная обработка, направленная на 

улучшение изображений с использованием морфологических операций и методов 

пороговой обработки Отцу; б) признаки формы, извлеченные из 

сегментированной области; в) классификация, выполняемая для 

сегментированного региона. Метод прошел тестирование на 412 маммограммах. 

Сегментированные образования были разделены на категории форм: округлые, 

овальные, дольчатые и неправильные. Для округлых и овальных образований 

была достигнута точность классификации 100%, в то время как дольчатые и 

неправильные — с точностью 93%. 

Методы на основе порогирования дают хорошие результаты только при том 

условии, что разница интенсивности цвета между исследуемым очагом и 

паренхимой велика, поэтому в рассмотренных работах часто используют 

предварительную обработку для улучшения контраста изображения и/или 

фильтры для удаления различного вида шумов и искажений, такие как Гауссов 

фильтр или медианный фильтр [57]. Однако такое условие будет верно только для 

типичных случаев изменений, на практике же большую значимость имеют 

нетипичные случаи, когда область образования сравнима по характеристикам с 

областью фона и не обнаруживается невооруженным глазом или обнаруживается 

с трудом. 

1.3.3. Сегментация РМЖ на основе методов анализа краев 

Mello и др. [58] развили метод сегментации МЖ на маммограммах, который 

устанавливает границы области интереса. В данном методе применяются 

различные алгоритмы для обработки изображений, включая гистограмную 

спецификацию, пересэмплирование, гистограммную корректировку, а также 

арифметические и морфологические преобразования. Кроме того, метод прошел 
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тестирование на базе данных mini-MIAS, что позволило достичь точности 

сегментации на уровне 97%. 

В работе [59] предложена сегментация микрокальцинатов на маммограмме 

с использованием трех методов обнаружения краев, а именно Собеля, Превитта и 

Лапласиана Гауссиана (LoG). Методика была реализована с использованием 

расширенной сегментации дистанционной активной контурной модели. 

Изображения маммограмм были получены из базы данных NCSM, где шум был 

удален с помощью программного обеспечения Adobe Photoshop CS3. ROC-кривые 

для этих трех методов составили 79%, 72% и 71%, соответственно.  

Cascio и др. [60] представили метод сегментации изображений маммограмм, 

основанный на поиске контуров, а также классификацию объемных образований 

МЖ с помощью нейронных сетей. Сегментация изображений маммограмм 

осуществляется через анализ границ. В общей сложности, из сегментированных 

изображений было извлечено 16 признаков. Метод тестировался на 3762 

изображениях. Было обнаружено, что ROC-кривая составляет 0,862 с 2,8% 

ложных срабатываний на изображение и чувствительностью 82%.  

Chakraborty и др. [61] предложили автоматическое определение краев 

образований на маммограммах. Этот метод идентифицирует и локализует 

отсутствие непрерывности на изображениях маммограмм. Разработанный метод 

был протестирован на 160 маммографических изображениях, полученных из 

набора данных mini-MIAS, где предварительно был подавлен шум с помощью 

двумерного фильтра. Предложенный метод достиг точности сегментации 92,5%, 

чувствительности — 93% и специфичности — 85%. 

Angayarkanni и др. [62] предложили динамическую сегментацию 

маммограмм. Динамический разрез графа основан на сегментации Отцу. Данный 

метод способствовал улучшению качества маммографических изображений 

благодаря снижению нежелательных искажений. Изображения были взяты из баз 

данных MIAS и DDSM. Чувствительность, специфичность, а также 

прогностическая ценность положительных и отрицательных результатов для 

предложенного подхода составили 98,88%, 98,89%, 93% и 97,5% соответственно. 
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El Fahssi и др. [63] предложили сегментацию образований на маммограммах 

на основе минимизации энергии и модели активного контура. В данном методе 

применяются два подхода: теория линий уровня и минимизация энергии 

активных контуров. Метод был протестирован на данных из базы MIAS, а оценка 

осуществлялась по соотношению площадей перекрытия между сегментированной 

областью и эталонной областью. Точность сегментации образований составила 

90%, средняя точность — 92,27%.  

Al-Najdawi и др. [64] предложили методы улучшения изображения 

маммограммы, сегментации очагов и их классификации. Были оценены методы 

улучшения качества изображений маммограмм с целью повышения 

эффективности выявления участков, представляющих интерес в области МЖ. В 

частности, применялись медианный фильтр для устранения шумов и метод cLare. 

Изображения были разделены на следующие категории: доброкачественные, 

вероятно доброкачественные, злокачественные, вероятно злокачественные и 

неопределённые (включающие как доброкачественные, так и злокачественные 

случаи). Исследование проводилось на 1300 маммографических изображениях, 

при этом были достигнуты показатели чувствительности 96,2% и специфичности 

94,4%. Точность классификации кальцинатов на маммограмме составила 94,1% и 

81,4%, соответственно, а точность сегментации — 90,7%.  

Главным недостатком методов сегментации на основе анализа краев 

является их чувствительность к шуму и низкой контрастности самих 

изображений. Результаты работы данных методов могут быть 

неудовлетворительны на изображениях, имеющих плавные переходы, и требуют 

дополнительных как предобработки, так и/или постобработки, а обнаружение 

ложных и слабых границ дает ошибочный результат сегментации. Поэтому 

данные подходы на основе анализа краев обычно используются в сочетании с 

методами на основе разрастания областей, рассмотренными в разделе 1.3.1. 

1.3.4 Сегментации РМЖ на основе машинного обучения 

Методы сегментации, применяемые в машинном обучении, делятся на два 

типа: методы с обучением с учителем и методы без учителя. К примеру, к 
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методам с обучением с учителем относятся метод опорных векторов и наивные 

байесовские модели. В свою очередь, машинное обучение без учителя создает 

математические модели на основе выбранного набора изображений, основываясь 

исключительно на входных данных без необходимости в дополнительных метках. 

Некоторые примеры метода обучения без учителя включают методы k-средних (k-

means) и нечетких c-средних (fuzzy c-means).  

1.3.4.1 Сегментация РМЖ на основе неконтролируемого машинного 

обучения (без учителя) 

Автоматическую сегментацию опухолей МЖ с применением иерархических 

k-средних на маммограммах описывают в исследовании [65]. В этом методе 

осуществляется автоматическое выявление изменений МЖ с помощью алгоритма 

трассировки впадин (valley tracing), что позволяет определить оптимальное 

количество кластеров на маммографических изображениях. Изображения были 

взяты из базы данных DDSM, результаты экспериментов показали, что уровень 

ошибочного обнаружения составил 61,1%, а точность достигла 38,8%. 

Senthilkumar и Umamaheswari [66] предложили комбинацию нового метода 

улучшения качества изображения и метода нечеткой кластеризации c-средних для 

обнаружения РМЖ. Метод включает в себя компьютерную диагностику путем 

изменения модификации локального диапазона (LRM) как модификации (MLRM) 

для удаления шума и улучшения качества изображения. Изображения 

маммограмм были получены из базы данных MIAS. Комбинация MLRM и метода 

нечетких c-средних (FCM) дала точность 98,1%.  

В исследовании [67] была предложена новая методика сегментации очагов 

на маммограммах. Этот способ основан на использовании математической 

модели, которая определяет расположение изменений МЖ. Классификация 

пиксельных значений производилась  с использованием нечеткой кластеризации 

c-средних и делились на три группы: фон, опухоль и граница. Метод был 

протестирован на 100 изображениях маммограмм из базы данных MIAS, при этом 

для снижения шума применялся медианный фильтр. Экспериментальные данные 

показали, что частота обнаружения очаговых образований составила 98,82%. 
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Erika и др. [68] разработали метод автоматической сегментации 

микрокальцинатных кластеров на маммограммах. В их подходе используются 

различные морфологические операции для обработки маммограмм, включая 

декомпозицию и интерполяцию изображений. Данные для исследования были 

получены из двух баз данных: MIAS и DDSM. Для улучшения качества 

изображений был применен фильтр контрастности, направленный на уменьшение 

шума. В результате было зафиксировано, что коэффициент сходства по метрике 

Дайса (Dice metric similarity) составляет 0,6192, а точность классификации для 

наборов данных DDSM и MIAS достигла 94,48% и 100% соответственно. 

Raju и Rao [69] предложили метод оптимизации роя частиц (particle swarm 

optimisation) для сегментации маммограммы на основе кластеризации. 

Изображения были взяты из базы данных MIAS, эффективность оценивалась 

путем расчета сходства, точности, чувствительности и специфичности. 

Экспериментальные результаты показывают, что метод нечетких c-средних 

(FCM), основанный на методе оптимизации роя частиц (PSO) дробного порядка, 

превосходит другие методы.  

Исследование, проведенное Mughal и соавторами [70], представляет собой 

анализ отклонений для сегментации текстурных изменений МЖ на 

маммографических снимках. Методика основывается на изменениях цветового 

пространства и интенсивности пикселей. Признаки пикселей были извлечены с 

помощью гистограмм, созданных по изображениям маммограмм. Для 

тестирования метода было использовано 513 маммографических изображений из 

набора данных MIAS и 400 из DDSM. Точность сегментации составила 98% для 

MIAS и 97% для DDSM. 

Salih и Kamil [71] предложили метод сегментации маммограмм, который 

строится на основе принципов нечеткой теории множеств и пороговой 

фильтрации. В этом подходе применялись как традиционная, так и нечеткая 

морфология. Для анализа эффективности предложенного метода были 

использованы маммограммы из набора данных mini-MIAS, при этом для 

уменьшения шума использовался Гауссовский фильтр. Результаты метода 
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включают коэффициент Дайса на уровне 86%, отзыв (Recall) — 66% и точность 

— 20%. 

Letizia и др. [72] разработали нечеткий подход к кластеризации 

микрокальцинатов на маммографических изображениях. Данный метод 

основывается на алгоритме нечетких c-средних с используемыми признаками 

изображения. Используемые маммографические изображения были получены из 

базы данных MIAS. Шум удалялся с помощью фильтра Лапласа или Гаусса. 

Метод достиг точности 94%, чувствительности — 82% и точности — 65%.  

Kulkarn и Shreedhara [73] предложили методику для идентификации РМЖ 

на маммограммах, основанную на двух подходах: нечеткой кластеризации и 

классификаторе резализованного с помощью искусственной нейронной сети 

(ИНС). Маммограммы были взяты из базы данных MIAS. Результаты работы 

были организованы в три этапа: на первом этапе была достигнута точность 83,3%, 

на втором — 75% и на третьем — 80%. 

Saleck и др. [74] представили метод обнаружения образований на 

маммограммах, использующий нечеткие c-средние и текстурные характеристики 

GLCM. В этом методе предусмотрена автоматическая система сегментации 

образований на маммограммах на основе алгоритма FCM. Для тестирования были 

использованы 18 изображений маммограмм из базы данных MIAS, а шум был 

устранен с помощью медианного фильтра. Метод показал чувствительность 

86,2%, специфичность — 96,4% и точность — 94,6%. 

Hamissi и Merouani [75] разработали полностью автоматизированный метод 

для выявления изменений на маммографических изображениях, который основан 

на анатомической сегментации и классификации областей МЖ. Метод разделен 

на три этапа: фильтрация шума с применением медианного фильтра; выделение 

области интереса МЖ; адаптивная сегментация с использованием k-средней 

кластеризации и объединения выделенных областей. Для извлечения 

статистических и текстурных характеристик применялась матрица смежности 

уровня серого (GLCM). Для классификации нормальных и аномальных 

образований в тканях МЖ использовалось дерево решений с использованием 
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изображений маммографии из базы данных MIAS. Эффективность 

предложенного метода составила 90% по чувствительности и 78% по 

специфичности. 

Singh и Kaur [76] разработали классификацию для различения 

злокачественных и доброкачественных микрокальцинатов на маммографических 

снимках. Предлагаемый подход сначала расширяет интересующую область за 

счет использования морфологических операций. Затем извлекаются два типа 

признаков: особенности формы кластера и особенности текстуры кластера. Для 

классификации используется метод опорных векторов. В набор признаков 

добавлен новый набор признаков формы, основанный на рекурсивном методе 

подвыборки, что повышает точность классификации системы. Результаты 

показали, что злокачественные участки были правильно классифицированы с 

чувствительностью 96,57% и точностью 94,25%.  

1.3.4.2. Сегментация РМЖ на основе контролируемого машинного обучения 

(с учителем) 

Boulehmi и др. [77] разработали метод диагностики изменений МЖ, 

основанный на методе обучения с учителем. Этот метод включает четыре этапа: 

а) контрастирование и улучшение маммограммы с использованием интерполяции; 

б) сегментация образований с использованием вычислений обобщённого 

нормального распределения; в) байесовская нейронная сеть с обратным 

распространением. Признаки были извлечены из маммограмм для обнаружения 

образований с использованием нейро-нечеткого классификатора. База данных 

MIAS использовалась для обнаружения образований, и восемь признаков были 

извлечены на основе их морфологии и текстуры. Нейро-нечеткая система 

использовалась для классификации сегментированных изображений с 

присутствием как доброкачественных, так и злокачественных образованиями. 

Предложенный метод достиг точности 97,08% в обнаружении образований с 

помощью оценки обобщенной гауссовой плотности (GGD), а точность 

байесовской нейронной сети обратного распространения ошибки составила 97%.  
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В работе [78] была предложена новая сегментация образований МЖ на 

изображениях маммографии с использованием структурированного метода 

опорных векторов. Маммографические изображения были получены из баз 

данных DDSM-BCRP и INbreast. Предложенный метод показал большую 

вычислительную эффективность, равную 0,8 секунды, и индекс Дайса равный 

87%. 

Анализ плотности МЖ с использованием метода автоматической 

сегментации плотности был предложен в работе [79]. Метод был проверен путем 

сравнения его автоматических оценок с ручными экспертными аннотациями. В 

общей сложности было получено 130 маммограмм в краниокаудальной и 

медиолатеральной косой проекциях, где шум был удален с помощью медианного 

фильтра. Коэффициент корреляции между процентом плотности маммограмм для 

левой и правой МЖ составил ρ = 0,96, в то время как сравнительный анализ обоих 

маммографических изображений показал корреляцию ρ = 0,95 при использовании 

метода опорных векторов (SVM).  

Сегментация образований МЖ на маммограммах была предложена в работе 

[80]. Предлагаемый метод оценивает плотность маммограммы с помощью 

многомасштабного вейвлет-преобразования. Плотностные данные, обработанные 

с использованием вейвлетов, применялись для обучения многослойной 

персептронной сети (MLP). Обученная сеть была использована для выявления 

образований на 19 маммографических снимках, при этом доля истинно 

положительных результатов (чувствительность) составила 68,2%, а 

ложноположительных — 8,7%. 

В исследовании Cardoso и др. [81] была предложена техника сегментации 

изменений МЖ на маммографических снимках, и проведен сравнительный анализ 

кросс-сенсоров с глубокими и заданными признаками. Авторы рассматривают и 

сравнивают три модели сегментации изменений на маммограммах: а) 

использование заданных признаков и определение границ объектов; б) вторая и 

третья модели основаны на использовании методов глубокого обучения и 

сочетают условные случайные поля (CRF) и структурированные методы опорных 
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векторов (SSVM). Маммографические изображения были получены из двух 

наборов данных INbreast и DDSM-BCRP, а использование кросс-сенсора показало 

снижение производительности более чем на 10%. 

F.R. Cordeiro и др. [82] предложили сегментацию маммограмм с 

использованием методов экстремального обучения (ELM) для сегментации 

опухолевых областей МЖ. Изображения были получены из базы данных MIAS. 

Точность классификации ELM составила 81%. 

Анализ методов машинного обучения выявил, что подходы с обучением c 

учителем применяются более активно, чем методы обучения без учителя.. Однако 

результаты зависят от заданных текстурных или геометрических характеристик 

объектов, обучающей выборки; могут также потребоваться подходы 

предварительной обработки для разделения изображений и постобработки — для 

уточнения результатов. 

Несмотря на многообещающие результаты, продемонстрированные на 

отдельных наборах изображений, широкий спектр маммографических вариантов 

РМЖ и связанных с ним паренхиматозных изменений затрудняет обнаружение 

всех их. Соответственно, несмотря на то, что общая частота обнаружения может 

быть относительно высокой при жировой паренхиме МЖ (93,8% - 99,5%), 

значение для плотной паренхимы, небольших и плохо видимых РМЖ может быть 

значительно ниже (52-63%) [83]. Поэтому для повышения выявляемости, 

особенно в диагностически сложных ситуациях, остро необходимы новые 

подходы к выявлению подозрительных образований на маммограммах. 

1.4. Методы классифицирования изменений на маммографических 

медицинских изображениях 

Для задач классификации используются методы машинного обучения. 

Традиционные методы машинного обучения требуют также извлечения 

различных признаков (геометрических, статистических, текстурных и пр.) 

исследуемых объектов. В качестве таких признаков чаще всего используют 

признаки Харалика [84] или Тамуры [85], которые в свою очередь применяются с 

оператором Локальных бинарных шаблонов (LBP) [86] или матрицей смежности 
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уровней серого тона (GLCM) [87]. Одними из самых популярных 

классификаторов являются метод ближайших соседей (k-NN), метод опорных 

векторов (SVM) и многослойный персептрон (MLP).  

Kulkarni [88] попытался классифицировать маммографические изображения 

с помощью пиксельных N-грамм с использованием различных классификаторов 

(MLP, SVM и k-NN). Высокая производительность, достигнутая с помощью 

классификатора MLP, была лучше, чем производительность с использованием 

классификаторов SVM или k-NN.  

Ibrahim A.O. и др. [89] разработали CAD для маммографии с 

использованием метода радиальной функциональной сети (RBF). Система 

принятия решений классифицирует опухоли с помощью сетевых 

классификаторов RBF. В выполненной работе сравнили нейронную сеть RBF с 

алгоритмом MLP. Общая производительность нейронной сети RBF обеспечивает 

точность 79,16%, а алгоритма MLP — 54,16%, что доказывает, что нейронная сеть 

RBF может успешно классифицировать изменения.  

Vijayarajeswari и др. [90] использовали преобразование Хафа для 

обнаружения особенностей маммограммы. Эти функции используются в качестве 

входных данных классификатора (метода опорных векторов). Классификатор 

SVM достиг точности 94%, что превышает диапазон точности, полученный 

классификатором линейного дискриминантного анализа (LDA) — 86%.  

Mughal [91] построил модель классификации изменений МЖ с 

использованием нейронной сети обратного распространения (BPNN). Система 

достоверно диагностирует подозрительное изменение на начальной стадии по 

наборам данных MIAS и DDSM с точностью классификации 99%. 

Lakshmi и др. [92] осуществили диагностику РМЖ с помощью 

классификатора k-ближайших соседей (k-NN). Классификатор k-NN  был обучен с 

использованием извлеченных признаков изображения и соответствующих меток 

для каждого изображения из набора изображений МЖ. Общая точность, 

полученная предлагаемым методом, составляет почти 90%. 
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Одним из недостатков алгоритмов кластеризации является их 

чувствительность к инициализации, что подразумевают наличие априорных 

знаний об изображении. Также они могут потребовать фиксированного порога 

для определения областей опухоли, что может дать неточные результаты. 

В отличие от традиционного метода машинного обучения, методы 

глубокого обучения не зависят от этапов извлечения признаков из изображения. 

Эти алгоритмы на основе глубокого обучения не обучены обнаруживать и 

классифицировать аномальные изменения путем ввода информации об их форме, 

размере, структуре и других характеристиках. Они самообучаются и 

рассматривают различные параметры изменения, используя для обучения 

большую базу данных изображений. 

1.5. Глубокое обучение в задачах диагностики РМЖ 

Рожковой Н.И. и др. [93] была разработана интеллектуальная система для 

описания маммографических исследований, которая включала нейронные сети U-

net и ResNet-50. Для обучения использовалась частная база данных и более чем 

15000 изображений. Точность разработанной системы достигала 83,16%, 

специфичность — 84,83%, чувствительность — 86,51%. 

Al-antari и др. [94] разработали интегрированную компьютерную систему 

для распознавания, сегментации и классификации изменений МЖ, 

использующую сеть глубокого обучения You-Only-Look-Once (YOLO). Для 

сегментации изменений предложен региональный подход на основе сверточной 

сети с полным разрешением (FrCN). Эффективность данного метода была оценена 

на базе INbreast, где он показал частоту обнаружения опухолей 98,96% и 

коэффициент корреляции Мэтьюса (MCC) на уровне 97,62%. Показатель F1-score 

составил 99,24%. Кроме того, точность сегментации образований с 

использованием FrCN достигла 92,97%, MCC — 85,93%, а коэффициенты Дайса и 

Жаккара составили 92,69% и 86,37% соответственно. Выявленные и 

сегментированные подозрительные изменения МЖ были классифицированы с 

использованием сверточной нейронной сети CNN, что обеспечило точность 
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равной 95,64%, площадь под ROC-кривой (AUC) — 94,78%, MCC — 89,91%, и 

индекс Дайса равный 96,84%. 

В 2018 году Zhu и др. [95] представили глубокую состязательную сеть для 

сегментации опухолей на маммограммафических изображениях, основанную на 

сквозной модели FCN-CRF. Данный метод был протестирован на двух базах 

данных: INbreast и DDSM-BCRP, достигнув уровня точности сегментации 97%. 

В работе [96] было предложено применение метода распространения 

убеждений с перевзвешиванием дерева (tree-reweighted belief propagation), 

использующего сеть глубокого обучения для сегментации изменений МЖ на 

маммограммах. Данный подход использует модель условного случайного поля 

(CRF). Оценка эффективности была произведена на наборах данных INbreast и 

DDSM-BCRP. В методе применяются статистические методы обучения, которые 

уменьшают ошибки сегментации за счет использования распространения 

убеждений с перевзвешиванием дерева. Результаты показали, что предлагаемый 

метод достиг индекса Дайса 89%. 

Ravitha и др. [97] разработали усовершенствованную сеть U-Net для 

сегментации опухолей на маммографических изображениях, известную как DS-U-

Net. Для оценки эффективности метода были использованы мамммограммы баз 

данных DDSM и INbreast, и использовался метод cLare для улучшения их 

контрастности. Экспериментальная часть работы была разделена на два прохода 

обработки: с предварительной обработкой изображений и без нее. Результаты 

показали, что предварительная обработка значительно улучшила показатели, по 

сравнению с данными, полученными без этой процедуры. Метод 

продемонстрировал индекс Дайса — 82,7%, коэффициент Жаккара — 85,7%, 

точность — 99,7%, чувствительность — 83,1% и специфичность — 99,8% на 

основе предварительной обработки. 

В работе, проведенной Shen и др. [98], была представлена модель U-Net 

(ResCU-Net) с использованием смешанного наблюдения и остаточного контроля 

для одновременной сегментации и классификации маммограмм. Для обучения 

модели использовались изображения из базы данных INbreast, а для уменьшения 



52 

шума применялись сверточные фильтры. В результате исследования была 

предложена модель MS-ResCU-Net, которая достигла высоких показателей 

точности — 94,16%, чувствительности — 93,11%, специфичности — 95,02%, 

индекса Дайса — 91,78%, индекса Жаккара — 85,13% и MCC — 87,22%, в то 

время как ResCU-Net достигла значений 92,91%, 91,51%, 94,64%, 90,50%, 83,02% 

и 84,99%, соответственно.  

В работе [99] была предложена сеть U-Net с высокой плотностью внимания 

для автоматической сегментации образований МЖ на изображениях 

маммографии. Этот метод сочетает в себе плотносвязанные сети глубокого 

обучения U-Net и механизмы внимания (AG). Для оценки эффективности метода 

использовались маммограммы из набора данных DDSM. Результаты оценки 

продемонстрировали, что интеграция плотносвязанной глубокой сети U-Net с AG 

превосходит другие методы, достигая чувствительности равной 77,89% и общей 

точности 78,38%. 

Al-Antari и др. [100] разработали новую модель сегментации 

маммографических изображений, называемую сверточной сетью с полным 

разрешением (FrCN). В исследовании также были использованы три модели 

глубокого обучения, включая сверточную нейронную сеть CNN с прямой связью 

(ResNet-50 и InceptionResNet-V2) для классификации выявленных и 

сегментированных изменений МЖ. Маммографические изображения были 

получены из набора данных INbreast. Результаты оценки эффективности 

сегментации на основе FrCN показали общую точность 92,97%, коэффициент 

корреляции Мэтьюса (MCC) составил 85,93%, коэффициент Дайса — 92,69%, а 

коэффициент Жаккара — 86,37%. 

Min и др. [101], разработали систему поддержки принятия решений (CAD) 

для маммографии, которая одновременно осуществляет обнаружение и 

сегментацию образований, основываясь на псевдоцветных маммограммах и 

нейронной сети Mask R-CNN. Данный метод был протестирован на данных из 

базы INbreast, а морфологические фильтры использовались для улучшения 

качества изображений маммограмм. Значение коэффициента Дайса, достигнутое 
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для сегментации образований, составило 0,88 ± 0,1, а нейросеть Mask R-CNN дала 

средний истинно положительный результат 0,90 ± 0,05. 

Abdelhafiz и др. [102] предложили автоматизированный метод сегментации 

изменений на маммограммах, основанный на архитектуре U-Net. Метод 

протестировали на четырех различных наборах данных (CBIS-DDSM, INbreast, 

UCHCDM и BCDR-01), при этом шум убирался с помощью адаптивного 

медианного фильтра. Модель U-Net показала средний коэффициент Дайса 95,1% 

и среднее значение пересечения над объединением (IoU) — 90,9%. Кроме того, 

при применении аугментации данных результаты улучшились, с коэффициента 

Дайса 92,2% до 95,1%, и с 85,% до 90,9% для IoU. 

Singh и др. [103] предложили метод сегментации изменений МЖ и 

классификации их форм на маммограммах с использованием условных 

генеративно-состязательных сетей (cGAN) и сверточных нейронных сетей. Для 

проверки эффективности использовались набор DDSM, состоящий из 2620 

маммографических изображений, и набор INbreast, включающий 115 случаев (410 

маммограмм). Для устранения шума применялись морфологические операции. 

Модель показала коэффициент Дайса равным 94% и IoU — 87%. 

Zeiser и др. [104] предложили метод сегментации изменений на 

маммограммах с использованием техник увеличения данных. Модель была 

протестирована на 7989 изображениях из набора данных DDSM. Результаты 

показали чувствительность 92,32%, специфичность 80,47%, точность 85,95%, 

индекс Дайса 79,39% и AUC 86,40%. 

Saffari и др. [105] разработали автоматический метод сегментации плотных 

зон МЖ с использованием условных генеративно-состязательных сетей (cGAN) и 

глубокого обучения. Генеративно-состязательная сеть cGAN использовалась для 

сегментации плотных тканей на маммографических изображениях. Оценка 

эффективности метода была проведена на 410 изображениях, полученных от 115 

пациентов из набора данных INbreast, при этом для подавления шума 

использовался медианный фильтр. Результаты оценки эффективности 
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сегментации с использованием сети cGAN показали точность 98%, коэффициент 

Дайса 88% и индекс Жаккара 78%. 

Ahmed и др. [106] разработали семантическую сегментацию для РМЖ с 

использованием двух глубоких нейронных сетей, в том числе сетей Mask R-CNN 

и DeepLab. Два набора данных из баз данных MIAS и DDSM использовались для 

оценки эффективности предложенного метода. Шум на маммограммах удалялся с 

помощью фильтра Савицки-Голея, основанного на сглаживании краев. Метод 

достиг значений AUC: 98% — для сети Mask RCNN и 95% — для DeepLab. 

Однако средняя точность сегментации составила 80% и 75%.  

Hossain [107] предложил сегментацию микрокальцинатов на 

маммографических изображениях с использованием модифицированной сети 

глубокого обучения U-Net. Предложенная модель была обучена с 

использованнием маммограмм из базы данных DDSM, где использовалась 

предварительная их обработка с помощью фильтра Лапласа. Метод состоит из 

пяти этапов: предварительная обработка изображения, сегментация областей МЖ, 

выявление подозрительных областей, выбор областей с присутствием 

микрокальцинатов и обучение сети. Результаты оценки эффективности этого 

метода показали значения F-меры на уровне 98,5%, коэффициента Дайса — 

97,8%. Также индекс Жаккара составил 97,4%, а средняя точность метода 

достигла 98,2%. 

Abdelhafiz и др. [108] предложили систему остаточного глубокого обучения 

для модели U-Net остаточного внимания на основе сегментации образований (RU-

Net). Классификация проводилась с использованием классификатора ResNet. 

Эффективность предложенного метода оценивалась на трех наборах данных: 

DDSM, BCDR-01 и INbreast, при этом шум устранялся с помощью фильтра cLare. 

Разработанная модель продемонстрировала среднюю точность — 98%, среднего 

коэффициента Дайса — 98% и среднего IoU — 94%.  

Sun и др. [109] разработали управляемую вниманием сеть с высокой 

плотностью дискретизации для сегментации изменений МЖ на маммограмме, 

названную AUNet. AUNet представляет собой асимметричную структуру кодер-
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декодер, включающую эффективный блок повышения дискретизации и блок, 

управляемый вниманием. Метод протестировали на двух базах данных (CBIS-

DDSM и INbreast), в результате чего был получен средний коэффициент сходства 

Дайса: 81,8% для CBIS-DDSM и 79,1% для INbreast. 

Zhang и Wang (2019) достигли высокой точности классификации (97,16%) с 

использованием комбинации глубокой, тонкой, улучшенной каскадом сети и 

многомасштабного алгоритма объединения признаков. Всего было включено 1288 

цифровых маммограмм, из которых 1030 использовались для обучения и 258 — 

для тестирования [110]. 

Tsochatzidis и др. [111] предложили модифицированную сверточную сеть 

глубокого обучения CNN, основанную на модели сети U-Net. Оценка 

эффективности метода была проведена с использованием маммограмм из двух баз 

данных: DDSM-400 и CBIS-DDSM. Эффективность этой методики составила 

89,8% и AUC 86,2%, а для сегментации на основе сети U-Net результаты 

составили максимум 88% и 86% для DDSM-400 и CBIS-DDSM, соответственно. 

Savelli и др. (2019), а также Hakim и др. (2021) использовали открытую базу 

данных INbreast, содержащую полные маммограммы, для разработки алгоритма 

обнаружения опухолей МЖ с использованием сверточных нейронных сетей. 

Hakim и др. (2021) создали автоматизированный подход, который включал 

предварительную обработку для улучшения качества изображения, а затем 

обучение сегментационной сети. С другой стороны, Savelli и др. (2019) 

использовали ансамбль сверточных нейронных сетей для удаления 

ложноположительных результатов и улучшения производительности алгоритма. 

В обоих случаях была применена аугментация данных. Hakim и др. достигли 

более высокой чувствительности по сравнению с Savelli и др. (88,1% против 

83,5%). Однако только последние правильно разделили данные на обучающий и 

тестовый наборы, присваивая патчам, принадлежащим одному изображению, 

один и тот же набор [112-113].  

Li и др. [114] улучшили сегментацию образований МЖ на 

маммографических изображениях, применив условную остаточную сеть 
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глубокого обучения U-Net (CRU-Net), которая сочетает остаточное обучение и 

вероятностное графическое моделирование с традиционной моделью U-Net. Сеть 

CRU-Net была протестирована на двух общедоступных базах данных: INbreast и 

DDSM-BCRP, и показала индекс Дайса (DI) 93,66% для набора INbreast и 93,32% 

для DDSM-BCRP. 

Salama и Aly [115] разработали модель глубокого обучения, 

предназначенную для сегментации и классификации маммограмм. Для выделения 

области МЖ на маммограммах была использована модифицированная версия 

модели U-Net. Эффективность модели была проверена на трех базах данных 

маммографий: MIAS, DDSM и CBISDDSM. Результаты показали, что 

предложенная модель достигла точности 98,87%, площади под кривой (AUC) 

98,88%, чувствительности 98,98% и значения F1-score 97,99% на наборе данных из 

базы данных DDSM.  

Bhatti и др. [116] разработали мультидетекцию и сегментацию изменений 

МЖ на основе нейронной сети Mask RCNN-FPN. Данный метод основывается на 

региональном подходе к обучению, известном как маскирующая региональная 

сверточная нейронная сеть, интегрированная в сеть пирамиды признаков. 

Обучение проводилось на данных DDSM, а тестирование — на базе INbreast. В 

результате модель продемонстрировала среднюю точность: 84% для 

множественного обнаружения и 91 % для сегментации. 

Среди методов глубокого обучения, U-Net и его модификации чаще всего 

используется на основе моделей глубокого обучения, потому что этот метод был 

разработан специально для медицинских изображений и не требует большого 

количества аннотированных изображений. Кроме того, благодаря наличию 

высокопроизводительных вычислений на графическом процессоре можно обучать 

сети с большим количеством уровней.  

Модели глубокого обучения на сегодняшний день оказались лучшим 

способом сегментации изображений. Однако они сталкиваются с некоторыми 

серьезными проблемами, которые тормозят их дальнейшее развитие. Например, 

результат прогнозирования может быть недостаточно устойчив из-за уровня 
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обобщения модели. Устойчивость — это основная метрика производительности, 

определяющая, можно ли широко использовать обученную модель. Кроме того, 

сама модель необъяснима, а обучающих данных часто недостаточно. 

Выводы 

Сегментация дает возможность точно определить размеры тканей, выявить 

расположение изменений, установить диагноз, исследовать анатомические 

структуры и разработать планы для будущего лечения [117]. Кроме того, методы 

для выявления и классификации заболеваний могут быть использованы для 

анализа различных видов медицинских изображений. 

Неизвестная форма, количество и положение образований, а также наличие 

волокнистых тяжей и/или сосудистых структур, перекрывающих яркие пиксели 

образования, делают неэффективным использование адаптивных методов 

выявления аномальных значений яркости и значительно усложняют выявление 

очага. 

Хотя сегментация медицинских изображений достигла значительного 

прогресса, её применение все еще не соответствует требованиям практических 

приложений. В частности, автоматическая сегментация маммограмм представляет 

собой междисциплинарную область, требующую взаимодействия, как врачей, так 

и специалистов в области машинного обучения. Сложность заключается в 

многогранности маммографических проявлений МЖ и значительной вариации 

характеристик фона. Это создаёт многочисленные комбинации "патологическая 

область-фон", что затрудняет понимание специалистов по искусственному 

интеллекту всех клинических потребностей. В то же время, врачи из-за 

отсутствия обширных специализированных знаний в области искусственного 

интеллекта часто сталкиваются с недостаточным пониманием принципов работы 

данных методов; в результате клинические потребности не удовлетворяются в 

полной мере.  

В результате необходимо весьма тесное сотрудничество между врачами и 

экспертами по машинному обучению. Это поможет специалистам по машинному 

обучению в разработке моделей глубокого обучения, отвечающих клиническим 
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потребностям, что снизит нагрузку на врачей и повысит эффективность их 

работы.  

Разнообразие типов изменений на маммограммах с большим количеством 

локальных минимумов (со сложной текстурой) паренхимы требует использования 

универсальных методов компьютерной диагностики РМЖ, которые учитывали бы 

не только особенности структуры МЖ, но и способ получения маммограммы. 

На основе анализа существующих методов обнаружения, сегментации и 

классификации образований в данной главе можно сказать о недостаточной 

эффективности рассматриваемых методов для уверенной ранней диагностики и 

классификации всего спектра маммографических проявлений РМЖ, восполнению 

чего и была посвящена настоящая работа. 
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2. МАТЕРИАЛЫ И МЕТОДЫ 

2.1 Материалы 

При исследованиях использовался набор из 4860 маммографических 

изображений (2411 пленочных, оцифрованных с разрешением 300 dpi и 2449 

цифровых с разрешением 600 pdi, полученных на системе Siemens Mammomat 

Fusion [Германия]) 1279 женщин с морфологически подтвержденным РМЖ, где 

были помечены подозрительные очаги с различными характеристиками для их 

детального анализа. Размер изменения варьировал от 4 до 35 мм (в среднем 

13,4±6,3 мм). Плотность МЖ (по классификации Американской коллегии 

специалистов в области лучевой диагностики [ACR]) соответствовала: типу ACR 

А — в 237 (18,53 %) случаях, ACR B – в 511 (39,95 %), ACR C – в 435 (34,01 %) 

случаях, ACR D – в 96 (7,51 %) случаях. На рис. 12 представлены примеры 

маммограмм различными плотностями паренхимы и образований на них. 

 

Рис. 12. Вариации маммографических изображений с различной плотностью 

паренхимы и различными изменениями на этом фоне (стрелки), которые 

соответствовали РМЖ. 
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Дополнительно для сравнения эффективности разработанных алгоритмов и 

методов с современными методиками были использованы маммограммы формата 

DICOM полученные из баз данных, имеющих открытый доступ: 

- база данных CBIS-DDSM [118].  

- база данных INBreast [119]. 

2.1.1. Алгоритм обнаружения изменений МЖ на маммограммах   

Для разработки и исследования эффективности метода обнаружения 

изменений МЖ использовался набор из 356 пленочных и 272 цифровых 

маммограмм (всего 628 маммограмм). Присутствующие типы изменений МЖ 

представлены в табл. 2. Описание данного алгоритма приведено в разделе 2.2.1. 

Таблица 2. Рассмотренные типы изменений МЖ. 

Тип изменения Количество случаев 

Звездчатые образования 322 

Спикулизированные с небольшим и плотным 

центром и длинными спикулами 
14 

Изменения неправильной формы с нечеткими 

контурами 
58 

Дольчатые и круглые с полностью или частично 

четкими контурами 
60 

Частично визуализируемые 22 

Асимметрия плотности 46 

Нечетко видимые или невидимые 16 

Изменение структуры паренхимы 8 

Не визуализирующиеся образования на фоне 

плотной паренхимы 
28 

Образования округлой или овальной формы 16 

 

2.1.2. Обнаружение изменений на маммограммах с помощью 

одноэтапного детектора глубокого обучения YOLOv4 

Для оценки эффективности одноступенчатого детектора YOLOv4 

использовалось 100 цифровых маммограмм с системы Siemens Mammomat Fusion, 

где присутствовали следующие типы изменений МЖ (см. табл. 3). Описание 

методики приведено в разделе 2.2.2. 
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Таблица 3. Рассмотренные типы изменений МЖ. 

Тип изменения Количество случаев 

Звездчатые образования 16 

Образование с нечетким контуром 30 

Образование округлой или овальной формы с 

четким контуром 
8 

Асимметрия плотности паренхимы 28 

Изменения незаметны на фоне плотной 

паренхимы 
16 

Частично визуализированное образование 2 

 

2.1.3. Сегментации подозрительных изменений на маммографических 

изображениях 

Для оценки эффективности сегментации подозрительных образований на 

маммографических изображениях использовалось 128 цифровых маммограмм, 

где присутствовали различные типы изменений МЖ (см. табл. 4). Описание 

методики приведено в разделе 2.2.3. 

Таблица 4. Рассмотренные типы изменений МЖ. 

Тип изменения Количество случаев 

Асимметрии 2 

Области измененной структуры паренхимы 2 

Низкоинтенсивные изменения 18 

Изменения, содержашие кальцинаты 11 

Тени округлой, овальной или дольчатой 

формы 
59 

Спикулизированные образования 35 

Частично визуализируемые образования 1 

 

2.1.4. Классифицирование очаговых изменений на маммограммах 

Для разработки и исследования методов классифицирования очаговых 

образований МЖ использовался набор из 246 отсканированных с разрешением 

300 dpi пленочных маммографических изображений (144 доброкачественных и 

102 злокачественных образований). Все изменения были отмечены врачом-

рентгенологом и подтверждены морфологически. Описание методики приведено 

в разделе 2.2.4. 
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2.1.5. Методы обнаружения и классифицирования доброкачественных и 

подозрительных кальцинатов на маммограммах 

При разработке методов обнаружения кальцинатов и последующего их 

классифицирования использовался набор из 435 маммографических изображений 

с отдельными кальцинатами и их скоплениями, соответствовавшими как 

доброкачественным процессам (299 маммограмм 151 пациентки), так и РМЖ (136 

маммограмм 67 пациенток). Пленочные маммограммы оцифровывали с 

разрешением 300 dpi, цифровые маммограммы получали на системе Siemens 

Mammomat Fusion (Германия) с разрешением 600 dpi. На всех изображениях 

подозрительные области с различными характеристиками были промаркированы 

рентгенологами, имевшими опыт анализа маммограмм в течение не менее 5 лет. 

Злокачественные процессы были верифицированы морфологически, 

доброкачественный характер кальцинатов подтверждался в результате биопсии 

и/или динамического наблюдения на протяжении не менее 3 лет. 

В табл. 5 представлено количество используемых типов кальцинатов, 

присутствующих на маммограммах. Описание методики приведено в разделе 

2.2.5. 

Таблица 5. Рассмотренные виды кальцинатов МЖ. 

Тип кальцинатов Количество обнаруженных 

Доброкачественные 

Обызвествленный осадок 4 

Дистрофические 36 

Округлые 73 

Палочковидные 6 

Сосудистые 37 

Точечные 15 

Хлопьевидные 106 

Яичная скорлупа 22 

Всего 299 

Подозрительные 

Аморфные 36 

Крупные гетерогенные 39 

Мелкие линейные 16 

Мелкие линейные ветвящиеся 6 

Мелкие полиморфные 39 

Всего 136 
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2.2. Методы 

При разработке алгоритмов обнаружения и сегментации образований МЖ 

на маммографических изображениях сами образования рассматривались в виде 

модели поверхности второго порядка. Математическая модель изображения 

молочной железы на маммограмме может быть представлена в следующем виде: 

I(x,y) = F(x,y) + R(x,y) + G(x,y), 

где: F(x,y) – изображение, содержащее пиксели фона; R(x,y) – изображение 

содержащее пиксели, на которых изображена МЖ; G(x,y) – изображение, 

содержащее пиксели патологического изменения; (x,y) – координаты пикселей 

цифрового изображения маммограммы. 

Экспериментальные исследования маммограмм с присутствующим РМЖ 

показывают, что патологическое изменение можно рассматривать как яркое 

«пятно» на маммограмме, значение яркости пикселей, в центральной области 

которого, обычно выше, чем у окружающих его тканей МЖ и, как правило, 

патологическое изменение имеет округлую форму (см. рис. 13). 

 

Рис. 13. а) Маммограмма; б) образование МЖ на маммограмме; в) 

трехмерная поверхность яркости пикселей изображения построенная для 

образования; г) линии уровня полученные для поверхности яркости пикселей 

образования. 
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Пусть распределение яркости пикселей изображения МЖ R(x,y) имеет 

нормальное распределение, тогда в качестве обобщенной математической модели 

образования МЖ на маммограмме G(x,y) может быть предложена модель 

поверхности второго порядка, например, эллиптический параболоид: 









+−=
.

0

)( 22

z

byaxCz
 

На рис. 14 представлена рассматриваемая модель образования МЖ. 

а)                                     б)                                          в) 

Рис. 14. а) Трехмерная поверхность второго порядка – эллиптический 

параболоид; б) линии уровней поверхности; в) кривая, полученная в сечении 

поверхности плоскостью. 

 

Хотя экспериментальные поверхности, построенные для функций яркости 

пикселей изображения (см. рис. 13в-г), отличаются от таких поверхностей (см. 

рис. 14а-б), в диссертации считались справедливыми следующие положения: 

1. Линии уровня в окрестности вершины образования являются подобными 

фигурами. 

2. В сечении поверхности плоскостью Аx + By = 0 получается кривая, 

абсолютные значения производных в точках которой возрастают в направлении 

от вершины к основанию образования. 

k - угловые 

коэффициенты 
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2.2.1. Обнаружение изменений на маммограммах с помощью алгоритма 

вложенных контуров (АВК) 

При разработке алгоритма заложена идея сравнения вложенных друг в 

друга контуров линий уровня маммограммы: чем больше подобных контуров 

вложено друг в друга, тем с большей вероятностью во внешнем контуре 

присутствует образование. 

Изменения на маммографических изображениях рассматриваются в виде 

модели со структурой значений яркости пикселей, где модель – кривые в сечении 

поверхности на некоторых близких уровнях яркости, подобные с коэффициентом 

подобия ρ. Кроме того, модуль градиента растет в направлении от вершины 

образования к границе образования. 

 

   а)                                б) 

Рис. 15. а) Маммографическое изображение и б) его линии уровня. Стрелка 

указывает на образование, соответствующее РМЖ. 

 

Линии уровня строятся для всего яркостного диапазона маммограммы (рис. 

15б) с постоянным шагом градации k: 

,
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где: ,const;256,,1;2550 == k
k

nkn   B = I(x,y) – яркость пикселя изображения, 

представленного своими координатами (x,y).  

С помощью алгоритма жука (алгоритм обхода бинаризированных пикселей) 

на каждом шаге градации n обходятся все полученные не обнуленные пиксели 

изображения, и сохраняются контуры линий уровня Un,i, где: n – текущий шаг 

градации, i = 1,...,M, M – количество линий уровня найденных на n-м шаге 

градации.  

Из набора линий уровня (контуров) последовательно выделяются 

вложенные друг в друга. Если все пиксели рассматриваемой линии уровня 

находятся внутри области другой линии уровня, полученной на следующем шаге 

градации, то такая линия уровня является вложенной: 

,
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где: S(Un,i) – площадь (в пикселях), занимаемая линией уровня U, полученной на 

n-м шаге градации; S(Un,i ∩ Un+1,j) – площадь (в пикселях) области пересечения 

линий уровня U ,полученных на n-м и n+1-м шаге градации яркости. 

По экспериментальным данным был определен набор параметров контура с 

наименьшим коэффициентом корреляции и меньшей дисперсией. Из 

геометрических характеристик контура, часто используемых при анализе 

маммограммы [120-122], были выбраны:  

1) длина линии уровня (периметр) P, равная количеству пикселей линии 

уровня N;  

2) компактность С (отношение квадрата периметра к площади линии 

уровня: 
S

P
C

2

= );  
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3) координаты центра масс линии уровня: ,
1

1
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j
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N
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j
jc y

N
y  где: xj, 

yj –координаты j-ой точки линии уровня, а N – количество точек линии уровня; 

4) стандартное отклонение расстояний от центра масс линии уровня (xc,yc) 

до каждой его точки: ,)(
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5) эксцентриситет линии уровня, определяемый по формуле: 
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Также были определены нормированные центральные моменты, 

инвариантные относительно переноса и изменения масштаба [123]: 
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– нулевой момент 

равен длине линии уровня N, p и q – порядок возведения в степень 

соответствующего параметра при суммировании.  

Для оценки степени периодичности линии уровня проведен спектральный 

анализ величин rj: ,)(
2

jk rFS =  где: F – преобразование Фурье, k – номер 

гармоники спектра (k = 1,...,N/2). В качестве параметра, характеризующего 

сложность линии уровня, используется энтропия нормированных гармоник [124]: 
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– доля мощности. 
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Для определения мер подобия двух вложенных контуров А и В, выделенных 

в разных градациях яркости n для разных характеристик w, использовались меры: 

1) сумма абсолютных разностей B
i

A
i

M

i

wwBAK −= 
=1

1 ),(  и ее относительное 

значение ,),(
1

2 A
i

B
i

A
i

M

i w

ww
BAK

−
= 

=

 где: М – количество моментов (для 

нормированных центральных моментов);   

2) отношение 
B

A

w

w
BAK =),(3  (для периметра линий уровня);  

3) евклидово расстояние между центрами масс линий уровня 

;)()(),( 22
4

B
c

A
c

B
c

A
c yyxxBAK −+−=  

4) абсолютные разности BA wwBAK −=),(5  (по всем остальным 

характеристикам линии уровня). 

Критические точки для параметров были определены на основе обучающего 

набора коэффициентов, полученных для маммограмм без изменений и с 

изменениями. Если контур отличается от вложенного, полученного на 

предыдущем шаге градации n-1, делается вывод, что рассматриваемый контур 

представляет собой неподозрительную область и должен быть отброшен. Также 

необходимо принять во внимание уровень вложенности контуров, то есть чем 

больше будет найдено подобных серий вложенных контуров, тем больше 

вероятность того, что эта область является подозрительной.  

Однако аналогичные статистические характеристики могут иметь и 

контуры фиброзных (связок Купера) и/или сосудистых структур, что дает 

ложноположительные результаты для данного метода. Например, наложенные 

тяжи, как правило, имеют вытянутую форму (рис. 16б), а подозрительные 

образования более округлые (рис. 16а), что позволяет охарактеризовать их 

контуры по параметру удлинения (эксцентриситету). 
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    а)                             б)                                в) 

Рис. 16. Пример: а) подозрительного изменения; б) фиброзных тяжей и в) 

частично видимого изменения. 

 

Были проанализированы экспериментально полученные наборы этого 

параметра для подозрительных образований, фиброзных тяжей и частично 

видимых на маммограмме образований, которые также могут иметь удлиненную 

форму (рис. 16в). В табл. 6 представлены полученные результаты. Для выборки из 

110 эксцентриситетов контура были найдены его среднее значение и медиана.  

Таблица 6. Эксцентричность контуров. 

       
Вид 

 
Значение 

Подозрительное 
изменение 

Частично 
видимое 

изменение 

Волокнистые 
ткани 

Среднее 0,582 0,793 0,929 

Медиана 0,570 0,809 0,938 

 

Из таблицы видно, что средние значения для фиброзных тяжей значительно 

превышают значения для подозрительного и частично видимого изменения, что 

позволяет его отделить. 

Псевдокод алгоритма обнаружения изменений с вышеупомянутыми 

встроенными процедурами показан ниже. 
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Алгоритм обнаружения изменений МЖ на маммограмме: 

1. Входные данные: исходное изображение I (x, y), шаг по градации яркости K 

2. N ← ширина изображения 

3. M ← высота изображения 

4. T ← 255/ K 

5. for t ← 1 to T do 

6.  Z ← I 

7.              thresh ← 255 - K ∙ t 

8.              for i ← 0 to N do 

9.   for j ← 0 to M do 

10.    if Z(i, j) < thresh then 

11.     Z(i, j) = 0 

12.    end if 

13.   end for 

14.  end for 

15.  {обход и запись координат контуров вокруг не обнуленных пикселей Z(i, j)} 

16.  Dt ← алгоритм жука (Z(i, j))  

17. end for  

18. {блок поиска вложенных контуров} 

19. b ← 0 

20. for i in D do 

21.  if площадь(Di ∩ Di+1) / площадь(Di) == 1 then 

22.   {Di вложен в Di+1} 

23.   Sb ← Di, Di+1 

24.   b ← b + 1 

25.  end if 

26. end for 

27. {блок расчета признаков всех контуров} 

28. for b in S do 

29.  p1,b ← длина контура (Sb) 

30.  p2,b ← компактность контура (Sb) 

31.  p3,b ← координаты центра масс контура (Sb) 

32.  p4,b ← стандартное отклонение расстояний от центра масс контура до каждой его точки (Sb) 

33.  p5,b ← эксцентриситет контура (Sb) 

34.  p6,b ← нормированные центральные моменты контура (Sb) 

35.  p7,b ← энтропия нормированных гармоник контура (Sb) 

36. end for 

37. {блок сравнения вложенных контуров} 

38. for b in S do 

39.  if  0,40243 ≤ | p6,b,1 - p6,b,2 | ≤ 32,48874  and 0,00262 ≤ | (p6,b,1 - p6,b,2) / p6,i,1 | ≤ 0.04036 and 1,05 ≤ p1,b,1 / 
p1,b,2  ≤ 1,82 and 1,159 ≤ | p3,b,1 - p3,b,2 | ≤ 33,0 and  0,5155 ≤ | p2,b,1 - p2,b,2 |  ≤ 86,07 and 1.8061 ≤  | p4,b,1 - p4,b,2 | ≤ 35 and 

0,00029 ≤ | p5,b,1 - p5,b,2 |  ≤ 0,2847 and 0.16267 ≤ | p7,b,1 - p7,b,2 | ≤ 1.77842 then 

40.   {рассматриваемые два контура подобны} 

41.   U ← S 

42.  end if 

43. end for 

44. {блок подсчета количества схожих вложенных подряд контуров} 

45. l ← 0 

46. for i in U do 

47.  for j←i+1 in U do 

48.   if Ui вложен в Uj then 

49.    l ← l+1 

50.   end if 

51.  end for 

52. end for 

 

Результаты работы АВК обсуждаются в разделе 3.1.  
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2.2.2. Обнаружение изменений на маммограммах с помощью 

одноэтапного детектора глубокого обучения YOLOv4 

Метод YOLO (You Only Look Once) представляет собой одноэтапный 

детектор, который не требует использования отдельного алгоритма для генерации 

областей. Вместо этого, он непосредственно предсказывает координаты 

нескольких ограничивающих рамок с различными характеристиками. 

Архитектура YOLO основана на построении полностью сверточной 

нейронной сети, которая содержит 53 сверточных слоя, за каждым из которых 

следует пакетная нормализация и функция активации Mish. Этот подход 

разбивает каждое полное изображение на сети N × N, и для каждой сети 

возвращает B предельных кадров с оценкой, как значимости, так и вероятности 

класса C. 

На рис. 17 показана реализованная архитектура YOLOv4, где на входном 

уровне находится архитектура DarkNet. DarkNet — это фреймворк с нейронными 

сетями и открытым исходным кодом, написанный на C и CUDA. 

 

Рис. 17. Архитектура сети YOLOv4 с фреймворком DarkNet. 

 

Операцию свертки можно записать в следующем виде:  

,],[],[],)[( , −−= lk lkglnkmInmgI  

где: g[k, l] – ядро свертки шириной k и высотой l, которое определяется в процессе 

обучения модели; m и n – ширина и высота матрицы значений яркости пикселей 

изображения I, соответственно, * – операция свертки. Упрощенную формулу 

пакетной нормализации можно записать в следующем виде:  
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где: B – математическое ожидание пакета B; 
2
B  – дисперсия пакета B; пакет B = 

{x1,…,xm}; x – элемент входа слоя, и функция активации Mish: 

)).1(ln(th)( xexxf +=  

Для обучения модели YOLOv4 использовались 535 маммографических 

изображений из набора данных, где все патологические области были 

сегментированы сертифицированным рентгенологом.  

Из-за небольшого размера обучающей выборки была произведена их 

аугментация. Из каждого изображения было сгенерировано 8 новых со случайным 

вращением, зеркалированием и сдвигом. После аугментации получилось 4280 

изображений РМЖ. Также для YOLOv4 использовался другой подход для 

аугментации данных – метод мозаики. Мозаика представляет собой метод 

увеличения данных, который смешивает 4 обучающих изображения. Этот метод 

может лучше обогатить фон цели и предотвратить ухудшение способности сети к 

обобщению из-за аналогичного фона обучающей выборки. 

Для улучшения результатов работы YOLOv4 использовалась 

предварительная обработка изображений, которая включает три шага.  

1. Нормализация по усечению – в соответствии с гистограммой 

интенсивности изображения области интереса выбирается пара эффективной 

максимальной и минимальной интенсивности, затем они используются для 

отсечения интенсивности изображения и, наконец, выполняется операция 

нормализации. Это гарантирует, что область МЖ имеет достаточный диапазон 

распределения интенсивности.  

2. Улучшение изображения – адаптивное выравнивание гистограммы с 

ограничением по контрасту (алгоритм CLAHE).  

3. Синтез изображения – синтезируется 3-канальное изображение, 

состоящее из усеченного и нормализованного изображения, изображения с 
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усилением контраста с пределом ограничения CLAHE, равным 1, и изображения с 

усилением контраста с пределом ограничения CLAHE, равным 2. 

На рис. 18 представлен результат предварительной обработки маммограмм. 

 

Рис. 18. Результат предварительной обработки исходного изображения: а) 

исходное изображение; б) изображение после предварительной обработки. 

 

Для обучения YOLOv4 набор данных был разделен на два подмножества: 

обучающее подмножество включало 90% изображений, проверочное 

подмножество включало 10% изображений.  

В задачах классификации с локализацией и обнаружением объектов в 

качестве метрики для определения достоверности расположения 

ограничивающего прямоугольника чаще всего используется отношение площадей 

ограничительных рамок (Intersection over Union):  

,
)(

)(

BAS

BAS
IoU




=  

где: A и B – предсказанная ограничивающая рамка и ограничивающая рамка 

истинности, соответственно. IoU равен нулю для неперекрывающихся 

ограничивающих рамок и единице для идеального перекрытия. В нашем случае 

средний IoU составил 80,05 %. 

Также в задачах обнаружения объектов в качестве метрики используется 

средняя точность (mAP) как значение средней точности по всем категориям:  
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где: p – Precision, r – Recall, основанная на предположении, что ограничивающая 

рамка определена правильно, если IoU ≥ 0,5.  

Обычно производительность модели рассчитывается по трем категориям 

статистики: Precision, Recall, F1-Score. Precision показывает долю объектов, 

относящихся к изменениям, среди объектов, обнаруженных детектором. Recall 

показывает долю обнаруженных объектов, относящихся к изменениям, в общем 

количестве объектов изменения, т.е. насколько хорошо детектор находит объекты, 

относящиеся к изменениям. F1-Score – это среднее гармоническое между Precision 

и Recall: 

,Precision 
FPTP

TP

+
=  ,Recall

FNTP

TP

+
=  .

RecallPrecision

RecallPrecision 2
1

+


=− ScoreF

  

Поскольку Precision и Recall находятся в диапазоне от 0 до 1, то AP и, 

следовательно, mAP также находятся в диапазоне от 0 до 1. На практике AP часто 

рассчитывается по точкам, значения Recall которых равномерно распределены в 

интервале [0;1]: 

)),1(...)1.0()0((
11

1
cccс APAPAPAP +++=  

cPAAP = . 

Так, при обучении более чем в 4000 итераций получили mAP0,5 = 96,23% 

(при пороге IoU  = 50%). При доверительном пороге, равнрм 0,25: Precision = 0,96, 

Recall = 0,91, F1-Score = 0,93.  

На рис. 19 показан график процесса обучения YOLOv4. 
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Рис. 19. Процесс обучения YOLOv4. Красная линия – mean Average Precision 

(mAP). Синяя линия – график ошибок (Loss). 

 

Результаты работы обученной модели YOLOv4 представлены в разделе 3.2. 

2.2.3. Сегментация подозрительных изменений на маммографических 

изображениях 

Для реализации методики сегментирования контура образования 

учитывались особенности перепада яркости пикселей изображения. 

Подозрительное образование на маммограмме рассматривалось как модель 
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яркости пикселей, модуль градиента которой растет в направлении от вершины 

образования к ее границе. 

Чаще всего на первом этапе сегментирования контура образования 

необходимо предварительно локализовать само изменение относительно всей 

маммограммы, т.е. выделить область интереса (ОИ). Для решения этой задачи 

вначале с помощью АВК, описанного в разделе 2.2.1, находится примерный 

контур изменения на маммограмме, и определяется прямоугольная область 

интереса (см. рис. 20а). Центр тяжести выделенного контура изменения 

полученного с помощью АВК будет браться за центр образования (точка A на рис. 

20б). Далее автоматически от центра (точка A) по всей окружности образования 

проводились лучи в 360o. Лучи проводились через полградуса. Таким образом, 

всего было проведено T = 720 лучей. 

 

Рис. 20. а) оцифрованное 8 битное маммографическое изображение образования 

МЖ; б) лучи, проведенные из центра образования. 

 

По пикселям, находящимся на лучах (см. рис. 21а), рассчитывался перепад 

их яркости одномерным скользящим окном заданного размера (рис. 21б): 

,
11


=

−
=

+ −=
S

j
ji

S

j
jii PPP  i = S,...,N-S, 

где: N – количество пикселей на луче, Pi = P(xi,yi) – яркость пикселя, 

соответствующая координатам xi и yi изображения на луче, S – размер 

скользящего окна. 
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Рис. 21. а) Значения яркости пикселей Pi, лежащих на лучах; б) графики перепада 

яроксти пикселей ΔPi, лежащих на лучах (разные типы линии графиков 

соответствуют разным лучам). 

 

Наибольший max(ΔPi) перепад яркости (экстремум) соответствовал 

примерной границе, необходимой области для сегментирования. 

Перенеся координаты экстремумов перепада яркости на исходное 

изображения, получаем примерные границы (см. рис. 22). 

    

Рис. 22. Точки, соответствующие точкам экстремума (максимума) перепада 

яркости на лучах.  

 

Полученные границы области подвергались последующей коррекции путем 

фильтрации их точек — если евклидово расстояние между точками границы 

области и точками их линии регрессии, лежащими на одном луче, больше порога, 

то такая точка заменялась интерполированной, где порог рассчитывался по 

методу Ниблека [125]. 

Для реализации данного подхода весь массив из T = 720 точек (xj,yj) 

границы образования разбивался на U подмассивов размером M = 180 точек с 
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помощью метода скользящего окна размером W = 10 точек. Для обеспечения 

замкнутости контура в конец массива из T точек перед его разбиением 

дописывались его первые М0 = 180 точек: T*=T+M0. Далее к каждому подмассиву 

*TU   применяется следующая методика. 

Пусть X = x1, x2, .., xm – подмассив x координат точек контура образования, а 

Y = y1, y2,..,ym – подмассив y координат точек контура образования, где: Mm , 

тогда: R = r1, r2,..,rm и Φ = φ1,φ2,..,φm – их представление в полярной системе 

координат, где: 22 )()( jAjAj yyxxr −+−= , φj = arctg (yj / xj), j = 1,...,M, а xA, yA – 

координаты центра образования (точка A), выделенного оператором на начальном 

этапе обработки. 

Уравнение кубической регрессии для полярной системы координат примет 

вид: 

01
2

2
3

3 aaaar jjjj +++= , 

где: a0, a1, а2, a3 – коэффициенты кубической регрессии. 

Так как данный подход применяется со скользящим окном W по всему 

дополненному массиву T*, это уменьшает отклонения (ошибки) значений 

функции кубической регрессии jr , соответствующие началу и концу подмассива 

U, за счет усреднения полученных значений – avr
jr . На рис. 23 желтой линией 

отображена усредненная кубическая регрессия для точек экстремума перепада 

яркости. 

  

Рис. 23. Точки, соответствующие точкам экстремума перепада яркости, на лучах, 

и построенная усредненная кубическая регрессия для них (желтая линия). 
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Таким образом, для каждой точки примерной границы получаем пару 

величин rj и avr
jr , для которых рассчитываем j

avr
jj rrr −= . А для коррекции 

точек находим порог по методу Ниблека: 

B = m + k · s, 

где: m и s – среднее и стандартное отклонение Δri, соответственно, коэффициент k 

= 0,2. 

Если Δrj превышает рассчитанный порог B, то соответствующие 

координаты точки (xj,yj), заменялись интерполированными. Такой подход 

позволил избавиться от резких изменений границ объекта, дающих ложный 

результат при выделении области. 

На рисунке 24б желтой линией представлен результат методики выделения 

контура образования. 

 

Рис. 24. а) Область интереса с подозрительным образованием; б) результат 

сегментирования контура (желтая линия). 

 

Результаты работы данной методики обсуждаются в разделе 3.3.  

2.2.4. Классифицирование очаговых изменений на маммограммах 

Пусть для множества объектов X задано множество допустимых ответов 

Y={1,...,M}, и существует целевая функция y∗: X→Y, значения которой yi = y∗(xi) 

известны только на конечном подмножестве признаков {x1,..., xl}⊂X. Для каждого 

объекта x из множества объектов Х имеется набор признаков f1,..., fn, где: признак f 

– результат измерения некоторой характеристики объекта .Xx  Вектор 

(f1(x),...,fn(x)) будет признаковым описанием объекта x, а совокупность 
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признаковых описаний подмножества объектов Xl, можно представить в виде 

матрицы объектов–признаков размера l×n: 

,
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.........

)(...)(

)(

1

111
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где: n – количество признаков объекта, l  – количество объектов подмножества Xl.
 

Тогда задача классификации заключается в том, чтобы по выборке 

признаковых описаний F подмножества Xl восстановить зависимость y∗, то есть 

построить решающую функцию a: F→Y, которая приближала бы целевую 

функцию y∗(x), на всём множестве X. 

В диссертационной работе в качестве таких объектов x использовались ОИ 

изображений маммограмм, содержащих изменения МЖ, а для решения задачи 

классификации изменений исследовалось две методики извлечения признаков f 

объектов x. 

Обнаружение изменения и выделение ОИ выполнялось с помощью методов, 

представленных в подразделах 2.2.1 и 2.2.3. Сначала методом АВК определялось 

примерное положение образования, затем производился поиск контурных точек, 

который основан на поиске локальных максимумов градиентов яркости 

изображения. 

При первой методике извлечения признаков рассчитывались признаки 

выделенной области как для начальных значений яркости пикселей изображения, 

так и для их производных (см. рис. 25): модуль и направление функции градиента 

яркости, оператор Лапласа, дескрипторы локальных бинарных шаблонов (LBP). 

В качестве классифицирующих признаков использовались признаки 

Харалика, Тамуры и моменты Хью.  
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Рис. 25. а) Исходная маммограмма с выделенной ОИ; б) поверхность, 

образованная функцией яркости; в) и г) поверхности, образованные значениями 

модуля и направления градиента, соответственно; д) поверхность, образованная 

значениями после применения фильтра Лапласа; е) поверхность, образованная 

значениями после применения дескриптора LBP. 

 

Текстурные признаки Харалика маммографических изображений были 

найдены с помощью матрицы смежности уровней серого тона (GLCM). При 

построении GLCM серая шкала изображений была ограничена 6 битами (GLCM 

размером N×N, где: N=64). GLCM строились для четырех направлений α (α=0°, 

45°, 90°, 135°) и для двух значений расстояния между сравниваемыми пикселями 

в матрице GLCM: d=1 и d=5 (по вертикали или горизонтали). Всего было 

определено 8 матриц для каждой ОИ. Признаки определялись для пяти 

изображений: исходного изображения (рис. 25б), изображения модуля градиента 

после применения фильтра Собеля (рис. 25в), изображения направлений 

градиента после применения фильтра Собеля (рис. 25г), изображения после 
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применения фильтра Лапласа, и изображения после применения дескриптора 

LBP. 

Фильтр Собеля использовался для аппроксимации градиента яркости 

изображения в каждой точке и вычисления направления градиента. Этот фильтр 

использует два ядра 3×3, свернутых с исходным изображением, для вычисления 

аппроксимаций производных: один — для горизонтальных изменений, а другой 

— для вертикальных изменений. Если A — матрица исходного изображения, а Gx 

и Gy — два изображения, которые в каждой точке содержат аппроксимации 

вертикальной и горизонтальной производных, соответственно, то: 
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где: * – операция свертки. 

Аппроксимация модуля градиента G (рис. 25в) была получена путем 

объединения этих производных: 

.
22

yx GGG +=  

Аппроксимация направления градиента Θ (рис. 25г) была получена с 

помощью следующего выражения: 
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Фильтр Лапласа аппроксимирует Лапласиан функции яркости изображения 

в каждой точке и задается ядром: 
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Результатом фильтрации является свертка этого ядра с исходным 

изображением А (рис. 25д): 

ADL xy *2= . 

Дескриптор LBP кодирует пиксели изображения путем сравнения 

центрального пикселя с его соседями, и результат считается двоичным номером 
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шаблона. При вычислении LBP берется разница между текущим пикселем и его 

соседями в апертуре размером 3×3. Это определяется следующим выражением: 
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где: gp – значение соседа, gc – значение центрального пикселя, P – количество 

соседей. Если центральный пиксель совпадает с соседним пикселем или меньше 

соседнего, то он помечается 1, в противном случае он помечается 0. Результат 

вычисления LBP показан на рис. 25е. 

Таким образом, для каждой маммограммы использовались пять 

изображений: А, G, Θ, L и LBP. 

Как упоминалось выше, для каждой ОИ было построено восемь GLCM, и 

для каждой GLCM было определено 13 текстурных признаков Харалика, таким 

образом, всего было получено 5×8×13=520 признаков для одного 

маммографического изображения. 

Также проверялось предположение о том, что для классификации 

изменения важны не только сами признаки, но и различие между признаками при 

разных значениях пространственного сдвига d матрицы GLCM. 

Пусть V(А, G, Θ, L, LBP, d1) – вектор признаков Харалика четырех матриц 

GLCM (0°, 45°, 90° и 135°), построенных с d=1 пяти изображений А, G, Θ, L, LBP 

(всего 4×13×5=260 признаков), а V(А, G, Θ, L, LBP, d5) – вектор признаков 

Харалика четырех матриц GLCM, построенных с d=5 пяти изображения А, G, Θ, 

L, LBP. В качестве дополнительных признаков рассматривается разница в 

значениях признаков: 

V(А, G, Θ, L, LBP, d15) = V(А, G, Θ, L, LBP, d1) - V(А, G, Θ, L, LBP,d5). 

Общее количество признаков Харалика, учтенных для классификации, 

составило 520+260=780 признаков. 

Кроме признаков Харалика, использовались признаки Тамуры [126] и 

инвариантные моменты Хью [127], рассчитанные также для пяти изображений: А, 

G, Θ, L и LBP, не используя матрицу GLCM.  
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Моменты Хью – это линейная комбинация центральных моментов. 

Комбинируя различные нормализованные центральные моменты, возможно 

создать инвариантное представление изображений, не зависящее от масштаба, 

вращения и отражения. 

Всего использовалось 19 признаков Тамуры и 7 моментов Хью для каждого 

из пяти изображений А, G, Θ, L и LBP: 19×5=95 и 7×5=35, соответственно. 

Общее количество признаков, которые использовалось для классификации 

образований: 780+95+35=910 признаков. 

Методы отбора признаков часто используются в случае, когда имеется 

много признаков объекта и сравнительно малый объем выборки.  

Для уменьшения размерности полученного набора параметров 

использовались алгоритмы ReliefF [128], FSCNCA [129] и LASSO [130].   

Алгоритм ReliefF определяет значимость признаков с использованием 

метода k ближайших соседей. Алгоритм FSCNCA выполняет выбор признаков 

для классификации c помощью метода диагональной адаптации анализа 

компонент окружения с регуляризацией. Алгоритм LASSO возвращает значимые 

коэффициенты линейной регрессии в методе наименьших квадратов.  

Математическое выражение модели LASSO [130] имеет вид: 
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где: xij – значение независимой переменной (значения рассматриваемых признака 

для 125 изображений); yi – значение зависимой переменной (-1 — для 

доброкачественного образования и 1 — для злокачественного); λ – параметр 

штрафа (λ ≥0); βj – коэффициент регрессии, n=125; m – количество признаков. 

Различающиеся признаки, отобранные этими тремя методами, 

объединялись в один вектор признаков, который учитывает всего 30 значимых 

признаков.  

Значительное сокращение количества признаков изображения в результате 

отбора значимых позволяет отобразить распределения значений признаков для 

доброкачественных и злокачественных изменений МЖ (см. рис. 26). 
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Рис. 26. Нормализованные распределения значений отобранных признаков для 

доброкачественных и злокачественных образований МЖ.  

 

Множество допустимых ответов в исследуемой задаче содержало два 

значения Y={-1,+1}, где: -1 – доброкачественное, +1 – злокачественное изменение 

МЖ. Для построения классифицирующей решающей функции а использовался 

метод опорных векторов (SVM), основанный на построении оптимальной 

разделяющей гиперплоскости признаков f: 

),,sign()sign()( 00
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n

j
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=

 

где: f = (f1,...,fn) – признаковое описание объекта x, вектор w = (w1,...,wn) и 

скалярный порог w0 являются параметрами решающей функции a. Уравнение 

,, 0wfw =  описывает гиперплоскость, разделяющую классы. 

На рис. 27 представлена блок-схема первой методики исследования 

классифицирования образований МЖ. 

 

Рис. 27. Блок-схема первой методики исследования классифицирования. 
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Отличительной особенностью данной методики классификация изменений 

МЖ является то, что классифицирующие признаки извлекались не по одному 

изображению, а использовались также их производные, которые были получены 

дополнительной фильтрацией. Кроме того для отбора значимых признаков 

используется сразу несколько методов, вместо одного. 

В качестве второй методики для извлечения признаков f использовалась 

глубокая сеть Inception-ResNet. 

Inception-ResNet — сверточная нейронная сеть, обученная на более чем 

миллионе изображений из базы данных ImageNet [131]. Сеть состоит из 164 слоев 

и может классифицировать изображения по 1000 категориям объектов, в 

результате чего сеть имеет богатые представления функций для широкого спектра 

изображений. Преимуществом Inception-ResNet считается глубина ее сети, 

которая помогает улавливать сложные и абстрактные признаки изображения. 

Для извлечения признаков было произведено предварительное трансферное 

обучение сети на небольшом наборе данных ОИ маммограмм: 225 изображений 

(144 доброкачественных и 81 злокачественных образований), после чего сеть 

была модифицирована путем удаления последних слоев сети: слоя SoftMax и 

заключительного классифицирующего слоя. Таким образом, на выходе 

модифицированной сети получили вектор из 1536 признаков. 

Этот вектор признаков, так же как и в первом случае, подавался на три 

блока отбора значимых признаков ReliefF, FSCNCA и LASSO. 

Различающиеся признаки, отобранные этими тремя методами, 

объединялись в один вектор признаков, который учитывает только 36 значимых 

признака. На рисунке 28 представлены распределения их значений для 

доброкачественных и злокачественных образований МЖ.  
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Рис. 28. Нормализованные распределения значений отобранных признаков для 

доброкачественных и злокачественных образований МЖ. 

 

Для построения классифицирующей решающей функции а использовался 

метод опорных векторов (SVM). На рис. 29 представлена блок-схема второй 

методики исследования классифицирования изменений МЖ. 

 

Рис. 29. Блок-схема второй методики исследования классифицирования. 

 

Как для первой, так и для второй методики обучение модели SVM 

выполнялось с использованием k-блочной кросс-валидации. Этот метод 

случайным образом разбивает данные на k непересекающихся блоков примерно 

одинакового размера. В свою очередь, каждый блок рассматривался как 

проверочный набор, а остальные k-1 блоков — как обучающий набор. Модель 

была обучена на блоках k-1 и предсказывает блок проверки. Процесс повторяется 

k раз, и получаем k оценок, для которых вычисляется среднее значение, 

являющееся итоговой оценкой точности модели. 

Отличительной особенностью второй методики является использование 

сети глубокого обучения только для извлечение признаков из изображения, а 

классификация производится методом опорных векторов, в отличие от 
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дополнительно встроенной классифицирующей нейронной сети в сеть глубокого 

обучения. Кроме того, для отбора значимых признаков используется сразу 

несколько методов вместо одного. 

Результаты использования рассмотренных методик обсуждаются в разделе 

3.4.  

2.2.5. Обнаружение кальцинатов на маммограммах  

Метод обнаружения и сегментации кальцинатов основан на поиске малых 

ярких точек (пикселей) или их скоплений на маммограммах. Он предполагает 

применение предварительного нелинейного фильтра для значений яркости 

пикселей изображения, который обнуляет (или уменьшает яркость) пикселей с 

малой яркостью и увеличивает (или не изменяет) яркость пикселей с изначально 

большим значением яркости: 

f (x,y) → f*(x,y). 

На рис. 30 сплошной линией представлен график нелинейного фильтра 

подавления фона и паренхимы маммограммы. 

 

Рис. 30. График нелинейного фильтра подавления фона и паренхимы 

маммограммы. 

 

Предложенный фильтр можно представить в виде логистического 

уравнения ,
1
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=  где: L – максимальное значение кривой, k – 

темп роста по логистической кривой или крутизна кривой, x0 – значение f(x,y) в 
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середине сигмоиды. Тогда полную математическую запись фильтра можно 

представить в виде уравнения: 
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На рис. 31б представлен результат работы нелинейного фильтра, на рис. 31в 

— результат после последующей бинаризации методом Отцу. 

   

а)                                б)                                    в) 

Рис. 31. а) Исходная маммограмма со скоплением кальцинатов; б) результат 

работы нелинейного фильтра; в) результат последующей бинаризации методом 

Отцу. 

 

Метод Отцу — алгоритм вычисления порога бинаризации для полутонового 

изображения, суть которого заключается в том, чтобы выставить порог между 

классами таким образом, чтобы каждый их них был как можно более «плотным», 

т.е. сводится к минимизации внутриклассовой дисперсии, которая определяется 

как взвешенная сумма дисперсий двух классов [132]: 

,2
22

2
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2 +=  

где: ω1 и ω2 – вероятности первого и второго классов соответственно. 
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Применение метода бинаризации Отцу и последующего плотностного 

алгоритма пространственной кластеризации с присутствием шума (DBSCAN) 

после нелинейного преобразования позволяет выделить отдельные группы 

предположительных скоплений кальцинатов. 

Алгоритм DBSCAN классифицирует объекты в зависимости от их 

плотности. Если дан набор точек в определённом пространстве, алгоритм 

объединяет те точки, которые находятся близко друг к другу (то есть имеют 

много соседей на небольшом расстоянии), тогда как точки, располагающиеся 

поодиночке с малой плотностью (с далеко удалёнными ближайшими соседями), 

отмечаются как выбросы [133]. 

Однако такой подход все-таки оставляет ложные объекты на изображении 

маммограммы, которые не являются кальцинатами, но имеют сравнимую яркость. 

Для удаления таких ложноположительных результатов производится 

дополнительная фильтрация после бинаризации методом Отцу и до запуска 

алгоритма DBSCAN для каждого найденного объекта путем расчета перепада 

яркости по их краям. Для этого рассматриваются пиксели, лежащие на четырех 

лучах: двух горизонтальных и двух вертикальных, проведенных из центра масс A 

исследуемого объекта (рис. 32), и производится расчет отношения средней 

яркости пикселей, расположенных внутри объекта и снаружи от него. 

 

Рис. 32. Схема расчета перепада яркости границы объекта по лучам. 

 

Так как известно, что кальцинаты имеют резкую (контрастную) границу, а 

остальные объекты – плавный переход границы, то использование заданного 
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порога позволило убрать ложные метки. Порог был подобран экспериментальным 

путем и был равен 1,2.  

Таким образом, уравнение можно представить следующим образом: 
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где: inf  – среднее значение яркости пикселей, лежащих на лучах внутри 

исследуемого объекта, outf  – среднее значение яркости пикселей, лежащих на 

лучах вне объекта. 

Для устранения пропусков обнаружения скоплений кальцинатов 

предложенная методика выполнялась дважды для каждого изображения: для 

исходного изображения и для изображения с предварительно удаленными 

кальцинатами, найденными на первом этапе. Блок схема методики представлена 

на рис. 33. 

 

Рис. 33. Блок-схема предложенной методики. 

 

На заключительном этапе используется алгоритм построения выпуклой 

оболочки Склански [134], который позволяет обвести кластер скопления 

кальцинатов и определить занимаемую им площадь S. 

Результаты использования данной методики обсуждаются в разделе 3.5.  

2.2.6. Классифицирование доброкачественных и подозрительных 

кальцинатов на маммограммах 

Для извлечения классифицирующих признаков и дальнейшего 

классифицирования кальцинатов необходимо выполнить их предварительное 

обнаружение и выделение, которое выполняется с помощью методики, 

предложенной в разделе 2.2.5.  
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Известно, что доброкачественные и подозрительные кальцинаты имеют 

слабо выраженные различия текстурных признаков, так как представляют собой 

яркие однородные объекты различной формы, а плотность паренхимы МЖ 

(окружающий их фон) может быть как одинаковой, так и различной для обоих 

случаев (см. рис. 34).  

   

   
          а)                        б)                           в) 

Рис. 34. Примеры кальцинатов и результат их выделения: а) и б) 

доброкачественные; в) подозрительные скопления кальцинатов. 

 

Вследствие этого, для классифицирования кальцинатов предлагается 

использовать их количественные и геометрические признаки:  

1) количество объектов в обнаруженном кластере N; 

2) доля объектов малой площади в кластере (площадь <50 пикселей): D<50 = 

N<50 / N; 

3) доля объектов большой площади в кластере (площадь >1500 пикселей): 

D>1500 = N>1500 / N; 

4) эксцентриситет кластера (степень его отклонения от окружности): 

,1 22 abE −=  где: a и b – соответственно, большая и малая полуоси кластера 

(построенного с помощью алгоритма выпуклой оболочки Склански); 

5) отношение площади, занимаемой объектами кластера, к площади всего 

кластера кальцинатов (рассеянность объектов по кластеру): U = S* / S, где: S* – 

количество пикселей, относящихся к объектам кластера, S – количество пикселей 
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всего кластера (построенного с помощью алгоритма выпуклой оболочки 

Склански).  

В табл. 7 показаны абсолютные значения коэффициентов корреляции r для 

предложенных пяти признаков.  

Таблица 7. Коэффициент корреляции r признаков. 

Признак 1 2 3 4 5 

1 1 0,12 0,112 0,038 0,268 

2  1 0,713 0,028 0,043 

3   1 0,04 0,088 

4    1 0,415 

5     1 

 

Как видно из табл. 7, большинство признаков слабо коррелированы между 

собой. 

На рис. 35 представлены распределения значений признаков для 

доброкачественных и подозрительных скоплений кальцинатов МЖ. 

 

Рис. 35. Нормализованные распределения значений отобранных признаков для 

доброкачественных и подозрительных кальцинатов МЖ. 

 

В качестве классификатора использовали линейный метод опорных 

векторов (SVM), который был предварительно обучен с помощью обучения с 

учителем с использованием перекрестной проверки ошибки – k-блочной кросс-
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валидации. Обучающий набор состоял из 126 изображений скоплений 

кальцинатов (70 доброкачественных, 56 подозрительных). 

Однако экспериментально было установлено, что количество объектов в 

обнаруженном кластере (признак 1), доля объектов малой площади (признак 2), 

эксцентриситет кластера (признак 4) и отношение площади занимаемой 

объектами кластера и площади всего кластера (признак 5) во многих случаях для 

кальцинированных сосудов оказались сравнимы с таковыми подозрительных 

скоплений кальцинатов, и метод SVM классифицировал их неверно (см. рис. 36). 

  

  

Рис. 36. Изображения кальцинированных сосудов на маммограммах. 

 

Однако визуально можно наблюдать, что сами сосудистые кальцинаты 

сосредоточены только вдоль сосуда, как правило, имеют одинаковое уширение за 

счет этого и могут быть представлены в виде небольших прямолинейных 

отрезков. Таким образом, скопления кальцинатов в сосудах можно рассматривать 

в виде модели линейных объектов. 

Для минимизации подобных ошибок классификации было введено 

дополнительно три признака:  

1) медианная ширина скопления Widthmedian;  

2) доля пикселей, по которым построились линии Хафа и включаются в 

скопления кальцинатов: Rs; 
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3) индекс корреляции с аппроксимирующей полиномиальной кривой 

третьей степени Rcor. 

Для расчета первых двух признаков использовалось прогрессивное 

вероятностное преобразование Хафа [135], которое позволяет находить 

произвольные заданные прямые на предварительно бинаризированном 

изображении. 

Преобразование Хафа основывается на представлении искомого объекта в 

виде параметрического уравнения: 

x·cos φ + y ·sin φ = ρ, 

где: ρ – расстояние от кривой до начала координат; φ – угол между внешней 

нормалью прямой и осью абсцисс, x, y – координаты точки на изображении.  

Параметры данного уравнения представляют фазовое пространство 

(пространство Хафа). Для каждой точки изображения рассчитываются 

необходимое уравнение и соответствующие параметры, которые сохраняются в 

пространстве Хафа. 

На финальном шаге производится обход пространства Хафа и выбор 

максимальных значений, за которые «проголосовало» больше всего пикселей 

изображения, что и даёт параметры для уравнений искомого объекта на 

маммограмме. 

Таким образом, преобразование Хафа, применяемое к точкам исходного 

изображения и с последующим согласованием найденных бесконечных линий с 

точками изображения, есть вероятностное преобразование Хафа. 

На рис. 37 представлен результат работы метода вероятностного 

преобразования Хафа. 

Получив таким образом направление кальцинированного сосуда, 

перпендикулярно каждой найденной прямой линии (см. рис. 37, желтые стрелки) 

рассчитывается ширина кальцината с помощью евклидовой метрики, и в качестве 

классифицирующего признака берется медианное значение ширины среди всех 

прямых линий Widthmedian. 
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Рис. 37. Результат работы метода вероятностного преобразования Хафа (синим 

цветом показаны полученные прямые линии, желтым – их перпендикуляры). 

 

Второй дополнительный признак или доля пикселей, по которым 

построились линии Хафа, в скопления кальцинатов: 

,
W
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R =  

где: SH – количество пикселей по которым построились линии Хафа, SW
 – общее 

количество пикселей скопления. 

Третьим дополнительным признаком является индекс корреляции: 
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где: ŷ = ax3 + bx2 + cx + d – расчетные значения зависимой переменной по 

аппроксимирующей полиномиальной кривой третьей степени, y – координаты 

пикселей скопления, y – среднее значение y. 

Величина индекса корреляции находится в пределах от нуля до единицы, и 

чем ближе его значение к единице, тем теснее рассматриваемая связь, и 

кальцинаты сосредоточены вдоль сосуда (или аппроксимирующей кривой). 

Экспериментально было установлено, что если медианная ширина 

исследуемого объекта Widthmedian < 31 пикселя, Rs < 0,45 и Rcor > 0,336 (каждое 
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условие выполняется), то данный объект можно отнести к доброкачественному 

сосудистому скоплению. 

Использование медианного значения ширины объекта вместо среднего 

значения обусловлено тем, что возможны случаи, когда кальцинированный сосуд 

накладывается на другое скопление кальцинатов (рис. 38), и в этом случае 

среднее значение ширины может быть слишком велико по сравнению с 

возможной шириной сосуда. 

  

Рис. 38. Наложение кальцинированного сосуда на другое скопление кальцинатов. 

 

Результаты использования данной методики обсуждаются в разделе 3.6.  
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3. РЕЗУЛЬТАТЫ 

Для оценки эффективности работы разработанных алгоритмов была 

выполнена их программная реализация на языках C++ и Python 3 в виде 

отдельных модулей. В качестве тестируемых данных использовались реальные 

маммограммы с морфологически верифицированными изменениями, 

размеченные врачом-специалистом. При этом анализируются изменения 

различного рода (доброкачественные и подозрительные) и типа (например, 

звездчатые, образования дольчатой формы, изменение структуры паренхимы и 

др.). 

3.1. Результаты работы алгоритма вложенных контуров 

3.1.1. Пленочные маммограммы 

В табл. 8 представлены результаты обнаружения изменений на пленочных 

маммограммах с помощью АВК. 

Таблица 8. Результаты обнаружения изменений АВК. 

Тип изменения Результат обнаружения 

Звездчатые образования 205 из 220 (93,18 %) 

Спикулизированные с небольшим и плотным 

центром и длинными спикулами 
12 из 14 (85,71 %) 

Изменения неправильной формы с нечеткими 

контурами 
51 из 58 (87,93 %) 

Дольчатые и круглые с полностью или частично 

четкими контурами 
12 из 12 (100 %) 

Частично визуализируемые 17 из 18 (94,4 %) 

Асимметрия плотности 13 из 18 (72,2 %) 

Нечетко видимые или невидимые  7 из 16 (43,8 %) 

 

В группе звездчатых образований, являвшихся проявлениями РМЖ, АВК 

отметил 205 образований из 220 (93,18%), однако при отдельном анализе только 

небольших и прогностически благоприятных звездчатых образований (размером 

менее 10 мм) АВК отметил 48 из 52 (92,31%) данных изменений.  
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В группе РМЖ в виде спикулизированных образований (образований с 

небольшим и плотным центром и длинными спикулами, каких было 14 (3,93%) из 

356 случаев) АВК правильно отметил 12 (85,71%).  

В группе РМЖ в виде изменений неправильной формы с нечеткими 

контурами (таких было 58 из 356 (16,29%) случаев) АВК отметил 51 (87,93%).  

В группе РМЖ в виде дольчатых и округлых образований с полностью или 

частично четкими контурами АВК промаркировал все 18 (100%) очагов, однако 

их размер был относительно большим (в среднем 15±7 мм). 

В группе частично визуализируемых РМЖ АВК отметил 17 из 18 случаев 

(94,4%).  

В группе РМЖ, проявлявшихся асимметриями плотности паренхимы, АВК 

правильно отметил 13 из 18 (72,2%). 

В группе РМЖ, нечетко видимых или невидимых на фоне плотной 

паренхимы, АВК удалось обнаружить 7 из 16 (43,8%). 

Общая чувствительность АВК в исследуемой выборке составила 90,73% 

(323 случая из 356). Средняя частота ложноположительных меток составила 1,3 

на изображение – для маммограмм жировой степени плотности (ACR А-В) и 1,8 – 

для маммограмм высокой степени плотности (ACR C-D). 

3.1.2. Цифровые маммограммы 

В табл. 9 представлены результаты обнаружения изменений на цифровых 

маммограммах с помощью АВК. 

Таблица 9. Результаты обнаружения изменений АВК. 

Тип изменения Результат обнаружения 

Звездчатые образования 102 из 102 (100 %) 

Образования округлой или овальной формы 16 из 16 (100 %) 

Асимметрии плотности паренхимы 28 из 28 (100 %) 

Не визуализирующиеся образования на фоне плотной 

паренхимы 
32 из 38 (84 %) 

Частично визуализирующиеся образования 4 из 4 (100 %) 

Образования дольчатой формы 46 из 48 (95 %) 

Изменение структуры паренхимы 8 из 8 (100 %) 

Тень, ассоциированная с микрокальцинатами 8 из 8 (100 %) 
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Всего: 272 маммограммы (136 пациенток). Все ненайденные случаи 

соответствовали маммограммам в какой-либо одной проекции, тогда как 

изменения на второй проекции были обнаружены. 

На рис. 39-44 представлены результаты работы АВК на цифровых 

маммограммах с различными типами изменений. 

  
   а)           б) 

Рис. 39. Асимметрия плотности паренхимы: a) исходная маммограмма; б) 

результат работы АВК. 
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   а)           б) 

Рис. 40. Дольчатая тень: a) исходная маммограмма; б) результат работы 

АВК. 

  
   а)           б) 

Рис. 41. Звездчатое образование: a) исходная маммограмма; б) результат 

работы АВК. 
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   а)           б) 

Рис. 42. Изменение структуры паренхимы (стрелка): a) исходная 

маммограмма; б) результат работы АВК. 

  
   а)           б) 

Рис. 43. Образование округлой или овальной формы: a) исходная 

маммограмма; б) результат работы АВК. 
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   а)           б) 

Рис. 44. Частично визуализирующееся образование (стрелка): a) исходная 

маммограмма; б) результат работы АВК. 

 

Дополнительно проведено сравнение предложенного АВК с другими 

современными методиками обнаружения патологических изменений на 

маммограммах полученных из публичных баз данных (БД): 

- база данных CBIS-DDSM [118] (цифровые маммограммы формата 

DICOM); 

- база данных InBreast [119] (цифровые маммограммы формата DICOM). 

В табл. 10 представлены результаты обработки маммограмм из БД CBIS-

DDSM. 

Таблица 10. Результаты работы АВК на маммограммах из БД CBIS-DDSM. 

Тип изменения Результат обнаружения 

Звездчатые образования 69 из 70 (98 %) 

Образования с нечетким контуром 78 из 80 (97 %) 

Образования с ровным контуром 17 из 18 (94 %) 

Асимметрии 6 из 6 (100 %) 

Частично срезанные образования 10 из 10 (100 %) 

Образования менее 10 мм 70 из 73 (95 %) 

Всего 250 из 257 (97 %) 
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В табл. 11 представлены результаты обработки маммограмм из БД INBreast. 

Таблица 11. Результаты работы АВК на маммограммах из БД INBreast. 

Тип изменения Результат обнаружения 

Звездчатые образования 30 из 30 (100 %) 

Образования с нечетким контуром 32 из 34 (94 %) 

Образования с ровным контуром 13 из 14 (92 %) 

Асимметрии 4 из 4 (100 %) 

В том числе: образования менее 10 мм 32 из 34 (94 %) 

Всего 111 из 116 (95,6 %) 

 

В табл. 12 представлено сравнение предлагаемого подхода обнаружения 

изменений МЖ с помощью АВК со современными методиками. 

Таблица 12. Сравнение АВК с современными методиками. 

База 

данных 
Методика и источник Год Точность (%) 

CBIS-DDSM 

Shams S. и др. [136], Deep GeneRAtive 

Multi-task сверточная нейронная сеть. 
2018 89 % 

CBIS-DDSM 

Tsochatzidis L. и др. [137], контролируемый 

подход к поиску объектов на изображении 

на основе его контента. 

2019 81 % 

CBIS-DDSM 

Falconi L. и др. [138], сеть глубокого 

обучения VGG16. 
2020 84,4 % 

CBIS-DDSM 

Ansar W. и др. [139], сеть глубокого 

обучения на основе MobileNet. 
2020 74,5 % 

CBIS-DDSM 

Zhang  H. и др. [140], классификация с 

кросс-модальным семантическим анализом. 
2020 87,05 % 

CBIS-DDSM 

Himanish S. D. и др. [141], классификатор 

Xception с тонкой настройкой. 
2022 89,2 % 

CBIS-DDSM Li H. [142], сеть DualCoreNet. 2022 93 % 

CBIS-DDSM Предложенный алгоритм АВК 2022 97 % 

CBIS-DDSM 

Jafari Z., и др. [143], CNN с выбором 

признаков. 
2023 96 % 
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INbreast 

Dhungel и др. [144], каскад методов 

глубокого обучения. 
2017 90 % 

INbreast 

Carneiro и др. [145], сверточная нейронная 

сеть ConvNet. 
2017 90 % 

INbreast 

Shi P. и др. [146], сверточная нейронная 

сеть. 
2019 83,6 % 

INbreast 

Zhang H. и др. [140], классификация с 

кросс-модальным семантическим анализом. 
2020 87,93 % 

INbreast 
El Houby и др. [147], сверточная нейронная 

сеть. 
2021 94,52 % 

INbreast 

Himanish S. D. и др. [141], классификатор 

Xception с тонкой настройкой. 
2022 95,1 % 

INbreast Предложенный алгоритм АВК 2022 95,6 % 

INbreast 

Jafari Z. и др. [143], CNN с выбором 

признаков. 
2023 94,5 % 

 

В базе CBIS-DDSM присутствовало по два изображения (проекции) на 

пациентку. Был единственный случай, когда изменение не было промаркировано 

на обоих изображениях. Во всех остальных — на одном промаркировано, на 

другом — нет, что клинически незначимо.  

В базе INbreast изменения не были промаркированы на 3 изображениях, 

однако случаев, когда они не были промаркированы на обоих изображениях 

пациентки, не было. 

Предложенный метод на основе АВК превосходит современные методики 

обнаружения изменений МЖ в среднем на 3%, и различия изображений из разных 

БД существенно не повлияло на результаты обработки маммограмм. 
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3.2. Оценка эффективности одноэтапного детектора YOLOv4 

Оценка эффективности предлагаемого одноэтапного детектора 

рассматривалась в сравнении с АВК. В табл. 13 представлены результаты 

обнаружения изменений с помощью двух предложенных методик. 

Таблица 13. Результаты обнаружения изменений для YOLOv4 и АВК. 

Тип изменения 
Верное обнаружение Ложное обнаружение 

YOLOv4 АВК YOLOv4 АВК 

Звездчатое образование 15 из 16 16 из 16 0 из 16 9 из 16 

Образование с нечетким 

контуром 
24 из 30 24 из 30 7 из 30 14 из 30 

Образование округлой или 

овальной формы с четким 

контуром 

8 из 8 8 из 8 3 из 8 4 из 8 

Асимметрия плотности 

паренхимы 
6 из 28 27 из 28 0 из 28 18 из 28 

Изменения незаметны на 

фоне плотной паренхимы 
5 из 16 16 из 16 0 из 16 16 из 16 

Частично 

визуализированное 

образование 

2 из 2 2 из 2 0 из 2 2 из 2 

Всего 60 из 100 93 из 100 10 из 100 63 из 100 

 

Показано что, в анализируемом наборе общая чувствительность YOLOv4 

составила 60%, для АВК аналогичное значение составило 93%. При этом АВК 

обеспечивал более высокую частоту обнаружения именно сложных для 

визуального восприятия вариантов РМЖ (см. рис. 45). 
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   а)           б) 

  
   в)           г) 

Рис. 45. Нечетко визуализирующиеся образования на фоне плотной паренхимы: a-

б) исходные маммограммы; в-г) результат работы АВК. 

 

В табл. 14 показаны полученные значения True Positive (TP), False Positive 

(FP) и False Negative (FN) для двух сравниваемых подходов. 
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Таблица 14. Значения трех категорий статистики TP, FP, FN. 

Категория
 

YOLOv4
 

АВК
 

TP
 

60
 

93
 

FP
 

10
 

63
 

FN
 

40
 

7
 

 

В табл. 15 показаны значения Precision, Recall, F1-score для тестового набора 

данных маммограмм. 

Таблица 15. Значения Precision, Recall и F1-score. 

Метрика YOLOv4 АВК 

Precision 0,85 0,59 

Recall 0,60 0,93 

F1-Score 0,70 0,72 

 

Поскольку выявление участков РМЖ более важно, чем количество 

ложноположительных результатов, также использовали взвешенную оценку F1 – 

Fβ. Оценка Fβ измеряет эффективность детектора, учитывая, что отзыв в β раз 

важнее точности: 

.
RecallPrecision

RecallPrecision 
)1( 2

+


+=− ScoreF  

В табл. 16 представлены метрики Fβ-score для различных значений 

значимости β.  

Таблица 16. Значения Fβ при различных значениях значимости β. 

β YOLOv4 АВК 

10 5,66 8,11 

50 29,59 45,09 

100 59,58 91,56 

 

Дополнительно было проведено отдельное тестирование обученной модели 

YOLOv4, которое проводилось на выборке из 255 маммографических 

изображений пациенток с верифицированным РМЖ, полученных на системе 

Siemens Mammomat Fusion. 
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В табл. 17 приведены результаты дополнительной оценки обнаружения 

РМЖ моделью YOLOv4. 

Таблица 17. Дополнительная оценка обнаружения РМЖ моделью YOLOv4. 

Тип изменения Результат обнаружения 

Звездчатое образование 154 из 167 (92 %) 

Образование с нечетким контуром 0 из 10 (0 %) 

Образование округлой или овальной 

формы с четким контуром 
37 из 37 (100 %) 

Асимметрия плотности паренхимы 2 из 16 (12 %) 

Изменения незаметны на фоне плотной 

паренхимы 
8 из 18 (44 %) 

Частично визуализированное 

образование 
7 из 7 (100 %) 

Всего 208 из 255 (81 %) 

  

Таким образом, вероятность пропуска изменений YOLOv4 максимальна в 

отношении изменений, весьма схожих с нормальными компонентами 

маммографических изображений и представляющих в то же время наибольшую 

сложность при обнаружении. 

Также обученная модель тестировалось на выборке из 20 пленочных 

маммограмм пациенток с верифицированным РМЖ, оцифрованных с 

разрешением 300 dpi, и на выборе из 16 цифровых маммограмм пациенток с 

верифицированным РМЖ в виде звездчатых или округлых образований размером 

не менее 15 мм, полученных на других моделях маммографов (см. рис. 46). 

Включались только изображения, где изменения были хорошо различимы 

визуально. 

При использовании пленочных маммограмм не было найдено ни одного 

образования, а для маммограмм с других моделей маммографов не было 

обнаружено 6 случаев из 16, т.е. методика чувствительна к параметрам входящего 

изображения и требует обучения именно на изображениях, получаемых на 

системе, в паре с которой она будет использоваться.  

Таким образом, модель YOLOv4 представляется специфичной для 

определенной модели маммографа, и ее требуется переобучать для работы с 
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изображениями, полученными на других системах, отличных от тех, на которых 

обучалась первичная модель. 

  

Рис. 46. Мамограммы пациенток с верифицированным РМЖ, полученные на 

других моделях цифровых маммографов. Стрелкой указаны образования, которые 

не были обнаружены YOLOv4. 

 

3.3. Результаты сегментации подозрительных изменений на 

маммографических изображениях 

Для оценки качества сегментирования образования использовались данные 

маммографии с клинически подтвержденными изменениями, размеченные 

врачом-специалистом. В качестве эталона использовались обведенные врачом-

специалистом контуры образования. В табл. 18 представлены результаты 

сегментирования образований МЖ различного типа на маммографических 

изображениях. 
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Таблица 18. Результаты сегментирования образования на маммограммах. 

Тип изменения 

Количество,  

(% от 

общего) 

Метрика 

d  ±   
r

d 
 IoU Precision Recall 

F1-

score 

Асимметрии 
2 из 128  

(1,56%) 

14,34± 

17,06 

0,05± 

0,06 
0,76 0,90 0,82 0,86 

Области 

измененной 

структуры 

паренхимы 

2 из 128   

(1,56%) 

10,05± 

11,62 

0,084± 

0,097 
0,73 0,92 0,78 0,84 

Низкоинтенсивные 

изменения 

18 из 128   

(14,06%) 

11,44± 

12,49 

0,05± 

0,054 
0,78 0,92 0,83 0,87 

Изменения, 

содержащие 

кальцинаты 

11 из 128   

(8,59%) 

11,47± 

9,95 

0,09± 

0,078 
0,74 0,98 0,74 0,85 

Тени округлой, 

овальной или 

дольчатой формы 

59 из 128   

(46,09%) 

9,76± 

10,19 

0,046± 

0,048 
0,82 0,96 0,84 0,90 

Спикулизированные 

образования 

35 из 128  

(27,34%) 

11,16± 

11,81 

0,064± 

0,068 
0,76 0,93 0,80 0,86 

Частично 

визуализируемые 

образования 

1 из 128  

 (0,78%) 

12,78± 

18,39 

0,068± 

0,10 
0,79 0,98 0,80 0,88 

Среднее — 
11,57± 

13,07 

0,064± 

0,072 
0,76 0,94 0,80 0,86 

 

В табл. 18, d  и   – среднее значение и среднее квадратическое отклонение, 

соответственно, евклидова расстояния между ближайшими точками выделенного 

контура и эталона, r – средний радиус эталона.  IoU – отношение площадей 

пересечения к объединению областей выделенного контура и эталона. 

,Precision 
FPTP

TP

+
=  ,Recall

FNTP

TP

+
=  ,

RecallPrecision

RecallPrecision 2
1

+


=− ScoreF  где:

 

,
B

BA
TP


=

 
,

B

BBA
FP

−
=

 
,1 TPFN −=  А – площадь сегментированной области, 

B – площадь эталона (в пикселях), TP – количество верно сегментированных 

пикселей, FP – количество неверно сегментированных пикселей, FN – количество 

не сегментированных пикселей эталона.
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В табл. 19 представлены усредненные по всей выборке результаты оценки 

вариабельности ручного выделения эталона.  

Таблица 19. Вариабельность ручного выделения эталона. 

Тип изменения d  ±   

Асимметрии 5,81 ± 5,57 

Области измененной структуры 

паренхимы 
4,47 ± 4,29 

Низкоинтенсивные изменения 7,84 ± 8,22 

Изменения, содержащие кальцинаты 5,17 ± 5,07 

Тени округлой, овальной или дольчатой 

формы 
5,27 ± 4,91 

Спикулизированные образования 4,56 ± 3,84 

Частично визуализируемые 

образования 
4,21 ± 4,63 

Среднее 5,33 ± 5,22 

 

Средняя оценка вариабельности ручного выделения эталона по всем типам 

изменений составила d  ±   = 5,33 ± 5,22 пикселей.  

Дополнительно было проведено сравнение предложенной методики 

сегментации изменений МЖ на маммограммах с другими современными 

методами сегментации (см. табл. 20).  

Таблица 20. Сравнение предложенной методики с другими методами. 

Год Автор, метод Точность, (%) 

2021 Lbachir и др. [148], HRAK алгоритм. 93,15 % 

2022 Pezeshki H. [149], пороговая сегментация. 91,32 % 

2022 Li H. и др. [142], DUALCORENET метод. 93,69 % 

2023 
Ma Y. и др. [150], вариационный автоэнкодер на 

основе перекрестного просмотра. 
93,70 % 

2023  Предложенная методика 94 % 

 

Предложенная методика сегментации изменений МЖ превосходит 

рассмотренные современные методы по степени точности верного выделения 

Precision, в среднем, на 1%. 
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3.4. Результаты классификации изменений на маммографических 

изображениях 

В качестве тестовой выборки использовались 21 отсканированная 

пленочная маммограммы 10 последовательных пациенток с верифицированным 

РМЖ, которые не участвовали в процессе обучения моделей SVM. 

В исследовании эффективности участвовали только злокачественные 

образования, так как значимость их обнаружения играет большую роль в 

клинической практике. 

В табл. 21 представлены результаты классификации образований по двум 

методикам извлечения признаков, где обучение производилось как по всему 

вектору извлеченных признаков, так и по вектору отобранным значимым 

признакам.  

Таблица 21. Оценка эффективности классификации образований РМЖ. 

Вектор признаков 

Подход без 

использования 

глубокого 

обучения 

Подход на основе 

модели глубокого 

обучения 

Все признаки 13 из 21 (61,9%) 16 из 21 (76,1%) 

Отобранные признаки 14 из 21 (66,6%) 17 из 21 (80,9%) 

 

Таким образом, для первой методики извлечения признаков (текстурные 

признаки Харалика, Тамура, Хью) из 21 изображения ОИ были правильно 

обнаружены только 14 случаев (66,6%).  

Для второй методики с использованием модифицированной сети глубокого 

обучения для извлечения признаков были правильно обнаружены только 17 

случаев (80,9%).  

На рисунке 47 представлена матрица ошибок для второй методики 

извлечения признаков с использованием глубокой сети Inception-ResNet по 

отобранным признакам. Матрица ошибок отображает разделимость классов для 
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225 маммограмм участвующих только в обучении модели SVM. Точность при 

этом достигалась равной:  

%4,96%100
3578139

78139
%100 =

+++

+
=

+++

+
=

FNFPTNTP

TNTP
Accuracy . 

 

Рис. 47. Матрица ошибок для второй методики извлечения признаков по вектору 

отобранных признаков. 

 

Типичные примеры РМЖ, расцененные как доброкачественные как при 

первой, так и при второй методике, представлены на рис. 48. 

  

Рис. 48 Типичные примеры РМЖ, расцененные как доброкачественные при 

попытке их классификации. 

 

На рисунке 49 представлены примеры РМЖ (а) и доброкачественного 

образования (б) которые были верно классифицированы исследуемыми 

методиками. 
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              а)      б) 

Рис. 49 РМЖ (а) и доброкачественное образование (б), которые были верно 

классифицированы. 

 

3.5. Результаты обнаружения кальцинатов на маммограммах 

Исследование эффективности метода было проведено на выборке из 435 

маммограмм (299 доброкачественных случаев, 136 подозрительных случаев). 

Результаты обнаружения представлены в табл. 22.  

Таблица 22. Результаты обнаружения скоплений кальцинатов. 

Скопления кальцинатов Количество обнаруженных 

Доброкачественные 282 из 299 (94,3%) 

Подозрительные 123 из 136 (90,4%) 

Всего 405 из 435 (93,1%) 

 

Примеры обнаруженных доброкачественных скоплений кальцинатов 

представлены на рис. 50. 

  

  
                а)     б) 
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      в)          г)                  д)    е) 

Рис. 50. Результаты обнаружения доброкачественных кальцинатов: а — 

хлопьевидные; б — внутрикожные с центральным просветлением; в — 

палочковидные; г — сосудистые; д — точечные; е — по типу яичной скорлупы. 

 

Примеры обнаруженных подозрительных скоплений кальцинатов 

представлены на рис. 51. 

   

   
          а)           б)            в) 
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                 г)        д) 

Рис. 51. Результаты обнаружения подозрительных кальцинатов: а — 

аморфные; б — крупные гетерогенные; в — мелкие линейные; г — мелкие 

ветвящиеся; д — мелкие полиморфные.  

 

Примеры необнаруженных скоплений кальцинатов представлены на рис. 52. 

Все они соответствовали ситуациям, когда мелкие низкоинтенсивные кальцинаты 

располагались на интенсивном фоне опухоли, что делало различие их яркостей 

небольшим. 

    

  

Рис. 52. Примеры необнаруженных скоплений кальцинатов (мелкие 

линейные). 
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Однако ненайденные подозрительные скопления кальцинатов были 

расположены на фоне тени опухоли, которая обнаруживается предложенным 

ранее АВК (см. рис. 53). Поэтому при использовании блока поиска кальцинатов 

вместе с АВК в структуре единой CAD пропуск таких случаев не является 

критичным. 

  

  

Рис. 53. Результаты обнаружения АВК образований, ассоциированных со 

скоплениями микрокальцинатов и представленных на рис. 52. 

 

3.6. Результаты классифицирования доброкачественных и 

подозрительных кальцинатов на маммограммах 

В табл. 23 представлены результаты классифицирования различных типов 

кальцинатов и их скоплений на маммограммах. 

Таблица 23. Результаты классифицирования скоплений кальцинатов. 

Тип кальцинатов 
Верно 

классифицировано 

Не верно 

классифицировано 

Доброкачественные 

Обызвествленный осадок 4 из 4 0 из 4 

Дистрофические 37 из 40 3 из 40 

Округлые 65 из 66 1 из 66 

Палочковидные 6 из 8 2 из 8 

Сосудистые 20 из 23 3 из 23 

Точечные 13 из 13 0 из 13 
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Хлопьевидные 103 из 105 2 из 105 

Яичная скорлупа 17 из 19 2 из 19 

Всего 265 из 278 13 из 278 

Подозрительные 

Аморфные 19 из 19 0 из 19 

Крупные гетерогенные 35 из 37 2 из 37 

Мелкие линейные 13 из 13 0 из 13 

Мелкие линейные 

ветвящиеся 
6 из 6 0 из 6 

Мелкие полиморфные 37 из 37 0 из 37 

Всего 110 из 112 2 из 112 

 

Общая оценка классифицирования кальцинатов по всем типам 

доброкачественных и злокачественных: верно классифицировано — 375 из 390 

(96,15%), неверно классифицировано — 15 из 390 (3,84%). Чувствительность = 

110/112 = 98,21%, специфичность = 265/278 = 95,32%. Чувствительность отражает 

долю положительных результатов, которые правильно обнаружены как таковые. 

Иными словами, чувствительность диагностического теста показывает 

вероятность того, что подозрительные кальцинаты будут классифицированы 

именно как подозрительные. Специфичность отражает долю отрицательных 

результатов, которые правильно обнаружены как таковые, то есть вероятность 

того, что доброкачественные кальцинаты будут классифицированы именно как 

доброкачественные. 

Во всех двух случаях, когда подозрительные кальцинаты маркировались как 

доброкачественные, ошибочное срабатывание отмечалось только на 

маммограммах в одной проекции, в то время как на маммограммах в другой 

проекции подозрительные кальцинаты были верно промаркированы как таковые. 
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ВЫВОДЫ 

Алгоритм вложенных контуров 

Данные демонстрируют достаточно высокую чувствительность АВК не 

только в случаях типичных и хорошо видимых образований, но и в случаях 

атипичных и невидимых изменений (например, асимметричные участки и 

невидимые РМЖ на плотном фоне). Это имеет большое значение, поскольку 

такие нечетко видимые изменения часто становятся ложноотрицательными 

результатами при визуальном анализе изображений маммографии [151]. В то же 

время, АВК потенциально способен обнаруживать и типичные образования на 

более ранней стадии. Это очень важно, так как стадия опухоли на момент 

постановки диагноза представляет собой один из важнейших факторов, 

непосредственно влияющих на выживаемость. Общеизвестно, что значительная 

часть РМЖ малых размеров (менее 5-10 мм) имеет неспецифическую 

маммографическую картину и часто упускается из виду или неправильно 

расцениваются как доброкачественные. Однако иногда достаточно привлечь 

дополнительное внимание рентгенолога к очагу, чтобы в конечном итоге 

выполнить биопсию неясного образования и установить диагноз РМЖ на ранней 

стадии [152]. С этой точки зрения представляется разумным использовать АВК 

как часть автоматической системы второго или третьего анализа, чтобы отметить 

возможно пропущенные изменения для их дальнейшего детального анализа. Этот 

подход, вероятно, может увеличить частоту обнаружения РМЖ и, следовательно, 

улучшить результаты в таких случаях. В то же время, АВК нечувствителен к 

скоплениям микрокальцинатов, что требует включения дополнительного 

алгоритма в конструкцию автоматизированной системы обнаружения РМЖ. 

Глядя в будущие перспективы, целесообразно разработать методы устранения 

ложноположительных оценок и, следовательно, повышения специфичности АВК. 

Мы уже начали это делать, разработав фильтр подавления ленточной структуры и 

обеспечив обнаружение и классифицирование типичных доброкачественных 

кальцинатов, что позволяет подавить часть ложно положительных меток АВК. 

Тем не менее, существует относительно большое количество 
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ложноположительных меток после АВК, форма которых более округлая. Другим 

перспективным направлением исследований является попытка провести 

дифференциальную диагностику промаркированных образований, поскольку сам 

АВК неспецифичен в отношении злокачественных новообразований и в равной 

степени выявляет как доброкачественные, так и злокачественные образования. 

В то же время, с точки зрения выявления РМЖ во время скрининга всего 

населения чувствительность CAD представляется более важным показателем, чем 

специфичность, благодаря следующим наблюдениям: 

1) Маммография обычно является первым этапом выявления РМЖ, когда 

обнаруживается большинство подозрительных изменений; их разделение на 

требующие биопсии и последующего наблюдения обычно выполняется на 

следующем этапе, для которого более важна специфичность.  

2) Маммография сама по себе недостаточно специфична, чтобы обеспечить 

точное классифицирование изменений; поэтому с помощью CAD вряд ли 

возможно существенно повысить ее специфичность.  

Сравнение с YOLOv4 

YOLOv4 уже использовался для массового обнаружения предварительно 

обработанных изображений. Она представляет собой одноэтапный детектор, 

который особенно эффективен по сравнению с двухэтапным детектором в тех 

случаях, когда необходим контекст. Было продемонстрировано, что в случаях, 

когда фон не зависит от переднего плана, двухэтапные детекторы полезны, 

поскольку на первом этапе извлекаются области интереса. Однако было отмечено, 

что для обнаружения РМЖ, зависящего от паренхимы молочной железы, 

одноэтапные детекторы могут быть более эффективными [153].  

В отличие от двухэтапных методов, в которых на первом этапе 

интересующие области определяются путем выборочного поиска или 

использования специального слоя нейронной сети, а на втором этапе выделенные 

области рассматриваются классификатором, независимо от того, принадлежат ли 

они к исходным классам, и регрессора, уточняющего расположение 

ограничивающих рамок, детектор YOLO анализирует все изображение целиком, 
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не разбивая его на области. Эта особенность позволяет более точно распознавать 

объекты. Двухэтапные методы не могут учитывать глобальную информацию, 

поскольку сначала генерируются региональные кандидаты, а затем выполняется 

извлечение признаков. Следовательно, глобальная информация не может 

учитываться при выполнении регрессии классификации, и возможны многие 

ложноположительные результаты. Например, Fast R-CNN (лучший метод 

обнаружения [154]) ошибочно отмечает фоновые пятна, поскольку не может 

анализировать более широкий контекст. Кроме того, YOLO может обобщать 

представления различных объектов, что делает его более применимым к 

различным новым средам. При обучении на естественных изображениях и 

тестировании на художественных работах YOLO значительно превосходит 

лучшие методы обнаружения, такие как DPM и R-CNN. Поскольку YOLO легко 

обобщается, вероятность того, что он сломается при применении к новым 

областям или неожиданным входным данным, меньше [155]. 

При этом наибольшее значение CAD для клинической практики имеют в 

тех случаях, когда они выявляют плохо видимые и невидимые РМЖ 

(асимметричные участки, изменения структуры и др.). С другой стороны, 

большинство образований хорошо видны на жировом фоне низкой плотности. 

Это явление отражено данными о скорости изменения решения рентгенолога, где 

YOLOv4 не оказывал такого влияния. Для этих маммографически сложных типов 

РМЖ АВК явно превосходит YOLOv4, что делает его гораздо более важным, 

несмотря на более высокий уровень ложноположительных меток, поскольку они 

могут быть оценены другими методами (например, с помощью ультразвукового 

исследования).  

Выбор версии модели YOLO для сравнения с предложенным алгоритмом 

АВК связан с тем что, YOLOv4 имеет лучшую обобщающую способность [156-

157], позволяющую с большей вероятностью обнаруживать объекты, которые 

изначально не схожи с объектами, участвовавшими в процессе обучения. Все 

последующие версии (v6, v7, v8 и т.д.) создавались разработчиками (например, 

компании "Meituan" и "Ultralytics") для решения своих поставленных задач и 
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зачастую усовершенствования заключались в улучшении производительности 

вычислений с сохранением точности модели. 

Например, в работе [158] была проведена попытка обучения модели 

YOLOv5, которая была выпущена спустя месяц после релиза YOLOv4. При этом 

основное отличие YOLOv4, от YOLOv5 только в том, что YOLOv5 реализована 

на фреймворке машинного обучения PyTorch, вместо DarkNet — для YOLOv4. В 

обучении использовался набор из 792 маммографических изображений. А 

результаты оценки Precision и Recall составили 84% и 50%, соответственно, что 

сравнимо с оценками обученной диссертантом модели YOLOv4 — 85% и 60%. 

Данные погрешности можно объяснить различиями используемых выборок и 

гиперпараметров модели.  

Mahoro и Akhloufi в 2023 году [159] протестировали модели YOLOv7 и 

YOLOv8 на наборе маммограмм полученных из базы данных VinDr-Mammo, где 

использовалась предварительная обработка заключающаяся в применении 

адаптивного выравнивания гистограммы с ограничением контрастности 

(CLAHE), медианного фильтра и билатерального фильтра. При средней точности 

равной 65% YOLOv8 превзошел YOLOv7. Однако оценка точности обнаружения 

образований моделью YOLOv8 все же уступает в точности предложенного АВК. 

Что касается ложноположительных меток АВК, то они в большинстве 

случаев соответствуют типичным доброкачественным образованиям (как и для 

YOLOv4); при этом сегментированные участки пересечения проекций плотной 

паренхимы и связок Купера легко отбраковываются при визуальном анализе или 

специфической фильтрации.  

Еще один момент заключается в характеристиках самих меток CAD. АВК 

рисует приблизительный контур изменения, что может быть предпочтительным 

для будущего визуального анализа метки, а также для ее сравнения с исходным 

изображением. С другой стороны, YOLOv4 показывает прямоугольник, 

содержащий подозрительное изменение, и в некоторых случаях, когда контур 

изменения нечеткий, визуально оценить эту область сложнее. 

Сегментация изменений на маммограммах 
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Правильная сегментация служит важным шагом для дальнейшей 

классификации образования и напрямую влияет на окончательное определение 

характера изменения. Существующие методы сегментации можно разделить на 

традиционные методы и методы на основе машинного обучения.  

Основным недостатком традиционных подходов является использование 

процедуры предварительной обработки для изображений с большим количеством 

локальных минимумов (со сложной текстурой). 

Популярными методами на основе машинного обучения являются алгоритмы 

кластеризации, метод опорных векторов, глубокое обучение. Алгоритмы 

кластеризации чувствительны к их инициализации, что подразумевают наличие 

априорных знаний об изображении. Также они могут потребовать 

фиксированного порога для определения областей опухоли, что может дать 

грубые результаты контурирования. 

Эффективность SVM при сегментации образований МЖ зависит от 

заданных текстурных или геометрических характеристик объектов, обучающей 

выборки и может потребовать предварительной обработки для разделения 

изображений и постобработки — для уточнения результатов. 

Модели глубокого обучения на сегодняшний день оказались лучшим 

способом сегментации изображений. Однако они сталкиваются с некоторыми 

серьезными проблемами, которые тормозят их дальнейшее развитие. Например, 

результат прогнозирования может быть недостаточно устойчив из-за уровня 

обобщения модели. Кроме того, сама модель необъяснима, а обучающих данных 

часто недостаточно. 

Основным отличием предлагаемого подхода к сегментации является то, что 

при его реализации учитывались особенности перепада яркости пикселей исходного 

изображения, без использования предварительных фильтров и методов повышения 

контрастности, которые могут искажать контур самого образования. 

Классифицирование очаговых изменений 

Для экспериментов был создан свой собственный набор изображений, так 

как в открытых источниках обычно есть изображения, характеризующиеся 
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смещением гистограммы уровней серого в светлый край, что искажает 

изображение и препятствует оценке низкоинтенсивных уровней серого. Это 

неудивительно, поскольку американские системы имеют множество различных 

предобработок изображения, однако, чтобы использовать изображение для 

дальнейшей обработки и классификации необходимо выбрать те, которые имеют 

беспристрастное представление уровней серого. 

Различные степени плотности МЖ, а также наличие различных артефактов, 

таких как волокнистые тяжи и/или сосудистые структуры, накладываемые на 

изображение интересующей области маммограммы, затрудняют получение 

хороших результатов классификации, используя только исходное изображение 

[160]. Поэтому классификация изображений на основе объединенных данных из 

нескольких изображений в последнее время стала предметом обсуждения [161-

162]. 

Например, направленная предварительная обработка изображений может 

подчеркнуть особенности и улучшить классификацию [163]. При анализе 

структуры изображения часто используются различные фильтры, выделяющие 

границы яркостного перепада, например фильтры Собеля и Лапласа. Эти фильтры 

делают контуры объектов изображения более четкими. Поэтому было 

предложено, что использование исходных изображений совместно с 

изображениями с предобработкой с помощью фильтров Собеля или Лапласа в 

сочетании с текстурными особенностями может улучшить качество 

классификации изменений МЖ. 

Что касается признаков, то известно, что морфологические признаки 

малочувствительны для классификации изменений МЖ, так как требуют точного 

выделения границ самих изменений [160]. Поэтому в качестве альтернативного 

подхода использовались текстурные особенности изображения Тамуры и 

Харалика [126, 164].  

Для выделения только значимых признаков используются соответствующие 

методы. Например, в работе [87] использовали метод главных компонент (PCA) 
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для выбора признаков с целью уменьшения количества избыточной информации, 

а в работе [130] использовали для этой цели метод LASSO.  

Приведенные результаты показывают, что SVM в сочетании с методами 

выделения значимых признаков (ReliefF, FSCNCA и LASSO), где используются 

различные текстурные признаки, улучшает качество классификации изменений 

МЖ на маммограммах. В свою очередь, использование модифицированной сети 

глубокого обучения для извлечения признаков лучше, чем использование 

текстурных характеристик. Однако предложенные алгоритмы не достигли 

достаточной точности и специфичности при решении клинических задач, что 

требует разработки альтернативных методов. 

Обнаружение и классифицирование скоплений кальцинатов на 

маммограммах 

Хотя основные этапы разработки CAD для интерпретации маммограмм 

одинаковы (предварительная обработка, обнаружение и классификация), 

существуют различные подходы к реализации каждого этапа. Предварительная 

обработка направлена на снижение шума, улучшение контрастности и 

исключение областей, не имеющих диагностической значимости. В 

исследованиях для предварительной обработки применяются различные 

методологии, включая как традиционные методы обработки изображений, так и 

подходы, основанные на признаках или глубоком обучении. Распространенными 

техниками предварительной обработки являются нормализация, фильтрация 

Собеля, эквализация гистограммы и пороговая обработка [165-167]. 

Наивысшая чувствительность (97,1%) в обнаружении микрокальцинатов без 

использования машинного обучения была достигнута Medhi и др. в 2017 году с 

использованием открытой базы данных MIAS, содержащей 322 цифровых 

маммограммы [168]. Для обнаружения микрокальцинатов использовались 

частотный анализ, а также автоматическое, нелинейное растяжение и пороговая 

обработка вейвлет-коэффициентов на основе энтропии Шеннона.  

Методы с использованием машинного обучения на основе извлечения 

признаков объектов чаще всего используют в качестве классификатора метод 
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опорных векторов (SVM). Karale и др. (2020) достигли наивысшей 

чувствительности (100%), используя маммограммы из трех разных наборов 

данных. Всего было предварительно обработано и проанализировано 717 

маммограмм, как оцифрованных, так и цифровых, с помощью многомасштабного 

двумерного нелинейного оператора энергии для улучшения контраста между 

РМЖ и фоном. Из области интереса были извлечены различные признаки, 

включая площадь, компактность, форму, интенсивность и другие. Для улучшения 

производительности классификации применялись методы Synthetic Minority Over-

sampling TEchnique (SMOTE) и under-sampling большего класса на основе 

распределения данных. Кроме того, выполнялся анализ главных компонент (PCA) 

для удаления ложноположительных результатов путем исключения 

кальцинированных сосудов, которые не имели клинического значения [169]. 

Melekoodappattu и Subbian (2019) достигли точности 99% с использованием 

гибридизированной модели экстремального обучения (ELM) для автоматического 

обнаружения опухолей МЖ на 184 цифровых изображениях из ограниченного 

набора данных. Ненужные детали маммограмм были удалены на этапе 

предварительной обработки, а многомасштабные признаки, такие как Speeded-Up 

Robust Features (SURF) и признаки фильтра Габора, были извлечены с 

использованием модели генерации признаков [170].  

В последние годы часто применяется глубокое обучение (ГО) для 

обнаружения опухолей МЖ с переменным успехом. Однако результаты ГО могут 

значительно различаться при применении алгоритмов к различным наборам 

данных с вариациями в методе перекрестной проверки.  

Некоторые группы исследователей предпочитают собирать новые 

пользовательские наборы данных, настроенные на специфические потребности их 

исследования [171-172]. В таких случаях сравнение между исследованиями не 

является валидным, поскольку наборы данных не являются общедоступными и 

могут значительно отличаться друг от друга.  

ГО и сверточные нейронные сети также широко применяются на всех 

этапах автоматического извлечения, выбора и классификации характеристик. 
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Сравнение исследований, которые используют ГО, еще более сложно из-за 

большого количества параметров, которые необходимо настроить, и которые 

значительно влияют на производительность сети. Решение о том, использовать 

основанное на характеристиках машинное обучение или ГО, зависит 

исключительно от объема доступных данных и основной цели исследования. 

Часто требуется аугментация данных для увеличения их объема. Однако 

аугментация до сих пор была ограничена геометрическими преобразованиями 

данных, что вводит предвзятость модели. Эта предвзятость еще выше, когда 

аугментированные области интереса и изображения одного пациента включены 

как в обучающую, так и в тестовую выборки [173]. Еще одним важным фактором, 

ограничивающим клиническую применимость рассмотренных подходов, 

являются использованные данные. Недоступность крупномасштабных баз данных 

заставляет исследователей собирать частные данные, что приводит к 

фрагментированным наборам данных с различными свойствами и 

несбалансированными классами [174-175]. 

Алгоритмы ГО используют медицинские изображения в качестве входных 

данных и выдают решение, которое, хотя и является точным, не дает разумного 

обоснования. Поэтому требуются алгоритмы объяснимого искусственного 

интеллекта (ИИ). Объяснимый ИИ относится к набору методов, которые 

позволяют человеку, в данном случае — клиницисту, понять и доверять 

результатам, полученным с помощью алгоритмов машинного обучения, что 

важно при использовании CAD в качестве второго мнения. 

Особенностью разработанного алгоритма является возможность его 

использования для различных типов кальцинатов и их скоплений. При этом 

отдельно анализируются сосудистые кальцинаты, которые зачастую дают 

ложноположительные результаты в работе алгоритмов, и предлагается решение 

данной проблемы. Оценка эффективности предложенных методик 

осуществлялась по обширной базе аналоговых и цифровых маммограмм 

пациенток с верифицированным РМЖ и позволила достичь высоких значений 

точности, специфичности и чувствительности. 
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ЗАКЛЮЧЕНИЕ 

1. Разработан и программно реализован метод обнаружения 

подозрительных изменений МЖ на маммограммах на основе АВК и 

рассматриваемой модели образований, который демонстрирует высокую 

чувствительность (90,73%) не только в случаях типичных и хорошо видимых 

изменений, но и в случаях атипичных и невидимых изменений, которые не 

рассматривались в предыдущих работах. 

2. Представленные результаты оценки эффективности АВК по сравнению с 

одноэтапным детектором YOLOv4 показывают, что использование метода АВК 

для выявления очагов на маммограммах является более значимым. Также 

рентгенологи, которым были продемонстрированы все маркировки 

предложенного АВК, изменили свое решение о случае на основании результатов 

работы алгоритма в 6 из 100 случаев. Результаты YOLOv4 не повлияли на 

решения рентгенологов. 

3. Разработана и программно реализована методика сегментации изменений 

на маммограммах на основе предложенной модели, где модуль градиента растет в 

направлении от вершины изменения к его границе. Предлагаемая методика 

обеспечивает достаточную точность (средняя метрика «Пересечение над 

объединением» (IoU) по всем типам изменений составила 76%, Precision — 94%) 

сегментации изменений МЖ, что необходимо для последующей классификации 

предполагаемых как типичных, так и нетипичных очагов. 

4. Полученные результаты классификации изменений МЖ на маммограммах 

с использованием методов машинного обучения и алгоритмов отбора значимых 

признаков изображения показали недостаточную точность для клинической 

практики. Вследствие этого использовать маммограммы для дифференцирования 

выявленных изменений не представляется перспективным. 

5. Разработан метод обнаружения кальцинатов на маммограммах, который 

обеспечивает высокую точность обнаружения, составляющую 93,1%. Метод 

программно реализован. 
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6. Разработана и программно реализована методика классификации 

доброкачественных и подозрительных кальцинатов на маммографических 

изображениях с учетом скоплений кальцинатов в сосудах в виде модели 

линейных объектов, точность классификации которой составляет 96,15%. 

 

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ 

1. Разработанный АВК нечувствителен к скоплениям микрокальцинатов, 

что требует включения дополнительного алгоритма в конструкцию 

автоматизированной системы обнаружения РМЖ. Также целесообразно 

разработать методы устранения ложноположительных оценок и, следовательно, 

повышения специфичности АВК. 

2. При разработке методов сегментации образований необходимо избегать 

предварительных обработок с использованием пространственных фильтров на 

медицинских изображениях, которые могут искажать контур самого образования. 

Применение подобных фильтров так же может влиять на извлечение текстурных 

и/или геометрических признаков образования, что повлечет за собой ошибки при их 

дальнейшей классификации. 
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