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Введение

Актуальность темы. Центральной проблемой, на которую нацелена диссертаци-

онная работа, является корректное распознавание по прецедентам. Исследуется мно-

жество объектов, которое может быть разбито на конечное число классов. О характе-

ре этого разбиения можно судить только по обучающей выборке (конечному набору

прецедентов). Каждый объект может быть представлен в виде числового вектора,

полученного в результате наблюдения или измерения определённых характеристик

объекта. Такие характеристики называются признаками. Требуется построить алго-

ритм распознавания, который по предъявленному признаковому описанию объекта

определяет, к какому классу следует отнести этот объект. Алгоритм распознавания,

безошибочно классифицирующий прецеденты, называется корректным. Важным по-

казателем качества корректного алгоритма распознавания является его обобщающая

способность (частота ошибок на объектах, не участвующих в обучении).

В случае целочисленных признаков задача корректного распознавания достаточ-

но эффективно решается методами логического подхода [1–9]. Базовым для этого

подхода является понятие элементарного классификатора (эл.кл.) — элементарной

конъюнкции, заданной на признаковых описаниях объектов. Говорят, что эл.кл. вы-

деляет некоторый объект, если он принимает значение 1 на признаковом описании

этого объекта. Традиционно при построении логических алгоритмов распознавания

используются корректные эл.кл. Эл.кл. называется корректным для некоторого клас-

са, если совокупность выделяемых им прецедентов является подмножеством либо

этого класса, либо объединения остальных классов. Если все прецеденты, выде-

ляемые корректным эл.кл., принадлежат одному классу, то такой эл.кл. называется

представительным набором. Известно, что алгоритмы голосования по представитель-

ным наборам наиболее успешно применяются для задач распознавания с признаками

небольшой значности (под значностью признака понимается число его допустимых
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значений). В этом случае, как правило, удаётся найти достаточное количество ин-

формативных представительных наборов.

Проблемными для классических логических алгоритмов распознавания являются

задачи с вещественными признаками и целочисленными признаками большой знач-

ности. Для повышения эффективности решения таких задач применяются следующие

методики: 1) ищутся логические закономерности (понятие логической закономерно-

сти обобщает понятие эл.кл. на случай вещественных признаков) [10–12]; 2) веще-

ственные признаки трактуются как целочисленные высокой значности и выполняется

корректная перекодировка признаков с целью понижения их значности [13, 14]; 3)

строятся корректные алгоритмы распознавания на базе произвольных, не обязатель-

но корректных эл.кл. (алгебро-логический подход) [15–19].

В основе алгебро-логического синтеза распознающих алгоритмов лежат понятия

и методы двух подходов: логического и алгебраического. Алгебраический подход,

развиваемый школой Ю.И. Журавлёва [20–25], применяется, когда требуется скор-

ректировать работу нескольких различных алгоритмов, каждый из которых безоши-

бочно классифицирует лишь часть обучающих объектов. Цель коррекции — сделать

так, чтобы ошибки одних алгоритмов были скомпенсированы другими, и качество

результирующего алгоритма оказалось лучше, чем каждого из базовых алгоритмов в

отдельности.

В [15] вводится понятие корректного набора эл.кл., которое впоследствии ста-

новится основным для алгебро-логического подхода. Алгоритмы распознавания, ос-

нованные на голосовании по корректным наборам эл.кл., называются логическими

корректорами. Фактически эл.кл. выступают в роли базовых распознающих алго-

ритмов и корректируются булевыми функциями. Основной задачей этапа обучения

логических корректоров является поиск корректных наборов эл.кл. с хорошей распо-

знающей способностью. Каждый корректный набор эл.кл. однозначно соответствует

покрытию булевой матрицы, построенной специальным образом по обучающей вы-

борке. При большой значности признаков приходится обрабатывать матрицы, размер

которых экспоненциально зависит от объема обучающей информации. Поэтому воз-

никает проблема применения логических корректоров на практике.

В [18] разработаны первые практические модели логических корректоров. В ука-

занной работе для снижения вычислительных затрат предложено использовать эл.кл.
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ранга 1 и поиск корректных наборов эл.кл. с распознающей способностью, близкой к

максимальной, осуществлять генетическим алгоритмом. Установлено, что логические

корректоры с монотонными корректирующими функциями (монотонные логические

корректоры) имеют более высокую обобщающую способность, чем с произвольными.

Проведённые в [26] эксперименты показывают, что на прикладных задачах с

большой значностью признаков монотонные логические корректоры опережают клас-

сические логические алгоритмы распознавания. В случае небольшой значности при-

знаков ситуация обратная. По-видимому, ограничение, налагаемое на ранг эл.кл., не

позволяет построить в последнем случае логические корректоры с хорошей обобща-

ющей способностью.

Актуальной задачей является расширение границ применимости алгебро-

логического подхода за счёт построения и исследования новых, более совершенных

моделей логических корректоров. Перспективным направлением является использо-

вание других семейств корректирующих функций, отличных от семейства монотон-

ных булевых функций и множества всех булевых функций. Также необходимо раз-

работать методику обучения логических корректоров, позволяющую с небольшими

вычислительными затратами получать высокое качество распознавания.

Трудности вычислительного характера, возникающие при реализации как клас-

сических логических алгоритмов распознавания, так и логических корректоров, свя-

заны с необходимостью решать известные своей сложностью дискретные задачи.

Среди этих задач главной считается дуализация. Это задача перечисления непри-

водимых покрытий булевой матрицы. Говорят, что алгоритм дуализации имеет по-

линомиальную задержку, если каждый его шаг (построение очередного решения)

осуществляется за время, полиномиально зависящее от размера входа [27]. Вопрос о

полиномиальной разрешимости дуализации поставлен более 40 лет назад, однако до

сих пор ответ на этот вопрос не найден. В зарубежной литературе наибольшее рас-

пространение получил инкрементальный принцип построения алгоритмов дуализа-

ции, и в этом направлении лучшим теоретическим результатом считается построение

инкрементальных алгоритмов, квазиполиномиальная сложность которых обоснована

«в худшем» случае [28–31]. Однако на реальных задачах наилучшие результаты

показывают так называемые асимптотически оптимальные алгоритмы дуализации,

имеющие теоретическое обоснование эффективности «в среднем» [32–40].
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Цель данной работы — развитие методов алгебро-логического подхода к коррект-

ному распознаванию по прецедентам, а именно построение логического корректора

общего вида, позволяющего в определенной степени повысить качество распозна-

вания и снизить вычислительные затраты этапа обучения; разработка конструкций

асимптотически оптимальных алгоритмов дуализации для решения задач большого

размера.

Решена следующая группа задач.

1. Обобщено понятие корректного набора эл.кл. Описана схема логического кор-

ректора общего вида. Выявлено место классических логических алгоритмов рас-

познавания и ранее построенных логических корректоров в этой схеме.

2. Разработана и исследована более совершенная модель логического корректора

с корректирующими функциями из семейства, отличного от семейства моно-

тонных булевых функций и множества всех булевых функций.

3. Разработана методика повышения качества распознавания и скорости обучения

логических корректоров. Проведено экспериментальное обоснование эффектив-

ности предложенной методики.

4. Модифицированы конструкции ряда асимптотически оптимальных алгоритмов

дуализации с целью снижения времени их работы. Экспериментально показано

превосходство построенных алгоритмов дуализации по сравнению с другими

известными алгоритмами дуализации.

Методы исследования. Применялись методы дискретной математики, алгеб-

ры, математической логики, анализа алгоритмов и вычислительной сложно-

сти. Экспериментальное исследование проводилось с использованием программно-

алгоритмического комплекса, разработанного автором.

Научная новизна. В работе строится логический корректор общего вида, для опи-

сания которого используется язык предикатов. Вводятся понятия корректного

и представительного предиката. Каждый предикат однозначно определяется неко-

торым набором эл.кл. и корректирующей функцией этого набора.

Впервые решается важная методологическая задача обобщения логического

и алгебро-логического синтеза корректных алгоритмов распознавания. Предложен-



9

ная в работе схема синтеза корректных алгоритмов распознавания может быть ис-

пользована для описания как классических логических распознающих алгоритмов,

так и ранее построенных логических корректоров.

В рамках общей схемы построена новая модель практического логического кор-

ректора POLAR, голосующего по предикатам специального вида и имеющего по-

ляризуемую корректирующую функцию. Булева функция называется поляризуемой,

если она по каждой переменной либо монотонно не возрастает, либо монотонно

не убывает. Семейство монотонных булевых функций содержится в семействе поля-

ризуемых булевых функций. Ранее поляризуемые функции общего вида в качестве

корректирующих не использовались.

Предложена новая методика снижения вычислительных затрат и повышения ка-

чества распознавания логических корректоров. На этапе обучения логического кор-

ректора семейства голосующих предикатов формируются итеративно по принципу

бустинга [41, 42]. Снято ограничение на ранг эл.кл., и поиск корректных набо-

ров эл.кл. осуществляется в рамках локальных базисов классов — предварительно

построенных корректных наборов, состоящих из информативных эл.кл. Разработа-

ны итеративные алгоритмы формирования «хороших» локальных базисов. Отметим,

что в [26] успешно реализован логический корректор, локальные базисы которого

строятся стохастическим алгоритмом. Вообще говоря, идея применения локальных

базисов в алгебраическом подходе впервые встречается в [43, 44].

В диссертационной работе построен ряд новых асимптотически оптимальных ал-

горитмов дуализации, в основе которых лежит следующий подход [35,37]. Исходная

перечислительная задача 𝑍 заменяется на более «простую» перечислительную зада-

чу 𝑍1, имеющую тот же вход и решаемую с полиномиальной задержкой. При этом,

во-первых, множество решений задачи 𝑍1 содержит множество решений задачи 𝑍,

и во-вторых, почти всегда с ростом размера входа число решений задачи 𝑍1 асимпто-

тически равно числу решений задачи 𝑍. Теоретическое обоснование данного подхода

базируется на получении асимптотик для типичного числа решений каждой из за-

дач 𝑍 и 𝑍1.

Таким образом, в отличие от «точного» алгоритма с полиномиальной задержкой,

асимптотически оптимальному алгоритму разрешено делать «лишние» полиноми-

альные шаги. Лишний шаг — это построение такого решения задачи 𝑍1, которое
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либо было найдено ранее, либо построено впервые, но не является решением задачи

𝑍. Проверка того, является ли выполненный шаг лишним должна осуществляться

за полиномиальное время от размера задачи.

Работу асимптотически оптимального алгоритма дуализации 𝐴 на входной мат-

рице 𝐿 наглядно можно представить в виде обхода в глубину дерева решений 𝑇𝐴(𝐿).

Корнем дерева 𝑇𝐴(𝐿) является пустой набор, остальным вершинам соответствуют

наборы столбцов матрицы 𝐿. Построение висячей вершины связано либо с полу-

чением неприводимого покрытия матрицы 𝐿, либо с завершением «лишнего» шага

алгоритма. Если вершина 𝐻 не является висячей, то каждая её дочерняя вершина

образуется добавлением к 𝐻 в точности одного столбца.

Построенные в работе асимптотически оптимальные алгоритмы дуализации яв-

ляются лидерами по скорости счёта. Снижение вычислительных затрат достигается

за счёт сокращения общего числа вершин дерева решений. Ранее при построении

асимптотически оптимальных алгоритмов основные усилия по уменьшению времени

счёта направлялись на сокращение числа висячих вершин дерева решений (числа

лишних шагов). При этом, как правило, усложнялся шаг алгоритма.

Теоретическая значимость. Построена общая схема алгебро-логического синтеза

корректных алгоритмов распознавания, основанных на голосовании по предикатам,

каждый из которых является композицией некоторого корректного набора эл.кл.

и его корректирующей функции. Предложен метод построения предикатов специ-

ального вида. Исследованы свойства этих предикатов.

Получены теоретические оценки скорости сходимости бустинг-алгоритма форми-

рования семейств голосующих предикатов. На каждой итерации ищется предикат,

наилучшим образом компенсирующий ошибки ранее построенных предикатов. Каче-

ство добавляемого предиката оценивается функционалом «взвешенной» информатив-

ности. Поиск предиката c максимальной информативностью сведён к специальной

задаче дискретной оптимизации, обобщающей ряд известных задач [45,46]. Решение

поставленной оптимизационной задачи в общем случае представляет теоретический

и практический интерес.

На значительном объеме тестовых данных, включающих разнотипные модельные

и прикладные задачи, проведено сравнение новых и ранее построенных асимптоти-

чески оптимальных алгоритмов дуализации с другими известными алгоритмами.
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Подобное экспериментальное обоснование асимптотически оптимального подхода

до сих пор не проводилось.

Рассмотрена задача поиска ветви дерева решений 𝑇𝐴(𝐿), началом которой явля-

ется некоторая фиксированная внутренняя вершина, а концом — висячая вершина,

соответствующая решению дуализации. Доказано, что эта задача NP-полна. Дан-

ный результат объясняет, почему не увенчались успехом предпринимаемые ранее

попытки избавиться от лишних шагов в асимптотически оптимальных алгоритмах

дуализации, основанных на обходе в глубину дерева решений 𝑇𝐴(𝐿).

Практическая значимость. Разработанные распознающие алгоритмы позволяют

решать широкий класс прикладных задач, в которых объекты могут быть пред-

ставлены целочисленными признаковыми описаниями. К таким задачам относятся

компьютерный анализ речи, распознавание изображений, медицинская диагностика

и пр. Как уже отмечалось, дуализация является одной из центральных дискретных

перечислительных задач. К дуализации могут быть сведены многие задачи, возни-

кающие при логическом анализе данных, к числу которых, помимо распознавания

по прецедентам, относятся кластерный анализ, построение ассоциативных правил,

составление расписаний и пр. Построенные в работе алгоритмы дуализации позво-

ляют за приемлемое время решать достаточно большие прикладные задачи.

На защиту выносятся следующие результаты.

1. Создание общей схемы синтеза логических корректоров, подходящей для опи-

сания классических логических алгоритмов распознавания и ранее построенных

логических корректоров.

2. Построение практического логического корректора POLAR с поляризуемой

корректирующей функцией.

3. Разработка методики повышения качества распознавания и скорости обучения

логических корректоров, в основе которой лежат построение локальных бази-

сов классов и формирование семейств голосующих предикатов по принципу

бустинга.

4. Построение асимптотически оптимальных алгоритмов дуализации АО1M,

АО1К, АО2М, АО2К, RUNC, RUNC-M, PUNC и экспериментальное ис-
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следование границ применимости этих алгоритмов в зависимости от типа и раз-

мера входа.

Достоверность полученных результатов подтверждается доказательствами сфор-

мулированных утверждений и теорем, а также результатами экспериментов, прове-

дённых автором.

Апробация работы. Основные положения и результаты диссертации доклады-

вались на конференциях «Электронные библиотеки: Перспективные Методы и Тех-

нологии, Электронные коллекции (RCDL-2011)» (г. Воронеж, 2011 г.), «Матема-

тические методы распознавания образов (ММРО-15)» (г. Петрозаводск, 2011 г.),

«Интеллектуализация обработки информации (ИОИ-9)» (Черногория, г. Будва,

2012 г.), «Pattern Recognition and Image Analysis: New Information Technologies

(PRIA-11-2013)» (г. Самара, 2013 г.), «Математические методы распознавания

образов (ММРО-16)» (г. Казань, 2013 г.), «Интеллектуализация обработки ин-

формации (ИОИ-10)» (Греция, о. Крит, 2014 г.), «Математические методы рас-

познавания образов (ММРО-17)» (г. Светлогорск, 2015 г.), на семинаре отде-

ла Интеллектуальных систем ВЦ РАН им. А.А. Дородницына в июле 2015 г.

и на семинаре «Математические модели информационных технологий» департамента

анализа данных и искусственного интеллекта НИУ ВШЭ в марте 2016 г.

Публикации. По тематике работы опубликовано 15 научных работ [16, 17, 19,

47–58], в том числе 5 статей в журналах, рекомендованных ВАК [16,49,54,55,57].

Работа состоит из введения, трёх глав, заключения и списка литературы.

В первой главе даётся обзор основных подходов к построению корректных логи-

ческих алгоритмов распознавания, а именно, логического, оптимизационного, алгеб-

раического и алгебро-логического. Обобщается понятие корректного набора эл.кл.,

являющееся базовым для алгебро-логического подхода. Описывается общая схема

синтеза логических корректоров. Строится новый практический логический коррек-

тор POLAR с поляризуемой корректирующей функцией.

Во второй главе разрабатывается методика повышения скорости обучения и ка-

чества распознавания логических корректоров. Семейства голосующих предикатов

строятся итеративно по принципу бустинга. Поиск голосующих предикатов осу-

ществляется в рамках локальных базисов классов — предварительно формируемых
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корректных наборов, состоящих из информативных эл.кл. Эффективность предло-

женной методики тестируется на реальных данных.

В третьей главе рассматривается одна из центральных дискретных перечисли-

тельных задач — дуализация. Даётся обзор основных подходов к её решению, среди

которых выделяется подход к построению асимптотически оптимальных алгоритмов.

Алгоритмы, построенные в рамках этого подхода, классифицируются на два ти-

па. Строятся новые асимптотически оптимальные алгоритмы первого типа АО1К,

AO1M, АО2К и АО2М, и второго типа RUNC, RUNC-M и PUNC. Новые

и ранее построенные асимптотически оптимальные алгоритмы дуализации экспери-

ментально исследуются на большом объеме разнотипных данных.
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ГЛАВА 1

Корректное распознавание по прецедентам

В данной главе даётся обзор основных подходов к построению корректных логи-

ческих алгоритмов распознавания, а именно, логического, оптимизационного, алгеб-

раического и алгебро-логического. Обобщается понятие корректного набора эл.кл.,

являющееся базовым для алгебро-логического подхода. Описывается общая схема

синтеза логических корректоров. Строится новый практический логический коррек-

тор POLAR с поляризуемой корректирующей функцией.

1.1. Основные подходы к решению задачи корректного

распознавания по прецедентам

Рассматривается задача распознавания по прецедентам с множеством объ-

ектов 𝑀 , представимым в виде объединения непересекающихся подмножеств

𝐾1, ..., 𝐾𝑙, называемых классами. Задана система целочисленных признаков

{𝑥1, . . . , 𝑥𝑛}, и каждый объект 𝑆 из 𝑀 описывается вектором значений призна-

ков (𝑥1(𝑆), . . . , 𝑥𝑛(𝑆)). Задано множество объектов 𝑇 = {𝑆1, . . . , 𝑆𝑚} из 𝑀 ,

и для каждого объекта 𝑆𝑖 ∈ 𝑇 известен номер класса 𝑦𝑖 ∈ {1, . . . , 𝑙}, которому при-

надлежит 𝑆𝑖. Объекты из 𝑇 называются прецедентами или обучающими объектами.

Требуется по обучающей выборке 𝑇 построить алгоритм 𝐴𝑇 : 𝑀 → {0, 1, . . . , 𝑙},
ставящий в соответствие каждому объекту 𝑆 из 𝑀 номер класса, которому принад-

лежит 𝑆, или принимающее значение 0 в случае отказа от распознавания. Указанный

алгоритм называется алгоритмом распознавания. Множество 𝑌 = {0, 1, . . . , 𝑙} на-

зывается пространством ответов алгоритма распознавания.

Пусть задана контрольная выборка объектов 𝑇 ′ = {𝑆 ′
1, . . . , 𝑆

′
ℎ}. Для каждого

контрольного объекта 𝑆 ′
𝑖 известен номер класса 𝑦′𝑖 ∈ {1, . . . , 𝑙}, которому принадле-
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жит 𝑆 ′
𝑖. В качестве функционала качества распознающего алгоритма 𝐴𝑇 рассмотрим

функционал

𝑄(𝐴𝑇 , 𝑇
′) =

1

ℎ

ℎ∑︁
𝑖=1

[𝑦′𝑖 ̸= 𝐴𝑇 (𝑆
′
𝑖)],

равный среднему числу ошибок 𝐴𝑇 на контрольной выборке 𝑇 ′ (здесь и далее че-

рез [𝑝] обозначается предикат, принимающий значение 1 в случае, когда выражение 𝑝

истинно, и 0 — в противном случае).

При 𝑄(𝐴𝑇 , 𝑇 ) = 0, алгоритм 𝐴𝑇 называется корректным. Если есть уверен-

ность, что прецедентная информация содержит мало ошибок и достаточно предста-

вительна, то требование корректности алгоритма распознавания является обоснован-

ным. Достичь выполнения этого требования можно довольно простым способом.

Например, корректным является распознающий алгоритм

𝐴0
𝑇 (𝑆) =

∑︁
𝑆𝑖∈𝑇

𝑦𝑖[𝑥1(𝑆) = 𝑥1(𝑆𝑖) ∧ . . . ∧ 𝑥𝑛(𝑆) = 𝑥𝑛(𝑆𝑖)]

Однако алгоритм 𝐴0
𝑇 на практике бесполезен, поскольку он не может распознать

ни один неизвестный ему объект. В случае, когда алгоритм распознавания на объек-

тах, не участвующих в обучении, ошибается значительно чаще, чем на прецедентах,

говорят об эффекте переобучения. При решении практических задач с этим явлени-

ем приходится сталкиваться очень часто. Качество работы алгоритма распознавания,

обученного по объектам из выборки 𝑇 , на объектах, не входящих в 𝑇 , характеризует

его обобщающую способность.

Пусть обучающая выборка 𝑇 и контрольная выборка 𝑇 ′ получаются случайно

и независимо из одного и того же распределения вероятностей, заданного на множе-

стве объектов 𝑀 . Алгоритм распознавания считается состоятельным, если при за-

данных достаточно малых значениях точности 𝜀 > 0 и надёжности 𝜂 > 0 вероят-

ность выполнения неравенства 𝑄(𝐴𝑇 , 𝑇
′) > 𝜀 меньше 𝜂.

На практике состоятельность алгоритма распознавания проверяется путём вы-

числения эмпирических оценок, связанных с указанной вероятностью. Наиболее

часто используется оценка 𝑡 × 𝑞-кратного скользящего контроля. Строятся 𝑡

различных разбиений выборки 𝑇 на 𝑞 непересекающихся подвыборок примерно

одинаковой мощности, 𝑇 = 𝑇 ′
1𝑢 ∪ . . . ∪ 𝑇 ′

𝑞𝑢, 𝑢 ∈ {1, . . . , 𝑡}. Подвыборка 𝑇 ′
𝑘𝑢,

𝑢 ∈ {1, . . . , 𝑡}, 𝑘 ∈ {1, . . . , 𝑞}, является контрольной при оценке качества распозна-
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ющего алгоритма, обученного по подвыборке 𝑇𝑘𝑢 = 𝑇 ∖ 𝑇 ′
𝑘𝑢. При этом распознаю-

щий алгоритм 𝐴𝑇𝑘𝑢
, корректный для подвыборки 𝑇𝑘𝑢, может ошибаться на объектах

из подвыборки 𝑇 ′
𝑘𝑢. Оценка скользящего контроля вычисляется по формуле

1

𝑡𝑞

𝑡∑︁
𝑢=1

𝑞∑︁
𝑘=1

𝑄(𝐴𝑇𝑘𝑢
, 𝑇 ′

𝑘𝑢).

1.1.1. Логический подход

Традиционно задача корректного распознавания в случае целочисленных призна-

ков решается в рамках логического подхода, базовым понятием которого является

понятие элементарного классификатора [3–9].

Элементарным классификатором (эл.кл.) ранга 𝑟, 𝑟 ∈ {1, . . . , 𝑛}, назы-

вается пара (𝐻, 𝜎), где 𝐻 = (𝑥𝑗1, . . . , 𝑥𝑗𝑟) — набор различных признаков

и 𝜎 = (𝜎1, . . . , 𝜎𝑟) — целочисленный вектор, в котором 𝜎𝑞 — допустимое значе-

ние признака 𝑥𝑗𝑞 , 𝑞 ∈ {1, . . . , 𝑟}.
Обозначим через 𝐻(𝑆), 𝑆 ∈ 𝑀 , целочисленный вектор (𝑥𝑗1(𝑆), . . . , 𝑥𝑗𝑟(𝑆)).

Будем говорить, что эл.кл. (𝐻, 𝜎) выделяет объект 𝑆 (является признаковым подо-

писанием объекта 𝑆), если 𝐻(𝑆) = 𝜎.

Эл.кл. (𝐻, 𝜎) называется корректным для класса 𝐾,𝐾 ∈ {𝐾1, . . . , 𝐾𝑙}, если

не существует двух прецедентов 𝑆𝑖 и 𝑆𝑡, выделяемых эл.кл. (𝐻, 𝜎), таких, что

𝑆𝑖 ∈ 𝐾, 𝑆𝑡 /∈ 𝐾. Другими словами, множество прецедентов, подописанием кото-

рых является корректный для класса 𝐾 эл.кл. (𝐻, 𝜎), либо содержится в 𝐾, либо

содержится в 𝐾 (здесь и далее через 𝐾, 𝐾 ⊆ 𝑀 , обозначается множество 𝑀 ∖𝐾).

Корректный для класса 𝐾 эл.кл. (𝐻, 𝜎), 𝐻 = (𝑥𝑗1, . . . , 𝑥𝑗𝑟), 𝜎 = (𝜎1, . . . , 𝜎𝑟),

называется тупиковым, если для любого 𝑞 ∈ {1, . . . , 𝑟} эл.кл. (𝐻 ′, 𝜎′),

𝐻 ′ = (𝑥𝑗1, . . . , 𝑥𝑗𝑞−1
, 𝑥𝑗𝑞+1

, . . . , 𝑥𝑗𝑟), 𝜎′ = (𝜎1, . . . , 𝜎𝑞−1, 𝜎𝑞+1, . . . , 𝜎𝑟), не является

корректным для 𝐾.

Обозначим через 𝜈𝐾(𝐻, 𝜎) число прецедентов из 𝐾, выделяемых эл.кл. (𝐻, 𝜎).

В зависимости от значений 𝜈𝐾(𝐻, 𝜎) и 𝜈𝐾(𝐻, 𝜎) различают три типа корректных

эл.кл.:

— корректный для 𝐾 эл.кл. (𝐻, 𝜎) называется представительным набором клас-

са 𝐾, если 𝜈𝐾(𝐻, 𝜎) ̸= 0;
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— корректный для 𝐾 эл.кл. (𝐻, 𝜎) называется покрытием класса 𝐾, ес-

ли 𝜈𝐾(𝐻, 𝜎)=0;

— корректный для 𝐾 эл.кл. (𝐻, 𝜎) называется антипредставительным набором

класса 𝐾, если 𝜈𝐾(𝐻, 𝜎) ̸= 0 (очевидно, антипредставительный набор класса 𝐾

является покрытием класса 𝐾).

Опишем схему алгоритма голосования по корректным эл.кл. На этапе обучения

для каждого класса 𝐾 строятся семейства 𝐶𝐾 и 𝐶𝐾 . В семейство 𝐶𝐾 входят пред-

ставительные наборы класса 𝐾, а в семейство 𝐶𝐾 — покрытия класса 𝐾. Одно

из семейств 𝐶𝐾 или 𝐶𝐾 может быть пустым.

Каждому эл.кл. (𝐻, 𝜎) приписывается положительный вес 𝛼(𝐻,𝜎). В простей-

шем случае вес представительного набора (𝐻, 𝜎) из 𝐶𝐾 пропорционален значе-

нию 𝜈𝐾(𝐻, 𝜎), вес антипредставительного набора (𝐻, 𝜎) из 𝐶𝐾 пропорционален

значению 𝜈𝐾(𝐻, 𝜎), вес покрытия класса 𝐾, не являющегося антипредставитель-

ным набором класса 𝐾, обратно пропорционален мощности семейства 𝐶𝐾 .

Распознавание объекта 𝑆 осуществляется путём взвешенного голосования

по эл.кл. построенных на этапе обучения семейств. Для каждого класса 𝐾 вы-

числяются оценки принадлежности объекта 𝑆 классу 𝐾, имеющие вид

Γ(𝑆,𝐾) =
∑︁

(𝐻,𝜎)∈𝐶𝐾

𝛼(𝐻,𝜎)[𝐻(𝑆) = 𝜎] +
∑︁

(𝐻,𝜎)∈𝐶𝐾

𝛼(𝐻,𝜎)[𝐻(𝑆) ̸= 𝜎]. (1.1)

Объект 𝑆 относится к тому классу 𝐾, для которого оценка Γ(𝑆,𝐾) имеет наи-

большее значение. Если таких классов несколько, то алгоритм отказывается от рас-

познавания и возвращает 0. Корректность алгоритма распознавания обеспечивается

за счёт корректности каждого эл.кл., участвующего в голосовании.

Основная задача этапа обучения — поиск информативных корректных эл.кл.

В простейшем случае информативность корректного эл.кл. (𝐻, 𝜎) оценивается чис-

лом, выделяемых эл.кл. (𝐻, 𝜎) прецедентов. Практика показывает, что информа-

тивные эл.кл., как правило, имеют небольшой ранг. Поэтому семейства 𝐶𝐾 и 𝐶𝐾

строят из тупиковых корректных эл.кл. или ограничивают допустимый ранг эл.кл.

Другим классическим логическим распознающим алгоритмом является алгоритм

голосования по тестам (тестовый алгоритм) [1]. Набор признаков 𝐻 называется

тестом, если для любого класса 𝐾 и любого прецедента 𝑆𝑖 ∈ 𝐾 эл.кл. (𝐻,𝐻(𝑆𝑖))
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является представительным набором для 𝐾. Алгоритм голосования по тестам на эта-

пе обучения строит семейство тестов ℋ. При распознавании объекта 𝑆 для каждого

класса 𝐾 вычисляется оценка принадлежности 𝑆 к 𝐾, в простейшем случае имею-

щая вид

Γ(𝑆,𝐾) =
1

|ℋ|
∑︁
𝐻∈ℋ

1

|𝑇 ∩𝐾|
∑︁
𝑆𝑖∈𝐾

[𝐻(𝑆𝑖) = 𝐻(𝑆)]. (1.2)

Сопоставляя формулы (1.1) и (1.2), можно заметить, что голосование по семей-

ству тестов ℋ может быть заменено на голосование по представительным наборам,

построенным по тестам из ℋ и обучающим объектам. Отметим, что модель тестовых

алгоритмом включается в модель алгоритмов вычисления оценок (АВО) [2, 59].

В случае, когда признаки имеют большую значность, большинство тупиковых

эл.кл. имеют большой ранг и выделяют мало прецедентов. Такие задачи являются

сложными для алгоритмов голосования по корректным эл.кл. Несмотря на то, что

каждый используемый эл.кл. корректен для некоторого класса 𝐾, он плохо харак-

теризует этот класс в целом. Обычно в таких случаях либо выполняют корректную

перекодировку значений признаков с целью понижения их значности [13, 14], либо

строят распознающие алгоритмы на базе произвольных, не обязательно корректных,

эл.кл.

Пример 1.1. Рассмотрим «игрушечную» задачу распознавания со следующими па-

раметрами: 𝑚 = 6, 𝑛 = 4, 𝑙 = 2, признаки 𝑥1, 𝑥2, 𝑥3, 𝑥4 принимают значения из

множества {0, 1, 2} (множество 𝑀 состоит из 81 объекта), прецедентами клас-

са 𝐾1 являются 𝑆1 = (0, 1, 1, 0), 𝑆2 = (1, 2, 0, 1), 𝑆3 = (0, 1, 0, 1) и прецедентами

класса 𝐾2 являются 𝑆4 = (1, 2, 1, 0), 𝑆5 = (1, 1, 0, 1), 𝑆6 = (1, 1, 1, 2).

Построим для этой задачи алгоритм голосования по тупиковым представи-

тельным наборам. Для наглядности каждый эл.кл. будем задавать элементарной

конъюнкцией. Класс 𝐾1 имеет 4 тупиковых представительных набора [𝑥1 = 0],

[𝑥2 = 2 ∧ 𝑥3 = 0], [𝑥2 = 1 ∧ 𝑥4 = 0], [𝑥2 = 2 ∧ 𝑥4 = 1], класс 𝐾2 имеет 6 тупи-

ковых представительных наборов [𝑥4 = 2], [𝑥1 = 1 ∧ 𝑥2 = 1], [𝑥1 = 1 ∧ 𝑥3 = 1],

[𝑥1 = 1 ∧ 𝑥4 = 0], [𝑥2 = 2 ∧ 𝑥3 = 1], [𝑥2 = 2 ∧ 𝑥4 = 0].

В семействе эл.кл. класса 𝐾1 признак 𝑥2 входит в три эл.кл., а признак 𝑥4 —

в два эл.кл. Частое использование одних и тех же признаков в разных эл.кл. связано

с необходимостью обеспечить корректность каждого эл.кл. Классический алгоритм
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голосования по тупиковым представительным наборам отказывается распознавать

11 объектов из 81. �

Пример 1.2. Построим для задачи из примера 1.1 другие семейства эл.кл.,

𝐶𝐾1
= {[𝑥4 = 1], [𝑥1 = 0]}, 𝐶𝐾2

= {[𝑥1 = 1], [𝑥4 = 2], [𝑥2 = 1]}. Вес эл.кл.

(𝐻, 𝜎) ∈ 𝐶𝐾 , 𝐾 ∈ {𝐾1, 𝐾2}, положим равным |𝐶𝐾 |−1. Эл.кл. [𝑥4 = 1], [𝑥1 = 1] и

[𝑥2 = 1] не являются корректными. Однако эл.кл. [𝑥4 = 1] чаще выделяет обучаю-

щие объекты из класса 𝐾1, а эл.кл. [𝑥1 = 1] и [𝑥2 = 1] — обучающие объекты из

класса 𝐾2. Благодаря этому, алгоритм голосования по эл.кл. семейств 𝐶𝐾1
и 𝐶𝐾2

является корректным. Построенный алгоритм отказывается распознавать 6 объектов

из 81. �

В примере 1.1 алгоритм голосования по тупиковым представительным наборам

строит достаточно громоздкие семейства эл.кл. В примере 1.2 семейства голосую-

щих эл.кл. состоят как из корректных, так и из некорректных эл.кл. ранга 1. Эти

семейства более лаконично описывают классы, чем семейства тупиковых представи-

тельных наборов. Фактически, построен корректный распознающий алгоритм на ба-

зе произвольных, не обязательно корректных эл.кл. Регулярное построение таких

алгоритмов позволяют осуществлять методы описанных ниже оптимизационного,

алгебраического и алгебро-логического подходов.

Следует отметить, что в работах зарубежных авторов вводится аналогичное поня-

тию эл.кл. понятие emerging pattern [60–62]. В указанных работах на базе emerging

pattern построены модели распознающих алгоритмов, схема работы которых имеют

мало принципиальных отличий от логических алгоритмов распознавания, разрабо-

танных отечественными авторами.

1.1.2. Оптимизационный подход

Оптимизационный подход к корректному распознаванию предполагает следую-

щую последовательность действий. Выбирается эвристическая информационная мо-

дель M* — семейство допустимых распознающих алгоритмов. Вводится функционал

качества распознавания прецедентов алгоритмами из M*. Затем подходящим мето-

дом решается задача оптимизации этого функционала на M*. Примерами примене-

ния оптимизационного подхода являются алгоритмы вычисления оценок и голосо-
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вание по логическим закономерностям в задачах с вещественнозначной информаци-

ей [2, 10–12,63].

Проиллюстрируем оптимизационный подход применительно к задаче построе-

ния корректного алгоритма голосования по некорректным эл.кл. Пусть для каждого

класса 𝐾 зафиксировано семейство 𝐶𝐾 эл.кл., не обязательно являющихся коррект-

ными. Рассмотрим эвристическую информационную модель M*, в которой каждый

алгоритм голосует по эл.кл. из семейств 𝐶𝐾1
, . . . , 𝐶𝐾𝑙

. Различные алгоритмы из M*

различаются весами, с которыми эл.кл. семейств используются в голосовании.

Пусть для распознаваемого объекта 𝑆 из 𝑀 вычислены оценки

Γ(𝑆,𝐾1), . . . ,Γ(𝑆,𝐾𝑙) по формуле (1.1). Величина

Δ(𝑆,𝐾𝑦) = Γ(𝑆,𝐾𝑦)−max
𝑧 ̸=𝑦

Γ(𝑆,𝐾𝑧)

называется отступом распознающего алгоритма на объекте 𝑆 относительно клас-

са 𝐾𝑦, 𝑦 ∈ {1, . . . , 𝑙}. Нетрудно видеть, что номер класса для распознаваемого

объекта 𝑆 можно найти по формуле

𝐴(𝑆) =
𝑙∑︁

𝑦=1

𝑦[Δ(𝑆,𝐾𝑦) > 0]. (1.3)

Для корректности алгоритма (1.3) требуется одновременное выполнение следую-

щих неравенств

Δ(𝑆𝑖, 𝐾𝑦) > 0, ∀𝑦 ∈ {1, . . . , 𝑙}, ∀𝑆𝑖 ∈ 𝐾𝑦. (1.4)

Веса 𝛼(𝐻,𝜎), (𝐻, 𝜎) ∈ 𝐶𝐾 , 𝐾 ∈ {𝐾1, . . . , 𝐾𝑙}, можно интерпретировать как неиз-

вестные системы неравенств (1.4). В случае, когда система (1.4) совместна, ставится

задача найти такое её решение, что

𝑙∑︁
𝑦=1

∑︁
𝑆𝑖∈𝐾𝑦

Δ(𝑆𝑖, 𝐾𝑦) → max . (1.5)

В противном случае ставится задача найти решение её максимальной совместимой

подсистемы. То есть найти веса эл.кл., для которых

𝑙∑︁
𝑦=1

∑︁
𝑆𝑖∈𝐾𝑦

[Δ(𝑆𝑖, 𝐾𝑦) > 0] → max . (1.6)
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При использовании оптимизационного подхода можно столкнуться со следую-

щими проблемами. Во-первых, система (1.4) может оказаться несовместной, и то-

гда алгоритм (1.3), построенный с найденными весами эл.кл., будет некорректным.

Причиной этому может быть плохо выбранная эвристическая информационная мо-

дель M*. Во-вторых, задачи (1.5) и (1.6) могут оказаться достаточно сложными

для применяемого метода оптимизации, который может и не найти оптимальное

решение, даже если оно существует в M*.

1.1.3. Алгебраический подход

Избежать решения сложных оптимизационных задач зачастую позволяет алгеб-

раический подход [20–25]. Требуется скорректировать работу нескольких различных

алгоритмов, каждый из которых безошибочно классифицирует лишь часть обучаю-

щих объектов. Цель коррекции — сделать так, чтобы ошибки одних алгоритмов

были скомпенсированы другими, и качество композиции оказалось лучше, чем каж-

дого из базовых алгоритмов в отдельности.

Наряду с пространством ответов 𝑌 вводится пространство оценок 𝐸, на кото-

ром удобно задавать алгебраические операции, позволяющие строить корректирую-

щие функции. Корректирующей называется функция, аргументы и значения которой

лежат в 𝐸. Отображение из множества объектов 𝑀 в пространство оценок 𝐸 на-

зывается алгоритмическим оператором. Отображение оценок из 𝐸 в пространство

ответов 𝑌 называется решающим правилом. Семейства всевозможных алгоритмиче-

ских операторов, корректирующих функций и решающих правил обозначим соответ-

ственно через

M0
* = {𝑎 : 𝑀 → 𝐸}, F* =

∞⋃︁
𝑝=0

{𝐹 : 𝐸𝑝 → 𝐸}, M1
* =

∞⋃︁
𝑝=0

{𝐶 : 𝐸𝑝 → 𝑌 }.

Алгебраический подход подразумевает выполнение следующих шагов.

1. Выбирается семейство базовых алгоритмических операторов M0 ⊆ M0
*.

2. Выбирается семейство корректирующих функций F ⊆ F*. Заметим, что вы-

бранные семейства M0 и F порождают семейство алгоритмических операторов

вида 𝐹 (𝑏1(𝑆), . . . , 𝑏𝑟(𝑆)), где 𝐹 ∈ F и 𝑏1, . . . , 𝑏𝑟 ∈ M0.

3. Выбирается семейство решающих правил M1 ⊆ M1
*.
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4. Строится корректный распознающий алгоритм в виде композиции

𝐴(𝑆) = 𝐶(𝐹1(𝑏
1
1(𝑆), . . . , 𝑏

1
𝑑1
(𝑆)), . . . , 𝐹𝑟(𝑏

𝑟
1(𝑆), . . . , 𝑏

𝑟
𝑑𝑟
(𝑆))),

где 𝐶 ∈ M1, 𝐹𝑡 ∈ F, 𝑡 ∈ {1, . . . , 𝑟}, и 𝑏𝑡𝑞 ∈ M0, 𝑞 ∈ {1, . . . , 𝑑𝑡}, 𝑡 ∈ {1, . . . , 𝑟}.

В случае двух классов (𝑙 = 2) в качестве пространства оценок 𝐸 чаще всего

берут действительную прямую R и используют пороговое решающее правило

𝐶(𝑒) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 𝑒 = 𝑐0,

1, 𝑒 > 𝑐0,

2, 𝑒 < 𝑐0,

𝑐0 = const .

Если же число классов 𝑙 > 2, то полагают 𝐸 = R𝑙 и используют правило

голосования

𝐶(𝑒1, . . . , 𝑒𝑙) =

⎧⎪⎨⎪⎩
𝑦*, Argmax

𝑦∈{1,...,𝑙}
𝑒𝑦 = {𝑦*},

0, иначе.

Как уже отмечалось, выбор пространства оценок тесно связан с выбором се-

мейства корректирующих функций F. Как правило, для коррекции используются

не все функции вида 𝐹 : 𝐸𝑑 → 𝐸, а только функции, обладающие определённым

свойством. В случае 𝐸 = R примерами являются семейство линейных функций,

семейство полиномов ограниченной степени, семейство монотонных функций.

Вообще говоря, в качестве базовых алгоритмических операторов могут быть ис-

пользованы произвольные алгоритмы распознавания, результатом применения кото-

рых к распознаваемому объекту является некоторая оценка из 𝐸. Типичными при-

мерами являются алгоритмы вычисления оценок, машины опорных векторов, деревья

решений. Примером в некотором смысле «простейшего» базового алгоритмического

оператора служит эл.кл. Для коррекции эл.кл. удобно использовать булевы функции.

Далее рассматривается подход, объединяющий идеи логического и алгебраического

подходов.

1.1.4. Алгебро-логический подход

Идея алгебро-логического синтеза корректных логических алгоритмов распозна-

вания предложена в [15]. В указанной работе, введено понятие корректного набора
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эл.кл., и показано, что задача построения корректного набора эл.кл. сводится к по-

иску покрытия булевой матрицы, специальным образом построенной по обучающей

выборке. Подход развит в работах [16–19, 58], в которых рассмотрены вопросы

практического применения различных моделей корректных алгоритмов распознава-

ния, основанных на голосовании по корректным наборам эл.кл.

Пусть имеется упорядоченный набор эл.кл. 𝑈 =
(︀
(𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)

)︀
.

Набор 𝑈 ставит в соответствие объекту 𝑆 из 𝑀 бинарный вектор

𝑈(𝑆)=
(︀
[𝐻1(𝑆)=𝜎1], . . . , [𝐻𝑑(𝑆)=𝜎𝑑]

)︀
, который называется откликом набора

эл.кл. 𝑈 на объекте 𝑆.

Набор эл.кл. 𝑈 называется корректным для класса 𝐾, если для любых двух

обучающих объектов 𝑆𝑖 и 𝑆𝑡 таких, что 𝑆𝑖 ∈ 𝐾 и 𝑆𝑡 ̸∈ 𝐾, отклики 𝑈(𝑆𝑖) и 𝑈(𝑆𝑡)

различны. Другими словами, корректный для 𝐾 набор эл.кл. 𝑈 различает любые

два обучающих объекта, один из которых принадлежит 𝐾, а другой не принадлежит.

Булева функция 𝐹 (𝑡1, . . . , 𝑡𝑑) такая, что 𝐹 (𝑈(𝑆𝑖)) ̸= 𝐹 (𝑈(𝑆𝑡)), 𝑆𝑖 ∈ 𝐾, 𝑆𝑡 /∈ 𝐾,

называется корректирующей для набора 𝑈 .

В [18] построен алгоритм голосования по корректным наборам эл.кл., названный

логическим корректором. При обучении для каждого класса 𝐾 строится некоторое

непустое семейство 𝑊𝐾 корректных наборов эл.кл. класса 𝐾. При распознавании

объекта 𝑆 для каждого класса 𝐾 вычисляется оценка Γ(𝑆,𝐾) принадлежности

объекта 𝑆 классу 𝐾, имеющая вид

Γ(𝑆,𝐾) =
1

|𝑊𝐾 |
∑︁

𝑈∈𝑊𝐾

1

|𝑇 ∩𝐾|
∑︁
𝑆𝑖∈𝐾

[𝑈(𝑆𝑖) = 𝑈(𝑆)]. (1.7)

Корректный для 𝐾 набор эл.кл. 𝑈 называется тупиковым, если набор эл.кл.

𝑈 ′ =
(︀
(𝐻1, 𝜎1), . . . , (𝐻𝑢−1, 𝜎𝑢−1), (𝐻𝑢+1, 𝜎𝑢+1), . . . , (𝐻𝑑, 𝜎𝑑)

)︀
не является коррект-

ным для 𝐾 при любом 𝑢 ∈ {1, . . . , 𝑑}. В [15,18] используются тупиковые коррект-

ные наборы эл.кл.

В [15] также введено понятие монотонного корректного для класса 𝐾 набо-

ра эл.кл., которое может быть сформулировано следующим образом. Набор эл.кл.

𝑈=((𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)) называется монотонным корректным для класса 𝐾, ес-

ли для любых обучающих объектов 𝑆𝑖 и 𝑆𝑡 таких, что 𝑆𝑖 ∈ 𝐾 и 𝑆𝑡 /∈ 𝐾, существует

𝑗 ∈ {1, . . . , 𝑑}, для которого 𝐻𝑗(𝑆𝑖) = 𝜎𝑗 и 𝐻𝑗(𝑆𝑡) ̸= 𝜎𝑗 . Для монотонного коррект-

ного набора эл.кл. существует монотонная корректирующая функция 𝐹 (𝑡1, . . . , 𝑡𝑑)

такая, что 𝐹 (𝑈(𝑆𝑖)) = 1, 𝑆𝑖 ∈ 𝐾, и 𝐹 (𝑈(𝑆𝑡)) = 0, 𝑆𝑡 /∈ 𝐾.
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В [18] построена модель голосования по монотонным корректным наборам эл.кл.,

названная в работе [19] корректором МОН. Опишем схему обучения корректора

МОН. При обучении для каждого класса 𝐾 строится некоторое семейство 𝑊𝐾

монотонных корректных наборов эл.кл. класса 𝐾. При распознавании объекта 𝑆

для каждого класса 𝐾 вычисляется оценка Γ(𝑆,𝐾) принадлежности объекта 𝑆

классу 𝐾, имеющая вид

Γ(𝑆,𝐾) =
1

|𝑊𝐾 |
∑︁

𝑈∈𝑊𝐾

1

|𝑇 ∩𝐾|
∑︁
𝑆𝑖∈𝐾

[𝑈(𝑆𝑖) 4 𝑈(𝑆)]. (1.8)

(здесь и далее для векторов 𝛼 = (𝛼1, . . . , 𝛼𝑑) и 𝛽 = (𝛽1, . . . , 𝛽𝑑) через 𝛼 4 𝛽

обозначается отношение [𝛼 4 𝛽] ≡ [𝛼𝑝 6 𝛽𝑝, ∀𝑝 ∈ {1, . . . , 𝑑}]).
В [19] введено понятие антимонотонного корректного для класса 𝐾 набора эл.кл.,

и построен так называемый корректор АМОН. Набор эл.кл. 𝑈 называется антимо-

нотонным корректным для класса 𝐾, если 𝑈 является монотонным для 𝐾 (здесь

множество 𝐾 интерпретируется как класс в задаче распознавания с двумя клас-

сами 𝐾 и 𝐾). Для антимонотонного корректного набора эл.кл. существует моно-

тонная корректирующая функция 𝐹 (𝑡1, . . . , 𝑡𝑑) такая, что 𝐹 (𝑈(𝑆𝑖)) = 0, 𝑆𝑖 ∈ 𝐾,

и 𝐹 (𝑈(𝑆𝑡)) = 1, 𝑆𝑡 /∈ 𝐾. При обучении для каждого класса 𝐾 строится некоторое

семейство 𝑊𝐾 антимонотонных корректных для 𝐾 наборов эл.кл. При распознава-

нии объекта 𝑆 для каждого класса 𝐾 вычисляется оценка Γ(𝑆,𝐾) принадлежности

объекта 𝑆 классу 𝐾, имеющая вид

Γ(𝑆,𝐾) =
1

|𝑊𝐾 |
∑︁

𝑈∈𝑊𝐾

1

|𝑇 ∖𝐾|
∑︁
𝑆𝑖 /∈𝐾

[𝑈(𝑆𝑖) ̸4 𝑈(𝑆)]. (1.9)

Следует отметить, что в работах зарубежных авторов развивается подход Logical

Analysis of Data (LAD), схожий с алгебро-логическим подходом [64–66]. Основной

задачей LAD является бинаризация прецедентной информации, в результате кото-

рой бинарные описания «положительных» и «отрицательных» прецедентов можно

различить с помощью булевой функции определенного вида, например, монотонной,

пороговой функцией или булевой функцией, задаваемой элементарной дизъюнкци-

ей. При этом результат бинаризации должен быть оптимальным, в том смысле, что

бинарные описания объектов должны быть, как можно короче. Для решения этой

задачи применяются методы алгебры логики, дискретной математики, линейного

и целочисленного программирования.
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1.2. Общая схема построения логического корректора

Определяются понятия корректного и представительного предиката класса. С ис-

пользованием этих понятий описывается общая схема алгебро-логического синтеза

корректных алгоритмов распознавания. В рамках предложенной схемы рассматрива-

ются классические логические распознающие алгоритмы и ранее построенные логи-

ческие корректоры.

1.2.1. Понятие корректного предиката как обобщение понятия корректного

набора элементарных классификаторов

Из соображения удобства перейдём на язык предикатов, заданных на множестве

объектов 𝑀 . Будем говорить, что предикат 𝐵 корректен для класса 𝐾, если мно-

жество прецедентов, на которых предикат 𝐵 равен 1, является подмножеством либо

𝑇 ∩𝐾, либо 𝑇 ∖𝐾. Корректный для класса 𝐾 предикат 𝐵 будем называть предста-

вительным для класса 𝐾, если существует прецедент 𝑆𝑖 ∈ 𝐾 такой, что 𝐵(𝑆𝑖) = 1.

Пусть 𝑈 = ((𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)) — набор эл.кл. и 𝐹 (𝑡1, . . . , 𝑡𝑑) — булева

функция от 𝑑 переменных. Обозначим через 𝐹 (𝑈) предикат, задаваемый компози-

цией

𝐹 (𝑈(𝑆)) = 𝐹 ([𝐻1(𝑆) = 𝜎1], . . . , [𝐻𝑑(𝑆) = 𝜎𝑑]), 𝑆 ∈ 𝑀.

Обобщим понятие корректного набора эл.кл. и введём понятие представительно-

го набора эл.кл. Набор эл.кл. 𝑈 будем называть корректным (представительным)

для класса 𝐾, если существует булева функция 𝐹 такая, что предикат 𝐹 (𝑈) явля-

ется корректным (представительным) для 𝐾. Функция 𝐹 называется корректиру-

ющей для набора эл.кл. 𝑈 относительно класса 𝐾.

1.2.2. Алгоритм голосования по корректным предикатам

Построим логический корректор общего вида, основанные на голосовании по кор-

ректным предикатам.

На этапе обучения для каждого класса 𝐾 строятся два семейства 𝑍𝐾 и 𝑍𝐾

предикатов на множестве объектов 𝑀 . Каждый предикат семейства 𝑍𝐾 является

представительным для класса 𝐾. Каждый предикат семейства 𝑍𝐾 является кор-
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ректным, но не является представительным для 𝐾. Предикату 𝐵 приписывается

вес 𝛼𝐵 > 0.

Распознавание осуществляется взвешенным голосованием по корректным преди-

катам, построенным на этапе обучения. При распознавании объекта 𝑆 для каждого

класса 𝐾 вычисляется оценка Γ(𝑆,𝐾) принадлежности объекта 𝑆 классу 𝐾, име-

ющая вид

Γ(𝑆,𝐾) =
∑︁
𝐵∈𝑍𝐾

𝛼𝐵𝐵(𝑆)−
∑︁
𝐵∈𝑍𝐾

𝛼𝐵𝐵(𝑆).

Описанный распознающий алгоритм будем называть логическим корректором об-

щего вида. Для обеспечения его корректности достаточно, чтобы было справедливо

Утверждение 1.1. Пусть 𝐴 — логический корректор общего вида и 𝑍𝐾1
, . . . , 𝑍𝐾𝑙

,

𝑍𝐾1
, . . . , 𝑍𝐾𝑙

— семейства предикатов, по которым осуществляется голосование

при распознавании объектов. Алгоритм 𝐴 корректен, если для любого класса 𝐾

и любого прецедента 𝑆𝑖 ∈ 𝐾 выполняется одно из двух условий:

1) в семействе 𝑍𝐾 найдётся предикат, выделяющий 𝑆𝑖;

2) для каждого класса 𝐾 ′ такого, что 𝐾 ′ ̸= 𝐾, в семействе 𝑍𝐾 ′ найдётся предикат,

выделяющий 𝑆𝑖.

Доказательство. Пусть 𝑍 — семейство предикатов и 𝑆 — объект из 𝑀 . Обо-

значим 𝑏(𝑍, 𝑆) = {𝐵 ∈ 𝑍 : 𝐵(𝑆) = 1}. Зафиксируем класс 𝐾 и объект 𝑆𝑖 ∈ 𝐾.

1) Если 𝑏(𝑍𝐾 , 𝑆𝑖) ̸= ∅, то Γ(𝑆𝑖, 𝐾) > 0. Поскольку ∀𝐾 ′ ̸= 𝐾, Γ(𝑆𝑖, 𝐾
′) 6 0,

отступ Δ(𝑆𝑖, 𝐾) > 0, и объект 𝑆𝑖 распознаётся алгоритмом 𝐴 правильно.

2) Если 𝑏(𝑍𝐾 ′, 𝑆𝑖) ̸= ∅, ∀𝐾 ′ ̸= 𝐾, то Γ(𝑆𝑖, 𝐾
′) < 0, ∀𝐾 ′ ̸= 𝐾. Посколь-

ку Γ(𝑆𝑖, 𝐾) > 0, отступ Δ(𝑆𝑖, 𝐾) > 0, и объект 𝑆𝑖 распознаётся алгоритмом 𝐴

правильно. �

1.2.3. Классические логические алгоритмы распознавания и ранее построенные

логические корректоры в рамках схемы голосования по корректным

предикатам

Понятия корректного эл.кл., представительного набора и теста могут быть пере-

формулированы на языке предикатов. Следующие два очевидных утверждения пока-
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зывают, что алгоритмы голосования по корректным эл.кл. и голосования по тестам

вписываются в схемы логического корректора общего вида.

Утверждение 1.2. Эл.кл. (𝐻, 𝜎) корректен (является представительным набором)

для класса 𝐾 тогда и только тогда, когда предикат [𝐻(𝑆) = 𝜎] является корректным

(представительным) для 𝐾. При этом функция 𝐹 (𝑡1) = 𝑡1 является корректирующей

для набора эл.кл. 𝑈 =
(︀
(𝐻, 𝜎)

)︀
относительно класса 𝐾. �

Утверждение 1.3. Набор признаков 𝐻 является тестом тогда и только тогда, ко-

гда для любого класса 𝐾 и любого прецедента 𝑆𝑖 ∈ 𝐾 предикат [𝐻(𝑆𝑖) = 𝐻(𝑆)]

является представительным для 𝐾. При этом функций 𝐹 (𝑡1) = 𝑡1 является коррек-

тирующей для набора эл.кл. 𝑈 =
(︀
(𝐻,𝐻(𝑆𝑖))

)︀
относительно класса 𝐾. �

Ранее построенные логические корректоры также являются частными случаями

логического корректора общего вида.

1. В логическом корректоре с произвольной корректирующей функцией произ-

водится голосование по представительным предикатам вида [𝑈(𝑆𝑖) = 𝑈(𝑆)],

𝑈 — корректный для класса 𝐾 набор эл.кл. (по старому понятию), 𝑆𝑖 —

прецедент из 𝐾.

2. В логическом корректоре МОН производится голосование по представитель-

ным предикатам вида [𝑈(𝑆𝑖) 4 𝑈(𝑆)], 𝑈 — монотонный корректный для клас-

са 𝐾 набор эл.кл., 𝑆𝑖 — прецедент из 𝐾.

3. В логическом корректоре АМОН производится голосование по корректным,

предикатам вида [𝑈(𝑆𝑖) 4 𝑈(𝑆)], не являющихся представительными, где 𝑈 —

антимонотонный корректный для класса 𝐾 набор эл.кл., 𝑆𝑖 — прецедент из 𝐾.

Понятия монотонного и антимонотонного корректного набора эл.кл. тесно свя-

заны с понятиями теста, представительного и антипредставительного набора. Фор-

мально эта связь описывается следующими утверждениями.

Утверждение 1.4. Пусть 𝐻 — тест. Тогда для любого класса 𝐾 существует моно-

тонный корректный для 𝐾 набор эл.кл. 𝑈 такой, что для любого прецедента 𝑆𝑖 ∈ 𝐾

выполняется тождество [𝐻(𝑆𝑖) = 𝐻(𝑆)] ≡ [𝑈(𝑆𝑖) 4 𝑈(𝑆)], ∀𝑆 ∈ 𝑀 .

Доказательство. Зафиксируем класс 𝐾. Для каждого признака 𝑥𝑗 ∈ 𝐻 и пре-

цедента 𝑆𝑖 ∈ 𝐾 построим одноранговый эл.кл. ({𝑥𝑗}, 𝑥𝑗(𝑆𝑖)). Составим из раз-
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личных построенных эл.кл. набор 𝑈 . Из конструкции набора эл.кл. 𝑈 очевид-

но, что равенство 𝐻(𝑆𝑖) = 𝐻(𝑆) выполняется тогда и только тогда, когда вер-

но 𝑈(𝑆𝑖) 4 𝑈(𝑆). Для любых прецедентов 𝑆𝑖 ∈ 𝐾 и 𝑆𝑡 /∈ 𝐾 выполняется

[𝑈(𝑆𝑖) 4 𝑈(𝑆𝑡)] = [𝐻(𝑆𝑖) = 𝐻(𝑆𝑡)] = 0, так как 𝐻 — тест. Следовательно

𝑈 — монотонный корректный для 𝐾 набор эл.кл. �

Аналогично доказываются следующие два утверждения.

Утверждение 1.5. Пусть 𝑈 — монотонный корректный для класса 𝐾 набор эл.кл.

Тогда для любого прецедента 𝑆𝑖 ∈ 𝐾 существует представительный для 𝐾 на-

бор (𝐻, 𝜎) такой, что [𝐻(𝑆) = 𝜎] ≡ [𝑈(𝑆𝑖) 4 𝑈(𝑆)], ∀𝑆 ∈ 𝑀 . �

Утверждение 1.6. Пусть 𝑈 — антимонотонный корректный для класса 𝐾 на-

бор эл.кл. Тогда для любого прецедента 𝑆𝑖 /∈ 𝐾 существует антипредставительный

для 𝐾 набор (𝐻, 𝜎) такой, что [𝐻(𝑆) = 𝜎] ≡ [𝑈(𝑆𝑖) 4 𝑈(𝑆)], ∀𝑆 ∈ 𝑀 . �

Алгоритмы распознавания 𝐴1 и 𝐴2 будем называть эквивалентными, если они

одинаково классифицируют все объекты из 𝑀 , то есть 𝐴1(𝑆) ≡ 𝐴2(𝑆). Из утвер-

ждений 1.4, 1.5 и 1.6 можно сделать 3 вывода.

1. Для любого тестового алгоритма существует эквивалентный ему логический

корректор МОН.

2. Для любого логического корректора МОН существует эквивалентный ему ал-

горитм голосования по представительным наборам.

3. Для любого логического корректора АМОН существует эквивалентный ему

алгоритм голосования по антипредставительным наборам.

1.3. Логический корректор POLAR с поляризуемой

корректирующей функцией

Предлагается новый практический логический корректор POLAR, имеющий в

качестве корректирующей поляризуемую булеву функцию. В данном корректоре в

роли голосующих предикатов выступают так называемые поляризуемые предика-

ты. Построение этих предикатов сводится к поиску покрытий специальной булевой

матрицы. Рассматривается задача поиска голосующих предикатов с наибольшей ин-

формативностью.
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1.3.1. Поляризуемые предикаты

Пусть 𝑈=((𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)) — набор эл.кл., 𝐺 — набор прецедентов,

𝑅=(𝑟1, . . . , 𝑟𝑑) — набор бинарных отношений на {0, 1}, например, 𝑟1 — отноше-

ние «меньше или равно», 𝑟1(𝑥, 𝑦) = [𝑥6𝑦]; 𝑟2 — отношение «больше или равно»,

𝑟2(𝑥, 𝑦) = [𝑥>𝑦]; 𝑟3 — отношение «равно», 𝑟3(𝑥, 𝑦) = [𝑥=𝑦]. Для бинарных век-

торов 𝛼 = (𝛼1, . . . , 𝛼𝑑) и 𝛽 = (𝛽1, . . . , 𝛽𝑑) через 𝑅(𝛼, 𝛽) обозначим конъюнкцию

𝑟1(𝛼1, 𝛽1) ∧ . . . ∧ 𝑟𝑑(𝛼𝑑, 𝛽𝑑). Рассмотрим предикат

𝐵(𝑈,𝑅,𝐺)(𝑆) =
⋁︁
𝑆𝑖∈𝐺

𝑅(𝑈(𝑆𝑖), 𝑈(𝑆)). (1.10)

Выясним условия, при которых предикат 𝐵(𝑈,𝑅,𝐺) корректен для класса 𝐾.

Пусть 𝐺1 и 𝐺2 — множества объектов из 𝑀 . Будем говорить, что набор эл.кл. 𝑈

отделяет объекты из 𝐺1 от объектов из 𝐺2 с помощью набора бинарных отноше-

ний 𝑅, если не существует двух объектов 𝑆 ′ ∈ 𝐺1 и 𝑆 ′′ ∈ 𝐺2, для которых

выполняется равенство 𝑅(𝑈(𝑆 ′), 𝑈(𝑆 ′′)) = 1.

В частности, если набор эл.кл. 𝑈 отделяет прецеденты из класса 𝐾 от преце-

дентов из 𝐾 с помощью набора бинарных отношений 𝑅, состоящего из бинарных

отношений «равно» («меньше или равно»), то набор эл.кл. 𝑈 является (монотон-

ным) корректным для класса 𝐾.

Утверждение 1.7. Пусть 𝐺 — набор прецедентов класса 𝐾 и набор

эл.кл. 𝑈=((𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)) отделяет объекты из 𝐺 от прецедентов из 𝐾

c помощью набора бинарных отношений 𝑅=(𝑟1, . . . , 𝑟𝑑). Тогда предикат 𝐵(𝑈,𝑅,𝐺)(𝑆)

является корректным для 𝐾, и набор эл.кл. 𝑈 является корректным для 𝐾 с кор-

ректирующей функцией

𝐹(𝑈,𝑅,𝐺)(𝑡1, . . . , 𝑡𝑑) =
⋁︁
𝑆𝑖∈𝐺

𝑅(𝑈(𝑆𝑖), (𝑡1, . . . , 𝑡𝑑)). (1.11)

Доказательство. Из условия утверждения следует, что для любого прецедента

𝑆𝑡 /∈ 𝐾 выполняется 𝐵(𝑈,𝑅,𝐺)(𝑆𝑡) = 0. Следовательно, 𝐵(𝑈,𝑅,𝐺) корректен для 𝐾.

Так как предикат 𝐹(𝑈,𝑅,𝐺)(𝑈) = 𝐵(𝑈,𝑅,𝐺) корректен для 𝐾, набор эл.кл. 𝑈 корректен

для 𝐾 и имеет корректирующую функцию 𝐹(𝑈,𝑅,𝐺) по определению. �

Пусть 𝑈 = ((𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)) — набор эл.кл., 𝑅 = (𝑟1, . . . , 𝑟𝑑) — набор би-

нарных отношений на {0, 1}, 𝐺 — набор прецедентов класса 𝐾. Корректный для 𝐾

предикат 𝐵(𝑈,𝑅,𝐺) будем называть тупиковым, если выполняются два условия:
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1) для любого прецедента 𝑆𝑖 ∈ 𝐾 ∖𝐺 предикат 𝐵(𝑈,𝑅,𝐺∪{𝑆𝑖}) не является коррект-

ным для 𝐾;

2) для набор эл.кл. 𝑈 ′ = ((𝐻1, 𝜎1), . . . , (𝐻𝑗−1, 𝜎𝑗−1), (𝐻𝑗+1, 𝜎𝑗+1), . . . (𝐻𝑑, 𝜎𝑑))

и набора отношений 𝑅′ = (𝑟1, . . . , 𝑟𝑗−1, 𝑟𝑗+1, . . . , 𝑟𝑑), 𝑗 ∈ {1, . . . , 𝑑}, преди-

кат 𝐵(𝑈 ′,𝑅′,𝐺)(𝑆) не является корректным для 𝐾.

Обозначим через ℬ𝐾 множество корректных для 𝐾 предикатов вида (1.10).

Подмножество ℬ𝐾 , состоящее из тупиковых предикатов, обозначим через ℬ*
𝐾 .

Заметим, что если информативность предикатов из ℬ𝐾 оценивать функционалом

𝑃 (𝐵,𝐾) =
∑︁
𝑆𝑖∈𝐾

𝐵(𝑆𝑖),

то максимум 𝑃 (𝐵,𝐾) на ℬ𝐾 совпадает с его максимумом на ℬ*
𝐾 . В этом смысле

целесообразно рассматривать только тупиковые предикаты.

Будем говорить, что предикаты 𝐵(𝑈,𝑅,𝐺) и 𝐵(𝑈 ′,𝑅′,𝐺′) эквивалентны, если они за-

дают одинаковые отображения из 𝑀 в {0, 1}, 𝐵(𝑈,𝑅,𝐺)(𝑆) = 𝐵(𝑈 ′,𝑅′,𝐺′)(𝑆), ∀𝑆∈𝑀 .

Множество всех предикатов вида (1.10) разбивается на классы эквивалентности.

Утверждение 1.8. Для любого предиката 𝐵(𝑈,𝑅,𝐺) существует эквивалентный пре-

дикат 𝐵(𝑈 ′,𝑅′,𝐺) такой, что набор 𝑈 ′ состоит из эл.кл. набора 𝑈 и каждое бинарное

отношение набора 𝑅′ принадлежит множеству ℛ*={[𝑥6𝑦], [𝑥>𝑦], [𝑥∨𝑦], [¬𝑥∨¬𝑦]}.

Доказательство. Заметим, что каждое отношение из ℛ* принимает нулевое

значение всего лишь на одной паре значений аргументов. Например, [𝑥 6 𝑦] = 0,

тогда и только тогда, когда 𝑥 = 1 и 𝑦 = 0.

Построим требуемые наборы 𝑅′ и 𝑈 ′. Каждое отношение 𝑟𝑗 в 𝑅 заменим на на-

бор отношений 𝑟′1, . . . , 𝑟
′
𝑢 из ℛ* таких, что 𝑟𝑗(𝑥, 𝑦) = 𝑟′1(𝑥, 𝑦)∧. . .∧𝑟′𝑢(𝑥, 𝑦). Напри-

мер, если 𝑟𝑗(𝑥, 𝑦) = [𝑥 = 𝑦], то можно взять 𝑟′1(𝑥, 𝑦) = [𝑥 6 𝑦] и 𝑟′2(𝑥, 𝑦) = [𝑥 > 𝑦].

Каждому отношению 𝑟′𝑣, 𝑣 ∈ {1, . . . , 𝑢}, сопоставим эл.кл. (𝐻 ′
𝑣, 𝜎

′
𝑣), совпадающий с

эл.кл. (𝐻𝑗, 𝜎𝑗). Полученные в результате такого построения наборы 𝑅′ и 𝑈 ′ и будут

определять предикат 𝐵(𝑈 ′,𝑅′,𝐺), эквивалентный предикату 𝐵(𝑈,𝑅,𝐺). �

Фактически из утверждения 1.8 следует, что при построении предикатов ви-

да (1.10) можно использовать только отношения из ℛ*.

Корректный для 𝐾 предикат 𝐵(𝑈,𝑅,𝐺) будем называть монотонным (поляризуе-

мым), если функция 𝐹(𝑈,𝑅,𝐺) является монотонной (поляризуемой).
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Утверждение 1.9. Пусть 𝐵(𝑈,𝑅,𝐺) — корректный для 𝐾 предикат. Тогда выполня-

ются следующие условия.

1. Если каждое отношение набора 𝑅 принадлежит ℛ*, то предикат 𝐵(𝑈,𝑅,𝐺) яв-

ляется поляризуемым.

2. Если каждое отношение набора 𝑅 совпадает либо с [𝑥 6 𝑦], либо с [𝑥 ∨ 𝑦], то

предикат 𝐵(𝑈,𝑅,𝐺) является монотонным.

Доказательство. Заметим, что [𝑥 6 𝑦] = [¬𝑥 ∨ 𝑦] и [𝑥 > 𝑦] = [𝑥 ∨ ¬𝑦].
1. Использование отношений из ℛ* гарантирует, что каждая переменная бу-

левой функции 𝐹(𝑈,𝑅,𝐺) входят в дизъюнктивную нормальную форму (1.11) либо

только с отрицанием, либо только без отрицания. Следовательно 𝐹(𝑈,𝑅,𝐺) является

поляризуемой.

2. С отношениями [𝑥 6 𝑦] и [𝑥∨ 𝑦] в дизъюнктивную нормальную форму (1.11)

ни одна переменная не будет входить с отрицанием, что эквивалентно монотонности

корректирующей функции 𝐹(𝑈,𝑅,𝐺). �

Утверждение 1.10. Пусть 𝐺 — непустой набор прецедентов класса 𝐾 и предикат

𝐵(𝑈,𝑅,𝐺) корректен для 𝐾. Если каждое отношение набора 𝑅 принадлежит множе-

ству {[𝑥 6 𝑦], [𝑥 > 𝑦], [𝑥 = 𝑦]}, то предикат 𝐵(𝑈,𝑅,𝐺) является представительным

для 𝐾.

Доказательство. Поскольку 𝑅 состоит из отношений {[𝑥 6 𝑦], [𝑥 > 𝑦], [𝑥 = 𝑦]},
выполняется 𝑅(𝑈(𝑆), 𝑈(𝑆)) = 1 для любого 𝑆 ∈ 𝑀 . Тогда 𝐵(𝑈,𝑅,𝐺)(𝑆𝑖) = 1 для

любого 𝑆𝑖 ∈ 𝐺. Так как 𝐺 ̸= ∅, предикат 𝐵(𝑈,𝑅,𝐺) представителен для 𝐾. �

Из утверждений 1.9 и 1.10 следует, что корректный для 𝐾 предикат 𝐵(𝑈,𝑅,𝐺)

такой, что 𝐺 ⊂ 𝐾, 𝐺 ̸= ∅ и каждое отношение набора 𝑅 совпадает либо с [𝑥 6 𝑦],

либо с [𝑥 > 𝑦], является поляризуемым и представительным для 𝐾. Обозначим

множество таких предикатов через 𝒫𝐾 и множество ℬ*
𝐾 ∩ 𝒫𝐾 через 𝒫*

𝐾 .

Проиллюстрируем на примере с модельной задачей преимущество использования

поляризуемых предикатов.

Пример 1.3. Рассмотрим задачу распознавания с двумя классами и двумя призна-

ками, изображенную на рисунке 1.1. Рассмотрим два набора эл.кл.

1. Набор 𝑈1 = ([𝑥2 = 0], [𝑥1 = 0], [𝑥1 = 1], [𝑥1 = 2], [𝑥1 = 3], [𝑥1=4]) является

монотонным корректным для класса 𝐾1, то есть отделяет прецеденты из 𝐾1
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Рисунок 1.1: Модельная задача распознавания из примера 1.3

от прецедентов из 𝐾2 с помощью набора отношений 𝑅1=([𝑥6𝑦], . . . , [𝑥6𝑦]).

Набор 𝑈1 имеет наименьшую мощность среди монотонных корректных для 𝐾1

наборов эл.кл.

2. Набор 𝑈2 = ([𝑥1 = 5], [𝑥2 = 0], [𝑥1 = 0]) отделяет прецеденты из 𝐾1 от

прецедентов из 𝐾2 с помощью набора отношений 𝑅2=([𝑥>𝑦], [𝑥6𝑦], [𝑥6𝑦]).

Набор 𝑈2 имеет наименьшую мощность среди корректных наборов эл.кл. с

поляризуемой корректирующей функцией.

Выпишем предикаты 𝐵(𝑈𝑗 ,𝑅𝑗 ,{𝑆𝑖}), 𝑆𝑖 ∈ 𝐾1, 𝑗 = 1, 2, и вычислим информатив-

ность этих предикатов.

1. Монотонные предикаты: [𝑥1 = 0], [𝑥1 = 0 ∧ 𝑥2 = 0], [𝑥1 = 1 ∧ 𝑥2 = 0],

[𝑥1 = 2∧ 𝑥2 = 0], [𝑥1 = 3∧ 𝑥2 = 0],[𝑥1 = 4∧ 𝑥2 = 0]. Первый предикат имеет

информативность 6, информативности остальных равны 1.

2. Поляризуемые предикаты: [𝑥1 ̸= 5 ∧ 𝑥2 = 0] и [𝑥1 = 0]. Первый предикат

имеет информативность 5, второй — 6.

Видно, что поляризуемые предикаты более лаконичны и имеют высокую инфор-

мативность. Это становится возможным, благодаря тому, что с помощью одновре-

менного использования отношений [𝑥 6 𝑦] и [𝑥 > 𝑦] удается одним предикатом

проверить как наличие, так и отсутствие некоторого признакового подописания у

распознаваемого объекта. �

1.3.2. Алгоритм голосования по поляризуемым предикатам

Опишем логический корректор POLAR, основанный на голосовании по поляри-

зуемым предикатам.
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На этапе обучения для каждого класса 𝐾 формируются два семейства 𝑍𝐾 и 𝑍𝐾 ,

𝑍𝐾 ⊆ 𝒫𝐾 , 𝑍𝐾 ⊆ 𝒫𝐾 . Предикату 𝐵 приписывается вес 𝛼𝐵 > 0.

Распознавание осуществляется взвешенным голосованием по предикатам, постро-

енным на этапе обучения. Возможны два режима распознавания: базовый и адди-

тивный.

1. В базовом режиме при распознавании объекта 𝑆 для каждого класса 𝐾 вычис-

ляется оценка Γ(𝑆,𝐾) принадлежности объекта 𝑆 классу 𝐾, имеющая вид

Γ(𝑆,𝐾) =
∑︁
𝐵∈𝑍𝐾

𝛼𝐵𝐵(𝑆)−
∑︁
𝐵∈𝑍𝐾

𝛼𝐵𝐵(𝑆),

то есть распознавание осуществляется аналогично логическому корректору об-

щего вида.

2. В аддитивном режиме для распознаваемого объекта 𝑆 и каждого построенного

предиката 𝐵(𝑈,𝑅,𝐺) вычисляется оценка

𝛾(𝑆,𝐵(𝑈,𝑅,𝐺)) =
1

|𝐺|
∑︁
𝑆𝑖∈𝐺

𝑅(𝑈(𝑆𝑖), 𝑈(𝑆)).

Затем для каждого класса 𝐾 вычисляется оценка Γ(𝑆,𝐾) принадлежности

объекта 𝑆 классу 𝐾, имеющая вид

Γ(𝑆,𝐾) =
∑︁
𝐵∈𝑍𝐾

𝛼𝐵𝛾(𝑆,𝐵)−
∑︁
𝐵∈𝑍𝐾

𝛼𝐵𝛾(𝑆,𝐵).

Основная задача этапа обучения логического корректора POLAR — поиск ин-

формативных корректных предикатов из 𝒫𝐾 .

1.3.3. Сведение задачи построения поляризуемых предикатов к поиску

покрытий булевой матрицы

В работе [15] построение корректных наборов эл.кл. сводится к поиску покрытий

булевой матрицы, построенной специальным образом по обучающей выборке. В

данном подразделе выполняется аналогичное сведение построения предикатов из 𝒫𝐾

к поиску покрытия булевой матрицы.

Пусть 𝐿 = ‖𝑎𝑖𝑗‖ — булева матрица размера 𝑚×𝑛. Говорят, что столбец c номе-

ром 𝑗 покрывает строку с номером 𝑖 булевой матрицы 𝐿, если 𝑎𝑖𝑗 = 1. Покрытием
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(𝐻,𝜎, 𝑟) ∈ 𝒱* 𝑆𝑗 ∈ 𝑇

...
...

· · · 1− 𝑟 ([𝐻(𝑆𝑖) = 𝜎], [𝐻(𝑆𝑡) = 𝜎]) · · · [𝑖 = 𝑗] · · · (𝑆𝑖, 𝑆𝑡) ∈ 𝑇 × 𝑇

...
...

𝐿𝑇 =

Рисунок 1.2: Схема построения матрицы сравнения 𝐿𝑇 .

булевой матрицы 𝐿 называется набор столбцов 𝐽 такой, что каждую строку матри-

цы 𝐿 покрывает хотя бы один столбец из 𝐽 . Покрытие 𝐽 матрицы 𝐿 называется

неприводимым, если любое его собственное подмножество не является покрытием

матрицы 𝐿. Задача перечисления всех неприводимых покрытий булевой матрицы

называется дуализацией. Подходы к её решению подробно изложены в главе 3.

Обозначим через 𝒱* множество троек (𝐻, 𝜎, 𝑟), где (𝐻, 𝜎) — эл.кл. и 𝑟 — одно

из отношений [𝑥 6 𝑦] или [𝑥 > 𝑦].

Построим булеву матрицу 𝐿𝑇 по следующему правилу. Каждой строке матри-

цы 𝐿𝑇 сопоставим пару обучающих объектов (𝑆𝑖, 𝑆𝑡) ∈ 𝑇×𝑇 . Столбцы матрицы 𝐿𝑇

будут иметь один из двух типов. Каждому столбцу первого типа сопоставим трой-

ку (𝐻, 𝜎, 𝑟) ∈ 𝒱*. Каждому столбцу второго типа — прецедент 𝑆𝑗 ∈ 𝑇 . Элемент

матрицы 𝐿𝑇 , расположенный на пересечении строки (𝑆𝑖, 𝑆𝑡) и столбца (𝐻, 𝜎, 𝑟),

равен 1 − 𝑟 ([𝐻(𝑆𝑖) = 𝜎], [𝐻(𝑆𝑡) = 𝜎]) . Элемент матрицы 𝐿𝑇 , расположенный на

пересечении строки (𝑆𝑖, 𝑆𝑡) и столбца 𝑆𝑗, равен [𝑖 = 𝑗]. Матрицу, построенную по

указанному правилу, принято называть матрицей сравнения. Наглядно способ её

построения изображен на рис. 1.2.

Пусть 𝐾 — класс или дополнение класса, 𝐾 ∈ {𝐾1, . . . , 𝐾𝑙, 𝐾1, . . . , 𝐾 𝑙}. Через

𝐿𝐾 обозначим подматрицу 𝐿𝑇

(︀
(𝑇 ∩ 𝐾) × (𝑇 ∖ 𝐾),𝒱* ∪ (𝑇 ∩ 𝐾)

)︀
(здесь и далее

через 𝐿(𝑅,𝐶) обозначается подматрица матрицы 𝐿, составленная из её строк 𝑅 и

столбцов 𝐶).

Утверждение 1.11. Пусть 𝑈 = ((𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)) — набор эл.кл., 𝑅 =

(𝑟1, . . . , 𝑟𝑑) — набор отношений из {[𝑥 6 𝑦], [𝑥 > 𝑦]} и 𝐺 — набор прецеден-

тов класса 𝐾.
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Предикат 𝐵(𝑈,𝑅,𝐺) является (тупиковым) корректным для 𝐾 тогда и только тогда,

когда набор столбцов 𝐽 = ((𝑇 ∩𝐾) ∖ 𝐺) ∪ {(𝐻1, 𝜎1, 𝑟1), . . . , (𝐻𝑑, 𝜎𝑑, 𝑟𝑑)} является

(неприводимым) покрытием матрицы 𝐿𝐾 .

Доказательство. Корректность предиката 𝐵(𝑈,𝑅,𝐺) для 𝐾 по определению озна-

чает, что выполняется 𝐵(𝑈,𝑅,𝐺)(𝑆𝑡) = 0,∀𝑆𝑡 ∈ 𝑇 ∖𝐾. Поскольку верны тождества

𝐵(𝑈,𝑅,𝐺)(𝑆) =
⋁︁
𝑆𝑖∈𝐺

𝑅(𝑈(𝑆𝑖), 𝑈(𝑆)) =
⋁︁

𝑆𝑗∈𝐾

[𝑆𝑗 /∈ (𝑇 ∩𝐾) ∖𝐺] 𝑅(𝑈(𝑆𝑗), 𝑈(𝑆)),

корректность предиката 𝐵(𝑈,𝑅,𝐺) эквивалентна условию⋁︁
𝑆𝑗∈𝐾

⋁︁
𝑆𝑡 /∈𝐾

[𝑆𝑗 /∈ (𝑇 ∩𝐾) ∖𝐺] 𝑅(𝑈(𝑆𝑗), 𝑈(𝑆𝑡)) = 0. (1.12)

Отрицая левую и правую часть равенства (1.12), получаем условие⋀︁
𝑆𝑗∈𝐾

⋀︁
𝑆𝑡 /∈𝐾

(︀
[𝑆𝑗 ∈ (𝑇 ∩𝐾) ∖𝐺] ∨

∨ ¬𝑟1([𝐻1(𝑆𝑗) = 𝜎1], [𝐻1(𝑆𝑡) = 𝜎1]) ∨

∨ . . . ∨ ¬𝑟𝑑([𝐻𝑑(𝑆𝑗) = 𝜎𝑑], [𝐻𝑑(𝑆𝑡) = 𝜎𝑑])
)︀
= 1,

которое равносильно тому, что набор столбцов 𝐽 покрывает матрицу 𝐿𝐾 .

Из определения тупикового корректного предиката легко выводится, что 𝐵(𝑈,𝑅,𝐺)

принадлежит 𝒫*
𝐾 тогда и только тогда, когда при удалении любого столбца из 𝐽 по-

лучается набор столбцов, не являющийся покрытием 𝐿𝐾 , то есть 𝐽 — неприводимое

покрытие 𝐿𝐾 . �

1.3.4. Поиск поляризуемых предикатов с наибольшей информативностью

В реальных задачах число покрытий матрицы 𝐿𝐾 очень велико. При этом да-

леко не каждое покрытие 𝐿𝐾 соответствует «хорошему» предикату. Далее вводятся

функционалы информативности голосующих предикатов, и поиск предикатов с наи-

большей информативностью сводится с специальным дискретным оптимизационным

задачам.

Пусть 𝐵 — предикат на множестве объектов 𝑀 и 𝐾 — класс. С каждым объ-

ектом 𝑆𝑖 обучающей выборки 𝑇 свяжем неотрицательный вес 𝑤𝑖, характеризующий

цену ошибки на объекте 𝑆𝑖. Обозначим 𝑤⃗ = (𝑤1, . . . , 𝑤𝑚). Введём зависящие от
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взвешенной выборки (𝑇, 𝑤⃗) функционалы

𝑃 (𝐵,𝐾) =
∑︁
𝑆𝑖∈𝐾

𝑤𝑖𝐵(𝑆𝑖), 𝑁(𝐵,𝐾) =
∑︁
𝑆𝑖∈𝐾

𝑤𝑖𝐵(𝑆𝑖).

Разность 𝑃 (𝐵,𝐾) − 𝑁(𝐵,𝐾) будем называть информативностью предиката

𝐵 для 𝐾 и обозначать через 𝐼(𝐵,𝐾). Заметим, что функционалы, аналогичные

𝐼(𝐵,𝐾), часто используются для оценки распознающей способности логических

закономерностей в распознавании (см. [67]).

В базовом режиме работы логического корректора POLAR информативность

предиката 𝐵(𝑈,𝑅,𝐺) будем оценивать функционалом 𝐼(𝐵(𝑈,𝑅,𝐺), 𝐾). В аддитивном

режиме более адекватную оценку информативности предиката 𝐵(𝑈,𝑅,𝐺) даёт функ-

ционал

𝐼(𝐵(𝑈,𝑅,𝐺), 𝐾) = 𝑃 (𝐵(𝑈,𝑅,𝐺), 𝐾)− 𝑁̂(𝐵(𝑈,𝑅,𝐺), 𝐾), где

𝑃 (𝐵(𝑈,𝑅,𝐺), 𝐾) =
∑︁
𝑆∈𝐺

𝑃 (𝐵(𝑈,𝑂,{𝑆}), 𝐾), 𝑁̂(𝐵(𝑈,𝑅,𝐺), 𝐾) =
∑︁
𝑆∈𝐺

𝑁(𝐵(𝑈,𝑂,{𝑆}), 𝐾).

Пусть 𝐺+ — набор прецедентов класса 𝐾 и 𝐺− — набор прецедентов из 𝐾.

Обозначим через 𝒫𝐾(𝐺
+, 𝐺−) семейство предикатов 𝐵(𝑈,𝑅,𝐺) таких, что 𝐺 ⊆ 𝐺+ и

набор эл.кл. 𝑈 отделяет прецеденты из 𝐺 от прецедентов из 𝐺− с помощью набора

отношений 𝑅.

Аналогично утверждению 1.11 доказывается

Утверждение 1.12. Пусть 𝐺+ — набор прецедентов класса 𝐾, 𝐺− — набор пре-

цедентов из 𝐾, 𝐺 ⊆ 𝐺+, 𝐺 = 𝐺+ ∖𝐺, 𝑈 = ((𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)) — набор эл.кл.,

𝑅 = (𝑟1, . . . , 𝑟𝑑) — набор отношений, 𝑉={(𝐻1, 𝜎1, 𝑟1), . . . , (𝐻𝑑, 𝜎𝑑, 𝑟𝑑)}. Предикат

𝐵(𝑈,𝑅,𝐺) принадлежит семейству 𝒫𝐾(𝐺
+, 𝐺−) тогда и только тогда, когда набор

столбцов 𝑉 ∪ 𝐺 матрицы 𝐿𝐾 является покрытием подматрицы 𝐿𝐾(𝐺
+ × 𝐺−,𝒱* ∪

𝐺+). �

Рассмотрим задачи построения предиката 𝐵(𝑈,𝑅,𝐺) из 𝒫𝐾(𝐺
+, 𝐺−), обладающего

максимальной информативностью относительно взвешенной выборки (𝑇, 𝑤⃗).

Задача 1.1.

𝐼(𝐵,𝐾) −→
𝐵∈𝒫𝐾(𝐺+,𝐺−)

max .

Задача 1.2.

𝐼(𝐵,𝐾) −→
𝐵∈𝒫𝐾(𝐺+,𝐺−)

max .
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Сформулируем две дискретные оптимизационные задачи, являющиеся специаль-

ными разновидностями задачи о поиске покрытий булевой матрицы. Обозначим

через 𝑟𝐿(𝐽) набор строк матрицы 𝐿, покрытых набором 𝐽 , и через 𝒞(𝐿) набор

покрытий булевой матрицы 𝐿.

Задача 1.3 (Поиск набора столбцов, покрывающего оптимальную комбинацию

матриц). Пусть даны булевы матрицы 𝐿0, 𝐿1, . . . , 𝐿𝑑 и ненулевые веса 𝛼1, . . . , 𝛼𝑑.

Каждая матрица имеет 𝑛 столбцов. Требуется найти (неприводимое) покрытие 𝐽

матрицы 𝐿0 такой, что сумма весов матриц, не покрытых 𝐽 , максимальна, то есть∑︁
𝐽 /∈𝒞(𝐿𝑖)

𝛼𝑖 −→
𝐽∈𝒞(𝐿0)

max .

Задача 1.4 (Поиск набора столбцов, покрывающего оптимальную комбинацию

строк). Пусть даны две булевы матрица 𝐿0 и 𝐿′ с 𝑛 столбцами. Для каждой

строки 𝑖 матрицы 𝐿′ задан ненулевой вес 𝛽𝑖. Требуется найти (неприводимое) по-

крытие 𝐽 матрицы 𝐿0 такое, что сумма весов строк матрицы 𝐿′, не покрытых 𝐽 ,

максимальна, то есть ∑︁
𝑖/∈𝑟𝐿′(𝐽)

𝛽𝑖 −→
𝐽∈𝒞(𝐿0)

min .

Покажем, что задача 1.1 сводится к задаче 1.3, а задача 1.2 — к задаче 1.4.

Пусть 𝐽0 = 𝒱*∪𝐺+, 𝐿0 = 𝐿𝑇 (𝐺
+×𝐺−, 𝐽0), 𝐿𝑖 = 𝐿𝑇 (𝐺

+×{𝑆𝑖}, 𝐽0), 𝑆𝑖 ∈ 𝑇∖𝐺−,

и 𝐿′ = 𝐿𝑇 (𝐺
+ × (𝑇 ∖𝐺−), 𝐽0). Справедливо

Утверждение 1.13. Пусть 𝑈 = ((𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)) — набор эл.кл., 𝑅 =

(𝑟1, . . . , 𝑟𝑑) — набор отношений, 𝐺+ — набор прецедентов класса 𝐾, 𝐺− — на-

бор прецедентов из 𝐾, предикат 𝐵(𝑈,𝑅,𝐺) ∈ 𝒫𝐾(𝐺
+, 𝐺−) и 𝐽 = (𝐺+ ∖ 𝐺) ∪

{(𝐻1, 𝜎1, 𝑟1), . . . , (𝐻𝑑, 𝜎𝑑, 𝑟𝑑)}. Тогда

𝑃 (𝐵(𝑈,𝑅,𝐺), 𝐾) =
∑︁
𝑆𝑖∈𝐾

𝑤𝑖[𝐽 /∈ 𝒞(𝐿𝑖)], 𝑁(𝐵(𝑈,𝑅,𝐺), 𝐾) =
∑︁
𝑆𝑖 /∈𝐾

𝑤𝑖[𝐽 /∈ 𝒞(𝐿𝑖)].
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Доказательство. Первого равенства следует из простой цепочки тождеств:

𝑃 (𝐵(𝑈,𝑅,𝐺), 𝐾) =
∑︁
𝑆𝑖∈𝐾

𝑤𝑖𝐵(𝑈,𝑅,𝐺)(𝑆𝑖) =
∑︁
𝑆𝑖∈𝐾

𝑤𝑖

⋁︁
𝑆𝑗∈𝐺

𝑅(𝑈(𝑆𝑗), 𝑈(𝑆𝑖)) =

=
∑︁
𝑆𝑖∈𝐾

𝑤𝑖

⋁︁
𝑆𝑗∈𝐺+

[𝑆𝑗 /∈ 𝐺+ ∖𝐺] 𝑅(𝑈(𝑆𝑗), 𝑈(𝑆𝑖)) =

=
∑︁
𝑆𝑖∈𝐾

𝑤𝑖

(︁
1−

⋀︁
𝑆𝑗∈𝐺+

[𝑆𝑗 ∈ 𝐺+ ∖𝐺] ∨ ¬𝑅(𝑈(𝑆𝑗), 𝑈(𝑆𝑖))
)︁
=

=
∑︁
𝑆𝑖∈𝐾

𝑤𝑖[𝐽 /∈ 𝒞(𝐿𝑖)].

Равенство для 𝑁(𝐵(𝑈,𝑅,𝐺), 𝐾) доказывается аналогично. �

Аналогично утверждению 1.13 доказывается

Утверждение 1.14. Пусть 𝑈 = ((𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)) — набор эл.кл., 𝑅 =

(𝑟1, . . . , 𝑟𝑑) — набор отношений, 𝐺+ — набор прецедентов класса 𝐾, 𝐺− — на-

бор прецедентов из 𝐾, предикат 𝐵(𝑈,𝑅,𝐺) ∈ 𝒫𝐾(𝐺
+, 𝐺−) и 𝐽 = (𝐺+ ∖ 𝐺) ∪

{(𝐻1, 𝜎1, 𝑟1), . . . , (𝐻𝑑, 𝜎𝑑, 𝑟𝑑)}. Тогда

𝑃 (𝐵(𝑈,𝑅,𝐺), 𝐾) =
∑︁

(𝑆𝑗 ,𝑆𝑖)/∈𝑟𝐿′(𝐽)

𝑤𝑖[𝑆𝑖 ∈ 𝐾],

𝑁̂(𝐵(𝑈,𝑅,𝐺), 𝐾) =
∑︁

(𝑆𝑗 ,𝑆𝑖)/∈𝑟𝐿′(𝐽)

𝑤𝑖[𝑆𝑖 /∈ 𝐾].

�

Каждой матрице 𝐿𝑖, 𝑆𝑖 ∈ 𝑇 ∖𝐺−, и каждой строке (𝑆𝑗, 𝑆𝑖) матрицы 𝐿′ припишем

вес, равный ⎧⎨⎩𝑤𝑖, 𝑆𝑖 ∈ 𝐾,

−𝑤𝑖, 𝑆𝑖 /∈ 𝐾.

Из утверждений 1.12 и 1.13 следует, что покрытие 𝐿0, покрывающее оптималь-

ную комбинацию взвешенных матриц 𝐿𝑖, 𝑆𝑖 ∈ 𝑇 ∖ 𝐺−, даёт решение задачи 1.1.

Аналогично, из утверждений 1.12 и 1.14 следует, что покрытие 𝐿0, покрывающее

оптимальную комбинацию взвешенных строк матрицы 𝐿′ даёт решение задачи 1.2.

Аналоги задачи 1.3 автору не известны. Задача 1.4 обобщает ряд известных

задач, однако её исследования в приведённой постановке не проводились.

Задача 1.5 (Red-Blue Set Cover Problem (RBSC)). Простой вариант задачи RBSC

формулируется следующим образом [45,68]. Входом являются множество «красных»
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элементов 𝑅, множество «синих» элементов 𝐵 и набор 𝒟 подмножеств множества

𝑅∪𝐵. Говорят, что элемент 𝑒 ∈ 𝑅∪𝐵 покрыт набором 𝒟′ ⊆ 𝒟, если 𝑒 принадлежит

хотя бы одному множеству из 𝒟′. Обозначим через 𝒞(𝒟′) множество элементов,

покрытых набором 𝒟′. Требуется найти подмножество 𝒟′ множества 𝒟, которое

покрывает все синие элементы и как можно меньше красных элементов, то есть

|𝑅 ∩ 𝒞(𝒟)| →
𝒟′⊆𝒟:𝐵⊆𝒞(𝒟′)

min .

В [45] также рассматривается «взвешенный» вариант RBSC. Во взвешенном вари-

анте RBSC каждому красному элементу присваивается положительный вес и требу-

ется минимизировать сумму весов покрытых красных элементов.

В случае, когда строки матрицы 𝐿 имеют отрицательный веса, задача 1.4 экви-

валентна RBSC, в которой синими элементами являются строки матрицы 𝐿0, крас-

ными — строки 𝐿′, и вес каждого красного элемента равен весу соответствующей

строки 𝐿′, взятому с противоположным знаком.

Задача 1.6 (Positive–Negative Partial Set Cover Problem (±PSC)). Входом, анало-

гично RBSC, являются множество «красных» (отрицательных) элементов 𝑅, мно-

жество «синих» (положительных) элементов 𝐵 и набор 𝒟 подмножеств множества

𝑅 ∪ 𝐵. Требуется найти подмножество 𝒟′ множества 𝒟, которое покрывает как

можно больше синих элементов и как можно меньше красных, то есть

|𝑅 ∩ 𝒞(𝒟)| − |𝐵 ∩ 𝒞(𝒟)| →
𝒟′⊆𝒟:𝐵⊆𝒞(𝒟′)

min .

В случае, когда каждая строка матрицы 𝐿′ имеет вес ±1 и число строк 𝐿0

равно 0, задача 1.4 эквивалентна ±PSC, в которой красными элементами являются

строки матрицы 𝐿′, имеющие вес −1, синими — строки 𝐿′ с весом 1. Задача ±PSC

изучается в [46].

В настоящей работе для решения задач 1.3 и 1.4 использовался метод ветвей

и границ на базе алгоритмов дуализации из главы 3. Сложность такого вариан-

та решения не исследовалась. Однако очевидно, что она существенно зависит от

размеров входных матриц. В следующей главе предлагается методика, позволяющая

при обучении логических корректоров использовать только часть строк и столбцов

матрицы сравнения.
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ГЛАВА 2

Методы повышения эффективности логических
корректоров

Во данной главе разрабатывается методика повышения скорости обучения и ка-

чества распознавания логических корректоров. Семейства голосующих предикатов

строятся итеративно по принципу бустинга. Поиск голосующих предикатов осу-

ществляется в рамках локальных базисов классов — предварительно формируемых

корректных наборов, состоящих из информативных эл.кл. Эффективность предло-

женной методики тестируется на реальных данных.

2.1. Итеративное формирование семейств голосующих предикатов

по принципу бустинга

Предлагается семейства голосующих предикатов логического корректора POLAR

формировать итеративно по принципу бустинга [41, 42]. Бустинг является универ-

сальным методом построения корректных алгоритмов распознавания в виде линей-

ных комбинаций базовых, необязательно корректных, распознающих алгоритмов.

Метод бустинга в последние два десятилетия довольно быстро и плодотворно раз-

вивается. Модели бустинг-алгоритмов различаются функциями потерь, методами

настройки весов и оптимизации отступов обучающих объектов. Особенности раз-

личных моделей достаточно полно освещены в обзоре [69].

В данной работе рассматривается исторически первая, в некотором смысле про-

стейшая модель бустинг-алгоритмов — AdaBoost, позволяющая решить две про-

блемы ранее построенных логических корректоров. Во-первых, повышается каче-

ство распознавания за счёт настройки весов голосующих предикатов и увеличения
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диверсификации семейств предикатов. Во-вторых, снижаются временные затраты

обучения за счёт того, что поиск предикатов осуществляется не по всей матрице

сравнения, а лишь по подматрице, составленной из части её строк.

Заметим, что первые успешные попытки применения бустинга при построении

логических корректоров были предприняты в работах [16, 17]. Фактически, в этих

работах использовался симбиоз бустинга и предложенного в [70] генетического ал-

горитма поиска корректного набора эл.кл. с распознающей способностью, близкой к

максимальной. Эксперименты на прикладных задачах показали, что логические кор-

ректоры, использующие и бустинг, и генетический алгоритм, работают лучше ранее

построенных логических корректоров, основанных только на генетическом алгорит-

ме.

2.1.1. Понятия и обозначения, необходимые для описания бустинг-алгоритма

Рассмотрим логический корректор POLAR, который работает в базовом режиме.

Для аддитивного режима применимы все приводимые ниже рассуждения с незначи-

тельными изменениями.

Пусть выполнено 𝑡, 𝑡 > 0, итераций, 𝑆𝑖 ∈ 𝑇 и 𝐾 — класс. Введём обозначения:

𝐴𝑡 — логический корректор, голосующий по предикатам, построенным за 𝑡 итераций

(голосующие семейства логического корректора 𝐴0 пусты), Γ𝑡(𝑆𝑖, 𝐾) — оценка за

отнесение объекта 𝑆𝑖 к классу 𝐾, вычисляемая по семействам голосующих преди-

катов логического корректора 𝐴𝑡, 𝑦𝑖 — номер класса, которому принадлежит 𝑆𝑖, и

𝑀𝑡(𝑆𝑖, 𝐾) = Γ𝑡(𝑆𝑖, 𝐾𝑦𝑖)− Γ𝑡(𝑆𝑖, 𝐾).

Для числа ошибок и отказов алгоритма 𝐴𝑡 на обучении справедливо неравенство

𝑄(𝐴𝑡) =
𝑚∑︁
𝑖=1

[𝐴𝑡(𝑆𝑖) ̸= 𝑦𝑖] 6
𝑙∑︁

𝑦=1

∑︁
𝑆𝑖 /∈𝐾𝑦

[𝑀𝑡(𝑆𝑖, 𝐾𝑦) 6 0].

Заметим, что в случае 𝑙 = 2 неравенство обращается в равенство, и в случае 𝑡 = 0

правая часть неравенства равна 𝑚(𝑙 − 1).

Построим логический корректор 𝐴𝑡+1, не меняя предикаты и их веса, найденные

на итерациях 1, . . . , 𝑡. На итерации 𝑡 + 1 по некоторому правилу выберем класс

𝐾, построим поляризуемый предикат 𝐵 и настроим его вес 𝛼𝐵 так, чтобы при

добавлении 𝐵 в 𝑍𝐾 наилучшим образом компенсировались ошибки ранее построен-
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ных предикатов логического корректора 𝐴𝑡. При этом желательно минимизировать

суммарные потери 𝑄(𝐴𝑡+1).

В модели AdaBoost предлагается использовать гладкую монотонную функцию

потерь ℒ(𝑥) = 𝑒−𝑥, ограничивающую сверху функцию 𝑓(𝑥) = [𝑥 6 0], и решать

оптимизационную задачу

𝑄̂(𝐴𝑡+1) =
𝑙∑︁

𝑦=1

∑︁
𝑆𝑖 /∈𝐾𝑦

ℒ(𝑀𝑡+1(𝑆𝑖, 𝐾𝑦)) → min .

Поскольку, очевидно, выполняется неравенство 𝑄(𝐴𝑡+1) 6 𝑄̂(𝐴𝑡+1), справедлива

оценка min𝑄(𝐴𝑡+1) 6 min 𝑄̂(𝐴𝑡+1).

Заметим, что для пары (𝑆𝑖, 𝐾𝑦), 𝑦 ∈ {1, . . . , 𝑙}, 𝑆𝑖 /∈ 𝐾𝑦, такой, что 𝐾𝑦 ̸=𝐾 и

𝐾𝑦𝑖 ̸=𝐾, справедливо равенство 𝑀𝑡(𝑆𝑖, 𝐾𝑦) = 𝑀𝑡+1(𝑆𝑖, 𝐾𝑦). Нетрудно видеть, что

для остальных пар выполняется

𝑀𝑡+1(𝑆𝑖, 𝐾𝑦) =

⎧⎨⎩𝑀𝑡(𝑆𝑖, 𝐾𝑦) + 𝛼𝐵𝐵(𝑆𝑖), 𝑆𝑖 ∈ 𝐾,

𝑀𝑡(𝑆𝑖, 𝐾𝑦)− 𝛼𝐵𝐵(𝑆𝑖), 𝑆𝑖 /∈ 𝐾.

Сопоставим каждой паре (𝑆𝑖, 𝐾) вес

𝑤𝑡(𝑆𝑖, 𝐾) =
1

𝑄̂(𝐴𝑡)

⎧⎨⎩
∑︀

𝐾𝑦 ̸=𝐾 exp(−𝑀𝑡(𝑆𝑖, 𝐾𝑦)), 𝑆𝑖 ∈ 𝐾,

exp(−𝑀𝑡(𝑆𝑖, 𝐾)), 𝑆𝑖 /∈ 𝐾

Заметим, что, если прецедент 𝑆𝑖 принадлежит классу 𝐾, то вес 𝑤𝑡(𝑆𝑖, 𝐾) характе-

ризует «трудность отделения» объекта 𝑆𝑖 от прецедентов из 𝐾 логическим коррек-

тором 𝐴𝑡, иначе вес 𝑤𝑡(𝑆𝑖, 𝐾) указывает насколько «трудно» прецедент 𝑆𝑖 отличить

от прецедентов класса 𝐾.

Обозначим 𝑃𝑡(𝐵,𝐾) =
∑︀

𝑆𝑖∈𝐾 𝑤𝑡(𝑆𝑖, 𝐾)𝐵(𝑆𝑖), 𝑁𝑡(𝐵,𝐾) =∑︀
𝑆𝑖 /∈𝐾 𝑤𝑡(𝑆𝑖, 𝐾)𝐵(𝑆𝑖). В результате несложных преобразований получим

𝑄̂(𝐴𝑡+1) = 𝑄̂(𝐴𝑡)
(︀
1 + (𝑒−𝛼𝐵 − 1)𝑃𝑡(𝐵,𝐾) + (𝑒𝛼𝐵 − 1)𝑁𝑡(𝐵,𝐾)

)︀
. (2.1)

Зафиксируем 𝐵 и будем считать, что выполняется условие 𝑃𝑡(𝐵,𝐾) >

𝑁𝑡(𝐵,𝐾) > 0. Легко проверить, что минимальное значение 𝑄̂(𝐴𝑡+1) по 𝛼𝐵 до-

стигается в точке

𝛼𝐵 =
1

2
ln

𝑃𝑡(𝐵,𝐾)

𝑁𝑡(𝐵,𝐾)
. (2.2)
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После подстановки (2.2) в (2.1) становится видно, что минимум

𝑄̂(𝐴𝑡+1) достигается на предикате, максимизирующем значение функционала

𝐽𝑡(𝐵,𝐾)=
√︀
𝑃𝑡(𝐵,𝐾) −

√︀
𝑁𝑡(𝐵,𝐾). Заметим, что

√
2𝐽𝑡(𝐵,𝐾) > 𝐼𝑡(𝐵,𝐾), где

𝐼𝑡(𝐵,𝐾) = 𝑃𝑡(𝐵,𝐾)−𝑁𝑡(𝐵,𝐾), то есть max 𝐽𝑡(𝐵,𝐾)> 1√
2
max 𝐼𝑡(𝐵,𝐾).

Вес, задаваемый формулой (2.2), не определен для корректного предиката 𝐵, так

как 𝑁𝑡(𝐵,𝐾) = 0. Немного подправим формулу (2.2). Обозначим

𝑁 *
𝑡 (𝐵,𝐾) =

⎧⎨⎩𝑁𝑡(𝐵,𝐾), 𝑁𝑡(𝐵,𝐾) > 0,

1
2𝑚 , иначе,

𝐽*
𝑡 (𝐵,𝐾) =

√︀
𝑃𝑡(𝐵,𝐾)−

√︀
𝑁 *

𝑡 (𝐵,𝐾).

Если 𝐽*
𝑡 (𝐵,𝐾) > 0, то определен и положителен вес, вычисляемый по формуле

𝛼𝐵 =
1

2
ln

𝑃𝑡(𝐵,𝐾)

𝑁 *
𝑡 (𝐵,𝐾)

. (2.3)

Рассмотрим семейство поляризуемых предикатов 𝒫𝐾(𝐺
+, 𝐺−). В этом семействе

всегда существует предикат, для которого значение функционала 𝐽*
𝑡 не меньше, чем

для предиката 𝐵𝑏𝑎𝑑(𝑆) = [𝑆 ∈ 𝐺+∪(𝑇 ∖𝐾 ∖𝐺−)]. Обозначим через 𝑊𝑡(𝐺
+, 𝐺−, 𝐾)

значение функционала 𝐽*
𝑡 (𝐵𝑏𝑎𝑑, 𝐾).

2.1.2. Бустинг-алгоритм обучения логического корректора POLAR

Далее описывается бустинг-алгоритм формирования голосующих семейств преди-

катов логического корректора POLAR, работающего в базовом режиме.

Параметры: 𝑡𝑚𝑎𝑥 — число итераций, 𝛿 > 0 — параметр выбора пространства

поиска предикатов.

При инициализации взять 𝑍𝐾1
= . . . = 𝑍𝐾𝑙

= 𝑍𝐾1
= . . . = 𝑍𝐾𝑙

= ∅.

Пусть произведено 𝑡, 𝑡 > 0, итераций. На итерации 𝑡+1 выполняется следующее.

1. Для каждого класса 𝐾 и каждого прецедента 𝑆𝑖 вычислить вес 𝑤𝑡(𝑆𝑖, 𝐾).

2. Выбрать класс 𝐾 и семейство поляризуемых предикатов 𝒫𝐾(𝐺
+, 𝐺−) такие,

что 𝑊𝑡(𝐺
+, 𝐺−, 𝐾) > 𝛿.

3. Найти в 𝒫𝐾(𝐺
+, 𝐺−) предикат 𝐵 с наибольшей информативностью 𝐼𝑡(𝐵,𝐾).

4. По формуле (2.3) вычислить вес 𝛼𝐵.



44

Алгоритм 1 Выбор области поиска поляризуемых предикатов

1: ПРОЦЕДУРА SpecifySearchSpace(𝑡, 𝛿)

Параметры: 𝑡 — число выполненных итераций; 𝛿 > 0 — параметр выбора семейства поляризуемых
предикатов;

Выход: либо семейство поляризуемых предикатов 𝒫𝐾(𝐺
+, 𝐺−), удовлетворяющее условию

𝑊𝑡(𝐺
+, 𝐺−, 𝐾) > 𝛿, либо семейство поляризуемых предикатов 𝒫𝐾 ;

2: инициализировать K := {𝐾 ∈ {𝐾1, . . . , 𝐾𝑙} : 𝑊𝑡(𝑇 ∩𝐾,𝑇 ∖𝐾,𝐾) > 𝛿};
3: если K = ∅ то
4: вернуть 𝒫𝐾 , где класс 𝐾 имеет наибольшее значение 𝑊𝑡(𝑇 ∩𝐾,𝑇 ∖𝐾,𝐾);
5: выбрать случайный класс 𝐾 из распределения вероятностей

𝑝𝐾 = 1
Π
𝑊𝑡(𝑇 ∩𝐾,𝑇 ∖𝐾,𝐾), 𝐾 ∈ K, где Π =

∑︀
𝐾∈K 𝑊𝑡(𝑇 ∩𝐾,𝑇 ∖𝐾,𝐾);

6: упорядочить прецеденты 𝑇 ∩𝐾 и 𝑇 ∖𝐾 по убыванию весов 𝑤𝑡(𝑆𝑖, 𝐾);
7: найти числа 𝑟1 и 𝑟2 такие, что

1) набор 𝐺+, состоящий из первых 𝑟1 объектов упорядоченного 𝑇 ∩𝐾 и набор 𝐺−, состоящий
из первых 𝑟2 объектов упорядоченного 𝑇 ∖𝐾, удовлетворяют условию 𝑊𝑡(𝐺

+, 𝐺−, 𝐾) > 𝛿 и
2) произведение 𝑟1𝑟2 минимально;

8: в качестве 𝐺+ взять первые 𝑟1 объектов упорядоченного 𝑇 ∩𝐾;
9: в качестве 𝐺− взять первые 𝑟2 объектов упорядоченного 𝑇 ∖𝐾;

10: вернуть 𝒫𝐾(𝐺
+, 𝐺−);

5. Добавить предикат 𝐵 в семейство 𝑍𝐾 .

6. Если 𝑡+ 1 ̸= 𝑡𝑚𝑎𝑥, то перейти к следующей итерации. �

Заметим, что бустинг-алгоритм обучения логического корректора POLAR фор-

мирует семейства из предикатов семейства 𝒫𝐾(𝐺
+, 𝐺−) — подмножества семей-

ства 𝒫𝐾 . Это позволяет существенно сократить временные затраты поиска преди-

ката на шаге 3. Напомним, что поиску поляризуемого предиката с максимальной

информативностью 𝐼𝑡(𝐵,𝐾) посвящён подраздел 1.3.4.

При выборке семейства 𝒫𝐾(𝐺
+, 𝐺−) на шаге 2 целесообразно минимизировать

число строк матрицы, по которой строятся предикаты из этого семейства. Число

строк указанной матрицы равно |𝐺+||𝐺−|.
На шаге 2 может быть использована процедура SpecifySearchSpace, пред-

ставленная на схеме алгоритма 1. В этой процедуре «жадным» образом определяют-

ся параметры семейства 𝒫𝐾(𝐺
+, 𝐺−), для которого 𝑊𝑡(𝐺

+, 𝐺−, 𝐾) > 𝛿 и значение

|𝐺+||𝐺−| близко к наименьшему.
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2.1.3. Сходимость бустинг-алгоритма обучения логического корректора POLAR

Корректность описанного в подразделе 2.1.2 логического корректора POLAR

уже не обеспечивается корректностью каждого предиката, участвующего в голосо-

вании. Далее обосновывается, что всегда можно выбрать параметры обучения 𝑡𝑚𝑎𝑥

и 𝛿 так, чтобы в результате получался корректный распознающий алгоритм.

Лемма 2.1. Пусть после 𝑡 > 0 итераций построен логический корректор 𝐴𝑡. Если

при построении 𝐴𝑡 на каждой итерации 𝑖, 1 6 𝑖 6 𝑡, в некоторое семейство 𝑍𝐾

добавлялся предикат 𝐵 с весом 𝛼𝐵, найденным по формуле (2.3), и при этом всякий

раз выполнялось неравенство

𝐽*
𝑖−1(𝐵,𝐾) > 𝛿, где 𝛿 =

√︂
ln(𝑚(𝑙 − 1))

𝑡
,

то распознающий алгоритм 𝐴𝑡 корректен.

Доказательство. Подставив (2.3) в (2.1), можно убедиться, что верно неравен-

ство

𝑄̂(𝐴𝑖) 6 𝑄̂(𝐴𝑖−1)
(︀
1− (𝐽*

𝑖−1(𝐵,𝐾))2
)︀
. (2.4)

Заметим, что 𝑄̂(𝐴0) = 𝑚(𝑙− 1), поскольку 𝑀0(𝑆𝑖, 𝐾𝑦) = 0. Из (2.4) и условия

утверждения получаем цепочку неравенств

𝑄(𝐴𝑡) 6 𝑄̂(𝐴𝑡) < 𝑄̂(𝐴0)(1− 𝛿2)𝑡 6 𝑚(𝑙 − 1)𝑒−𝛿2𝑡 = 1.

Значение 𝑄(𝐴𝑡) должно быть целым числом, следовательно 𝑄(𝐴𝑡) = 0. �

Лемма 2.2. Если процедура SpecifySearchSpace запускается с параметром

𝛿 < 𝛿*, где 𝛿* = 1√
𝑙
− 1√

2𝑚
, то результатом её выполнения является семейство

предикатов 𝒫𝐾(𝐺
+, 𝐺−), для которого 𝑊𝑡(𝐺

+, 𝐺−, 𝐾) > 𝛿.

Доказательство. Заметим, что 𝑊𝑡(𝑇∩𝐾,𝑇∖𝐾,𝐾)=
√︀
𝑃𝑡([𝑆 ∈ 𝑇 ∩𝐾], 𝐾)− 1√

2𝑚
.

Нетрудно убедиться, что 𝑃𝑡([𝑆 ∈ 𝑇 ∩ 𝐾1], 𝐾1) + . . . + 𝑃𝑡([𝑆 ∈ 𝑇 ∩ 𝐾𝑙], 𝐾𝑙) = 1.

Поэтому всегда найдётся класс 𝐾, для которого 𝑃𝑡([𝑆 ∈ 𝑇 ∩ 𝐾], 𝐾) > 1/𝑙,

а следовательно 𝑊𝑡(𝑇 ∩ 𝐾,𝑇 ∖ 𝐾,𝐾) > 𝛿*. То есть, если выполнены условия

доказываемого утверждения, то процедура SpecifySearchSpace выбирает

класс 𝐾 такой, что 𝑊𝑡(𝑇 ∩ 𝐾,𝑇∖𝐾,𝐾)>𝛿. Наборы 𝐺+ и 𝐺− формируются так,

чтобы выполнялось условие 𝑊𝑡(𝐺
+, 𝐺−, 𝐾) > 𝛿. Утверждение доказано. �
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Теорема 2.3. Пусть бустинг-алгоритм обучения логического корректора POLAR

запускается с параметрами

𝑡𝑚𝑎𝑥 >
ln(𝑚(𝑙 − 1))

𝛿2
и 𝛿 <

1√
𝑙
− 1√

2𝑚
.

Тогда в результате его работы строит корректный распознающий алгоритм.

Доказательство. Из леммы 2.2 следует, что для предиката 𝐵, строящегося на

шаге 3 бустинг-алгоритма обучения логического корректора POLAR, верно нера-

венство 𝐽𝑡−1(𝐵,𝐾) >
√︀

ln(𝑚(𝑙 − 1))/𝑡𝑚𝑎𝑥, 𝑡 ∈ {1, . . . , 𝑡𝑚𝑎𝑥}. Таким образом,

справедливы предпосылки леммы 2.1, из которого заключаем, что распознающий

алгоритм 𝐴𝑡𝑚𝑎𝑥
корректен. Теорема доказана. �

2.2. Локальные базисы классов

В данном разделе предлагается поиск голосующих предикатов осуществлять в

рамках локальных базисов классов — предварительно формируемых корректных на-

боров, состоящих из информативных эл.кл. Локальный базис определяет состав

столбцов матрицы сравнения, строящейся для поиска поляризуемых предикатов.

Разрабатывается алгоритм формирования «хороших» локальных базисов из эл.кл.

произвольного ранга. Строится ряд модификаций логического корректора POLAR,

различающиеся способами формирования локального базиса.

Впервые понятие локального базиса класса применительно к задаче построения

логических корректоров было использовано в работах [16, 17]. Локальные базисы

позволили снять ограничение на ранг эл.кл. без существенного увеличения времен-

ных затрат. В более ранних работах логические корректоры строились с исполь-

зованием только одноранговых эл.кл. [15, 18]. Фактически набор эл.кл. ранга 1

в указанных работах является локальным базисом, хотя сам термин и не вводил-

ся. Позднее плодотворность идеи применения локального базиса класса была под-

тверждена в [26], где построен логический корректор МОНС, строящий локальное

базисы простым стохастическим алгоритмом.

Напомним, что через 𝒱* обозначается множество троек (𝐻, 𝜎, 𝑟), где (𝐻, 𝜎) —

эл.кл. и 𝑟 — одно из отношений [𝑥 6 𝑦] или [𝑥 > 𝑦]. Мощность 𝒱* даже в задаче

с небольшим числом признаков может оказаться существенной. Матрица 𝐿𝑇 имеет

|𝒱*| + |𝑇 ∩ 𝐾| столбцов. Большое число столбцов матрицы сравнения затрудняет
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поиск предикатов. Предлагается использовать не всю матрицу сравнения, а лишь

подматрицу, состоящую из части её столбцов.

Набор 𝒱𝐾 = {(𝐻1, 𝜎1, 𝑟1), . . . , (𝐻𝑑, 𝜎𝑑, 𝑟𝑑)} троек из 𝒱* будем называть локаль-

ным базисом класса 𝐾, если набор эл.кл. ((𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)) отделяет преце-

денты из 𝑇 ∩𝐾 от прецедентов из 𝑇 ∖𝐾 с помощью набора отношений (𝑟1, . . . , 𝑟𝑑).

Ясно, что 𝒱𝐾 является локальным базисом класса 𝐾 тогда и только тогда, когда

подматрица, составленная из столбцов 𝒱𝐾 матрицы 𝐿𝐾 , не имеет нулевых строк,

то есть для этой подматрицы существует покрытие. Набор 𝒱 ⊆ 𝒱*, являющийся

локальным базисом для каждого из классов 𝐾1, . . . , 𝐾𝑙 будем называть локальным

базисом задачи. Например, набор 𝒱1, состоящий из троек (𝐻, 𝜎, 𝑟) ∈ 𝒱* таких, что

эл.кл. (𝐻, 𝜎) имеет ранг 1, является локальным базисом задачи.

Опишем универсальный метод построения локального базиса класса, состоящего

из эл.кл. произвольного ранга.

Рассмотрим задачу распознавания с двумя классами 𝐾 и 𝐾. Построим семейство

эл.кл. 𝐶𝐾 и каждому эл.кл. (𝐻, 𝜎) ∈ 𝐶𝐾 присвоим вес 𝛼(𝐻,𝜎) ̸= 0. Рассмотрим

распознающий алгоритм

𝐴𝐾
𝑇 (𝑆) = sign

(︀ ∑︁
(𝐻,𝜎)∈𝐶𝐾

𝛼(𝐻,𝜎)[𝐻(𝑆) = 𝜎]
)︀
, (2.5)

где sign(𝑥) — функция «знак», возвращающая 1, при 𝑥 < 0, −1, при 𝑥 < 0, и 0,

при 𝑥 = 0. Будем считать алгоритм 𝐴𝐾
𝑇 корректным в случае, когда 𝐴𝐾

𝑇 (𝑆𝑖) = 1,

∀𝑆𝑖 ∈ 𝑇 ∩𝐾, и 𝐴𝐾
𝑇 (𝑆𝑖) = −1, ∀𝑆𝑖 ∈ 𝑇 ∖𝐾. Построим по взвешенному семейству

𝐶𝐾 набор 𝒱𝐾 такой, что каждому эл.кл. (𝐻, 𝜎) из 𝐶𝐾 однозначно соответствует

тройка (𝐻, 𝜎, 𝑜) ∈ 𝒱𝐾 , в которой 𝑜 = [𝑥 6 𝑦], при 𝛼(𝐻,𝜎) > 0, и 𝑜 = [𝑥 > 𝑦], при

𝛼(𝐻,𝜎) < 0. Очевидно, что справедливо

Утверждение 2.4. Если распознающий алгоритм 𝐴𝐾
𝑇 корректен, то набор 𝒱𝐾 , по-

строенный по взвешенному семейству эл.кл. 𝐶𝐾 является локальным базисом класса

𝐾. Причём упорядоченный набор, составленный из эл.кл. семейства 𝐶𝐾 , является

корректным для 𝐾 и имеет поляризуемую корректирующую функцию.

Существует ряд методов построения корректных распознающих алгоритмов ви-

да (2.5), например, бустинг или построение деревьев решений. В [16] лучшим ал-

горитмом построения локального базиса оказался бустинг-алгоритм BOOSTLO. В
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настоящей работе используется два метода: голосование по представительным набо-

рам и бустинг-алгоритм, аналогичный BOOSTLO.

Практика показывает, что для прикладной задачи с большой значностью призна-

ков редко удаётся построить небольшой локальный базис. Заметим, что при исполь-

зовании бустинга для формирования семейств голосующих предикатов на каждой

итерации ищется набор эл.кл. 𝑈 , отделяющий некоторое подмножество прецедентов

𝐺 от подмножества прецедентов 𝐺−. При этом совсем не обязательно осуществлять

поиск набора 𝑈 в локальном базисе задачи. Целесообразно на каждой итерации фор-

мировать локальный базис, ориентированный на отделение 𝐺 от 𝐺− и учитывающий

текущие веса остальных прецедентов.

2.3. Реализация и экспериментальное исследование логических

корректоров POLAR

Были реализованы и протестированы 4 модификации логического корректора

POLAR, отличающиеся стратегией формирования локального базиса. Каждая из

модификаций для формирования семейств голосующих предикатов использует бу-

стинг.

1. POLAR-1 — логический корректор, в котором предикаты строятся в рамках

локального базиса, состоящего из троек (𝐻, 𝜎, 𝑟) таких, что ранг эл.кл. (𝐻, 𝜎)

равен 1 и отношение 𝑟 ∈ {[𝑥 6 𝑦], [𝑥 > 𝑦]}.

2. POLAR-2 — логический корректор, в котором предикаты строятся в рамках

локального базиса задачи, построенного бустинг-алгоритмом.

3. POLAR-3 — логический корректор, в котором предикаты строятся в рамках

локального базиса, формируемого на каждой итерации голосованием по пред-

ставительным наборам.

4. POLAR-4 — логический корректор, в котором предикаты строятся в рамках

локального базиса, формируемого на каждой итерации бустинг-алгоритмом.

Новые логические корректоры были протестированы на прикладных задачах из

репозитория UCI. В таблице 2.1 даны характеристики задач. В столбцах 𝑙, 𝑚, 𝑛
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Таблица 2.1: Задачи распознавания

№ Название 𝑙 𝑚 𝑛 𝑧

1. audiology 24 226 69 161

2. balance scale 3 625 4 20

3. breast cancer 2 699 9 90

4. car 4 1728 6 21

5. dermatology 4 366 34 192

6. house votes 2 435 16 48

7. kr vs kp 2 3196 36 73

8. monks-2 2 601 6 17

9. nursery 5 12960 8 27

10. soybean large 19 307 35 132

11. tic tac toe 2 958 9 27

12. optdigits 10 5620 64 914

13. letter recognition 26 20000 16 256

14. lenses 3 24 4 9

15. soybean small 4 47 35 72

и 𝑧 приведены соответственно число классов, число строк, число столбцов и число

всех представительных наборов ранга 1, характеризующее значность признаков.

Задачи по трудоёмкости можно разбить на 3 группы. Задачи с номерами 1 –

11 имеют средний объём обучения, и поэтому для тестирования на этих задачах

применяется методика 10-кратного скользящего контроля. В задачах 12 и 13 много

объектов, поэтому для сокращения времени счёта выборка делится только 1 раз на

обучающую и тестовую. В задачах 14 и 15 наоборот очень мало объектов, поэтому

используется методика скользящего контроля по одному объекту (leave-one-out).

В тестировании помимо логических корректоров POLAR-1 – POLAR-4 участ-

вовали следующие алгоритмы распознавания:

1) Т — голосование по тестам (для каждого класса строится не более 200 тестов);

2) ПН — голосование по представительным наборам (для каждого объекта стро-

ится не более 5 представительных наборов);

3) МОН — голосование по монотонным корректным наборам эл.кл. (для каждого

класса строится не более 200 наборов и эл.кл. имеют ранг 1);

4) Т* — голосование по тестам (голосующие семейства формируются бустингом);
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Таблица 2.2: Средняя частота ошибок на тестовой выборке

Классические Бустинг Лог. кор. POLAR

№ Задача Т ПН МОН Т* ПН* МОН* 1 2 3 4

1. audiology 0.14 0.07 0.09 0.03 0.03 0.03 0.03 0.03 0.02 0.03

2. b. scale 0.92 0.27 0.46 0.25 0.2 0.19 0.18 0.23 0.23 0.25

3. b. cancer 0.21 0.05 0.24 0.046 0.044 0.057 0.061 0.059 0.065 0.059

4. car 0.97 0.09 0.27 0.061 0.032 0.033 0.013 0.027 0.022 0.011

5. dermat. 0.84 0.47 0.79 0.41 0.4 0.4 0.39 0.42 0.44 0.43

6. h. votes 0.34 0.06 0.15 0.07 0.05 0.07 0.05 0.06 0.07 0.08

7. kr-vs-kp 0.63 0.017 0.101 0.008 0.004 0.003 0.008 0.007 0.004 0.003

8. monks-2 0.96 0.52 0.96 0.37 0.55 0.42 0.04 0.44 0.56 0.36

9. nursery 0.66 0.015 0.36 0.027 0.003 0.005 0.002 — 0.0019 0.004

10. soybean l. 0.19 0.094 0.131 0.075 0.064 0.072 0.078 0.106 0.083 0.075

11. tic-tac-toe 0.97 0.005 0.52 0.011 0.002 0.005 0.028 0.002 0.001 0.007

12. letter r. 0.52 0.21 0.63 0.21 0.16 0.25 — — 0.23 0.25

13. optdigits 0.77 0.19 0.55 0.25 0.23 0.17 0.15 — 0.27 0.14

14. lenses 1 0.21 0.46 0.42 0.25 0.29 0.33 0.29 0.38 0.25

15. soybean s. 0.02 0 0 0 0 0 0 0.02 0.04 0

5) ПН* — голосование по представительным наборам (голосующие семейства

формируются бустингом);

6) МОН* — голосование по монотонным корректным наборам эл.кл. (голосующие

семейства формируются бустингом и эл.кл. в наборах имеют ранг 1).

В таблице 2.2 приведены результаты счёта. Показателем качества является сред-

няя доля ошибок на тестовых выборках. Прочерки соответствуют случаям, когда

алгоритм не справился с задачей за 1 час.

На 14 задачах лидируют алгоритмы, в которых применяется бустинг для фор-

мирования голосующих семейств. На 11 задачах лидируют новые модели. Лучшими

среди новых являются POLAR-3 и POLAR-4, в которых локальный базис фор-

мируется на каждой итерации. Причём эти логические корректоры демонстрируют

хорошие результаты на задачах с большой значностью признаков и имею сравни-

тельно небольшое время счёта почти на всех задачах.

Время счёта представлено в таблице 2.3. Жирным шрифтом выделено время ра-

боты самого быстрого алгоритмами для каждой из задач. Почти всегда это класси-

ческое голосование по представительным наборам. Наименьшее время работы логи-
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Таблица 2.3: Время счёта в секундах

Классические Бустинг Лог. кор. POLAR

№ Задача Т ПН МОН Т* ПН* МОН* 1 2 3 4

1. audiology 1.9 1.4 4.6 22.7 8.9 42.2 224.1 420.2 4.1 82.4

2. b. scale 0.6 0.4 2.4 0.8 1.1 2.8 132.5 1251.1 3.9 243.7

3. b. cancer 1.2 0.2 7.8 0.7 0.5 5.2 108.1 110.1 1.3 51.3

4. car 3.1 1.3 10.1 2.3 3.1 7.1 78.5 713.7 7.9 34.9

5. dermat. 2.8 15.4 13.2 40.9 66.5 118.9 272.4 689.6 98.9 345.1

6. h. votes 2.4 1.1 7.6 4.2 8.6 12.1 37.1 87.3 7.9 167.3

7. kr-vs-kp 36.3 10.2 94.4 58.9 79.8 87.5 226.1 192.1 84.8 173.6

8. monks-2 0.5 0.6 1.2 0.9 1.9 2.1 15.4 500.6 5.8 104.1

9. nursery 163.9 20.9 595.5 87.9 89.3 224.4 452.9 — 157.9 589.1

10. soybean l. 2.5 2.4 7.7 28.3 21.2 79.9 329.3 868.6 15.9 249.2

11. tic-tac-toe 3.2 0.6 6.5 4.5 1.9 10.2 45.6 9.3 2.2 16.2

12. letter r. 58.2 47.1 790.7 92.3 233.1 550.5 — — 363.1 1191.1

13. optdigits 25.8 636.2 277.7 249.6 1570.5 840.6 3117.2 — 2160.6 1110.8

14. lenses 0.01 0.01 0.03 0.01 0.03 0.06 0.09 4.7 0.03 2.2

15. soybean s. 0.4 0.06 1.1 0.8 0.1 1.5 4.8 0.3 0.1 0.4

ческих корректоров на соответствующей задаче подчёркнуто. Самым быстрым всегда

оказывается либо МОН, либо POLAR-3.

Для выявления наилучшей стратегии построения локального базиса с точки зре-

ния времени счёта проведена следующая серия экспериментов. Выбраны две задачи

с достаточно большим числом объектов: nursery и optdigits. Задача nursery отли-

чается от задачи optdigits тем, что имеет сравнительно небольшую значность и

существенно неравномерное распределение объектов по классам. Для задачи nursery

было сформировано 60 случайных подвыборок по 5 подвыборок каждого из размеров

1000, 2000, . . . , 12000. Для задачи optdigits было сформировано 50 подвыборок по 5

подвыборок каждого из размеров 200, 400, . . . , 2000. На рисунках 1.1а и 1.1б изоб-

ражены графики зависимости усреднённого времени счёта POLAR-1–POLAR-4 от

размера подвыборки.

Очевидно, самой неудачной является модификация POLAR-2. Время работы

POLAR-2 быстро увеличивается с ростом объёма обучения, напрямую связанного

с мощностью строящегося логическим корректором локального базиса задачи.

На задаче nursery POLAR-3 является наилучшим. Строящиеся логическим кор-

ректором POLAR-3 локальные базисы имеют небольшую мощность, поскольку в
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(a) nursery

(b) optdigits

Рисунок 2.1: Зависимость среднего времени обучения
логических корректоров POLAR-1–POLAR-4 от размера выборки

задачах с малой значностью признаков, как правило, представительные наборы име-

ют высокую информативность.

На задаче optdigits POLAR-4 обгоняет POLAR-3, начиная с размера подвыбор-

ки 800. Бустинг-алгоритм, использующийся в POLAR-4 для формирования локаль-

ного базиса не требует корректности эл.кл. Большая значность признаков в задаче

optdigits приводит к тому, что в локальный базис, формируемый POLAR-3, попа-

дает много малоинформативных представительных наборов, что плохо сказывается

на времени счёта.
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ГЛАВА 3

Новые асимптотически оптимальные
алгоритмы дуализации

В данной главе рассматривается одна из центральных дискретных перечисли-

тельных задач —дуализация. Даётся обзор основных подходов её решения, среди

которых выделяется подход к построению асимптотически оптимальных алгоритмов.

Алгоритмы, построенные в рамках этого подхода классифицируются на два ти-

па. Строятся новые асимптотически оптимальные алгоритмы первого типа АО1К,

AO1M, АО2К и АО2М, и второго типа RUNC, RUNC-M и PUNC. Новые

и ранее построенные асимптотически оптимальные алгоритмы дуализации экспери-

ментально исследуются на большом объеме разнотипных данных.

3.1. Задача дуализации и подходы к её решению

Пусть 𝐿 = ‖𝑎𝑖𝑗‖𝑚×𝑛 — булевая матрица и пусть 𝐻 — набор столбцов матри-

цы 𝐿. Набор 𝐻 называется покрытием матрицы 𝐿, если каждая строка матрицы

𝐿 в пересечении хотя бы с одним столбцом из 𝐻 дает 1. Покрытие 𝐻 называется

неприводимым, если любое собственное подмножество 𝐻 не является покрытием 𝐿.

Обозначим через 𝒫(𝐿) множество всевозможных неприводимых покрытий матри-

цы 𝐿. Требуется построить множество 𝒫(𝐿).

В теории алгоритмической сложности задача перечисления элементов 𝒫(𝐿) счи-

тается главной задачей перечисления и называется дуализацией. Существуют другие

формулировки этой задачи, в частности с использованием понятий теории булевых

функций и теории графов и гиперграфов. Приведем эти формулировки.
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1. Дана конъюнктивная нормальная форма из 𝑚 различных элементарных дизъ-

юнкций, реализующая монотонную булеву функцию 𝐹 (𝑥1, . . . , 𝑥𝑛). Требуется

построить сокращённую дизъюнктивную нормальную форму функции 𝐹 .

2. Дан гиперграф ℋ с 𝑛 вершинами и 𝑚 ребрами. Требуется найти все мини-

мальные вершинные покрытия гиперграфа ℋ.

3.1.1. Подходы к оценке сложности алгоритмов дуализации

Эффективность алгоритмов перечисления принято оценивать сложностью шага

[27]. Говорят, что алгоритм работает с (квази)полиномиальной задержкой, если

для любой индивидуальной задачи каждый шаг алгоритма (построение очередного

решения) осуществляется за (квази)полиномиальное время от размера задачи. В

применении к поиску неприводимых покрытий это означает, что для любой булевой

матрицы размера 𝑚 × 𝑛 время построения очередного неприводимого покрытия

должно быть ограничено полиномом или квазиполиномом от 𝑚 и 𝑛. В общем случае

алгоритм дуализации с (квази)полиномиальной задержкой до сих пор не построен и

неизвестно, существует ли он. Известны примеры таких алгоритмов для некоторых

частных случаев дуализации [27, 71–73]. Например, в [27] построен алгоритм с

задержкой 𝒪(𝑛3) для случая, когда в каждой строке матрицы 𝐿 не более двух

единичных элементов, что в постановке 2) соответствует случаю: ℋ — граф. Также

встречаются работы, в которых доказывается, что алгоритм, имеющий определённую

конструкцию, не может в худшем случае работать с полиномиальной задержкой

(например см. [74]).

Исследования в области сложности перечислительных задач в основном касаются

изучения возможности построения инкрементальных (квази)полиномиальных алго-

ритмов. В данном случае инкрементальность означает, что алгоритму разрешено на

каждом шаге (при построении очередного решения) просматривать множество реше-

ний, построенных на предыдущих шагах, и на этот просмотр тратить время, (ква-

зи)полиномиальное от размера задачи и числа уже найденных решений. В [28, 31]

построен инкрементальный квазиполиномиальный алгоритм дуализации. В [29, 30]

для ряда частных случаев дуализации построены инкрементальные полиномиальные

алгоритмы.
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3.1.2. Асимптотически оптимальный подход

Существует еще один подход к решению рассматриваемой задачи, основанный

на понятии асимптотически оптимального алгоритма с полиномиальной задержкой.

Подход впервые предложен в [35] и ориентирован на типичный случай (on average).

При определенных условиях этот подход позволяет заменить исходную перечисли-

тельную задачу 𝑍 на более «простую» перечислительную задачу 𝑍1, имеющую тот

же вход и решаемую с полиномиальной задержкой. При этом, во-первых, множество

решений задачи 𝑍1 содержит множество решений задачи 𝑍, и во-вторых, почти все-

гда с ростом размера входа число решений задачи 𝑍1 асимптотически равно числу

решений задачи 𝑍. Обоснование данного подхода базируется на получении асимп-

тотик для типичного числа решений каждой из задач 𝑍 и 𝑍1.

Таким образом, в отличие от «точного» алгоритма с полиномиальной задержкой

асимптотически оптимальному алгоритму разрешено делать «лишние» полиномиаль-

ные шаги. Лишний шаг — это построение такого решения задачи 𝑍1, которое либо

было найдено ранее, либо построено впервые, но не является решением задачи 𝑍.

Число лишних шагов для почти всех задач данного размера должно иметь более

низкий порядок роста, чем число всех шагов алгоритма, с ростом размера задачи.

Проверка того, является ли шаг лишним должна осуществляться за полиномиальное

время от размера задачи.

К настоящему моменту для случая, когда log𝑚 6 (1 − 𝜀) log 𝑛, 0 < 𝜀 < 1,

построен ряд асимптотически оптимальных алгоритмов поиска неприводимых по-

крытий булевой матрицы [32–40]. В этих алгоритмах для перечисления 𝒫(𝐿) ис-

пользуется следующий критерий.

Набор 𝐻 из 𝑟 столбцов матрицы 𝐿 является неприводимым покрыти-

ем тогда и только тогда, когда выполнены следующие два условия: 1)

подматрица 𝐿𝐻 матрицы 𝐿, образованная столбцами набора 𝐻, не содер-

жит строки вида (0, 0, . . . , 0); 2) 𝐿𝐻 содержит каждую из строк вида

(1, 0, 0, . . . , 0, 0), (0, 1, 0, . . . , 0, 0), . . . , (0, 0, 0, . . . , 0, 1), то есть с точностью до пе-

рестановки строк содержит единичную подматрицу порядка 𝑟. Набор столбцов, удо-

влетворяющий условию 2), называется совместимым.

В асимптотически оптимальном алгоритме дуализации АО1 [35] в роли 𝑍1 вы-

ступает задача построения совокупности наборов столбцов матрицы 𝐿, удовлетво-
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ряющих условию 2), в которой каждый набор длины 𝑟 встречается столько раз,

сколько единичных подматриц порядка 𝑟 этот набор содержит. Фактически с по-

линомиальной задержкой перечисляются все единичные подматрицы матрицы 𝐿.

Ясно, что неприводимое покрытие может порождаться только максимальной еди-

ничной подматрицей, то есть такой единичной подматрицей, которая не содержится

в других единичных подматрицах. Максимальная единичная подматрица порожда-

ет максимальный совместимый набор столбцов, то есть такой совместимый набор

столбцов, который не содержится ни в каком другом совместимом наборе столбцов.

Схема работы алгоритма АО1 позволяет со сложностью шага 𝒪(𝑞𝑚𝑛), где

𝑞 = min{𝑚,𝑛}, перечислять максимальные единичные подматрицы (перечислять

с повторениями максимальные совместимые наборы столбцов). Перебор единичных

подматриц приводит к тому, что некоторые наборы столбцов строятся неоднократно.

При получении очередной максимальной единичной подматрицы 𝑄 за время 𝒪(𝑚𝑛)

алгоритм АО1 проверяет условие 1) для набора столбцов 𝐻 матрицы 𝐿, который

порождается подматрицей 𝑄, и, если условие 1) выполнено, то алгоритм АО1 за

время 𝒪(𝑚𝑛) проверяет не был ли набор 𝐻 построен на предыдущих шагах.

В алгоритме АО2 [37], который является модификацией алгоритма АО1, с по-

линомиальной задержкой 𝒪(𝑞𝑚2𝑛) перечисляются только такие единичные подмат-

рицы матрицы 𝐿, которые порождают покрытия. Алгоритм АО2 строит на каждом

шаге неприводимое покрытие, однако найденные решения также, как и в алгоритме

АО1, могут повторяться. Этот алгоритм делает меньше лишних шагов по сравне-

нию с алгоритмом АО1. В [55] на базе алгоритма АО2 были построены алгоритмы

АО2К и АО2М, позволяющие сократить время счёта.

Наименьшее число лишних шагов имеет асимптотически оптимальный алгоритм

ОПТ [39], основанный на перечислении с полиномиальной задержкой 𝒪(𝑞𝑚2𝑛) на-

боров столбцов матрицы 𝐿, удовлетворяющих условию 2) и некоторым дополнитель-

ным условиям, среди которых условие максимальности. Лишние шаги в алгоритме

ОПТ возникают за счёт построения максимальных совместимых наборов столбцов,

не являющихся покрытиями, то есть не удовлетворяющих условию 1).

Пусть 𝒮(𝐿) – множество всех единичных подматриц матрицы 𝐿. Как уже отме-

чалось, перечисление элементов 𝒮(𝐿) может быть осуществлено с полиномиальной

задержкой 𝒪(𝑚𝑛).



57

Обоснование асимптотически оптимальных алгоритмов дуализации базируется на

следующем утверждении. Если log𝑚 6 (1 − 𝜀) log 𝑛, 0 < 𝜀 < 1, то для любого

сколь угодно малого 𝛿 > 0 существует предел

lim
𝑚,𝑛→∞

P{ |𝒮(𝐿)|
|𝒫(𝐿)|

< 1 + 𝛿} = 1,

где вероятность под знаком предела вычисляется при условии, что каждая матрица

𝐿 фиксированного размера 𝑚×𝑛 выбирается с вероятностью 2−𝑚𝑛. Доказательство

этого утверждения и ряда более сильных утверждений можно найти в [75].

В [76, 77] предложены алгоритмы дуализации RS и MMCS, для описания

которых используются понятия теории гиперграфов. Эти алгоритмы основаны на

построении наборов вершин 𝑆 гиперграфа ℱ , удовлетворяющих условию «crit»:

𝑐𝑟𝑖𝑡(𝑣, 𝑆) ̸= ∅,∀𝑣 ∈ 𝑆. Условие «crit» эквивалентно условию «совместимости» 2)

для соответствующего набора столбцов матрицы инцидентности гиперграфа ℱ . Та-

ким образом, предложенный в [76,77] подход к построению алгоритмов дуализации

не является новым (алгоритмы RS и MMCS фактически являются асимптотиче-

ски оптимальными). В [76, 77] показано, что алгоритмы RS и MMCS по скорости

значительно превосходят ряд других алгоритмов [28,78–81].

3.1.3. Основные типы асимптотически оптимальных алгоритмов дуализации

Асимптотически оптимальные алгоритмы дуализации можно условно разделить

на два типа. К первому типу относятся алгоритмы, перечисляющие с полиномиаль-

ной задержкой максимальные единичные подматрицы матрицы 𝐿. Такие алгоритмы

совершают лишние шаги, связанные с повторным построением максимальных сов-

местимых наборов столбцов. Алгоритмы второго типа основаны на перечислении

с полиномиальной задержкой без повторений максимальных совместимых наборов

столбцов.

Примерами алгоритмов первого типа служат алгоритмы АО1 [35] и АО2 [37].

В разделе 3.2 построены модификации АО1К, АО1М алгоритма АО1, и описаны

модификации АО2К, АО2М алгоритма АО2, построенные в [55], проанализи-

рована сложность шага, и проведено экспериментальное исследование алгоритмов

первого типа. Показано, что построенные модификации алгоритмов АО1 и АО2,

как правило, работают быстрее своих прототипов.
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Примерами алгоритмов второго типа являются алгоритмы ОПТ [39], MMCS, RS

[76, 77], и разработанные автором алгоритмы RUNC, RUNC-M, PUNC [53, 57].

В разделе 3.3 дается общая схема алгоритма второго типа, в рамках схемы описыва-

ется каждый из указанных алгоритмов. Далее даёт детальное описание алгоритмов

RUNC, RUNC-M и PUNC, анализируется сложность их шага, и осуществляется

экспериментальное исследование алгоритмов второго типа. Показано, что алгорит-

мы, построенные в [53, 57], требуют меньших временных затрат по сравнению с

асимптотически оптимальными алгоритмами, построенными ранее в [32–40,55] и в

большинстве случаев опережают алгоритмы из [76,77].

Оригинальные описания алгоритмов АО1, АО2, АО2К, АО2М, ОПТ, RS и

MMCS отличаются от приведённых в настоящей работе, в связи со стремлением

автора использовать общие понятия и обозначения для описания асимптотически

оптимальных алгоритмов первого и второго типов.

3.2. Асимптотически оптимальные алгоритмы дуализации первого

типа

Приводится схема работы асимптотически оптимального алгоритма первого типа.

В рамках этой схемы описываются алгоритмы АО1, АО2 и строятся их модифи-

кации АО1К, АО1М, АО2К, АО2М, в которых сокращаются вычислительные

затраты за счёт уменьшения общего числа вершин дерева решений.

3.2.1. Общая схема алгоритма дуализации первого типа

Введем используемые далее понятия и обозначения. Будем говорить, что стол-

бец 𝑗 (столбец с номером 𝑗) покрывает строку 𝑖 (строку с номером 𝑖) матрицы 𝐿,

если 𝑎𝑖𝑗 = 1.

Пусть 𝐻 — набор столбцов матрицы 𝐿. Будем говорить, что набор 𝐻 покрывает

строку 𝑖, если существует столбец 𝑗 ∈ 𝐻, покрывающий строку 𝑖.

Обозначим через 𝐸(𝐿) множество {(𝑖, 𝑗) : 𝑎𝑖𝑗 =

1, 𝑖 ∈ {1, . . . ,𝑚} , 𝑗 ∈ {1, . . . , 𝑛}}. Два элемента (𝑖, 𝑗)

и (𝑡, 𝑙) из 𝐸(𝐿) будем называть совместимыми, если

𝑎𝑖𝑙 = 0, 𝑎𝑡𝑗 = 0. Набор 𝑄 элементов из 𝐸(𝐿) будем называть совместимым,

если любые два различных элемента (𝑖, 𝑗) и (𝑡, 𝑙) из 𝑄 совместимы. Совместимый
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Рисунок 3.1: Дерево решений асимптотически оптимального
алгоритма дуализации первого типа

набор 𝑄 будем называть максимальным, если 𝑄 не является подмножеством другого

совместимого набора элементов из 𝐸(𝐿).

Пусть 𝑄 — совместимый набор элементов из 𝐸(𝐿). Cтолбец 𝑙 называть запре-

щённым для 𝑄, если существует элемент (𝑖, 𝑗) ∈ 𝑄 такой, что столбец 𝑙 покрывает

строку 𝑖. В противном случае будем говорить, что столбец 𝑙 совместим с набором 𝑄.

Пусть 𝐵 ⊆ 𝐸(𝐿). Обозначим набор столбцов {𝑗 : ∃(𝑖, 𝑗) ∈ 𝐵} через 𝐻(𝐵).

Будем говорить, что набор 𝐵 элементов из 𝐸(𝐿) порождает набор столбцов 𝐻(𝐵).

Будем говорить, что строка 𝑖 матрицы 𝐿 покрыта набором 𝐵 элементов из 𝐸(𝐿),

если набор столбцом 𝐻(𝐵) покрывает строку 𝑖. Совместимый набор 𝑄 назовем

покрывающим, если все строки матрицы 𝐿 покрыты набором 𝑄. Очевидно, что

покрывающий набор является максимальным, и справедливо

Утверждение 3.1. Набор столбцов 𝐻 является неприводимым покрытием матри-

цы 𝐿 тогда и только тогда, когда найдется покрывающий набор 𝑄, для которого

𝐻(𝑄)=𝐻 .

Покрывающий набор 𝑄 = {(𝑖1, 𝑗1), . . . , (𝑖𝑟, 𝑗𝑟)} называется верхним, если для

любого покрывающего набора 𝑄′ = {(𝑡1, 𝑗1), . . . , (𝑡𝑟, 𝑗𝑟)} верны неравенства 𝑡𝑢 > 𝑖𝑢,

𝑢 ∈ {1, . . . , 𝑟}. Очевидно

Утверждение 3.2. Для любого неприводимого покрытия 𝐻 существует единствен-

ный верхний набор 𝑄, такой, что 𝐻(𝑄) = 𝐻 .

Таким образом, из утверждений 3.1 и 3.2 следует, что задача построения 𝒫(𝐿)

сводится к перечислению верхних наборов элементов из 𝐸(𝐿).
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Работу асимптотически оптимальных алгоритмов дуализации первого типа можно

представить в виде одностороннего обхода ветвей дерева решений, вершины кото-

рого, за исключением корня, — совместимые наборы элементов из 𝐸(𝐿). Корень

дерева — пустой набор. Висячие вершины либо являются верхними наборами, ли-

бо соответствуют лишним шагам алгоритма. Схема дерева решений изображена на

рис. 3.1.

Каждый шаг алгоритма является итеративной процедурой, в результате которой

строится одна ветвь дерева, начинающаяся либо в корне, либо в некоторой постро-

енной ранее внутренней вершине. Например, алгоритм, строящий дерево на рис. 3.1,

выполняется 6 шагов:

1) ∅ → 𝑄1 → 𝑄2 → 𝑄3;

2) ∅ → 𝑄1 → 𝑄4 → 𝑄5;

3) ∅ → 𝑄6 → 𝑄7;

4) 𝑄6 → 𝑄8 (лишний шаг);

5) 𝑄6 → 𝑄9 → 𝑄10 (лишний шаг);

6) 𝑄9 → 𝑄11.

При переходе от вершины к вершине меняется состояние алгоритма. Для обозна-

чения того, что некоторый объект 𝑋 , описывающий состояние алгоритма, связан с

вершиной 𝑄 будем писать 𝑋[𝑄].

Общая схема асимптотически оптимального алгоритма дуализации первого типа.

На шаге 1 на итерации 1 по некоторому правилу формируется набор 𝐵[∅] элементов

из 𝐸(𝐿), корень становится текущей вершиной, и происходит переход к итерации 2.

Пусть на шаге 𝑠, 𝑠 > 1, на итерации 𝑡, 𝑡 > 1, текущей стала вершина 𝑄. Тогда

на итерации 𝑡+ 1 выполняется следующее.

1. Если 𝐵[𝑄] = ∅, то происходит переход к следующему шагу (в случае, когда 𝑄

является висячей вершиной, шаг алгоритма считается лишним). В противном

случае берётся некоторый элемент (𝑖, 𝑗) ∈ 𝐵[𝑄].

2. Выбранный элемент (𝑖, 𝑗) удаляется из 𝐵[𝑄], и строится вершина 𝑄′ = 𝑄 ∪
{(𝑖, 𝑗)}.
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3. Если набор 𝑄′ является верхним, то набор 𝑄′ становится результатом шага

(набор столбцов 𝐻(𝑄′) — неприводимое покрытие), и происходит переход к

следующему шагу. В противном случае по некоторому правилу строится набор

𝐵[𝑄′] элементов из 𝐵[𝑄] такой, что каждый элемент из 𝐵[𝑄′] совместим с

элементом (𝑖, 𝑗).

4. Текущей вершиной становится 𝑄′, и происходит переход к следующей итерации.

Пусть результатом шага 𝑠, 𝑠 > 1, является набор 𝑄. Тогда на шаге 𝑠 + 1 на

итерации 1 среди вершин ветки дерева, соединяющей корень с вершиной 𝑄, ищется

ближайшая к 𝑄 вершина 𝑄′ такая, что 𝐵[𝑄′] ̸= ∅. Если вершина 𝑄′ найдена, то

она становится текущей вершиной, и происходит переход к следующей итерации. В

противном случае алгоритм завершает работу. �

Алгоритмы второго типа различаются правилами построения набора 𝐵[∅] на

шаге 1 на итерации 1 и построения набора 𝐵[𝑄′] при создании новой вершины 𝑄′.

Опишем эти различия на примере алгоритмов АО1 и АО2.

3.2.2. Алгоритм АО1

Введем дополнительные обозначения. Пусть 𝑅 — набор строк и 𝐶 — набор столб-

цов матрицы 𝐿. Обозначим через 𝐿(𝑅,𝐶) подматрицу, образованную строками из

𝑅 и столбцами из 𝐶, и через 𝐸(𝐿(𝑅,𝐶)) множество {(𝑖, 𝑗) : 𝑎𝑖𝑗 = 1, 𝑖 ∈ 𝑅, 𝑗 ∈ 𝐶}.
Алгоритм АО1. На шаге 1 на итерации 1 строится подматрица 𝐿(𝑅[∅], 𝐶[∅]),

состоящая из всех строк и столбцов матрицы 𝐿, строится набор 𝐵[∅] = 𝐸(𝐿),

корень становится текущей вершиной, и происходит переход к следующей итерации.

Пусть на шаге 𝑠, 𝑠 > 1, на итерации 𝑡, 𝑡 > 1, текущей стала вершина 𝑄. Тогда

на итерации 𝑡+ 1 выполняется следующее.

1. Если 𝐵[𝑄] = ∅, то происходит переход к следующему шагу. В противном

случае берется элемент (𝑖, 𝑗) ∈ 𝐵[𝑄] с наименьшим значением 𝑗𝑚+ 𝑖.

2. Выбранный элемент (𝑖, 𝑗) удаляется из 𝐵[𝑄]. Столбцы, не входящие в на-

бор 𝐻(𝐵[𝑄]), удаляются из подматрицы 𝐿(𝑅[𝑄], 𝐶[𝑄]). Cтроится вершина

𝑄′ = 𝑄 ∪ {(𝑖, 𝑗)}.

3. Если набор 𝑄′ является верхним, то набор 𝑄′ становится результатом шага

(набор столбцов 𝐻(𝑄′) — неприводимое покрытие), и происходит переход к
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следующему шагу. В противном случае строится подматрица 𝐿(𝑅[𝑄′], 𝐶[𝑄′])

путем удаления из подматрицы 𝐿(𝑅[𝑄], 𝐶[𝑄]) строк, покрытых столбцом 𝑗, и

столбцов, покрывающих строку 𝑖.

4. Cтроится множество 𝐵[𝑄′] = 𝐸(𝐿(𝑅[𝑄′], 𝐶[𝑄′])).

5. Текущей вершиной становится 𝑄′, и происходит переход к следующей итерации.

На шаге 𝑠, 𝑠 > 1, на итерации 1 алгоритм АО1 выполняет те же действия,

которые описаны в общей схеме работы алгоритма первого типа. �

Вершины дерева решений алгоритма АО1, соответствующие лишним шагам, яв-

ляются максимальными совместимыми наборами элементов из 𝐸(𝐿) (подматрица

𝐿(𝑅[𝑄], 𝐶[𝑄]) не содержит ни одного единичного элемента). При этом шаг, закан-

чивающийся в вершине 𝑄, оказывается лишним по одной из двух причин: либо 𝑄

не является покрывающим набором, либо 𝑄 не является верхним набором.

При реализации алгоритма АО1 нет необходимости явно строить множество

𝐵[𝑄], т.к. элементы этого множества однозначно соответствуют единичным элемен-

там подматрицы 𝐿(𝑅[𝑄], 𝐶[𝑄]).

3.2.3. Алгоритм АО2

Для описания алгоритма АО2 потребуются дополнительные понятия и обозначе-

ния. Будем говорить, что строка 𝑖 ∈ 𝑅 является охватывающей для строки 𝑡 ∈ 𝑅 в

подматрице 𝐿(𝑅,𝐶), если 𝑎𝑖𝑗 > 𝑎𝑡𝑗, ∀𝑗 ∈ 𝐶. Легко показать, что если из подмат-

рицы 𝐿(𝑅,𝐶) удалить строку 𝑖 ∈ 𝑅, охватывающую строку 𝑡 ∈ 𝑅, то множества

неприводимых покрытий полученной и исходной подматриц будут совпадать.

Строку 𝑖 ∈ 𝑅, охватывающую строку 𝑡 ∈ 𝑅 в подматрице 𝐿(𝑅,𝐶), будем на-

зывать охватывающей снизу, если 𝑖 > 𝑡. Легко показать, что если из подматрицы

𝐿(𝑅,𝐶) удалить строку 𝑖 ∈ 𝑅, охватывающую снизу строку 𝑡 ∈ 𝑅, то множе-

ства верхних наборов единичных элементов полученной и исходной подматриц будут

совпадать.

Пусть в подматрице 𝐿(𝑅,𝐶) строка 𝑖 ∈ 𝑅 охватывает строку 𝑡 ∈ 𝑅 , и столбец

𝑗 ∈ 𝐶 покрывает строку 𝑖 и не покрывает строку 𝑡. Элемент (𝑖, 𝑗) будем назы-

вать запрещённым в подматрице 𝐿(𝑅,𝐶). Очевидно, если элемент (𝑖, 𝑗) является

запрещённым в матрице 𝐿, то ни один покрывающий набор 𝑄 не содержит элемент

(𝑖, 𝑗).
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Алгоритм АО2. На шаге 1 на итерации 1 строится подматрица 𝐿(𝑅[∅], 𝐶[∅])

путем последовательного удаления из матрицы 𝐿 охватывающих снизу строк мат-

рицы 𝐿. Далее с корнем связывается набор 𝐵[∅] элементов из 𝐸(𝐿(𝑅[∅], 𝐶[∅])),

незапрещённых в подматрице 𝐿(𝑅[∅], 𝐶[∅]). Корень становится текущей вершиной,

и происходит переход к следующей итерации.

Пусть на шаге 𝑠, 𝑠 > 1, на итерации 𝑡, 𝑡 > 1, текущей стала вершина 𝑄. Тогда

на итерации 𝑡+ 1 выполняется следующее.

1–3. Выполняются пункты 1–3 итерации 𝑡+ 1 алгоритма АО1.

4. Из подматрицы 𝐿(𝑅[𝑄′], 𝐶[𝑄′]) последовательно удаляются охватывающие

снизу строки.

5. Cтроится набор 𝐵[𝑄′] элементов из 𝐸(𝐿(𝑅[𝑄′], 𝐶[𝑄′])), незапрещённых в под-

матрице 𝐿(𝑅[𝑄′], 𝐶[𝑄′]).

6. Текущей вершиной становится 𝑄′, и происходит переход к следующей итерации.

На шаге 𝑠, 𝑠 > 1, на итерации 1 алгоритм АО2 выполняет те же действия,

которые описаны в общей схеме работы алгоритма первого типа. �

Вершины дерева решений алгоритма АО2, соответствующие лишним шагам, яв-

ляются покрывающими и не являются верхними наборами элементов из 𝑄(𝐿). Та-

ким образом, каждый шаг алгоритма АО2 заканчивается в вершине 𝑄 такой, что

набор столбцов 𝐻(𝑄) — неприводимое покрытие.

При реализации алгоритма АО2 нет необходимости явно строить множество

𝐵[𝑄]. Вместо этого эффективнее работать с набором элементов, запрещённых в

подматрице 𝐿(𝑅[𝑄], 𝐶[𝑄]).

3.2.4. Сложность задачи идентификации лишнего шага

При описании схемы работы алгоритмов АО1 и АО2 были отмечены причи-

ны, по которым алгоритмы делают лишние шаги, и указаны свойства «лишних»

висячих вершин дерева решений. Возникает вопрос, существует ли асимптотически

оптимальный алгоритм первого типа, перечисляющий неприводимые покрытия без

повторений с полиномиальной задержкой, то есть не делающий лишних шагов. Из

доказанной ниже теоремы 3.3 следует, что при P ̸= NP ответ на этот вопрос отри-

цателен. Аналогичная техника доказательства используется в [29, Proposition 2].
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Задача 3.1. Вход: 𝐿 — булева матрица, 𝑄 — совместимый набор элементов из

𝐸(𝐿). Выход: 1, если существует верхний набор 𝑄′ : 𝑄 ⊆ 𝑄′, и 0 — иначе.

Теорема 3.3. Задача 3.1 NP-полна.

Доказательство. Пусть булева функция 𝑓(𝑥1, . . . , 𝑥𝑁) задана конъюнктивной нор-

мальной формой (КНФ) 𝐶1∧. . .∧𝐶𝑀 , где 𝐶1, . . . , 𝐶𝑀 — элементарные дизъюнкции

от переменных 𝑥1, . . . , 𝑥𝑁 .

Построим граф 𝐺 = (𝑉,𝐸), где множество 𝑉 состоит из вершин

1,∅, 𝐶1, . . . , 𝐶𝑀 , 𝑥1, . . . , 𝑥𝑁 , 𝑥̄1, . . . , 𝑥̄𝑁 , и множество 𝐸 состоит из ребер четы-

рех типов:

1) ребра для конъюнкций {1, 𝐶1}, . . . , {1, 𝐶𝑀};

2) вспомогательное ребро {1,∅};

3) ребра для переменных {𝑥1, 𝑥̄1}, . . . , {𝑥𝑁 , 𝑥̄𝑁};

4) ребра для вхождений переменных в конъюнкции: {𝐶𝑖, 𝑥𝑗}, если 𝑥𝑗 входит в

𝐶𝑖, и {𝐶𝑖, 𝑥̄𝑗}, если 𝑥̄𝑗 входит в 𝐶𝑖.

Пусть 𝐿— матрица инцидентности графа 𝐺 и столбцы с номерами 1, . . . ,𝑀 + 2

соответствуют вершинам 1,∅, 𝐶1, . . . , 𝐶𝑀 , а строки с номерами 1, . . . ,𝑀,𝑀 + 1—

ребрам {1, 𝐶1}, . . . , {1, 𝐶𝑀}, {1,∅}.
Рассмотрим совместимый набор 𝑄 = {(𝑀 +1, 1)}. Требуется решить задачу 3.1

для матрицы 𝐿 и набора 𝑄.

Набор 𝑄 покрывает строки с номерами 1, . . . ,𝑀,𝑀+1, при этом строки с номе-

рами 1, . . . ,𝑀 являются конкурентными. Поэтому если верхний набор 𝑄′ содержит

𝑄, то в 𝐻(𝑄′) должны входить столбцы с номерами 3, . . . , 2 +𝑀 , чтобы строки с

номерами 1, . . . ,𝑀 не были конкурентными для 𝑄′. Из этого следует, что набор 𝑄′

содержит набор {(𝑖1, 3), . . . , (𝑖𝑀 , 2 +𝑀)}, где для любого 𝑙 ∈ {1, . . . ,𝑀} строка с

номером 𝑖𝑙 соответствует либо ребру {𝐶𝑙, 𝑥𝑠𝑙} , либо ребру {𝐶𝑙, 𝑥̄𝑠𝑙}.
При этом 𝑄′ покрывает соответствующие ребрам {𝑥1, 𝑥̄1}, . . . , {𝑥𝑁 , 𝑥̄𝑁} строки

тогда и только тогда, когда среди номеров строк 𝑖1, . . . , 𝑖𝑀 нет двух таких 𝑖𝑢, 𝑖𝑣, что

строка с номером 𝑖𝑢 соответствует ребру {𝐶𝑢, 𝑥𝑠𝑢}, а строка с номером 𝑖𝑣 — ребру

{𝐶𝑣, 𝑥̄𝑠𝑣}, и 𝑠𝑢 = 𝑠𝑣.
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Таким образом, существование верхнего набора 𝑄′ ⊃ 𝑄 равносильно существова-

нию набора значений переменных 𝑥1, . . . , 𝑥𝑁 , для которого истинны все элементар-

ные дизъюнкции 𝐶1, . . . , 𝐶𝑀 , а следовательно, выполнима функция 𝑓(𝑥1, . . . , 𝑥𝑁).

В результате задача проверки выполнимости функции, заданной КНФ, полино-

миально сведена к задаче 3.1. Как известно, задача проверки выполнимости КНФ

NP-полна. �

3.2.5. Новые алгоритмы дуализации АО1К, АО1М, АО2К, АО2М

Введем дополнительные понятия и обозначения. Пусть 𝑄 — совместимый набор

элементов из 𝐸(𝐿) и элемент (𝑖, 𝑗) ∈ 𝑄. Строку 𝑡 матрицы 𝐿 будем называть опор-

ной для пары (𝑄, 𝑗), если 𝑎𝑡𝑗 = 1 и 𝑎𝑡𝑙 = 0, ∀𝑙 ∈ 𝐻(𝑄), 𝑙 ̸= 𝑗. Из совместимости

𝑄 следует, что для любого элемента (𝑖, 𝑗) из 𝑄 строка 𝑖 является опорной для

(𝑄, 𝑗).

Строку 𝑡 матрицы 𝐿 будем называть конкурентной для совместимого набора 𝑄,

если найдется элемент (𝑖, 𝑗) ∈ 𝑄 такой, что строка 𝑡 является опорной для (𝑄, 𝑗),

и 𝑡 < 𝑖. Ясно, что покрывающий набор 𝑄 является верхним тогда и только тогда,

когда ни одна строка матрицы 𝐿 не является конкурентной для 𝑄.

Пусть 𝐿(𝑅,𝐶) — подматрица матрицы 𝐿. Число 𝑣𝑗(𝑅) =
∑︀

𝑖∈𝑅 𝑎𝑖𝑗, 𝑗 ∈ 𝐶, будет

называть весом столбца 𝑗 в подматрице 𝐿(𝑅,𝐶). Число 𝑤𝑖(𝐶) =
∑︀

𝑗∈𝐶 𝑎𝑖𝑗, 𝑖 ∈ 𝑅,

будет называть весом строки 𝑖 в подматрице 𝐿(𝑅,𝐶). При 𝑤𝑖(𝐶) = 0 (𝑣𝑗(𝑅) = 0)

строку 𝑖 ∈ 𝑅 (столбец 𝑗 ∈ 𝐶) будем называть нулевой (нулевым) в подматрице

𝐿(𝑅,𝐶). Очевидно, если строка 𝑖 охватывает строку 𝑡 в подматрице 𝐿(𝑅,𝐶), то

𝑤𝑖(𝐶) > 𝑤𝑡(𝐶).

Алгоритмы АО1К, АО1М, АО2К и АО2М. На шаге 1 на итерации 1 выпол-

няется следующее.

1. Cтроится подматрица 𝐿(𝑅[∅], 𝐶[∅]), совпадающая с матрицей 𝐿.

2. [Только для АО1К и АО2К.] Берется строка 𝑡 = 1.

3. [Только для АО1М и АО2М.] Ищется строка 𝑡 подматрицы 𝐿(𝑅[∅], 𝐶[∅]) с

наименьшим весом 𝑤𝑡(𝐶[∅]).

4. Строятся набор 𝐷 столбцов, покрывающих строку 𝑡, и набор 𝐵[∅] =

𝐸(𝐿(𝑅[∅], 𝐷)).
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5. Корень становится текущей вершиной, и происходит переход к следующей ите-

рации.

Пусть на шаге 𝑠, 𝑠 > 1, на итерации 𝑡, 𝑡 > 1, текущей стала вершина 𝑄. Тогда

на итерации 𝑡+ 1 выполняется следующее.

1–3. Выполняются пункты 1–3 итерации 𝑡+ 1 алгоритма АО1.

4. [Только для АО2К и АО2М.] Из подматрицы 𝐿(𝑅[𝑄′], 𝐶[𝑄′]) последователь-

но удаляются охватывающие снизу строки.

5. [Только для АО1К и АО2К.] Если набор 𝑄′ имеет хотя бы одну конкурентную

строку, берется конкурентная строка 𝑡 с наименьшим номером. В противном

случае берется строка 𝑡 подматрицы 𝐿(𝑅[𝑄′], 𝐶[𝑄′]) с наименьшим номером.

6. [Только для АО1М и АО2М.] Среди строк подматрицы 𝐿(𝑅[𝑄′], 𝐶[𝑄′]) и кон-

курентных для набора 𝑄′ строк ищется строка 𝑡 с наименьшим весом 𝑤𝑡(𝐶[𝑄′]).

7. Строятся набор 𝐷 столбцов подматрицы 𝐿(𝑅[𝑄′], 𝐶[𝑄′]), покрывающих строку

𝑡, и набор элементов 𝐵[𝑄′] = 𝐸(𝐿(𝑅[𝑄′], 𝐷)).

8. [Только для АО2К и АО2М.] Из набора 𝐵[𝑄′] удаляются элементы, запре-

щённые в подматрице 𝐿(𝑅[𝑄′], 𝐶[𝑄′]).

9. Текущей вершиной становится 𝑄′, и происходит переход к следующей итерации.

На шаге 𝑠, 𝑠 > 1, на итерации 1 выполняет те же действия, которые описаны в

общей схеме работы алгоритма первого типа. �

Всякий раз при формировании набора 𝐵[𝑄] используются элементы набора

𝐸(𝐿(𝑅[𝑄], 𝐷)), где подматрица 𝐿(𝑅[𝑄], 𝐷) содержит только те столбцы, которые

покрывают некоторую строку 𝑡, выбираемую различными алгоритмами по-разному.

Поэтому число внутренних вершин дерева решений у алгоритмов АО1К и АО1М

(АО2К и АО2М), как правило, меньше числа внутренних вершин дерева решений

алгоритма АО1 (АО2).

Стратегию выбора строки в алгоритмах АО1К и АО2К можно объяснить сле-

дующим образом. Чем «раньше» при построении ветви дерева решений предприни-

маются попытки повторно покрыть конкурентную строку, тем раньше может обна-

ружиться, что из текущей вершины ни одна ветвь дерева решений не заканчивается
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верхним набором, то есть алгоритмы АО1К и АО2К «борются с конкурентны-

ми строками». Эксперименты показали, что деревья решений алгоритмов АО1К и

АО2К, как правило, имеет меньше внутренних и «лишних» висячих вершин, чем

деревья решений алгоритмов АО1 и АО2 соответственно.

Стратегию выбора строки в алгоритмах АО1М и АО2М можно объяснить сле-

дующим образом. Чем меньше вес 𝑤𝑡(𝐶) строки 𝑡, тем «сложнее» покрыть строку

𝑡 столбцами текущей подматрицы 𝐿(𝑅,𝐶), то есть алгоритмы АО1М и АО2М

действуют «от сложного к простому». Оправдана эта стратегия тем, что результат

шага должен покрывать все, в том числе и «сложные» строки, а покрыть «про-

стые» строки, вероятнее всего, получится и позднее, даже после того, как в текущей

подматрице 𝐿(𝑅,𝐶) останется меньше столбцов. Заметим, что «самой сложной»

для покрытия является нулевая строка, при обнаружении которых, фактически, ал-

горитм обрывает построение текущей ветви дерева решений. Алгоритмы АО1М и

АО2М можно назвать «жадными» алгоритмами, минимизирующими число внутрен-

них вершин дерева решений. Эксперименты показали, что дерево решений алгоритма

АО1М (АО2М), как правило, имеет меньше внутренних и «лишних» висячих вер-

шин, чем деревья решений алгоритмов АО1 и АО1К (АО2 и АО2К).

Для реализации описанной схемы алгоритмов дуализации АО1К, АО1М, АО2К

и АО2М удобно использовать механизм рекурсивных вызовов. Выделим две про-

цедуры: BuildSubtreeAO и CreateNodeAO. Процедура BuildSubtreeAO

является рекурсивной и выполняет построение поддерева дерева решений. Проце-

дура CreateNodeAO выполняет построение новой вершины 𝑄 дерева решений и

обновляет состояние алгоритма: набор строк, не покрытых набором 𝑄, набор строк,

конкурентных для 𝑄, набор столбцов, совместимых с набором 𝑄, набор запрещён-

ных элементов.

Введем глобальные переменные: 𝑄 — текущий совместимый набор элементов из

𝐸(𝐿), 𝐿(𝑅,𝐶) — текущая подматрица, 𝐾 — текущий набор конкурентных строк,

𝑍 — текущий набор запрещённых элементов.

Дуализация матрицы 𝐿 алгоритмом AO1K (АО1М, АО2К, АО2М) начинается

c инициализации глобальных переменных и вызова основной рекурсивной процедуры

BuildSubtreeАО (см. алгоритм 2).
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Алгоритм 2 Алгоритмы дуализации АО1К, АО1М, АО2К и АО2М

Вход: 𝐿 — булева матрица размера 𝑚× 𝑛;
Выход: 𝒫(𝐿) — набор неприводимых покрытий матрицы 𝐿;

1: глобальные переменные:

𝑄 — текущий набор элементов из 𝐸(𝐿); 𝐿(𝑅,𝐶) — текущая подматрица;
𝐾 — текущий набор конкурентных строк; 𝑍 — текущий набор запрещённых элементов;

2: 𝑄 := ∅; 𝐾 := ∅; 𝑍 := ∅; 𝑅 := {1, . . . ,𝑚}; 𝐶 := {1, . . . , 𝑛};
3: вызвать BuildSubtreeAO; // построение дерева решений с корнем ∅

1: ПРОЦЕДУРА BuildSubtreeAO

2: выбрать строку 𝑡 из 𝐾 ∪𝑅; // [АО1К, АО2К] 𝑡 — первая по порядку строка из
// 𝐾 при 𝐾 ̸= ∅ или из 𝑅 при 𝐾 = ∅;
// [АО1М, АО2М] 𝑡 — строка с минимальным весом 𝑤𝑡(𝐶);

3: для всех 𝑗 ∈ 𝐶 : 𝑎𝑡𝑗 = 1

4: для всех 𝑖 ∈ 𝑅 : 𝑎𝑖𝑗 = 1

5: если (𝑖, 𝑗) ̸∈ 𝑍 то
6: вызвать CreateNodeAO(𝑖, 𝑗);
7: если (𝑅 ̸= ∅) то вызвать BuildSubtreeAO; // рекурсивный вызов
8: если (𝑅 = ∅ и 𝐾 = ∅) то выдать неприводимое покрытие 𝐻(𝑄);
9: убрать изменения, внесенные в глобальные переменные на шаге 6;

10: удалить 𝑗 из 𝐶;

На шаге 2 процедуры BuildSubtreeAO осуществляется выбор строки 𝑡, кото-

рая определяет ветвление в текущей вершине 𝑄 дерева решений. Каждая дочерняя

вершина 𝑄 ∪ {(𝑖, 𝑗)} удовлетворяет трем условиям: 1) элемент (𝑖, 𝑗) ∈ 𝐸(𝐿(𝑅,𝐶));

2) столбец 𝑗 покрывает стоку 𝑡; 3) элемент (𝑖, 𝑗) не запрещен в 𝐿(𝑅,𝐶). Как

уже было сказано выше, алгоритмы АО1К, АО1М, АО2К и АО2М по-разному

выбирают строку 𝑡, поэтому имеют различные деревья решений.

Построение дочерней вершины происходит при вызове процедуры

CreateNodeAO на шаге 6, которая модифицирует текущее состояние алгоритма.

Перед построением следующей дочерней вершины на шаге 9 восстанавливается

состояние алгоритма до вызова процедуры CreateNodeAO.

Процедура CreateNodeAO имеет два параметра 𝑖 и 𝑗, задающие элемент, до-

бавляемый в текущий набор 𝑄. На шаге 2 из 𝐾 удаляются покрытые столбцом 𝑗

строки, поскольку эти строки являются опорными для 𝑄, но не являются опорными

для 𝑄 ∪ {𝑖, 𝑗}. На шаге 3 в 𝐾 добавляются покрытые столбцом 𝑗 строки из 𝑅,

лежащие выше 𝑖. Эти строки являются конкурентными для 𝑄 ∪ {𝑖, 𝑗}, поскольку
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1: ПРОЦЕДУРА CreateNodeAO(𝑖, 𝑗)

2: удалить из 𝐾 строки, покрытые 𝑗;
3: добавить в 𝐾 строки набора 𝑅, покрытые 𝑗 и лежащие выше 𝑖;
4: удалить из 𝑅 строки, покрытые 𝑗;
5: удалить из 𝐶 столбцы, покрывающие 𝑖;
6: добавить (𝑖, 𝑗) в 𝑄;

// [АО2К и АО2М] удалить охватывающие снизу строки и найти запрещённые элементы:
7: для всех 𝑠 ∈ 𝑅

8: для всех 𝑡 ∈ 𝑅 : 𝑡 > 𝑠

9: если 𝑡 охватывает 𝑠 в подматрице 𝐿(𝑅,𝐶) то
10: удалить 𝑡 из 𝑅;
11: иначе если 𝑠 охватывает 𝑡 в подматрице 𝐿(𝑅,𝐶) то
12: добавить в 𝑍 запрещённые элементы вида (𝑠, 𝑙);

они не покрыты набором столбцов 𝐻(𝑄), но покрыты столбцом 𝑗. На шаге 4 из

𝑅 удаляются строки, покрытые столбцом 𝑗. На шаге 5 из 𝐶 удаляются столбцы,

покрывающие строку 𝑖, поскольку такие столбцы не совместимы с 𝑄∪{𝑖, 𝑗}. Шаги

7–12 выполняются только в алгоритмах АО2К и АО2М. При этом из подмат-

рицы 𝐿(𝑅,𝐶) удаляются охватывающие снизу строки, и в набор 𝐵 добавляются

запрещённые в 𝐿(𝑅,𝐶) элементы.

Оценим сложность шага алгоритмов АО1К и АО1М. Сложность процеду-

ры CreateNodeАО равна 𝒪(𝑚𝑛). Сложность выполнения шага 2 в процедуре

BuildSubtreeAO алгоритмом АО1М равна 𝒪(𝑚𝑛) Число рекурсивных вызо-

вов BuildSubtreeAO для выполнения шага алгоритма (глубина дерева решений)

не превосходит 𝑞, где 𝑞 = min{𝑚,𝑛}. Таким образом, сложность шага алгоритма

АО1К и АО1М равна 𝒪(𝑚𝑛𝑞). Напомним, что сложность алгоритма АО1 также

равна 𝒪(𝑚𝑛𝑞). Для работы алгоритма дополнительно требуется 𝒪(𝑚 + 𝑛) памяти

для текущих наборов строк и столбцов подматрицы и текущего набора конкурентных

строк.

Оценим сложность шага алгоритмов АО2К и АО2М. Сложность процедуры

CreateNodeАО равна 𝒪(𝑚2𝑛) в связи с удалением охватывающих строки и об-

новления множества запрещённых элементов (см. цикл 7–12). Число рекурсивных

вызовов BuildSubtreeAO для выполнения шага алгоритма (глубина дерева реше-

ний) не превосходит 𝑞. Таким образом, сложность шага алгоритма АО2К и АО2М
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равна 𝒪(𝑚2𝑛𝑞). Для работы алгоритма дополнительно требуется 𝒪(𝑚𝑛) памяти

для хранения текущего набора запрещённых элементов.

3.3. Асимптотически оптимальные алгоритмы дуализации второго

типа

Даётся схема асимптотически оптимального алгоритма дуализации второго типа.

В рамках схемы описываются ранее построенные алгоритмы ОПТ, RS и MMCS, а

также новые алгоритмы RUNC, RUNC-M и PUNC. Для этого вводятся дополни-

тельные понятия и обозначения.

3.3.1. Общая схема алгоритмов дуализации второго типа

Асимптотически оптимальные алгоритмы дуализации второго типа перечисляют

с полиномиальной задержкой без повторений максимальные совместимые наборы

столбцов матрицы 𝐿. Опишем общую схему работы алгоритма второго типа. Введем

используемые далее понятия и обозначения.

Пусть 𝐻 — набор столбцов матрицы 𝐿. Строка 𝑖 матрицы 𝐿 называется опорной

для пары (𝐻, 𝑗), 𝑗 ∈ 𝐻, если 𝑎𝑖𝑗 = 1 и 𝑎𝑖𝑙 = 0, 𝑙 ̸= 𝑗, 𝑙 ∈ 𝐻 . Очевидно, набор

𝐻 является совместимым тогда и только тогда, когда для каждого (𝐻, 𝑗), 𝑗 ∈ 𝐻,

существует хотя бы одна опорная строка. Множество всех опорных строк для (𝐻, 𝑗)

обозначим через 𝑆(𝐻, 𝑗).

Столбец 𝑗 матрицы 𝐿 называется запрещённым для набора столбцов 𝐻, если

существует столбец 𝑙 ∈ 𝐻 такой, что столбец 𝑗 покрывает все опорные для (𝐻, 𝑙)

строки. В противном случае будем говорить, что столбец 𝑗 совместим с набором 𝐻 .

Очевидно, что 𝐻 ∪ {𝑗} является совместимым набором тогда и только тогда, когда

столбец 𝑗 совместим с набором 𝐻 .

Работу асимптотически оптимального алгоритма дуализации второго типа можно

представить в виде одностороннего обхода ветвей дерева решений, вершины кото-

рого, за исключением корня, — совместимые наборы столбцов. Корень дерева —

пустой набор столбцов. Висячие вершины либо являются неприводимыми покрыти-

ями, либо соответствуют лишним шагам алгоритма.

Каждый шаг алгоритма является итеративной процедурой, в результате которой

строится одна ветвь дерева, начинающаяся либо в корне, либо в некоторой постро-
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енной ранее внутренней вершине. При переходе от вершины к вершине меняется

состояние алгоритма. Для обозначения того, что некоторый объект 𝑋 , описываю-

щий состояние алгоритма, связан с вершиной 𝐻 будем писать 𝑋[𝐻].

Общая схема асимптотически оптимального алгоритма дуализации второго типа.

На шаге 1 на итерации 1 по некоторому правилу формируется набор столбцов

𝐶[∅] матрицы 𝐿, корень становится текущей вершиной, и происходит переход к

следующей итерации.

Пусть на шаге 𝑠, 𝑠 > 1, на итерации 𝑡, 𝑡 > 1, текущей стала вершина 𝐻 . Тогда

на итерации 𝑡+ 1 выполняется следующее.

1. Если 𝐶[𝐻] = ∅, то происходит переход к следующему шагу (в случае, когда 𝐻

является висячей вершиной, шаг алгоритма считается лишним). В противном

случае берется первый по порядку столбец 𝑗 ∈ 𝐶[𝐻] и удаляется из 𝐶[𝐻].

2. Если 𝑗 является запрещённым для 𝐻, то текущая вершина не меняется, и про-

исходит переход к следующей итерации. В противном случае строится вершина

𝐻 ′ = 𝐻 ∪ {𝑗}.

3. Если столбец 𝑗 покрывает строки, не покрытые набором 𝐻, то результатом шага

становится неприводимое покрытие 𝐻 ′, и происходит переход к следующему

шагу. В противном случае по некоторому правилу строится набор столбцов

𝐶[𝐻 ′].

4. Текущей вершиной становится 𝐻 ′, и происходит переход к следующей итера-

ции.

Пусть результатом шага 𝑠, 𝑠 > 1, является набор 𝐻 . Тогда на шаге 𝑠 + 1 на

итерации 1 среди вершин ветки дерева, соединяющей корень с вершиной 𝐻, ищется

ближайшая к 𝐻 вершина 𝐻 ′ такая, что 𝐶[𝐻 ′] ̸= ∅. Если вершина 𝐻 ′ найдена,

то она становится текущей вершиной, и происходит переход к следующей итерации.

В противном случае алгоритм завершает работу. �

Алгоритмы второго типа различаются правилом построения набора 𝐶[∅] на шаге

1 на итерации 1 и правилом построения набора 𝐶[𝐻] при создании новой вершины

𝐻 . Опишем эти различия на примере алгоритмов ОПТ, MMCS и RS.



72

3.3.2. Алгоритм ОПТ

На шаге 1 на итерации 1 строится подматрица 𝐿(𝑅[∅], 𝐶[∅]) путем последова-

тельного удаления из матрицы 𝐿 охватывающих строк и нулевых столбцов. Далее

корень становится текущей вершиной, и происходит переход к следующей итерации.

Пусть на шаге 𝑠, 𝑠 > 1, на итерации 𝑡, 𝑡 > 1, текущей стала вершина 𝐻 . Тогда

на итерации 𝑡+ 1 выполняется следующее.

1. Если 𝐶[𝐻] = ∅, то происходит переход к следующему шагу. В противном

случае берется первый по порядку столбец 𝑗 ∈ 𝐶[𝐻] и удаляется из 𝐶[𝐻].

2. Строится вершина 𝐻 ′ = 𝐻 ∪ {𝑗}.

3. Если столбец 𝑗 покрывает строки, не покрытые набором 𝐻, то результатом

шага становится неприводимое покрытие 𝐻 ′, и происходит переход к следую-

щему шагу. В противном случае строится подматрица 𝐿(𝑅[𝐻 ′], 𝐶[𝐻 ′]) путем

удаления из подматрицы 𝐿(𝑅[𝐻], 𝐶[𝐻]) строк, покрытые столбцом 𝑗, и столб-

цов, запрещённые для набора 𝐻 ′. Затем из 𝐿(𝑅[𝐻 ′], 𝐶[𝐻 ′]) последовательно

удаляются охватывающие строки и нулевые столбцы.

4. Текущей вершиной становится 𝐻 ′, и происходит переход к следующей итера-

ции.

На шаге 𝑠, 𝑠 > 1, на итерации 1 алгоритм ОПТ выполняет те же действия,

которые описаны в общей схеме работы алгоритма второго типа. �

В алгоритме ОПТ при построении новой вершины 𝐻 в подматрицу

𝐿(𝑅[𝐻], 𝐶[𝐻]) включаются только совместимые с 𝐻 и ненулевые столбцы. По-

этому каждый столбец подматрицы 𝐿(𝑅[𝐻], 𝐶[𝐻]) порождает дочернюю для 𝐻

вершину, то есть нет необходимости проверять, является ли столбец, выбранный из

текущей подматрицы, совместимым с текущим набором.

3.3.3. Алгоритм MMCS

На шаге 1 на итерации 1 выбирается строка 𝑖 матрицы 𝐿, строится набор столб-

цов 𝐶[∅], покрывающих строку 𝑖. Далее из столбцов, не входящих в 𝐶[∅], строится

подматрица 𝐿(𝑅[∅], 𝐷[∅]), корень становится текущей вершиной, и происходит пе-

реход к следующей итерации.
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Пусть на шаге 𝑠, 𝑠 > 1, на итерации 𝑡, 𝑡 > 1, текущей стала вершина 𝐻 . Тогда

на итерации 𝑡+ 1 выполняется следующее.

1. Если 𝐶[𝐻] = ∅, то происходит переход к следующему шагу. В противном

случае берется первый по порядку столбец 𝑗 ∈ 𝐶[𝐻] и удаляется из 𝐶[𝐻].

2. Если 𝑗 является запрещённым для 𝐻, то текущая вершина не меняется, и про-

исходит переход к следующей итерации. В противном случае строится вершина

𝐻 ′ = 𝐻 ∪ {𝑗}, и столбец 𝑗 добавляется в 𝐷[𝐻].

3. Если столбец 𝑗 покрывает строки, не покрытые набором 𝐻, то результатом шага

становится неприводимое покрытие 𝐻 ′, и происходит переход к следующему

шагу. В противном случае в подматрице 𝐿(𝑅[𝐻], 𝐷[𝐻]) выбирается строка

𝑖, не покрытая столбцом 𝑗, формируется набор 𝐶[𝐻 ′] покрывающих строку 𝑖

столбцов подматрицы 𝐿(𝑅[𝐻], 𝐷[𝐻]), и строится подматрица 𝐿(𝑅[𝐻 ′], 𝐷[𝐻 ′])

путем удаления из подматрицы 𝐿(𝑅[𝐻], 𝐷[𝐻]) строк, покрытых столбцом 𝑗, и

столбцов набора 𝐶[𝐻 ′].

4. Текущей вершиной становится 𝐻 ′, и происходит переход к следующей итера-

ции.

На шаге 𝑠, 𝑠 > 1, на итерации 1 алгоритм MMCS выполняет те же действия,

которые описаны в общей схеме работы алгоритма второго типа. �

В алгоритме MMCS при построении новой вершины 𝐻 выбирается некоторая

строка 𝑖 в подматрице 𝐿(𝑅[𝐻], 𝐷[𝐻]). Для вершины 𝐻 строятся только такие

дочерние вершины 𝐻 ∪ {𝑗}, для которых столбец 𝑗 подматрицы 𝐿(𝑅[𝐻], 𝐷[𝐻])

покрывает выбранную строку 𝑖. Такой способ ветвления позволяет, как правило,

строить дерево решений с меньшим числом внутренних вершин, чем у алгоритма

ОПТ (в алгоритме ОПТ все столбцы подматрицы 𝐿(𝑅[𝐻], 𝐶[𝐻]) используются

для построения дочерних вершин).

3.3.4. Алгоритм RS

Для описания алгоритма RS потребуются дополнительные понятия и обозначения.

Пусть 𝐻 — набор столбцов матрицы 𝐿 и пусть 𝑖 ∈ {1, . . . ,𝑚}. Обозначим

набор строк, опорных для (𝐻, 𝑗), 𝑗 ∈ 𝐻, лежащих не ниже строки 𝑖, через 𝑆𝑖(𝐻, 𝑗).

Набор столбцов 𝐻 называется 𝑖-совместимым, если 𝐻 покрывает строки 1, 2, . . . , 𝑖,
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и 𝑆𝑖(𝐻, 𝑗) ̸= ∅, ∀𝑗 ∈ 𝐻 . Пустой набор столбцов будем называть 0-совместимым.

Заметим, что 𝑚-совместимый набор столбцов — неприводимое покрытие матрицы

𝐿.

Пусть 𝑖 > 1, набор столбцов 𝐻 не покрывает строку 𝑖 и является (𝑖 − 1)-

совместимым. Столбец 𝑗 называется 𝑖-запрещённым для набора 𝐻, если либо стол-

бец 𝑗 не покрывает строку 𝑖, либо 𝑖 > 1 и в 𝐻 найдется столбец 𝑙 такой, что столбец

𝑗 покрывает все строки из 𝑆𝑖−1(𝐻, 𝑙).

Заметим, что в случае, когда столбец 𝑗 не является 𝑖-запрещённым для 𝐻,

набор 𝐻 ∪ {𝑗} обладает свойством 𝑖-совместимости, а следовательно совместим.

В противном случае 𝐻 ∪ {𝑗} не является 𝑖-совместимым и в зависимости от строк

𝑖+1, 𝑖+2, . . . ,𝑚 может быть несовместимым. При этом для 𝑖-запрещённого столбца

𝑗 может существовать строка 𝑡 > 𝑖 такая, что 𝑗 не является 𝑡-запрещённым.

Алгоритм RS. На шаге 1 на итерации 1 строится подматрица 𝐿(𝑅[∅], 𝐶[∅]),

состоящая из столбцов матрицы 𝐿, покрывающих первую строку. Корень становится

текущей вершиной, и происходит переход к следующей итерации.

Пусть на шаге 𝑠, 𝑠 > 1, на итерации 𝑡, 𝑡 > 1, текущей стала вершина 𝐻 . Тогда

на итерации 𝑡+ 1 выполняется следующее.

1. Если 𝐶[𝐻] = ∅, то происходит переход к следующему шагу. В противном

случае берется первый по порядку столбец 𝑗 ∈ 𝐶[𝐻] и удаляется из 𝐶[𝐻].

2. Cтроится вершина 𝐻 ′ = 𝐻 ∪ {𝑗}.

3. Если столбец 𝑗 покрывает строки, не покрытые набором 𝐻, то результатом

шага становится неприводимое покрытие 𝐻 ′, и происходит переход к следу-

ющему шагу. В противном случае в подматрице 𝐿(𝑅[𝐻], 𝐶[𝐻]) выбирается

первая по порядку строка 𝑖, не покрытая столбцом 𝑗, формируется набор столб-

цов 𝐶[𝐻 ′], не являющихся 𝑖-запрещёнными для 𝐻 ′, и строится подматрица

𝐿(𝑅[𝐻 ′], 𝐶[𝐻 ′]), содержащая строки подматрицы 𝐿(𝑅[𝐻], 𝐶[𝐻]), не покры-

тые столбцом 𝑗.

4. Текущей вершиной становится 𝐻 ′, и происходит переход к следующей итера-

ции.

На шаге 𝑠, 𝑠 > 1, на итерации 1 алгоритм RS выполняет те же действия, которые

описаны в общей схеме работы алгоритма второго типа. �
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В алгоритме RS при построении новой вершины 𝐻 выбирается не покрытая

набором 𝐻 строка 𝑖 с наименьшим номером. Нарушение правила выбора строки

приводит к потере решений. Для вершины 𝐻 строятся только такие дочерние вер-

шины 𝐻 ∪{𝑗}, для которых столбец 𝑗 матрицы 𝐿 покрывает выбранную строку 𝑖 и

не нарушает свойство 𝑖-совместимости. Такой способ ветвления позволяет строить

дерево решений, число внутренних вершин которого, как правило, меньше чем у

алгоритма ОПТ, но большим, чем у алгоритма MMCS.

3.3.5. Новые алгоритмы дуализации RUNC и RUNC-M

В данном разделе строятся новые асимптотически оптимальные алгоритмы дуа-

лизации второго типа RUNC, RUNC-M. Алгоритмы описываются в рамках общей

схема. Приводится способ их реализации с использованием рекурсивной процедуры.

Анализируется сложность шага алгоритмов.

В построенных алгоритмах RUNC (аббревиатура от Remove Unallowable

Columns) и RUNC-M (RUNC Minimum weight row) комбинируются идеи алго-

ритмов ОПТ и MMCS. Различия алгоритмов RUNC и RUNC-M незначительны,

поэтому ниже дается их общее описание, и делаются замечания относительно осо-

бенностей работы каждого алгоритма.

Алгоритмы RUNC и RUNC-M. На шаге 1 на итерации 1, аналогично алгорит-

му MMCS, выбирается строка 𝑖 матрицы 𝐿 (алгоритм RUNC использует 𝑖 = 1,

алгоритм RUNC-M ищет строку 𝑖 с минимальным весом в матрице 𝐿), строится на-

бор столбцов 𝐶[∅], покрывающих строку 𝑖, и строится подматрица 𝐿(𝑅[∅], 𝐷[∅])

путем последовательного удаления из матрицы 𝐿 охватывающих строк и нулевых

столбцов. Далее корень становится текущей вершиной, и происходит переход к сле-

дующей итерации.

Пусть на шаге 𝑠, 𝑠 > 1, на итерации 𝑡, 𝑡 > 1, текущей стала вершина 𝐻 . Тогда

на итерации 𝑡+ 1 выполняется следующее.

1. Если 𝐶[𝐻] = ∅, то происходит переход к следующему шагу. В противном

случае берется первый по порядку столбец 𝑗 ∈ 𝐶[𝐻], столбец 𝑗 удаляется из

𝐶[𝐻] и из 𝐷[𝐻].

2. Cтроится вершина 𝐻 ′ = 𝐻 ∪ {𝑗}.
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3. Если столбец 𝑗 покрывает строки, не покрытые набором 𝐻, то результатом

шага становится неприводимое покрытие 𝐻 ′, и происходит переход к следу-

ющему шагу. В противном случае в подматрице 𝐿(𝑅[𝐻], 𝐷[𝐻]) выбирается

строка 𝑖, не покрытая столбцом 𝑗 (алгоритм RUNC использует строку с наи-

меньшим номером, алгоритм RUNC-M ищет строку 𝑖 с наименьшим весом

𝑤𝑖(𝐷[𝐻])), формируется набор 𝐶[𝐻 ′] покрывающих строку 𝑖 столбцов подмат-

рицы 𝐿(𝑅[𝐻], 𝐷[𝐻]), и строится подматрица 𝐿(𝑅[𝐻 ′], 𝐷[𝐻 ′]) путем удаления

из подматрицы 𝐿(𝑅[𝐻], 𝐷[𝐻]) покрытых столбцом 𝑗 строк и, аналогично ал-

горитму ОПТ, запрещённых для 𝐻 ′ столбцов.

4. Текущей вершиной становится 𝐻 ′, и происходит переход к следующей итера-

ции.

На шаге 𝑠, 𝑠 > 1, на итерации 1 алгоритм RUNC (RUNC-M) выполняет те же

действия, которые описаны в общей схеме работы алгоритма второго типа. �

Фактически, алгоритмы RUNC и RUNC-M различаются способом выбора стро-

ки 𝑖, определяющей состав дочерних вершин в дереве решений для новой по-

строенной вершины 𝐻 . Экспериментально установлено, что в большинстве случаев

RUNC-M является эффективнее RUNC, поскольку его дерево решений имеет су-

щественно меньше внутренних вершин, что компенсирует вычислительные затраты

поиска строки с минимальным весом. Алгоритм RUNC-M можно назвать «жад-

ным» алгоритмом, минимизирующим число внутренних вершин дерева решений.

Алгоритм RUNC работает быстрее RUNC-M в тех случаях, когда матрица яв-

ляется разреженной и в каждой строке примерно одинаковое число единиц. В таких

входных матрицах выбор строки с минимальным весом в алгоритме RUNC-M не

влияет или мало влияет на число внутренних вершин дерева решений, а затраты на

поиск строки с минимальным весом могут оказаться существенными.

Для реализации описанной схемы алгоритмов дуализации RUNC и RUNC-

M удобно использовать механизм рекурсивных вызовов. Выделим две процедуры

BuildSubtreeRUNC и CreateNodeRUNC. Процедура BuildSubtreeRUNC

является рекурсивной и выполняет построение поддерева дерева решений. Процеду-

ра CreateNodeRUNC выполняет построение новой вершины 𝐻 дерева решений и

обновляет состояние алгоритма: набор строк, не покрытых набором 𝐻, набор столб-

цов, совместимых с 𝐻, и наборы строк, опорных для (𝐻, 𝑗), 𝑗 ∈ 𝐻 .
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Алгоритм 3 Алгоритмы дуализации RUNC и RUNC-M

Вход: 𝐿 — булева матрица размера 𝑚× 𝑛;
Выход: 𝒫(𝐿) — набор неприводимых покрытий матрицы 𝐿;

1: глобальные переменные:

𝐻 — текущий набор столбцов; 𝐿(𝑅,𝐷) — текущая подматрица;
𝑆𝑙, 𝑙 ∈ {1, . . . , 𝑛}, — текущий набор опорных для (𝐻, 𝑙) строк;

2: 𝐻 := ∅; 𝑅 := {1, . . . ,𝑚}; 𝐷 := {1, . . . , 𝑛};
3: для всех 𝑙 = 1, . . . , 𝑛

4: 𝑆𝑙 := ∅;
5: вызвать BuildSubtreeRUNC; // построение дерева решений с корнем ∅

1: ПРОЦЕДУРА BuildSubtreeRUNC

2: выбрать строку 𝑖 ∈ 𝑅; // RUNC: 𝑖 — первая по порядку строка в 𝑅;
// RUNC-M: 𝑖 — строка с минимальным весом 𝑤𝑖(𝐷);

3: для всех (𝑗 ∈ 𝐷 : 𝑎𝑖𝑗 = 1)
4: удалить 𝑗 из 𝐷;
5: вызвать CreateNodeRUNC(𝑗);
6: если (𝑅 = ∅) то
7: выдать неприводимое покрытие 𝐻;
8: иначе
9: вызвать BuildSubtreeRUNC; // рекурсивное построение ветки дерева

10: убрать изменения, внесенные в глобальные переменные на шаге 5;

Введем глобальные переменные: 𝐻 — текущий совместимый набор столбцов,

𝐿(𝑅,𝐷) — текущая подматрица, 𝑆𝑗, 𝑗 ∈ {1, . . . , 𝑛}, — текущий набор опорных

строк для (𝐻, 𝑗).

Дуализация матрицы 𝐿 алгоритмом RUNC (RUNC-M) начинается c ини-

циализации глобальных переменных и вызова основной рекурсивной процедуры

BuildSubtreeRUNC (см. алгоритм 3).

На шаге 2 процедуры BuildSubtreeRUNC осуществляется выбор строки 𝑖,

которая определяет ветвление в текущей вершине 𝐻 дерева решений. Каждая дочер-

няя вершина 𝐻 ∪{𝑗} удовлетворяет условию: столбец 𝑗 покрывает стоку 𝑖. Как уже

было сказано выше, алгоритмы RUNC и RUNC-М по-разному выбирают строку

𝑖, поэтому имеют различные деревья решений.

Построение дочерней вершины происходит при вызове процедуры

CreateNodeRUNC на шаге 5, которая модифицирует текущее состояние алгорит-
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1: ПРОЦЕДУРА CreateNodeRUNC(𝑗)

2: 𝑆𝑗 := {𝑖 ∈ 𝑅 : 𝑎𝑖𝑗 = 1}; // добавить новые опорные строки
3: удалить из 𝑅 строки, покрытые 𝑗;
4: для всех (𝑙 ∈ 𝐻 : 𝑆𝑙 ̸= ∅)
5: удалить из 𝑆𝑙 строки, покрытые столбцом 𝑗; // обновить опорные строки
6: если (∃𝑖 ∈ 𝑆𝑙 : 𝑎𝑖𝑝 = 0,∀𝑝 ∈ 𝐷) то
7: 𝑆𝑙 := ∅;
8: иначе
9: для всех (𝑝 ∈ 𝐷)

10: если (𝑎𝑖𝑝 = 1,∀𝑖 ∈ 𝑆𝑙) то
11: удалить 𝑝 из 𝐷; // удалить запрещённые столбцы
12: добавить 𝑗 в 𝐻;

ма. Перед построением следующей дочерней вершины на шаге 10 восстанавливается

состояние алгоритма до вызова процедуры CreateNodeRUNC.

Процедура CreateNodeRUNC имеет единственный параметр 𝑗 — столбец, до-

бавляемый в текущий набор столбцов 𝐻 . На шаге 2 процедуры CreateNodeRUNC

набор строк из 𝑅, покрытых столбцом 𝑗, становится текущим набором опорных

строк 𝑆𝑗 (эти строки являются опорными для (𝐻 ∪ {𝑗}, 𝑗), поскольку их не покры-

вает набор 𝐻). Далее из 𝑅 удаляются строки, покрытые столбцом 𝑗. Для каждого

𝑙 ∈ 𝐻 такого, что текущий набор опорных для (𝐻, 𝑙) строк не пуст, выполняются

шаги 5–11. На шаге 5 из 𝑆𝑙 удаляются строки, покрытые столбцом 𝑗, так как эти

строки не являются опорными для (𝐻 ∪ {𝑗}, 𝑙). В случае, когда текущий набор 𝑆𝑙,

𝑙 ∈ 𝐻 ∪ {𝑗}, содержит хотя бы одну строку, не покрытую набором столбцов 𝐷,

набор 𝑆𝑙 не влияет на состав запрещённых столбцов в 𝐷, поэтому на шаге 7 набор

𝑆𝑙 заменяется на ∅. На шагах 9–11 из 𝐷 удаляются запрещённые для 𝐻 ∪ {𝑗}
столбцы.

Оценим сложность шага алгоритма RUNC (RUNC-M). Без учета рекурсивных

вызовов сложность процедур BuildSubtreeRUNC и CreateNodeRUNC равна

𝒪(𝑚𝑛). Глубина дерева решений не превосходит 𝑞, где 𝑞 = min{𝑚,𝑛}. Таким

образом, сложность шага алгоритма RUNC (RUNC-M) равна 𝒪(𝑚𝑛𝑞). Для работы

алгоритма дополнительно требуется 𝒪(𝑚+ 𝑛) памяти.
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3.3.6. Новый алгоритм дуализации PUNC

В данном разделе строится новый асимптотически оптимальный алгоритм дуали-

зации второго типа PUNC. Алгоритм описывается в рамках общей схема. Приво-

дится способ его реализации с использованием рекурсивной процедуры. Анализиру-

ется сложность шага алгоритма.

В основе построенного алгоритма PUNC (аббревиатура от Pending Unallowable

Columns) лежит идея алгоритма RS.

Алгоритм PUNC. На шаге 1 на итерации 1 с корнем связывается строка 𝑖[∅] =

1, и строится набор столбцов 𝐶[∅] матрицы 𝐿, покрывающих строку 1. Корень

становится текущей вершиной, и происходит переход к следующей итерации.

Пусть на шаге 𝑠, 𝑠 > 1, на итерации 𝑡, 𝑡 > 1, текущей стала вершина 𝐻 . Тогда

на итерации 𝑡+ 1 выполняется следующее.

1. Если 𝐶[𝐻] = ∅, то происходит переход к следующему шагу. В противном

случае берется первый по порядку столбец 𝑗 ∈ 𝐶[𝐻].

2. Cтроится вершина 𝐻 ′ = 𝐻 ∪ {𝑗}.

3. Ищется первая по порядку строка 𝑖′, 𝑖[𝐻] < 𝑖′ 6 𝑚, не покрытая столбцом 𝑗.

Если найти такую строку не удается, то результатом шага становится непри-

водимое покрытие 𝐻 ′, и происходит переход к следующему шагу. В противном

случае формируется набор столбцов 𝐶[𝐻 ′], не являющихся 𝑖′-запрещёнными

для 𝐻 ′, с вершиной 𝐻 ′ связывается строка 𝑖[𝐻 ′] = 𝑖′.

4. Текущей вершиной становится 𝐻 ′, и происходит переход к следующей итера-

ции.

На шаге 𝑠, 𝑠 > 1, на итерации 1 алгоритм PUNC выполняет те же действия,

которые описаны в общей схеме работы алгоритма второго типа. �

Для реализации описанной схемы алгоритма дуализации PUNC удоб-

но использовать механизм рекурсивных вызовов. Выделим две процедуры:

BuildSubtreePUNC и CreateNodePUNC. Процедура BuildSubtreePUNC

является рекурсивной и выполняет построение поддерева дерева решений. Процеду-

ра CreateNodePUNC выполняет построение новой вершины 𝐻 дерева решений и
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Алгоритм 4 Алгоритм дуализации PUNC

Вход: 𝐿 — булева матрица размера 𝑚× 𝑛;
Выход: 𝒫(𝐿) — набор неприводимых покрытий матрицы 𝐿;

1: глобальные переменные:

𝐻 — текущий совместимый набор столбцов;
𝑖 — текущая строка, не покрытая 𝐻;
𝑆𝑙, 𝑙 ∈ {1, . . . , 𝑛}, — текущий набор опорных для (𝐻, 𝑙) строк;

2: 𝐻 := ∅;
3: 𝑖 := 1;
4: для всех 𝑙 = 1, . . . , 𝑛

5: 𝑆𝑙 := ∅;
6: вызвать BuildSubtreePUNC; // построение дерева решений с корнем ∅

1: ПРОЦЕДУРА BuildSubtreePUNC

2: для всех (𝑗 : 𝑎𝑖𝑗 = 1)
3: если (∀𝑙 ∈ 𝐻, ∃𝑡 ∈ 𝑆𝑙 : 𝑎𝑡𝑗 = 0) то
4: CreateNodePUNC(𝑗);
5: если (𝑖 > 𝑚) то

выдать неприводимое покрытие 𝐻;
6: иначе
7: вызвать BuildSubtreePUNC; //рекурсивный вызов
8: убрать изменения, внесенные в глобальные переменные на шаге 4;

обновляет текущее состояние алгоритма: номер строки, не покрытой набором 𝐻 и

набор строк, опорных для (𝐻, 𝑗), 𝑗 ∈ 𝐻 .

Введем глобальные переменные: 𝐻 — текущий совместимый набор столбцов, 𝑖

— текущая строка, не покрытая набором 𝐻, 𝑆𝑗, 𝑗 ∈ {1, . . . , 𝑛}, — текущий набор

опорных строк для (𝐻, 𝑗).

Дуализация матрицы 𝐿 алгоритмом PUNC начинается c инициализации глобаль-

ных переменных и вызова основной рекурсивной процедуры BuildSubtreePUNC

(см. алгоритм 4).

В вроцедуре BuildSubtreePUNC среди столбцов, покрывающих текущую

строку 𝑖 перебираются 𝑖-совместимые с текущим набором 𝐻 столбцы. Проверка

𝑖-совместимости осуществляется на шаге 3 c использованием текущих наборов опор-

ных строк 𝑆𝑙, 𝑙 ∈ 𝐻 . Для каждого 𝑖-совместимого столбца 𝑗 на шаге 4 вызывается

процедура CreateNodePUNC для построения вершины 𝐻 ∪ {𝑗}, и на шаге 7 ре-
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1: ПРОЦЕДУРА CreateNodePUNC(𝑗)

2: для всех 𝑙 ∈ 𝐻

3: удалить из 𝑆𝑙 строки, покрытые столбцом 𝑗;
4: добавить 𝑗 в 𝐻;
5: пока (𝑖 6 𝑚 и набор 𝐻 покрывает строку 𝑖)
6: если (∃𝑙 ∈ 𝐻 : строка 𝑖 является опорной для (𝐻, 𝑙)) то
7: добавить 𝑖 в 𝑆𝑙;
8: 𝑖 := 𝑖+ 1;

курсивно вызывается процедура BuildSubtreePUNC для построения поддерева

с корнем 𝐻 ∪ {𝑗}.
При вызове CreateNodePUNC(𝑗) текущей вершиной становится 𝐻 ′ = 𝐻∪{𝑗},

обновляются текущая строка 𝑖, не покрытая 𝐻 ′, и наборы строк, опорных для (𝐻 ′, 𝑙),

𝑙 ∈ 𝐻 ′. При этом после вызова процедуры CreateNodePUNC имеют место равен-

ства 𝑆𝑙 = 𝑆𝑖(𝐻, 𝑙), 𝑙 ∈ 𝐻 .

Сравнивая описание алгоритма RS из [77] и подробное описание алгоритма

PUNC, можно заметить следующее. Алгоритм RS после построения очередного на-

бора 𝐻 формирует (модифицирует) набор строк, не покрытых набором 𝐻, и наборы

строк 𝑆(𝐻, 𝑙), 𝑙 ∈ 𝐻 . Алгоритм PUNC после построения очередного набора 𝐻 мо-

дифицирует минимальный номер строки 𝑖, не покрытой набором 𝐻, и наборы строк

𝑆𝑖(𝐻, 𝑙), 𝑙 ∈ 𝐻 . Наборов 𝑆𝑖(𝐻, 𝑙), 𝑙 ∈ 𝐻, достаточно для проверки 𝑖-совместимости

столбцов. При этом временные затраты алгоритма RS на построение и модификацию

наборов 𝑆(𝐻, 𝑙), 𝑙 ∈ 𝐻, как правило, выше временных затрат алгоритма PUNC на

построение и модификацию наборов 𝑆𝑖(𝐻, 𝑙), 𝑙 ∈ 𝐻 .

Сложность выполнения одного шага алгоритма PUNC ограничена 𝒪(𝑚𝑛𝑞), где

𝑞 = min{𝑚,𝑛}. Однако следует отметить, что шаг алгоритма PUNC в среднем

выполняется быстрее шага алгоритмом RUNC и RUNC-M, поскольку при выпол-

нении шага алгоритма PUNC для каждой строки 𝑖 матрицы 𝐿 проверка того, что

строка 𝑖 покрыта текущим набором столбцов 𝐻, осуществляется не более одного

раза.
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Таблица 3.1: Случайные матрицы. Случай 𝑚 = 10, 50 6 𝑛 6 300

ОПТ 0.007 0.06 0.31 1.2 3.2 8.

MMCS 0.008 0.1 0.6 2.3 6.4 15.4

RUNC 0.01 0.06 0.3 1.5 4.3 10.8

RUNC-M 0.011 0.06 0.3 1.4 4. 11.

RS 0.008 0.09 0.5 2.2 6. 14.4

PUNC 0.007 0.06 0.3 1.2 3.2 7.8

AO1 0.009 0.1 0.5 1.7 4.3 10.2

AO1K 0.007 0.04 0.23 0.9 2.4 5.9

AO1M 0.011 0.05 0.24 1. 2.5 6.1

AO2 0.01 0.09 0.5 1.7 4.3 10.1

AO2K 0.009 0.04 0.24 1. 2.3 5.7

AO2M 0.007 0.05 0.24 1. 2.5 6.1

𝑚 10 10 10 10 10 10

𝑛 50 100 150 200 250 300

|𝒫(𝐿)|* 8361 146248 836107 3257326 8666765 20658771

|𝐻|* 3.8 4.1 4.3 4.5 4.6 4.7

3.4. Экспериментальное исследование асимптотически

оптимальных алгоритмов дуализации

Для тестирования эффективности предложенных в работе алгоритмов была про-

ведена серия экспериментов на случайных булевых матрицах, на модельных данных

и прикладных задачах.

Алгоритмы ОПТ, RUNC, RUNC-M и PUNC были реализованы на языке

С++. Отметим одну особенность реализации этих алгоритмов. Элементы каждой

строки булевой матрицы с 𝑛 столбцами представлялись последовательностью би-

тов массива из ⌈𝑛/32⌉ двойных машинных слов. Такое представление позволило

некоторые операции с конечными наборами строк и столбцов заменить на битовых

операций, применяемые к двойным машинным словам. Исходные коды программ

алгоритмов MMCS и RS взяты из http://research.nii.ac.jp/~uno/

dualization.html.

Формирование набора случайных матриц осуществлялось аналогично [39]. Каж-

дая случайная матрица 𝐿 размера 𝑚 × 𝑛 формировалась с помощью датчика слу-

чайных чисел так, что каждый элемент 𝑎𝑖𝑗 с одинаковой вероятностью принимал

значение 0 или 1. Для каждой пары (𝑚,𝑛) обсчитывалось по 20 случайных матриц

𝐿1, . . . , 𝐿20, и вычислялось среднее число покрытий и средняя длина покрытия. Ре-

зультаты счёта на случайных матрицах приведены в таблицах 3.1–3.7. Алгоритмы

сравнивались в следующих случаях:

http://research.nii.ac.jp/~uno/dualization.html
http://research.nii.ac.jp/~uno/dualization.html
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Таблица 3.2: Cлучайные матрицы. Случай 𝑚 = 20, 50 < 𝑛 < 150

ОПТ 0.03 0.17 0.7 2.2 5.2

MMCS 0.04 0.28 1.1 4.1 10.2

RUNC 0.029 0.16 0.6 2.2 5.7

RUNC-M 0.021 0.14 0.6 2. 5.2

RS 0.04 0.27 1.1 3.8 9.2

PUNC 0.03 0.16 0.6 2. 5.

AO1 0.12 0.6 2. 5.9 12.9

AO1K 0.04 0.2 0.7 2.1 5.

AO1M 0.03 0.17 0.6 1.9 4.7

AO2 0.09 0.5 1.7 5.3 11.7

AO2K 0.04 0.2 0.7 2.1 4.9

AO2M 0.03 0.17 0.6 2. 4.8

𝑚 20 20 20 20 20

𝑛 50 75 100 125 150

|𝒫(𝐿)|* 44552 314154 1269495 4254740 10321112

|𝐻|* 4.6 4.8 4.9 5. 5.1

Таблица 3.3: Cлучайные матрицы. Случай 𝑚 = 30, 50 6 𝑛 6 110

ОПТ 0.08 0.4 1.8 4.8

MMCS 0.12 0.7 3. 9.1

RUNC 0.07 0.4 1.7 4.7

RUNC-M 0.06 0.3 1.4 4.3

RS 0.12 0.6 2.9 8.2

PUNC 0.08 0.4 1.6 4.7

AO1 0.7 2.5 9.6 22.9

AO1K 0.2 0.8 3. 7.3

AO1M 0.1 0.5 2. 5.5

AO2 0.4 1.7 7.1 17.8

AO2K 0.16 0.7 2.7 6.7

AO2M 0.1 0.5 2. 5.5

𝑚 30 30 30 30

𝑛 50 70 90 110

|𝒫(𝐿)|* 113307 608535 2772442 7917863

|𝐻|* 5. 5.1 5.3 5.4

1) 𝑛 > 𝑚 (см. табл. 3.1, 3.2, 3.3);

2) 𝑛 < 𝑚 (см. табл. 3.4, 3.5, 3.6);

3) 𝑛 = 𝑚 (см. табл. 3.7).

Столбцы таблиц 3.1–3.7 (кроме первого) соответствуют задачам, сгруппирован-

ным по размерам матриц. Параметры задачи приведены в нижних строках таблиц.

В строках «𝑚» и «𝑛» указаны размеры матриц. В строках «|𝒫(𝐿)|*» и «|𝐻|*»
указаны соответственно среднее число неприводимых покрытий и средняя длина

неприводимого покрытия для матриц одного размера. Остальные строки таблицы

содержат среднее время работы в секундах каждого из тестируемых алгоритмов на

задачах соответствующего размера.
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Таблица 3.4: Cлучайные матрицы. Случай 50 6 𝑚 6 300, 𝑛 = 40

ОПТ 0.09 0.5 1.2 2.2 3.4 5.

MMCS 0.12 0.5 1.3 2.4 3.7 5.2

RUNC 0.07 0.3 0.9 1.6 2.4 3.5

RUNC-M 0.06 0.24 0.6 1. 1.6 2.2

RS 0.13 0.6 1.4 2.5 3.8 5.4

PUNC 0.09 0.4 1.2 2.3 3.8 5.8

AO1 2.4 67.1 > 600 > 600 > 600 > 600

AO1K 0.7 17.3 154.1 > 600 > 600 > 600

AO1M 0.18 1.5 6. 14.6 30.1 55.2

AO2 0.9 9.8 46.8 134.1 273.5 > 600

AO2K 0.3 3.9 19. 56.1 114.6 223.9

AO2M 0.18 1.3 5. 12. 22.7 39.1

𝑚 50 100 150 200 250 300

𝑛 40 40 40 40 40 40

|𝒫(𝐿)|* 94389 333177 712507 1155969 1636729 2183946

|𝐻|* 5.5 6.3 6.8 7.1 7.4 7.6

Таблица 3.5: Cлучайные матрицы. Случай 70 6 𝑚 6 230, 𝑛 = 50

ОПТ 0.8 2.4 5.5 9.7 15.9

MMCS 1. 3.1 6.9 11.8 19.1

RUNC 0.6 1.8 4. 7. 11.3

RUNC-M 0.5 1.4 3. 5.1 8.

RS 1. 3. 6.6 11.2 17.9

PUNC 0.7 2.4 5.8 10.6 18.1

AO1 33.1 329.3 > 600 > 600 > 600

AO1K 9.3 90.6 > 600 > 600 > 600

AO1M 1.8 8.5 26.7 58.1 117.8

AO2 9.8 57.7 195.9 > 600 > 600

AO2K 4. 23.5 81.7 206.3 > 600

AO2M 1.6 7.9 23.4 49.5 97.7

𝑚 70 110 150 190 230

𝑛 50 50 50 50 50

|𝒫(𝐿)|* 705711 1813930 3593400 5682139 8450430

|𝐻|* 6. 6.5 6.9 7.1 7.4

При небольшом количестве строк 𝑚 = 10, 20 среди алгоритмов нет однозначного

лидера. В тройку самых быстрых входят алгоритмы ОПТ, PUNC и RUNC-M (см.

табл. 3.1 и 3.2). В остальных случаях алгоритм RUNC-M опережает другие алго-

ритмы. Причем преимущество в скорости алгоритма RUNC-M тем существенней,

чем больше размер входной матрицы (см. табл. 3.3–3.7). Отставание алгоритмов

ОПТ и RS от алгоритма RUNC-M объясняется тем, что время выполнения каж-

дого шага этих алгоритмов сильно зависит от числа строк 𝑚 входной матрицы.

На скорость работы рассматриваемых алгоритмов существенно влияет число вер-

шин дерева решений. По этому показателю самым эффективным является алгоритм

RUNC-M. Интересно, что дерево решений алгоритма ОПТ, делающего, как пра-

вило, наименьшее число лишних шагов, почти всегда состоит из наибольшего числа



85

Таблица 3.6: Cлучайные матрицы. Случай 90 6 𝑚 6 150, 𝑛 = 60

ОПТ 4.8 8.5 13.1 19.

MMCS 7. 12.4 18.5 26.7

RUNC 3.7 6.5 10.1 14.2

RUNC-M 2.9 5.1 7.9 10.9

RS 6.5 11.2 17.1 23.9

PUNC 4.8 8.7 13.8 20.8

AO1 303.6 > 600 > 600 > 600

AO1K 82.5 254. > 600 > 600

AO1M 13.4 28.9 54.2 88.3

AO2 81.6 199.7 366.4 > 600

AO2K 31.7 78.1 149.5 258.2

AO2M 12.7 27.3 49.7 79.4

𝑚 90 110 130 150

𝑛 60 60 60 60

|𝒫(𝐿)|* 4213716 6880963 9796009 13314592

|𝐻|* 6.3 6.6 6.8 6.9

Таблица 3.7: Cлучайные матрицы. Случай 30 6 𝑚 = 𝑛 6 90

ОПТ 0.015 0.16 1.5 10.4 66.7

MMCS 0.006 0.2 2.3 17.5 112.4

RUNC 0.009 0.12 1.2 8.9 56.5

RUNC-M 0.007 0.1 1. 7.6 48.2

RS 0.012 0.2 2.2 15.7 99.7

PUNC 0.01 0.13 1.5 10.8 70.

AO1 0.09 2.9 40.7 337.8 > 600

AO1K 0.03 0.8 11.1 93.8 > 600

AO1M 0.016 0.25 3. 25.6 174.

AO2 0.05 1.2 15.8 130.7 > 600

AO2K 0.023 0.5 6.1 52. 369.5

AO2M 0.016 0.24 2.9 25.2 168.

𝑚 30 45 60 75 90

𝑛 30 45 60 75 90

|𝒫(𝐿)|* 8113 160566 1618553 10921285 64273167

|𝐻|* 4.8 5.5 5.9 6.2 6.5

вершин. Это обстоятельство наводит на мысль, что число лишних шагов слабо кор-

релирует со скоростью работы алгоритма.

Тестирование алгоритмов также производилось на модельных данных из [77].

Использовались матрицы инцидентности следующих гиперграфов:

1) 𝑀(𝑛) — граф сочетаний, содержащий 𝑛 вершин и 𝑚 = 𝑛/2 ребер вида {2𝑖−
1, 2𝑖}, 𝑖 ∈ {1, . . . ,𝑚} (число неприводимых покрытий матрицы инцидентности

гиперграфа 𝑀(𝑛) равно 2𝑚);

2) 𝐷𝑀(𝑛) — двойственный к графу 𝑀(𝑛) гиперграф (гиперграф ℋ𝑑 называет-

ся двойственным к гиперграфу ℋ, если ребрами ℋ𝑑 являются минимальные

вершинные покрытия ℋ);
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Таблица 3.8: Коэффициент эффективности. Случайные матрицы. Случай 𝑚 = 10, 50 6 𝑛 6 300

ОПТ 61 68 72 74 76 77

RUNC 77 85 88 90 92 92

RUNC-M 86 90 92 93 94 94

PUNC 80 87 90 91 93 94

AO1 17 27 35 41 45 49

AO1K 45 65 74 79 83 85

AO1M 62 75 82 85 87 89

AO2 21 31 38 43 48 51

AO2K 48 66 74 79 83 85

AO2M 63 76 82 85 87 89

𝑚 10 10 10 10 10 10

𝑛 50 100 150 200 250 300

|𝒫(𝐿)|* 8361 146248 836107 3257326 8666765 20658771

|𝐻|* 3.8 4.1 4.3 4.5 4.6 4.7

Таблица 3.9: Коэффициент эффективности. Cлучайные матрицы. Случай 𝑚 = 20, 50 < 𝑛 < 150

ОПТ 52 56 59 62 63

RUNC 70 76 79 82 83

RUNC-M 81 84 86 88 89

PUNC 75 81 84 86 87

AO1 5 7 9 11 13

AO1K 18 26 32 38 41

AO1M 36 46 52 57 61

AO2 8 11 13 15 17

AO2K 23 31 36 42 44

AO2M 40 49 54 58 62

𝑚 20 20 20 20 20

𝑛 50 75 100 125 150

|𝒫(𝐿)|* 44552 314154 1269495 4254740 10321112

|𝐻|* 4.6 4.8 4.9 5. 5.1

3) 𝑆𝐷𝐹𝑃 (𝑛) — cамодвойственный гиперграф c 𝑛 = 7𝑘+2 вершинами и ребрами

{{𝑛}∪𝐸:𝐸∈(𝐹𝑃 (𝑘))𝑑}∪{{𝑛−1}∪𝐸:𝐸∈𝐹𝑃 (𝑘)} ∪ {{𝑛−1, 𝑛}}, где гиперграф

𝐹𝑃 (1)={{1, 2, 3}, {1, 5, 6}, {1, 7, 4}, {2, 4, 5}, {2, 6, 7}, {3, 4, 6}, {3, 5, 7}} за-

дает проективную плоскость Фано, а гиперграф 𝐹 (𝑘), 𝑘 > 1, имеет ребра вида

{𝐸 ∪ (𝐸 + 7) ∪ . . . ∪ (𝐸 + 7(𝑘 − 1)) : 𝐸 ∈ 𝐹𝑃 (1)} (через 𝐸 + 𝑏 обозначается

множество {𝑒 + 𝑏 : 𝑒 ∈ 𝐸}; гиперграф ℋ называется самодвойственным, если

ℋ𝑑 = ℋ);

4) 𝑇𝐻(𝑛) — пороговый граф, содержащий четное число вершин 𝑛 и 𝑚 = 𝑛2

4

ребер вида {𝑖, 2𝑗}, 1 6 𝑖 < 2𝑗 6 𝑛 (число неприводимых покрытий матрицы

инцидентности гиперграфа 𝑇𝐻(𝑛) равно 𝑛/2 + 1);
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Таблица 3.10: Коэффициент эффективности. Cлучайные матрицы. Случай 𝑚 = 30, 50 6 𝑛 6 110

ОПТ 48 52 54 56

RUNC 66 71 74 77

RUNC-M 79 81 83 84

PUNC 73 78 80 83

AO1 2 3 4 5

AO1K 8 11 14 18

AO1M 25 30 35 39

AO2 5 6 7 8

AO2K 13 17 20 23

AO2M 30 34 38 42

𝑚 30 30 30 30

𝑛 50 70 90 110

|𝒫(𝐿)|* 113307 608535 2772442 7917863

|𝐻|* 5. 5.1 5.3 5.4

Таблица 3.11: Коэффициент эффективности. Cлучайные матрицы. Случай 50 6 𝑚 6 300, 𝑛 = 40

ОПТ 41 35 32 30 29 28

RUNC 56 49 44 41 40 38

RUNC-M 73 69 66 65 63 62

PUNC 65 61 58 56 55 53

AO1 1 1 1 — — —
AO1K 2 1 1 — — —
AO1M 11 5 3 2 2 2

AO2 2 1 1 1 1 1

AO2K 6 2 1 1 1 1

AO2M 17 10 7 6 5 4

𝑚 50 100 150 200 250 300

𝑛 40 40 40 40 40 40

|𝒫(𝐿)|* 94389 333177 712507 1155969 1636729 2183946

|𝐻|* 5.5 6.3 6.8 7.1 7.4 7.6

5) 𝑆𝐷𝑇𝐻(𝑛) — cамодвойственный пороговый гиперграф с 𝑛 вершинами и

𝑚= (𝑛−2)2

4 + 𝑛
2 +1 ребрами вида {{𝑛}∪𝐸 : 𝐸 ∈ (𝑇𝐻(𝑛−2))𝑑}∪{{𝑛−1}∪𝐸 :

𝐸 ∈ 𝑇𝐻(𝑛− 2)} ∪ {{𝑛− 1, 𝑛}}.

Тестирование алгоритмов также проводилось на прикладных задачах из [77].

Использовались матрицы инцидентности гиперграфов, возникающих в следующих

прикладных задачах.

1) На основании данных о сделанных игроками ходах в игре Connect-4 состав-

лены два гиперграфа: 𝑊𝐼𝑁 и 𝐿𝑂𝑆𝐸. Данные взяты из UCI Machine Learning

Repository [82]. Каждое ребро гиперграфа 𝑊𝐼𝑁 (𝐿𝑂𝑆𝐸) описывает состояние

первого игрока при его выигрыше (проигрыше). Минимальное вершинное покры-

тие 𝑊𝐼𝑁 (𝐿𝑂𝑆𝐸) определяет оптимальный путь, приводящий первого игрока к

выигрышу (проигрышу). Гиперграфы 𝑊𝐼𝑁(𝑚) и 𝐿𝑂𝑆𝐸(𝑚) состоят из первых 𝑚

ребер гиперграфов 𝑊𝐼𝑁 и 𝐿𝑂𝑆𝐸 соответственно.
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Таблица 3.12: Коэффициент эффективности. Cлучайные матрицы. Случай 70 6 𝑚 6 230, 𝑛 = 50

ОПТ 40 37 34 32 31

RUNC 56 52 49 47 44

RUNC-M 74 70 68 67 66

PUNC 67 65 63 62 60

AO1 1 1 — — —
AO1K 1 1 1 — —
AO1M 9 5 4 3 2

AO2 2 1 1 1 —
AO2K 4 2 2 1 1

AO2M 14 10 8 6 6

𝑚 70 110 150 190 230

𝑛 50 50 50 50 50

|𝒫(𝐿)|* 705711 1813930 3593400 5682139 8450430

|𝐻|* 6. 6.5 6.9 7.1 7.4

Таблица 3.13: Коэффициент эффективности. Cлучайные матрицы. Случай 90 6 𝑚 6 150, 𝑛 = 60

ОПТ 39 38 37 36

RUNC 57 55 53 52

RUNC-M 73 72 71 70

PUNC 69 68 67 67

AO1 1 — — —
AO1K 1 1 — —
AO1M 8 6 5 4

AO2 1 1 1 1

AO2K 3 2 2 2

AO2M 12 10 9 8

𝑚 90 110 130 150

𝑛 60 60 60 60

|𝒫(𝐿)|* 4213716 6880963 9796009 13314592

|𝐻|* 6.3 6.6 6.8 6.9

2) Гиперграфы 𝐵𝑀𝑆 и 𝐴𝐶𝐶 сформированы на основе проблемы поиска совмест-

но встречающихся наборов. Использовались прикладные задачи «BMS-WebView-2»

и «accidents» из FIMI Repository [83]. Гиперграфы 𝐵𝑀𝑆(𝑚) и 𝐴𝐶𝐶(𝑚) состо-

ят из первых 𝑚 ребер гиперграфов 𝐵𝑀𝑆 и 𝐴𝐶𝐶 соответственно. Особенностью

этих задач является то, что в каждом ребре гиперграфа содержатся почти все его

вершины.

Результаты счёта на модельных данных приведены в таблицах. 3.15–3.19. Ре-

зультаты счёта на прикладных задачах приведены в таблицах. 3.20–3.23. В на-

званиях таблиц 3.15–3.23 указаны типы задач. Столбцы таблиц 3.15–3.23 (кроме

первого) соответствуют конкретным задачам, параметры которых приведены в ниж-

них строках таблиц. В строках «𝑚» и «𝑛» указаны размеры матриц. В строках

«|𝒫(𝐿)|» и «|𝐻|*» указаны соответственно число неприводимых покрытий и сред-

няя длина неприводимого покрытия матрицы. Остальные строки таблицы содержат
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Таблица 3.14: Коэффициент эффективности. Cлучайные матрицы. Случай 30 6 𝑚 = 𝑛 6 90

ОПТ 43 42 43 44 43

RUNC 56 59 61 62 63

RUNC-M 74 75 76 77 77

PUNC 63 68 71 73 75

AO1 1 1 1 1 —
AO1K 4 3 2 2 —
AO1M 17 14 12 11 10

AO2 4 3 2 2 —
AO2K 9 7 5 5 4

AO2M 22 20 17 15 14

𝑚 30 45 60 75 90

𝑛 30 45 60 75 90

|𝒫(𝐿)|* 8113 160566 1618553 10921285 64273167

|𝐻|* 4.8 5.5 5.9 6.2 6.5

Таблица 3.15: Модельные данные. Граф сочетаний 𝑀(𝑛)

ОПТ < 0.001 0.031 0.05 0.09 0.17 0.3 0.7 1.4 2.9 5.8

MMCS 0.016 0.05 0.11 0.16 0.3 0.7 1.6 3.1 6.3 13.2

RUNC < 0.001 0.016 0.016 0.05 0.12 0.23 0.5 1.1 2.3 4.6

RUNC-M < 0.001 0.016 0.031 0.06 0.14 0.27 0.6 1.1 2.4 7.

RS 0.05 0.06 0.11 0.2 0.5 0.9 1.7 4.2 8.6 16.8

PUNC 0.016 0.031 0.06 0.17 0.31 0.6 1.4 2.8 5.8 12.2

AO1 0.6 1.9 5.8 17.5 48.1 164.2 446.4 > 600 > 600 > 600

AO1K 0.016 0.016 0.031 0.06 0.11 0.22 0.5 1. 1.9 4.2

AO1M 0.016 0.016 0.05 0.06 0.11 0.25 0.5 1. 2.1 5.3

AO2 0.6 1.7 5.7 16.1 48. 154.5 460.7 > 600 > 600 > 600

AO2K < 0.001 0.016 0.016 0.05 0.12 0.23 0.6 1. 2.3 4.7

AO2M 0.016 0.016 0.031 0.06 0.12 0.25 0.6 1. 2.3 5.1

𝑚 14 15 16 17 18 19 20 21 22 23

𝑛 29 31 33 35 37 39 41 43 45 47

|𝒫(𝐿)| 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608

|𝐻|* 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.

время работы в секундах каждого из тестируемых алгоритмов. В случае, когда ал-

горитм в течении 600 секунд не заканчивал работу, выполнялась принудительная

остановка программы, и в таблицу с результатами заносилась отметка «> 600».

Результаты счёта на модельных данных также, как и на случайных матрицах,

показывают, что среди сравниваемых алгоритмов нет абсолютного лидера.

На матрице инцидентности графа сочетаний 𝑀(𝑛) лучшие результаты демон-

стрирует алгоритм RUNC, от которого незначительно отстают алгоритмы дуализа-

ции ОПТ и RUNC-M. По всей видимости, скорость работы достигается за счёт

«удаления запрещённых столбцов», которое является общим для этих алгоритмов.

Заметим, что изначально в матрице 𝐿 вес каждой строки ранен 2. Поэтому «вы-

брасывание» охватывающих строк алгоритмом ОПТ и поиск строки с минимальным
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Таблица 3.16: Модельные данные. Двойственный к 𝑀(𝑛) гиперграф 𝐷𝑀(𝑛)

ОПТ 0.06 0.8 11.2 46.9 184.5 > 600 > 600 > 600 > 600

MMCS < 0.001 0.11 0.9 3.1 10. 35. 122.3 399.9 > 600

RUNC 0.016 0.05 0.27 0.8 2.5 8.9 28.7 93.6 569.9

RUNC-M < 0.001 0.031 0.28 0.8 2.7 9.5 31.7 109.2 309.2

RS 0.016 0.06 0.6 2.2 6. 20.3 70. 283.6 > 600

PUNC 0.016 0.031 0.17 0.5 1.6 5.6 17.3 51.7 315.4

AO1 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO1K > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO1M 0.7 44.4 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO2 5. 438.8 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO2K 1.9 179.4 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO2M 0.28 10.3 364.2 > 600 > 600 > 600 > 600 > 600 > 600

𝑚 1024 4096 16384 32768 65536 131072 262144 524288 1048576

𝑛 21 25 29 31 33 35 37 39 41

|𝒫(𝐿)| 10 12 14 15 16 17 18 19 20

|𝐻|* 2. 2. 2. 2. 2. 2. 2. 2. 2.

Таблица 3.17: Модельные данные. Самодвойственный гиперграф 𝑆𝐷𝑃𝐹 (𝑛)

ОПТ < 0.001 < 0.001 0.05 2.7 200.9 > 600

MMCS < 0.001 0.016 0.016 0.5 25.3 > 600

RUNC < 0.001 < 0.001 0.016 0.5 20.4 > 600

RUNC-M < 0.001 < 0.001 0.016 0.3 9.1 440.2

RS < 0.001 < 0.001 0.016 0.4 15. > 600

PUNC 0.016 0.016 0.016 0.25 10.4 329.5

AO1 0.016 1. > 600 > 600 > 600 > 600

AO1K < 0.001 0.05 > 600 > 600 > 600 > 600

AO1M < 0.001 0.016 0.031 7.4 > 600 > 600

AO2 < 0.001 0.031 24.7 > 600 > 600 > 600

AO2K < 0.001 < 0.001 1.7 > 600 > 600 > 600

AO2M < 0.001 0.016 0.19 36.4 > 600 > 600

𝑚 15 64 365 2430 16843 117692

𝑛 10 17 24 31 38 45

|𝒫(𝐿)| 15 64 365 2430 16843 117692

|𝐻|* 3.9 6.3 9.6 12.9 16. 19.

весом алгоритмом RUNC-M требуют лишних вычислительных затрат, но не дают

сокращения числа вершин дерева решений.

На матрице инцидентности гиперграфа 𝐷𝑀(𝑛) лучшие результаты у алгоритма

PUNC, который наименее чувствителен к росту числа строк входной матрицы. На-

помним, что гиперграф 𝐷𝑀(𝑛) имеет 𝑚 = 2
𝑛
2 ребер, просмотр которых на каждой

итерации алгоритма требует довольно много времени уже при достаточно малых 𝑛.

Наиболее критичен к числу строк входной матрицы алгоритм ОПТ, теоретическая

сложность шага которого пропорциональна 𝑚2.

Дуализацию порогового графа 𝑇𝐻(𝑛) и самодвойственного гиперграфа

𝑆𝐷𝑇𝐻(𝑛) быстрее других выполняют алгоритмы RS и MMCS. Матрицы инци-

дентности 𝑇𝐻(𝑛) и 𝑆𝐷𝑇𝐻(𝑛) являются сильно разреженными, что по словам
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Таблица 3.18: Модельные данные. Пороговый граф 𝑇𝐻(𝑛)

ОПТ 0.016 0.14 1. 4.9 16.5 42.5 100.2 214.5 412.7

MMCS 0.031 0.031 0.016 < 0.001 < 0.001 0.016 0.016 0.05 0.05

RUNC < 0.001 < 0.001 0.016 0.016 0.031 0.05 0.08 0.12 0.19

RUNC-M < 0.001 0.016 < 0.001 0.016 0.05 0.05 0.08 0.14 0.2

RS < 0.001 0.016 0.016 0.016 < 0.001 0.016 0.016 0.05 0.06

PUNC < 0.001 0.016 0.016 0.05 0.08 0.14 0.19 0.31 0.5

AO1 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO1K > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO1M 0.016 0.09 0.3 1. 2.5 5.2 9.8 16.9 30.9

AO2 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO2K 103.6 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO2M 0.2 2.8 22.3 104.6 364.4 > 600 > 600 > 600 > 600

𝑚 400 900 1600 2500 3600 4900 6400 8100 10000

𝑛 41 61 81 101 121 141 161 181 201

|𝒫(𝐿)| 21 31 41 51 61 71 81 91 101

|𝐻|* 29. 44. 59. 74. 89. 104. 119. 134. 149.

Таблица 3.19: Модельные данные. Самодвойственный гиперграф 𝑆𝐷𝑇𝐻(𝑛)

ОПТ 4.8 15.8 42.2 103.2 217.8 411.1 > 600 > 600 > 600 > 600 > 600

MMCS 0.016 0.031 0.031 0.05 0.08 0.09 0.14 0.23 0.4 0.5 0.7

RUNC 0.016 0.031 0.05 0.08 0.11 0.19 0.4 0.7 1.4 2. 3.1

RUNC-M 0.031 0.031 0.05 0.09 0.12 0.23 0.4 0.9 1.3 2. 3.2

RS 0.016 0.031 0.016 0.05 0.06 0.09 0.16 0.23 0.3 0.6 0.6

PUNC 0.08 0.17 0.3 0.5 0.7 1.7 2.2 5.7 20.9 12.7 27.6

AO1 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO1K > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO1M 2.4 6. 13.6 28. 52.6 85.6 172. 402.9 > 600 > 600 > 600

AO2 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO2K > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO2M 112.9 404.4 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

𝑚 2552 3662 4972 6482 8192 10102 14522 19742 25762 32582 40202

𝑛 103 123 143 163 183 203 243 283 323 363 403

|𝒫(𝐿)| 2552 3662 4972 6482 8192 10102 14522 19742 25762 32582 40202

|𝐻|* 4.4 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

Таблица 3.20: Прикладные задачи. Гиперграф 𝑊𝐼𝑁(𝑚)

ОПТ 0.016 0.05 0.5 1.5 27.8 517.7 > 600 > 600 > 600 > 600

MMCS < 0.001 < 0.001 0.016 0.06 0.3 2.9 12. 50.5 212.8 > 600

RUNC < 0.001 < 0.001 0.016 0.05 0.23 2.3 13. 57.9 511. > 600

RUNC-M < 0.001 < 0.001 0.031 0.031 0.17 1.3 5.1 20.3 75.5 306.5

RS < 0.001 0.016 0.016 0.08 0.5 5.3 21.4 84.7 > 600 > 600

PUNC < 0.001 0.031 0.08 0.22 1.7 20.2 104. 530.9 > 600 > 600

AO1 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO1K 2.2 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO1M 0.016 0.19 5.9 29.2 465. > 600 > 600 > 600 > 600 > 600

AO2 1.3 35.4 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO2K 0.031 0.7 20.8 79.7 > 600 > 600 > 600 > 600 > 600 > 600

AO2M 0.016 0.17 3.2 10.6 150.7 > 600 > 600 > 600 > 600 > 600

𝑚 100 200 400 800 1600 3200 6400 12800 25600 44473

𝑛 76 78 78 78 80 82 82 84 84 85

|𝒫(𝐿)| 287 1145 6069 11675 71840 459502 1277933 4587967 11614885 31111249

|𝐻|* 10.8 12.1 14.3 15.1 16.7 17.9 18.9 19.9 20.8 21.9
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Таблица 3.21: Прикладные задачи. Гиперграф 𝐿𝑂𝑆𝐸(𝑚)

ОПТ 0.031 0.22 1.3 4.2 66.5 > 600 > 600 > 600 > 600

MMCS < 0.001 0.05 0.11 0.3 1.1 12.9 41.8 185.8 519.5

RUNC 0.016 0.031 0.09 0.5 2.2 10.3 58.5 278.6 > 600

RUNC-M < 0.001 0.016 0.05 0.17 0.5 4.3 12.5 49.2 137.7

RS 0.016 0.06 0.16 0.5 1.7 17.1 107.1 449.7 > 600

PUNC 0.016 0.11 0.4 1.5 5.8 71.1 501.2 > 600 > 600

AO1 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO1K 7.1 > 600 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO1M 0.016 0.23 4.2 61.5 > 600 > 600 > 600 > 600 > 600

AO2 2.3 116.9 > 600 > 600 > 600 > 600 > 600 > 600 > 600

AO2K 0.031 0.9 33.9 > 600 > 600 > 600 > 600 > 600 > 600

AO2M 0.031 0.23 2.7 28.7 325.9 > 600 > 600 > 600 > 600

𝑚 100 200 400 800 1600 3200 6400 12800 16635

𝑛 77 77 79 81 81 81 81 85 85

|𝒫(𝐿)| 2341 22760 33087 79632 212761 2396735 4707877 16405082 39180611

|𝐻|* 11.2 12.5 13.7 14.8 15.9 17.2 17.6 19.3 20.1

Таблица 3.22: Прикладные задачи. Гиперграф 𝐴𝐶𝐶(𝑚)

ОПТ < 0.001 < 0.001 0.016 0.05 0.23 1.1 8.2 136.3

MMCS < 0.001 0.016 0.016 0.06 0.27 0.8 3.7 33.

RUNC 0.016 0.031 0.016 0.031 0.09 0.25 0.9 7.6

RUNC-M < 0.001 < 0.001 < 0.001 0.016 0.08 0.25 0.9 7.3

RS < 0.001 < 0.001 0.016 0.05 0.3 0.8 3.4 35.3

PUNC < 0.001 < 0.001 0.016 0.031 0.27 1.4 9.9 208.3

AO1 0.031 25.3 > 600 > 600 > 600 > 600 > 600 > 600

AO1K 0.016 0.3 9.5 300. > 600 > 600 > 600 > 600

AO1M < 0.001 0.12 0.9 5.3 76.3 > 600 > 600 > 600

AO2 < 0.001 0.11 0.8 5.4 68.7 > 600 > 600 > 600

AO2K < 0.001 0.031 0.3 1.5 23.8 196.2 > 600 > 600

AO2M < 0.001 0.05 0.3 1.7 23.1 175.6 > 600 > 600

𝑚 81 447 990 2000 4322 10968 32207 135439

𝑛 64 64 81 81 336 336 336 442

|𝒫(𝐿)| 253 1039 1916 3547 7617 17486 47137 185218

|𝐻|* 2.6 3.8 4.2 4.7 5.1 5.7 6.5 7.3

авторов алгоритмов RS и MMCS является одним из условий эффективности работы

этих алгоритмов.

С задачей дуализации самодвойственого графа 𝑆𝐷𝐹𝑃 (𝑛) снова лучше всех спра-

вился алгоритм PUNC, от которого в основном незначительно отстает алгоритм

дуализации RUNC-M. Тестирование на прикладных задачах показывает, что луч-

шим является алгоритм RUNC-M, преимущество которого особенно очевидно на

входных матрицах большого размера.
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Таблица 3.23: Прикладные задачи. Гиперграф 𝐵𝑀𝑆(𝑚)

ОПТ 0.031 0.16 0.7 3.9 21.1 105.3 310.6

MMCS 0.031 0.17 1.3 15.7 117.4 510.8 > 600

RUNC 0.05 0.19 0.8 3.8 24.7 94.2 261.7

RUNC-M 0.06 0.2 0.8 4. 25.1 113.6 315.6

RS 0.06 0.16 1.3 14.2 98.2 446.7 > 600

PUNC 0.031 0.3 3.5 34.8 217.4 > 600 > 600

AO1 0.09 0.8 13.5 > 600 > 600 > 600 > 600

AO1K 0.09 0.8 9.8 > 600 > 600 > 600 > 600

AO1M 0.12 1.2 20.5 306.4 > 600 > 600 > 600

AO2 0.11 0.8 8.9 116.8 > 600 > 600 > 600

AO2K 0.09 0.8 8.9 106.3 > 600 > 600 > 600

AO2M 0.11 1.2 18.3 286.4 > 600 > 600 > 600

𝑚 62 237 823 2591 6946 17315 30405

𝑛 3340 3340 3340 3340 3340 3340 3340

|𝒫(𝐿)| 4616 15993 89448 438867 1289303 2297560 3064937

|𝐻|* 1.3 1.8 2. 2. 2. 2. 2.1
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Заключение

1. Предложена общая схема синтеза логических корректоров, голосующих по кор-

ректным предикатам. Показано, что схема логического корректора общего вида

может быть использована для описания классических логических алгоритмов

распознавания и ранее построенных логических корректоров.

2. Построен практический логический корректор POLAR с поляризуемой коррек-

тирующей функцией.

3. Разработана методика повышения качества распознавания и скорости обучения

логических корректоров, основанная на построении локальных базисов классов

и итеративном формировании семейств голосующих предикатов по принципу

бустинга.

4. Построены новые асимптотически оптимальные алгоритмы дуализации АО1M,

АО1К, АО2М, АО2К, RUNC, RUNC-M, PUNC, в которых снижение вре-

мени счёта достигается за счёт уменьшения общего числа вершин дерева реше-

ний. Показано, что построенные алгоритмы достаточно быстро обрабатывают

булевы матрицы большого размера.

Одним из дальнейших направлений исследований видится обобщение методов

алгебро-логической коррекции на случай, когда в задаче распознавания на множе-

ствах значений признаков определены отношения частичного порядка. Практический

интерес представляют частичные порядки, являющиеся цепями, антицепями, полу-

решётками, решётками или лесами. При выполнении коррекции потребуются эффек-

тивные перечислительные алгоритмы, для решения задач, обобщающих дуализацию.
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