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Ââåäåíèå

Àêòóàëüíîñòü òåìû èññëåäîâàíèÿ. Ëèíåéíûå îïòèìèçàöèîííûå

ìîäåëè øèðîêî ïðèìåíÿþòñÿ â ýêîíîìèêå è òåõíèêå [11], [13] � [14], [33],

[41], [67], [79], [107], [109] � [111], [126], [130], [158] � [160], çàäà÷àõ ïîìåõî-

óñòîé÷èâîãî àíàëèçà ýêñïåðèìåíòàëüíûõ äàííûõ, ãàðàíòèðóþùåãî îöåíè-

âàíèÿ ïàðàìåòðîâ [12], [123] � [125], [131], [179], [199], ðàñïîçíàâàíèÿ îáðà-

çîâ è êëàññèôèêàöèè [15], [16], [39], [42], [63], [66], [68], [103] � [105], [127],

[146], [147], [162], [163], [175], [180], [183], [187], [198]. Â ñâÿçè ñ âûñîêîé âîñ-

òðåáîâàííîñòüþ â ïðèëîæåíèÿõ ôóíäàìåíòàëüíûå ñâîéñòâà, ýôôåêòèâíûå

ìåòîäû è àëãîðèòìû ïîñòðîåíèÿ, àíàëèçà è ïðèìåíåíèÿ ðàññìàòðèâàåìûõ

ìîäåëåé ÿâëÿþòñÿ îáúåêòîì èíòåíñèâíûõ èññëåäîâàíèé [34], [35], [37], [38],

[70], [71]. Óêàçàííûå ìîäåëè ïðåäñòàâëÿþò ñîáîé ñîâîêóïíîñòü îáúåêòîâ

äâóõ êëàññîâ: ñèñòåì ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé è çàäà÷ ëèíåé-

íîãî ïðîãðàììèðîâàíèÿ, êîòîðûå îáúåäèíÿåò ñîâìåñòíàÿ ìàòåìàòè÷åñêàÿ

òåîðèÿ. Òàê, ðåçóëüòàòû, ïîëó÷åííûå äëÿ ñèñòåì ëèíåéíûõ àëãåáðàè÷åñêèõ

óðàâíåíèé, èìåþò âàæíîå çíà÷åíèå è äëÿ çàäà÷ ëèíåéíîãî ïðîãðàììèðî-

âàíèÿ. Òàêèì îáðàçîì, äëÿ ðåøåíèÿ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ

èìååòñÿ äîñòàòî÷íî ìîùíûé ìàòåìàòè÷åñêèé àïïàðàò.

Îäíàêî íà ïðàêòèêå ÷àñòî âñòðå÷àþòñÿ íåðàçðåøèìûå çàäà÷è ëèíåé-

íîãî ïðîãðàììèðîâàíèÿ. Îñíîâíûìè ïðè÷èíàìè èõ âîçíèêíîâåíèÿ ÿâëÿþò-

ñÿ ïîãðåøíîñòè (øóì) â ýêñïåðèìåíòàëüíûõ äàííûõ, îøèáêè îêðóãëåíèÿ,

âîçíèêàþùèå ïðè âû÷èñëåíèÿõ â àðèôìåòèêå ñ êîíå÷íîé ðàçðÿäíîñòüþ, à

òàêæå íå÷åòêîñòü è ïðîòèâîðå÷èâîñòü èíôîðìàöèè, èñïîëüçóþùåéñÿ ïðè

ïîñòðîåíèè óêàçàííûõ ìîäåëåé. Òàêèå çàäà÷è ïðèíÿòî íàçûâàòü ïðîòèâî-

ðå÷èâûìè èëè íåñîáñòâåííûìè.

Â ñâÿçè ñ òåì, ÷òî íåñîáñòâåííàÿ çàäà÷à ëèíåéíîãî ïðîãðàììèðîâà-

íèÿ íå ïîçâîëÿåò ïîëó÷èòü ñîäåðæàòåëüíóþ èíôîðìàöèþ îá èññëåäóåìîì

ïðîöåññå èëè ÿâëåíèè íåïîñðåäñòâåííî, âîçíèêàåò íåîáõîäèìîñòü â åå óòî÷-

íåíèè, èçìåíåíèè, â ðåçóëüòàòå ÷åãî äîëæíà áûòü ïîëó÷åíà ñîáñòâåííàÿ

çàäà÷à, â íåêîòîðîì ñìûñëå ¾áëèçêàÿ¿ ê èñõîäíîé. Ò.å. âîçíèêàåò çàäà-
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÷à ïðåäâàðèòåëüíîé îáðàáîòêè äàííûõ. Åñëè ðàññìàòðèâàþòñÿ ìîäåëè ìà-

ëîé ðàçìåðíîñòè, òî ñèòóàöèÿ íåðàçðåøèìîñòè ïðåîäîëåâàåòñÿ äîñòàòî÷-

íî ïðîñòûìè ñðåäñòâàìè: êîíòðîëü ïðàâèëüíîñòè èñõîäíûõ äàííûõ ñ ïî-

ñëåäóþùåé èõ ïðàâêîé, îñëàáëåíèå íåêîòîðûõ îãðàíè÷åíèé èëè èõ ïîëíîå

èñêëþ÷åíèå èç ìîäåëè è ò.ä. Îäíàêî â ñëó÷àå ìîäåëè âûñîêîé ðàçìåðíî-

ñòè èëè ïðè àâòîìàòèçèðîâàííîì (ïðîãðàììíîì) ôîðìèðîâàíèè ìîäåëè,

íåîáõîäèìû áîëåå ñëîæíûå (ïðîãðàììíî îáåñïå÷åííûå) ñðåäñòâà êîððåê-

öèè äàííûõ [72]. Òàêèì îáðàçîì, ìàòðè÷íàÿ êîððåêöèÿ ìîæåò ÿâëÿòüñÿ

èíñòðóìåíòîì îáðàáîòêè äàííûõ (èíôîðìàöèè), ïîçâîëÿþùèì ðåøàòü çà-

äà÷è ëèíåéíîãî ïðîãðàììèðîâàíèÿ ñ çàøóìëåííûìè, íåîïðåäåëåííûìè,

íå÷åòêèìè äàííûìè, ÷òî ïîçâîëÿåò åå âêëþ÷èòü â îáëàñòü èññëåäîâàíèÿ

òåîðåòè÷åñêèõ îñíîâ èíôîðìàòèêè.

Íåñìîòðÿ íà òî, ÷òî èçó÷åíèå ìåòîäîâ êîððåêöèè äàííûõ íåñîáñòâåí-

íûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ ÿâëÿåòñÿ îòíîñèòåëüíî íîâûì íà-

ïðàâëåíèåì ðàçâèòèÿ òåîðåòè÷åñêîé èíôîðìàòèêè, ïðåäïîñûëêè ê èññëå-

äîâàíèþ ïðîáëåì êîððåêöèè äàííûõ íåñîáñòâåííûõ çàäà÷ âûïóêëîãî ïðî-

ãðàììèðîâàíèÿ è ïðîòèâîðå÷èâûõ ñèñòåì ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâ-

íåíèé ìîæíî ïðîñëåäèòü åùå â ðàáîòàõ À.Í. Òèõîíîâà [152] � [156]. Ñè-

ñòåìàòè÷åñêèå æå èññëåäîâàíèÿ â äàííîé îáëàñòè áûëè íà÷àòû â 80-õ ãî-

äàõ (XX âåêà) È.È. Åðåìèíûìè [73] � [84], åãî ó÷åíèêàìè è êîëëåãàìè:

Í.Í. Àñòàôüåâûì [1] � [3], À.À. Âàòîëèíûì [23] � [30], [196], [197], Âë.Ä. Ìà-

çóðîâûì, [128], [129], Ë.Ä. Ïîïîâûì [141] � [144], Â.Ä. Ñêàðèíûì [148] �

[150], Ñ.Ï. Òðîôèìîâûì [157], Â.Í. Ôðîëîâûì [158] � [161] è äðóãèìè. Â

ïåðå÷èñëåííûõ ðàáîòàõ ðàññìàòðèâàþòñÿ íåñîáñòâåííûå çàäà÷è ëèíåéíîãî

è âûïóêëîãî ïðîãðàììèðîâàíèÿ, ââîäÿòñÿ ñîîòâåòñòâóþùàÿ òåðìèíîëîãèÿ

è êëàññèôèêàöèÿ íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ [80],

ñòðîèòñÿ è èññëåäóåòñÿ òåîðèÿ äâîéñòâåííîñòè, ââîäÿòñÿ è èññëåäóþòñÿ

äèñêðåòíûå àïïðîêñèìàöèè ðåøåíèé � êîìèòåòíûå êîíñòðóêöèè, ïðåäëàãà-

þòñÿ ðàçëè÷íûå ïîñòàíîâêè è ìåòîäû ðåøåíèÿ çàäà÷ ïîëíîé èëè ÷àñòè÷íîé

(ïðàâàÿ ÷àñòü ñèñòåìû óðàâíåíèé èëè íåðàâåíñòâ) ïàðàìåòðè÷åñêîé êîð-

ðåêöèè è èõ ñîäåðæàòåëüíàÿ, â îñíîâíîì ýêîíîìè÷åñêàÿ, èíòåðïðåòàöèÿ.

Â áîëüøèíñòâå èññëåäîâàíèé ðàññìàòðèâàåòñÿ êîððåêöèÿ ïî âåêòî-

ðó ïðàâîé ÷àñòè îãðàíè÷åíèé è êîýôôèöèåíòàì âåêòîðà öåëåâîé ôóíêöèè.
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Òàê, ìåòîäû êîððåêöèè ïðàâîé ÷àñòè îãðàíè÷åíèé äâîéñòâåííîé ïàðû çà-

äà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ ðàññìàòðèâàëèñü Ô.Ï. Âàñèëüåâûì [17] �

[21], ïðè÷åì âñå âñïîìîãàòåëüíûå çàäà÷è áûëè òàêæå çàäà÷àìè ëèíåéíîãî

ïðîãðàììèðîâàíèÿ.

Â êîíöå 90-õ ãîäîâ (XX â.) èññëåäîâàíèÿ â îáëàñòè êîððåêöèè íåñîá-

ñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ áûëè ïðîäîëæåíû (à òàê-

æå ïðîäîëæàþòñÿ â íàñòîÿùåå âðåìÿ) â ÂÖ èì. À.À. Äîðîäíèöûíà ÐÀÍ

è Ìîñêîâñêîì ïåäàãîãè÷åñêîì ãîñóäàðñòâåííîì óíèâåðñèòåòå Â.À. Ãîðåëè-

êîì [43] � [65], [176] � [177], [132], [134] åãî ó÷åíèêàìè è êîëëåãàìè: Â.È. Åðî-

õèíûì [85], [86], Â.À. Êîíäðàòüåâîé [114], Î.Â. Ìóðàâüåâîé [137], Ð.Ð. Èáà-

òóëëèíûì [108], Ð.Â. Ïå÷åíêèíûì [140], [178], È.À. Çîëòîåâîé [106] è äðóãè-

ìè. Óêàçàííûìè àâòîðàìè øèðîêî èññëåäîâàëàñü êîððåêöèÿ íåñîâìåñòíûõ

ñèñòåì ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé ïðè óñëîâèè íåîòðèöàòåëüíî-

ñòè ðåøåíèÿ, à òàêæå áûëà ïîêàçàíà èõ òåñíàÿ ñâÿçü ñ çàäà÷àìè ìàòðè÷íîé

êîðåêöèè íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ. Â èõ ðàáîòàõ

ðàññìîòðåíû çàäà÷è ëèíåéíîãî ïðîãðàììèðîâàíèÿ ñ íåñîâìåñòíûìè ñèñòå-

ìàìè îãðàíè÷åíèé, ò.å. íåñîáñòâåííûå çàäà÷è ëèíåéíîãî ïðîãðàììèðîâà-

íèÿ 1-ãî è 3-ãî ðîäà â êëàññèôèêàöèè [80]. Â êà÷åñòâå âñïîìîãàòåëüíûõ, ðå-

øåíû çàäà÷è êîððåêöèè íåñîâìåñòíûõ ñèñòåì ëèíåéíûõ óðàâíåíèé è íåðà-

âåíñòâ. Òàê, êîððåêöèÿ çàäà÷è ëèíåéíîãî ïðîãðàììèðîâàíèÿ ðàññìàòðèâà-

ëàñü êàê äâóõêðèòåðèàëüíàÿ ïðîáëåìà ìàêñèìèçàöèè èñõîäíîãî ëèíåéíî-

ãî êðèòåðèÿ è ìèíèìèçàöèè íîðìû êîððåêòèðóþùåé ìàòðèöû îãðàíè÷å-

íèé. Ýòà ïðîáëåìà áûëà ôîðìàëèçîâàíà êàê çàäà÷à ìèíèìèçàöèè íîðìû

êîððåêòèðóþùåé ìàòðèöû ïðè îãðàíè÷åíèè ñíèçó íà çíà÷åíèå èñõîäíîãî

êðèòåðèÿ. Ïîëó÷åíû óñëîâèÿ ñóùåñòâîâàíèÿ ðåøåíèÿ âñåõ ïîñòàâëåííûõ

çàäà÷ è àíàëèòè÷åñêèå âûðàæåíèÿ ðåøåíèé ÷åðåç ñîáñòâåííûå ÷èñëà è âåê-

òîðû ñïåöèàëüíûõ ìàòðèö. Â êà÷åñòâå ïðèëîæåíèÿ ðåøåíà ëèíåéíàÿ çà-

äà÷à àïïðîêñèìàöèè ïî êðèòåðèþ ìèíèìàëüíîãî ðàññòîÿíèÿ. Êðîìå òîãî,

ñ èñïîëüçîâàíèåì ÷åáûøåâñêîé ìàòðè÷íîé íîðìû è ðÿäà ñïåöèôè÷åñêèõ

ñâîéñòâ îäíîðàíãîâûõ ìàòðèö, áûëî ïîëó÷åíî ðåøåíèå çàäà÷è ìèíèìàêñ-

íîé êîððåêöèè ìàòðèöû êîýôôèöèåíòîâ íåñîáñòâåííîé çàäà÷è ëèíåéíîãî

ïðîãðàììèðîâàíèÿ â êàíîíè÷åñêîé ôîðìå ïóòåì ñâåäåíèÿ åå ê çàäà÷å ëè-

íåéíîãî ïðîãðàììèðîâàíèÿ. Ñîâìåñòíî ñ Â.Ë. Ìàòðîñîâûì è Ñ.À. Æäàíî-
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âûì [133] èññëåäîâàëîñü ïðèìåíåíèå ìåòîäîâ êîððåêöèè äàííûõ â çàäà÷å

êëàññèôèêàöèè.

Ðàáîòà â îáëàñòè êîððåêöèè äàííûõ ñèñòåì ëèíåéíûõ àëãåáðàè÷åñêèõ

óðàâíåíèé è íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ âåëèñü è

çàðóáåæíûìè èññëåäîâàòåëÿìè. Òàê, Ï. Àìàðàë (P. Amaral) è Ï. Áàðàõî-

íî (P. Barahona) [168] � [173] íåçàâèñèìî îò ïåðå÷èñëåííûõ âûøå èññëå-

äîâàòåëåé, íî íåñêîëüêî ïîçæå áûëè ïîëó÷åíû ñõîæèå ðåçóëüòàòû â îáëà-

ñòè êîððåêöèè íåñîâìåñòíûõ ñèñòåì ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé è

íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ. Ðÿä âîïðîñîâ êîððåê-

öèè íåñîâìåñòíûõ ñèñòåì ëèíåéíûõ íåðàâåíñòâ ðàññìàòðèâàëèñü À. Äàê-

ñîì (A. Dax) [174]. Â ðàáîòàõ Äæ. Á. Ðîçåíà (J.B. Rosen) è åãî íàó÷íîé

ãðóïïû [189] � [193] áûëà âïåðâûå ïîñòàâëåíà è ðåøåíà çàäà÷à ñòðóêòóðíîé

êîððåêöèè ïåðåîïðåäåëåííîé ñèñòåìû. Ðàññìàòðèâàëàñü ñèñòåìà ëèíåéíûõ

àëãåáðàè÷åñêèõ óðàâíåíèé, â êîòîðîé ëåâàÿ ÷àñòü ñèñòåìû � ìàòðèöà A �

çàäàíà íåòî÷íî (â ñèëó íåäîñòàòî÷íîé àïðèîðíîé èíôîðìàöèè), à âåêòîð

ïðàâîé ÷àñòè b ñîäåðæèò íåòî÷íûå äàííûå (â ñâÿçè ñ îøèáêàìè èçìåðå-

íèÿ). Êðîìå òîãî, ìàòðèöà A îáëàäàåò òåïëèöåâîé ñòðóêòóðîé. Ðåçóëüòà-

òîì ðàáîòû àëãîðèòìà [192] ÿâëÿåòñÿ ðàñøèðåííàÿ ìàòðèöà êîððåêöèè,

îáëàäàþùàÿ òàêîé æå ñòðóêòóðîé, êàê è èñõîäíàÿ ìàòðèöà.

Äàííûé ïîäõîä ê ðåøåíèþ çàäà÷ ñòðóêòóðíîé ìàòðè÷íîé êîððåêöèè

ïîëó÷èë äàëüíåéøåå ðàçâèòèå â ðàáîòàõ áåëüãèéñêèõ ìàòåìàòèêîâ ïîä ðó-

êîâîäñòâîì ïðîôåññîðà Ñ. Âàí Õàôôåë (S. Van Ha�el) [181], [184], [185].

Ïåðå÷èñëåííûå âûøå ðàáîòû îïðåäåëÿþò íàïðàâëåíèÿ ñîâðåìåííûõ

èññëåäîâàíèé: ìàòðè÷íàÿ êîððåêöèÿ ñ èñïîëüçîâàíèåì êâàäðàòè÷íîãî è

ìèíèìàêñíûõ êðèòåðèåâ, à òàêæå ïîëèýäðàëüíûõ íîðì; êîððåêöèÿ íåñîâ-

ìåñòíûõ ñèñòåì çàäàííîé ñòðóêòóðû; ïîñòðîåíèå ýôôåêòèâíûõ â âû÷èñëè-

òåëüíîì ïëàíå ìåòîäîâ êîððåêöèè; êîððåêöèÿ íåñîâìåñòíûõ ñèñòåì ñ ìàò-

ðèöàìè, èìåþùèìè ðàçðåæåííóþ ñòðóêòóðó; ïîñòðîåíèå ìåòîäîâ ðåøåíèÿ

ìíîãîêðèòåðèàëüíûõ çàäà÷; ïîèñê íåîáõîäèìûõ è äîñòàòî÷íûõ óñëîâèé ñó-

ùåñòâîâàíèÿ ðåøåíèÿ çàäà÷ ìàòðè÷íîé êîððåêöèè.

Òàê, â ðàáîòàõ Ïå÷åíêèíà Ð.Â. [44] � [47], [52], [54], [134], [140] ïîëó÷åí

ìåòîä ðåøåíèÿ çàäà÷è îïòèìàëüíîé ìàòðè÷íîé êîððåêöèè íåñîâìåñòíûõ

áëî÷íûõ ñèñòåì ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé ïðè èñïîëüçîâàíèè
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êâàäðàòè÷íîãî è ìèíèìàêñíîãî êðèòåðèåâ, ñôîðìóëèðîâàí êðèòåðèé îï-

òèìàëüíîé êîððåêöèè íåñîâìåñòíîé ñèñòåìû ñ ìàòðèöàìè Òåïëèöà è Âàí-

äåðìîíäà ïðè íàëè÷èè îøèáîê òîëüêî â ëåâîé ÷àñòè è ïðåäëîæåí ìåòîä

êîððåêöèè ñ èñïîëüçîâàíèåì øòðàôíûõ ôóíêöèé íîðì âåêòîðîâ íåâÿçîê,

äëÿ ïëîõî îáóñëîâëåííûõ ñèñòåì ñî ñòðóêòóðîé Âàíäåðìîíäà ñôîðìóëè-

ðîâàí ðåãóëÿðèçîâàííûé êðèòåðèé êîððåêöèè, ðàçðàáîòàí ÷èñëåííûé àë-

ãîðèòì, ðåàëèçóþùèé ïîèñê îïòèìàëüíîãî ðåøåíèÿ â ðàçëè÷íûõ íîðìàõ.

Â ðàáîòàõ Èáàòóëëèíà Ð.Ð. [56] � [58], [108] ïðîäîëæåíî èçó÷åíèå ïðî-

áëåìû ðåãóëÿðèçàöèè è àïïðîêñèìàöèè íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî è

âûïóêëîãî ïðîãðàììèðîâàíèÿ ñôîðìóëèðîâàííîé Òèõîíîâûì À.Í., Åðå-

ìèíûì È.È., Âàòîëèíûì À.À. è äð. Ïðè ýòîì îñíîâíûì êðèòåðèåì êîð-

ðåêöèè äàííûõ ÿâëÿëñÿ êâàäðàòè÷íûé êðèòåðèé. Â äàííûõ ðàáîòàõ ïðåä-

ëîæåíû çàäà÷è êîððåêöèè äàííûõ ñ ìèíèìàêñíûì êðèòåðèåì è ïîñòðîåíû

ìåòîäû êîððåêöèè, êîòîðûå ÿâëÿþòñÿ äëÿ çàäà÷ ëèíåéíîãî ïðîãðàììèðî-

âàíèÿ áîëåå ýôôåêòèâíûìè â âû÷èñëèòåëüíîì ïëàíå, ïðèâåäåíû ôîðìó-

ëèðîâêà è ðåøåíèå çàäà÷ êîððåêöèè âñåõ äàííûõ äëÿ íåñîâìåñòíûõ ñèñòåì

ëèíåéíûõ óðàâíåíèé ñ ìèíèìàêñíûì êðèòåðèåì, ôîðìóëèðîâêà è èññëåäî-

âàíèå çàäà÷ ìèíèìàêñíîé àïïðîêñèìàöèè íåñîáñòâåííûõ ìîäåëåé ëèíåéíî-

ãî ïðîãðàììèðîâàíèÿ â êàíîíè÷åñêîé è ñòàíäàðòíîé ôîðìå, ïîñòðîåíû è

ïðèìåíåíû ê íåêîòîðûì çàäà÷àì îïòèìèçàöèè è óïðàâëåíèÿ ìåòîäû êîð-

ðåêöèè íåñîáñòâåííûõ çàäà÷ ñ íåñîâìåñòíîé ñèñòåìîé îãðàíè÷åíèé.

Â ðàáîòàõ Çîëòîåâîé È.À. [53], [54], [106], ïîëó÷åíû ìåòîäû ðåøåíèÿ

çàäà÷ êîððåêöèè ñèñòåìû îãðàíè÷åíèé è ïîðîãîâûõ çíà÷åíèé ïðè èñïîëü-

çîâàíèè ìèíèìàêñíîãî è êâàäðàòè÷íîãî êðèòåðèåâ, ðàçðàáîòàíû ìåòîäû

îïòèìàëüíîé êîððåêöèè íåñîâìåñòíûõ ñèñòåì ñ ðàçðåæåííûìè ìàòðèöà-

ìè, êîòîðûå ïîçâîëÿþò ïðèìåíèòü äàííûé ïîäõîä äëÿ ðåøåíèÿ ðÿäà ìíî-

ãîêðèòåðèàëüíûõ çàäà÷, ïîëó÷åíî ðåøåíèå çàäà÷è êîððåêöèè äàííûõ ìíî-

ãîêðèòåðèàëüíîé çàäà÷è ïðè èñïîëüçîâàíèè ìåòîäà ïîïàðíûõ ñðàâíåíèé è

ìåòîäà àíàëèçà èåðàðõèé.

Â ðàáîòàõ Êîíäðàòüåâîé Â.À. [59], [112] � [114] ïðîáëåìà êîððåêöèè

ôîðìóëèðóåòñÿ êàê äâóõêðèòåðèàëüíàÿ çàäà÷à, êîòîðàÿ çàêëþ÷àåòñÿ â îä-

íîâðåìåííîì ïîèñêå ìàòðèöû, àïïðîêñèìèðóþùåé ñèñòåìó îãðàíè÷åíèé, è

ðåøåíèè ñêîððåêòèðîâàííîé çàäà÷è ïî èñõîäíîìó êðèòåðèþ, ïîñòàâëåí-
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íàÿ ïðîáëåìà ðåøàåòñÿ ïî ïóòè îò âñïîìîãàòåëüíîé çàäà÷è ìàòðè÷íîé

êîððåêöèè ñèñòåìû ëèíåéíûõ óðàâíåíèé ê çàäà÷å àïïðîêñèìàöèè ñèñòå-

ìû îãðàíè÷åíèé çàäà÷è ëèíåéíîãî ïðîãðàììèðîâàíèÿ è, íàêîíåö, ê äâóõ-

êðèòåðèàëüíîé çàäà÷å, äîêàçûâàþòñÿ íåîáõîäèìûå è äîñòàòî÷íûå óñëîâèÿ

ñóùåñòâîâàíèÿ ðåøåíèÿ çàäà÷ ìàòðè÷íîé êîððåêöèè ñèñòåìû ëèíåéíûõ

óðàâíåíèé, ñèñòåìû ëèíåéíûõ óðàâíåíèé ñ ôèêñèðîâàííûìè ýëåìåíòàìè,

ñèñòåìû îãðàíè÷åíèé êàíîíè÷åñêîé çàäà÷è ëèíåéíîãî ïðîãðàììèðîâàíèÿ,

èëëþñòðèðóþòñÿ ñëó÷àè, êîãäà çàäà÷à àïïðîêñèìàöèè íå èìååò ðåøåíèÿ,

èññëåäóåòñÿ äâà ÷àñòíûõ ñïîñîáà ïàðàìåòðèçàöèè çàäà÷è ëèíåéíîãî ïðî-

ãðàììèðîâàíèÿ: êîððåêöèÿ ñ ïîìîùüþ ìàòðèöû, ðàíã êîòîðîé ðàâåí åäè-

íèöå, è îäèí èç ñïîñîáîâ ìíîãîøàãîâîé êîððåêöèè.

Â ðàáîòàõ Ìóðàâüåâîé Î.Â. [51], [60] � [65], [135] � [138], [177] èññëå-

äóþòñÿ âîïðîñû ñóùåñòâîâàíèÿ è åäèíñòâåííîñòè ðåøåíèÿ â çàäà÷å ìàò-

ðè÷íîé êîððåêöèè íåñîâìåñòíîé ñèñòåìû óðàâíåíèé ïî êðèòåðèÿì åâêëè-

äîâîé è ñïåêòðàëüíîé íîðì ìàòðèöû, ðàññìîòðåíû íåêîòîðûå íå èçó÷åí-

íûå ðàíåå îáîáùåíèÿ çàäà÷è êîððåêöèè íåñîâìåñòíîé ñèñòåìû ëèíåéíûõ

óðàâíåíèé, â ÷àñòíîñòè, ôèêñèðîâàííûå îãðàíè÷åíèÿ ïðè íåêîððåêòèðó-

åìîì âåêòîðå ïðàâîé ÷àñòè ñèñòåìû, ëèíåéíûå îãðàíè÷åíèÿ íà ìàòðèöó

êîððåêöèè, ïîëó÷åíû àíàëèòè÷åñêèå âûðàæåíèÿ äëÿ ðåøåíèÿ çàäà÷è êîð-

ðåêöèè íåñîáñòâåííîé çàäà÷è ËÏ, ôîðìàëèçîâàííîé çàäàíèåì ïîðîãîâîãî

çíà÷åíèÿ öåëåâîé ôóíêöèè è ââåäåíèåì åå â êà÷åñòâå äèðåêòèâíîãî îãðà-

íè÷åíèÿ, ðàññìîòðåíû ñëó÷àè ñ ôèêñèðîâàííîé è êîððåêòèðóåìîé ïðàâîé

÷àñòüþ ñèñòåìû, ïðîèçâîëüíûì è íåîòðèöàòåëüíûì äîïóñòèìûì ïëàíîì,

îãðàíè÷åíèÿìè âèäà ðàâåíñòâà è íåðàâåíñòâà, ôîðìóëèðóåòñÿ è ðåøàåòñÿ

çàäà÷à ëèíåéíîé àïïðîêñèìàöèè äèñêðåòíî çàäàííîé ôóíêöèè ïî êðèòå-

ðèþ, îòëè÷íîìó îò èñïîëüçóåìîãî â ìåòîäå íàèìåíüøèõ êâàäðàòîâ, ïðè-

âîäÿòñÿ ïðîöåäóðû ïîñòðîåíèÿ åäèíîãî êðèòåðèÿ â çàäà÷å âåêòîðíîé îï-

òèìèçàöèè, îñíîâàííûå íà ðàçëè÷íûõ ìåòîäàõ àïïðîêñèìàöèè íåñîâìåñò-

íûõ ñèñòåì ëèíåéíûõ óðàâíåíèé ñ äîïîëíèòåëüíûìè îãðàíè÷åíèÿìè, òåî-

ðèÿ êîððåêöèè íåñîâìåñòíûõ ñèñòåì ëèíåéíûõ óðàâíåíèé ïðèìåíÿåòñÿ äëÿ

êëàññèôèêàöèè ñâîéñòâ â ãåîìåòðè÷åñêèõ çàäà÷àõ.

Â ðàáîòàõ Ëå Í.Ç. [119] � [122] ïðèâîäÿòñÿ ïîñòàíîâêè è îðèãèíàëüíûå

ìåòîäû ðåøåíèÿ íîâûõ çàäà÷ êîððåêöèè íåñîâìåñòíûõ ñèñòåì ëèíåéíûõ
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àëãåáðàè÷åñêèõ óðàâíåíèé è íåðàâåíñòâ ñ áëî÷íîé ñòðóêòóðîé ñ èñïîëüçî-

âàíèåì êâàäðàòè÷íîãî è ìèíèìàêñíîãî êðèòåðèåâ, îñíîâàííûå íà äåêîì-

ïîçèöèîííûõ ñõåìàõ, è àëãîðèòìû, ðåàëèçóþùèå ðàçðàáîòàííûå ìåòîäû.

Òàêèì îáðàçîì, ìåòîäû ìàòðè÷íîé êîððåêöèè äàííûõ, ðàçðàáîòàí-

íûå ïåðå÷èñëåííûìè âûøå àâòîðàìè, ôàêòè÷åñêè ñâîäÿòñÿ ê êîððåêöèè

äîïóñòèìîé îáëàñòè çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ. Íî êîððåêöèÿ

äîïóñòèìîé îáëàñòè çàäà÷è ëèíåéíîãî ïðîãðàììèðîâàíèÿ áåç îáåñïå÷åíèÿ

íåïóñòîòû äîïóñòèìîé îáëàñòè ñîîòâåòñòâóþùåé äâîéñòâåííîé çàäà÷è, íå

ãàðàíòèðóåò ñîáñòâåííîñòü ñêîððåêòèðîâàííîé ëèíåéíîé îïòèìèçàöèîííîé

ìîäåëè [5], [18], [78]. Ïðåäïîñûëêè ê èññëåäîâàíèþ êîððåêöèè äâîéñòâåííîé

ïàðû çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ çàëîæåíû Âàòîëèíûì À.À. [25], à

îäíèì èç ïåðâûõ òðóäîâ â îáëàñòè ìàòðè÷íîé êîððåêöèè äâîéñòâåííîé ïà-

ðû çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ ÿâëÿåòñÿ ðàáîòà Åðîõèíà Â.È. [85].

Â íàñòîÿùåå âðåìÿ ðàáîòû â îáëàñòè ìàòðè÷íîé êîððåêöèè äâîéñòâåííîé

ïàðû çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ àêòèâíî âåäóòñÿ Åðîõèíûì Â.È.,

Êðàñíèêîâûì À.Ñ., Áàðêàëîâîé Î.Ñ. íå òîëüêî ïî êðèòåðèþ åâêëèäîâîé

íîðìû, íî è ïî ìèíèìóìó ïîëèýäðàëüíûõ íîðì.

Òàê, â ðàáîòàõ Êðàñíèêîâà À.Ñ. [88] � [94], [115] � [118] áûëè ðàç-

ðàáîòàíû ìåòîäû îïòèìàëüíîé ïî ìèíèìóìó åâêëèäîâîé ìàòðè÷íîé íîð-

ìû ñîâìåñòíîé êîððåêöèè äàííûõ äâîéñòâåííîé ïàðû íåñîáñòâåííûõ çà-

äà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ, íå èìåþùèõ ñïåöèàëüíîé ñòðóêòóðû, à

òàêæå ñîîòâåòñòâóþùèõ çàäà÷ ñî ñïåöèàëüíîé ñòðóêòóðîé â âèäå çàïðåòà

íà êîððåêöèþ îòäåëüíûõ ýëåìåíòîâ, ñòîëáöîâ, ñòðîê, áëîêîâ ìàòðèöû èëè

ðàñøèðåííîé ìàòðèöû êîýôôèöèåíòîâ èõ îãðàíè÷åíèé. Ïðèâåäåíû óñëî-

âèÿ ðàçðåøèìîñòè çàäà÷ îïòèìàëüíîé ïî ìèíèìóìó åâêëèäîâîé ìàòðè÷íîé

íîðìû ñîâìåñòíîé êîððåêöèè äàííûõ äâîéñòâåííîé ïàðû íåñîáñòâåííûõ

çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ. Ðàçðàáîòàíû, òåîðåòè÷åñêè îáîñíî-

âàíû è ïðîâåðåíû â âû÷èñëèòåëüíûõ ýêñïåðèìåíòàõ àëãîðèòìû ðåøåíèÿ

ïåðå÷èñëåííûõ âûøå çàäà÷ îïòèìàëüíîé ñîâìåñòíîé êîððåêöèè äàííûõ,

èññëåäîâàíû ïðèëîæåíèÿ ïîëó÷åííûõ ìåòîäîâ ê çàäà÷àì ðàñïîçíàâàíèÿ

îáðàçîâ ñ ïåðåñåêàþùèìèñÿ êëàññàìè è çàäà÷àì ãàðàíòèðóþùåãî îöåíèâà-

íèÿ ïàðàìåòðîâ.

Â ðàáîòàõ Áàðêàëîâîé Î.Ñ. [7] � [10] ïîëó÷åíû è òåîðåòè÷åñêè îáîñíî-
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âàíû íåîáõîäèìûå è äîñòàòî÷íûå óñëîâèÿ ñóùåñòâîâàíèÿ ðåøåíèÿ çàäà÷è

êîððåêöèè ñèñòåì ëèíåéíûõ óðàâíåíèé ïî ìèíèìóìó ðàçëè÷íûõ âèäîâ ïî-

ëèýäðàëüíûõ íîðì, ðàçðàáîòàíû ìåòîäû ðåøåíèÿ çàäà÷ êîððåêöèè íåñîâ-

ìåñòíûõ ñèñòåì ëèíåéíûõ óðàâíåíèé è íåðàâåíñòâ ïî ìèíèìóìó ïîëèýä-

ðàëüíûõ íîðì, â òîì ÷èñëå ñ ðàçëè÷íûìè îãðàíè÷åíèÿìè íà ñòðóêòóðó

ìàòðèö êîýôôèöèåíòîâ, ðàçðàáîòàíû ìåòîäû êîððåêöèè çàäà÷ ëèíåéíîãî

ïðîãðàììèðîâàíèÿ ïî ìèíèìóìó ïîëèýäðàëüíûõ íîðì, à òàêæå ñîâìåñòíîé

êîððåêöèè ïàðû äâîéñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ, äëÿ

ìíîãîêðèòåðèàëüíûõ çàäà÷ ðàññìîòðåíû ìåòîäû êîððåêöèè ïî ìèíèìóìó

ïîëèýäðàëüíûõ íîðì ñ èñïîëüçîâàíèåì ôèêñèðîâàííûõ ïîðîãîâûõ çíà÷å-

íèé, à òàêæå îäíîâðåìåííîé êîððåêöèè ñèñòåìû îãðàíè÷åíèé è ïîðîãîâûõ

çíà÷åíèé.

Îäíàêî â îòëè÷èå îò ñëó÷àÿ ðåøåíèÿ çàäà÷ áåçóñëîâíîé îïòèìèçàöèè,

âîçíèêàþùèõ èç ðåãóëèçîâàííûõ çàäà÷ ñèñòåì ëèíåéíûõ óðàâíåíèé è íåðà-

âåíñòâ, ïðè êîòîðîì ïðèìåíåíèå òåîðèè äâîéñòâåííîñòè ìîæåò ïðèâåñòè ê

ñíèæåíèþ ðàçìåðíîñòè çàäà÷è [36], ïðèìåíåíèå òåîðèè äâîéñòâåííîñòè ïðè

ðåøåíèè çàäà÷ ìàòðè÷íîé êîððåêöèè íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðî-

ãðàììèðîâàíèÿ ïðèâîäèò êàê ê óâåëè÷åíèþ ðàçìåðíîñòè ðåøàåìîé çàäà÷è,

òàê è ê óñëîæíåíèþ àëãîðèòìà åå ðåøåíèÿ. Ïîýòîìó âàæíûì àñïåêòîì ÿâ-

ëÿåòñÿ êàê ìîæíî áîëåå òî÷íîå îïðåäåëåíèå îáëàñòè ïðèìåíèìîñòè ìåòîäîâ

îïòèìèçàöèè, îñíîâàííûõ íà êîððåêöèè òîëüêî ïðÿìîé çàäà÷è ëèíåéíîãî

ïðîãðàììèðîâàíèÿ.

Óêàçàííûå ìåòîäû îïèðàþòñÿ íà ëåììó Òèõîíîâà [153] è åå ìîäè-

ôèêàöèè íà íîðìû, îòëè÷íûå îò åâêëèäîâîé, è ïîýòîìó èìåþò ñïåöèàëü-

íûé âèä (îïòèìàëüíûå ìàòðèöû êîððåêöèè îêàçûâàþòñÿ îäíîðàíãîâûìè

[85]). Ìåæäó òåì, ñòðóêòóðà äàííûõ ïðèêëàäíîé çàäà÷è ìîæåò èìåòü áîëåå

ñëîæíûé âèä: áûòü áëî÷íîé, ðàçðåæåííîé, èìåòü ôèêñèðîâàííûå ýëåìåí-

òû, ñòðîêè èëè ñòîëáöû, êîððåêöèÿ êîòîðûõ çàïðåùåíà. Òàêèå çàäà÷è ðàñ-

ñìàòðèâàëèñü è ðàíüøå, îäíàêî äî ñèõ ïîð íå âûðàáîòàíî åäèíîãî ïîäõîäà

ê èññëåäîâàíèþ òàêèõ çàäà÷. Òàêèì îáðàçîì, äëÿ ðåøåíèÿ çàäà÷ ëèíåé-

íîãî ïðîãðàììèðîâàíèÿ ñî ñïåöèàëüíîé ñòðóêòóðîé òðåáóåòñÿ ðàçðàáîòêà

ñïåöèàëüíîãî ìàòåìàòè÷åñêîãî àïïàðàòà.

Â ñâîþ î÷åðåäü, ñïåöèàëüíàÿ ñòðóêòóðà ìàòðèöû êîððåêöèè çàäàåò-
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ñÿ ðàñïîëîæåíèåì ôèêñèðîâàííûõ ýëåìåíòîâ ðàñøèðåííûõ ìàòðèö çàäà÷

ëèíåéíîãî ïðîãðàììèðîâàíèÿ. Íåîáõîäèìîñòü â ôèêñèðîâàíèè ýëåìåíòîâ

÷àùå âñåãî âîçíèêàåò ïðè îáðàáîòêå ðàçðåæåííûõ ìàòðèö, íóëåâûå çíà÷å-

íèÿ ýëåìåíòîâ êîòîðûõ ñîîòâåòñòâóþò àðãóìåíòàì, íå âëèÿþùèì íà êîí-

êðåòíîå óðàâíåíèå ñèñòåìû îãðàíè÷åíèé, è ïðè ðåøåíèè çàäà÷ ëèíåéíîãî

ïðîãðàììèðîâàíèÿ ñ ñèñòåìàìè îãðàíè÷åíèé, ñîäåðæàùèìè îñâîáîæäåí-

íûå îò êîððåêöèè ýëåìåíòû â ñâÿçè ñ ôèçè÷åñêèì ñìûñëîì çàäà÷è. Ðàç-

ðåæåííûå ìàòðèöû âîçíèêàþò ïðè ìîäåëèðîâàíèè ÿâëåíèé è ïðîöåññîâ,

ïðåäñòàâëÿþùèõ ñîáîé ñèñòåìû, ñîñòîÿùèå èç áîëåå ìåëêèõ ïîäñèñòåì,

ñëàáî ñâÿçàííûõ ìåæäó ñîáîé. Òàêàÿ ñèòóàöèÿ íà ïðàêòèêå âîçíèêàåò â

ñëó÷àå íàëè÷èÿ áîëüøîãî ÷èñëà àðãóìåíòîâ, ñâÿçàííûõ áîëüøèì ÷èñëîì

óðàâíåíèé. Òàêèì îáðàçîì, çàäà÷è ñî ñòðóêòóðíîé ìàòðè÷íîé êîððåêöèåé

âîçíèêàþò ÷àùå âñåãî ïðè èçó÷åíèè çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ

âûñîêîé ðàçìåðíîñòè. Äàëåå, åñëè íåò ñîîòâåòñòâóþùèõ îãîâîðîê, áóäåì

ñ÷èòàòü, ÷òî èìååì çàäà÷ó ñî ñïåöèàëüíîé ñòðóêòóðîé, êîòîðàÿ ÿâëÿåòñÿ

çàäà÷åé âûñîêîé ðàçìåðíîñòè.

Â áîëüøèíñòâå èññëåäîâàíèé ÷èñëåííûå ìåòîäû ðåøåíèÿ çàäà÷è ìà-

òåìàòè÷åñêîãî ïðîãðàììèðîâàíèÿ, ê êîòîðîé ñâîäèòñÿ èñõîäíàÿ çàäà÷à

ìàòðè÷íîé êîððåêöèè äàííûõ, íå ðàññìàòðèâàþòñÿ. Èñêëþ÷åíèÿìè ìîãóò

ñëóæèòü ðàáîòû Â.À. Ãîðåëèêà, Â.È. Åðîõèíà, Ð.Â. Ïå÷åíêèíà, È.À. Çîëòî-

åâîé, Í.Ç. Ëå, â êîòîðûõ íàìå÷àþòñÿ ïîäõîäû ê ðàçðàáîòêå ñîîòâåòñòâó-

þùèõ ÷èñëåííûõ ìåòîäîâ è àëãîðèòìîâ ìàòðè÷íîé êîððåêöèè äàííûõ íà

îñíîâå TLN (Total Least Norm � àëãîðèòì îáîáùåííîé íàèìåíüøåé íîðìû)

è ìåòîäà Íüþòîíà [47], [54], [86], [122]. Ê äàííîìó ðÿäó ðàáîò ìîæíî îò-

íåñòè ðàáîòû Â.È. Åðîõèíà [85] è À.Ñ. Êðàñíèêîâà [118], èññëåäîâàâøèõ

÷èñëåííûå ìåòîäû êîððåêöèè äàííûõ ñ ïðèìåíåíèåì ìåòîäà Ìàðêâàðäòà.

Òåì íå ìåíåå, ÷òîáû ìàòðè÷íàÿ êîððåêöèÿ ñòàëà ðåàëüíî ðàáîòàþ-

ùèì èíñòðóìåíòîì àíàëèçà äàííûõ, ôîðìàëèçóåìûõ ñ ïîìîùüþ ëèíåéíûõ

îïòèìèçàöèîííûõ ìîäåëåé, íåîáõîäèìî áîëåå øèðîêî èññëåäîâàòü ñîîòâåò-

ñòâóþùèå ÷èñëåííûå ìåòîäû è àëãîðèòìû, äîáèâàòüñÿ èõ ýôôåêòèâíîñòè,

ïðîâåðÿòü íà áîëüøåì êîëè÷åñòâå âîçíèêàþùèõ íà ïðàêòèêå çàäà÷.

Òàêèì îáðàçîì, àêòóàëüíîé íàó÷íîé ïðîáëåìîé ÿâëÿåòñÿ ðàçâè-

òèå ìåòîäîâ è àëãîðèòìîâ îïòèìàëüíîé ìàòðè÷íîé êîððåêöèè äàííûõ
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íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ 1-ãî ðîäà, ïîçâîëÿþ-

ùèõ âêëþ÷àòü íåñîáñòâåííûå ëèíåéíûå îïòèìèçàöèîííûå ìîäåëè â ÷èñëî

äîïóñòèìûõ è êîíñòðóêòèâíî èñïîëüçóåìûõ ìåòîäîâ òåîðåòè÷åñêîé èíôîð-

ìàòèêè.

Îáúåêòîì èññëåäîâàíèÿ ÿâëÿåòñÿ ïðîáëåìà ìàòðè÷íîé êîððåêöèè

äàííûõ íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ, âîçíèêàþùèõ

â çàäà÷àõ ëèíåéíîé îïòèìèçàöèè, ñâÿçàííûõ ñ ìíîãî÷èñëåííûìè ïðèëîæå-

íèÿìè òåîðåòè÷åñêîé èíôîðìàòèêè (êëàññèôèêàöèÿ, ãàðàíòèðóþùåå îöå-

íèâàíèå ïàðàìåòðîâ è äð.).

Ïðåäìåò èññëåäîâàíèÿ ñîñòàâëÿþò çàäà÷è êîððåêöèè äàííûõ

íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ 1-ãî ðîäà ñ åâêëèäî-

âîé è âçâåøåííîé åâêëèäîâîé ìàòðè÷íîé íîðìîé â ðîëè êðèòåðèÿ êà÷åñòâà

êîððåêöèè.

Öåëü ðàáîòû ñîñòîèò â ïîñòðîåíèè ìàòåìàòè÷åñêîãî àïïàðàòà îï-

òèìàëüíîé ïî ìèíèìóìó åâêëèäîâîé è âçâåøåííîé åâêëèäîâîé ìàòðè÷íîé

íîðìå êîððåêöèè äàííûõ íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâà-

íèÿ 1-ãî ðîäà âûñîêîé ðàçìåðíîñòè, ñòðóêòóðà êîòîðûõ îïðåäåëÿåòñÿ ïðî-

èçâîëüíûì ìíîæåñòâîì ôèêñèðîâàííûõ (íåêîððåêòèðóåìûõ) ýëåìåíòîâ, è

ðàçðàáîòêå ñîîòâåòñòâóþùèõ âû÷èñëèòåëüíûõ àëãîðèòìîâ.

Â îñíîâó èññëåäîâàíèÿ ïîëîæåíà ñëåäóþùàÿ ãèïîòåçà. Ïóñòü íåñîá-

ñòâåííàÿ ëèíåéíàÿ îïòèìèçàöèîííàÿ ìîäåëü ÿâëÿåòñÿ ðåçóëüòàòîì íåòî÷íî

çàäàííûõ èëè ïðîòèâîðå÷èâûõ èñõîäíûõ äàííûõ. Ïðè÷åì, äàííàÿ îïòèìè-

çàöèîííàÿ ìîäåëü ïðåäñòàâëÿåò ñîáîé íåñîáñòâåííóþ çàäà÷ó ËÏ 1-ãî ðîäà.

Îïòèìàëüíàÿ ìàòðè÷íàÿ êîððåêöèÿ, ñâîäèìàÿ ê çàäà÷å îïòèìèçàöèè, ïîç-

âîëÿåò ïîëó÷èòü îïòèìàëüíûå ïî ìèíèìóìó åâêëèäîâîé íîðìû ìàòðèöû

êîððåêöèè H∗
1 èëè [H∗

1 − h∗
1], ãàðàíòèðóþùèå ñîáñòâåííîñòü è ñòðóêòóð-

íûé âèä ñêîððåêòèðîâàííîé ëèíåéíîé ìîäåëè

(A+H∗
1 )x = b, x > 0, c⊤x → max èëè (A+H∗

1 )x = b+ h∗1, x > 0, c⊤x → max

è ñîîòâåòñòâóþùèå îïòèìàëüíûå âåêòîðû x∗1 è u∗1. Ðåçóëüòàòàìè îïòè-

ìàëüíîé ñîâìåñòíîé ìàòðè÷íîé êîððåêöèè, ñâîäèìîé ê çàäà÷å îïòèìèçà-

öèè, ïîçâîëÿþùåé ïîëó÷èòü îïòèìàëüíûå ïî ìèíèìóìó åâêëèäîâîé íîðìû

ìàòðèöû êîððåêöèè, ÿâëÿþòñÿ H∗
2 èëè [H∗

2 −h∗
2], ãàðàíòèðóþùèå ñîáñòâåí-

íîñòü è ñòðóêòóðíûé âèä ñêîððåêòèðîâàííûõ ëèíåéíûõ ìîäåëåé
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 (A+H∗
2 )x = b, x > 0, c⊤x → max,

u⊤(A+H∗
2 ) > c⊤, b⊤u → min,

èëè

 (A+H∗
2 )x = b+ h∗2, x > 0, c⊤x → max,

u⊤(A+H∗
2 ) > c⊤, (b+ h∗2)

⊤u → min,

è ñîîòâåòñòâóþùèå îïòèìàëüíûå âåêòîðû x∗2 è u∗2. Òîãäà H
∗
1 è H∗

2 , h
∗
1 è h∗

2,

x∗1 è x∗2, u
∗
1 è u∗2 ïîïàðíî ñîâïàäàþò.

Äëÿ äîñòèæåíèÿ öåëè ðàáîòû è ïðîâåðêè ïðàâèëüíîñòè âûäâèíóòîé

ãèïîòåçû áûëè ïîñòàâëåíû ñëåäóþùèå çàäà÷è:

1. Ïîëó÷èòü è îáîñíîâàòü óñëîâèÿ ñóùåñòâîâàíèÿ ðåøåíèÿ íåñîá-

ñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ 1-ãî ðîäà, íå èìåþùèõ ñïå-

öèàëüíîé ñòðóêòóðû áåç êîððåêöèè äâîéñòâåííîé çàäà÷è,

2. Îïèðàÿñü íà òåîðåòè÷åñêèå ðåçóëüòàòû, ïîëó÷åííûå ïðè ðåøåíèè

ïðåäûäóùåé çàäà÷è, ïîëó÷èòü è îáîñíîâàòü óñëîâèÿ ñóùåñòâîâàíèÿ ðåøå-

íèÿ íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ 1-ãî ðîäà ñî ñïå-

öèàëüíîé ñòðóêòóðîé â âèäå çàïðåòà íà êîððåêöèþ îòäåëüíûõ ýëåìåíòîâ

ðàñøèðåííîé ìàòðèöû êîýôôèöèåíòîâ èõ îãðàíè÷åíèé,

3. Ðàçðàáîòàòü, òåîðåòè÷åñêè îáîñíîâàòü è ïðîâåðèòü â âû÷èñëèòåëü-

íûõ ýêñïåðèìåíòàõ ýôôåêòèâíûå àëãîðèòìû ðåøåíèÿ ïåðå÷èñëåííûõ âû-

øå çàäà÷ îïòèìàëüíîé êîððåêöèè äàííûõ.

Ìåòîäîëîãè÷åñêóþ îñíîâó èññëåäîâàíèÿ ñîñòàâëÿþò ìåòîäû

êëàññè÷åñêîé è âû÷èñëèòåëüíîé ëèíåéíîé àëãåáðû, ìàòðè÷íîãî àíàëèçà,

ìàòåìàòè÷åñêîãî ïðîãðàììèðîâàíèÿ.

Íàó÷íàÿ íîâèçíà äèññåðòàöèè çàêëþ÷àåòñÿ â òîì, ÷òî ïîëó÷åíû è

òåîðåòè÷åñêè îáîñíîâàíû:

1) óñëîâèÿ ñóùåñòâîâàíèÿ ðåøåíèÿ çàäà÷è îïòèìàëüíîé ïî ìèíèìóìó

åâêëèäîâîé è âçâåøåííîé åâêëèäîâîé ìàòðè÷íûõ íîðì êîððåêöèè äàííûõ

íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ 1-ãî ðîäà, ãàðàíòèðóþ-

ùåãî ñîáñòâåííîñòü ñêîððåêòèðîâàííûõ çàäà÷ è ó÷èòûâàþùåãî èõ ñòðóêòó-

ðó, âûðàæåííûå â òåðìèíàõ êîððåêöèè äîïóñòèìîé îáëàñòè ïðÿìîé çàäà÷è

ëèíåéíîãî ïðîãðàììèðîâàíèÿ,

2) êîíñòðóêòèâíûå ôîðìóëû ïîñòðîåíèÿ óêàçàííîãî ðåøåíèÿ,

3) ñîîòâåòñòâóþùèå ÷èñëåííûå àëãîðèòìû êâàçèíüþòîíîâñêîãî òèïà

ñ àíàëèòè÷åñêèì âû÷èñëåíèåì ïðîèçâîäíûõ.

Ïðàêòè÷åñêàÿ çíà÷èìîñòü ðåçóëüòàòîâ.

Ïîäõîäû, ïîëó÷åííûå ïðè ðàçðàáîòêå ìîäåëåé è àëãîðèòìîâ, èññëåäî-
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âàííûõ â äàííîé ðàáîòå, ìîãóò áûòü èñïîëüçîâàíû äëÿ ïîñòðîåíèÿ ìåòîäîâ

è àëãîðèòìîâ, íàïðàâëåííûõ íà ðåøåíèå ïðàêòè÷åñêèõ çàäà÷, ñâÿçàííûõ ñ

ýêîíîìèêîé, òåõíèêîé, àíàëèçîì äàííûõ, îáíàðóæåíèåì çàêîíîìåðíîñòåé

â äàííûõ è èõ èçâëå÷åíèåì, àíàëèçîì òåêñòà, óñòíîé ðå÷è è èçîáðàæåíèé,

ðàñïîçíàâàíèåì îáðàçîâ, ôèëüòðàöèåé, ðàñïîçíàâàíèåì è ñèíòåçîì èçîá-

ðàæåíèé.

Îñíîâíûå ïîëîæåíèÿ, âûíîñèìûå íà çàùèòó:

• äîñòàòî÷íûå óñëîâèÿ ñóùåñòâîâàíèÿ ðåøåíèÿ çàäà÷ îïòèìàëüíîé ïî
ìèíèìóìó åâêëèäîâîé è âçâåøåííîé åâêëèäîâîé ìàòðè÷íûõ íîðì êîððåê-

öèè äàííûõ íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ 1-ãî ðîäà,

âûðàæåííûå â òåðìèíàõ êîððåêöèè äîïóñòèìîé îáëàñòè ïðÿìîé çàäà÷è;

• äîñòàòî÷íûå óñëîâèÿ ñóùåñòâîâàíèÿ ðåøåíèÿ çàäà÷ îïòèìàëüíîé ïî
ìèíèìóìó åâêëèäîâîé è âçâåøåííîé åâêëèäîâîé ìàòðè÷íûõ íîðì êîððåê-

öèè äàííûõ íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ 1-ãî ðîäà,

âûðàæåííûå â òåðìèíàõ êîððåêöèè äîïóñòèìîé îáëàñòè ïðÿìîé çàäà÷è ñ

ó÷åòîì ñïåöèàëüíîé ñòðóêòóðû;

• ðåäóêöèè çàäà÷ ìàòðè÷íîé êîððåêöèè äàííûõ îïòèìàëüíîé ïî ìè-
íèìóìó åâêëèäîâîé è âçâåøåííîé åâêëèäîâîé ìàòðè÷íûõ íîðì íåñîáñòâåí-

íûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ 1-ãî ðîäà, ó÷èòûâàþùèå îãðàíè-

÷åíèÿ íà ñòðóêòóðó êîððåêòèðóþùåé ìàòðèöû, ê çàäà÷àì áåçóñëîâíîé ìè-

íèìèçàöèè;

• ýôôåêòèâíûå àëãîðèòìû ðåøåíèÿ çàäà÷ îïòèìàëüíîé ïî ìèíèìóìó

åâêëèäîâîé è âçâåøåííîé åâêëèäîâîé ìàòðè÷íûõ íîðì êîððåêöèè äàííûõ

íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ 1-ãî ðîäà.

Âíåäðåíèå è àïðîáàöèÿ ðåçóëüòàòîâ èññëåäîâàíèÿ. Îñíîâ-

íûå ðåçóëüòàòû, ïîëó÷åííûå â äèññåðòàöèè, äîêëàäûâàëèñü è îáñóæäà-

ëèñü íà XIV-îé Âñåðîññèéñêîé êîíôåðåíöèè ¾Ìàòåìàòè÷åñêîå ïðîãðàì-

ìèðîâàíèå è ïðèëîæåíèÿ¿ (Åêàòåðèíáóðã, 2011), Ìåæäóíàðîäíîé êîíôå-

ðåíöèè ¾Ñîâðåìåííûå ïðîáëåìû ïðèêëàäíîé ìàòåìàòèêè è ìåõàíèêè: òåî-

ðèÿ, ýêñïåðèìåíò è ïðàêòèêà¿ (Íîâîñèáèðñê, 2011), Íàó÷íî-òåõíè÷åñêîé

êîíôåðåíöèè ìîëîäûõ ó÷åíûõ Ñàíêò-Ïåòåðáóðãñêîãî òåõíîëîãè÷åñêîãî

èíñòèòóòà (òåõíè÷åñêîãî óíèâåðñèòåòà) ¾Íåäåëÿ íàóêè - 2013¿ (Ñàíêò-

Ïåòåðáóðã, 2013), VII Ìîñêîâñêîé ìåæäóíàðîäíîé êîíôåðåíöèè ïî èñ-
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ñëåäîâàíèþ îïåðàöèé ORM-2013 (Ìîñêâà, 2013), ñåìèíàðå ïî êîíñòðóê-

òèâíîìó íåãëàäêîìó àíàëèçó è íåäèôôåðåíöèðóåìîé îïòèìèçàöèè (CNSA

& NDO) Ñàíêò-Ïåòåðáóðãñêîãî òåõíîëîãè÷åñêîãî èíñòèòóòà (òåõíè÷åñêî-

ãî óíèâåðñèòåòà)(Ñàíêò-Ïåòåðáóðã, 2014). Êðîìå òîãî, îñíîâíûå ðåçóëüòà-

òû, ïîëó÷åííûå â äèññåðòàöèè, äîêëàäûâàëèñü è îáñóæäàëèñü íà íàó÷íî-

ìåòîäè÷åñêèõ ñåìèíàðàõ êàôåäðû ïðèêëàäíîé ìàòåìàòèêè, èíôîðìàòèêè,

ôèçèêè è ìåòîäèêè èõ ïðåïîäàâàíèÿ Áîðèñîãëåáñêîãî ôèëèàëà ôåäåðàëü-

íîãî ãîñóäàðñòâåííîãî áþäæåòíîãî îáðàçîâàòåëüíîãî ó÷ðåæäåíèÿ âûñøåãî

îáðàçîâàíèÿ ¾Âîðîíåæñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò¿ è êàôåäðû èí-

íîâàòèêè è èíôîðìàöèîííûõ òåõíîëîãèé Ñàíêò-Ïåòåðáóðãñêîãî ãîñóäàð-

ñòâåííîãî òåõíîëîãè÷åñêîãî èíñòèòóòà (òåõíè÷åñêîãî óíèâåðñèòåòà).

Ïîëó÷åíî ñâèäåòåëüñòâî î ðåãèñòðàöèè àëãîðèòìà [96].

Ìàòåðèàëû, ñîñòàâëÿþùèå îñíîâíîå ñîäåðæàíèå äèññåðòàöèè, îïóá-

ëèêîâàíû â 9 ïå÷àòíûõ ðàáîòàõ, èç íèõ 4 ñòàòüè � â èçäàíèÿõ, âêëþ÷åííûõ

â ïåðå÷åíü ÂÀÊ ÐÔ [95], [99], [100], [164], 5 � â ñáîðíèêàõ è òðóäàõ êîíôå-

ðåíöèé [97], [98], [101], [102], [165].

Ñòðóêòóðà è îáúåì äèññåðòàöèè. Ðàáîòà ñîñòîèò èç ââåäåíèÿ,

òðåõ ãëàâ, çàêëþ÷åíèÿ, ñïèñêà ëèòåðàòóðû, ñîäåðæàùåãî 199 èñòî÷íèêîâ.

Ïîëíûé îáúåì äèññåðòàöèè ñîñòàâëÿåò 116 ñòðàíèö, îñíîâíàÿ ÷àñòü � 116

ñòðàíèö.

ÎÑÍÎÂÍÎÅ ÑÎÄÅÐÆÀÍÈÅ ÐÀÁÎÒÛ

Ðàáîòà ïîñâÿùåíà ðàçðàáîòêå ýôôåêòèâíûõ ìåòîäîâ îïòèìàëüíîé ïî

ìèíèìóìó åâêëèäîâîé è âçâåøåííîé åâêëèäîâîé ìàòðè÷íûõ íîðì êîððåê-

öèè äàííûõ íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ ïåðâîãî ðî-

äà, âûðàæåííûõ â òåðìèíàõ êîððåêöèè äîïóñòèìîé îáëàñòè ïðÿìîé çàäà÷è

ñ ó÷åòîì ñïåöèàëüíîé ñòðóêòóðû, è èõ ïðàêòè÷åñêèì ïðèëîæåíèÿì.

Âî ââåäåíèè îáîñíîâûâàåòñÿ àêòóàëüíîñòü òåìû èññëåäîâàíèÿ,

îïðåäåëÿåòñÿ öåëü ðàáîòû, âûäâèãàåòñÿ ãèïîòåçà, ôîðìóëèðóþòñÿ çàäà÷è,

êîòîðûå íåîáõîäèìî ðåøèòü äëÿ ðåàëèçàöèè ïîñòàâëåííîé öåëè è ïðîâåð-

êè âûäâèíóòîé ãèïîòåçû, óêàçûâàåòñÿ ìåòîäîëîãè÷åñêàÿ îñíîâà èññëåäîâà-

íèÿ, ðàñêðûâàåòñÿ íàó÷íàÿ íîâèçíà è ïðàêòè÷åñêàÿ çíà÷èìîñòü äèññåðòà-

öèîííîé ðàáîòû, âûäâèãàþòñÿ îñíîâíûå ïîëîæåíèÿ, âûíîñèìûå íà çàùèòó,
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ïðåäñòàâëåíî îñíîâíîå ñîäåðæàíèå ðàáîòû.

Â ïåðâîé ãëàâå ðàññìàòðèâàþòñÿ ïîñòàíîâêè çàäà÷ ìàòðè÷íîé êîð-

ðåêöèè áåç ñòðóêòóðíûõ îãðàíè÷åíèé, ñòðóêòóðíîé, à òàêæå ñòðóêòóðíîé

âçâåøåííîé ìàòðè÷íîé êîððåêöèè êàê äâîéñòâåííîé ïàðû íåñîáñòâåííûõ

çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ (ËÏ), òàê è íåñîáñòâåííîé çàäà÷è ËÏ

ïåðâîãî ðîäà. Ïðè÷åì êàæäàÿ çàäà÷à ðàññìàòðèâàåòñÿ â äâóõ ïîñòàíîâêàõ:

êîððåêöèÿ òîëüêî ëåâîé ÷àñòè ñèñòåì îãðàíè÷åíèé è êîððåêöèÿ îáåèõ ÷à-

ñòåé ñèñòåì îãðàíè÷åíèé. Ïðèâîäÿòñÿ âñïîìîãàòåëüíûå ëåììû. Ïðèâåäåíû

äîñòàòî÷íûå óñëîâèÿ ðàçðåøèìîñòè íåñîáñòâåííûõ çàäà÷ ËÏ ïåðâîãî ðîäà

ïîñëå ìàòðè÷íîé êîððåêöèè èõ äîïóñòèìîé îáëàñòè.

Âî âòîðîé ãëàâå ðàññìàòðèâàåòñÿ ìåòîä Áðîéäåíà-Ôëåò÷åðà-

Ãîëüäôàðáà-Øåííî. Íàõîäÿòñÿ àíàëèòè÷åñêèå ïðîèçâîäíûå äëÿ öåëåâûõ

ôóíêöèé çàäà÷ ìàòðè÷íîé êîððåêöèè áåç ñòðóêòóðíûõ îãðàíè÷åíèé, ñòðóê-

òóðíîé, à òàêæå ñòðóêòóðíîé âçâåøåííîé ìàòðè÷íîé êîððåêöèè êàê äâîé-

ñòâåííîé ïàðû íåñîáñòâåííûõ çàäà÷ ËÏ, òàê è íåñîáñòâåííîé çàäà÷è ËÏ

ïåðâîãî ðîäà. Îñíîâûâàÿñü íà ìåòîäå Áðîéäåíà-Ôëåò÷åðà-Ãîëüäôàðáà-

Øåííî, ïîëó÷åí àëãîðèòì ìèíèìèçàöèè, ïðèìåíèìûé ê ëþáîé èç ïåðå-

÷èñëåííûõ âûøå ôóíêöèé.

Â òðåòüåé ãëàâå ðàññìàòðèâàþòñÿ çàäà÷è ñðåäíåé ðàçìåðíîñòè

bgdbg1, mondou2 èç ñèñòåìû netlib [182]. Ïðèâîäèòñÿ îïèñàíèå è ãðàôè-

÷åñêîå ïðåäñòàâëåíèå äàííûõ çàäà÷. Ïðîâîäÿòñÿ âû÷èñëèòåëüíûå ýêñïåðè-

ìåíòû, ïîäòâåðæäàþùèå ðàáîòîñïîñîáíîñòü ðàçðàáîòàííûõ ìåòîäîâ. Ðå-

çóëüòàòû ðàáîòû àëãîðèòìà ïðåäñòàâëåíû â âèäå ãðàôèêîâ ñõîäèìîñòè, à

òàêæå ãèñòîãðàìì îòíîñèòåëüíîé âåëè÷èíû êîððåêöèè ýëåìåíòîâ ìàòðèö

ñèñòåì îãðàíè÷åíèé çàäà÷ ËÏ.

Çàêëþ÷åíèå ñîäåðæèò ðåçóëüòàòû è âûâîäû äèññåðòàöèè.
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Ãëàâà 1. Ìàòðè÷íàÿ êîððåêöèÿ íåñîáñòâåííûõ çàäà÷

ëèíåéíîãî ïðîãðàììèðîâàíèÿ ïî ìèíèìóìó

åâêëèäîâîé íîðìû

1.1. Ïîñòàíîâêè çàäà÷è ìàòðè÷íîé êîððåêöèè

Ïóñòü

L(A, b, c) : Ax = b, x > 0, c⊤x → max (1.1)

� íåêîòîðàÿ çàäà÷à ëèíåéíîãî ïðîãðàììèðîâàíèÿ â êàíîíè÷åñêîé ôîðìå,

L∗(A, b, c) : u⊤A > c⊤, b⊤u → min (1.2)

� äâîéñòâåííàÿ åé çàäà÷à ëèíåéíîãî ïðîãðàììèðîâàíèÿ â ñòàíäàðòíîé

ôîðìå, ãäå A ∈ Rm×n, c, x ∈ Rn, b, u ∈ Rm. Ñèìâîëîì X (A, b) ,
{x |Ax = b, x > 0} îáîçíà÷èì äîïóñòèìîå ìíîæåñòâî çàäà÷è L(A, b, c),

à ñèìâîëîì U(A, c) ,
{
u
∣∣u⊤A > c⊤

}
� äîïóñòèìîå ìíîæåñòâî çàäà÷è

L∗(A, b, c).

Çàäà÷è (1.1), (1.2) óñëîâèìñÿ ðàññìàòðèâàòü êàê íåñîáñòâåííûå, â ñè-

ëó ÷åãî õîòÿ áû îäíî èç ìíîæåñòâ X (A, b) èëè U(A, c) ÿâëÿåòñÿ ïóñòûì.

Çàäà÷åé D[H −h] ìàòðè÷íîé êîððåêöèè ïàðû âçàèìíî äâîéñòâåííûõ íåñîá-

ñòâåííûõ çàäà÷ ËÏ L(A, b, c) è L∗(A, b, c) áóäåì íàçûâàòü çàäà÷ó ïîñòðîå-

íèÿ ìàòðèöû [H − h] ∈ Rm×(n+1), îáëàäàþùåé ìèíèìàëüíîé åâêëèäîâîé

íîðìîé è ãàðàíòèðóþùåé ðàçðåøèìîñòü ñêîððåêòèðîâàííûõ çàäà÷{
L(A+H, b+ h, c) : (A+H)x = b+ h, x > 0, c⊤x → max,

L∗(A+H, b+ h, c) : u⊤(A+H) > c⊤, (b+ h)⊤u → min .

Çàäà÷åé DH ìàòðè÷íîé êîððåêöèè òîëüêî ëåâûõ ÷àñòåé (h = 0) ïà-

ðû âçàèìíî äâîéñòâåííûõ íåñîáñòâåííûõ çàäà÷ ËÏ L(A, b, c) è L∗(A, b, c)

áóäåì íàçûâàòü çàäà÷ó ïîñòðîåíèÿ ìàòðèöû H ∈ Rm×n, îáëàäàþùåé ìè-

íèìàëüíîé åâêëèäîâîé íîðìîé è ãàðàíòèðóþùåé ñîâìåñòíîñòü ñêîððåêòè-
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ðîâàííûõ çàäà÷{
L(A+H, b, c) : (A+H)x = b, x > 0, c⊤x → max,

L∗(A+H, b, c) : u⊤(A+H) > c⊤, b⊤u → min .

Îäíîâðåìåííî ñ çàäà÷àìè D[H −h] è DH áóäåì ðàññìàòðèâàòü êîð-

ðåêöèþ ïðîòèâîðå÷èâîé ñèñòåìû îãðàíè÷åíèé çàäà÷è L(A, b, c), ôîðìàëè-

çîâàííóþ ñ ïîìîùüþ çàäà÷

P [H −h] :

{
∥[H − h]∥ → min,

X (A+H, b+ h) ̸= ∅,

PH :

{
∥H∥ → min,

X (A+H, b) ̸= ∅,

ãäå ∥·∥ � åâêëèäîâà ìàòðè÷íàÿ (äàëåå, â çàâèñèìîñòè îò êîíòåêñòà, ìàò-

ðè÷íàÿ èëè âåêòîðíàÿ) íîðìà, îïðåäåëÿåìàÿ äëÿ A = (aij) ∈ Rm×n êàê

∥A∥ =

√√√√ m∑
i=1

n∑
j=1

a2ij.

Ìû òàêæå ðàññìîòðèì ìîäèôèêàöèè çàäà÷ DH , D[H −h], PH , P [H −h],

� çàäà÷è SDH , SD[H −h], SPH , SP [H −h] c íåêîòîðûìè ïðåäïèñàííûìè ìíî-

æåñòâàìè íóëåâûõ ýëåìåíòîâ ìàòðèö H è [H − h], ïîðîæäàþùèìè çàïðå-

òû íà êîððåêöèþ ýëåìåíòîâ ìàòðèö A è [A − b]. Óêàçàííûå çàäà÷è áóäåì

íàçûâàòü çàäà÷àìè ìàòðè÷íîé êîððåêöèè ñî ñòðóêòóðíûìè îãðàíè÷åíèÿ-

ìè.

Äîñòàòî÷íûå óñëîâèÿ ðàçðåøèìîñòè çàäà÷ DH , D[H −h], SDH ,

SD[H −h] â ñëó÷àå X (A, b) = ∅, U(A, c) ̸= ∅ è ÿâëÿþòñÿ â íàñòîÿùåé ðàáîòå

îñíîâíûì ïðåäìåòîì èññëåäîâàíèÿ.

Äîïóñòèìûå ìíîæåñòâà âñåõ ðàññìàòðèâàåìûõ çàäà÷ ìàòðè÷íîé êîð-

ðåêöèè áóäåì îáîçíà÷àòü êàê FS(·). Íàïðèìåð, FS(SD[H −h]) � äîïóñòèìîå

ìíîæåñòâî ðåøåíèé çàäà÷è SD[H −h].

Äëÿ ïðîèçâîëüíîãî âåêòîðà x ∈ Rn, ïî àíàëîãèè ñ ïñåâäîîáðàùåíèåì

ìàòðèö, ñèìâîëîì x+ áóäåì îáîçíà÷àòü åãî ¾ïñåâäîîáðàùåíèå¿ [32]:

x+ =

{ (
x⊤x

)−1 · x⊤ åñëè x ̸= 0,

0 ∈ R1×n â ïðîòèâíîì ñëó÷àå.
(1.3)
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Ïðè x ̸= 0 íåñëîæíî óáåäèòüñÿ, ÷òî x+x = 1 è ∥x+∥ = 1/∥x∥, à åñëè
âûïîëíåíî óñëîâèå ∥x∥ = 1, òî x+ = x⊤.

1.2. Äîñòàòî÷íûå óñëîâèÿ ðàçðåøèìîñòè íåñîáñòâåííûõ çàäà÷

ËÏ 1-ãî ðîäà ïîñëå ìàòðè÷íîé êîððåêöèè èõ äîïóñòèìîé

îáëàñòè áåç ó÷åòà ñòðóêòóðíûõ îãðàíè÷åíèé

Ïðåäïîëîæèì, ÷òî íà ìàòðèöû êîððåêöèè (ðàñøèðåííûå ìàòðèöû

êîððåêöèè) çàäà÷ L(A, b, c) è L∗(A, b, c) íå íàëîæåíû îãðàíè÷åíèÿ.

Äëÿ ïîñëåäóþùèõ âûêëàäîê ïîòðåáóþòñÿ îïðåäåëåííûå ñâåäåíèÿ î

ìàòðèöàõ H∗ è [H∗ − h∗], ÿâëÿþùèõñÿ ðåøåíèÿìè çàäà÷ PH è P [H −h].

Ñèñòåìàòèçèðóÿ ðåçóëüòàòû, âïåðâûå ïîëó÷åííûå â ðàáîòàõ [25], [80], è

ðàçâèòûå âïîñëåäñòâèè â ðàáîòàõ [51], [59], óêàçàííûå ñâåäåíèÿ ìîæíî èç-

ëîæèòü â âèäå ñëåäóþùèõ ëåìì.

Ëåììà 1.2.1. Åñëè ðåøåíèå çàäà÷è PH ñóùåñòâóåò, òî îíî èìååò âèä

H∗ = (b− Ax∗)x∗+, (1.4)

ãäå

x∗ ∈ Argmin
x>0

∥b− Ax∥
∥x∥

.

Ïðè ýòîì

∥H∗∥ =
∥b− Ax∗∥

∥x∗∥
. (1.5)

Ëåììà 1.2.2. Åñëè ðåøåíèå çàäà÷è P [H −h] ñóùåñòâóåò, òî îíî èìååò

âèä

[H∗ − h∗] =
(b− Ax∗) ·

[
x∗⊤ 1

]
x∗⊤x∗ + 1

, (1.6)

ãäå

x∗ ∈ Argmin
x>0

∥b− Ax∥2

∥x∥2 + 1
.

Ïðè ýòîì

∥[H∗ − h∗]∥2 = ∥b− Ax∗∥2

∥x∗∥2 + 1
. (1.7)

Ðåçóëüòàòû äàííûõ ëåìì, ÿâëÿþùèõñÿ êëàññè÷åñêèìè ðåçóëüòàòàìè,

èñïîëüçóþòñÿ äëÿ äîêàçàòåëüñòâà íèæåñëåäóþùèõ òåîðåì.
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Ëåììà 1.2.3. (Íåðàâåíñòâî Êîøè-Áóíÿêîâñêîãî) [31]

Äëÿ ëþáûõ âåêòîðîâ x, y ∈ Rn ñïðàâåäëèâî íåðàâåíñòâî
∣∣x⊤y∣∣ 6

∥x∥ · ∥y∥, êîòîðîå îáðàùàåòñÿ â ðàâåíñòâî òîãäà è òîëüêî òîãäà, êîãäà

ñïðàâåäëèâî ïðåäñòàâëåíèå y = γx, ãäå γ � íåêîòîðîå ÷èñëî.

Ëåììà 1.2.4. (Òåîðåìà äâîéñòâåííîñòè [18], êëàññèôèêàöèÿ íåñîáñòâåí-

íûõ çàäà÷ ËÏ [80]) Çàäà÷è L(A, b, c) è L∗(A, b, c) ðàçðåøèìû òîãäà è

òîëüêî òîãäà, êîãäà îäíîâðåìåííî âûïîëíåíû óñëîâèÿ X (A, b) ̸= ∅ è

U(A, c) ̸= ∅. Åñëè çàäà÷è L(A, b, c) è L∗(A, b, c) íåðàçðåøèìû, âîçìîæ-

íû ñëåäóþùèå òðè ñëó÷àÿ:

1. X (A, b) = ∅, U(A, c) ̸= ∅, L(A, b, c) � íåñîáñòâåííàÿ çàäà÷à ËÏ

1-ãî ðîäà, L∗(A, b, c) � íåñîáñòâåííàÿ çàäà÷à ËÏ 2-ãî ðîäà.

2. X (A, b) ̸= ∅, U(A, c) = ∅, L(A, b, c) � íåñîáñòâåííàÿ çàäà÷à ËÏ

2-ãî ðîäà, L∗(A, b, c) � íåñîáñòâåííàÿ çàäà÷à ËÏ 1-ãî ðîäà.

3. X (A, b) = ∅, U(A, c) = ∅, L(A, b, c) è L∗(A, b, c) � íåñîáñòâåííûå

çàäà÷è ËÏ 3-ãî ðîäà.

Ëåììà 1.2.5. (Ôàðêàøà [35], [37]). Ëèáî èìååò ðåøåíèå ñèñòåìà{
Ax = b,

x > 0,
(1.8)

ëèáî ðàçðåøèìà ñèñòåìà {
A⊤y > 0,

b⊤y < 0.
(1.9)

Â äàëüíåéøåì íåîäíîêðàòíî áóäåò èñïîëüçîâàòüñÿ òåîðåìà

Àëåêñàíäðîâà�Ôàíü-Öçè îá àëüòåðíàòèâíîé ñîâìåñòíîñòè ñèñòåìû

ëèíåéíûõ íåðàâåíñòâ è ñìåøàííîé ñèñòåìû ëèíåéíûõ óðàâíåíèé è

íåðàâåíñòâ ([5]) â ñëåäóþùåé ôîðìóëèðîâêå

Òåîðåìà 1.2.6. (Àëåêñàíäðîâà�Ôàíü-Öçè) Ëèáî ñîâìåñòíà ñèñòåìà

u⊤A > c⊤, ëèáî ñîâìåñòíà ñèñòåìà Ax = 0, c⊤x > 0, x > 0.

Ñëåäñòâèåì äàííîé òåîðåìû ÿâëÿåòñÿ ñëåäóþùåå óòâåðæäåíèå

Ëåììà 1.2.7. (Ñëåäñòâèå óñëîâèÿ U(A + H∗, c) = ∅ ïðè ðåøåíèè çàäà÷

PH , P [H −h], SPH , SP [H −h] äëÿ íåñîáñòâåííîé çàäà÷è L(A, b, c) 1-ãî ðîäà)
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Ïóñòü H∗ � ðåøåíèå çàäà÷è PH èëè SPH , [H∗ − h∗] � ðåøåíèå

çàäà÷è P [H −h] èëè SP [H −h] äëÿ íåñîáñòâåííîé çàäà÷è L(A, b, c) 1-ãî ðîäà

è âûïîëíåíî óñëîâèå U(A+H∗, c) = ∅.
Òîãäà ñóùåñòâóåò âåêòîð z ∈ Rn, óäîâëåòâîðÿþùèé óñëîâèÿì

z > 0, ∥z∥ = 1, (A+H∗)z = 0, c⊤z > 0, (1.10)

Az ̸= 0. (1.11)

Äîêàçàòåëüñòâî. Ïî îïðåäåëåíèþ U(·) óñëîâèå U(A+H∗, c) = ∅ îçíà÷àåò

íåñîâìåñòíîñòü ñèñòåìû íåðàâåíñòâ u⊤(A+H∗) > c⊤. Â ýòîì ñëó÷àå â ñè-

ëó òåîðåìû Àëåêñàíäðîâà�Ôàíü-Öçè, ñîâìåñòíà àëüòåðíàòèâíàÿ ñèñòåìà,

èìåþùàÿ âèä z > 0, (A + H∗)z = 0, c⊤z > 0. Â ñèëó óñëîâèÿ c⊤z > 0

âåêòîð z � íåíóëåâîé è ìîæåò èìåòü ïðîèçâîëüíóþ (íåíóëåâóþ) íîðìó. Â

÷àñòíîñòè, ìîæåò âûïîëíÿòüñÿ óñëîâèå ∥z∥ = 1, ÷òî è ñîîòâåòñòâóåò (1.10).

Óáåäèìñÿ â âûïîëíåíèè óñëîâèÿ (1.11). Äåéñòâèòåëüíî, ïðåäïîëîæèâ

Az = 0, ïî òåîðåìå Àëåêñàíäðîâà�Ôàíü-Öçè èìååì U(A, c) = ∅, ÷òî ïðî-
òèâîðå÷èò óñëîâèþ ëåììû.

Òåîðåìà 1.2.8. (Î äîñòàòî÷íûõ óñëîâèÿõ ñóùåñòâîâàíèÿ ðåøåíèÿ çàäà-

÷è DH)

Åñëè X (A, b) = ∅,U(A, c) ̸= ∅ (ò.å. L(A, b, c) � íåñîáñòâåííàÿ çàäà-

÷à ËÏ 1-ãî ðîäà), b ̸= 0, çàäà÷à PH ðàçðåøèìà è ìàòðèöà H∗ ÿâëÿåòñÿ

åå ðåøåíèåì, òî çàäà÷à DH òàêæå ðàçðåøèìà è ìàòðèöà H∗ ÿâëÿåòñÿ

åå ðåøåíèåì.

Äîêàçàòåëüñòâî. 1. Ïîêàæåì, ÷òî ìàòðèöà H∗ ïðèíàäëåæèò äîïóñòè-

ìîé îáëàñòè çàäà÷è DH . Ïðåäïîëîæèì ïðîòèâíîå, à èìåííî, ÷òî H∗ /∈
FS(DH). Ïîñêîëüêó H∗ ∈ FS(PH) ⇔ X (A + H∗, b) ̸= ∅, â ñèëó ëåì-

ìû 1.2.4 U(A+H∗, c) = ∅. Ñëåäîâàòåëüíî, â ñèëó ëåììû 1.2.7 ñóùåñòâóåò

âåêòîð z, óäîâëåòâîðÿþùèé óñëîâèÿì (1.10)-(1.11).

1.1. Ïîêàæåì, ÷òî âûïîëíÿåòñÿ óñëîâèå

∥H∗∥ =
∥b− Ax∗∥

∥x∗∥
> ∥Az∥ . (1.12)

Äåéñòâèòåëüíî, (A+H∗) z = 0 ⇒ H∗z = −Az. Â ñèëó (1.4), ïîëó÷èì

(b− Ax∗)
(
x∗+z

)
= −Az. Â ñèëó óñëîâèÿ (1.11) x∗+z ̸= 0, x∗ ̸= 0. Òîãäà

b− Ax∗ = −Az
/
x∗+z. (1.13)
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Ïîêàæåì, ÷òî x∗ ̸= λz, ãäå λ ̸= 0 � íåêîòîðîå ÷èñëî. Ïðåäïîëîæèì

ïðîòèâíîå:

x∗ = λz ⇒ x∗+ =
1

λ
z⊤ ⇒

(
b− Ax∗ = − Az

x∗+z
⇔ b− λAz = −λAz

)
⇒ b = 0,

÷òî ïðîòèâîðå÷èò óñëîâèþ òåîðåìû.

Îöåíèì |x∗+z|. Ïîñêîëüêó x∗ ̸= λz, â ñèëó ëåììû 1.2.3 ñïðàâåäëèâî

íåðàâåíñòâî |x∗+z| < ∥x∗+∥ · ∥z∥ = ∥x∗+∥.
Ïîýòîìó â ñèëó (1.13)

∥b− Ax∗∥ >
∥Az∥
∥x∗+∥

. (1.14)

Òàê êàê
∥∥x∗+∥∥ = 1/∥x∗∥, òî ∥b− Ax∗∥ > ∥Az∥ · ∥x∗∥, îòêóäà â ñèëó

(1.5), (1.14) è ïîëó÷àåì (1.12).

1.2. Ïóñòü Hz,γ = (b− γAz) (γz)+, ãäå γ > 0 � íåêîòîðûé ñêà-

ëÿðíûé ïàðàìåòð. Î÷åâèäíî, ÷òî Hz,γ � äîïóñòèìîå ðåøåíèå çàäà÷è PH ,

ïîñêîëüêó (γz) ∈ X (A+Hz,γ, b). Â òî æå âðåìÿ, ïî àíàëîãèè ñ (1.5),

∥Hz,γ∥ = γ−1 ∥b− γAz∥. Ðàññìîòðèì H∗
z,γ = lim

γ→+∞
Hz,γ = −Azz⊤. Â ñè-

ëó (1.12) èìååì∥∥H∗
z,γ

∥∥ =
∥∥Azz+∥∥ =

∥∥Azz⊤∥∥ = ∥Az∥ < ∥H∗∥ . (1.15)

Íî óñëîâèå (1.15), â ñâîþ î÷åðåäü, îçíà÷àåò, ÷òî äëÿ äîñòàòî÷íî áîëü-

øîãî, íî êîíå÷íîãî γ > 0 ñóùåñòâóåò ìàòðèöà Hz,γ, ÿâëÿþùàÿñÿ äîïóñòè-

ìûì ðåøåíèåì çàäà÷è PH è òàêàÿ, ÷òî ∥Hz,γ∥ < ∥H∗∥, ÷òî ïðîòèâîðå÷èò
ïðåäïîëîæåíèþ îá îïòèìàëüíîñòè ìàòðèöû H∗.

2. Ïîêàæåì, ÷òî H∗ � îïòèìàëüíîå ðåøåíèå çàäà÷è DH . Äåéñòâèòåëü-

íî, åñëè ïðåäïîëîæèòü ïðîòèâíîå, òî ñóùåñòâóåò ìàòðèöà H∗∗ ∈ FS(DH)

òàêàÿ, ÷òî ∥H∗∗∥ < ∥H∗∥. Íî FS(DH) ⊂ FS(PH), ñëåäîâàòåëüíî, ñóùå-

ñòâîâàíèå ìàòðèöû H∗∗ ïðîòèâîðå÷èò ïðåäïîëîæåíèþ îá îïòèìàëüíîñòè

ìàòðèöû H∗ â çàäà÷å PH .

Òåîðåìà 1.2.9. (Î äîñòàòî÷íûõ óñëîâèÿõ ñóùåñòâîâàíèÿ ðåøåíèÿ çàäà-

÷è D[H −h])

Åñëè X (A, b) = ∅, U(A, c) ̸= ∅ (ò.å. L(A, b, c) � íåñîáñòâåííàÿ çàäà-

÷à ËÏ 1-ãî ðîäà), çàäà÷à P [H −h] ðàçðåøèìà è ìàòðèöà [H∗ −h∗] ÿâëÿåòñÿ
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åå ðåøåíèåì, òî çàäà÷à D[H −h] òàêæå ðàçðåøèìà è ìàòðèöà [H∗ − h∗]

òàêæå ÿâëÿåòñÿ åå ðåøåíèåì.

Äîêàçàòåëüñòâî. 1. Ïîêàæåì, ÷òî ìàòðèöà [H∗ − h∗] ïðèíàäëåæèò

äîïóñòèìîé îáëàñòè çàäà÷è D[H −h]. Ïðåäïîëîæèì ïðîòèâíîå, à èìåííî,

÷òî [H∗ − h∗] /∈ FS(D[H) −h]. Ïîñêîëüêó [H∗ − h∗] ∈ FS(P [H −h]) ⇔
X (A+H∗, b+h∗) ̸= ∅, â ñèëó ëåììû 1.2.4 U(A+H∗, c) = ∅. Ñëåäîâàòåëü-
íî, â ñèëó ëåììû 1.2.7 ñóùåñòâóåò âåêòîð z, óäîâëåòâîðÿþùèé óñëîâèÿì

(1.10)-(1.11).

1.1. Ïîêàæåì, ÷òî âûïîëíÿåòñÿ óñëîâèå

∥H∗ − h∗∥ =
∥b− Ax∗∥√
x∗⊤x∗ + 1

> ∥Az∥ . (1.16)

Äåéñòâèòåëüíî, (A+H∗) z = 0 ⇒ H∗z = −Az. Â ñèëó (1.11) è (1.6),

ïîëó÷èì
(b− Ax∗)x∗⊤z

x∗⊤x∗ + 1
= −Az ̸= 0 ⇒ x∗⊤z ̸= 0, x∗ ̸= 0. (1.17)

Ôîðìóëà (1.17) ïîçâîëÿåò ñâÿçàòü âåëè÷èíû ∥b− Ax∗∥ è ∥Az∥:

b− Ax∗ = −x∗⊤x∗ + 1

x∗⊤z
· Az, ∥b− Ax∗∥ =

x∗⊤x∗ + 1

|x∗⊤z|
· ∥Az∥ .

Â ñèëó ëåììû 1.2.3 ñ ó÷åòîì óñëîâèÿ ∥z∥ = 1 èìååì
∣∣x∗⊤z∣∣ 6 ∥x∗∥ =√

x∗⊤x∗, ïîýòîìó

∥b− Ax∗∥ > x∗⊤x+ 1√
x∗⊤x∗

· ∥Az∥ .

Íî â ñèëó (1.7),

∥[H∗ − h∗]∥ =
∥b− Ax∗∥√
x∗⊤x+ 1

>
√

x∗⊤x+ 1

x∗⊤x∗
· ∥Az∥ > ∥Az∥ ,

÷òî è îçíà÷àåò âûïîëíåíèå óñëîâèÿ (1.16).

1.2. Ïóñòü

[H − h]z,γ = [Hz,γ − hz,γ] =
(b− γAz)

[
γz⊤ 1

]
γ2 + 1

,

ãäå γ > 0 � íåêîòîðûé ñêàëÿðíûé ïàðàìåòð. Íåñëîæíî óáåäèòüñÿ, ÷òî

(γz)∈X (A+Hz,γ, b+ hz,γ), â ñèëó ÷åãî ìàòðèöà [H − h]z,γ � äîïóñòèìîå
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ðåøåíèå çàäà÷è P [H −h]. Â òî æå âðåìÿ, ïî àíàëîãèè ñ (1.7),

∥H − h∥z,γ =
∥b− γAz∥√

γ2 + 1
.

Ðàññìîòðèì ìàòðèöó

[H − h]∗z,γ = lim
γ→+∞

(b− γAz)
[
γz⊤ 1

]
γ2 + 1

=
[
−Azz⊤ 0

]
.

Â ñèëó (1.16) èìååì

∥ [H − h]∗z,γ ∥ =∥Az∥ < ∥H∗ − h∗∥ . (1.18)

Óñëîâèå (1.18), â ñâîþ î÷åðåäü, îçíà÷àåò, ÷òî äëÿ äîñòàòî÷-

íî áîëüøîãî, íî êîíå÷íîãî γ > 0 ñóùåñòâóåò ìàòðèöà [H − h]z,γ,

ÿâëÿþùàÿñÿ äîïóñòèìûì ðåøåíèåì çàäà÷è P [H −h] è òàêàÿ, ÷òî

∥ [H − h]z,γ ∥ < ∥[H∗ − h∗]∥, ÷òî ïðîòèâîðå÷èò ïðåäïîëîæåíèþ îá îïòè-

ìàëüíîñòè ìàòðèöû [H∗ − h∗].

2. Ïîêàæåì, ÷òî [H∗ − h∗] � îïòèìàëüíîå ðåøåíèå çàäà÷è D[H −h].

Äåéñòâèòåëüíî, åñëè ïðåäïîëîæèòü ïðîòèâíîå, òî ñóùåñòâóåò ìàòðèöà

[H∗∗ − h∗∗] ∈ FS(D[H −h]) òàêàÿ, ÷òî ∥[H∗∗ − h∗∗]∥ < ∥[H∗ − h∗]∥. Íî
FS(D[H −h]) ⊂ FS(P [H −h]), ñëåäîâàòåëüíî, ñóùåñòâîâàíèå ìàòðèöû H∗∗

ïðîòèâîðå÷èò ïðåäïîëîæåíèþ îá îïòèìàëüíîñòè ìàòðèöû [H∗ − h∗] â

çàäà÷å P [H −h].

Â êà÷åñòâå ïðèìåðà, èëëþñòðèðóþùåãî òåîðåìû 1.2.8 è 1.2.9 ðàññìîò-

ðèì çàäà÷è îïòèìèçàöèè DH , D[H −h] ñ ïàðàìåòðàìè

A =


−1 0 4 3 0

2 3 3 5 −1

1 3 1 2 1

2 6 8 10 0

 , b =


2

1

1

10

 , c =



1

3

0

1

1


.

Ïðîâåðêà ïðèíàäëåæíîñòè óêàçàííîé çàäà÷è ê êëàññó íåñîáñòâåííûõ çàäà÷

ËÏ 1-ãî ðîäà.
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Ïóñòü y =


1

2

3

−1

: A⊤y =



4

9

5

9

1


> 0, b⊤w = −3 < 0, òîãäà ïî ëåììå

1.2.5 ⇒

{
Ax = b

x > 0
íå èìååò ðåøåíèé, îòñþäà ñëåäóåò, ÷òî X (A, b) = ∅.

Ïóñòü u =


−1

−1

1

1

: u⊤A =



2

6

2

4

2


> c⊤ =



1

3

0

1

1


⇒ U(A, c) ̸= ∅.

Îáîçíà÷èì ðåçóëüòàòû êîððåêöèè òîëüêî ïðÿìîé è äâîéñòâåíîé ïàðû

çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ êàê x∗, H∗, h∗ è x∗∗, H∗∗, h∗∗ ñîîòâåò-

ñòâåííî.

1) Äëÿ ïàðû çàäà÷ PH è DH :

x∗ ≈ x∗∗ ≈



0, 850427271

0

0, 958054645

0

4, 526254446


,

H∗ ≈ H∗∗ ≈


−0, 037732253 0 −0, 042507527 0 −0, 200823495

0, 036557949 0 0, 041184606 0 0, 194573460

−0, 205024855 0 −0, 230972150 0 −1, 091209907

0, 024393141 0 0, 027480260 0 0, 129828344

 ,

c⊤x ≈ c⊤x∗∗ ≈ 1, 388780151.
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2) Äëÿ ïàðû çàäà÷ P [H −h] è D[H −h]:

x∗ ≈ x∗∗ ≈



0, 772044982

0

0, 961585405

0

3, 970548191


, h∗ ≈ h∗∗ ≈


0, 058749831

−0, 029623942

0, 257256409

−0, 041738421

 ,

H∗ ≈ H∗∗ ≈


−0, 045357512 0 −0, 056492980 0 −0, 233269035

0, 022871016 0 0, 028485950 0 0, 117623290

−0, 198613520 0 −0, 247374009 0 −1, 021448970

0, 032223938 0 0, 040135056 0 0, 165724410

 ,

c⊤x∗ ≈ c⊤x∗∗ ≈ 1.321198065.

1.3. Ïîñòàíîâêà çàäà÷è ñòðóêòóðíîé ìàòðè÷íîé êîððåêöèè

Ïóñòü çàäà÷è L(A, b, c) è L∗(A, b, c) òàêîâû, ÷òî X (A, b) = ∅,
U(A, c) ̸= ∅. Ñ íåñîáñòâåííûìè çàäà÷àìè L(A, b, c) è L∗(A, b, c) áó-

äåì ñâÿçûâàòü çàäà÷è SDH , SD[H −h], SPH , SP [H −h] ñòðóêòóðíîé ìàò-

ðè÷íîé êîððåêöèè, â êîòîðûõ ìàòðèöå H èëè ðàñøèðåííîé ìàòðè-

öå [H − h] ïðåäïèñàíî èìåòü ñòðóêòóðó íóëåâûõ è íåíóëåâûõ ýëå-

ìåíòîâ, çàäàâàåìóþ ìíîæåñòâàìè èíäåêñîâ íóëåâûõ ýëåìåíòîâ K =

{(i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n})|Hi,j = 0} è k = {i ∈ {1, 2, ...,m}|
hi = 0}.

Äëÿ ðåàëèçàöèè ñòðóêòóðíûõ òðåáîâàíèé ê H è [H − h] ââîäèòñÿ

ðÿä îáúåêòîâ:

H = (Hi,j)

∣∣∣∣∣ Hi,j = 0 åñëè {i, j} ∈ K,

Hi,j = 1 â ïðîòèâíîì ñëó÷àå ,

h = (hi)

∣∣∣∣∣ hi = 0 åñëè i ∈ k,

hi = 1 â ïðîòèâíîì ñëó÷àå .

Êàê âèäíî èç ïðåäñòàâëåííûõ âûøå ôîðìóë, ìàòðèöà H è âåêòîð

h � ëîãè÷åñêèå øàáëîíû äëÿ ñòðóêòóðû íóëåâûõ è íåíóëåâûõ ýëåìåíòîâ

ìàòðèöû H è âåêòîðà h.
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Ïóñòü

s (p, q) = (si) =

∣∣∣∣∣ pj åñëè qj ̸= 0,

0 â ïðîòèâíîì ñëó÷àå,

ãäå s (p, q) ∈ Rn, p = (pj) ∈ Rn, q = (qj) ∈ Rn. Òàêèì îáðàçîì,

~(H) =

 s
(
H⊤

1∗,H⊤
1∗
)

...

s
(
H⊤

m∗,H⊤
m∗
)
 � (1.19)

âåêòîð, ñîñòàâëåííûé èç ýëåìåíòîâ ñòðîê Hi∗ â ñîîòâåòñòâèè ñ øàáëîíàìè

ñòðîê Hi∗,

~([H − h]) =


s

([
H⊤

1∗

−h1

]
,

[
H⊤

1∗

h1

])
...

s

([
H⊤

m∗

−hm

]
,

[
H⊤

m∗

hm

])


� (1.20)

âåêòîð, ñîñòàâëåííûé èç ýëåìåíòîâ ñòðîê [Hi∗ − hi] â ñîîòâåòñòâèè ñ øàá-

ëîíàìè ñòðîê [Hi∗ h],

X(x) =


s⊤
(
x,H⊤

1∗
)

0 · · · 0

0 s⊤
(
x,H⊤

2∗
)

· · · 0

0 0 . . . 0

0 0 · · · s⊤
(
x,H⊤

m∗
)

 � (1.21)

ìàòðèöà, i-ÿ ñòðîêà êîòîðîé ñîñòàâëåíà èç íóëåâûõ ýëåìåíòîâ è ýëåìåíòîâ

âåêòîðà x â ñîîòâåòñòâèè ñ øàáëîíîì Hi∗.

Âûðàæåíèÿ H(~), [H(~) − h(~)] = [H − h] (~), x(X) � îáðàùåíèÿ

ôîðìóë (1.19), (1.20) è (1.21) ñîîòâåòñòâåííî. Òàê, íàïðèìåð, H(~) � ýòî

ìàòðèöà H, âîññòàíîâëåííàÿ ïî âåêòîðó ~ â ñîîòâåòñòâèè ñ ôîðìóëîé

(1.19).

Èñïîëüçóÿ (1.19)-(1.21), íåñëîæíî óáåäèòüñÿ, ÷òî äëÿ ìàòðèö H è

[H − h], ïîä÷èíÿþùèõñÿ ñîîòâåòñòâóþùèì ñòðóêòóðíûì îãðàíè÷åíèÿì,

ñïðàâåäëèâû ôîðìóëû

Hx = X(x) · ~(H), [H − h] ·

[
x

1

]
= X

([
x

1

])
· ~ ([H − h]) .
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Òàêèì îáðàçîì, åñëè H,H � ìàòðèöû ðàçìåðàm× n è x ∈ Rn, òî ðàç-

ìåðû ðàññìàòðèâàåìûõ îáúåêòîâ X(x) ∈ Rm×N , ~(H) ∈ RN , X
(
[x⊤ 1]⊤

)
∈

Rm×N ′
, ~ ([H − h]) ∈ RN ′

, ãäå N = m · n, N ′ = m · (n+ 1).

Äëÿ ïîñëåäóþùèõ âûêëàäîê, ñâÿçàííûõ ñ çàäà÷àìè SPH è SDH , íà

ðÿäó ñ ìàòðèöåé X(x) ïîòðåáóåòñÿ ìàòðèöà X+(x) ∈ RN×m � ïñåâäîîáðàò-

íàÿ ê ìàòðèöå X(x) ∈ Rm×N .

Ëåììà 1.3.1. Ìàòðèöà, ïñåâäîîáðàòíàÿ ê ìàòðèöå X(x), çàäàííîé ôîð-

ìóëîé (1.21), èìååò âèä

X+(x) =


s+

⊤ (
x,H⊤

1∗
)

0 · · · 0

0 s+
⊤ (

x,H⊤
2∗
)

· · · 0

0 0 . . . 0

0 0 · · · s+
⊤ (

x,H⊤
m∗
)

 , (1.22)

ãäå âåêòîðû-ñòðîêè s+
(
x,H⊤

i∗
)
âû÷èñëÿþòñÿ â ñîîòâåòñòâèè ñ (1.3).

Äîêàçàòåëüñòâî. Êàê èçâåñòíî (ñì., íàïðèìåð, [31]), âåùåñòâåííàÿ ìàòðè-

öà Z, ïñåâäîîáðàòíàÿ ê íåêîòîðîé çàäàííîé âåùåñòâåííîé ìàòðèöå A, îäíî-

çíà÷íî îïðåäåëÿåòñÿ ñëåäóþùèìè ÷åòûðüìÿ óðàâíåíèÿìè (íàçûâàåìûìè

óðàâíåíèÿìè Ïåíðîóçà): AZA = A, ZAZ = Z, (ZA)⊤ = ZA, (AZ)⊤ = AZ.

Òàêèì îáðàçîì, äëÿ îáîñíîâàíèÿ ôîðìóëû (1.22) íåîáõîäèìî âûïîëíèòü

ïðîâåðêó óðàâíåíèé Ïåíðîóçà ñ èñïîëüçîâàíèåì ñîîòíîøåíèé (1.3), (1.21)

è (1.22). Ðàññìîòðèì äâà ñëó÷àÿ.

1. Ìàòðèöà X(x) íå èìååò íóëåâûõ ñòðîê. Â ýòîì ñëó÷àå ïðîâåðêà

óðàâíåíèé Ïåíðîóçà ñóùåñòâåííî îáëåã÷àåòñÿ, ïîñêîëüêó, êàê íåñëîæíî

óáåäèòüñÿ (ñ èñïîëüçîâàíèåì (1.21), (1.22) è (1.3)), âûïîëíÿåòñÿ óñëîâèå

X(x) ·X+(x) = Im,

ãäå Im � åäèíè÷íàÿ ìàòðèöà ïîðÿäêà m.

2. Ìàòðèöà X(x) èìååò íóëåâûå ñòðîêè. Êàê ñëåäóåò èç (1.3), (1.21) è

(1.22), ìàòðèöà X+(x) èìååò íóëåâûå ñòîëáöû ñ òåìè æå íîìåðàìè, â ñèëó

÷åãî âûïîëíÿåòñÿ óñëîâèå

X(x) ·X+(x) = Ĩm,
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ãäå Ĩm � åäèíè÷íàÿ ìàòðèöà ïîðÿäêà m c íóëåâûìè äèàãîíàëüíûìè ýëå-

ìåíòàìè, ñîîòâåòñòâóþùèìè íóëåâûì ñòðîêàì X(x) (íóëåâûì ñòîëáöàì

X+(x)). Ïåðåñòàíîâêîé ñòðîê â X(x) è òàêîé æå ïåðåñòàíîâêîé ñòîëáöîâ

â X+(x) óêàçàííûå ìàòðèöû ìîæíî ïðèâåñòè ê áëî÷íîìó âèäó, âûäåëèâ

áëîêè íóëåâûõ è íåíóëåâûõ ñòðîê, íóëåâûõ è íåíóëåâûõ ñòîëáöîâ. Ïîñëå

ýòîãî ñ ïîìîùüþ òåõíèêè ïåðåìíîæåíèÿ áëî÷íûõ ìàòðèö óáåæäàåìñÿ â

ñïðàâåäëèâîñòè óðàâíåíèé Ïåíðîóçà.

Äëÿ âûêëàäîê, ñâÿçàííûé ñ çàäà÷àìè SP [H −h] è SD[H −h], ïîòðåáó-

þòñÿ ìîäèôèêàöèè ìàòðèö X(x) è X+(x):

X

([
x

1

])
, X+

([
x

1

])
.

Óêàçàííûå îáúåêòû òàêæå ìîãóò áûòü ¾ïîñòðîåíû¿ ïî ôîðìóëàì (1.21) è

(1.22), íî óæå èç âåêòîðîâ

s

([
x

1

]
,

[
H⊤

i∗

hi

])
, s+

([
x

1

]
,

[
H⊤

i∗

hi

])
.

Êàê áóäåò ïîêàçàíî íèæå, íóëåâûå è íåíóëåâûå ñòðîêè ìàòðèö H,

[H − h], X(·), à òàêæå íóëåâûå è íåíóëåâûå ñòîëáöû X+(·) îòêàçûâàþòñÿ
òåñíî ñâÿçàííûìè ñ ìíîæåñòâîì èíäåêñîâ

L(x) = {i |(b− Ax)i ̸= 0} ,

êîíòåêñòîì èñïîëüçîâàíèÿ êîòîðîãî áóäóò ñëóæèòü íåñîâìåñòíàÿ ñèñòåìà

Ax = b, x > 0 è ñîâìåñòíûå ñèñòåìû (A+H)x = b, (A+H)x = b+ h.

1.4. Äîñòàòî÷íûå óñëîâèÿ ðàçðåøèìîñòè íåñîáñòâåííûõ çàäà÷

ËÏ 1-ãî ðîäà ïîñëå ìàòðè÷íîé êîððåêöèè èõ äîïóñòèìîé

îáëàñòè ñ ó÷åòîì ñòðóêòóðíûõ îãðàíè÷åíèé

Ëåììà 1.4.1. Ïóñòü ñóùåñòâóþò ìàòðèöà H è âåêòîð x òàêèå, ÷òî

H îòâå÷àåò ñòðóêòóðíûì îãðàíè÷åíèÿì, çàäàâàåìûì ìíîæåñòâîì K,

ñèñòåìà (A+H)x = b � ñîâìåñòíà.

Òîãäà ìàòðèöà Ĥ, ÿâëÿþùàÿñÿ ðåøåíèåì óêàçàííîé ñèñòåìû ñ ìè-

íèìàëüíîé åâêëèäîâîé íîðìîé, ñóùåñòâóåò, åäèíñòâåííà è îïðåäåëÿåòñÿ
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ôîðìóëîé

Ĥ = H(~̂),

ãäå

~̂ = X+(x) · (b− Ax). (1.23)

Ïðè ýòîì

Ĥi∗ ̸= 0 ⇔ i ∈ L(x), (1.24)

∥Ĥ ∥ = ∥ ~̂∥ =

√√√√∑
i∈L(x)

(b− Ax)2i∥∥s(x,H⊤
i∗
)∥∥2 . (1.25)

Äîêàçàòåëüñòâî. (A+H)x = b ⇔ Hx = b− Ax ⇔ X(x)~(H) = (b− Ax).

Çàìåòèì, ÷òî â ñèëó èñõîäíûõ ïðåäïîëîæåíèé âñå ñèñòåìû â óêàçàííîé öå-

ïî÷êå ýêâèâàëåíòíûõ ñèñòåì ñîâìåñòíû, îòêóäà, â ñèëó õîðîøî èçâåñòíûõ

ñâîéñòâ ïñåâäîîáðàòíûõ ìàòðèö [31], [32], ïîëó÷àåì îáîñíîâàíèå ñóùåñòâî-

âàíèÿ è åäèíñòâåííîñòè ìàòðèöû Ĥ, âåêòîðà ~̂ è ñïðàâåäëèâîñòè ôîðìóëû
(1.23).

Äëÿ îáîñíîâàíèÿ ôîðìóë (1.24)-(1.25) çàìåòèì, ÷òî ñóììèðóåìûå â

(1.25) âåëè÷èíû ÿâëÿþòñÿ êâàäðàòàìè åâêëèäîâûõ íîðì ñòðîê ìàòðèöû Ĥ

(ýòî ìîæíî ïîêàçàòü ñ èñïîëüçîâàíèåì (1.3), (1.19)), (1.21) è (1.22)). Íî, â

ñèëó ñîâìåñòíîñòè ñèñòåìû (A+Ĥ)x = b è ìèíèìàëüíîñòè ∥Ĥ∥, ìíîæåñòâî
íîìåðîâ íåíóëåâûõ ñòðîê ìàòðèöû Ĥ ñîâïàäàåò ñ ìíîæåñòâîì L(x).

Ëåììà 1.4.2. Ïóñòü ñóùåñòâóþò ìàòðèöà [H − h] è âåêòîð x òàêèå,

÷òî [H − h] îòâå÷àåò ñòðóêòóðíûì îãðàíè÷åíèÿì, çàäàâàåìûì ìíî-

æåñòâàìè K, k, ñèñòåìà (A+H)x = b+ h � ñîâìåñòíà.

Òîãäà ìàòðèöà
[
Ĥ − ĥ

]
, ÿâëÿþùàÿñÿ ðåøåíèåì óêàçàííîé ñèñòå-

ìû ñ ìèíèìàëüíîé åâêëèäîâîé íîðìîé, ñóùåñòâóåò, åäèíñòâåííà è îïðå-

äåëÿåòñÿ ôîðìóëîé [
Ĥ − ĥ

]
=
[
H(~̂) − h(~̂)

]
,

ãäå

~̂ = X+

([
x

1

])
· (b− Ax). (1.26)
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Ïðè ýòîì [
Ĥi∗ − ĥi

]
̸= 0 ⇔ i ∈ L(x), (1.27)

∥ [Ĥ − ĥ]∥ = ∥ ~̂∥ =

√√√√√√√
∑
i∈L(x)

(b− Ax)2i∥∥∥∥∥s
([

x

1

]
,
[
Hi∗ hi

]⊤)∥∥∥∥∥
2 . (1.28)

Äîêàçàòåëüñòâî.

(A+H)x = b+ h ⇔ [H(~) − h(~)]

[
x

1

]⊤
= b− Ax ⇔

⇔ X

([
x

1

])
~ ([H − h]) = b− Ax.

Ïîñêîëüêó âñå ñèñòåìû â óêàçàííîé öåïî÷êå ýêâèâàëåíòíûõ ñèñòåì

ñîâìåñòíû, èç õîðîøî èçâåñòíûõ ñâîéñòâ ïñåâäîîáðàòíûõ ìàòðèö [31], [32]

âûòåêàåò ñóùåñòâîâàíèå è åäèíñòâåííîñòü ìàòðèöû [Ĥ − ĥ], âåêòîðà ~̂ è

ñïðàâåäëèâîñòü ôîðìóëû (1.26).

Äëÿ îáîñíîâàíèÿ ôîðìóë (1.27)-(1.28) çàìåòèì, ÷òî ñóììèðóåìûå â

(1.28) âåëè÷èíû ÿâëÿþòñÿ êâàäðàòàìè åâêëèäîâûõ íîðì ñòðîê ìàòðèöû

[Ĥ −ĥ], ÷òî ñëåäóåò èç (1.3), (1.20)), (1.21) è (1.22). Íî, â ñèëó ñîâìåñòíîñòè

ñèñòåìû (A+Ĥ)x = b+ ĥ è ìèíèìàëüíîñòè ∥[Ĥ − ĥ]∥, ìíîæåñòâî íîìåðîâ
íåíóëåâûõ ñòðîê ìàòðèöû [Ĥ − ĥ] ñîâïàäàåò ñ ìíîæåñòâîì L(x).

Ëåììû 1.4.1 è 1.4.2 ïîçâîëÿþò ñâåñòè çàäà÷è SPH è SP [H −h] ê çàäà-

÷àì óñëîâíîé ìèíèìèçàöèè ïî âåêòîðó x > 0 öåëåâûõ ôóíêöèé âèäà (1.25)

è (1.28) ñîîòâåòñòâåííî. Î÷åâèäíî, ÷òî ñóùåñòâîâàíèå ìèíèìóìà â óêàçàí-

íûõ çàäà÷àõ ýêâèâàëåíòíî ðàçðåøèìîñòè çàäà÷ SPH è SP [H −h], ÷òî ÿâëÿ-

åòñÿ îáîñíîâàíèåì ïðèâîäèìûõ íèæå ëåìì, äàþùèõ, ïî àíàëîãèè ñ ëåììà-

ìè 1.2.1 è 1.2.2, êîíñòðóêòèâíîå îïèñàíèå ðåøåíèé çàäà÷ SPH è SP [H −h].

Ëåììà 1.4.3. Åñëè ðåøåíèå çàäà÷è SPH ñóùåñòâóåò, òî îíî èìååò âèä

H∗ = H
(
X+(x∗) · (b− Ax∗)

)
,

ãäå

x∗ ∈ Argmin
x>0

∑
i∈L(x∗)

(b− Ax)2i∥∥s(x,H⊤
i∗
)∥∥2 .
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Ïðè ýòîì

∥H∗∥ =

√√√√ ∑
i∈L(x∗)

(b− Ax∗)2i∥∥s(x∗,H⊤
i∗
)∥∥2 . (1.29)

Ëåììà 1.4.4. Åñëè ðåøåíèå çàäà÷è SP [H −h] ñóùåñòâóåò, òî îíî èìååò

âèä

[H∗ − h∗] = [H(~∗) − h(~∗)],

ãäå

~∗ = X+

([
x∗

1

])
· (b− Ax∗),

x∗ ∈ Argmin
x>0

∑
i∈L(x∗)

(b− Ax∗)2i∥∥∥∥∥s
([

x∗

1

]
,
[
Hi∗ hi

]⊤)∥∥∥∥∥
2 .

Ïðè ýòîì

∥ [H∗ − h∗]∥ = ∥~∗∥ =

√√√√√√√
∑

i∈L(x∗)

(b− Ax∗)2i∥∥∥∥∥s
([

x∗

1

]
,
[
Hi∗ hi

]⊤)∥∥∥∥∥
2 . (1.30)

Òåîðåìà 1.4.5. (Î äîñòàòî÷íûõ óñëîâèÿõ ñóùåñòâîâàíèÿ ðåøåíèÿ çàäà-

÷è SDH)

Åñëè X (A, b) = ∅,U(A, c) ̸= ∅ (ò.å. L(A, b, c) � íåñîáñòâåííàÿ çàäà-

÷à ËÏ 1-ãî ðîäà), b ̸= 0, çàäà÷à SPH ðàçðåøèìà è ìàòðèöà H∗ ÿâëÿåòñÿ

åå ðåøåíèåì, òî çàäà÷à SDH òàêæå ðàçðåøèìà è ìàòðèöà H∗ ÿâëÿåòñÿ

åå ðåøåíèåì.

Äîêàçàòåëüñòâî. 1. Ïîêàæåì, ÷òî ìàòðèöà H∗ ïðèíàäëåæèò äîïóñòèìîé

îáëàñòè çàäà÷è SDH . Ïðåäïîëîæèì ïðîòèâíîå: ïóñòü H∗ /∈ FS(SDH). Ïî-

ñêîëüêó H∗ ∈ FS(SPH) ⇔ X (A + H, b) ̸= ∅, â ñèëó ëåììû 1.2.4 U(A +

H∗, c) = ∅. Ñëåäîâàòåëüíî, â ñèëó ëåììû 1.2.7, ñóùåñòâóåò âåêòîð z, óäî-

âëåòâîðÿþùèé óñëîâèÿì (1.10)-(1.11).

(1.10), (1.11) ⇒ H∗z = −Az ⇔ X(z) · ~ (H∗) = −Az ⇒

X(z) ·X+ (x∗) · (b− Ax∗) = −Az ̸= 0. (1.31)
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Ïóñòü D = (dij) = X(z) ·X+ (x∗), ui = s(x∗,H⊤
i∗), vi = s(z,H⊤

i∗), òîãäà

â ñèëó (1.3), (1.21) è (1.22)

dij =

{
u+i vi åñëè i = j

0 â ïðîòèâíîì ñëó÷àå.

Òàêèì îáðàçîì,

(1.31) ⇒

{
u+i vi · (b− Ax∗)i = −(Az)i ∀i ∈ L(x∗),

(Az)i = 0 ∀i /∈ L(x∗),
(1.32)

Çàìåòèì, ÷òî óñëîâèå (1.24) ýêâèâàëåíòíî óñëîâèþ (b−Ax∗)i ·u+i ̸= 0,

îòêóäà â ñèëó (1.3) èìååì

ui ̸= 0 ∀i ∈ L(x∗). (1.33)

Ðàçîáüåì ìíîæåñòâî L(x∗) íà òðè ïîäìíîæåñòâà: L1(x
∗) ={

i ∈ L(x∗)|u⊤i vi ̸= 0
}
, L2(x

∗) =
{
i ∈ L(x∗)|u⊤i vi = 0, vi ̸= 0

}
è L3(x

∗) ={
i ∈ L(x∗)|u⊤i vi = 0, vi = 0

}
. Â ñèëó (1.3), (1.32) è (1.33)

|(b− Ax∗)i|
∥ui∥2

=
|(Az)i|∣∣u⊤i vi∣∣ ̸= 0 ∀i ∈ L1(x

∗), (Az)i = 0 ∀i ∈ L2(x
∗) ∪ L3(x

∗).

Çàìåòèì, ÷òî âåêòîð ui íå ïðåäñòàâèì â âèäå ui = λvi äëÿ âñåõ

i ∈ L1(x
∗) , ãäå λ � íåêîòîðîå ÷èñëî, ïîñêîëüêó â ïðîòèâíîì ñëó÷àå (ñ

ïîìîùüþ ¾ïîñòðî÷íîãî¿ âàðèàíòà èñïîëüçóåìûõ â äîêàçàòåëüñòâå òåîðå-

ìû 1.2.8 âûêëàäîê) ïîëó÷àåì b = 0, ÷òî ïðîòèâîðå÷èò óñëîâèÿì òåîðåìû.

Òàêèì îáðàçîì, â ñèëó ëåììû 1.2.3,

|u⊤i vi| 6 ∥ui∥ · ∥vi∥ ∀i ∈ L1(x
∗), ∃i ∈ L1(x

∗)
∣∣|u⊤i vi| < ∥ui∥ · ∥vi∥

îòêóäà, â ñâîþ î÷åðåäü, ∀i ∈ L1(x
∗)

|(b− Ax∗)i|
∥ui∥2

>
|(Az)i|

∥ui∥ · ∥vi∥
,

|(b− Ax∗)i|
∥ui∥

>
|(Az)i|
∥vi∥

,

ïðè÷åì â ïðèâåäåííîé öåïî÷êå íåðàâåíñòâ îáÿçàòåëüíî ïðèñóòñòâóþò ñòðî-

ãèå íåðàâåíñòâà.

Ñëåäîâàòåëüíî, â ñèëó (1.29),

∥H∗∥ =

√√√√ ∑
i∈L(x∗)

(b− Ax∗)2i

∥ui∥2
>

√√√√ ∑
i∈L1(x∗)

(Az)2i

∥vi∥2
+

∑
i∈L2(x∗)∪L3(x∗)

(b− Ax∗)2i

∥ui∥2
.
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Ðàññìîòðèì

Hγ,z = H(X+(x∗ + γz) · (b− Ax∗ − γAz)).

Î÷åâèäíî, ÷òî Hz,γ � äîïóñòèìîå ðåøåíèå çàäà÷è SPH , ïîñêîëüêó

(x∗ + γz) ∈ X (A+Hz,γ, b). Êðîìå òîãî, â ñèëó (1.3) è (1.22)

∥(Hz,γ)i∗∥ =
|(b− Ax∗ − γAz)i|∥∥s (x∗ + γz,H⊤

i∗
)∥∥ ,

ïðè÷åì ∥∥(Hz,γ)i∗
∥∥ = 0 ∀γ ïðè i /∈ L(x∗),

lim
γ→+∞

∥∥(Hz,γ)i∗
∥∥ =

=

{
|(Az)i|
∥vi∥

∀i ∈ L1(x
∗), 0 ∀i ∈ L2(x

∗),
|(b− Ax∗)i|

∥ui∥
∀i ∈ L3(x

∗)

}
.

Ñëåäîâàòåëüíî, äëÿ H∗
z,γ = lim

γ→+∞
Hz,γ èìååì

∥∥H∗
z,γ

∥∥ = lim
γ→+∞

∥Hγ,z∥ =

√√√√ ∑
i∈L1(x∗)

(Az)2i
∥vi∥2

+
∑

i∈L3(x∗)

(b− Ax∗)2i
∥ui∥2

.

Òàêèì îáðàçîì, ∥∥H∗
z,γ

∥∥ < ∥H∗∥ .

Íî ýòî îçíà÷àåò, ÷òî ïðè äîñòàòî÷íî áîëüøîì, íî êîíå÷íîì γ > 0

ñóùåñòâóåò ìàòðèöà Hz,γ = H(X+(x∗+ γz) · (b−Ax∗− γAz)), ÿâëÿþùàÿñÿ

äîïóñòèìûì ðåøåíèåì çàäà÷è SPH è òàêàÿ, ÷òî ∥Hz,γ ∥ < ∥H∗∥, ÷òî ïðî-
òèâîðå÷èò ïðåäïîëîæåíèþ îá îïòèìàëüíîñòè ìàòðèöû H∗ â çàäà÷å SPH .

2. ÎïòèìàëüíîñòüH∗ â çàäà÷å SDH ïîêàæåì îò ïðîòèâíîãî: ïóñòü ñó-

ùåñòâóåò ìàòðèöà H∗∗ ∈ FS(SDH) òàêàÿ, ÷òî ∥H∗∗∥ < ∥H∗∥. Â òî æå âðå-

ìÿ FS(SDH) ⊂ FS(SPH), â ñèëó ÷åãî ñóùåñòâîâàíèå ìàòðèöû H∗∗ ïðîòè-

âîðå÷èò ïðåäïîëîæåíèþ îá îïòèìàëüíîñòè ìàòðèöû H∗ â çàäà÷å SPH .

Òåîðåìà 1.4.6. (Î äîñòàòî÷íûõ óñëîâèÿõ ñóùåñòâîâàíèÿ ðåøåíèÿ çàäà-

÷è SD[H −h])

Åñëè X (A, b) = ∅,U(A, c) ̸= ∅ (ò.å. L(A, b, c) � íåñîáñòâåííàÿ çà-

äà÷à ËÏ 1-ãî ðîäà), çàäà÷à SP [H −h] (c ïàðàìåòðîì h ̸= 0) ðàçðåøèìà è

ìàòðèöà [H∗ − h∗] ÿâëÿåòñÿ åå ðåøåíèåì, òî çàäà÷à SD[H −h] òàêæå

ðàçðåøèìà è ìàòðèöà [H − h] ÿâëÿåòñÿ åå ðåøåíèåì.
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Äîêàçàòåëüñòâî. 1. Ïîêàæåì, ÷òî ìàòðèöà [H − h] ïðèíàäëåæèò äî-

ïóñòèìîé îáëàñòè çàäà÷è SD[H −h]. Ïðåäïîëîæèì ïðîòèâíîå: ïóñòü

[H − h] /∈ FS(SD[H −h]). Ïîñêîëüêó [H − h] ∈ FS(SP [H −h]), â ñèëó ëåì-

ìû 1.2.4 U(A+H∗, c) = ∅. Ñëåäîâàòåëüíî, â ñèëó ëåììû 1.2.7 ñóùåñòâóåò

âåêòîð z, óäîâëåòâîðÿþùèé óñëîâèÿì (1.10)-(1.11).

(1.10), (1.11) ⇒ [H∗ − h∗]

[
z

0

]
= −Az ⇔

⇔ X

([
z

0

])
· ~ ([H∗ − h∗]) = −Az ⇔

⇔ X

([
z

0

])
·X+

([
x∗

1

])
· (b− Ax∗) = −Az ̸= 0. (1.34)

Ïóñòü D = (dij) = X

([
z

0

])
· X+

([
x∗

1

])
, ũi = s

([
x∗

1

]
,

[
H⊤

i∗

hi

])
,

âåêòîðû ui, vi è ìíîæåñòâà L1(·), L3(·) è L2(·) îïðåäåëåíû òàêæå, êàê â

äîêàçàòåëüñòâå òåîðåìû 1.4.5. Â ñèëó (1.3), (1.21) è (1.22)

dij =

 ũ+i

[
vi

0

]
åñëè i = j,

0 â ïðîòèâíîì ñëó÷àå.

Òàêèì îáðàçîì,

(1.34) ⇒

 ũ+i

[
vi

0

]
· (b− Ax∗)i = −(Az)i ∀i ∈ L(x∗),

(Az)i = 0 ∀i /∈ L(x∗),

(1.35)

Çàìåòèì, ÷òî óñëîâèå (1.27) ýêâèâàëåíòíî óñëîâèþ (b−Ax∗)i · ũ+i ̸= 0,

îòêóäà èìååì

ũ+i ̸= 0 ∀i ∈ L(x∗). (1.36)

Â ñèëó (1.3), (1.35) è (1.36)

|(b− Ax∗)i|
∥ũi∥2

=
|(Az)i|∣∣u⊤i vi∣∣ ∀i ∈ L1(x

∗), (Az)i = 0 ∀i ∈ L2(x
∗) ∪ L3(x

∗).
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Â ñèëó ëåììû 1.2.3,∣∣u⊤i vi∣∣ 6 ∥ui∥ · ∥vi∥ ∀i ∈ L1(x
∗),

îòêóäà, ñ ó÷åòîì (1.30), ∀i ∈ L1(x
∗)

|(b− Ax∗)i|
∥ũi∥2

> |(Az)i|
∥ui∥ · ∥vi∥

,
|(b− Ax∗)i|

∥ũi∥
> ζi ·

|(Az)i|
∥vi∥

> |(Az)i|
∥vi∥

,

ïðè÷åì â íåðàâåíñòâàõ, çàìûêàþùèõ ïðèâåäåííóþ âûøå öåïî÷êó íåðà-

âåíñòâ, îáÿçàòåëüíî åñòü ñòðîãèå, ïîñêîëüêó â ñèëó h ̸= 0 âûïîëíÿþòñÿ

óñëîâèÿ

ζi = ∥ũi∥/∥ui∥ > 1 ∀i ∈ L1(x
∗), ∃i ∈ L1(x

∗)| ζi > 1.

Ñëåäîâàòåëüíî,

∥[H∗ − h∗]∥ =

√√√√ ∑
i∈L(x∗)

|(b− Ax∗)i|
2

∥ũi∥2
>

>

√√√√ ∑
i∈L1(x∗)

(Az)2i
∥vi∥2

+
∑

i∈L2(x∗)∪L3(x∗)

(b− Ax∗)2i

∥ũi∥2
.

Ïóñòü

[H − h]z,γ = [H(~z,γ) − h(~z,γ)],

ãäå

~z,γ = X+

([
x∗ + γz

1

])
· (b− Ax∗ − γAz).

Êàê íåñëîæíî ïîêàçàòü,

(x∗ + γz) ∈ X (A+Hz,γ, b+ hz,γ) ⇒ [H − h]z,γ ∈ FS(SP [H −h]).

Êðîìå òîãî, â ñèëó (1.3) è (1.22)∥∥∥[Hi∗ − hi]z,γ

∥∥∥ =
|b− Ax∗ − γAz|i∥∥∥∥∥s

([
x∗ + γz

1

]
,

[
H⊤

i∗

hi

])∥∥∥∥∥
,
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ïðè÷åì ∥∥∥[Hi∗ − hi]z,γ

∥∥∥ = 0 ∀γ ïðè i /∈ L(x∗),

lim
γ→+∞

∥∥∥[Hi∗ − hi]z,γ

∥∥∥ =

=

{
|(Az)i|
∥vi∥

∀i ∈ L1(x
∗), 0 ∀i ∈ L2(x

∗),
|(b− Ax∗)i|

∥ũi∥
∀i ∈ L3(x

∗)

}
.

Ñëåäîâàòåëüíî, äëÿ [H − h]∗z,γ = lim
γ→+∞

[H − h]z,γ èìååì

∥∥[H − h]∗z,γ
∥∥ = lim

γ→+∞

∥∥∥[H − h]z,γ

∥∥∥ =

=

√√√√ ∑
i∈L1(x∗)

(Az)2i
∥vi∥2

+
∑

i∈L3(x∗)

(b− Ax∗)2i
∥ũi∥2

< ∥[H∗ − h∗]∥ .

Íî ïîñëåäíåå íåðàâåíñòâî îçíà÷àåò, ÷òî ïðè äîñòàòî÷íî áîëüøîì, íî

êîíå÷íîì γ > 0 ñóùåñòâóåò ìàòðèöà [H − h]z,γ, ÿâëÿþùàÿñÿ äîïóñòèìûì

ðåøåíèåì çàäà÷è SP [H −h] è òàêàÿ, ÷òî ∥ [H − h]z,γ ∥ < ∥[H∗ − h∗]∥, ÷òî
ïðîòèâîðå÷èò ïðåäïîëîæåíèþ îá îïòèìàëüíîñòè ìàòðèöû [H∗ − h∗]. â çà-

äà÷å SP [H −h].

2. Îïòèìàëüíîñòü [H∗ −h∗] â çàäà÷å SD[H −h] ïîêàæåì îò ïðîòèâíîãî.

Äåéñòâèòåëüíî, ïóñòü ñóùåñòâóåò ìàòðèöà [H∗∗ − h∗∗] ∈ FS(SD[H −h]) òà-

êàÿ, ÷òî ∥[H∗∗ − h∗∗]∥ < ∥[H∗ − h∗]∥. Íî FS(SD[H −h]) ⊂ FS(SP [H −h]),

ñëåäîâàòåëüíî, ñóùåñòâîâàíèå ìàòðèöû H∗∗ ïðîòèâîðå÷èò ïðåäïîëîæåíèþ

îá îïòèìàëüíîñòè ìàòðèöû [H∗ − h∗] â çàäà÷å SP [H −h].

1.5. Ïîñòàíîâêà çàäà÷è ñòðóêòóðíîé âçâåøåííîé ìàòðè÷íîé

êîððåêöèè

Êàê ïîêàçûâàþò âû÷èñëèòåëüíûå ýêñïåðèìåíòû, ÷àñòî â çàäà÷àõ

SDH , SPH , SD[H −h], SP [H −h] è äðóãèõ çàäà÷àõ ìàòðè÷íîé êîððåêöèè îêà-

çûâàåòñÿ îïðàâäàííûì èñïîëüçîâàíèå âçâåøåííîé åâêëèäîâîé íîðìû. Ýòî

ñâÿçàíî ñ òåì, ÷òî âåëè÷èíà êîððåêöèè áîëüøèõ è ìàëûõ ïî ìîäóëþ êî-

ýôôèöèåíòîâ ñèñòåì îãðàíè÷åíèé ðàâíîçíà÷íà. Òàêèì îáðàçîì, ïðè îòíî-

ñèòåëüíî íåáîëüøîé ïî åâêëèäîâîé íîðìå ìàòðèöå êîððåêöèè ìîæåò áûòü

ïîëó÷åíà çàäà÷à ËÏ ñîâñåì ¾íåïîõîæàÿ¿ íà èñõîäíóþ.



39

Ïóñòü çàäà÷è L(A, b, c) è L∗(A, b, c) òàêîâû, ÷òî X (A, b) = ∅,
U(A, c) ̸= ∅. Ñ íåñîáñòâåííûìè çàäà÷àìè L(A, b, c) è L∗(A, b, c) áóäåì ñâÿ-

çûâàòü çàäà÷è SwDH , SwD[H −h], SwPH , SwP [H −h] ñòðóêòóðíîé âçâåøåí-

íîé ìàòðè÷íîé êîððåêöèè, â êîòîðûõ ìàòðèöå H èëè ðàñøèðåííîé ìàòðè-

öå [H − h] ïðåäïèñàíî èìåòü ñòðóêòóðó íóëåâûõ è íåíóëåâûõ ýëåìåíòîâ,

çàäàâàåìóþ ìíîæåñòâàìè èíäåêñîâ íóëåâûõ ýëåìåíòîâK è k, à òàêæå âåñî-

âûå êîýôôèöèåíòû, çàäàâàåìûå ìàòðèöàìè W è w. Âåñ êàæäîãî ýëåìåíòà

Hij è hi çàäàåòñÿ ýëåìåíòàìè Wij è wi ñîîòâåòñòâåííî, ãäå W � âåñîâàÿ

ìàòðèöà ñ ðàçìåðàìè m× n è w � âåñîâàÿ ìàòðèöà ñ ðàçìåðàìè m× 1.

Êðèòåðèé îïòèìàëüíîñòè ìàòðè÷íîé êîððåêöèè â äàííîé ôîðìå ïðè

óñëîâèè

W = (Wij > 0| i ∈ 1, . . . ,m, j ∈ 1, . . . , n) (1.37)

è

w = (wi > 0| i ∈ 1, . . . ,m) (1.38)

îáëàäàåò ïî÷òè ìàêñèìàëüíîé îáùíîñòüþ ïðè èñïîëüçîâàíèè åâêëèäîâîé

íîðìû è ÿâëÿåòñÿ ñóùåñòâåííûì óñëîâèåì ðÿäà òåîðåòè÷åñêèõ âûêëàäîê

[87]. Òàê, åñëè íåêîòîðàÿ ïðèêëàäíàÿ çàäà÷à ìîæåò ïîòðåáîâàòü ïðèìå-

íåíèÿ íóëåâûõ âåñîâ äëÿ îòäåëüíûõ ýëåìåíòîâ ìàòðèö H, [H − h], òî

íóëåâûå êîýôôèöèåíòû W è w ìîãóò áûòü çàìåíåíû íåêîòîðûìè ìàëû-

ìè (îòíîñèòåëüíî äàííîé çàäà÷è) ïîëîæèòåëüíûìè ÷èñëàìè, óìåíüøåíèå

êîòîðûõ áóäåò äàâàòü ïðèáëèæåíèå ê ðåøåíèþ èñõîäíîé çàäà÷è.

Ðåøåíèÿ çàäà÷ â îáùåì ñëó÷àå (ïðè ïðîèçâîëüíûõ ìàòðèöàõ W è

w) íå ìîãóò áûòü çàïèñàíû â òåðìèíàõ ñîáñòâåííûõ âåêòîðîâ ìàòðèö, ïî-

ñòðîåííûõ èñïîëüçîâàíèåì ìàòðèöû A è âåêòîðà b, òàê êàê ïðîèçâåäåíèå

ìàòðèö ïî Àäàìàðó (¾◦¿) â îáùåì ñëó÷àå íå ñâîäèòñÿ ê êëàññè÷åñêîìó

ìàòðè÷íîìó óìíîæåíèþ.

Ïóñòü ω(W) = [W1∗ . . . Wm∗]
⊤ � âåêòîð, ñîñòàâëåííûé èç ýëåìåí-

òîâ ñòðîê Wi∗, ω([W w]) = [[W1∗ w1] . . . [Wm∗ wm]]
⊤ � âåêòîð, ñîñòàâ-

ëåííûé èç ýëåìåíòîâ ñòðîê [Wi∗ wi], ãäå ω(W) ∈ RN , ω([W w]) ∈ RN ′
,

N = m · n, N ′ = m · (n+ 1).
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Òàêèì îáðàçîì,

Ω(W) = (Ωij(W)) =

∣∣∣∣∣ ωi(W) åñëè i = j,

0 â ïðîòèâíîì ñëó÷àå,
(1.39)

Ω([W w]) = (Ωij([W w])) =

∣∣∣∣∣ ωi([W w]) åñëè i = j,

0 â ïðîòèâíîì ñëó÷àå,
(1.40)

ãäå Ω(W) ∈ RN×N , Ω([W w]) ∈ RN ′×N ′
.

Ïóñòü, òàê æå,

Ωi = Ωi(Wi∗) =
(
Ωi

lk(Wi∗)
)
=

∣∣∣∣∣ (Wi∗)l åñëè l = k,

0 â ïðîòèâíîì ñëó÷àå,
(1.41)

Ω′i = Ωi([Wi∗ wi]) =
(
Ωi

lk([Wi∗ wi])
)
=

∣∣∣∣∣ [Wi∗ wi]l åñëè l = k,

0 â ïðîòèâíîì ñëó÷àå,
(1.42)

ãäå Ωi(W) ∈ Rn×n, Ωi([W w]) ∈ R(n+1)×(n+1).

Ëåììà 1.5.1. Çàäà÷à ñòðóêòóðíîé âçâåøåííîé ìàòðè÷íîé êîððåêöèè

SwPH ýêâèâàëåíòíà çàäà÷å

∥Ω(W) ~ (H)∥ → min
(X(x)Ω−1(W))(Ω(W)~(H))=b−Ax

(1.43)

Äîêàçàòåëüñòâî. Èñïîëüçóÿ (1.19), (1.21), (1.39), íåñëîæíî óáåäèòüñÿ, ÷òî

äëÿ ìàòðèöû H, ïîä÷èíÿþùåéñÿ ñîîòâåòñòâóþùèì ñòðóêòóðíûì îãðàíè-

÷åíèÿì è èìåþùåé çàäàííûå âåñîâûå êîýôôèöèåíòû, ñïðàâåäëèâû ôîðìó-

ëû (
X (x) Ω−1(W)

)
(Ω(W)~ (H)) = X(x) · ~(H) = H · x ⇒

⇒
(
X (x) Ω−1(W)

)
(Ω(W)~ (H)) = b− Ax ⇔ X (A+H, b) ̸= ∅

è

∥Ω(W) ~(H)∥ = ∥W ◦H∥ .

Ëåììà 1.5.2. Çàäà÷à ñòðóêòóðíîé âçâåøåííîé ìàòðè÷íîé êîððåêöèè

SwP [H −h] ýêâèâàëåíòíà çàäà÷å

∥Ω([W w]) ~ ([H − h])∥ → minX


x
1


Ω−1([W w])

(Ω([W w])~([H −h]))=b−Ax

(1.44)
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Äîêàçàòåëüñòâî. Èñïîëüçóÿ (1.20), (1.21), (1.40), íåñëîæíî óáåäèòüñÿ, ÷òî

äëÿ ìàòðèöû [H − h], ïîä÷èíÿþùåéñÿ ñîîòâåòñòâóþùèì ñòðóêòóðíûì

îãðàíè÷åíèÿì è èìåþùåé çàäàííûå âåñîâûå êîýôôèöèåíòû, ñïðàâåäëèâû

ôîðìóëû (
X

([
x

1

])
Ω−1([W w])

)
(Ω([W w]) ~ ([H − h])) =

= X

([
x

1

])
· ~([H − h]) = [H − h] ·

[
x

1

]
⇒

⇒

(
X

([
x

1

])
Ω−1([W w])

)
(Ω([W w]) ~ ([H − h])) = b− Ax ⇔

⇔ X (A+H, b+ h) ̸= ∅

è

∥Ω([W w]) ~([H − h])∥ = ∥[W w] ◦ [H − h]∥ .

1.6. Äîñòàòî÷íûå óñëîâèÿ ðàçðåøèìîñòè íåñîáñòâåííûõ çàäà÷

ËÏ 1-ãî ðîäà ïîñëå âçâåøåííîé ìàòðè÷íîé êîððåêöèè èõ

äîïóñòèìîé îáëàñòè ñ ó÷åòîì ñòðóêòóðíûõ îãðàíè÷åíèé

Ëåììà 1.6.1. Ïóñòü ñóùåñòâóþò ìàòðèöà H è âåêòîð x òàêèå,

÷òî H îòâå÷àåò ñòðóêòóðíûì îãðàíè÷åíèÿì, çàäàâàåìûì ìíîæåñòâîì

K, è èìååò âåñîâûå êîýôôèöèåíòû çàäàâàåìûå ìàòðèöåé W, ñèñòåìà

(A+H) x = b � ñîâìåñòíà.

Òîãäà ìàòðèöà Ĥ, ÿâëÿþùàÿñÿ ðåøåíèåì óêàçàííîé ñèñòåìû ñ ìè-

íèìàëüíîé âçâåøåííîé åâêëèäîâîé íîðìîé, ñóùåñòâóåò, åäèíñòâåííà è

îïðåäåëÿåòñÿ ôîðìóëîé

Ĥ = H(~̂),

ãäå

~̂ = Ω−1(W) ·
(
X (x) Ω−1(W)

)+ · (b− Ax). (1.45)

Ïðè ýòîì

Ĥi∗ ̸= 0 ⇔ i ∈ L(x), (1.46)
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∥∥∥W ◦ Ĥ
∥∥∥ =

∥∥∥Ω(W) ~̂
∥∥∥ =

√√√√√∑
i∈L(x)

(b− Ax)2i∥∥∥s⊤(x,H⊤
i∗
)
· (Ωi)−1

∥∥∥2 . (1.47)

Äîêàçàòåëüñòâî.

(A+H)x = b ⇔ Hx = b− Ax ⇔ X(x)~(H) = (b− Ax) ⇔

⇔
(
X (x) Ω−1(W)

)
(Ω(W)~ (H)) = b− Ax ⇔

~ (H) = Ω−1(W) ·
(
X (x) Ω−1(W)

)+ · (b− Ax).

Çàìåòèì, ÷òî â ñèëó èñõîäíûõ ïðåäïîëîæåíèé âñå ñèñòåìû â óêàçàííîé öå-

ïî÷êå ýêâèâàëåíòíûõ ñèñòåì ñîâìåñòíû, îòêóäà, â ñèëó õîðîøî èçâåñòíûõ

ñâîéñòâ îáðàòíûõ è ïñåâäîîáðàòíûõ ìàòðèö [31], [32], ïîëó÷àåì îáîñíîâà-

íèå ñóùåñòâîâàíèÿ è åäèíñòâåííîñòè ìàòðèöû Ĥ, âåêòîðà ~̂ è ñïðàâåäëè-

âîñòè ôîðìóëû (1.45).

Äëÿ îáîñíîâàíèÿ ôîðìóë (1.46)-(1.47) çàìåòèì, ÷òî ñóììèðóåìûå â

(1.47) âåëè÷èíû ÿâëÿþòñÿ êâàäðàòàìè âçâåøåííûõ åâêëèäîâûõ íîðì ñòðîê

ìàòðèöû Ĥ (ýòî ìîæíî ïîêàçàòü ñ èñïîëüçîâàíèåì (1.3), (1.19)), (1.21),

(1.22) è (1.41)). Íî, â ñèëó ñîâìåñòíîñòè ñèñòåìû (A+Ĥ)x = b è ìèíèìàëü-

íîñòè
∥∥∥W ◦ Ĥ

∥∥∥, ïðè (1.37) ìíîæåñòâî íîìåðîâ íåíóëåâûõ ñòðîê ìàòðèöû

Ĥ ñîâïàäàåò ñ ìíîæåñòâîì L(x).

Ëåììà 1.6.2. Ïóñòü ñóùåñòâóþò ìàòðèöà [H − h] è âåêòîð x òàêèå,

÷òî [H − h] îòâå÷àåò ñòðóêòóðíûì îãðàíè÷åíèÿì, çàäàâàåìûì ìíî-

æåñòâàìè K, k è èìååò âåñîâûå êîýôôèöèåíòû, çàäàâàåìûå ìàòðèöåé

[W w], ñèñòåìà (A+H) x = b+ h � ñîâìåñòíà.

Òîãäà ìàòðèöà
[
Ĥ − ĥ

]
, ÿâëÿþùàÿñÿ ðåøåíèåì óêàçàííîé ñèñòå-

ìû ñ ìèíèìàëüíîé âçâåøåííîé åâêëèäîâîé íîðìîé, ñóùåñòâóåò, åäèí-

ñòâåííà è îïðåäåëÿåòñÿ ôîðìóëîé[
Ĥ − ĥ

]
=
[
H(~̂) − h(~̂)

]
,

ãäå

~̂ = Ω−1([W w]) ·

(
X

([
x

1

])
Ω−1([W w])

)+

· (b− Ax). (1.48)



43

Ïðè ýòîì [
Ĥi∗ − ĥi

]
̸= 0 ⇔ i ∈ L(x), (1.49)

∥[W w ]◦[ Ĥ − ĥ ]∥ =
∥∥∥Ω ([W w]) ~̂

∥∥∥ =

=

√√√√√√√
∑
i∈L(x)

(b− Ax)2i∥∥∥∥∥s⊤
([

x

1

]
,

[
H⊤

i∗

hi

])
· (Ω′i)−1

∥∥∥∥∥
2 . (1.50)

Äîêàçàòåëüñòâî.

(A+H)x = b+ h ⇔ [H(~) − h(~)]

[
x

1

]⊤
= b− Ax ⇔

⇔ X

([
x

1

])
~([H − h]) = b− Ax ⇔

⇔

(
X

([
x

1

])
Ω−1([W w])

)
(Ω([W w]) ~ ([H − h])) = b− Ax ⇔

⇔ ~ ([H − h]) = Ω−1([W w]) ·

(
X

([
x

1

])
Ω−1([W w])

)+
· (b− Ax).

Ïîñêîëüêó âñå ñèñòåìû â óêàçàííîé öåïî÷êå ýêâèâàëåíòíûõ ñèñòåì

ñîâìåñòíû, èç õîðîøî èçâåñòíûõ ñâîéñòâ îáðàòíûõ è ïñåâäîîáðàòíûõ ìàò-

ðèö [31], [32] âûòåêàåò ñóùåñòâîâàíèå è åäèíñòâåííîñòü ìàòðèöû [Ĥ − ĥ],

âåêòîðà ~̂ è ñïðàâåäëèâîñòü ôîðìóëû (1.48).

Äëÿ îáîñíîâàíèÿ ôîðìóë (1.49)-(1.50) çàìåòèì, ÷òî ñóììèðóåìûå â

(1.50) âåëè÷èíû ÿâëÿþòñÿ êâàäðàòàìè âçâåøåííûõ åâêëèäîâûõ íîðì ñòðîê

ìàòðèöû [Ĥ − ĥ], ÷òî ñëåäóåò èç (1.3), (1.20)), (1.21), (1.22) è (1.42).

Íî, â ñèëó ñîâìåñòíîñòè ñèñòåìû (A + Ĥ)x = b + ĥ è ìèíèìàëüíî-

ñòè
∥∥∥[W w] ◦

[
Ĥ − ĥ

]∥∥∥, ìíîæåñòâî íîìåðîâ íåíóëåâûõ ñòðîê ìàòðèöû

[Ĥ − ĥ] ñîâïàäàåò ñ ìíîæåñòâîì L(x).

Ëåììû 1.6.1 è 1.6.2 ïîçâîëÿþò ñâåñòè çàäà÷è SwPH è SwP [H −h] ê

çàäà÷àì óñëîâíîé ìèíèìèçàöèè ïî âåêòîðó x > 0 öåëåâûõ ôóíêöèé âèäà

(1.47) è (1.50) ñîîòâåòñòâåííî. Î÷åâèäíî, ÷òî ñóùåñòâîâàíèå ìèíèìóìà â

óêàçàííûõ çàäà÷àõ ýêâèâàëåíòíî ðàçðåøèìîñòè çàäà÷ SwPH è SwP [H −h],
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÷òî ÿâëÿåòñÿ îáîñíîâàíèåì ïðèâîäèìûõ íèæå ëåìì, äàþùèõ, ïî àíàëîãèè ñ

ëåììàìè 1.2.1, 1.2.2 è 1.4.3, 1.4.4, êîíñòðóêòèâíîå îïèñàíèå ðåøåíèé çàäà÷

SwPH è SwP [H −h].

Ëåììà 1.6.3. Åñëè ðåøåíèå çàäà÷è SwPH ñóùåñòâóåò, òî îíî èìååò

âèä

H∗ = H
(
Ω−1(W) ·

(
X (x) Ω−1(W)

)+ · (b− Ax)
)
,

ãäå

x∗ ∈ Argmin
x>0

∑
i∈L(x)

(b− Ax)2i∥∥∥s⊤(x,H⊤
i∗
)
· (Ωi)−1

∥∥∥2 .
Ïðè ýòîì

∥W ◦H∗∥ =

√√√√√∑
i∈L(x)

(b− Ax)2i∥∥∥s⊤(x,H⊤
i∗
)
· (Ωi)−1

∥∥∥2 . (1.51)

Ëåììà 1.6.4. Åñëè ðåøåíèå çàäà÷è SwP [H −h] ñóùåñòâóåò, òî îíî èìå-

åò âèä

[H∗ − h∗] = [H(~∗) − h(~∗)],

ãäå

~∗ = Ω−1([W w]) ·

(
X

([
x

1

])
Ω−1([W w])

)+

· (b− Ax),

x∗ ∈ Argmin
x>0

∑
i∈L(x∗)

(b− Ax)2i∥∥∥∥∥s⊤
([

x

1

]
,

[
H⊤

i∗

hi

])
· (Ω′i)−1

∥∥∥∥∥
2 .

Ïðè ýòîì

∥[W w ]◦ [H∗ − h∗]∥ = ∥Ω([W w]) · ~∗∥ =

=

√√√√√√√
∑
i∈L(x)

(b− Ax)2i∥∥∥∥∥s⊤
([

x

1

]
,

[
H⊤

i∗

hi

])
· (Ω′i)−1

∥∥∥∥∥
2 . (1.52)

Òåîðåìà 1.6.5. (Î äîñòàòî÷íûõ óñëîâèÿõ ñóùåñòâîâàíèÿ ðåøåíèÿ çàäà-

÷è SwDH)
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Åñëè X (A, b) = ∅,U(A, c) ̸= ∅ (ò.å. L(A, b, c) � íåñîáñòâåííàÿ çàäà-

÷à ËÏ 1-ãî ðîäà), b ̸= 0, çàäà÷à SwPH ðàçðåøèìà è ìàòðèöà H∗ ÿâëÿåòñÿ

åå ðåøåíèåì, òî çàäà÷à SwDH òàêæå ðàçðåøèìà è ìàòðèöà H∗ ÿâëÿ-

åòñÿ åå ðåøåíèåì.

Äîêàçàòåëüñòâî. 1. Ïîêàæåì, ÷òî ìàòðèöà H∗ ïðèíàäëåæèò äîïóñòèìîé

îáëàñòè çàäà÷è SwDH . Ïðåäïîëîæèì ïðîòèâíîå: ïóñòü H∗ /∈ FS(SwDH).

ÏîñêîëüêóH∗ ∈ FS(SwPH) ⇔ X (A+H, b) ̸= ∅, â ñèëó ëåììû 1.2.4 U(A+

H∗, c) = ∅. Ñëåäîâàòåëüíî, â ñèëó ëåììû 1.2.7, ñóùåñòâóåò âåêòîð z, óäî-

âëåòâîðÿþùèé óñëîâèÿì (1.10)-(1.11).

(1.10), (1.11) ⇒ H∗z = −Az ⇔ X(z) · ~ (H∗) = −Az ⇔

⇔
(
X (z) Ω−1(W)

)
· (Ω(W)~ (H∗)) = −Az ⇒(

X (z) Ω−1(W)
)
·
(
X (x∗) Ω−1(W)

)+ · (b− Ax∗) = −Az ̸= 0. (1.53)

Ïóñòü D = (dij) =
(
X (z) Ω−1(W)

)
·
(
X (x∗) Ω−1(W)

)+
, ui =

(
Ωi
)−1 ·

s(x∗,H⊤
i∗), vi =

(
Ωi
)−1 · s(z,H⊤

i∗), òîãäà â ñèëó (1.3), (1.21) è (1.22)

dij =

{
u+i vi åñëè i = j

0 â ïðîòèâíîì ñëó÷àå.

Òàêèì îáðàçîì,

(1.53) ⇒

{
u+i vi · (b− Ax∗)i = −(Az)i ∀i ∈ L(x∗),

(Az)i = 0 ∀i /∈ L(x∗),
(1.54)

Çàìåòèì, ÷òî óñëîâèå (1.46) ýêâèâàëåíòíî óñëîâèþ (b−Ax∗)i ·u+i ̸= 0,

îòêóäà â ñèëó (1.3) è (1.38) èìååì

ui ̸= 0 ∀i ∈ L(x∗). (1.55)

Ðàçîáüåì ìíîæåñòâî L(x∗) íà òðè ïîäìíîæåñòâà: L1(x
∗) ={

i ∈ L(x∗)|u⊤i vi ̸= 0
}
, L2(x

∗) =
{
i ∈ L(x∗)|u⊤i vi = 0, vi ̸= 0

}
è L3(x

∗) ={
i ∈ L(x∗)|u⊤i vi = 0, vi = 0

}
. Â ñèëó (1.3), (1.54) è (1.55)

|(b− Ax∗)i|
∥ui∥2

=
|(Az)i|∣∣u⊤i vi∣∣ ̸= 0 ∀i ∈ L1(x

∗), (Az)i = 0 ∀i ∈ L2(x
∗) ∪ L3(x

∗).
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Çàìåòèì, ÷òî âåêòîð ui íå ïðåäñòàâèì â âèäå ui = λvi äëÿ âñåõ

i ∈ L1(x
∗), ãäå λ � íåêîòîðîå ÷èñëî, ïîñêîëüêó â ïðîòèâíîì ñëó÷àå (ñ ïîìî-

ùüþ ¾ïîñòðî÷íîãî¿ âàðèàíòà èñïîëüçóåìûõ â äîêàçàòåëüñòâå òåîðåìû 1.2.8

âûêëàäîê) ïîëó÷àåì b = 0, ÷òî ïðîòèâîðå÷èò óñëîâèÿì òåîðåìû.

Òàêèì îáðàçîì, â ñèëó ëåììû 1.2.3,

|u⊤i vi| 6 ∥ui∥ · ∥vi∥ ∀i ∈ L1(x
∗), ∃i ∈ L1(x

∗)
∣∣|u⊤i vi| < ∥ui∥ · ∥vi∥

îòêóäà, â ñâîþ î÷åðåäü, ∀i ∈ L1(x
∗)

|(b− Ax∗)i|
∥ui∥2

>
|(Az)i|

∥ui∥ · ∥vi∥
,

|(b− Ax∗)i|
∥ui∥

>
|(Az)i|
∥vi∥

,

ïðè÷åì â ïðèâåäåííîé öåïî÷êå íåðàâåíñòâ îáÿçàòåëüíî ïðèñóòñòâóþò ñòðî-

ãèå íåðàâåíñòâà.

Ñëåäîâàòåëüíî, â ñèëó (1.51),

∥W ◦H∗∥ =

√√√√ ∑
i∈L(x∗)

(b− Ax∗)2i

∥ui∥2
>

√√√√ ∑
i∈L1(x∗)

(Az)2i

∥vi∥2
+

∑
i∈L2(x∗)∪L3(x∗)

(b− Ax∗)2i

∥ui∥2
.

Ðàññìîòðèì

Hγ,z = H(Ω−1(W) ·
(
X (x∗ + γz) Ω−1(W)

)+ · (b− Ax∗ − γAz)).

Î÷åâèäíî, ÷òî Hz,γ � äîïóñòèìîå ðåøåíèå çàäà÷è SwPH , ïîñêîëüêó

(x∗ + γz) ∈ X (A+Hz,γ, b). Êðîìå òîãî, â ñèëó (1.3) è (1.22)∥∥(W ◦Hz,γ)i∗
∥∥ =

|(b− Ax∗ − γAz)i|∥∥Ω−1(W) · s
(
x∗ + γz,H⊤

i∗
)∥∥ ,

ïðè÷åì ∥∥(W ◦Hz,γ)i∗
∥∥ = 0 ∀γ ïðè i /∈ L(x∗),

lim
γ→+∞

∥∥(W ◦Hz,γ)i∗
∥∥ =

=

{
|(Az)i|
∥vi∥

∀i ∈ L1(x
∗), 0 ∀i ∈ L2(x

∗),
|(b− Ax∗)i|

∥ui∥
∀i ∈ L3(x

∗)

}
.

Ñëåäîâàòåëüíî, äëÿ H∗
z,γ = lim

γ→+∞
Hz,γ èìååì

∥∥W ◦H∗
z,γ

∥∥ = lim
γ→+∞

∥W ◦Hγ,z∥ =

√√√√ ∑
i∈L1(x∗)

(Az)2i
∥vi∥2

+
∑

i∈L3(x∗)

(b− Ax∗)2i
∥ui∥2

.



47

Òàêèì îáðàçîì, ∥∥W ◦H∗
z,γ

∥∥ < ∥W ◦H∗∥ .

Íî ýòî îçíà÷àåò, ÷òî ïðè äîñòàòî÷íî áîëüøîì, íî êîíå÷íîì γ > 0

ñóùåñòâóåò ìàòðèöà

Hγ,z = H(Ω−1(W) ·
(
X (x∗ + γz) Ω−1(W)

)+ · (b− Ax∗ − γAz)),

ÿâëÿþùàÿñÿ äîïóñòèìûì ðåøåíèåì çàäà÷è SwPH è òàêàÿ, ÷òî

∥W ◦Hz,γ∥ < ∥W ◦H∗∥, ÷òî ïðîòèâîðå÷èò ïðåäïîëîæåíèþ îá îïòè-

ìàëüíîñòè ìàòðèöû H∗ â çàäà÷å SwPH .

2. Îïòèìàëüíîñòü H∗ â çàäà÷å SwDH ïîêàæåì îò ïðîòèâíîãî: ïóñòü

ñóùåñòâóåò ìàòðèöà H∗∗ ∈ FS(SwDH) òàêàÿ, ÷òî ∥W ◦H∗∗∥ < ∥W ◦H∗∥.
Â òî æå âðåìÿ FS(SwDH) ⊂ FS(SwPH), â ñèëó ÷åãî ñóùåñòâîâàíèå ìàò-

ðèöû H∗∗ ïðîòèâîðå÷èò ïðåäïîëîæåíèþ îá îïòèìàëüíîñòè ìàòðèöû H∗ â

çàäà÷å SwPH .

Òåîðåìà 1.6.6. (Î äîñòàòî÷íûõ óñëîâèÿõ ñóùåñòâîâàíèÿ ðåøåíèÿ çàäà-

÷è SwD[H −h])

Åñëè X (A, b) = ∅,U(A, c) ̸= ∅ (ò.å. L(A, b, c) � íåñîáñòâåííàÿ çàäà-

÷à ËÏ 1-ãî ðîäà), çàäà÷à SwP [H −h] (c ïàðàìåòðîì h ̸= 0) ðàçðåøèìà è

ìàòðèöà [H∗ − h∗] ÿâëÿåòñÿ åå ðåøåíèåì, òî çàäà÷à SwD[H −h] òàêæå

ðàçðåøèìà è ìàòðèöà [H∗ − h∗] ÿâëÿåòñÿ åå ðåøåíèåì.

Äîêàçàòåëüñòâî. 1. Ïîêàæåì, ÷òî ìàòðèöà [H − h] ïðèíàäëåæèò äî-

ïóñòèìîé îáëàñòè çàäà÷è SwD[H −h]. Ïðåäïîëîæèì ïðîòèâíîå: ïóñòü

[H − h] /∈ FS(SwD[H −h]). Ïîñêîëüêó [H − h] ∈ FS(SwP [H −h]), â ñè-

ëó ëåììû 1.2.4 U(A + H∗, c) = ∅. Ñëåäîâàòåëüíî, â ñèëó ëåììû 1.2.7

ñóùåñòâóåò âåêòîð z, óäîâëåòâîðÿþùèé óñëîâèÿì (1.10)-(1.11).

(1.10), (1.11) ⇒ [H∗ − h∗]

[
z

0

]
= −Az ⇔

⇔ X

([
z

0

])
· ~ ([H∗ − h∗]) = −Az ⇔

⇔

(
X

([
z

0

])
Ω−1([W w])

)
· (Ω([W w]) ~ ([H∗ − h∗])) = −Az ⇔
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⇔

(
X

([
z

0

])
Ω−1([W w])

)
·

(
X

([
x∗

1

])
Ω−1([W w])

)+

·

· (b− Ax∗) = −Az ̸= 0. (1.56)

Ïóñòü

D = (dij) =

(
X

([
z

0

])
Ω−1([W w])

)
·

(
X

([
x∗

1

])
Ω−1([W w])

)+

,

ũi =
(
Ω′i)−1 · s

([
x∗

1

]
,

[
H⊤

i∗

hi

])
, ṽi =

(
Ω′i)−1 · s

([
z

0

]
,

[
H⊤

i∗

hi

])
, âåêòîðû ui,

vi è ìíîæåñòâà L1(·), L3(·) è L2(·) îïðåäåëåíû òàêæå, êàê â äîêàçàòåëüñòâå

òåîðåìû 1.6.5. Â ñèëó (1.3), (1.21) è (1.22)

dij =

{
ũ+i ṽi åñëè i = j,

0 â ïðîòèâíîì ñëó÷àå.

Òàêèì îáðàçîì,

(1.56) ⇒

{
ũ+i ṽi · (b− Ax∗)i = −(Az)i ∀i ∈ L(x∗),

(Az)i = 0 ∀i /∈ L(x∗),
(1.57)

Çàìåòèì, ÷òî óñëîâèå (1.49) ýêâèâàëåíòíî óñëîâèþ (b−Ax∗)i · ũ+i ̸= 0,

îòêóäà èìååì

ũ+i ̸= 0 ∀i ∈ L(x∗). (1.58)

Â ñèëó (1.3), (1.57) è (1.58)

|(b− Ax∗)i|
∥ũi∥2

=
|(Az)i|∣∣u⊤i vi∣∣ ∀i ∈ L1(x

∗), (Az)i = 0 ∀i ∈ L2(x
∗) ∪ L3(x

∗).

Â ñèëó ëåììû 1.2.3,∣∣u⊤i vi∣∣ 6 ∥ui∥ · ∥vi∥ ∀i ∈ L1(x
∗),

îòêóäà, ñ ó÷åòîì (1.52), ∀i ∈ L1(x
∗)

|(b− Ax∗)i|
∥ũi∥2

> |(Az)i|
∥ui∥ · ∥vi∥

,
|(b− Ax∗)i|

∥ũi∥
> ζi ·

|(Az)i|
∥vi∥

> |(Az)i|
∥vi∥

,
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ïðè÷åì â íåðàâåíñòâàõ, çàìûêàþùèõ ïðèâåäåííóþ âûøå öåïî÷êó íåðà-

âåíñòâ, îáÿçàòåëüíî åñòü ñòðîãèå, ïîñêîëüêó â ñèëó h ̸= 0 âûïîëíÿþòñÿ

óñëîâèÿ

ζi = ∥ũi∥/∥ui∥ > 1 ∀i ∈ L1(x
∗), ∃i ∈ L1(x

∗)| ζi > 1.

Ñëåäîâàòåëüíî,

∥[W w] ◦ [H∗ − h∗]∥ =

√√√√ ∑
i∈L(x∗)

|(b− Ax∗)i|
2

∥ũi∥2
>

>

√√√√ ∑
i∈L1(x∗)

(Az)2i
∥vi∥2

+
∑

i∈L2(x∗)∪L3(x∗)

(b− Ax∗)2i

∥ũi∥2
.

Ïóñòü

[H − h]z,γ = [H(~z,γ) − h(~z,γ)],

ãäå

~z,γ = Ω−1([W w]) ·

(
X

([
x∗ + γz

1

])
Ω−1([W w])

)+

· (b− Ax∗ − γAz).

Êàê íåñëîæíî ïîêàçàòü,

(x∗ + γz) ∈ X (A+Hz,γ, b+ hz,γ) ⇒ [H − h]z,γ ∈ FS(SP [H −h]).

Êðîìå òîãî, â ñèëó (1.3) è (1.22)∥∥([W w] ◦ [H − h]z,γ)i∗
∥∥ =

|b− Ax∗ − γAz|i∥∥∥∥∥Ω′i · s

([
x∗ + γz

1

]
,

[
H⊤

i∗

hi

])∥∥∥∥∥
,

ïðè÷åì ∥∥([W w] ◦ [H − h]z,γ)i∗
∥∥ = 0 ∀γ ïðè i /∈ L(x∗),

lim
γ→+∞

∥∥([W w] ◦ [H − h]z,γ)i∗
∥∥ =

=

{
|(Az)i|
∥vi∥

∀i ∈ L1(x
∗), 0 ∀i ∈ L2(x

∗),
|(b− Ax∗)i|

∥ũi∥
∀i ∈ L3(x

∗)

}
.

Ñëåäîâàòåëüíî, äëÿ [H − h]∗z,γ = lim
γ→+∞

[H − h]z,γ èìååì∥∥[W w] ◦ [H − h]∗z,γ
∥∥ = lim

γ→+∞

∥∥∥[W w] ◦ [H − h]z,γ

∥∥∥ =
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=

√√√√ ∑
i∈L1(x∗)

(Az)2i
∥vi∥2

+
∑

i∈L3(x∗)

(b− Ax∗)2i
∥ũi∥2

< ∥[W w] ◦ [H∗ − h∗]∥ .

Íî ïîñëåäíåå íåðàâåíñòâî îçíà÷àåò, ÷òî ïðè äîñòàòî÷íî áîëü-

øîì, íî êîíå÷íîì γ > 0 ñóùåñòâóåò ìàòðèöà [H − h]z,γ, ÿâ-

ëÿþùàÿñÿ äîïóñòèìûì ðåøåíèåì çàäà÷è SP [H −h] è òàêàÿ, ÷òî∥∥∥[W w] ◦ [H − h]z,γ

∥∥∥ <
∥∥∥[W w] ◦ [H∗ − h∗]

∥∥∥, ÷òî ïðîòèâîðå÷èò ïðåä-

ïîëîæåíèþ îá îïòèìàëüíîñòè ìàòðèöû [H∗ − h∗] â çàäà÷å SP [H −h].

2. Îïòèìàëüíîñòü [H∗ − h∗] â çàäà÷å SwD[H −h]

ïîêàæåì îò ïðîòèâíîãî. Äåéñòâèòåëüíî, ïóñòü ñóùåñòâó-

åò ìàòðèöà [H∗∗ − h∗∗] ∈ FS(SwD[H −h]) òàêàÿ, ÷òî

∥[W w] ◦ [H∗∗ − h∗∗]∥ < ∥[W w] ◦ [H∗ − h∗]∥. Íî FS(SwD[H −h]) ⊂
FS(SwP [H −h]), ñëåäîâàòåëüíî, ñóùåñòâîâàíèå ìàòðèöû H∗∗ ïðîòèâî-

ðå÷èò ïðåäïîëîæåíèþ îá îïòèìàëüíîñòè ìàòðèöû [H∗ − h∗] â çàäà÷å

SwP [H −h].
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Ãëàâà 2. Ïîñòðîåíèå ýôôåêòèâíîãî àëãîðèòìà

ðåøåíèÿ çàäà÷ ìàòðè÷íîé êîððåêöèè íåñîáñòâåííûõ

çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ ïåðâîãî ðîäà

2.1. Êâàçèíüòîíîâñêèé àëãîðèòì ìàòðè÷íîé êîððåêöèè íåñîá-

ñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ ïåðâîãî ðîäà

Äëÿ ðåøåíèÿ çàäà÷ ìàòðè÷íîé êîððåêöèè íåñîáñòâåííûõ çàäà÷ ëè-

íåéíîãî ïðîãðàììèðîâàíèÿ ïåðâîãî ðîäà ñòðîèòñÿ êâàçèíüòîíîâñêèé àëãî-

ðèòì, îñíîâàííûé íà ìåòîäå Áðîéäåíà-Ôëåò÷åðà-Ãîëüäôàðáà-Øåííî, êî-

òîðûé, êàê è âñå ãðàäèåíòíûå ìåòîäû, îñíîâàí íà èòåðàöèîííîé ïðîöåäóðå,

ðåàëèçóåìîé â ñîîòâåòñòâèè ñ ôîðìóëîé

xk+1 = xk + αk · s
(
xk
)
,

ãäå xk � òåêóùåå ïðèáëèæåíèå ê ðåøåíèþ,

αk � ïàðàìåòð, õàðàêòåðèçóþùèé äëèíó øàãà,

s
(
xk
)
� íàïðàâëåíèå ïîèñêà.

Ïðè÷åì,

s
(
xk
)
= −Gk · ∇Φ

(
xk
)
,

ãäå Φ (x) � öåëåâàÿ ôóíêöèÿ,

∇Φ (x) � ãðàäèåíò öåëåâîé ôóíêöèè,

G � ïðèáëèæåíèå ê ìàòðèöå îáðàòíîé ìàòðèöå Ãåññå öåëåâîé ôóíêöèè.

Òàêèì îáðàçîì, âûáîð äàííîãî ìåòîäà ñâÿçàí ñ òåì, ÷òî îí îòíîñèòñÿ

ê êëàññó êâàçèíüþòîíîâñêèõ, ò.å. íå òðåáóþùèõ íåïîñðåäñòâåííîãî ðàñ÷åòà

ìàòðèöû Ãåññå ïðè îïðåäåëåíèè íàïðàâëåíèÿ ïîèñêà ìèíèìóìà. Äëÿ ðåà-

ëèçàöèè äàííîãî àëãîðèòìà àíàëèòè÷åñêè ïîëó÷åíû ïðîèçâîäíûå öåëåâîé

ôóíêöèè.

Äëÿ ïåðåõîäà îò çàäà÷è óñëîâíîé ìèíèìèçàöèè (x > 0) ê çàäà÷å áåç-

óñëîâíîé ìèíèìèçàöèè ââîäèòñÿ çàìåíà, çàäàþùàÿ ïàðàìåòðè÷åñêóþ çà-
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âèñèìîñòü âåêòîðà x îò íåêîòîðîãî âñïîìîãàòåëüíîãî âåêòîðà x̃:

x = x (x̃) =

x̃
2
1
...

x̃2n

 = diag (x̃) x̃.

Íà îñíîâå ðàññìîòðåííîãî âûøå ìåòîäà ïîëó÷åí ñëåäóþùèé àëãîðèòì

ìàòðè÷íîé êîððåêöèè íåñîáñòâåííûõ çàäà÷ ËÏ 1-ãî ðîäà:

Øàã 1. Çàäàòü x̃0 � íà÷àëüíîå ïðèáëèæåíèå ê x̃∗; M � ìàêñèìàëüíîå

(äîïóñòèìîå) êîëè÷åñòâî èòåðàöèé; ε1 � ïàðàìåòð ñõîäèìîñòè àëãîðèòìà;

ε2 � ïàðàìåòð ñõîäèìîñòè äëÿ ïîèñêà âäîëü ïðÿìîé; Φ (x̃) � öåëåâóþ ôóíê-

öèþ, îïðåäåëÿåìóþ òèïîì çàäà÷è.

Øàã 2. Ïîëîæèòü k = 0, Gk = In, ãäå In � åäèíè÷íàÿ ìàòðèöà

ïîðÿäêà n.

Øàã 3. Âû÷èñëèòü êîìïîíåíòû

∇Φ (x̃) =

[
∂Φ (x̃)

∂x̃1
· · · ∂Φ (x̃)

∂x̃n

]⊤
.

.

Øàã 4. Åñëè âûïîëíÿåòñÿ íåðàâåíñòâî
∥∥∇Φ

(
x̃k
)∥∥ 6 ε1, òî ïåðåéòè

ê øàãó 15, èíà÷å ïåðåéòè ê ñëåäóþùåìó øàãó.

Øàã 5. Åñëè âûïîëíÿåòñÿ íåðàâåíñòâî k > M , òî ïåðåéòè ê øàãó 15,

èíà÷å ïåðåéòè ê ñëåäóþùåìó øàãó.

Øàã 6. Âû÷èñëèòü s
(
x̃k
)
= −Gk · ∇Φ

(
x̃k
)
.

Øàã 7. Åñëè âûïîëíÿåòñÿ íåðàâåíñòâî ∇Φ
(
x̃k
)
· s
(
x̃k
)
< 0, òî ïå-

ðåéòè ê øàãó 9, èíà÷å ïåðåéòè ê ñëåäóþùåìó øàãó.

Øàã 8. Ïîëîæèòü s
(
x̃k
)
= −∇Φ

(
x̃k
)
, Gk = In.

Øàã 9. Íàéòè αk, ïðè êîòîðîì Φ
(
x̃k + αk · s

(
x̃k
))

→ min ñ òî÷íî-

ñòüþ ε2.

Øàã 10. Âû÷èñëèòü ∆x̃k = αk · s
(
x̃k
)
, x̃k+1 = x̃k + δx̃k.

Øàã 11. Åñëè âûïîëíÿåòñÿ íåðàâåíñòâî Φ
(
x̃k+1

)
< Φ

(
x̃k
)
, òî ïåðåé-

òè ê ñëåäóþùåìó øàãó, èíà÷å ïåðåéòè ê øàãó 15.

Øàã 12. Åñëè âûïîëíÿåòñÿ íåðàâåíñòâî

∥∥∆x̃k
∥∥

∥x̃k∥
< ε1, òî ïåðåéòè ê

øàãó 15, èíà÷å ïåðåéòè ê ñëåäóþùåìó øàãó.
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Øàã 13. Âû÷èñëèòü ∆gk = ∇Φ
(
x̃k+1

)
−∇Φ

(
x̃k
)
,

Gk+1 =

[
In −

∆x̃k ·
(
∆gk

)⊤
(∆x̃k)

⊤ ·∆gk

]
·Gk ·

[
In −

∆x̃k ·
(
∆gk

)⊤
(∆x̃k)

⊤ ·∆gk

]⊤
+

∆x̃k ·
(
∆x̃k

)⊤
(∆x̃k)

⊤ ·∆gk
.

Øàã 14. Ïîëîæèòü k = k + 1. Ïåðåéòè ê øàãó 3.

Øàã 15. Âû÷èñëèòüH∗, h∗ (â ñîîòâåòñòâèè ñ òèïîì ðåøàåìîé çàäà÷è:

1.4, 1.6, 1.4.3, 1.4.4, 1.6.3, 1.6.4), x∗.

Øàã 16. Âûâåñòè ðåçóëüòàòû è îñòàíîâèòüñÿ.

2.2. Ïðîèçâîäíûå öåëåâûõ ôóíêöèé çàäà÷è ìàòðè÷íîé êîððåê-

öèè áåç ó÷åòà ñòðóêòóðíûõ îãðàíè÷åíèé

2.2.1. Ïðîèçâîäíàÿ öåëåâîé ôóíêöèè çàäà÷è PH

Íà îñíîâàíèè ëåììû 1.2.1, öåëåâàÿ ôóíêöèÿ äàííîé çàäà÷è èìååò

âèä:

ΦPH

(x̃) =
(b− A (diag(x̃)x̃))2

∥diag(x̃)x̃∥2
,

èëè

ΦPH

(x̃) = BPH ·XPH

,

BPH

= (b− A (diag(x̃)x̃))2 ,

XPH

=
1

∥diag(x̃)x̃∥2
.

∂ΦPH

(x̃)

∂x̃
=

∂BH

∂x̃
XH +BH

∂XH

∂x̃
,

∂BPH

∂x̃
= −4diag(x̃) · A⊤ · (b− A (diag(x̃)x̃)),

∂XPH

∂x̃
= −4

diag(x̃) · diag(x̃)x̃
∥diag(x̃)x̃∥4

,

2.2.2. Ïðîèçâîäíàÿ öåëåâîé ôóíêöèè çàäà÷è P [H −h]

Íà îñíîâàíèè ëåììû 1.2.2, öåëåâàÿ ôóíêöèÿ äàííîé çàäà÷è èìååò

âèä:

ΦP [H −h]

(x̃) =
(b− A (diag(x̃)x̃))2

∥diag(x̃)x̃∥2 + 1
,



54

èëè

ΦP [H −h]

(x̃) = BP [H −h] ·XP [H −h]

,

BP [H −h]

= (b− A (diag(x̃)x̃))2 ,

XP [H −h]

=
1

∥diag(x̃)x̃∥2 + 1
.

∂ΦP [H −h]

(x̃)

∂x̃
=

∂BP [H −h]

∂x̃
XP [H −h]

+BP [H −h]∂X
P [H −h]

∂x̃
,

∂BP [H −h]

∂x̃
= −4diag(x̃) · A⊤ · (b− A (diag(x̃)x̃)),

∂XP [H −h]

∂x̃
= −4

diag(x̃) · diag(x̃)x̃(
∥diag(x̃)x̃∥2 + 1

)2 ,
2.3. Ïðîèçâîäíûå öåëåâûõ ôóíêöèé çàäà÷è ìàòðè÷íîé êîððåê-

öèè ñ ó÷åòîì ñòðóêòóðíûõ îãðàíè÷åíèé

2.3.1. Ïðîèçâîäíàÿ öåëåâîé ôóíêöèè çàäà÷è SPH

Íà îñíîâàíèè ëåììû 1.4.3, öåëåâàÿ ôóíêöèÿ äàííîé çàäà÷è èìååò

âèä:

ΦSPH

(x̃) =
∑
i∈L(x)

(bi − Ai∗ (diag(x̃)x̃))
2

s⊤
(
diag(x̃)x̃,H⊤

i∗
)
s
(
diag(x̃)x̃,H⊤

i∗
),

èëè

ΦSPH

(x̃) =
∑
i∈L(x)

BSPH

i ·XSPH

i ,

BSPH

i = (bi − Ai∗ (diag(x̃)x̃))
2,

XSPH

i =
1

s⊤
(
diag(x̃)x̃,H⊤

i∗
)
s
(
diag(x̃)x̃,H⊤

i∗
).

∂ΦSPH

(x̃)

∂x̃
=
∑
i∈L(x)

(
∂BSPH

i

∂x̃
XSPH

i +BSPH

i

∂XSPH

i

∂x̃

)
,

∂BSPH

i

∂x̃
= −4(bi − Ai∗ (diag(x̃)x̃)) · (Ai∗)

⊤ diag(x̃),

∂XSPH

i

∂x̃
= −4

s
(
diag(x̃) · diag(x̃)x̃,H⊤

i∗
)(

s⊤
(
diag(x̃)x̃,H⊤

i∗
)
s
(
diag(x̃)x̃,H⊤

i∗
))2 .
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2.3.2. Ïðîèçâîäíàÿ öåëåâîé ôóíêöèè çàäà÷è SP [H −h]

Íà îñíîâàíèè ëåììû 1.4.4, öåëåâàÿ ôóíêöèÿ äàííîé çàäà÷è èìååò

âèä:

ΦSP [H −h]

(x̃) =
∑
i∈L(x)

(bi − Ai∗ (diag(x̃)x̃))
2

s⊤

([
diag(x̃)x̃

1

]
,

[
H⊤

i∗

hi

])
s

([
diag(x̃)x̃

1

]
,

[
H⊤

i∗

hi

]),
èëè

ΦSP [H −h]

(x̃) =
∑
i∈L(x)

BSP [H −h]

i ·XSP [H −h]

i , BSP [H −h]

i = (bi − Ai∗ (diag(x̃)x̃))
2,

XSP [H −h]

i =
1

s⊤

([
diag(x̃)x̃

1

]
,

[
H⊤

i∗

hi

])
s

([
diag(x̃)x̃

1

]
,

[
H⊤

i∗

hi

]).
∂ΦSP [H −h]

(x̃)

∂x̃
=
∑
i∈L(x)

(
∂BSP [H −h]

i

∂x̃
XSP [H −h]

i +BSP [H −h]

i

∂XSP [H −h]

i

∂x̃

)
,

∂BSP [H −h]

i

∂x̃
= −4(bi − Ai∗ (diag(x̃)x̃)) · (Ai∗)

⊤ diag(x̃),

∂XSP [H −h]

i

∂x̃
= −4

s
(
diag(x̃) · diag(x̃)x̃,H⊤

i∗
)∥∥∥∥∥s

([
diag(x̃)x̃

1

]
,

[
H⊤

i∗

hi

])∥∥∥∥∥
4
.

2.4. Ïðîèçâîäíûå öåëåâûõ ôóíêöèé ñòðóêòóðíîé âçâåøåííîé

çàäà÷è ìàòðè÷íîé êîððåêöèè

2.4.1. Öåëåâàÿ ôóíêöèÿ ¾âçâåøåíííîé¿ çàäà÷è SwPH è åe ïðîèç-

âîäíàÿ

Íà îñíîâàíèè ëåììû 1.6.3, öåëåâàÿ ôóíêöèÿ äàííîé çàäà÷è èìååò

âèä:

ΦSwPH

(x̃) =
∑
i∈L(x)

(bi − Ai∗ (diag(x̃)x̃))
2

s⊤
(
diag(x̃)x̃,H⊤

i∗
)
· (Ωi)−1 · (Ωi)−1 · s

(
diag(x̃)x̃,H⊤

i∗
),
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èëè

ΦSwPH

(x̃) =
∑
i∈L(x)

BSwPH

i ·XSwPH

i ,

BSwPH

i = (bi − Ai∗ (diag(x̃)x̃))
2,

XSwPH

i =
1

s⊤
(
diag(x̃)x̃,H⊤

i∗
)
· (Ωi)−1 · (Ωi)−1 · s

(
diag(x̃)x̃,H⊤

i∗
).

∂ΦSwPH

(x̃)

∂x̃
=
∑
i∈L(x)

(
∂BSwPH

i

∂x̃
XSwPH

i +BSwPH

i

∂XSwPH

i

∂x̃

)
,

∂BSwPH

i

∂x̃
= −4(bi − Ai∗ (diag(x̃)x̃)) · (Ai∗)

⊤ diag(x̃),

∂XSwPH

i

∂x̃
= −4

(
Ωi
)−1 ·

(
Ωi
)−1 · s

(
diag(x̃) · diag(x̃)x̃,H⊤

i∗
)(

s⊤
(
diag(x̃)x̃,H⊤

i∗
)
· (Ωi)−1 · (Ωi)−1 · s

(
diag(x̃)x̃,H⊤

i∗
))2 .

2.4.2. Öåëåâàÿ ôóíêöèÿ ¾âçâåøåíííîé¿ çàäà÷è SwP [H −h] è åe ïðî-

èçâîäíàÿ

Íà îñíîâàíèè ëåììû 1.6.4, öåëåâàÿ ôóíêöèÿ äàííîé çàäà÷è èìååò

âèä:

ΦSwP [H −h]

(x̃) =
∑
i∈L(x)

(bi − Ai∗ (diag(x̃)x̃))
2∥∥∥∥∥(Ω′i)−1 · s

([
diag(x̃)x̃

1

]
,

[
H⊤

i∗

hi

])∥∥∥∥∥
2,

èëè

ΦSwP [H −h]

(x̃) =
∑
i∈L(x)

BSwP [H −h]

i ·XSw[H −h]

i , BSwP [H −h]

i = (bi−Ai∗ (diag(x̃)x̃))
2,

XSwP [H −h]

i =
1∥∥∥∥∥(Ω′i)−1 · s

([
diag(x̃)x̃

1

]
,

[
H⊤

i∗

hi

])∥∥∥∥∥
2.

∂ΦSwP [H −h]

(x̃)

∂x̃
=
∑
i∈L(x)

(
∂BSwP [H −h]

i

∂x̃
XSwP [H −h]

i +BSwP [H −h]

i

∂XSwP [H −h]

i

∂x̃

)
,
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∂BSwP [H −h]

i

∂x̃
= −4(bi − Ai∗ (diag(x̃)x̃)) · (Ai∗)

⊤ diag(x̃),

∂XSwP [H −h]

i

∂x̃
= −4

(
Ω′i)−1 ·

(
Ω′i)−1 · s

(
diag(x̃) · diag(x̃)x̃,H⊤

i∗
)∥∥∥∥∥(Ω′i)−1 · s

([
diag(x̃)x̃

1

]
,

[
H⊤

i∗

hi

])∥∥∥∥∥
4 .

2.5. Èñïîëüçîâàíèå øòðàôà äëÿ àäàïòàöèè àëãîðèòìà êîððåê-

öèè ê çàäà÷àì, ïîñòàíîâêà êîòîðûõ äîïóñêàåò íàëè÷èå

íåêîððåêòèðóåìûõ ñòðîê ìàòðèöû êîýôôèöèåíòîâ

Ïðè ðåøåíèè çàäà÷è ñòðóêòóðíîé ìàòðè÷íîé êîððåêöèè ìîãóò èìåòü-

ñÿ ñòðîêè ñ çàïðåòîì êîððåêöèè, ìíîæåñòâî êîòîðûõ îïðåäåëÿåòñÿ

Q(x) = {i |(b− Ax)i ̸= 0,Hi∗ = 0 ∈ Rn} ,

èëè, â çàâèñèìîñòè îò êîíòåêñòà,

Q(x) =
{
i
∣∣(b− Ax)i ̸= 0, [Hi∗ hi] = 0 ∈ Rn+1

}
.

Òàêèì îáðàçîì, ïðè èñïîëüçîâàíèè îïèñàííîãî âûøå àëãîðèòìà, âîçíèêà-

åò íåîáõîäèìîñòü íå äîïóñòèòü íåâÿçêè â ñòðîêàõ, íå ïîäëåæàùèõ êîððåê-

öèè. Òîãäà äëÿ îáîáùåíèÿ àëãîðèòìà íà ñëó÷àé ðåøåíèÿ çàäà÷ ñ ïîäîáíîé

ñòðóêòóðîé ïðèìåíÿåòñÿ êâàäðàòè÷íàÿ øòðàôíàÿ ôóíêöèÿ, êîòîðàÿ äëÿ

êàæäîé íåêîððåêòèðóåìîé ñòðîêè èìååò âèä:

Ri (x̃) = µ (bi − Ai∗(diag(x̃)x̃))
2 , (2.1)

ãäå µ � øòðàôíîé ïàðàìåòð, ÿâëÿþùèéñÿ äîñòàòî÷íî áîëüøîé âåëè÷è-

íîé äëÿ êîíêðåòíîé çàäà÷è. Ñëåäóåò îòìåòèòü, ÷òî âûáîð êâàäðàòè÷íîé

øòðàôíîé ôóíêöèè îïðåäåëÿåòñÿ, ïðåæäå âñåãî, êàíîíè÷åñêîé ôîðìîé çà-

ïèñè êîððåêòèðóåìîé çàäà÷è, à òàêæå òåì, ÷òî è äàííàÿ ôóíêöèÿ íåïðå-

ðûâíà è äèôôåðåíöèðóåìà. Òîãäà ãðàäèåíò (2.1) èìååò âèä

∂Ri(x̃)

∂x̃
= −4µ(bi − Ai∗ (diag(x̃)x̃)) · (Ai∗)

⊤ diag(x̃). (2.2)

Ó÷èòûâàÿ (2.1) öåëåâûå ôóíêöèè çàäà÷ ñòðóêòóðíîé è âçâåøåííîé ñòðóê-

òóðíîé ìàòðè÷íîé êîððåêöèè òîëüêî ëåâîé è îáåèõ ÷àñòåé ñèñòåìû îãðà-

íè÷åíèé ïðè íàëè÷èè íåêîððåêòèðóåìûõ ñòðîê ìîãóò áûòü óâåëè÷åíû íà
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çíà÷åíèå ôóíêöèè

R(x̃) =
∑

i̸∈Q(x)

µ (bi − Ai∗(diag(x̃)x̃))
2,

à ãðàäèåíòû ïåðå÷èñëåííûõ âûøå öåëåâûõ ôóíêöèé íà îñíîâàíèè (2.2)

ïîëó÷àþò ïîïðàâêó

∂R(x̃)

∂x̃
= −4µ

∑
i̸∈Q(x)

(bi − Ai∗ (diag(x̃)x̃)) · (Ai∗)
⊤ diag(x̃).
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Ãëàâà 3. Âû÷èñëèòåëüíûå ýêñïåðèìåíòû

3.1. Ïîñòàíîâêà è ðåøåíèå çàäà÷è bgdbg1

3.1.1. Îáùàÿ ïîñòàíîâêà çàäà÷è bgdbg1

Â êà÷åñòâå ïðèìåðà ðàññìîòðåíà çàäà÷à ñðåäíåé ðàçìåðíîñòè bgdbg1

èç õðàíèëèùà íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ netlib

[182]. Ëåâàÿ ÷àñòü äàííîé çàäà÷è ïðåäñòàâëÿåò ñîáîé ìàòðèöó ðàçìåðîì

348×407, âêëþ÷àþùóþ 1485 íåíóëåâûõ ýëåìåíòîâ. Òàêæå â çàäà÷å èìåþò-

ñÿ äîïîëíèòåëüíûå âåðõíèå îãðàíè÷åíèÿ íà x. Ñòðóêòóðà íóëåâûõ è íåíó-

ëåâûõ ýëåìåíòîâ ðàñøèðåííîé ìàòðèöû ïðåäñòàâëåíà íà ðèñóíêå 3.1 (÷åð-

íûìè òî÷êàìè âûäåëåíû íåíóëåâûå ýëåìåíòû). Ïðè ïðåäñòàâëåíèè äàííîé

çàäà÷è â êàíîíè÷åñêîì âèäå ñ ó÷åòîì äîïîëíèòåëüíûõ âåðõíèõ îãðàíè÷å-

íèé íà àðãóìåíò, çàäà÷à èìååò ðàçìåðíîñòü 393× 674, ãäå 267 ïåðåìåííûõ

ÿâëÿþòñÿ âñïîìîãàòåëüíûìè è ðàññìàòðèâàòüñÿ ïðè âûâîäå íå áóäóò.

Ðèñ. 3.1. Èëëþñòðàöèÿ ðàñøèðåííîé ìàòðèöû ñèñòåìû îãðàíè÷åíèé çàäà÷è bgdbg1
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3.1.2. Ïîñòàíîâêà è ðåøåíèå çàäà÷è bgdbg1 PH

Êîððåêòèðîâàëàñü òîëüêî ëåâàÿ ÷àñòü ñèñòåìû îãðàíè÷åíèé. Â êà÷å-

ñòâå íà÷àëüíîãî ïðèáëèæåíèÿ áûë âûáðàí

x̃0 =
(
x̃0i
) ∣∣x̃0i = 4 ∀i ∈ 1, 2, . . . 674 .

Ìàòðè÷íàÿ êîððåêöèÿ ïðîèçâîäèëàñü íà ìíîæåñòâå äåéñòâèòåëüíûõ ÷èñåë

R. Ñõîäèìîñòü àðãóìåíòà, öåëåâîé ôóíêöèè è åâêëèäîâîé íîðìû ìàòðè-

öû êîððåêöèè ïðåäñòàâëåíà íà ðèñ. 3.2 � 3.4. Çíà÷åíèå àðãóìåíòà ïîñëå

ìàòðè÷íîé êîððåêöèè ïðåäñòàâëåíî íà ðèñ. 3.5. Çíà÷åíèÿ ýëåìåíòîâ ìàò-
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Ðèñ. 3.2. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî àðãóìåíòó äëÿ öåëåâîé ôóíê-

öèè PH çàäà÷è bgdbg1

ðèöû êîððåêöèè íàõîäÿòñÿ â äèàïàçîíå
[
−0, 0063 0, 0063

]
. Àëãîðèòì âû-

ïîëíèë 860 èòåðàöèé çà 1741,026 ñ. Çíà÷åíèå âåëè÷èíû öåëåâîé ôóíêöèè

ΦPH (
x̃∗
)
= 9, 025374361735607e− 004. Åâêëèäîâà íîðìà ìàòðèöû êîððåê-

öèè ∥H∥ = 0, 030042260836585. Çàìå÷àíèå: äàííûå è ïîñëåäóþùèå âû÷èñ-

ëåíèÿ âûïîëíÿëèñü â ñèñòåìå MATLAB 7.9 êîìïüþòåðîì ñ ïðîöåññîðîì

Intel Core i3 M370, òàêòîâîé ÷àñòîòîé 2,4 ÃÃö, îïåðàòèâíîé ïàìÿòüþ 3 Ãá.
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Ðèñ. 3.3. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî öåëåâîé ôóíêöèè PH çàäà÷è

bgdbg1
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Ðèñ. 3.4. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî åâêëèäîâîé íîðìå ìàòðèöû

êîððåêöèè äëÿ öåëåâîé ôóíêöèè PH çàäà÷è bgdbg1

3.1.3. Ïîñòàíîâêà è ðåøåíèå çàäà÷è bgdbg1 P [H −h]

Êîððåêòèðîâàëèñü îáå ÷àñòè ñèñòåìû îãðàíè÷åíèé. Â êà÷åñòâå íà-

÷àëüíîãî ïðèáëèæåíèÿ áûë âûáðàí

x̃0 =
(
x̃0i
) ∣∣x̃0i = 4 ∀i ∈ 1, 2, . . . 674 .

Ìàòðè÷íàÿ êîððåêöèÿ ïðîèçâîäèëàñü íà ìíîæåñòâå äåéñòâèòåëüíûõ ÷è-

ñåë R. Ñõîäèìîñòü àðãóìåíòà, öåëåâîé ôóíêöèè è åâêëèäîâîé íîðìû ðàñ-
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Ðèñ. 3.5. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ äåñÿòè÷íûõ ëîãàðèôìîâ çíà÷åíèé ýëåìåíòîâ àð-

ãóìåíòà ïîñëå êîððåêöèè öåëåâîé ôóíêöèè PH çàäà÷è bgdbg1

øèðåííîé ìàòðèöû êîððåêöèè ïðåäñòàâëåíà íà ðèñ. 3.6 � 3.8. Çíà÷åíèå

àðãóìåíòà ïîñëå ìàòðè÷íîé êîððåêöèè ïðåäñòàâëåíî íà ðèñ. 3.9. Çíà-
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Ðèñ. 3.6. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî àðãóìåíòó äëÿ öåëåâîé ôóíê-

öèè P [H −h] çàäà÷è bgdbg1

÷åíèÿ ýëåìåíòîâ ðàñøèðåííîé ìàòðèöû êîððåêöèè íàõîäÿòñÿ â äèàïàçîíå[
−0, 0064 0, 0063

]
. Àëãîðèòì âûïîëíèë 863 èòåðàöèè çà 1831,044 ñ. Çíà-

÷åíèå âåëè÷èíû öåëåâîé ôóíêöèè ΦP [H −h] (
x̃∗
)

= 9, 045389476243942e −
004. Åâêëèäîâà íîðìà ðàñøèðåííîé ìàòðèöû êîððåêöèè ∥[H − h]∥ =

0, 030075553986989.
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Ðèñ. 3.7. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî öåëåâîé ôóíêöèè P [H −h] çàäà-

÷è bgdbg1
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Ðèñ. 3.8. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî åâêëèäîâîé íîðìå ìàòðèöû

êîððåêöèè äëÿ öåëåâîé ôóíêöèè P [H −h] çàäà÷è bgdbg1

3.1.4. Ïîñòàíîâêà è ðåøåíèå çàäà÷è bgdbg1 SPH

Êîððåêòèðîâàëàñü òîëüêî ëåâàÿ ÷àñòü ñèñòåìû îãðàíè÷åíèé. Â êà÷å-

ñòâå íà÷àëüíîãî ïðèáëèæåíèÿ áûë âûáðàí

x̃0 =
(
x̃0i
) ∣∣x̃0i = 1 ∀i ∈ 1, 2, . . . 674 .
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Ðèñ. 3.9. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ äåñÿòè÷íûõ ëîãàðèôìîâ çíà÷åíèé ýëåìåíòîâ àð-

ãóìåíòà ïîñëå êîððåêöèè öåëåâîé ôóíêöèè P [H −h] çàäà÷è bgdbg1

Êîððåêòèðóþòñÿ íåíóëåâûå ýëåìåíòû ëåâîé ÷àñòè ñèñòåìû îãðàíè÷åíèé,

òàêèì îáðàçîì øàáëîí, çàäàþùèé ïîçèöèþ êîððåêòèðóåìûõ ýëåìåíòîâ

H = (Hi,j)

∣∣∣∣∣ Hi,j = 1 åñëè Aij ̸= 0,

Hi,j = 0 â ïðîòèâíîì ñëó÷àå.
(3.1)

Ìàòðè÷íàÿ êîððåêöèÿ ïðîèçâîäèëàñü íà ìíîæåñòâå äåéñòâèòåëüíûõ ÷èñåë

R. Ñõîäèìîñòü àðãóìåíòà, öåëåâîé ôóíêöèè è åâêëèäîâîé íîðìû ìàòðè-

öû êîððåêöèè ïðåäñòàâëåíà íà ðèñ. 3.10 � 3.12. Çíà÷åíèå àðãóìåíòà ïîñëå

ìàòðè÷íîé êîððåêöèè ïðåäñòàâëåíî íà ðèñ. 3.13. Ìàòðèöà êîððåêöèè ïðåä-

ñòàâëåíà äèàãðàììîé ðèñ. 3.14.

Àëãîðèòì âûïîëíèë 50000 èòåðàöèé çà 54943,508 ñ. Çíà÷åíèå âåëè÷è-

íû öåëåâîé ôóíêöèè ΦSPH (
x̃∗
)
= 40, 398810217995688. Åâêëèäîâà íîðìà

ìàòðèöû êîððåêöèè ∥H∥ = 6, 356005837792425.

3.1.5. Ïîñòàíîâêà è ðåøåíèå çàäà÷è bgdbg1 SP [H −h]

Êîððåêòèðîâàëèñü îáå ÷àñòè ñèñòåìû îãðàíè÷åíèé. Â êà÷åñòâå íà-

÷àëüíîãî ïðèáëèæåíèÿ áûë âûáðàí

x̃0 =
(
x̃0i
) ∣∣x̃0i = 1 ∀i ∈ 1, 2, . . . 674 .

Êîððåêòèðóþòñÿ íåíóëåâûå ýëåìåíòû ñèñòåìû îãðàíè÷åíèé, òàêèì îáðà-

çîì øàáëîíû, çàäàþùèå ïîçèöèþ êîððåêòèðóåìûõ ýëåìåíòîâ îïðåäåëÿåòñÿ
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Ðèñ. 3.10. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî àðãóìåíòó äëÿ öåëåâîé ôóíê-

öèè SPH çàäà÷è bgdbg1
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Ðèñ. 3.11. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî öåëåâîé ôóíêöèè SPH çàäà÷è

bgdbg1

(3.1), à òàêæå

h = (hi)

∣∣∣∣∣ hi = 1 åñëè bi ̸= 0,

hi = 0 â ïðîòèâíîì ñëó÷àå.
(3.2)

Ìàòðè÷íàÿ êîððåêöèÿ ïðîèçâîäèëàñü íà ìíîæåñòâå äåéñòâèòåëüíûõ ÷èñåë

R. Ñõîäèìîñòü àðãóìåíòà, öåëåâîé ôóíêöèè è åâêëèäîâîé íîðìû ðàñøè-

ðåííîé ìàòðèöû êîððåêöèè ïðåäñòàâëåíà íà ðèñ. 3.15 � 3.17. Çíà÷åíèå àðãó-

ìåíòà ïîñëå ìàòðè÷íîé êîððåêöèè ïðåäñòàâëåíî íà ðèñ. 3.18. Ðàñøèðåííàÿ
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Ðèñ. 3.12. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî åâêëèäîâîé íîðìå ìàòðèöû

êîððåêöèè äëÿ öåëåâîé ôóíêöèè SPH çàäà÷è bgdbg1
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Ðèñ. 3.13. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ äåñÿòè÷íûõ ëîãàðèôìîâ çíà÷åíèé ýëåìåíòîâ àð-

ãóìåíòà ïîñëå êîððåêöèè öåëåâîé ôóíêöèè SPH çàäà÷è bgdbg1

ìàòðèöà êîððåêöèè ïðåäñòàâëåíà äèàãðàììîé ðèñ. 3.19.

Àëãîðèòì âûïîëíèë 50000 èòåðàöèé çà 55034,749 ñ. Çíà÷åíèå âåëè-

÷èíû öåëåâîé ôóíêöèè ΦSP [H −h] (
x̃∗
)
= 35, 266089543842405. Åâêëèäîâà

íîðìà ðàñøèðåííîé ìàòðèöû êîððåêöèè ∥[H − h]∥ = 5, 938525872947968.
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Ðèñ. 3.14. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ çíà÷åíèé ýëåìåíòîâ ðàñøèðåííîé ìàòðèöû êîð-

ðåêöèè äëÿ öåëåâîé ôóíêöèè SPH çàäà÷è bgdbg1
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Ðèñ. 3.15. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî àðãóìåíòó äëÿ öåëåâîé ôóíê-

öèè SP [H −h] çàäà÷è bgdbg1

3.1.6. Ïîñòàíîâêà è ðåøåíèå çàäà÷è bgdbg1 SwPH

Êîððåêòèðîâàëàñü òîëüêî ëåâàÿ ÷àñòü ñèñòåìû îãðàíè÷åíèé. Â êà÷å-

ñòâå íà÷àëüíîãî ïðèáëèæåíèÿ áûë âûáðàí

x̃0 =
(
x̃0i
) ∣∣x̃0i = 1 ∀i ∈ 1, 2, . . . 674 .

Êîððåêòèðóþòñÿ íåíóëåâûå ýëåìåíòû ëåâîé ÷àñòè ñèñòåìû îãðàíè÷åíèé,

òàêèì îáðàçîì øàáëîíû, çàäàþùèå ïîçèöèþ êîððåêòèðóåìûõ ýëåìåíòîâ
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Ðèñ. 3.16. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî öåëåâîé ôóíêöèè SP [H −h]

çàäà÷è bgdbg1
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Ðèñ. 3.17. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî åâêëèäîâîé íîðìå ìàòðèöû

êîððåêöèè äëÿ öåëåâîé ôóíêöèè SP [H −h] çàäà÷è bgdbg1

îïðåäåëÿþòñÿ (3.1) è (3.2). Âåñîâûå êîýôôèöèåíòû ýëåìåíòîâ çàäàþòñÿ

W = (Wi,j)

∣∣∣∣∣∣ Wi,j =
1

(Aij)
2 åñëè Aij ̸= 0,

Wi,j = 1 â ïðîòèâíîì ñëó÷àå.

(3.3)

Ìàòðè÷íàÿ êîððåêöèÿ ïðîèçâîäèëàñü íà ìíîæåñòâå äåéñòâèòåëüíûõ ÷èñåë

R. Ñõîäèìîñòü àðãóìåíòà, öåëåâîé ôóíêöèè è åâêëèäîâîé íîðìû ìàòðè-

öû êîððåêöèè ïðåäñòàâëåíà íà ðèñ. 3.20 � 3.22. Çíà÷åíèå àðãóìåíòà ïîñëå
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Ðèñ. 3.18. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ äåñÿòè÷íûõ ëîãàðèôìîâ çíà÷åíèé ýëåìåíòîâ àð-

ãóìåíòà ïîñëå êîððåêöèè öåëåâîé ôóíêöèè SP [H −h] çàäà÷è bgdbg1
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Ðèñ. 3.19. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ çíà÷åíèé ýëåìåíòîâ ðàñøèðåííîé ìàòðèöû êîð-

ðåêöèè äëÿ öåëåâîé ôóíêöèè SP [H −h] çàäà÷è bgdbg1

ìàòðè÷íîé êîððåêöèè ïðåäñòàâëåíî íà ðèñ. 3.23. Ìàòðèöà êîððåêöèè ïðåä-

ñòàâëåíà äèàãðàììîé ðèñ. 3.24.

Àëãîðèòì âûïîëíèë 34389 èòåðàöèé çà 40772,617 ñ. Çíà÷åíèå âåëè÷è-

íû öåëåâîé ôóíêöèè ΦSwPH (
x̃∗
)
= 25, 071610923548086. Åâêëèäîâà íîðìà

ìàòðèöû êîððåêöèè ∥H∥ = 6, 122429955006273.



70

0 0.5 1 1.5 2 2.5 3

x 10
4

−8

−7

−6

−5

−4

−3

−2

−1

0

i

 

 

lg

(

‖xi − x∗‖

‖x∗‖

)

Ðèñ. 3.20. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî àðãóìåíòó äëÿ öåëåâîé ôóíê-

öèè SwPH çàäà÷è bgdbg1
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Ðèñ. 3.21. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî öåëåâîé ôóíêöèè SwPH çà-

äà÷è bgdbg1

3.1.7. Ïîñòàíîâêà è ðåøåíèå çàäà÷è bgdbg1 SwP [H −h]

Êîððåêòèðîâàëèñü îáå ÷àñòè ñèñòåìû îãðàíè÷åíèé. Â êà÷åñòâå íà-

÷àëüíîãî ïðèáëèæåíèÿ áûë âûáðàí

x̃0 =
(
x̃0i
) ∣∣x̃0i = 1 ∀i ∈ 1, 2, . . . 674 .

Êîððåêòèðóþòñÿ íåíóëåâûå ýëåìåíòû ñèñòåìû îãðàíè÷åíèé, òàêèì îáðà-

çîì øàáëîíû, çàäàþùèå ïîçèöèþ êîððåêòèðóåìûõ ýëåìåíòîâ îïðåäåëÿþò-
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Ðèñ. 3.22. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî åâêëèäîâîé íîðìå ìàòðèöû

êîððåêöèè äëÿ öåëåâîé ôóíêöèè SwPH çàäà÷è bgdbg1
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Ðèñ. 3.23. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ äåñÿòè÷íûõ ëîãàðèôìîâ çíà÷åíèé ýëåìåíòîâ àð-

ãóìåíòà ïîñëå êîððåêöèè öåëåâîé ôóíêöèè SwPH çàäà÷è bgdbg1

ñÿ (3.1) è (3.2). Âåñîâûå êîýôôèöèåíòû ýëåìåíòîâ çàäàþòñÿ (3.3) è

w = (wi)

∣∣∣∣∣∣ wi =
1

(bi)
2 åñëè bi ̸= 0,

wi = 1 â ïðîòèâíîì ñëó÷àå.
(3.4)

Ìàòðè÷íàÿ êîððåêöèÿ ïðîèçâîäèëàñü íà ìíîæåñòâå äåéñòâèòåëüíûõ ÷èñåë

R. Ñõîäèìîñòü àðãóìåíòà, öåëåâîé ôóíêöèè è åâêëèäîâîé íîðìû ðàñøè-

ðåííîé ìàòðèöû êîððåêöèè ïðåäñòàâëåíà íà ðèñ. 3.25 � 3.27. Çíà÷åíèå àðãó-

ìåíòà ïîñëå ìàòðè÷íîé êîððåêöèè ïðåäñòàâëåíî íà ðèñ. 3.28. Ðàñøèðåííàÿ
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Ðèñ. 3.24. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ çíà÷åíèé ýëåìåíòîâ ðàñøèðåííîé ìàòðèöû êîð-

ðåêöèè äëÿ öåëåâîé ôóíêöèè SwPH çàäà÷è bgdbg1

ìàòðèöà êîððåêöèè ïðåäñòàâëåíà äèàãðàììîé ðèñ. 3.29.
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Ðèñ. 3.25. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî àðãóìåíòó äëÿ öåëåâîé ôóíê-

öèè SwP [H −h] çàäà÷è bgdbg1

Àëãîðèòì âûïîëíèë 3277 èòåðàöèé çà 4005,330 ñ. Çíà÷åíèå âåëè÷èíû

öåëåâîé ôóíêöèè ΦSwP [H −h] (
x̃∗
)
= 20, 820672695534476. Åâêëèäîâà íîðìà

ðàñøèðåííîé ìàòðèöû êîððåêöèè ∥[H − h]∥ = 1, 228276049854352e+002.
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Ðèñ. 3.26. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî öåëåâîé ôóíêöèè SwP [H −h]

çàäà÷è bgdbg1
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Ðèñ. 3.27. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî åâêëèäîâîé íîðìå ìàòðèöû

êîððåêöèè äëÿ öåëåâîé ôóíêöèè SwP [H −h] çàäà÷è bgdbg1

3.2. Ïîñòàíîâêà è ðåøåíèå çàäà÷è mondou2

3.2.1. Îáùàÿ ïîñòàíîâêà çàäà÷è mondou2

Òàêæå, â êà÷àñòâå ïðèìåðà, ðàññìîòðåíà çàäà÷à ñðåäíåé mondou2

èç õðàíèëèùà íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ netlib

[182]. Ëåâàÿ ÷àñòü äàííîé çàäà÷è ïðåäñòàâëÿåò ñîáîé ìàòðèöó ðàçìåðîì

312× 604, âêëþ÷àþùóþ 1623 íåíóëåâûõ ýëåìåíòîâ. Ñòðóêòóðà íóëåâûõ è
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Ðèñ. 3.28. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ äåñÿòè÷íûõ ëîãàðèôìîâ çíà÷åíèé ýëåìåíòîâ àð-

ãóìåíòà ïîñëå êîððåêöèè öåëåâîé ôóíêöèè SwP [H −h] çàäà÷è bgdbg1
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Ðèñ. 3.29. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ çíà÷åíèé ýëåìåíòîâ ðàñøèðåííîé ìàòðèöû êîð-

ðåêöèè äëÿ öåëåâîé ôóíêöèè SwP [H −h] çàäà÷è bgdbg1

íåíóëåâûõ ýëåìåíòîâ ðàñøèðåííîé ìàòðèöû ïðåäñòàâëåíà íà ðèñóíêå 3.30

(÷åðíûìè òî÷êàìè âûäåëåíû íåíóëåâûå ýëåìåíòû).

3.2.2. Ïîñòàíîâêà è ðåøåíèå çàäà÷è mondou2 PH

Êîððåêòèðîâàëàñü òîëüêî ëåâàÿ ÷àñòü ñèñòåìû îãðàíè÷åíèé. Â êà÷å-

ñòâå íà÷àëüíîãî ïðèáëèæåíèÿ áûë âûáðàí

x̃0 =
(
x̃0i
) ∣∣x̃0i = 100 ∀i ∈ 1, 2, . . . 604 .
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Ðèñ. 3.30. Èëëþñòðàöèÿ ðàñøèðåííîé ìàòðèöû ñèñòåìû îãðàíè÷åíèé çàäà÷è mondou2

Ìàòðè÷íàÿ êîððåêöèÿ ïðîèçâîäèëàñü íà ìíîæåñòâå äåéñòâèòåëüíûõ ÷èñåë

R. Ñõîäèìîñòü àðãóìåíòà, öåëåâîé ôóíêöèè è åâêëèäîâîé íîðìû ìàòðèöû

êîððåêöèè ïðåäñòàâëåíà íà ðèñ. 3.31 � 3.33. Çíà÷åíèå àðãóìåíòà ïîñëå ìàò-

ðè÷íîé êîððåêöèè ïðåäñòàâëåíî íà ðèñ. 3.34. Çíà÷åíèÿ ýëåìåíòîâ ìàò-
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Ðèñ. 3.31. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî àðãóìåíòó äëÿ öåëåâîé ôóíê-

öèè PH çàäà÷è mondou2

ðèöû êîððåêöèè íàõîäÿòñÿ â äèàïàçîíå
[
−5, 3301e− 4 5, 2790− 4

]
. Àë-

ãîðèòì âûïîëíèë 99 èòåðàöèé çà 188,352 ñ. Çíà÷åíèå âåëè÷èíû öåëåâîé

ôóíêöèè ΦPH (
x̃∗
)
= 1, 926896357986016e − 004. Åâêëèäîâà íîðìà ìàòðè-

öû êîððåêöèè ∥H∥ = 0, 013881269243070.
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Ðèñ. 3.32. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî öåëåâîé ôóíêöèè PH çàäà÷è

mondou2
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Ðèñ. 3.33. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî åâêëèäîâîé íîðìå ìàòðèöû

êîððåêöèè äëÿ öåëåâîé ôóíêöèè PH çàäà÷è mondou2

3.2.3. Ïîñòàíîâêà è ðåøåíèå çàäà÷è mondou2 P [H −h]

Êîððåêòèðîâàëèñü îáå ÷àñòè ñèñòåìû îãðàíè÷åíèé. Â êà÷åñòâå íà-

÷àëüíîãî ïðèáëèæåíèÿ áûë âûáðàí

x̃0 =
(
x̃0i
) ∣∣x̃0i = 100 ∀i ∈ 1, 2, . . . 604 .

Ìàòðè÷íàÿ êîððåêöèÿ ïðîèçâîäèëàñü íà ìíîæåñòâå äåéñòâèòåëüíûõ ÷è-

ñåë R. Ñõîäèìîñòü àðãóìåíòà, öåëåâîé ôóíêöèè è åâêëèäîâîé íîðìû ðàñ-
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Ðèñ. 3.34. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ äåñÿòè÷íûõ ëîãàðèôìîâ çíà÷åíèé ýëåìåíòîâ àð-

ãóìåíòà ïîñëå êîððåêöèè öåëåâîé ôóíêöèè PH çàäà÷è mondou2

øèðåííîé ìàòðèöû êîððåêöèè ïðåäñòàâëåíà íà ðèñ. 3.35 � 3.37. Çíà÷åíèå

àðãóìåíòà ïîñëå ìàòðè÷íîé êîððåêöèè ïðåäñòàâëåíî íà ðèñ. 3.38. Çíà-
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Ðèñ. 3.35. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî àðãóìåíòó äëÿ öåëåâîé ôóíê-

öèè P [H −h] çàäà÷è mondou2

÷åíèÿ ýëåìåíòîâ ðàñøèðåííîé ìàòðèöû êîððåêöèè íàõîäÿòñÿ â äèàïàçîíå[
−5, 4967e− 4 5, 3094e− 4

]
. Àëãîðèòì âûïîëíèë 98 èòåðàöèé çà 172,147 ñ.

Çíà÷åíèå âåëè÷èíû öåëåâîé ôóíêöèè ΦP [H −h] (
x̃∗
)
= 1, 948979631325387e−

004. Åâêëèäîâà íîðìà ðàñøèðåííîé ìàòðèöû êîððåêöèè ∥[H − h]∥ =

0, 013960586059780.
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Ðèñ. 3.36. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî öåëåâîé ôóíêöèè P [H −h] çà-

äà÷è mondou2
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Ðèñ. 3.37. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî åâêëèäîâîé íîðìå ìàòðèöû

êîððåêöèè äëÿ öåëåâîé ôóíêöèè P [H −h] çàäà÷è mondou2

3.2.4. Ïîñòàíîâêà è ðåøåíèå çàäà÷è mondou2 SPH

Êîððåêòèðîâàëàñü òîëüêî ëåâàÿ ÷àñòü ñèñòåìû îãðàíè÷åíèé. Â êà÷å-

ñòâå íà÷àëüíîãî ïðèáëèæåíèÿ áûë âûáðàí

x̃0 =
(
x̃0i
) ∣∣x̃0i = 100 ∀i ∈ 1, 2, . . . 604 .

Êîððåêòèðóþòñÿ íåíóëåâûå ýëåìåíòû ëåâîé ÷àñòè ñèñòåìû îãðàíè÷åíèé,

òàêèì îáðàçîì øàáëîí, çàäàþùèé ïîçèöèþ êîððåêòèðóåìûõ ýëåìåíòîâ
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Ðèñ. 3.38. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ äåñÿòè÷íûõ ëîãàðèôìîâ çíà÷åíèé ýëåìåíòîâ àð-

ãóìåíòà ïîñëå êîððåêöèè öåëåâîé ôóíêöèè P [H −h] çàäà÷è mondou2

îïðåäåëÿåòñÿ àíàëîãè÷íî çàäà÷å bgdbg1 (3.1). Ìàòðè÷íàÿ êîððåêöèÿ ïðî-

èçâîäèëàñü íà ìíîæåñòâå äåéñòâèòåëüíûõ ÷èñåë R. Ñõîäèìîñòü àðãóìåíòà,
öåëåâîé ôóíêöèè è åâêëèäîâîé íîðìû ìàòðèöû êîððåêöèè ïðåäñòàâëåíà

íà ðèñ. 3.39 � 3.41. Çíà÷åíèå àðãóìåíòà ïîñëå ìàòðè÷íîé êîððåêöèè ïðåä-

ñòàâëåíî íà ðèñ. 3.42. Ìàòðèöà êîððåêöèè ïðåäñòàâëåíà äèàãðàììîé ðèñ.

3.43.

0 20 40 60 80 100 120 140 160 180 200 220
−6

−5

−4

−3

−2

−1

0

1

i

 

 

lg

(

‖xi − x∗‖

‖x∗‖

)

Ðèñ. 3.39. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî àðãóìåíòó äëÿ öåëåâîé ôóíê-

öèè SPH çàäà÷è mondou2

Àëãîðèòì âûïîëíèë 240 èòåðàöèé çà 238,166 ñ. Çíà÷åíèå âåëè÷èíû
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Ðèñ. 3.40. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî öåëåâîé ôóíêöèè SPH çàäà÷è

mondou2
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Ðèñ. 3.41. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî åâêëèäîâîé íîðìå ìàòðèöû

êîððåêöèè äëÿ öåëåâîé ôóíêöèè SPH çàäà÷è mondou2

öåëåâîé ôóíêöèè ΦSPH (
x̃∗
)
= 2, 000065097597554. Åâêëèäîâà íîðìà ìàò-

ðèöû êîððåêöèè ∥H∥ = 1, 414236577662149.

3.2.5. Ïîñòàíîâêà è ðåøåíèå çàäà÷è mondou2 SP [H −h]

Êîððåêòèðîâàëèñü îáå ÷àñòè ñèñòåìû îãðàíè÷åíèé. Â êà÷åñòâå íà-

÷àëüíîãî ïðèáëèæåíèÿ áûë âûáðàí

x̃0 =
(
x̃0i
) ∣∣x̃0i = 100 ∀i ∈ 1, 2, . . . 604 .
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Ðèñ. 3.42. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ äåñÿòè÷íûõ ëîãàðèôìîâ çíà÷åíèé ýëåìåíòîâ àð-

ãóìåíòà ïîñëå êîððåêöèè öåëåâîé ôóíêöèè SPH çàäà÷è mondou2
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Ðèñ. 3.43. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ çíà÷åíèé ýëåìåíòîâ ðàñøèðåííîé ìàòðèöû êîð-

ðåêöèè äëÿ öåëåâîé ôóíêöèè SPH çàäà÷è mondou2

Êîððåêòèðóþòñÿ íåíóëåâûå ýëåìåíòû ñèñòåìû îãðàíè÷åíèé, òàêèì îáðà-

çîì øàáëîíû, çàäàþùèå ïîçèöèþ êîððåêòèðóåìûõ ýëåìåíòîâ îïðåäåëÿþò-

ñÿ àíàëîãè÷íî çàäà÷å bgdbg1 (3.1) è (3.2). Ìàòðè÷íàÿ êîððåêöèÿ ïðîèç-

âîäèëàñü íà ìíîæåñòâå äåéñòâèòåëüíûõ ÷èñåë R. Ñõîäèìîñòü àðãóìåíòà,

öåëåâîé ôóíêöèè è åâêëèäîâîé íîðìû ðàñøèðåííîé ìàòðèöû êîððåêöèè

ïðåäñòàâëåíà íà ðèñ. 3.44 � 3.46. Çíà÷åíèå àðãóìåíòà ïîñëå ìàòðè÷íîé êîð-

ðåêöèè ïðåäñòàâëåíî íà ðèñ. 3.47. Ðàñøèðåííàÿ ìàòðèöà êîððåêöèè ïðåä-
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ñòàâëåíà äèàãðàììîé ðèñ. 3.48.
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Ðèñ. 3.44. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî àðãóìåíòó äëÿ öåëåâîé ôóíê-

öèè SP [H −h] çàäà÷è mondou2
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Ðèñ. 3.45. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî öåëåâîé ôóíêöèè SP [H −h]

çàäà÷è mondou2

Àëãîðèòì âûïîëíèë 242 èòåðàöèè çà 235,778 ñ. Çíà÷åíèå âåëè÷èíû

öåëåâîé ôóíêöèè ΦSP [H −h] (
x̃∗
)
= 2, 000065110932379. Åâêëèäîâà íîðìà

ðàñøèðåííîé ìàòðèöû êîððåêöèè ∥[H − h]∥ = 1, 414236582376648.
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Ðèñ. 3.46. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî åâêëèäîâîé íîðìå ìàòðèöû

êîððåêöèè äëÿ öåëåâîé ôóíêöèè SP [H −h] çàäà÷è mondou2
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Ðèñ. 3.47. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ äåñÿòè÷íûõ ëîãàðèôìîâ çíà÷åíèé ýëåìåíòîâ àð-

ãóìåíòà ïîñëå êîððåêöèè öåëåâîé ôóíêöèè SP [H −h] çàäà÷è mondou2

3.2.6. Ïîñòàíîâêà è ðåøåíèå çàäà÷è mondou2 SwPH

Êîððåêòèðîâàëàñü òîëüêî ëåâàÿ ÷àñòü ñèñòåìû îãðàíè÷åíèé. Â êà÷å-

ñòâå íà÷àëüíîãî ïðèáëèæåíèÿ áûë âûáðàí

x̃0 =
(
x̃0i
) ∣∣x̃0i = 100 ∀i ∈ 1, 2, . . . 604 .

Êîððåêòèðóþòñÿ íåíóëåâûå ýëåìåíòû ëåâîé ÷àñòè ñèñòåìû îãðàíè÷åíèé,

òàêèì îáðàçîì øàáëîíû, çàäàþùèå ïîçèöèþ êîððåêòèðóåìûõ ýëåìåíòîâ

îïðåäåëÿþòñÿ (3.1) è (3.2). Âåñîâûå êîýôôèöèåíòû ýëåìåíòîâ çàäàþòñÿ
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Ðèñ. 3.48. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ çíà÷åíèé ýëåìåíòîâ ðàñøèðåííîé ìàòðèöû êîð-

ðåêöèè äëÿ öåëåâîé ôóíêöèè SP [H −h] çàäà÷è mondou2

(3.3). Ìàòðè÷íàÿ êîððåêöèÿ ïðîèçâîäèëàñü íà ìíîæåñòâå äåéñòâèòåëüíûõ

÷èñåë R. Ñõîäèìîñòü àðãóìåíòà, öåëåâîé ôóíêöèè è åâêëèäîâîé íîðìû

ìàòðèöû êîððåêöèè ïðåäñòàâëåíà íà ðèñ. 3.49 � 3.51. Çíà÷åíèå àðãóìåíòà

ïîñëå ìàòðè÷íîé êîððåêöèè ïðåäñòàâëåíî íà ðèñ. 3.52. Ìàòðèöà êîððåêöèè

ïðåäñòàâëåíà äèàãðàììîé ðèñ. 3.53.
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Ðèñ. 3.49. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî àðãóìåíòó äëÿ öåëåâîé ôóíê-

öèè SwPH çàäà÷è mondou2

Àëãîðèòì âûïîëíèë 240 èòåðàöèé çà 313,639 ñ. Çíà÷åíèå âåëè÷èíû

öåëåâîé ôóíêöèè ΦSwPH (
x̃∗
)
= 2, 000065097539562. Åâêëèäîâà íîðìà ìàò-
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Ðèñ. 3.50. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî öåëåâîé ôóíêöèè SwPH çà-

äà÷è mondou2
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Ðèñ. 3.51. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî åâêëèäîâîé íîðìå ìàòðèöû

êîððåêöèè äëÿ öåëåâîé ôóíêöèè SwPH çàäà÷è mondou2

ðèöû êîððåêöèè ∥H∥ = 1, 414236577641648.

3.2.7. Ïîñòàíîâêà è ðåøåíèå çàäà÷è mondou2 SwP [H −h]

Êîððåêòèðîâàëèñü îáå ÷àñòè ñèñòåìû îãðàíè÷åíèé. Â êà÷åñòâå íà-

÷àëüíîãî ïðèáëèæåíèÿ áûë âûáðàí

x̃0 =
(
x̃0i
) ∣∣x̃0i = 100 ∀i ∈ 1, 2, . . . 604 .
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Ðèñ. 3.52. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ äåñÿòè÷íûõ ëîãàðèôìîâ çíà÷åíèé ýëåìåíòîâ àð-

ãóìåíòà ïîñëå êîððåêöèè öåëåâîé ôóíêöèè SwPH çàäà÷è mondou2
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Ðèñ. 3.53. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ çíà÷åíèé ýëåìåíòîâ ðàñøèðåííîé ìàòðèöû êîð-

ðåêöèè äëÿ öåëåâîé ôóíêöèè SwPH çàäà÷è mondou2

Êîððåêòèðóþòñÿ íåíóëåâûå ýëåìåíòû ñèñòåìû îãðàíè÷åíèé, òàêèì îáðà-

çîì øàáëîíû, çàäàþùèå ïîçèöèþ êîððåêòèðóåìûõ ýëåìåíòîâ îïðåäåëÿþò-

ñÿ (3.1) è (3.2). Âåñîâûå êîýôôèöèåíòû ýëåìåíòîâ çàäàþòñÿ (3.3) è (3.4).

Ìàòðè÷íàÿ êîððåêöèÿ ïðîèçâîäèëàñü íà ìíîæåñòâå äåéñòâèòåëüíûõ ÷èñåë

R. Ñõîäèìîñòü àðãóìåíòà, öåëåâîé ôóíêöèè è åâêëèäîâîé íîðìû ðàñøè-

ðåííîé ìàòðèöû êîððåêöèè ïðåäñòàâëåíà íà ðèñ. 3.54 � 3.56. Çíà÷åíèå àðãó-

ìåíòà ïîñëå ìàòðè÷íîé êîððåêöèè ïðåäñòàâëåíî íà ðèñ. 3.57. Ðàñøèðåííàÿ
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ìàòðèöà êîððåêöèè ïðåäñòàâëåíà äèàãðàììîé ðèñ. 3.58.
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Ðèñ. 3.54. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî àðãóìåíòó äëÿ öåëåâîé ôóíê-

öèè SwP [H −h] çàäà÷è mondou2
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Ðèñ. 3.55. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî öåëåâîé ôóíêöèè SwP [H −h]

çàäà÷è mondou2

Àëãîðèòì âûïîëíèë 245 èòåðàöèé çà 245,485 ñ. Çíà÷åíèå âåëè÷èíû

öåëåâîé ôóíêöèè ΦSwP [H −h] (
x̃∗
)
= 2, 000029805006946. Åâêëèäîâà íîðìà

ðàñøèðåííîé ìàòðèöû êîððåêöèè ∥[H − h]∥ = 1, 147791392970291e+003.
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Ðèñ. 3.56. Èëëþñòðàöèÿ ñõîäèìîñòè àëãîðèòìà ìèíèìèçàöèè ïî åâêëèäîâîé íîðìå ìàòðèöû

êîððåêöèè äëÿ öåëåâîé ôóíêöèè SwP [H −h] çàäà÷è mondou2
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Ðèñ. 3.57. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ äåñÿòè÷íûõ ëîãàðèôìîâ çíà÷åíèé ýëåìåíòîâ àð-

ãóìåíòà ïîñëå êîððåêöèè öåëåâîé ôóíêöèè SwP [H −h] çàäà÷è mondou2

3.3. Àíàëèç ðåçóëüòàòîâ âû÷èñëèòåëüíûõ ýêñïåðèìåíòîâ

Ïðè ìàòðè÷íîé êîððåêöèè îáåèõ çàäà÷ ñðåäåíåé ðàçìåðíîñòè â ïî-

ñòàíîâêàõ bgdbg1 PH , bgdbg1 P [H −h], mondou2 PH , mondou2 P [H −h] áû-

ëà ïðîäåìîíñòðèðîâàíà ðàáîòîñïîñîáíîñòü ïðåäëîæåííîãî àëãîðèòìà. Òàê,

åñëè äëÿ çàäà÷ â ïîñòàíîâêàõ mondou2 PH , mondou21 P [H −h] íàáëþäàåòñÿ

îáùàÿ òåíäåíöèÿ ê êâàäðàòè÷íîé ñêîðîñòè ñõîäèìîñòè ïðè ïðèáëèæåíèè

ê òî÷êå ðåøåíèÿ (ðèñ. 3.32), òî äëÿ çàäà÷ â ïîñòàíîâêàõ: mondou2 PH ,
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Ðèñ. 3.58. Èíòåðâàëüíûé ðÿä ðàñïðåäåëåíèÿ çíà÷åíèé ýëåìåíòîâ ðàñøèðåííîé ìàòðèöû êîð-

ðåêöèè äëÿ öåëåâîé ôóíêöèè SwP [H −h] çàäà÷è mondou2

mondou2 P [H −h] � êâàäðàòè÷íàÿ ñêîðîñòü ñõîäèìîñòè âáëèçè òî÷êè ðåøå-

íèÿ î÷åâèäíà (ðèñ. 3.3). Ñëåäóåò îòìåòèòü, ÷òî äëÿ âñåõ çàäà÷ â ïåðå÷èñ-

ëåííûõ âûøå ïîñòàíîâêàõ ðåøåíèå íàõîäèòñÿ çà ñîïîñòàâèìîå ñ ðàçìåðîì

àðãóìåíòà ÷èñëî øàãîâ.

Ðåøåíèå çàäà÷ ñòðóêòóðíîé ìàòðè÷íîé êîððåêöèè â ïîñòàíîâêàõ

bgdbg1 SPH , bgdbg1 SP [H −h], mondou2 SPH , mondou2 SP [H −h] ÿâëÿåòñÿ

áîëåå òðóäîåìêèì (ðèñ. 3.11, 3.16, 3.40, 3.45), ÷åì äëÿ çàäà÷ áåññòðóêòóð-

íîé ìàòðè÷íîé êîððåêöèè, çà ñ÷åò îãðàíè÷åíèé íà ïîçèöèè êîððåêòèðóå-

ìûõ ýëåìåíòîâ. Óêàçàííûå îãðàíè÷åíèÿ ðåçêî ñîêðàùàþò êîëè÷åñòâî êîð-

ðåêòèðóåìûõ ýëåìåíòîâ, à ýòî, â ñâîþ î÷åðåäü, ïðèâîäèò ê çíà÷èòåëüíîìó

ðîñòó âåëè÷èí ýëåìåíòîâ ìàòðèöû êîððåêöèè (ðèñ. 3.14, 3.19, 3.43, 3.48).

Â ðåçóëüòàòå ñêîððåêòèðîâàííàÿ çàäà÷à ìîæåò çíà÷èòåëüíî îòëè÷àòüñÿ îò

èñõîäíîé: íåêîòîðûå ýëåìåíòû ìàòðèöû ñèñòåìû îãðàíè÷åíèé ìîãóò èçìå-

íèòü çíàê, èçìåíèòüñÿ ïî âåëè÷èíå íà íåñêîëüêî ïîðÿäêîâ. Íåñìîòðÿ íà

ýòî, ïðèìåðû mondou2 SPH è mondou2 SP [H −h], è îñîáåííî bgdbg1 SPH

è bgdbg1 SP [H −h] äåìîíñòðèðóþò ýôôåêòèâíîñòü ïðåäñòàâëåííîãî àëãî-

ðèòìà ïðè âûïîëíåíèè áîëüøîãî ÷èñëà èòåðàöèé. Òàê êàê â ðàìêàõ îäíîé

èòåðàöèè âûïîëíÿåòñÿ âû÷èñëåíèå ãðàäèåíòà, íàõîæäåíèå ïðèáëèæåíèÿ ê

ïñåâäîîáðàòíîé ìàòðèöå Ãåññåàíà, ïîèñê âäîëü ïðÿìîé, òî âàæíûì ñòà-

íîâèòñÿ òðåáîâàíèå âûñîêîé ýôôåêòèâíîñòè àëãîðèòìà â ÷àñòè ñîêðàùå-
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íèÿ çàòðàò ìàøèííîãî âðåìåíè íà îñóùåñòâëåíèå îäíîé èòåðàöèè. Îòñþ-

äà ñëåäóåò íåîáõîäèìîñòü èñïîëüçîâàíèÿ ðåçóëüòàòîâ òåîðåì 1.2.8, 1.2.9,

1.4.5, 1.4.6, 1.6.5 1.6.6, à òàêæå ïðèìåíåíèå ìåòîäà Áðîéäåíà-Ôëåò÷åðà-

Ãîëüäôàðáà-Øåííî.

Ðåøåíèå çàäà÷ ñòðóêòóðíîé âçâåøåííîé ìàòðè÷íîé êîððåêöèè â ïî-

ñòàíîâêàõ bgdbg1 SwPH , bgdbg1 SwP [H −h], mondou2 SwPH , mondou2

SwP [H −h], íåñìîòðÿ íà äàëüíåéøåå óñëîæíåíèå âèäà öåëåâîé ôóíêöèè

è åå ïðîèçâîäíîé, äåìîíñòðèðóåò ýôôåêòèâíîñòü àëãîðèòìà Áðîéäåíà-

Ôëåò÷åðà-Ãîëüäôàðáà-Øåííî ïðè äîñòàòî÷íî áîëüøîì êîëè÷åñòâå èòåðà-

öèé, à òàêæå áîëüøîé ïîòåíöèàë äëÿ âîçìîæíûõ ìîäåðíèçàöèé. Ïðè÷åì,

ïîëó÷åííûå ìàòðèöû êîððåêöèè ñîñòîÿò èç ýëåìåíòîâ ñ ìåíüøèì îòíîñè-

òåëüíûì îòêëîíåíèåì îò ýëåìåíòîâ èñõîäíûõ ìàòðèö ñèñòåì îãðàíè÷åíèé

(ðèñ. 3.24, 3.29, 3.53, 3.58), ÷åì ìàòðèöû êîððåêöèè çàäà÷ bgdbg1 SPH ,

bgdbg1 SP [H −h], mondou2 SPH , mondou2 SP [H −h]. Òàêèì îáðàçîì, óêàçàí-

íûé ïîäõîä ïîçâîëÿåò ðåøèòü ïðîáëåìó âîçíèêíîâåíèÿ ñêîððåêòèðîâàííîé

çàäà÷è, ïðèíöèïèàëüíî îòëè÷íîé îò èñõîäíîé, çà ñ÷åò ìàëîé ïî àáñîëþò-

íîé (íî çíà÷èòåëüíîé ïî îòíîñèòåëüíîé) âåëè÷èíå êîððåêöèè íåáîëüøèõ

ïî ìîäóëþ ýëåìåíòîâ.
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Çàêëþ÷åíèå

Â ðàáîòå ðàññìîòðåíû çàäà÷è îïòèìàëüíîé ïî ìèíèìóìó åâêëèäîâîé

è âçâåøåííîé åâêëèäîâîé ìàòðè÷íûõ íîðì êîððåêöèè äàííûõ íåñîáñòâåí-

íîé çàäà÷è ËÏ ïåðâîãî ðîäà, êîòîðàÿ, ïîìèìî íåñîáñòâåííîñòè, ìîæåò

îáëàäàòü äîïîëíèòåëüíûì ñâîéñòâîì, à èìåííî îïðåäåëåííîé ñòðóêòóðîé,

ñâÿçàííîé ñ çàïðåòîì èçìåíåíèÿ ïðîèçâîëüíûõ ýëåìåíòîâ.

Âñå êëàññû çàäà÷ ðàññìàòðèâàëèñü â äâóõ ïîñòàíîâêàõ: êîððåêöèè

ïîäâåðãàåòñÿ ìàòðèöà êîýôôèöèåíòîâ ñèñòåìû îãðàíè÷åíèé (ìàòðèöà A),

èëè ðàñøèðåííàÿ ìàòðèöà ([A b]).

Îñíîâíûå âûâîäû:

1. Òåîðåòè÷åñêè îáîñíîâàíî äîñòàòî÷íîå óñëîâèå ñóùåñòâîâàíèÿ ðå-

øåíèÿ çàäà÷è ìàòðè÷íîé êîððåêöèè íåñîáñòâåííîé çàäà÷è ëèíåéíîãî ïðî-

ãðàììèðîâàíèÿ 1-ãî ðîäà, âûðàæàþùååñÿ â ñóùåñòâîâàíèè ðåøåíèÿ çàäà÷è

ìàòðè÷íîé êîððåêöèè äîïóñòèìîé îáëàñòè óêàçàííîé çàäà÷è. Ðàññìàòðè-

âàþòñÿ ñëåäóþùèå ðàçíîâèäíîñòè ìàòðè÷íîé êîððåêöèè çàäà÷ ËÏ:

� áåç ñòðóêòóðíûõ îãðàíè÷åíèé ïî ìèíèìóìó åâêëèäîâîé íîðìû;

� ñî ñòðóêòóðíûìè îãðàíè÷åíèÿìè ïî ìèíèìóìó åâêëèäîâîé íîðìû;

� ñî ñòðóêòóðíûìè îãðàíè÷åíèÿìè ïî ìèíèìóìó âçâåøåííîé åâêëè-

äîâîé íîðìû.

2. Ðàçðàáîòàí àëãîðèòì îïòèìàëüíîé ìàòðè÷íîé êîððåêöèè äàííûõ

íåñîáñòâåííîé çàäà÷è ËÏ ïåðâîãî ðîäà, âêëþ÷àþùèé â ñåáÿ

� èñïîëüçîâàíèå ìèíèìàëüíîãî ïî åâêëèäîâîé èëè âçâåøåííîé åâêëè-

äîâîé íîðìå ìàòðè÷íîãî ðåøåíèÿ îáðàòíîé çàäà÷è ëèíåéíîãî ïðîãðàììè-

ðîâàíèÿ;

� àëãîðèòìè÷åñêèé ó÷åò íåîòðèöàòåëüíîñòè ÷àñòè ïåðåìåííûõ;

� èñïîëüçîâàíèå øòðàôíûõ ôóíêöèé â ñëó÷àå çàïðåòà êîððåêöèè îò-

äåëüíûõ ñòðîê êîððåêòèðóåìîé çàäà÷è;

� ðåäóêöèþ çàäà÷è ìàòðè÷íîé êîððåêöèè äàííûõ äâîéñòâåííîé ïà-

ðû íåñîáñòâåííûõ çàäà÷ ëèíåéíîãî ïðîãðàììèðîâàíèÿ ê âñïîìîãàòåëüíîé

çàäà÷å áåçóñëîâíîé ìèíèìèçàöèè;
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� ïðèìåíåíèå ðàñ÷åòíîé ñõåìû Áðîéäåíà-Ôëåò÷åðà-Ãîëüäôàðáà-

Øåííî ñ èñïîëüçîâàíèåì àíàëèòè÷åñêîãî ïðåäñòàâëåíèÿ ïðîèçâîäíîé öå-

ëåâîé ôóíêöèè çàäà÷è îïòèìàëüíîé ìàòðè÷íîé êîððåêöèè äàííûõ íåñîá-

ñòâåííîé çàäà÷è ËÏ ïåðâîãî ðîäà ñ âîçìîæíûìè îãðàíè÷åíèÿìè â âèäå

íåêîòîðîé ñîâîêóïíîñòè ôèêñèðîâàííûõ ýëåìåíòîâ.

3. Â ðåçóëüòàòå òåñòèðîâàíèÿ íà íåñîáñòâåííûõ çàäà÷àõ ëèíåéíîãî

ïðîãðàììèðîâàíèÿ ñðåäíåé ðàçìåðíîñòè èç ðåïîçèòîðèÿ netlib/lp/infeas ïî-

êàçàíà ðàáîòîñïîñîáíîñòü ïîëó÷åííîãî àëãîðèòìà.
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