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Введение

Актуальность темы. В работе исследуются методы категоризации и клас-
сификации текстовых документов, автоматически структурирующие докумен-
ты в виде иерархий тем и оптимизирующие уже существующие, выявляя в них
тематические несоответствия [1, 2, 3, 4, 5, 6, 7, 8].

Тематическая модель – модель коллекции текстовых документов, которая
определяет, к каким темам относится каждый документ коллекции. В работе ис-
следуется фундаментальная проблема тематического моделирования – класси-
фикация документов из частично размеченных коллекций с экспертно заданной
иерархической структурой тем [9, 10, 11, 12]. Решением задачи классификации
является отображение подмножества неразмеченных документов коллекции во
множество тем, наилучшим образом восстанавливающее экспертную класси-
фикацию согласно заданному критерию качества. В случае большого числа
тем вместо единственного релевантного кластера предлагается ранжирован-
ный список кластеров согласно их релевантности документу. При несовпадении
экспертного мнения и наиболее релевантного кластера, эксперт рассматривает
следующие по релевантности кластеры в качестве альтернативных вариантов.

Коллекциями документов являются аннотации к научным работам [13], до-
клады на конференциях [14], текстовые сообщения в социальных сетях [15, 16],
текстовая информация веб-сайтов [17], описания патентов, новостные свод-
ки [18, 19] и описания фильмов [16]. Предполагается, что экспертное разделение
документов на темы является эталонным. В связи со значительным размером
коллекций и числом тем распределение документов по темам является для экс-
пертов трудоемкой задачей. Поэтому автоматическая классификация неразме-
ченных документов и поиск небольшого числа наиболее подходящих тем для
каждого неразмеченного документа для дальнейшего принятия решения экс-
пертом являются актуальными задачами.

Для текстовой классификации и кластеризации были предложены жесткие
методы, в которых каждому документу ставится в соответствие единственный
кластер [20, 11], описательно вероятностные методы, в которых оценивается ве-
роятность принадлежности документа каждому из кластеров [6, 21], смеси моде-
лей [7] и вероятностные методы [22, 1, 2] в которых темы являются распределе-
ниями над множеством слов, а документы – распределениями над множеством
тем. Для коллекций с большим числом тем были предложены иерархические
методы, позволяющие учитывать взаимосвязи между темами [11, 23, 8].

Важной проблемой при построении метрических алгоритмов классифика-
ции и кластеризации является выбор метрики [24] как способа сравнения век-
торных представлений документов. В [25] для учета соотношения масштабов
признаков рассматривается взвешенная метрика Минковского. Веса интерпре-
тируются как важность слов. В данной работе исследуются способы опти-
мизации весов взвешенной метрики, а также различные способы векторного
представления документов, наилучшим образом восстанавливающие эксперт-
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ную классификацию. Альтернативой взвешенной функции расстояния являет-
ся взвешенная функция сходства [26]. Для уменьшения числа параметров опти-
мизации предлагается энтропийный метод определения важности слов во взве-
шенной функции сходства через их энтропию относительно экспертной класте-
ризации на различных уровнях иерархии. Для иерархической классификации
предлагается иерархическая взвешенная функция сходства, позволяющая учи-
тывать сходство сразу со всей веткой дерева экспертной иерархической струк-
туры коллекции.

Для оптимизации параметров иерархической функции сходства рассматри-
вается вероятностная постановка задачи, в которой вероятность принадлеж-
ности кластеру оценивается как нормированная экспоненциальная функция
softmax от значений иерархического сходства с кластерами. Задача поиска па-
раметров иерархической взвешенной функции сводится к максимизации прав-
доподобия модели.

При наличии априорных распределений параметров аналитический байесов-
ский вывод апостериорного распределения параметров иерархической функции
сходства, и совместного апостериорного распределения параметров и классов
неразмеченных документов не является возможным. В работах [27, 28] рас-
сматриваются способы приближенного вариационного вывода и аппроксимации
правдоподобия. В работе данные идеи используются для аналитического выво-
да апостериорного распределения параметров [29, 30], а также для аппрокси-
мации совместного апостериорного распределения классов неразмеченных до-
кументов и параметров.

Для размеченных коллекций возникает задача верификации. Решением этой
задачи является изменение у фиксированного набора документов их тем так,
чтобы качество полученной модели стало максимальным. Для этого предла-
гается алгоритм построения иерархической модели, схожей с существующей,
для выявления значимых тематических несоответствий в модели. Предлагают-
ся варианты устранения несоответствий путем переноса некоторых документов
в другие кластеры.

Для визуализации тематической модели были предложены различные под-
ходы [31, 32]. В случае, когда документы представляются в виде действитель-
ных векторов, для их визуализации используются методы понижения размер-
ности [33]. При этом кластеры из разных ветвей иерархической модели могут
пересекаться. В данной работе предлагается метод построения плоской вложен-
ной визуализации иерархической модели, при которой кластеры более низкого
уровня остаются внутри кластеров более высокого уровня на плоскости. Пред-
лагаемый подход опирается на методы, минимизирующие изменения относи-
тельного расстояния между документами и центрами кластеров иерархии [34].

Цели работы.

1. Исследовать метрические свойства описаний текстовых документов.
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2. Предложить критерии качества модели иерархической классификации до-
кументов.

3. Построить оптимальную модель иерархической классификации.
4. Получить вариационные оценки апостериорных распределений парамет-

ров и гиперпараметров модели.
5. Разработать алгоритм построения модели и провести вычислительный

эксперимент для сравнения различных подходов к решению задачи иерар-
хической классификации документов.

Методы исследования. Для достижения поставленных целей использу-
ются методы иерархического тематического моделирования [22, 8, 11, 35, 23].
Для метрической иерархической кластеризации применяются методы плоской
кластеризации [24, 36] совместно с агломеративным и дивизимным подхода-
ми [37, 11]. Для построения локально оптимальной взвешенной метрики исполь-
зуются методы отбора признаков [38] и методы условной оптимизации [39, 29].
Для сравнения документов при иерархической классификации используется
взвешенная функция сходства [26], а для оптимизации ее параметров разви-
вается энтропийный метод, предложенный в [37]. Для оптимизации парамет-
ров иерархической взвешенной функции сходства и энтропийной модели ис-
пользуются методы вариационного вывода [27, 28], байесовского вывода [40]
и методы локальных вариаций [29]. Для построения оператора релевантности
используются методы иерархической классификации [10, 9]. Для построения
плоской вложенной визуализации иерархической тематической модели исполь-
зуются методы понижения размерности [34]. Для учета синонимичности слов
используются языковые модели [41, 42] и методы оптимизации параметров ней-
ронных сетей [29]. Кроме того, используются элементы теории вероятности и
выпуклой оптимизации [39].

Основные положения, выносимые на защиту.

1. Предложен метод иерархической классификации коллекций документов
на основе оператора релевантности.

2. Разработана и исследована вероятностная модель иерархической класси-
фикации.

3. Предложены методы оптимизации параметров и гиперпараметров модели.
4. Предложен способ вычисления иерархической вероятности класса доку-

мента и построения ранжированного списка для последующей экспертной
оценки.

5. Разработан программный комплекс для экспертного построения програм-
мы конференции.

Научная новизна. Разработан новый подход иерархической классифи-
кации частично размеченных коллекций текстовых документов с экспертной
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иерархической структурой. Предложена иерархическая взвешенная функция
сходства документа и кластера, учитывающая иерархичность экспертной кла-
стерной структуры. Предложен метод оценки важности слов с помощью эн-
тропийной модели. Предложена вероятностная модель текстовой коллекции и
способ аппроксимации совместного апостериорного распределения параметров
модели и классов неразмеченных документов. Предложен способ представле-
ния иерархической функции сходства в виде многослойной нейронной сети и
способ учета синонимичности слов. Введен оператор релевантности, ранжиру-
ющий кластеры тематической модели по убыванию релевантности новому до-
кументу. Для верификации экспертной тематической модели предложен метод
построения модели, схожей с экспертной, и выявления наиболее значимых несо-
ответствий. Предложен метод вложенной визуализации экспертной иерархиче-
ской тематической модели на плоскости, а также выявленных несоответствий
и вариантов повышения тематической целостности модели.

Теоретическая значимость. В данной диссертационной работе предло-
женные ранее функции расстояния обобщаются для учета важности признаков
путем введения их весов. Взвешенная функция сходства обобщается на случай
иерархических моделей. Вычисляются оценки весов взвешенной функции сход-
ства с помощью обобщения энтропийного подхода. Для вероятностной модели
коллекции документов, основанной на иерархической функции сходства, пред-
лагается способ оценки апостериорного распределения параметров, а также сов-
местного апостериорного распределения параметров и классов неразмеченных
документов. Доказываются свойства полученных оценок.

Практическая значимость. Предложенные в работе методы предназна-
чены для иерархической классификации коллекций текстов с учетом существу-
ющих экспертных моделей; выявления тематических несоответствий в эксперт-
ных моделях и значимого повышения тематической целостности уже построен-
ных тематических моделей с помощью небольшого числа изменений; визуали-
зации иерархических моделей и выявленных несоответствий на плоскости.

Степень достоверности и апробация работы. Достоверность резуль-
татов подтверждена математическими доказательствами, экспериментальной
проверкой полученных методов на реальных задачах иерархической классифи-
кации коллекций тезисов конференции и коллекций сайтов индустриального
сектора; публикациями результатов исследования в рецензируемых научных
изданиях, в том числе рекомендованных ВАК. Результаты работы докладыва-
лись и обсуждались на следующих научных конференциях.

1. Международная конференция “26th European Conference on Operational
Research”, 2013 [43].

2. Международная конференция “20th Conference of the International
Federation of Operational Research Societies”, 2014 [44].
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3. Всероссийская конференция “Математические методы распознавания об-
разов” ММРО-17, 2015 [45].

4. Всероссийская конференция “58 научная конференция МФТИ”, 2015.
5. Всероссийская конференция “Ломоносов-2016”, 2016 [46].
6. Международная конференция “28th European Conference on Operational

Research”, 2016 [47].
Работа поддержана грантами Российского фонда фундаментальных иссле-

дований и Министерства образования и науки РФ.
1. 14-07-31264, Российский фонд фундаментальных исследований в рамках

гранта “Развитие методов визуализации иерархических тематических мо-
делей”.

2. 07.524.11.4002, Министерство образования и науки РФ в рамках Государ-
ственного контракта “Система агрегирования и публикации научных до-
кументов ВебСервис: построение тематических моделей коллекции доку-
ментов”.

Публикации по теме диссертации. Основные результаты по теме дис-
сертации изложены в 10 печатных изданиях, 4 из которых изданы в журналах,
рекомендованных ВАК.

1. Кузьмин А. А. Многоуровневая классификация при обнаружении движе-
ния цен // Машинное обучение и анализ данных, 3 (2012). С. 318-327 [48].

2. Кузьмин А. А., Адуенко А. А., Стрижов В. В. Выбор признаков и опти-
мизация метрики при кластеризации коллекции документов // Известия
ТулГУ, 3 (2012). С. 119-131 [49].

3. Кузьмин А. А., Стрижов В. В. Проверка адекватности тематических мо-
делей коллекции документов. // Программная инженерия, 4 (2013).
С. 16-20 [50].

4. Kuzmin A. A., Aduenko A. A., Strijov V. V. Hierarchical thematic model
visualizing algorithm // 26th European Conference on Operational Research,
Rome, (2013). P. 155 [43].

5. Kuzmin A. A., Aduenko A. A., Strijov V. V. Thematic Classification for
EURO/IFORS Conference Using Expert Model // 20th Conference of the
International Federation of Operational Research Societies, Barcelona, (2014).
P. 173 [44].

6. Кузьмин А. А., Адуенко А. А., Стрижов В. В. Тематическая классифика-
ция тезисов крупной конференции с использованием экспертной модели
// Информационные технологии. 6 (2014). С. 22-26 [14].

7. Кузьмин А. А., Стрижов В. В. Построение иерархических тематических
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8. Кузьмин А. А., Адуенко А. А. Построение иерархических тематиче-
ских моделей крупных конференций // Сборник тезисов 23 междуна-
родной научной конференции студентов, аспирантов и молодых ученных
“Ломоносов-2016” секция “Вычислительная математика и кибернетика”, г.
Москва: МАКС Пресс., (2016). С. 73–75 [46].

9. Kuzmin A. A., Aduenko A. A., Strijov V. V. Thematic Classification for
EURO/IFORS Conference Using Expert Model // 28th European Conference
on Operational Research, Poznan, (2016). P. 206 [47].

10. Златов А. С., Кузьмин А. А. Построение иерархической тематической мо-
дели крупной конференции // Искусственный интеллект и принятие ре-
шений, 3 (2016). С. 77-86 [21].

Личный вклад. Все приведенные результаты, кроме отдельно оговорен-
ных случаев, получены диссертантом лично при научном руководстве д.ф.-м.н.
В. В. Стрижова.

Структура и объем работы. Диссертация состоит из оглавления, введе-
ния, пяти разделов, заключения, списка иллюстраций, списка таблиц, перечня
основных обозначений и списка литературы из 123 наименований. Основной
текст занимает 120 страниц.

Краткое содержание работы по главам. В первой главе вводятся ос-
новные понятия и определения, формулируются задачи иерархической класси-
фикации и кластеризации. Рассматриваются основные этапы классификации
и кластеризации коллекций документов существующими методами: предобра-
ботка коллекции текстовых документов, составление словаря коллекции, пред-
ставление слов в виде векторов, представление документов в виде векторов,
построение модели. Рассматриваются четыре основных подхода построения те-
матической модели: с помощью жестких методов, описательно-вероятностных
методов, смесей моделей и вероятностных методов. Рассматриваются существу-
ющие варианты алгоритмов иерархической классификации.

Во второй главе предлагается алгоритм иерархической метрической кла-
стеризации. Рассматривается взвешенная функция расстояния Минковского и
ее свойства. Предлагается алгоритм оптимизации весов данной функции с по-
мощью частично размеченной коллекции. Анализируются агломеративный и
дивизимный методы построения иерархической тематической модели, а также
сравниваются различные способы представления документов в виде действи-
тельных векторов.

В третьей главе рассматривается способ вычисления взвешенного сходства
между векторными представлениями документов и кластеров. Для оптимиза-
ции весов данной функции предлагается энтропийный подход, использующий
экспертную кластеризацию документов на различных уровнях иерархии. Пред-
лагается иерархическая взвешенная функция сходства, характеризующая сход-
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ство документа и ветки дерева иерархической модели. Предлагается оператор
релевантности, ранжирующий кластеры нижнего уровня иерархической модели
в порядке убывания сходства с неразиеченным документом. Вводится критерий
качества оператора релевантности AUCH. Для оптимизации параметров иерар-
хической функции сходства предлагается итеративный алгоритм, оптимизиру-
ющий функционал качества AUCH. Предлагается способ оценки вероятности
принадлежности документа кластеру и строится вероятностная модель коллек-
ции документов. Предлагается способ оптимизации параметров данной модели,
максимизирующий правдоподобие модели по размеченным документам. Вво-
дятся априорные распределения параметров модели, с помощью вариационного
вывода строится оценка апостериорного распределения параметров. Для оценки
вероятности принадлежности документа кластеру строится оценка совместно-
го апостериорного распределения параметров модели и классов неразмеченных
документов. Для учета синонимичности слов предлагается способ инициализа-
ции параметров с помощью векторных представлений слов и обученной языко-
вой модели. С помощью предложенных методов классифицируются аннотации
к докладам конференции EURO.

В четвертой главе рассматривается задача верификации экспертной иерар-
хической тематической модели. Предлагается алгоритм построения модели, схо-
жей с экспертной. Вводится понятие качества экспертной модели и система
штрафов за ее изменение. С помощью предложенного метода проводится вери-
фикация экспертной тематической модели конференции EURO.

В пятой главе на базе предложенных методов описывается разработанный
программный комплекс, позволяющий классифицировать неразмеченные тек-
стовые документы с помощью экспертных моделей. Работа данного комплекса
анализируется на двух текстовых коллекциях: коллекции аннотаций к докла-
дам на крупной конференции EURO, и коллекции веб-сайтов компаний инду-
стриального сектора. Результаты, полученные с помощью предложенных мето-
дов, сравниваются с результатами известных алгоритмов. Предлагается метод
построения вложенной визуализации экспертной иерархической тематической
модели на плоскости, а также выявленных несоответствий и способов их устра-
нения.
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Глава 1
Постановка задачи

Обработка тестовой информации является одной из наиболее важных задач
в области интеллектуального анализа данных. Теоретические результаты в дан-
ной области находят непосредственное применение при решении прикладных
задач, в частности, задач ранжирования поисковых выдач по запросу, задач
информационного поиска, анализа текстов, построения тематических моделей
коллекции текстов и терминологических словарей.

Определение 1. Словом w называется любой неразрывный набор символов.

Определение 2. Текстовым документом d называется множество
слов {w1, w2, . . . , wn}. Размером документа |d| называется число элемен-
тов данного множества.

Определение 3. Коллекцией документов D называется неупорядоченное мно-
жество документов {d1, d2, . . . , dn}. Размером коллекции |D| называется число
элементов данного множества.

Определение 4. Словарем W коллекции D называется упорядоченное под-
множество неповторяющихся слов w и словосочетаний w1w2 . . . wn, содержа-
щихся в коллекции D.

В данной работе словарь W содержит всевозможные слова w из коллекции
D и не содержит словосочетания, если не оговорено иное.

Определение 5. Кластером документов c называется подмножество докумен-
тов коллекции D. Корневым кластером называется кластер, содержащий все
документы коллекции D. Документ d имеет класс c, если d ∈ c. В общем слу-
чае, каждый документ может принадлежать произвольному числу классов.

Определение 6. Кластер c1 является родительским кластером кластера c2

если все документы d из c2 содержатся в c1. При этом кластер c2 называется
дочерним кластером c1.

Определение 7. Тематической моделью M текстовой коллекции D называ-
ется разбиение D на кластеры {c1, c2, . . . , cn} таким образом, чтобы каждый
документ d ∈ D принадлежал хотя бы одному кластеру помимо корневого.

Тематическая модельM коллекцииD называется экспертной, если для каж-
дого документа d ∈ D его классы задавались экспертами. Тематическая мо-
дель M̂ называется алгоритмической, если для документов классы задавались
алгоритмическим образом. Коллекция D называется частично размеченной,
если экспертная классификация известна только для подмножества докумен-
тов. Кластерная структура коллекции задана экспертно, если изначально задан
граф модели в виде графа кластеров.
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Пусть каждый кластер модели M , кроме корневого, является чьим-то до-
черним кластером. Модель M представляется в виде графа следующим обра-
зом. Каждому кластеру c ставится в соответствие вершина. Пусть {c1, . . . , cn} –
множество родительских кластеров для кластера c. Вершина, соответствующая
кластеру c, соединяется ребром со всеми вершинам, соответствующими класте-
рам {c1, . . . , cn}, кроме тех, для которых хотя бы один из кластеров в {c1, . . . , cn}
является дочерним.

Определение 8. Модель M называется иерархической, если она представима
в виде направленного ациклического графа (DAG) [51, 52]. Уровнем кластера c
в M называется сумма уровня корневого кластера и максимальной длины пу-
ти в графе модели от корневого кластера до c. Уровнем корневого кластера
считается 1.

Каждый кластер cl,k индексируется двумя числами – уровнем l и поряд-
ковым номером на данном уровне k. Корневой кластер обозначается как c1,1,
число кластеров на уровне l обозначается Kl.

Определение 9. Кластеры иерархической модели M у которых нет дочерних
кластеров называются терминальными. В общем случае уровни данных класте-
ров могут различаться.

Определение 10. Иерархическая модель называется сбалансированной, если
у всех терминальных кластеров совпадает уровень.

В данной работе исследуется фундаментальная задача построения иерархи-
ческих тематических моделей M с экспертно заданной кластерной структурой,
классификации неразмеченных документов в данной структуре и верификации
ранее построенной модели. Исследуются свойства иерархических тематических
моделей. При построении модели M заданы:

1) частично размеченная коллекция документов D,
2) экспертная кластерная структура в виде дерева,
3) классы документов заданного подмножества D,
4) тип модели, как способ отнесения документа к элементу кластерной

структуры.
Требуется определить положение каждого неразмеченного документа кол-

лекции в структуре тематической модели. Ранее предложен ряд методов [9, 10,
11, 37] для решения подобных задач. Каждый из них использует определенные
начальные условия и предположения о структуре. В большинстве из них можно
выделить следующие этапы построения модели: 1) предобработка документов
коллекции, 2) построение словаря коллекции, 3) представление документов в
виде числовых векторов и 4) применение алгоритма построения тематической
модели к полученному набору векторов. Рассмотрим каждый из этапов.
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1.1. Предобработка документов

Основной целю предобработки документов является удаление неинформа-
тивных слов [53] и приведение оставшихся слов к их нормальной форме. Со-
гласно [54, 55, 56] предобработка позволяет улучшить качество классификации
документов для некоторых языков в 10–50 раз, а так же уменьшить размер
словаря на 50%. Для удаления неинформативных слов и незначимых частей
речи, таких как союзы и предлоги, используются словари стоп-слов [53]. Для
нормализации слов существует три основных метода [57].

Метод удаления аффиксов. Для каждого слова из D существует после-
довательность суффиксов, в которой они присоединены к корню. На каждом
шаге метод [58] удаляет с конца слова один суффикс всевозможными спосо-
бами, сверяет получившееся слово со списком нормальных форм слов и при
отсутствии совпадения рекурсивно ищет нормальную форму от оставшегося
слова.

Метод разнообразия продолжений. Сегментами слова являются его от-
деляемые части — корень, суффикс, приставка. Пусть A = {a} – множество
символов языка коллекции D. Пусть

w = ai1ai2 . . . ain, wa = ai1 . . . aina, wm = ai1 . . . aim, m ≤ n,

где w – представление слова в виде последовательности букв, wa – конкатенация
слова w и буквы a, a wm – первые m букв слова w. Пусть H – множество всех
слов коллекцииD,H(wm) – все слова изH, у которых первыеm букв совпадают
с wm, а S(wm) — множество различных букв, встречающихся на m+ 1 позиции
в словах из H(wm). Пусть κ∗ – структурный параметр. Для поиска сегментов
в [59] используются следующие методы.

1. Метод отсечения – считать wm сегментом если |S(wm)| > κ∗.
2. Метод пика и плато – считать wm сегментом если

|S(wm+1)| − |S(wm)| > κ∗.

3. Метод совпадений — считать wm сегментом если w без первых m букв
совпадает с другим словом w′ из H.

4. Энтропийный метод. Энтропия I(wm) разнообразия продолжений после-
довательности букв wm задается как

I(wm) = −
∑
a∈A

p(wma) log p(wma), p(wma) =
|H(wma)|
|H(wm)| ,

где p(wma) – вероятность того, что случайное слово из H(wm) имеет в ка-
честве продолжения букву a ∈ A. Последовательность букв wm считается
сегментом если

|I(wm+1)| − |I(wm)| > κ∗.
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Для нормализации, все слова коллекции делятся на сегменты описанными
выше способами и для каждого слова выбирается нормальная форма из мно-
жества его сегментов.

Кластеризация слов. В [60] слова разбиваются на кластеры согласно за-
данной функции расстояния или сходства между словами. Словам из одно кла-
стера ставится в соответствие одинаковая нормальная форма. Для кластериза-
ции применяется метод полной связи [61]. Расстояние между словами w1 и w2

в этом методе определяется как расстояние Левенштейна [62]. Для вычисления
сходства между словами, каждому слову ставится в соответствие набор всех
его подпоследовательностей букв длинны n [63] и для полученных множеств
вычисляется мера сходства Дайса [64].

1.2. Составление словаря коллекции

После предобработки коллекции D, словарь W содержит слова из коллек-
ции D без повторений. Добавление в W устойчивых словосочетаний позволяет
улучшить качество кластеризации коллекции [65, 66]. Устойчивым словосоче-
танием называется последовательность слов, N -грамма, часто встречающаяся
в документах коллекции.

Для поиска устойчивых словосочетаний в [66] предлагается упорядочить все-
возможные пары слов по значению ассоциативной меры

T-Score(w1w2, D) =
|W | tf(w1w2, D)− tf(w1, D) tf(w2, D)

|W |
√

tf(w1w2, D)
,

где tf(w,D) – частота слова w в коллекции D. Словосочетания с наибольшим
значением T-Score являются наиболее устойчивыми и добавляются в словарь.

В [67] для отбора устойчивых словосочетаний используется взаимная ин-
формация:

MI(w1w2) = log
|W | · tf(w1w2, D)

tf(w1, D) · tf(w2, D)
.

Чем больше ее значение для словосочетания w1w2, тем более устойчивым оно
является. Однако данная мера не ограничена сверху, а tf(w1, D) и tf(w2, D)
в знаменателе не зависят от того, встретилось ли слово w1 вместе с w2 или
нет. Чтобы учесть эти недостатки, были предложены аналоги данной меры:
дополненная взаимная информация [68] и нормализованная взаимная инфор-
мация [69].

В [65] предлагается подход PLSA-ITER, основанный на алгоритме PLSA [1],
в котором шаг построения модели PLSA чередуется с шагом генерации и добав-
ления в словарь всевозможных словосочетаний слов, с наибольшей вероятно-
стью характеризующих одну из тем, полученных с помощью PLSA. В [70] для
увеличения числа словосочетаний предлагается в качестве N -грамм рассмат-
ривать последовательности слов с не более чем m пропусками.
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1.3. Представление слов из словаря в виде векторов

Пусть каждому слову w из словаря W ставится в соответствие некоторый
вектор w(w) ∈ Rm, а сходство двух слов sw(wi, wj) выражается как косинус
угла между их векторами:

sw(wi, wj) =
‖w(wi)−w(wj)‖
‖w(wi)‖‖w(wj)‖

=
〈w(wi),w(wj)〉√

〈w(wi),w(wi)〉
√
〈w(wj),w(wj)〉

.

Тривиальным векторным представлением слова wj, стоящего на позиции j
в словаре W , является единичный вектор e(j) с единицей на позиции j:

w(wj) = e(j) ∈ R|W |, e(j) = [0 . . . 0 1 0 . . . 0].

При этом сходство между двумя произвольными словами равно 1, если слова
совпадают, и 0, если слова разные:

sw(wi, wj) = [i = j].

Чтобы сохранить информацию о синонимичности слов, для слов-синонимов
используются схожие векторы. Для описания процесса оптимизации векто-
ров w(w), рассмотрим языковую модель (LM, англ. Language Modeling).

Языковая модель. Языковая модель применяется в распознавании ре-
чи, распознавании печатного и рукописного текста, в области машинного пе-
ревода и проверки орфографии [71, 72, 73, 74, 75]. Она определяет вероят-
ность p(w1, w2, . . . , wn) последовательности слов w1w2 . . . wn. В [76] предпола-
гается, что вероятность слова зависит только от предыдущих слов:

p(w1, w2, . . . , wn) = p(w1) · p(w2|w1) · . . . · p(wn|wn−1, . . . , w1). (1.1)

Оценить p(wi|wi−1, . . . , w1) при больших i сложно, поэтому предполагается, что
слово зависит только от двух предыдущих. Данное предположение называется
триграммным. Условные вероятности в (1.1) оцениваются как

p(wi|wi−1, . . . , w1) = p(wi|wi−1, wi−2) =
N(wiwi−1wi−2, D)

N(wi−1wi−2, D)
, (1.2)

где N(wiwi−1 . . . , D) – число последовательностей слов wi, wi−1, . . . в коллекции
D.

Матрица оценок вероятностей p(wi|wi−1, . . . , w1) будет разреженной, так как
многие тройки слов не встретятся в D. Для решения проблемы разреженности
были предложены различные формы дисконтирования, перераспределяющие
вероятность встретившихся троек на другие схожие тройки слов. Применяется
дисконтирование Катца [77] или Джелинека-Мерсера [78]. В [79] показывается,
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что дисконтирование Кнесера-Нея [80] превосходит по качеству остальные тех-
ники дисконтирования, а в [76] приводится теоретическое обоснование этого.
Для увеличения числа последовательностей слов в [70] рассматриваются все-
возможные триграммы с пропусками.

Распределенное представление слова. Альтернативными методами
оценки вероятности (1.1) являются модели [81, 82, 41, 42], использующие рас-
пределенное представление слов в виде действительных векторов w(w).

Пусть каждому слову w из словаря W соответствует вектор w(w) ∈ Rm,
а в матрице W размера |W | ·m строка с номером i соответствует векторному
представлению слова с номером i из словаряW . Пусть wt – слово с порядковым
номером t в документе. Вероятность слова wt быть словом wi из словаряW при
заданной последовательности предшествующих ему слов wt−1 . . . wt−n+1 задает-
ся как i-й элемент параметрической вектор-функции f ∈ R|W |:

p(wt = wi|wt−1, . . . , wt−n+1) = f
(
w(wt−1), . . . ,w(wt−n+1),θ

)
i
.

В [81] функция f представляется в виде нейронной сети, показанной на
рис. 1.1:

f
(
w(wt−1), . . . ,w(wt−n+1),θ

)
= f
(
y(x,θ)

)
, где (1.3)

y(g,θ) = b + Vx + Ug, g = tanh(a), a = d + Hx, (1.4)

x = [w(wt−1),w(wt−2), . . . ,w(wt−n+1)]
T. (1.5)

Здесь x – конкатенация векторных представлений слов, полученных из мат-
рицы W, y(x,θ) – вектор значений предактивации выходного слоя, g – век-
тор значений активации скрытого слоя, a – вектор значений предактивации
скрытого слоя, b – вектор констант нейронов выходного слоя, V – матрица
весов связей, соединяющих напрямую векторные представления слов с выход-
ным слоем, U – матрица весов соединений между скрытым слоем и выходным
слоем, H – матрица весов соединений входного слоя векторного представления
слов x со скрытым слоем, а d – вектор констант нейронов выходного слоя.

В качестве функции активации выходного слоя используется функ-
ция softmax(y):

f(y) =

[
exp(y1)∑|W |
i=1 exp(yi)

, . . . ,
exp(y|W |)∑|W |
i=1 exp(yi)

]T

. (1.6)

Число параметров данной модели |W |(1+nm+h)+h(1+(n−1)m). Наиболь-
ший вес в данную сумму вносит член |W |nm. Таким образом, число свободных
параметров растет линейно с размером словаряW , размерностью пространства
векторного представления слов m и числом слов в рассматриваемых словосо-
четаниях.
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Рис. 1.1. Представление функции f в виде нейронной сети.

Качеством модели является логарифм правдоподобия последовательностей
слов заданной длины из коллекции D:

L =
1

T

∑
t

log p(wt|wt−1, . . . , wt−n+1). (1.7)

Оптимизация параметров нейронной сети. Для удобства, струк-
тура аргументов функции f опускается, и данная функция обозначается
как f(x). Согласно (1.5) и (1.7), функция потерь для последовательности
слов wtwt−1 . . . , wt−n+1 имеет вид

`
(
f(x), wt

)
= −

|W |∑
t′=1

[t = t′] log f(x)t′ = − log f(x)t. (1.8)

Утверждение 1. Производные логарифмической функции потерь (1.8) по па-
раметрам θ = (b,d,V,U,H,W) для слова wt равны

∂

∂θl
`
(
f(x), wt)

)
=

|W |∑
k=1

(
[k = t]− f(x)k

)∂yk
∂θl

, где

∂yk
∂bl

= [l = k],
∂yk
∂vlm

= [l = k]xm,
∂yk
∂ulm

= [l = k]gm, (1.9)
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∂yk
∂dl

=
4ukl(

exp(al) + exp(−al)
)2 ,

∂yk
∂hlm

=
4uklxm(

exp(al) + exp(−al)
)2 , (1.10)

∂yk
∂Wt,m

= vkm +
h∑
i=1

4ukihim(
exp(ai) + exp(−ai)

)2 . (1.11)

Доказательство. Пусть θj – один из параметров (b,d,V,U,H,C). Частные
производные функции потерь по f(x)i

∂

∂f(x)i
`
(
f(x), wt)

)
=

[i = t]

f(x)t
, ∇f(x)`

(
f(x), wt

)
= − e(t)

f(x)t
,

где e(t) – единичный вектор с единицей на позиции t. Производная элемента m
вектора softmax

∂

∂yk

(
exp(ym)∑
m′ exp(ym′)

)
=

exp(ym)∑
m′ exp(ym′)

(
[k = m]− exp(yk)∑

m′ exp(ym′)

)
=

= f(x)m
(
[k = m]− f(x)k

)
. (1.12)

Тогда производные функции потерь по значениям функции предактивации вы-
ходного слоя yk

∂

∂yk
`
(
f(x), wt)

)
=

|W |∑
k′=1

∂`
(
f(x), wt)

)
∂f(x)k′

∂f(x)k′

∂yk
=

=

|W |∑
k′=1

[k′ = t]f(x)k′([k = k′]− f(x)k)

f(x)t
= [k = t]− f(x)k. (1.13)

Согласно (1.4) частные производные yk по параметрам b,V,U записывают-
ся как

∂yk
∂bl

= [l = k],
∂yk
∂vlm

= [l = k]xm,
∂yk
∂ulm

= [l = k]gm, (1.14)

Вспомогательные производные имеют вид

∂yk
∂θl

=
h∑
p=1

∂yk
∂gp

∂gp
∂ap

∂ap
∂θl

,
∂yk
∂gp

= ukp, (1.15)

∂gp
∂ap

=
∂ tanh(ap)

∂ap
=

4(
exp(ap) + exp(−ap)

)2 . (1.16)

Частные производные yk по параметрам d,H,x равны

∂yk
∂dl

=
4ukl(

exp(al) + exp(−al)
)2 ,

∂yk
∂hlm

=
4uklxm(

exp(al) + exp(−al)
)2 , (1.17)
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∂yk
∂xm

= vkm +
h∑
i=1

4ukihim(
exp(ai) + exp(−ai)

)2 . (1.18)

Таким образом, производная функции потерь по параметру θl выражается
как

∂

∂θl
`
(
f(x), wt)

)
=

|W |∑
k=1

(
[k = t]− f(x)t

)∂yk
∂θl

,

где ∂yk/∂θl берутся из (1.14), (1.17), и (1.18).

Для оптимизации параметров θ = [b,d,V,U,H,W] используется метод
стохастического градиентного спуска (англ. SGD):

θ′j ← θj + ε
∂ log `

(
f(x), wt)

)
∂θj

. (1.19)

На каждом шаге SGD изменяется лишь небольшая часть элементов мат-
рицы W – только строки тех слов, которые встретились в последовательно-
сти wtwt−1 . . . wt−n+1, полученной SGD на вход.

Основной вклад в вычислительную сложность данного алгоритма вносит
вычисление суммы в знаменателе softmax. В [82, 41] были предложены иерархи-
ческие варианты функции softmax, что снижало вычислительную сложность на
величину, пропорциональную |W |/ log(|W |). В [83, 84] предлагались подходы,
позволяющие избежать вычисления данной суммы. В [81] предлагался способ
распараллеливания алгоритма обучения нейронной сети (1.3).

В [42, 85] рассматриваются две альтернативные структуры нейронной сети
без скрытого слоя: CBOW (англ. continuous bag-of-words) и Skip-gram, показан-
ные на рис. 1.2 и 1.3 соответственно. В модели CBOW векторные представления
слов усредняются и подаются сразу на выходной слой. В отличие от оригиналь-
ного алгоритма, вычисляется вероятность среднего wt слова в последователь-
ности как по предыдущим wt−2wt−1 так и по последующим wt+1wt+2. В модели
Skip-gram по текущему слову wt в последовательности считается вероятность
соседних с ним слов wt−2, wt−1, wt+1, wt+2.

За счет отсутствия скрытого слоя вычислительная сложность данной мо-
дели уменьшается, что позволяет обучать ее на больших объемах данных,
не уменьшая при этом размерность векторного представления слов. В [42]
данные модели обучались на коллекции из 6 · 109 слов, используя векторы
слов w(w) ∈ R1000, в то время как алгоритм со скрытым слоем использовал
пространство с размерностью в десять раз меньше w(w) ∈ R100.

Для сравнения качества представления слов в виде векторов используются
семантические и синтаксические списки пар слов, составленные экспертно. Ал-
горитму необходимо предсказать второе слово, используя первое. Ответ счита-
ется верным в случае совпадения второго слова. Алгоритмы CBOW и Skip-gram
в [42] показали более высокие результаты.
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Рис. 1.2. Модель CBOW.
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Рис. 1.3. Модель Skip-gram.

1.4. Представление документа в виде вектора

Для решения задач кластеризации и классификации, документы d представ-
ляются в виде векторов x ∈ R|W | [16, 86, 14]:

x = [φ(w1, d,D), · · · , φ(w|W |, d,D)]T, (1.20)

где φ(wm, d,D) – функция, ставящая в соответствие слову wm из W действи-
тельное число.
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В [87] документ d представляется в виде целочисленного вектора x ∈ R|W |,
где на позицииm стоит xm = N(wm, d) – число слов wm из словаряW в d. Пред-
полагается, что порядок слов в документе не несет дополнительной информа-
ции для кластеризации и классификации. В [49] данный подход сравнивался с
представлением документа в виде бинарного вектора, где xm = [N(wm, d) > 0].

Для учета важности слов при решении задач классификации и кластериза-
ции используются:

1) взвешенные метрики или функции сходства [25],
2) алгоритмы отбора признаков [19, 88, 89, 90],
3) функции φ(w, d,D), учитывающие частотные особенности слов в коллек-

ции [86].
В последнем подходе используются комбинации частотных показателей

слов tf · idf (англ. tf – term frequency, idf – inverse document frequency) [91]:

tf(w, d) =
N(w, d)

|d| , idf(w,D) = log
|D|∑

d[N(w, d) > 0]
, (1.21)

где |d| – число слов в документе d. Элемент xm представляется как

xm = φ(wm, d,D) = tf(wm, d) · idf(wm, D).

В [86] ищется оптимальный вид функции φ(wm, d,D) методом порождения
моделей [92]. Комбинация (1.22) нормализованных tf и idf (ntf и ndf соответ-
ственно) сравнивается с (1.21).

ES-LG(ntf, ndf) = exp

(√
log

(
ntf + ndf

ndf

))
, где (1.22)

ntf(w, d,D) = N(w, d) log

(
1 + ϕ

∑
d′ N(w, d′)

|D|N(w, d)

)
, (1.23)

ndf =

∑
d[N(w, d) > 0]

|D| . (1.24)

В выражении (1.23) структурный параметр ϕ оптимизируется по коллекции D.

Распределенное представление документа. Недостатками представ-
ления (1.20) являются большая размерность получаемых векторов и отсут-
ствие возможности учитывать синонимичность слов. В [93] предлагается метод
paragraph vector – альтернативный способ векторного представления докумен-
тов. Для этого к нейронной сети CBOW, показанной на рис. 1.2, в качестве еще
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Рис. 1.4. Модель paragraph vector.

одного входа добавляется общий вектор для всех обучающих последователь-
ностей слов из фиксированного документа di, рис. 1.4. После обучения, этот
вектор является представлением документа di.

В [94] используется рекурсивная нейронная сеть для свертки векторных
представлений слов предложения в один вектор, соответствующий этому пред-
ложению. После этого, векторные представления предложений с помощью ре-
курсивной нейронной сети сворачиваются в векторное представление докумен-
та.

1.5. Жесткие иерархические модели

Алгоритмы текстовой кластеризации разделяются на четыре типа по тому,
каким способом они описывают документ и кластер в коллекции [6], см. табли-
цу 1.1.
Определение 11. Тематическая модель M коллекции документов D назы-
вается жесткой, если каждый документ d ∈ D принадлежит только одному
кластеру нижнего уровня и всем его родительским кластерам.

Жесткие модели ищут класс для каждого документа. Описательно-
вероятностные модели являются расширением жестких моделей. В них допол-
нительно оценивается вероятность принадлежности каждого документа каждо-
му из классов. В смесях моделей классы представляются в виде распределений
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Таблица 1.1. Основные типы алгоритмов текстовой кластеризации.

Тип моделей Документ Кластер Пример алгоритма

Жесткие вектор вектор k-means [20], SVM [11]

Описательно-
вероятностные

вектор вероятность DPM [6], nDPM,
hDPM [21], Probabilistic
SVM [95], Нейронные
сети [37]

Смеси вектор распределение mixture of Gaussian [96],
vMF [7]

Вероятностные распределение распределение LDA [1], PAM [51],
hPAM [52], HDP [4],
hHDP [23], ARTM [22]

векторных представлений документов. В вероятностных моделях и докумен-
ты и классы являются распределениями. Так, в [1] документы являются рас-
пределениями над классами, классы являются распределениями над словарем
коллекции.

Для построения жестких тематических моделей применяются алгоритмы
кластеризации произвольных объектов в метрическом или неметрическом [97,
98] пространстве. Документы представляются в виде векторов. Для построения
тематической модели M выбирается функция расстояния или сходства векто-
ров документов, при помощи которой документы сравниваются и объединяются
в кластеры.

В [25] рассматривается способ применения взвешенных метрик Минковского
в качестве функции расстояния (1.25):

ρ(λ,x,y) =
p

√√√√ |W |∑
m=1

|λm|p|xm − ym|p, (1.25)

где λm есть важность слова wm из словаря W при кластеризации и класси-
фикации. Чтобы убрать зависимость метрики Минковского от числа слов в
документе, векторы документов нормализуются:

x 7→ x

||x|| .

В [26] для сравнения векторов документов используется взвешенная коси-
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нусная функция сходства (1.26):

s(x,y) =
xTΛy√

xTΛx
√

yTΛy
, где Λ = diag(λ1, · · · , λ|W |). (1.26)

При большом числе ненулевых элементов в матрице весов Λ общего вида воз-
никает проблема переобученности, так как число оптимизируемых параметров
растет пропорционально |W |2. Чтобы избежать этого в качестве Λ используется
диагональная матрица. В [16, 14] используется частный случай (1.26) – коси-
нусная функция сходства c Λ = I.

Утверждение 2. При единичной матрице Λ = I взвешенное косинусное рас-
стояние, задаваемое как ρs(·, ·) = 1− s(·, ·), не является метрикой.

Доказательство. Действительно, пусть

x = (1, 0, 0), y = (1, 1, 0), z = (0, 1, 0), Λ = diag(1, 1, 1).

Для заданных точек для ρs не выполняется неравенство треугольника:

ρs(x,y) + ρs(x, z) < 0.59 < 1 = ρs(x, z).

В [99] с помощью косинусной функции сходства при Λ = diag(1, . . . , 1) за-
дается ангулярное расстояние ρ′s(x,y), которое задает метрику.

ρ′s(x,y) = 1− 2 · cos−1
(
s(x,y)

)
π

.

Однако для произвольной диагональной матрицы Λ метрические свойства не
всегда выполняются.

Утверждение 3. При матрице Λ 6= I, ρ′s не является метрикой в общем случае.

Доказательство. Пусть

Λ = diag(1, 1, 10), x = (1, 0, 1), y = (1, 1, 0), z = (0, 1, 1).

Для заданных точек для ρ′s не выполняется неравенство треугольника.

Утверждение 4. При Λ = I, p = 2 и нормированных векторах докумен-
тов x 7→ x

||x|| , метрика Минковского и функция сходства совпадают с точностью
до линейного преобразования:
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Доказательство.

ρ(x,y) = ||x− y||2 = (x− y)(x− y) =

= ||x||2 + ||y||2 − 2(x · y) = 2
(
1− s(x,y)

)
. (1.27)

Алгоритм плоской кластеризации. Рассмотрим двухуровневую тема-
тическую модель M , состоящую из корня c1,1 и кластеров второго уров-
ня {c2,k}, k ∈ {1 . . . K2}, где K2 – фиксированное число кластеров второго
уровня. Обозначим за {µ(c2,k)} центры этих кластеров. Пусть ĉ(x) – кластер,
к которому алгоритм отнес документ x. Задача кластеризации формулируется
следующим образом:

`(M) =
1

|D|

|D|∑
n=1

ρ
(
xn,µ

(
ĉ(xn)

))
→ min

M
, (1.28)

где M берется по всем возможным разбиениям коллекции D, согласно опреде-
лению 7. Требуется найти такое разбиение документов коллекции D на класте-
ры, чтобы центроиды кластеров построенной модели M доставляли минимум
функционалу `(M).

Для решения данной задачи применяется алгоритм k-means [20, 100, 36].
В [24] приводится обобщенный вариант данного алгоритма, адаптирующий шаг
пересчета координат центров кластеров для произвольной функции расстояния:

1) инициализировать положения центров µ(c2,k), выбрав случайным образом
векторы k2 документов,

2) присвоить каждому документу x метку кластера ближайшего центроида,
3) обновить положения центроидов кластеров:

µ(c2,k) := arg min
µ(c2,k)

∑
n:ĉ(xn)=c2,k

ρ
(
xn,µ

(
ĉ(xn)

))
,

4) если центроид хотя бы одного кластера ck,2 изменился, вернуться на вто-
рой шаг.

Шаги 2 и 3 данного алгоритма не увеличивают целевую функцию `(M).
Поэтому, так как существует лишь конечное число разбиений |D| объектов на k2

кластеров, алгоритм гарантированно сойдется за конечное число шагов.
Недостатком алгоритма является сходимость к локальному минимуму, по-

этому предлагается несколько раз запустить алгоритм с различными началь-
ными условиями. В [101] для поиска локальных минимумов с меньшим значе-
нием `(M) предлагается некоторым документам присваивать метки случайных
кластеров на каждом шаге.



26

В [97] предлагается линейный приближенный алгоритм для решения зада-
чи (1.28). В качестве функции расстояния при этом используется расстояние
Кульбака-Лейблера [102], расстояние Итакуры-Саито, расстояние Махалоноби-
са [103] и некоторые случаи дивергенции Брегмана [104].

Иерархическая кластеризация. Существует два типа алгоритмов жест-
кой иерархической кластеризации.

Дивизимные [11, 37]: изначально, все документы находятся в одном кластере
совпадающем с вершиной дерева иерархической кластерной структуры. При
построении каждого следующего уровня l+1 каждый кластер уровня l делится
на кластеры меньшего размера, например, методом k-means.

Агломеративные [50]: изначально, все документы рассматриваются как от-
дельные кластеры уровня h+1, при построении более высоких уровней l < h+1
центроиды кластеров уровня l+ 1 рассматриваются как объекты, которые объ-
единяются в кластеры уровня l.

1.6. Вероятностные модели

После предобработки коллекции каждому документу d ∈ D ставится в соот-
ветствие вектор xd, где xw,d – число слов w в документе d. Пусть T = {ti} – мно-
жество тем и каждое слово w принадлежит теме t с вероятностью p(w|t). Пред-
полагается, что слова в документе независимы. Вероятность появления слова w
из темы t в документе d описывается дискретным распределением p(d, w, t)
на D ×W × T .

Пусть заданы условные вероятности p(w|t) и p(t|d). Процесс генерации но-
вого документа описывается следующим алгоритмом:

1) выбрать длину документа d: N ∼ Poisson,
2) для каждого из N слов документа d

выбрать тему из p(t|d),
выбрать слово w из p(w|t).

В [1] рассматривается обратная задача: по существующей текстовой кол-
лекции D найти вероятности p(w|t) и p(t|d). При этом документы d и слова w
являются наблюдаемыми переменным, а темы t являются скрытыми или ла-
тентными переменными.

Одной из гипотез, на которой построены методы вероятностного тематиче-
ского моделирования, является гипотеза условной независимости [1]: вероят-
ность p(w|t) не зависит от документа d. Она формализуется как p(w|t, d) =
p(w|t). Это эквивалентно

p(w, d|t) =
p(w|d, t)p(d, t)

p(t)
= p(w|t)p(d|t). (1.29)



27

Согласно гипотезе условной независимости:

p(w|d) =
p(w, d)

p(d)
=

∑
t p(w, d|t)p(w)

p(d)
=

∑
t p(w, d|t)p(w)

p(d)
=
∑
t

p(t|d)p(w|t).

Число nwd слов w в документе d и общее число слов в документе nd задаются
как:

nwd = N(w, d), nd =
∑
w

N(w, d).

Матрицей частот коллекции D называется:

F = (p̂wd)W×D, где p̂wd = p̂(w|d) =
nwd
nd

.

Задача поиска неизвестных вероятностей p(w|t) и p(t|d) сводится к поиску
разложения матрицы F на матрицу слов-тем Φ и матрицу тем-документов Θ:

F ≈ ΦΘ, (1.30)

Φ = (φwt)|W |×|T |, φwt = p(w|t),
Θ = (θtd)|T |×|D|, θtd = p(t|d).

Модель PLSA. В модели PLSA [1] максимизируется логарифм правдопо-
добия коллекции D при ограничениях нормировки и неотрицательности:

L(Φ,Θ) = ln
∏
d∈D

∏
w∈W

p(w|d)ndw =
∑
d∈D

∑
w∈W

ndw ln
∑
t∈T

φwtθtd → max
Φ,Θ

, (1.31)

∑
w∈W

φwt = 1, φwt > 0,
∑
t∈T

θtd = 1, θtd > 0.

В [105] приводится вывод оценок искомых переменных θtd и φwt с помощью
метода множителей Лагранжа. Доказывается, что стационарная точка (1.31)
удовлетворяет системе уравнений:

ptdw =
φwtθtd∑
s∈T φwsθsd

,

φwt =
nwt
nt
, nwt =

∑
d∈D

ndwptdw, nt =
∑
w∈W

nwt,

θtd =
ntd
nd
, ntd =

∑
w∈D

ndwptdw, nd =
∑
t∈T

ntd.

Данная задача решается EM-алгоритмом [1]:

1) на E шаге по текущим θtd и φwt вычисляются ptdw,
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2) на M шаге по ptdw вычисляются новые оценки для θtd и φwt.

В [105] приводится вариант рационального EM-алгоритма, в котором E-шаг
встраивается в M-шаг, при этом отпадает необходимость хранить в памяти всю
трехмерную матрицу значений ptdw. Недостатками данного подхода является
наличие большого числа параметров [2], что может приводить к переобученно-
сти. Одним из способов предотвращения переобучения является введение раз-
личных вариантов регуляризации [22].

Модель LDA. Альтернативным вариантом уменьшения числа параметров
является введение априорного предположения о виде распределений. В [2] пред-
полагается, что векторы документов θd порождаются распределениями Дири-
хле с параметрами α ∈ R|T |. Процесс порождения документа принимает следу-
ющий вид:

1) выбрать θ ∼ Dir(α),
2) для каждого нового слова wn

выбрать тему t ∼ Mult(θ),
выбрать слово wn ∼ Mult(βt).

В модели LDA в силу свойств распределения Дирихле неявно предполагает-
ся независимость тем, присутствующих в документе, что не всегда выполняется
на практике [5]. Для учета корреляции тем в [5] предлагается для каждого до-
кумента выбирать темы из логнормального распределения [106] с заданным
вектором средних значений ε и ковариационной матрицей Σ. В этом случае
процесс генерации документа выглядит следующим образом:

1) выбрать θ ∼ lnN (ε,Σ),
2) для каждого слова wn из N

выбрать тему t ∼ Mult(θ),
выбрать слово wn ∼ Mult(βt).

Однако логнормальное распределение не является сопряженным с мультино-
миальным распределением, что усложняет байесовский вывод, поэтому для оп-
тимизации параметров распределений используются приближенные методы.

Адаптивная регуляризация ARTM. PLSA и LDA не решают проблему
корректного восстановления матриц Φ и Θ по отдельности, так как правдопо-
добие (1.31) зависит только от произведения Φ ·Θ [22]. В результате оптими-
зации, матрицы Φ и Θ восстанавливаются с точностью до некоторого преоб-
разования Φ · U−1 и U · Θ. Для решения данной проблемы в [22] к функции
правдоподобия (1.31) добавляются регуляризаторы Ωi(Φ,Θ) нужного вида в
зависимости от прикладной задачи с неотрицательными коэффициентами τi:

Ω(Φ,Θ) =
r∑
i

τiΩi(Φ,Θ), L(Φ,Θ) + Ω(Φ,Θ)→ max
Φ,Θ

. (1.32)
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Теорема 1 (Воронцов К. В.). Если функция Ω(Φ,Θ) непрерывно дифферен-
цируема и Φ,Θ – точка локального экстремума задачи (1.32), то для всех ре-
гулярных тем t и регулярных документов d справедлива система уравнений:

ptdw =
φwtθtd∑
s∈T φwsθsd

, (1.33)

φwt ∝
(
nwt + φwt

∂Ω

∂φwt

)
+

, nwt =
∑
d∈D

ndwptdw, (1.34)

θtd ∝
(
ntd + θtd

∂Ω

∂θtd

)
+

, ntd =
∑
w∈D

ndwptdw. (1.35)

При этом тема t называется регулярной, если nwt + φwt
∂Ω
∂φwt

> 0 хотя бы
для одного слова w ∈ W . Аналогично, документ d называется регулярным, ес-
ли ntd+θtd ∂Ω

∂θtd
> 0 хотя бы для одной темы t ∈ T . В противном случае тема t или

документ d называется перерегуляризированными. Из (1.34) и (1.35) следует,
что перерегуляризированные темы и документы имеют φt = 0 и θd = 0 соот-
ветственно, поэтому эти темы и документы не учитываются в модели. Таким
образом происходит автоматический отсев нерелевантных тем и документов.

Процесс Дирихле. В алгоритмах PLSA [1] и LDA [2] структура тем изна-
чально задана. Однако в задачах построения тематических моделей неразме-
ченных коллекций изначально задать число тем экспертно не всегда возможно.
В [4] предлагается метод, позволяющий избавиться от этого структурного пара-
метра, используя иерархический процесс Дирихле в качестве модели генерации
выборки документов. Пусть Dir – распределение Дирихле [29]. Процесс Дири-
хле определяется следующим образом [107].

Определение 12. Пусть задано измеримое пространство R|W | с базовой ве-
роятностной мерой G0. Процессом Дирихле DP(α0, G0) с параметром концен-
трации α0 > 0 является распределение случайной вероятностной меры G
над R|W |, для которого выполняется следующее: для любого конечного разби-
ения R|W | на измеримые непересекающиеся подмножества {Ai}ri=1, случайный
вектор [G(A1), . . . , G(Ar)] имеет конечномерное распределение Дирихле с пара-
метрами α0G0(A1), . . . , α0G0(Ar):

[G(A1), . . . , G(Ar)] ∼ Dir
(
α0G0(A1), . . . , α0G0(Ar)

)
. (1.36)

Утверждение 5 (Сесураман Д. [108]). С вероятностью единица реализация
процесса Дирихле G является дискретной вероятностной мерой.
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Доказательство. Плотность, соответствующая G, записывается в виде обоб-
щенной функции

G(x) =
∞∑
k=1

πkδθk(x), πk = π′k ·
k−1∏
i=1

(1− π′i), (1.37)

где θk ∼ G0, значения π′k выбирается из бета-распределения Beta(1, α0),
а δθ(x) – дельта-функция Дирака, понимаемая как вероятностная мера, скон-
центрированная в θ.

При генерации документа с помощью процесса Дирихле DP(α0, G0) его сло-
ва разбиваются на темы. Согласно утверждению 5, мера G ∼ DP(α0, G0) яв-
ляется дискретным распределением над счетным набором векторов из R|W |.
С помощью G для каждого нового слова выбирается вектор параметров те-
мы θi ∈ R|W | и новое слово генерируется из мультиномиального распределения
с параметрами θi. Чтобы для всех документов векторы параметров тем бы-
ли общими, в [4] предлагается алгоритм HDP, использующий иерархический
процесс Дирихле. Процедура генерации нового документа для иерархического
процесса Дирихле выглядит следующим образом.

1. Базовая мера G0 определяется процессом Дирихле: G0 ∼ DP(γ,H). Она
задает счетный набор векторов всевозможных тем для коллекции D.

2. Для каждого нового документа dj генерируется вероятностная мера Gj ∼
DP(α0, G0), определяющая пропорции тем для данного документа. Таким
образом, для всех документов используется общий набор тем, задавае-
мых G0.

3. Для нового слова wi согласно Gj генерируются параметры θi ∼ Gj.
4. Генерируется новое слово wi ∼ Mult(θi).

Пусть на третьем шаге описанной выше процедуры уже выбрано k уникаль-
ных векторов тем {θj}. Согласно свойствам процедуры генерации [109, 110, 111]
условное распределение вектора параметров темы θi следующего слова wi с
учетом предыдущих реализаций θ1, . . . ,θi−1 имеет вид:

θi|θ1, . . . ,θi−1, Gj ∼
i−1∑
a=1

1

i− 1 + α0
δθa +

α0

i− 1 + α0
Gj =

k∑
a=1

ma

i− 1 + α0
δθa +

α0

i− 1 + α0
Gj, (1.38)

где ma – число слов с вектором темы θa. Таким образом, вектор параметров
темы для нового слова wi выбирается из уже встречавшихся k векторов тем с
вероятностью

pk =
mk

i− 1 + α0
, (1.39)
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либо выбирается как вектор новой темы согласно Gj с вероятностью

pk+1 =
α0

i− 1 + α0
. (1.40)

1.7. Иерархические вероятностные модели

Иерархические вероятностные модели позволяют учитывать и выявлять
иерархическую структуру тем в коллекции D. Для этого делаются априорные
предположения о типе распределений подтем и слов в темах более высокого
уровня. Эти предположения определяют свойства иерархической модели, см.
таблицу 1.2.

Таблица 1.2. Алгоритмы построения иерархических вероятностных тематиче-
ских моделей.

Структура в
виде DAG

Внутренние узлы
генерируют

слова

Подбор числа
кластеров на

уровне

Подбор
числа

уровней
hLDA − + + −
PAM + − − −
HPAM + + − −
NPBPAM + − + −
hvHDP − + + +
htHDP − − + +

Как показано на рисунке 1.5 в., структура в виде DAG позволяет темам
иметь общие дочерние темы [112]. Возможность генерировать слова во внут-
ренних узлах позволяет анализировать слова, часто встречающиеся в теме дан-
ного узла. Возможность строить модели с нефиксированным числом кластеров
на уровнях [3, 35] и с нефиксированным числом уровней в иерархии тем [23]
достигается с помощью использования схожих с (1.39) и (1.40) процедур гене-
рации слов и тем.

Модель hLDA. В [3] предлагается использовать древовидную структуру
тем. Пусть t1,1 корневая тема иерархической структуры тем с h уровнями, а
каждая тема tl,k имеет счетное число возможных дочерних подтем. Процесс
генерации документа d ∈ D описывается следующим образом.

1. Для каждой темы tl,kl начиная с t1,1, l ∈ {1, . . . , h}
выбрать следующую тему tl+1,kl+1

согласно (1.40) и (1.39) во множе-
стве дочерних тем темы tl,kl.

2. Выбрать пропорцию тем, полученных на шаге 1: α ∈ Rh, α ∼ Dir.
3. Для генерации слов
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а. Структура тем в
LDA.

б. Структура тем в
hLDA.

в. Структура тем в
PAM.

Рис. 1.5. Структура тем в различных алгоритмах.

выбрать t∗ из множества тем, выбранных на шаге 1: t∗ ∼ Mult(α),
выбрать новое слово w из темы t∗: w ∼ p(w|θt∗).

Все темы, выбранные на первом шаге, определяют конечное поддерево, со-
стоящее из h уровней дерева возможных тем. Число тем на каждом уровне
этого поддерева не является параметром, а определяется в процессе генерации
темы для каждого нового документа.

Модели PAM и HPAM. Вместо древовидной структуры тем, алгоритмы
PAM и HPAM используют направленный ациклический граф DAG [112, 8], в
котором темы уровня l могут иметь общие дочерние подтемы на уровне l + 1.
Пример DAG приведен на рис. 1.5 в. Отличием HPAM от PAM является возмож-
ность генерировать слова не только в темах нижнего уровня h, но и в темах бо-
лее высоких уровней. Для этого к теме tl,k помимо вектора параметров θl,k муль-
тиномиального распределения подтем следующего уровня, добавляется вектор
параметров φl,k ∈ R|W | мультиномиального распределения слов из W для этой
темы. Процедура генерации нового документа d для HPAM имеет следующий
вид.

1. Для каждой темы tl,k выбрать вектор параметров θl,k ∼ Dir.
2. Пока не будет выбрано слово w, начиная с t1,1

выбрать номер узла следующего уровня: kl+1 ∼ Mult(θl,kl),
если kl+1 = 0 или l = h, выбрать слово w ∼ Mult(φl,kl).

Параметры распределений настраиваются с помощью сэмплирования Гибб-
са [113].

Непараметрические модели NPBPAM, hvHDP и htHDP. Чтобы не
задавать начальные значения структурных параметров, задающих число тем
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на каждом уровне, мультиномиальные распределения подтем в темах на каж-
дом уровне алгоритма PAM заменяются на процессы Дирихле [35]. Чтобы не
задавать начальное значение числа уровней, в [23] используются два подхо-
да: hvHDP, в котором внутренние узлы иерархии являются распределениями
над множеством тем и слов, и htHDP, в котором только листовые элементы
иерархии являются распределениями над множеством слов, а внутренние уз-
лы – распределениями над множеством тем. Уровни строятся снизу вверх как
при агломеративной жесткой кластеризации.

На первом шаге в hvHDP и htHDP с помощью HDP строится набор общих
тем Th = th,1, . . . , th,Kh

, каждой теме соответствует вектор параметров муль-
тиномиального распределения φh,k ∈ R|W | над множеством слов, а каждому
документу dn соответствует пропорция полученных тем θn ∈ RKh.

В hvHDP на шаге l объектами являются векторы параметров тем φ, по-
лученные на предыдущем шаге. Вместо матрицы документ-слово используется
матрица тема-слово, имеющая размерность |Tl| × |W |.

В htHDP на шаге l объектами являются векторы пропорций тем θn, полу-
ченных на предыдущем шаге. Вместо матрицы документ-слово используется
матрица документ-тема размерности |D| × |Tl|.

На каждом шаге число тем уменьшается, алгоритм останавливается, когда
на очередной итерации останется только одна тема [23].

1.8. Описательно-вероятностные модели и смеси моделей

Описательно-вероятностные модели и смеси моделей комбинируют вероят-
ностные предположения о процессе порождения документов коллекции с век-
торными представлениями документов и кластеров. Документ в данных подхо-
дах относится к каждой из тем с определенной вероятностью.

Смеси моделей, алгоритм vMF. В [7] документы описываются вектора-
ми x = [x1, . . . , x|W |]

T, в которых xm = N(wm, d). В качестве сходства докумен-
тов x и y используется корреляция Пирсона:

ρ(x,y) =
(x− x)T(y − y)√

(x− x)T(x− x)
√

(y − y)T(y − y)
, где (1.41)

x =
1

|W |

|W |∑
m=1

xm, x = [x, x, . . . , x].

Пусть векторы x документов нормированы следующим образом:

x 7→ (x− x)√
(x− x)T(x− x)

. (1.42)
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В этом случае корреляция Пирсона имеет вид ρ(x,y) = xTy и является частным
случаем косинусной меры близости (1.26).

Пусть тема с номером k описывается расперделением фон Мизеса-Фишера
(vMF) [114, 115] с параметрами θk и γk, а документ x описывается как смесь
распределений тем в пропорции α:

p(x|Θ,γ) =
K∑
k=1

αkz|W |(γk) exp
(
γkθ

T

kx
)
, ‖α‖ = 1, ‖θk‖ = 1, α ≥ 0. (1.43)

Чем больше параметр γk, тем больше концентрация документов из темы k во-
круг ее направления θk. Нормализующий множитель z|W |(γ) задается как:

z|W |(γ) =
γ|W |/2

(2π)|W |/2Id/2−1(γ)
, (1.44)

где Ir(·) – модифицированная функция Бесселя первого рода порядка r.

Описательно-вероятностные модели, DPM. В [6] документы и класте-
ры описываются векторами, но каждый документ может принадлежать многим
кластерам одновременно.

Слова в документах делятся на информативные и неинформативные. Пусть
словарь W содержит все слова коллекции D без повторений, подмноже-
ство Ŵ ⊆ W – словарь информативных слов, t ∈ T – темы, а x – векторное
представление документа d, в котором на позиции m стоит число слов wm в d.
Аналогично вероятностному подходу (1.29), вводится гипотеза условной неза-
висимости в следующей форме:

p(t,x|w) = p(t|w)p(x|w) или

p(t|w,x) =
p(t,x|w)

p(x|w)
=
p(t|x)p(x|w)

p(x|w)
= p(t|w),

где p(t,x|w) – совместное распределение тем и документов при условии, что
встретилось слово w. Предполагается, что неинформативное слово w ∈ W \ Ŵ
не влияет на тему документа: p(t|w,x) = p(t|x). Тогда вероятность документа x
принадлежать теме t

p(t|x) =
∑
w∈W

p(t|w,x)p(w|x) =
∑
w∈Ŵ

p(t|w,x)p(w|x)+

+
∑

w∈W\Ŵ

p(t|w,x)p(w|x) =
∑
w∈Ŵ

p(t|w)p(w|x) +
∑

w∈W\Ŵ

p(w|x)p(t|x). (1.45)

В [6] предполагается, что для всех документов вероятность встретить неин-
формативное слово одинакова: ∑

w∈W\Ŵ

p(w|x) = r. (1.46)
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С учетом этого предположения вероятность p(t|x) приобретает вид

p(t|x) =
1

1− r
∑
w∈Ŵ

p(t|w)p(w|x). (1.47)

Тема документа x определяется как

t∗ = argmax
t
p(t|x). (1.48)

Пусть

tf ′(wm,x) =
xm
‖x‖ , idf ′(wm) =

√
|D|∑
d∈D

xm
‖x‖

. (1.49)

Значения p(w|x), p(t), p(x|t) оцениваются как

p(wm|x) =
xm
‖x‖ , p(t) =

N(t,D)

|D| , p(w|t) =
1

N(t,D)

∑
x′∈t

p(wm|x′), (1.50)

где N(t,D) – число документов с темой t в коллекции D. Найденные вероят-
ности (1.50) подставляются в (1.47). После перехода к новому представлению
документа d в виде вектора с компонентами xm = tf ′(wm, d) · idf ′(wm), вероят-
ность темы

p(t|x) =
1

1− r
N(t,D)

|D| xTt, где t =
1

N(t,D)

∑
x′∈t

x′ − центр темы t. (1.51)

1.9. Иерархическая классификация документов

В данном разделе рассматриваются алгоритмы текстовой иерархической
классификации. Решением задачи иерархической классификации является
отображение, ставящее в соответствие каждому документу x набор меток кла-
стеров {k1, . . . , kh} всех уровней иерархии, наилучшим образом восстанавли-
вающее экспертную классификацию размеченного подмножества документов
согласно заданному критерию качества. В качестве экспертных иерархических
структур кластеров рассматриваются деревья кластеров. В этом случае задача
иерархической классификации может быть представлена в виде задачи плоской
классификации документа x в множестве кластеров нижнего уровня h. Исполь-
зование дополнительной информации об иерархичности структуры и эксперт-
ной классификации размеченных документов на остальных уровнях иерархии
позволяет увеличить качество построенного решения.

Иерархический наивный байес. Документ d представляется как цело-
численный вектор размерности словаряW . Предполагается что каждому клас-
су ch,k соответствует распределение с параметрами θ, а новый документ гене-
рируется по следующей схеме:
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1) выбрать класс ch,k из p(c|θ),
2) сгенерировать документ согласно распределению p(x|ch,k,θ).

Предполагается, что слово в документе зависит только от класса документа и
не зависит от контекста и его позиции в документе. Вероятность документа,
принадлежащего классу ch,k имеет вид

p(d|ch,k) = p(|d|)
∏
w∈d

p(w|ch,k). (1.52)

Согласно формуле байеса, вероятность документа принадлежать классу ch,k

p(ch,k|d) =
p(ch,k)

∏
w∈d p(w|ch,k)∑

c∈C p(c)
∏

w′∈d p(w
′|c) . (1.53)

Параметрами модели (1.53) являются вероятности слов p(wm|ch,k) = θmk и
априорные вероятности классов p(ch,k) = θ0k. Эти параметры оцениваются с
помощью размеченной коллекции документов D:

θ̂mk =
1 +

∑
d∈DN(wm, d)p(ch,k|d)

|W |+∑w∈W
∑

d′∈DN(w, d′)p(ch,k|d′)
, θ̂0k =

1

|D|
∑
d∈D

p(ck,h|d), (1.54)

p(ch,k|d) = [c(d) = ch,k].

При оценивании вероятностей слов θ̂mk для кластера ch,k в том случае, ко-
гда число документов |ch,k| � |W |, многие слова ни разу не встретятся, а
оценки вероятностей встретившихся слов будут завышены, несмотря на сгла-
живание Лапласа в (1.54). Чтобы избежать этого, при иерархической классифи-
кации в [9] предлагается алгоритм hNB, в котором параметры кластеров более
низких уровней усредняются с параметрами их родительских кластеров. Для
параметров кластера ch,k нижнего уровня используется следующая оценка:

θ̂mk = λk,1θ̂mk,1 + λk,2θ̂mk,2 + . . .+ λk,hθ̂mk,h,
h∑
l=1

λk,l = 1, (1.55)

где {θ̂mk,l} – оценка параметров родительского кластера Bh−l(ch,k) на уровне l
кластера ch,k, а оператор B возвращает родительский кластер заданного кла-
стера. Применив h− l раз оператор B к кластеру нижнего уровня h получаем
его родительский кластер на уровне l. Веса λk,l в (1.55) настраиваются макси-
мизацией правдоподобия. Усреднение параметров (1.55) значительно улучшает
качество алгоритма иерархической классификации [9].

Иерархический мультиклассовый svm. Для адаптации svm к много-
классовой классификации в [13] на каждом кластере cl,k уровня l обучается
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c2,1

SVM c2,1 SVM c2,2

SVM c3,1 SVM c3,2 SVM c3,3 SVM c3,4

Рис. 1.6. Иерархия алгоритмов SVM.

двухклассовый svm. При этом документы из данного кластера рассматривают-
ся как объекты класса 1, а все остальные документы – как объекты класса 0.

Вероятность документа x принадлежать кластеру cl,k оценивается с помо-
щью метода Платта [95]

p(cl,k|x) =
1

1 + exp
(
al,kf(x) + bl,k

) , (1.56)

где f(x) – результат, полученный с помощью SVM на объекте x, а bl,k и al,k –
параметры.

Для ранжирования кластеров нижнего уровня иерархии по убыванию реле-
вантности новому документу используется следующий подход. Пусть Ch(cl,k) –
множество кластеров уровня h, являющихся дочерними кластерами для кла-
стера cl,k, а k(c) – индекс кластера c в ранжированном по релевантности списке
кластеров нижнего уровня. На шаге l для всех кластеров cl,k уровня l класте-
ры Ch(cl,k) в ранжированном списке переставляются таким образом, чтобы для
любых двух кластеров из Ch(cl,k) выполнялось соотношение:

k(c1) < k(c2)⇒ p
(
Bh−l−1(c1)|x

)
≥ p
(
Bh−l−1(c2)|x

)
.

Пусть для кластеров с рис. 1.6 для некоторого документа выполняются со-
отношения

p(c2,1) > p(c2,2), p(c3,1) > p(c3,2), p(c3,4) > p(c3,3).

Тогда ранжированный список кластеров нижнего уровня h = 3 для данной
иерархии и документа имеет вид:(

c2,1︷ ︸︸ ︷
c3,1, c3,2,

c2,2︷ ︸︸ ︷
c3,4, c3,3

)
.
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ARTM для коллекции с экспертной моделью. Пусть t(d) – экспертная
тема документа d, а матрица Z ∈ R|T |×|D| определяется экспертной классифи-
кацией:

ztd = [t(d) = t].

В [10] для учета экспертной кластеризации в алгоритме ARTM, описанном в
разделе 1.6., используется регуляризатор

Ω(Θ,Z) = −‖Θ− Z‖1. (1.57)

Задача поиска разложения (1.30) с регуляризатором (1.57) имеет вид:

Φ∗,Θ∗ = arg max
Φ,Θ

∑
d∈D

∑
w∈W

ndw ln
∑
t∈T

φwtθtd + τ

(∑
d∈D

∑
t∈T

θtd(2ztd − 1)

)
, (1.58)

∑
w∈W

φwt = 1, φwt > 0,
∑
t∈T

θtd = 1, θtd > 0.

Так как регуляризатор Ω(Θ,Z) непрерывно дифференцируем, согласно тео-
реме 1 в локальном максимуме φwt и θtd задаются как (1.34) и (1.35). Так
как Ω(Θ,Z) зависит только от θtd, используется только (1.35), и формула для
М шага EM-алгоритма имеет вид:

θtd =
ηtd∑

t∈T
ηtd
, ηtd =

∑
w∈W

ndw
φwtθtd∑

t′∈T
φwt′θt′d

+ τθtd(2ztd − 1)


+

. (1.59)

ARTM для коллекции с иерархической экспертной моделью,
SuhiPLSA Пусть Zl – матрица экспертной классификации для уровня l. Для
учета иерархической экспертной модели регуляризатор (1.57) заменяется на

Ωh(Θ,Z2, . . . ,Zh) =
h∑
l=2

∑
d∈D

∑
t∈{tl,i}

|ztd,l − θtd,l|, где (1.60)

θtd,l =
1

|Tl(d)|
∑

t′∈Tl(d)

θt′d,h, Tl(d) = {t : Bh−l(t) = Bh−l(t(d)
)
}.

Tl(d) – множество тем уровня h, у которых родительская тема на уровне l сов-
падает с родительской темой уровня l экспертной темы t(d) документа d уров-
ня h. В выражении для M шага (1.59) с регуляризатором (1.60) переменная ηtd
принимает вид

ηtd =

∑
w∈W

ndw
φwtθtd∑

t∈T
φwtθtd

+
h∑
l=2

τlθtld,l(2ztld,l − 1)


+

, tl = Bh−l(t).
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После настройки модели столбцы матрицы слово-тема Φ∗ определяют век-
торы φh,k тем th,k, соответствующие экспертным кластерам ch,k. Для построения
ранжированного списка кластеров нижнего уровня в порядке убывания реле-
вантности новому документу x используется косинусная мера сходства (1.26)
с Λ = I:(

ch,k1, ch,k2, . . . , ch,kKh

)
: s(φh,k1,x) ≥ s(φh,k2,x) ≥ · · · ≥ s(φh,kKh

,x).
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Глава 2
Отбор признаков и метрическая кластеризация

В данной главе предлагается способ выбора и оптимизации взвешенной мет-
рики ρ для плоской и иерархической кластеризации и документов. Пусть име-
ется размеченная коллекция D с экспертной тематической моделью M в виде
дерева, в котором каждому документу d соответствует единственный кластер
нижнего уровня ch,k.

2.1. Выбор взвешенной метрики

Каждый документ представляется в виде вектора с помощью его частот-
ных характеристик, см. раздел 1.4. На позиции xm векторного представления
документа x ставится

1) булево значение [N(wm, d) > 0],
2) значение произведения tf(wm, d) · idf(wm, D),
3) число слов wm в документе N(wm, d).
Для сравнения документов вводится взвешенная функция расстояния Мин-

ковского с фиксированным параметром p ≥ 1 и вектором важности слов λ

ρ(λ,x,y) =
p

√√√√ |W |∑
m=1

λm|xm − ym|p, где λ ≥ 0, ‖λ‖1 = 1. (2.1)

Утверждение 6. Функция расстояния ρ(λ,x,y) (2.1) является метрикой.

Доказательство. Все свойства метрики выполняются.
1. ρ(λ,x,y) = 0⇔ x = y, так как все разности вида xm − ym равны нулю.
2. ρ(λ,x,y) = ρ(λ,y,x), так как |xm − ym| = |ym − xm|.
3. Функция расстояния с λ0 = [1, . . . , 1] является расстоянием Минковского,

которое является метрикой при p ≥ 1, см. [116]. Для пары векторов x
и y взвешенная функция расстояния переписывается в виде

ρ(λ,x,y) =
p

√√√√ |W |∑
m=1

λm|xm − ym|p =
p

√√√√ |W |∑
m=1

|(xm − ym) · p
√
λm|p =

= ρ(λ0, x · p
√
λ, y · p

√
λ), x · λ = [x1λ1, . . . , x|W |λ|W |], (2.2)

где ρ(λ0, ·, ·) – метрика Минковского. Неравенство треугольника для взве-
шенной функции расстояния записывается как

ρ(λ,x,y) = ρ(λ0, x · p
√
λ, y · p

√
λ) ≤ ρ(λ0, x · p

√
λ, x′ · p

√
λ)+

+ ρ(λ0, x′ · p
√
λ, y · p

√
λ) = ρ(λ,x,x′) + ρ(λ,x′,y). (2.3)
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Частными случаями взвешенной метрики (2.1) являются взвешенное рас-
стояние городских кварталов при p = 1 и взвешенное евклидово расстояние
при p = 2.

Функция качества метрики. Пусть I – множество индексов документов
коллекции D, а c(x) – экспертный кластер документа x. Для произвольного
документа x индексы всех остальных документов разбиваются на подмноже-
ство P(x) индексов документов из того же экспертного кластера c(x) и под-
множество индексов N (x) документов из остальных кластеров:

P(x) = {n ∈ I|c(x) = c(xn)},
N (x) = {n ∈ I|c(x) 6= c(xn)}.

Расстояние от документа x до k ближайших соседей своего класса rk(x) и до k
ближайших соседей чужих классов rk(x) задаются как

rk(x) = min
B⊂P(x):|B|=k

∑
y∈DB

ρ(λ,x,y),

rk(x) = min
B⊂N (x):|B|=k

∑
y∈DB

ρ(λ,x,y),

где B состоит из неповторяющихся элементов. Вспомогательная функция бли-
зости sρ(x) объекта x к объектам своего класса задается как

sρ(x) =
rk(x)− rk(x)

rk(x) + rk(x)
. (2.4)

Функция sρ(x) обладает следующим свойством:

sρ(x) ≈


−1, объект x близок к объектам чужого класса,
0, объект x пограничный,
+1, объект x близок к объектам своего класса.

В предположении гипотезы компактности наилучшей метрикой для докумен-
та x будет та, у которой sρ(x) ≈ 1. Функция качества метрики ρ для всех
документов коллекции задается как

V (ρ,λ, D) =
1

|D|
∑
x∈D

sρ(x), (2.5)

где ρ и sρ(x) определены в (2.1) и (2.4). Задача выбора оптимальной метрики
сводится к нахождению ее весов с помощью максимизации функции качества
метрики V (ρ,λ, D):

λ̂ = arg max
λ

V (ρ,λ, D).
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2.2. Алгоритм оптимизации весов метрики

Множество взвешенных метрик (2.1) задается набором весовых коэффици-
ентов λ. Их оптимизация осуществляется алгоритмом последовательного до-
бавлении признаков [38]. Слово с индексом m называется активным признаком,
если соответствующий ему вес λm больше нуля. Пусть A – множество актив-
ных признаков. Выборка D разбивается случайным образом на обучающее DV
и контрольное DT . Изначально λ = 0 и A = ∅. На каждом шаге алгоритма
в A добавляется наилучший признак следующим образом.

1. Для каждого признака m 6∈ A найти набор весов λ̂m для множества при-
знаков Am = {A ∪m}, доставляющий максимум функции качества

λ̂m = arg max
λm

V (ρ,λm, DV), ‖λm‖1 = 1, λm,i = 0, i 6∈ Am. (2.6)

2. Найти признак m∗ которому соответствует максимальное качество

m∗ = arg max
m 6∈ A

V (ρ, λ̂m, DV)

и добавить его во множество A, обновив вектор весов λ = λ̂m∗.
Алгоритм повторяется до тех пор, пока значение функции качества V (ρ,λ, DT )
на контрольной выборке DT увеличивается.

Утверждение 7. При условии |D| ∼ |DV | ∼ |DT | сложность описанного выше
алгоритма O(|D|2k2|W |2t), где t – число итераций алгоритма оптимизации (2.6).

Доказательство. Для вычисления качества метрики (2.5) для каждого доку-
мента необходимо найти k ближайших соседей и вычислить (2.4). Это делается
за O(|D|2 log2

2 |D|) с помощью сортировки. При k < log2 |D| это можно сделать
за O(|D|2k2).

На каждом шаге выбирается признак, дающий максимальный прирост каче-
ства метрики. Для поиска данного признака необходимо перебрать все возмож-
ные и найти для каждого оптимальный вес, решив задачу (2.6). На каждой
итерации алгоритма оптимизации, необходимо вычислить качество метрики,
таким образом для добавления очередного признака необходимо O(|D|2k2|W |t)
операций. Локально оптимальный набор признаков содержит O(|W |) элемен-
тов, таким образом сложность всего алгоритма O(|D|2k2|W |2t).

Чтобы снизить сложность, вместо функции качества V используется среднее
внутрикластерное расстояние

F0 =

∑
x,y∈D

[c(x) = c(y)]ρ(λ,x,y)∑
x,y∈D

[c(x) = c(y)]
→ min

λ
, ‖λ‖1 = 1,λ ≥ 0, (2.7)

где [· = ·] – индикаторная функция.
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Утверждение 8. Решением оптимизационной задачи (2.7) для взвешенной
метрики городских кварталов (2.1) с p = 1 является единичный вектор e(·).
Доказательство. F0 является линейной функцией относительно весов λ. Ее
требуется минимизировать на множестве ‖λ‖1 = 1,λ ≥ 0, которое является
выпуклым. У этой задачи существует решение, причем минимум реализуется в
вершине |W |-мерного симплекса. В каждой вершине этого симплекса все коор-
динаты равны нулю, кроме одной, которая равна единице.

Таким образом при оптимизации (2.7) отбирается единственный признак.
Поэтому необходимо учитывать не только внутрикластерное расстояние, но и
межкластерное. Оно определяется как

F1 =

∑
x,y∈D

[c(x) 6= c(y)]ρ(λ,x,y)∑
x,y∈D

[c(x) 6= c(y)]
→ max

λ
, ‖λ‖1 = 1,λ ≥ 0, (2.8)

и вместо функции качества (2.5) используется:

F =
F0

F1
→ min

λ
. (2.9)

2.3. Сравнение экспертной и алгоритмической модели

Пусть ĉ(x) – номер кластера документа x на уровне h в построенной ал-
горитмом тематической модели M̂ , а c(x) – номер его кластера в экспертной
тематической модели M . Пусть B(c) – оператор, возвращающий родительский
кластер заданного кластера c на следующем уровней. Родительским кластером
документа x на уровне l является кластер Bh−l(c(x)

)
. Обозначим µ(c) коорди-

наты центра кластера c.

Определение 13. Ошибка классификации документа x в алгоритмической мо-
дели M̂ относительно экспертной моделиM задается как суммарное расстояние
между центрами экспертных и алгоритмических кластеров документа x на всех
уровнях иерархии

υ(x,M, M̂) =
h∑
l=1

ρ
(
µ
(
Bh−l(c(x)

))
,µ
(
Bh−l(ĉ(x)

)))
. (2.10)

Определение 14. Расстояние Υ(M, M̂) между экспертной моделью M и ал-
горитмической моделью M̂ определяется как сумма ошибки классификации
неразмеченных документов

Υ(M, M̂) =
∑
x∈D

υ(x,M, M̂). (2.11)
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2.4. Анализ метрических свойств описаний документов

Для анализа способов векторного представления документов и свойств ал-
горитма построения метрики с оптимальным набором весов λ был проведен
эксперимент плоской кластеризации |D| = 1342 тезисов научной конференции
European Conference on Operational Research на K2 = 26 кластеров. Количество
кластеров выбрано в согласии с числом научных областей (англ. Areas) на кон-
ференции. Рассматривались три способа векторного представления документа,
описанные в разделе 2.1.

Кластеризация документов. Для кластеризации использовался алго-
ритм k-means, описанный в разделе 1.5., с функцией расстояния (2.1). Началь-
ные положение центров кластеров задавались согласно экспертной кластериза-
ции размеченных документов. Для оценки качества полученной кластеризации
использовалась функция (2.11). На рис. 2.1 а.-г. показаны расхождения между
построенной и экспертной моделью. Эти графики строились следующим обра-
зом.

1. При помощи метода главных компонент центры полученных кластеров
нумеровались таким образом, чтобы наиболее близкие кластеры имели
близкие порядковые номера.

2. Все документы откладывались на плоскости: координатой документа по
оси абсцисс являлся номер кластера в алгоритмической модели M̂ , а по
оси ординат – номер кластера в экспертной моделиM . В каждой точке ри-
совался круг с радиусом пропорциональным числу документов, попавших
в эту точку. Наибольшему кругу соответствовало 80 документов.

Чем дальше документ находился от прямой y = x на данной плоскости,
тем сильнее отличались тематики кластеров, к которым он был отнесен ал-
горитмом и экспертом. Как видно из рис. 2.1 для булевых признаков характе-
рен меньший разброс документов относительно диагонали. Это подтверждается
значениями расстояния (2.11) между построенной моделью и экспертной, ука-
занными в таблице 2.1. При использовании дополнительной настройки весов λ
алгоритм кластеризации показывал более высокие результаты. Алгоритм оп-
тимизации λ позволил удалить некоторые неинформативные слова, например,
“matrix”, “compute”, “activity”, встречающиеся почти во всех кластерах, и не несу-
щие информации о кластеризации, так как большая часть тезисов конференции
EURO посвящена методам оптимизации.

Для визуализации кластеризации документов и сравнения алгоритмической
кластеризации с экспертной строились гистограммы, изображенные на рис. 2.2.
Количество столбцов совпадало с количеством кластеров, каждому документу
присваивался цвет экспертного кластера. Высота части столбца одного цвета
показывала число документов, экспертно отнесенных к кластеру с данным цве-
том, которое алгоритм отнес к кластеру, соответствующему номеру столбца.
Рис. 2.2 а. построен по экспертной кластеризации, поэтому каждый столбец
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Рис. 2.1. Сравнение экспертной и алгоритмической кластеризации.

Таблица 2.1. Значение функции ошибки для разных способов построения набора
признаков.

Способ построения
признака

Появление слова в
документе

Критерий
tf · idf

Число
появлений

слова
Υ (2.11), единичные
веса λ = 1

398 710 771

Υ, оптимальные ве-
са λ

364 630 650
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имеет документы только одного цвета, являющегося цветом кластера с номе-
ром данного столбца. На рис. 2.2 б.-г. показаны алгоритмические распределения
документов по кластерам для различных способов векторного представления
документов.
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Рис. 2.2. Перераспределение документов по кластерам для экспертной и алго-
ритмической кластеризации.

2.5. Анализ алгоритмов иерархической кластеризации

Для анализа агломеративного и дивизимного подходов построения иерар-
хической тематической модели, описанных в разделе 1.5., рассматривался еще
один уровень экспертной тематической модели конференции EURO. Каждый



47

кластер уровня Area (Область) разбивался на некоторое количество класте-
ров уровня Stream (Направление). Структура экспертной тематической модели
изображена на рис. 5.1.
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Рис. 2.3. Распределение документов по кластерам для экспертной и алгоритми-
ческой иерархической кластеризации.

Для оценки качества работы алгоритмов вычислялось количество несоот-
ветствий между алгоритмической M̂ и экспертной M моделями: 1) количество
документов, которые относятся экспертной и алгоритмической моделью к раз-
личным кластерам уровня Area, 2) к различным кластерам уровня Stream, 3)
расстояние между моделями Υ (2.11). Полученные результаты для дивизимного
и агломеративного алгоритмов приведены в таблице 2.2.

На рис. 2.3 показано перераспределение документов по кластерам уровня
Area. Рис. 2.3 a. построен по экспертной кластеризации, результат работы ди-
визимного алгоритма изображен на рис. 2.3 б., а результат работы агломератив-
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Таблица 2.2. Количество различий и расстояние Υ(M, M̂) для разных способов
построения иерархической тематической модели.

Вид алгоритма Число
различий на
уровне Area

Число различий
на уровне Stream

Значение
функционала

Υ (2.11)
Дивизимный 486 555 1700
Агломеративный 342 208 500

ного алгоритма на рис. 2.3 в. Рис. 2.3 в. показывает, что в результате исполь-
зования агломеративного алгоритма, при кластеризации в столбцы попадают
не отдельные документы из других столбцов, а целые кластеры уровня Stream.
Таким образом несоответствия между экспертной и алгоритмической моделями
носят более систематический характер. С другой стороны, при использовании
агломеративного алгоритма появились два кластера (6-ой и 13-ый), к которым
вместо части документов из других кластеров уровня Area были отнесены сра-
зу целые кластеры уровня Stream, в результате чего количество документов в
этих кластерах уровня Area стало отличаться от экспертного примерно в два
раза.
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Глава 3
Иерархическая классификация неразмеченных документов

В данной главе предлагается способ ранжирования кластеров нижнего уров-
ня иерархической тематической модели по убыванию их релевантности нераз-
меченному документу.

3.1. Иерархическая функция сходства

Взвешенная косинусная функция сходства s(x, y) двух документов x и y
задается как

s(x, y) =
x

T
Λy√

xTΛx
√

yTΛy
. (3.1)

В случае равенства знаменателя нулю значение функции сходства считается
равной нулю. Симметричная неотрицательно определенная матрица Λ = Λ

T

введена для учета важности признаков. В данной главе предполагается, что
эта матрица имеет диагональный вид Λ = diag(λ1, . . . , λ|W |), λm ≥ 0, так как
оптимизация всех элементов матрицы Λ размера |W |× |W | приводит к неадек-
ватному увеличению сложности модели. Для удобства дальнейшего изложения
все векторные представления документов нормируются следующим образом:

x 7→ x√
xTΛx

. (3.2)

С учетом нормировки функция сходства (3.1) приобретает вид

s(x, y) = x
T

Λy.

Взвешенная косинусная функция сходства (3.1) позволяет быть близкими
документам x и y, содержащими различное число слов, но одинаковый словар-
ный состав с учетом нормировки. Так как все компоненты векторов x, y неот-
рицательны, то s(x, y) ∈ [0, 1], причем s(x, y) = 1 достигается для документов,
словарный состав которых одинаков. Пусть A(cl,k1, cl,k2) – множество всех пар
документов {(x,y)} из кластеров cl,k1 и cl,k2 таких, что x ∈ cl,k1, y ∈ cl,k2.
Определение 15. Сходство sc двух кластеров cl,k1 и cl,k2 уровня l задается как
среднее сходство между всеми парами документов (x,y) ∈ A(cl,k1, cl,k2)

sc(cl,k1, cl,k2) =
1

|A(cl,k1, cl,k2)|
∑

(x, y)∈A(cl,k1 ,cl,k2)

s(x, y), (3.3)

При вычислении внутрикластерного сходства для cl,k1, в качестве множе-
ства пар рассматривается A(cl,k1, cl,k1). Обозначим µ(cl,k1) средний вектор кла-
стера cl,k1:

µ(cl,k1) =
1

|cl,k1|
∑

x∈cl,k1

x. (3.4)
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Утверждение 9. Сходство (3.3) между парой кластеров cl,k1 и cl,k2 определя-
ется средними векторами кластеров, их размерами и матрицей Λ.

Доказательство. В соответствии с (3.1) и (3.3)

sc(cl,k1, cl,k2) =
1

|cl,k1||cl,k2|
∑

x∈cl,k1

∑
y∈cl,k2

x
T

Λy =

=

 1

|cl,k1|
∑

x∈cl,k2

x

T

Λ

 1

|cl,k2|
∑

y∈cl,k1

y

 = µ(cl,k1)
T

Λµ(cl,k2).

Аналогично для внутрикластерного сходства:

sc(cl,k1, cl,k1) =
1

|cl,k1|
∑

x∈cl,k1

1

|cl,k1| − 1

∑
y 6=x, y∈cl,k1

x
T

Λy =

=
1

|cl,k1|
∑

x∈cl,k1

1

|cl,k1| − 1
x

T

Λ
(
|cl,k1|µ(cl,k1)− x

)
=

=
1

|cl,k1|
∑

x∈cl,k1

|cl,k1|
|cl,k1| − 1

x
T

Λµ(cl,k1)−
1

|cl,k1| − 1
=

=
|cl,k1|
|cl,k1| − 1

µ(cl,k1)
T

Λµ(cl,k1)−
1

|cl,k1| − 1
.

В последнем выражении учтена нормировка x
T
Λx = 1.

Таким образом, сходство между парой кластеров определено только сред-
ними векторами кластеров, что позволяет его эффективно пересчитывать при
изменении состава кластеров.

Сравнение способов векторного представления документа. Соглас-
но разделу 1.4., документ представим в виде вектора как с помощью частоты
слов, встречающихся в нем, так и с помощью языковых моделей, например,
paragraph vector [93]. Для оценки качества модели, по аналогии с (2.7) и (2.8)
вводится внутрикластерное (3.5) и межкластерное (3.6) сходство на заданном
уровне l иерархии.

F0(l) =
1

Kl

Kl∑
k=1

sc(cl,k, cl,k), (3.5)

F1(l) =
2

Kl(Kl − 1)

Kl∑
k=1

Kl∑
k′=k+1

sc(cl,k, cl,k′). (3.6)

Качество кластерной структуры оценивается как

F (l) =
F0(l)

F1(l)
→ max . (3.7)
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Рис. 3.1. Сходство между экспертными кластерами для различных представле-
ний документов.

Предполагается, что экспертная модель M является эталонной и выбран-
ная функция сходства и способ векторного представления документа должны
отличать экспертные кластеры друг от друга. На рис. 3.1 приведена визуализа-
ция матрицы значений парного сходства (3.3) между экспертными кластерами.
Значения на диагонали соответствуют внутрикластерному сходству, значения
вне диагонали соответствуют межкластерному сходству. Если представление
хорошо описывает экспертную модель, то значения диагональных элементов
должны быть больше значений внедиагональных элементов. На рис. 3.1 а. по-
казана матрица парного расстояния, построенная с помощью частотного пред-
ставления документов в виде векторов. Ее диагональные элементы выделяются
лучше, а результат (3.7) отношения внутрикластерного сходства к межкластер-
ному равен 1.98, что значительно превосходит результат 1.31 для векторного
представления документов с помощью языковой модели paragraph vector.

Сходство документа с кластером. Сходство документа x с кластером cl,k
определяется как

s(x, cl,k) = x
T

Λµ(cl,k) (3.8)

с учетом введенной нормировки (3.2) и введенной функции сходства кластера
к кластеру (3.3). Выражение (3.8) можно рассматривать как сходство между
двумя кластерами (3.3), в котором документ x рассматривается как одноэле-
ментный кластер. Для классификации неразмеченного документа x решается
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следующая задача:
ĉ(x) = arg max

ch,k,k∈{1...Kh}
s(x, ch,k). (3.9)

В случае древовидной кластерной структуры, для определения принадлеж-
ности документа x к кластерам cl,k на каждом уровне l иерархии достаточно
решить задачу (3.9) только для кластеров нижнего уровня ch,k, так как это
определит кластеры для данного документа на всех остальных уровнях. Од-
нако, при малом размере кластеров нижнего уровня данный подход является
неустойчивым. Добавление или удаление одного документа из данного класте-
ра приведет к значительному изменению его среднего вектора µ(ch,k), и, как
следствие, сходства с данным кластером документов x, уже находящихся в нем.

Другим способом решения задачи иерархической классификации является
подход сверху вниз. Пусть на шаге l для документа x определены кластеры на
первых l уровнях, и на уровне l этот документ попал в кластер cl,k. Кластер
уровня l + 1 определяется как решение задачи (3.9) для дочерних кластеров
{cl+1,k′ : B(cl+1,k′) = cl,k}, где B(c) – оператор, возвращающий родительский
кластер указанного кластера c с более высокого уровня иерархии. Результатом
применения данного оператора l раз является родительский кластер, лежащий
на l уровней выше.

Данный подход является более стабильным, так как при изменении состава
кластера последнего уровня ch,kh на c̃h,kh, выполняется условие:

‖µ(ch,kh)− µ(c̃h,kh)‖ ≥ ‖µ
(
B
(
ch,kh

))
− µ

(
B
(
c̃h,kh

))
‖ ≥

≥ . . . ≥ ‖µ
(
Bh−2

(
ch,kh)− µ

(
Bh−2

(
c̃h,kh

))
‖, (3.10)

поэтому изменения в кластеризации остальных документов будут, скорее все-
го, только на нижних уровнях иерархии. Однако при таком подходе отнесение
документа на верхнем уровне иерархии l в неверный кластер сделает невозмож-
ным его попадание в нужные кластеры на более низких уровнях.

θ1k

bbb

θ2k

θhk

ch,k

Bh−2(ch,k)

Bh−1(ch,k)

Рис. 3.2. Вычисление сходства с веткой иерархической структуры.
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Пусть каждому кластеру ch,k нижнего уровня иерархии соответствует век-
тор весов θk ∈ Rh, см. рис. 3.2. Сходство документа x с веткой дерева, начи-
нающейся с кластера нижнего уровня ch,k определяется как взвешенная сумма
сходства документа x и всех кластеров данной ветки

sh(x, ch, k) =
h∑
l=1

θlks
(
x, Bh−l(ch, k)

)
. (3.11)

При этом учитывается факт, что документ, схожий с кластером ch,kh нижнего
уровня должен быть схожим со всеми его родительскими кластерами. Пусть
центр родительского кластера уровня l кластера нижнего уровня ch,k обознача-
ется как

µl,k = µ
(
Bh−l(ch,k)

)
.

Для каждого кластера нижнего уровня ch,k из векторов µl,k составим матри-
цу Mk так, чтобы столбец с номером l соответствовал вектору центра µl,k:

Mk = [µ1,k, . . . ,µh,k].

Определение 16. Иерархическое сходство документа x с кластером ch, k ниж-
него уровня h определяется как

sh(x, ch, k) =
h∑
l=1

θlkx
TΛµl,k = xTΛ

(
h∑
l=1

θlkµl,k

)
= xTΛMkθk. (3.12)

Задача (3.9) иерархической классификации для иерархической функции
сходства (3.12) принимает вид:

ĉ(x) = arg max
ch,k, k∈{1...Kh}

sh(x, ch,k). (3.13)

3.2. Оператор релевантности

При большом количестве кластеров нижнего уровня, алгоритм классифика-
ции, решающий задачу (3.13) ошибается чаще. В данном разделе рассматрива-
ется более общая постановка задачи классификации, в которой для каждого до-
кумента необходимо найти ранжированный список кластеров нижнего уровня
по убыванию их релевантности документу x. При этом решением задачи клас-
сификации является кластер, стоящий в перестановке на первой позиции. При
несовпадении экспертного мнения с данным решением, эксперт рассматривает
кластер, стоящий на следующей позициях в перестановке в качестве альтерна-
тивного решения, и т.д. Пусть Sk – множество перестановок порядка k.
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Определение 17. Оператором релевантности R называется оператор, ставя-
щий в соответствие документу x ∈ R|W |, перестановку кластеров нижнего уров-
ня, отсортированных по убыванию релевантности документу x:

R : R|W | → SKh. (3.14)

Кластер ch,k является наиболее релевантным для документа x относительно
оператора релевантности R, если номер k данного кластера стоит на первом
месте в перестановке, возвращаемой R.

Оценка качества оператора релевантности. Пусть имеется коллек-
ция D с экспертной иерархической тематической моделью M . Пусть c(x) –
экспертный кластер документа x на уровне h. Средняя позиция экспертного
кластера в перестановках R(·) определяется как

Q(R) =
1

|D|

|D|∑
n=1

pos
(
R(xn), c(xn)

)
, (3.15)

где функция pos(R(x), c(x)) возвращает позицию экспертного кластера c(x)
в перестановке, возвращаемой R(x). Чем меньше значение Q(R), тем меньше
номер позиции экспертного кластера в перестановке, которую возвращает пред-
ложенный оператор релевантности R.

Пусть кумулятивная гистограмма строится следующим образом. Столбец с
номером j принимает значение

1

|D| |{x : pos
(
R(x), c(x)

)
≤ j}|, (3.16)

где {x : pos
(
R(x), c(x)

)
≤ j} – множество всех документов, для которых номер

позиции экспертного кластер в перестановке R(x) меньше либо равен j.

Определение 18. Качеством оператора релевантности R называет-
ся AUCH(R) – нормированная на число кластеров площадь под верхней
огибающей кумулятивной гистограммы (3.16):

AUCH(R) =
1

Kh|D|

Kh∑
j=1

|{x : pos
(
R(x), c(x)

)
≤ j}|. (3.17)

Значение AUCH(R) = 1 соответствует случаю, когда экспертный кластер
оказывается в соответствии с R наиболее релевантным для каждого из доку-
ментов выборки D.

Утверждение 10. Максимизация критерия качества AUCH(R) эквивалентна
минимизации средней позиции экспертного кластера в перестановке.
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Доказательство. Заметим, что каждый документ вносит вклад 1/|D| в каж-
дый столбец кумулятивной гистограммы начиная со столбца с номером Kh +
1 − pos

(
R(x), c(x)

)
. Перегруппируем сумму в (3.17) так, чтобы суммирование

шло по документам

AUCH(R) =
1

Kh|D|

Kh∑
j=1

|{x : pos
(
R(x), c(x)

)
≤ j}| =

=
1

Kh|D|

|D|∑
n=1

(
Kh + 1− pos

(
R(x), c(x)

))
= 1 +

1

Kh
− 1

Kh
Q(R).

Таким образом, критерий качества AUCH(R) является линейным преобразо-
ванием средней позиции экспертного кластера в перестановке Q(R). Так как
число кластеров нижнего уровня Kh не изменяется в процессе оптимизации,
то максимизация критерия AUCH(R) эквивалентна минимизации средней по-
зиции позиции экспертного кластера в перестановке.

3.3. Энтропийная модель важности слов

Матрица Λ в функции сходства (3.13) позволяет учесть важность слов для
экспертной кластеризации. В данном разделе рассматривается способ опреде-
ления диагональных элементов данной матрицы по коллекции с экспертной
иерархической тематической моделью. Для этого энтропийный подход оценки
важности признаков, предложенный в [37], обобщен на иерархический случай.

Энтропия слова относительно кластеризации. Слова, отделяющие од-
ни кластеры от других в экспертной тематической модели, являются наиболее
важными. Рассмотрим следующую ситуацию. Пусть все документы из класте-
ра cl,k содержат слово w, а документы из остальных кластеров cl,k′, k

′ 6= k
не содержат слово w. Пусть нужно классифицировать документ, содержащий
слово w. Справедливо предположить, что данный документ относится к кла-
стеру cl,k. Данный пример показывает, как некоторое слово w может отделять
одни кластеры от других. Эта идея формализуется с помощью энтропии слов.

Пусть plm,k = p(cl,k|wm) – вероятность кластера при заданном слове wm.
Оценка plm,k через средние векторы {µ(cl,k)} кластеров уровня l:

plm =
[
µ(cl,1)m, . . . , µ(cl,Kl

)m
]T
, plm 7→

plm
‖plm‖1

.

Определение 19. Энтропией слова wm относительно экспертной кластериза-
ции документов на уровне l называется

Hl(wm) = −
Kl∑
k=1

plm,k log(plm,k). (3.18)
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Минимальное значение энтропии Hl(wm) = 0 соответствует случаю, когда
слово wm встречается в документах только одного кластера уровня l, выделяя
тем самым его из остальных. Случай, когда plm,k = const для всех k = 1 . . . Kl

соответствует максимальному значению энтропии и случаю, когда слово wm
является неинформативным.

Определение важности слов через их энтропию. В случае произволь-
ной диагональной матрицы Λ, число переменных оптимизации равно размер-
ности словаря |W |. Чтобы избежать переобучения, используется модель, ста-
вящая в соответствие важности λm слова wm значение функции, зависящей от
энтропии данного слова и структурного параметра αl:

λm = 1 + αl log
(
1 + Hl(wm)

)
. (3.19)

Структурный параметр αl определяет, с каким весом учитывается энтропия
слова относительно экспертной кластеризации на уровне l. В иерархическом
случае имеются значения энтропии слов для каждого из уровней экспертной
кластеризации, и модель (3.19) принимает вид:

λm = 1 +
h∑
l=1

αl log
(
1 + Hl(wm)

)
. (3.20)

Так как для каждого слова wm и уровня l можно изначально вычислить значе-
ние log

(
1 + Hl(wm)

)
, обозначим

ιml = log
(
1 + Hl(wm)

)
.

Модель (3.20) принимает вид

λm = 1 +αTιm. (3.21)

3.4. Учет векторного представления слов в функции сходства

Предложенная иерархическая взвешенная функция сходства (3.12) учитыва-
ет важность слов при классификации новых документов. Однако диагональная
матрица Λ не позволяет учесть связь между словами синонимами при вычис-
лении сходства документа и кластера.

Рассмотрим следующий модельный пример. Пусть имеется словарь W =
{math, mathematics} и кластер c состоящий из одного документа d, который
содержит единственное слово “mathematics”. Требуется вычислить сходство дан-
ного кластера с документом d′, состоящим из единственного слова “math”. Сред-
ний вектор кластера µ(c) и векторное представление документа x(d′) имеют
вид:

µ(c) = [0, 1]T, x(d′) = [1, 0]T. (3.22)
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Сходство данного документа и кластера равно

s(c,x) = µ(c)TΛx = 0,

что противоречит аналогичному результату, полученному с помощью обученной
языковой модели (см. раздел 1.3.)

sword2vec(c,x) = w(“math”)Tw(“mathematics”) = 0.7, (3.23)

так как в данном случае сходство кластера из одного слова и документа из
одного слова можно свести к сходству векторных представлений данных слов.

Чтобы учесть синонимичность слов, центры кластеров c адаптируются сле-
дующим образом. Для каждого слова wm1

из словаря ищется наиболее близ-
кое к нему слово wm2

, принадлежащее этому кластеру, с помощью обученной
языковой модели. На позицию m1 вектора µ(c) ставится значение скалярного
произведения векторных представлений слов wm1

и wm2

µ(c)m1
= w(wm1

)Tw(wm2
). (3.24)

При таком способе определения центров кластеров µ, центр кластера c из при-
мера (3.22) равен

µ(c) = [0.7, 1]T.

Его сходство (3.23) с документом d′ в этом случае равно 0.7, что не противоречит
результату, полученному с помощью языковой моделью.

Областью значений скалярного произведения w(wm1
)Tw(wm2

) является от-
резок [−1, 1]. Для синонимов это скалярное произведение близко к 1, поэтому
чтобы учитывать только синонимы, используется дополнительное преобразова-
ние

µ(c)′m 7→
{
f
(
µ(c)′m

)
=
(
1 + cos

(
−π
(
1.5− µ(c)m

)))p
, если µ(c)m ≥ 0.5

0, иначе.
(3.25)

Утверждение 11. Функция f(·) из преобразования (3.25) монотонно возрас-
тает на интервале (0.5, 1) при p > 1.

Доказательство. При x = 1, f(x) = 1, при x = 0.5, f(x) = 0. Производная f(x)
имеет вид

f ′(x) = πp
(
1 + cos

(
−π(1.5− x)

))p−1
sin
(
π(1.5− x)

)
. (3.26)

Так как на интервале (0.5, 1)

sin
(
π(1.5− x)

)
> 0,(

1 + cos
(
−π(1.5− x)

))p−1
> 0,

то f ′(x) > 0 и функция возрастает.
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Чем больше структурный параметр p, тем медленнее начинает возрастать
функция f при значениях, близких к 0.5. Это позволяет регулировать допусти-
мый уровень шума в синонимах. Так, при p → ∞ учитываются только совпа-
дающие слова, а вес синонимов стремиться к нулю.

3.5. Оптимизация параметров иерархической функции сходства

Иерархическая функция сходства содержит два набора параметров: пара-
метры энтропийной модели α и весовые параметры θ = {θk} для каждого кла-
стера нижнего уровня ch,k. В данном разделе рассматривается способ оптими-
зации данных параметров с помощью максимизации функции качества AUCH.
Обучающая выборка разбивается на три части D = DV0 ∪DV1 ∪DV2, начальные
значения параметров задаются как

α = 0, θk =

[
1

h
, . . . ,

1

h

]
. (3.27)

Алгоритм оптимизации разбивается на два шага, повторяющихся итеративно:

1) найти оптимальные значения α при фиксированных параметрах θk по
подвыборке DV1,

2) найти оптимальные значения параметров θk при фиксированных значени-
ях α по выборкеDV2. Если ∆θk и ∆α больше заданного порога, вернуться
на шаг 1.

Далее каждый из шагов описывается более подробно.

Оптимизация параметров энтропийной модели. По выборкеDV0 стро-
ятся центры кластеров {µ(cl,k)} и по ним вычисляется энтропия слов относи-
тельно каждого уровня экспертной иерархии. Для оценки параметров моде-
ли (3.21) решается задача максимизации AUCH(R) (3.15) по α1, . . . , αh при
фиксированных значениях θ по выборке DV1:

α∗ = arg max
α

AUCH(R). (3.28)

При этом должна сохраняться нормировка xTΛx = 1, поэтому после изме-
нения Λ производится перенормировка векторов x и пересчет средних векто-
ров µ(cl,k).

Оптимизация весовых параметров. Задача оптимизации параметров θ
по выборке DV2 при фиксированных значениях α сводится к максимизации
сходства документов x ∈ DV2 с их экспертными кластерами. Данная задача
формулируется следующим образом:

θ∗k = arg max
θk

∑
x∈ch,k

xTΛMkθk + ψ‖θk − h‖2
2, (3.29)
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‖θk‖1 = 1, θk ≥ 0, k ∈ {1 . . . Kh}, h =

[
1

h
, . . . ,

1

h

]T

, (3.30)

где ψ – структурный параметр регуляризации. На данном шаге значения па-
раметров α и, как следствие, матрицы Λ фиксированы, поэтому для всех до-
кументов x ∈ DV2 известны значения xTΛMk, а задача (3.29) является задачей
квадратичного программирования при ψ 6= 0.

Утверждение 12. При параметре регуляризации ψ = 0, результатом оптими-
заци (3.29) является тривиальное решение в виде единичного вектора.

Доказательство. При ψ = 0 задача становится линейной относительно θk. Ее
решение с учетом ограничений (3.30) достигается в вершине симплекса

θk = e(l∗), l∗ = arg max
l

∑
x∈ch,k

(
xTΛMk

)
l
,

где e(l) – единичный вектор с единицей на позиции l.

Теорема 2. Пусть выполняются соотношения

|DV0| ∼ |DV1| ∼ |DV2| ∼ |D|, K < |D|, h3 log2 h < K < |D|,

где K – суммарное число кластеров на всех уровнях. Сложность приведенного
выше оптимизационного алгоритма O(bah|D||W |hKh), где b – число повторений
шагов 2 и 3, а a – число значений каждого из αl в оптимизационной сетке.

Доказательство. В данном алгоритме чередуются два шага – оптимизация
параметров α и весовых параметров θk. Так как функционал AUCH является
дискретным, в базовом случае для оптимизация α используется сетка с a значе-
ниями каждого элемента вектора α. Для оптимизации θk используется метод
внутренней точки, так как задача является выпуклой. Распишем каждый из
этапов.

1. Вычислить начальные значения
центров кластеров O(|DV0||W |h),
энтропии слов O(|W |K), где K =

∑h
l=1Kl.

2. Найти оптимальные α, вычислив AUCH при фиксированных θk для
всех ah значений сетки α:

иерархическое сходство с кластерами уровня h: O(|DV1||W |hKh),
качество AUCH: O(|DV1|Kh lnKh).

3. Найти оптимальные θk, решив Kh задач квадратичного программирова-
ния (3.29) при фиксированном α:

вычислить параметры задачи O(|DV2||W |h),
решить задачу O(h3L), где L ∼ log2(h).
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С учетом условия теоремы, наиболее трудоемким местом данного алгоритма
является вычисление иерархического сходства ah раз на шаге 2. Так как шаги 2
и 3 повторяются b раз, итоговая сложность алгоритма

O(bah|D||W |hKh). (3.31)

Условия в формулировке теоремы выполняются для большинства задач. Так
как выборка разбивается на пропорциональные части, а число кластеров мень-
ше любой из частей, то

|DV0| ∼ |DV1| ∼ |DV2| ∼ |D|, K < |D|.
Число кластеров K чаще всего растет экспоненциально с увеличением числа
уровней, поэтому даже при небольших h выполняется

h3 log2 h < K.

Число итераций в проводимых экспериментах было b ∼ 10. Чтобы уменьшить
сложность алгоритма при большом числе уровней h, вместо учета энтропии
на всех уровнях согласно модели (3.20) используется модель (3.19) для одного
фиксированного уровня. В этом случае, в сложности (3.31) вместо ah стоит a,
что значительно уменьшает вычислительную сложность.

3.6. Оптимизация правдоподобия модели

Критерий качества AUCH (3.17) является дискретным, что усложняет его
оптимизацию по параметрам модели θ и α. Так, сложность (3.31) растет экспо-
ненциально при увеличении числа уровней, что делает данный алгоритм плохо
масштабируемым. Чтобы получить вычислительно эффективный метод опти-
мизации параметров, вместо максимизации критерия AUCH максимизируется
правдоподобие модели:

L(Z|X,θ,α) =
N∏
n=1

Kh∏
k=1

p(znk = 1|xn,θk,α)znk, (3.32)

где znk = [xn ∈ ch,k] – элемент матрицы экспертной классификации. Для удоб-
ства обозначим значение иерархического сходства sh документа xn и класте-
ра ch,k

sh(xn, ch,k) = sn,k, sh(xn) =
[
sn,1, . . . , sn,Kh

].

Вероятность документа принадлежать кластеру нижнего уровня ch,k оценива-
ется с помощью функции softmax (1.6) от результата иерархической функции
сходства:

p(x ∈ ch,k) = softmax
(
sh(x)

)
k

=
exp
(
sh(x, ch,k)

)∑Kh

k′=1 exp
(
sh(x, ch,k′)

) . (3.33)
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Максимизация правдоподобия эквивалентна максимизации логарифма
правдоподобия

logL(Z|X,θ,α) =
N∑
n=1

Kh∑
k=1

znk log p(znk = 1|xn,θk,α). (3.34)

Утверждение 13. Производные логарифма правдоподобия (3.34) по парамет-
рам θ и α имеют вид

∇α logL =

|W |∑
m=1

ιm

N∑
n=1

Kh∑
k=1

xnm(Mkθk)m
[
znk − softmax

(
sh(xn)

)
k

]
,

∇θk logL =
N∑
n=1

MT
kΛxn

[
znk − softmax

(
sh(xn)

)
k

]
.

(3.35)

Доказательство. Производные по параметрам α:

∇α logL = ∇α
N∑
n=1

Kh∑
k=1

znk

(
xT
nΛMkθk − log

Kh∑
k′=1

exp
(
xT
nΛMk′θk′

))
. (3.36)

Подставим значения элементов матрицы Λ согласно энтропийной модели (3.21).
Воспользуемся тем, что

∑Kh

k=1 znk = 1, после чего переменную суммирования k′
в сумме под логарифмом переобозначим на k:

∇α logL = ∇α
N∑
n=1

Kh∑
k=1

|W |∑
m=1

znkxnm(1 +αTιm)(Mkθk)m−

−∇α
N∑
n=1

log

Kh∑
k=1

exp
( |W |∑
m=1

xnm(1 +αTιm)(Mkθk)m
)
.

(3.37)

Взяв градиент и сгруппировав сгруппировав softmax из получившихся множи-
телей, получаем

∇α logL =

|W |∑
m=1

ιm

N∑
n=1

Kh∑
k=1

xnm(Mkθk)m
[
znk − softmax

(
sh(xn)

)
k

]
. (3.38)

Проводя аналогичные преобразования, градиент по параметрам θk:

∇θk logL =∇θk
N∑
n=1

Kh∑
k=1

znk

(
xT
nΛMkθk − log

Kh∑
k′=1

exp
(
xT
nΛMk′θk′

))
=

=
N∑
n=1

MT
kΛxn

[
znk − softmax

(
sh(xn)

)
k

]
.

(3.39)
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Настройка параметров θ и α производится с помощью градиентного спуска:

θ′k = θk + ψ1∇θk logL,

α′ = α+ ψ2∇α logL.
(3.40)

Представление иерархического сходства в виде нейронной сети.
Функция softmax от иерархической функции сходства (3.33) представима в ви-
де нейронной сети, изображенной на рис. 3.3. На вход слоя IL подается до-
кумент x. Оба скрытых слоя HL1, HL2 являются линейными с тождественной
функцией активации. Первый скрытый слойHL1 разбивается на h частей, каж-
дая из которых соответствует кластерам cl,k определенного уровня l. Данный
слой состоит из

∑h
l=1Kl нейронов. Значением функции нейронов слоя HL1 яв-

ляется значение сходства документа с соответствующим кластером. Каждый
нейрон второго скрытого слоя HL2 вычисляет иерархическое сходства (3.12)
с соответствующим кластером ch,k нижнего уровня. Выходным слоем являет-
ся softmax (1.6).

b b b b b

b b b b b b b b bb

b b b

b b b b b b b b b

softmax

b b b

b b b b bb b b

HL1

HL2

IL

U

V

ch,1 ch,Kh
ch−1,1 ch−1,Kh−1

c2,1 c2,K2

x

ch,1 ch,Kh

Рис. 3.3. Представление иерархической функции сходства в виде нейронной се-
ти.

Инициализация параметров нейронной сети. Чтобы получить аналог
иерархической функции сходства (3.12), начальные значения весов связей меж-
ду слоями задаются следующим образом. Каждому кластеру cl,k в матрице V
соответствует строка vT

j с номером j

vj = Λµ(cl,k), j = k +
h∑

i=l−1

Ki, (3.41)

где µ(cl,k) – средний вектор кластера cl,k. В этом случае значением активации
нейрона с номером j слоя HL1 является сходство документа x и кластера cl,k.
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Матрица весов U задается таким образом, чтобы каждый нейрон слоя HL2 был
соединен со всеми его родительскими кластерами, представленными нейронами
слоя HL1. Таким образом, строка uT

k матрицы U записывается в виде

uT
k = [ 0 . . . 0 θhk 0 . . . 0 θh−1

k 0 . . . 0 θ2
k 0 . . . 0 ],

где параметр θlk стоит на позиции

idx
(
Bh−l(ch,k)

)
+

h−l∑
i=0

Ki,

а idx(·) – функция, возвращающая индекс кластера на его уровне, idx(cl,k) = k.
Полученная нейронная сеть обучается методом обратного распространения

ошибки. Так как элементы матрицы V являются произведением матрицы важ-
ности на вектора центров кластеров (3.41), то оптимизироваться будут значения
данного произведения, а не только параметры модели α, влияющие на значения
матрицы Λ.

Изначально многие значения элементов матрицы V и U нулевые, так как
каждый кластер содержит небольшое подмножество различных слов относи-
тельно размера всего словаря, а матрица U задает связи кластеров в экспертной
иерархии. Однако в результате оптимизации (3.32) с помощью метода обратного
распространения ошибки, большинство значений становятся отличными от ну-
ля. Чтобы избежать этого, необходимо обнулять градиент изначально нулевых
значений на каждом шаге градиентного спуска.

3.7. Байесовские оценки параметров иерархической функции сход-
ства.

В данном разделе выводится байесовский итерационный алгоритм оптими-
зации параметров модели (3.12), позволяющий одновременно оптимизировать
все параметры модели по обучающей выборке с учетом их априорного рас-
пределения. В разделе 3.5. чтобы избежать тривиального решения для θk, к
введенной функции качества (3.29) добавлялся квадратичный регуляризатор.
В данном разделе для введения ограничений на параметры используются сле-
дующие вероятностные предположения:

p(α) = N (α|0, a−1I), p(θk) = N (θk|mk,V
−1
k ). (3.42)

Так как α характеризует влияние энтропии слов на их важность, а при нулевом
значении α влияние энтропии не учитывается, априорное распределение p(α)
имеет нулевое математическое ожидание и диагональную корреляционную мат-
рицу. Вектор параметров θk имеет неизвестное математическое ожидание и
ковариационную матрицу, на эти гиперпараметры накладываются априорные
распределения

p(mk|Vk) = N (mk|m0, (bVk)
−1), p(Vk) =W(Vk|W, ν), (3.43)
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где W – распределение Уишарта.
Правдоподобие модели задается как (3.32), где вероятность документа при-

надлежать кластеру ch,k нижнего уровня оценивается с помощью функции
softmax (3.33). При дальнейшем изложении считается, что матрица X век-
торных представлений документов x известна и не указывается в параметрах
условных распределений. Общая вероятностная модель имеет вид:

p(Z,θ,m,V,α) = L(Z|θ,α)p(θ|m,V)p(m|V)p(V)p(α). (3.44)

Из-за нелинейной зависимости правдоподобия L от параметров модели θ и α,
аналитический вывод апостериорного распределения параметров с учетом обу-
чающей выборки невозможен. Для получения оценок используется вариацион-
ный вывод [28, 27, 117].

Вариационный вывод. Для любой функции плотности вероятности q,
распределение p(Z) наблюдаемых переменных Z представимо в виде

ln p(Z) = L(q) + KL(q‖p), где

L(q) =

∫
q(θ,m,V,α) ln

(
p(Z,θ,m,V,α)

q(θ,m,V,α)

)
dθdmdVdα,

KL(q‖p) = −
∫
q(θ,m,V,α) ln

(
p(θ,m,V,α|Z)

q(θ,m,V,α)

)
dθdmdVdα.

(3.45)

Дивергенция Кульбака-Лейблера KL больше либо равна нулю, поэто-
му L(q) является нижней границей ln p(Z). В случае, когда вычисление p(Z)
и p(θ,m,V,α|Z) в явном виде невозможно, в [29] предлагается максимизи-
ровать нижнюю границу L(q) по неизвестному распределению скрытых пара-
метров q(θ,m,V,α), что эквивалентно минимизации дивергенции KL, так как
левая часть не зависит от q. При произвольной функции q, результатом мак-
симизации нижней границы является q = p(θ,m,V,α|Z), так как диверген-
ция KL(q‖p) = 0 тогда и только тогда, когда q = p. Однако если апостери-
орное распределение p(θ,m,V,α|Z) аналитически получить невозможно, то и
построить q = p также невозможно. Поэтому в [29] предлагается выбрать опре-
деленный класс функций q, и среди них найти такую, при которой L(q) будет
максимальной.

В нашем случае в качестве класса функций q рассматривается

q(θ,m,V,α) = q(θ)q(m,V,α), (3.46)

где q(θ) и q(m,V,α) – факторы, на которые распадается q(θ,m,V,α). Ниж-
нюю границу L можно представить в виде

L(q) =

∫
q(θ)q(m,V,α) ln

(
p(Z,θ,m,V,α)

q(θ)q(m,V,α)

)
dθdmdVdα

=

∫
q(θ) ln p̃(Z,θ)dθ −

∫
q(θ) ln q(θ)dθ + const(θ), где

(3.47)
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ln p̃(Z,θ) =

∫
q(m,V,α) ln p(Z,θ,m,V,α)dmdVdα =

=Em,V,α

[
ln p(Z,θ,m,V,α)

]
+ const .

(3.48)

Первые два члена во второй строчки выражения (3.47) являются дивергенцией
Кульбака-Лейблера между q(θ) и p̃(Z,θ), поэтому при фиксированной функ-
ции q(m,V,α) максимум по q(θ) достигается при

ln q(θ) = Em,V,α

[
ln p(Z,θ,m,V,α)

]
+ const(θ), (3.49)

где const(θ) – некоторая функция, не зависящая от θ. Проведя аналогичную
группировку относительно q(m,V,α) получаем максимум L при фиксирован-
ном факторе q(θ):

ln q(m,V,α) = Eθ
[
ln p(Z,θ,m,V,α)

]
+ const(m,V,α). (3.50)

Утверждение 14. Алгоритм оптимизации параметров распределения q, ите-
ративно обновляющий факторы (3.49) и (3.50), сходится.

Доказательство. При пересчете каждого из факторов согласно (3.49) и (3.50)
минимизируется дивергенция KL(q‖p̃), поэтому значение L(q) не убывает на
каждом шаге. Так как нижняя граница L(q) ограничена сверху, данная проце-
дура сойдется.

Так как вероятность принадлежать классу задается с помощью функции
softmax, знаменатель которой содержит сумму экспонент, аналитический вы-
вод (3.50) и (3.49) невозможен. Поэтому вместо softmax используется ее верхняя
параметрическая оценка.

Оценка функции softmax. Воспользуемся локальным вариационным ме-
тодом [118] для получения верхней границы для данной функции. Обозначим

g(x) =

Kh∑
k=1

exp(xk).

На рис. 3.4 изображена функция g̃(x) = − ln
(
g(x)

)
. Она является вогнутой

функцией, поэтому касательная плоскость

y(x, ξ) = − ln
(
g(ξ)

)
−∇ ln

(
g(ξ)

)T
(x− ξ), (3.51)

проходящая через точку ξ, как показано на рис. 3.6, лежит всегда выше:

− ln
(
g(ξ)

)
≤ y(x, ξ),



66

при этом в точке x = ξ их значения совпадают. Взяв экспоненту от левой
и правой части получившегося неравенства и подставив значение градиента
функции g(x) получаем верхнюю оценку

1

g(x)
≤ 1

g(ξ)
exp

(
Kh∑
k=1

exp(ξk)

g(ξ)
(ξk − xk)

)
. (3.52)
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Рис. 3.4. Значения функции g̃ =
− ln g(x) в случае размерности x
равной два.
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Рис. 3.5. Зависимость y(x, ξ) от ξ
при фиксированном значении x.
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Рис. 3.6. Функция g̃ = − ln g(x) и касательная к ней в точке ξ.

Показатель экспоненты в правой части неравенства линейно зависит от x,
поэтому при свертке данной оценки с распределениями из экспоненциального
семейства получаются аналогичные распределения. Используя данную оценку
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функции softmax для каждого xn, мы получаем верхнюю оценку L(q):

L(q) ≤ L̂(q, ξ), (3.53)

где ξ = {ξn}. Чтобы найти наиболее близкую границу для L(q), значе-
ния L̂(q, ξ) минимизируются по ξ. В дальнейшем ищется аппроксимация апосте-
риорного распределения q, максимизирующая оценку нижней границы L̂(q, ξ)

при фиксированных значениях ξ, после чего оценка нижней границы L̂(q, ξ),
минимизируется по вариационным параметрам ξ при фиксированных факто-
рах q. Совместную модель (3.44), в которой логарифм правдоподобия был за-
мещен его верхней оценкой, будем обозначать p̂(Z,θ,m,V,α).

Оценка апостериорного распределения. Воспользовавшись верхней
оценкой (3.52) для функции softmax в правдоподобии (3.32) и взяв логарифм
от обеих частей

ln L̂(Z|θ,α) =
N∑
n=1

− ln g(ξn) +

Kh∑
k=1

znk

(
sn,k +

Kh∑
k′=1

exp(ξnk′)

g(ξn)
(ξnk′ − sn,k′)

)
=

=
N∑
n=1

− ln g(ξn) +

Kh∑
k=1

[
xT
nΛMkθk

(
znk −

exp(ξnk)

g(ξn)

)
+
ξnk exp(ξnk)

g(ξn)

]
.

(3.54)

Согласно предположениям (3.42) и (3.43), априорные распределения парамет-
ров имеют вид

p(α) =
ah/2

(2π)h/2
exp

(
−a

2
αTα

)
,

p(mk|m0, (bVk)
−1) =

|bVk|1/2
(2π)h/2

exp

(
−b

2
(mk −m0)

TVk(mk −m0)

)
,

p(θk|mk,V
−1
k ) =

|Vk|1/2
(2π)h/2

exp

(
−1

2
(θk −mk)

TVk(θk −mk)

)
,

p(Vk) = B(W, ν)|Vk|(ν−h−1)/2 exp

(
−1

2
Tr
(
W−1Vk

))
,

B(W, ν) = |W|−ν/2
(

2hν/2πh(h−1)/4
h∏
l=1

Γ

(
ν + 1− l

2

))−1

.

(3.55)

Согласно (3.50), логарифм фактора q(m,V,α) в случае оценки L̂(q, ξ) при
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фиксированных значениях ξ имеет вид

ln q(m,V,α) = Eθ
(
ln p̂(Z,θ,m,V,α)

)
+ const(m,V,α) =

=
N∑
n=1

Kh∑
k=1

xT
nΛMkEθkθk

(
znk −

exp(ξnk)

g(ξn)

)
+

+
1

2

Kh∑
k=1

ln |Vk| − Eθk(θk −mk)
TVk(θk −mk)+

+ ln |bVk| − b(mk −m0)
TVk(mk −m0)+

+ (ν − h− 1) ln |Vk| − Tr
(
W−1Vk

)
−

− aαTα+ const(m,V,α).

(3.56)

Таким образом, фактор q(m,V,α) разбивается на произведение факторов

q(m,V,α) = q(α)

Kh∏
k=1

q(mk|Vk)q(Vk).

Лемма 1. Фактор q(mk|Vk) имеет нормальное распределение.

Доказательство. Группировка слагаемых (3.56), содержащих mk дает

ln q(mk) = −1

2
mT

k(1 + b)Vkmk + mT
k(1 + b)Vk

(Eθk + bm0)

1 + b
+ const(mk) =

= −1

2
(mk −m0k)

T(b′Vk)(mk −m0k) + const(mk).

(3.57)

Логарифм фактора q(mk|Vk) имеет вид квадратичной формы, значит q(mk|Vk)
имеет нормальное распределение

q(mk) = N (mk|m0k, (b
′Vk)

−1),

m0k =
Eθk + bm0

1 + b
,

b′ = 1 + b.

(3.58)

Лемма 2. Фактор q(Vk) имеет распределение Уишарта.

Доказательство. Для группировки слагаемых, содержащих Vk,
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из ln q(m,V,α) вычитается ln q(m|V):

ln q(Vk) = ln q(mk,Vk)− ln q(mk|Vk) =
1

2
ln |Vk|(ν−h−1+1) + const(Vk)−

− 1

2
Tr

(
1

1 + b
(Eθk + bm0)(Eθk + bm0)

T + bm0m
T
0 + E

[
θkθ

T

k

]
+ W−1

)
=

= lnW(Wk, ν
′) + const(Vk),

(3.59)

где параметры Wk и ν ′ задаются как

W−1
k = b′m0km

T
0k + bm0m

T
0 + E

[
θkθ

T

k

]
+ W−1,

ν ′ = ν + 1.
(3.60)

Лемма 3. Фактор q(α) имеет нормальное распределение.

Доказательство. Фактор q(α) задается оставшимися слагаемыми (3.56)

ln q(α) = −a
2
αTα+

N∑
n=1

Kh∑
k=1

xT
nΛMkEθk

(
znk −

exp(ξnk)

g(ξn)

)
+ const(α) =

= −a
2

(α−α0)
TI(α−α0) + const(α),

α0 =
1

a

N∑
n=1

|W |∑
m=1

xnmιm

Kh∑
k=1

(MkEθk)m

(
znk −

exp(ξnk)

g(ξn)

)
.

(3.61)

Таким образом, фактор q(α) имеет нормальное распределение с параметра-
ми N (α0, a

−1I).

Согласно (3.49), логарифм фактора q(θ) в случае оценки L̂(q, ξ) при фик-
сированных значениях ξ имеет вид

ln q(θ) = Em,V,α

(
ln p̂(Z,θ,m,V,α)

)
+ const(θ) =

= Eα
(
lnL(Z|X,θ,α)

)
+ Em,V

(
ln p(θ|m,V)

)
+ const(θ) =

=
N∑
n=1

Kh∑
k=1

xT
nEαΛMkθk

(
znk −

exp(ξnk)

g(ξn)

)
−

− 1

2

Kh∑
k=1

Emk,Vk
(θk −mk)

TVk(θk −mk) + const(θ).

(3.62)

Лемма 4. Фактор q(θ) имеет вид

q(θ) =

Kh∏
k=1

q(θk), (3.63)
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где каждый из факторов q(θk) распределен нормально.

Доказательство. ln q(θ) представим в виде суммы слагаемых, каждое из ко-
торых зависит только от θk, а значит q(θ) представим в виде (3.63). Согласно
леммам 1 и 2 факторы q(mk,Vk) имеют распределения Гаусса-Уишарта (3.55),
значит математическое ожидание в (3.62) вычисляется как

Emk,Vk
(θk −mk)

TVk(θk −mk) = h(b′)−1 + ν ′(θk −m0k)
TWk(θk −m0k), (3.64)

а фактор q(θk) принимает вид

ln q(θk) = −ν
′

2
(θk −m′0k)

TWk(θk −m′0k) + const(θk),

m′0k = m0k +
1

ν ′
(W−1

k )TMT
kEαΛ

N∑
n=1

xn

(
znk −

exp(ξnk)

g(ξn)

)
.

(3.65)

Таким образом, фактор q(θk) имеет нормальное распределе-
ние N (m′0k, (ν

′Wk)
−1).

Теорема 3. Функцией q из класса (3.46), заданной оптимальными оценками
факторов (3.50) и (3.49), в которых правдоподобие L (3.32) оценивается с по-
мощью верхней оценки функции softmax (3.52), а априорные распределения
параметров θ,m,V,α задаются как (3.43) и (3.42), является

q(θ,m,V,α) = q(α)

Kh∏
k=1

q(θk)q(mk|Vk)q(Vk),

q(θk) ∼ N (m′0k, (ν
′Vk)

−1),

q(mk|Vk) ∼ N (m0k, (b
′Vk)

−1),

q(Vk) ∼ W(Wk, ν
′),

q(α) ∼ N (α0, a
−1I),

(3.66)

с параметрами, заданными (3.65), (3.58), (3.60) и (3.61) соответственно.

Доказательство. Подставляя результаты лемм 1-4 в (3.46) получаем утвер-
ждение теоремы.

Теорема 4. Значение вариационного параметра ξnk, минимизирующее оцен-
ку L̂(q, ξ) при фиксированной функции q, совпадает со значением иерархи-
ческой функции сходства в точке xn для класса k, использующей в качестве
параметров

θ̂k =Eθk = m′0k,

α̂ =Eα = α0.
(3.67)
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Доказательство. Обозначим

Λ̃ = diag(λ̃1, . . . , λ̃|W |), λ̃m = 1 +αT
0ιm,

s̃n,k = xT
nΛ̃Mkm

′
0k, s̃n = [s̃n,1, . . . , s̃n,Kh

]T.

Согласно (3.45), (3.52) и (3.46)

L(q) ≤ L̂(q, ξ) =

∫
q(θ)q(α) ln p(Z|θ,α, ξ)dθdα+ const(ξ) =

=
N∑
n=1

− ln g(ξn) +

Kh∑
k=1

exp(ξnk)

g(ξn)

(
ξnk − xT

nΛ̃Mkm
′
0k

)
+ const(ξ).

(3.68)

Выражение (3.68) представимо в виде суммы выражений (3.51) с точностью до
константы const(ξ), не зависящей от ξ:

L̂(q, ξ) =
∑
n

y(s̃n, ξn) + const(ξn). (3.69)

Выбирая ξn, мы выбираем точку, через которую проходит касательная y(s̃n, ξn),
как показано на рис. 3.6. На данном рисунке значение y(s̃n, ξn) определяет ор-
динату пересечения касательной и прямой x = s̃n. С учетом вогнутости g̃, ми-
нимум достигается в точке

ξn = s̃n. (3.70)

Стоит отметить, что данный минимум не является единственным, как пока-
зано на рис. 3.5. При добавлении ко всем компонентам вектора ξn одинакового
значения, результат (3.69) не изменится.

Алгоритм оптимизации параметров апостериорного распределе-
ния. Параметры распределения (3.66) содержат неизвестные математические
ожидания Eθk,E[θkθ

T

k],EΛ и вариационные параметры ξn. Используя результа-
ты теорем 3 и 4 получаем следующий EM-алгоритм для поиска их значений:

1. Инициализировать параметры

W, ν,m0, a, b,Wk = W, ν ′ = ν + 1, b′ = b+ 1,m0k = m0, ξn.

2. Вычислить Eθk,E[θkθ
T

k] с помощью распределений q(θk)

Eθk = m′0k,

E[θkθ
T

k] = (ν ′Wk)
−1 + m′0k(m

′
0k)

T,
(3.71)

и пересчитать значения параметров распределений q(m), q(V), q(α) со-
гласно (3.58), (3.60) и (3.61).
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3. Вычислить EΛ с помощью распределения q(α)

EΛ = Λ̃ = diag({λ′m}), λ′m = 1 +αT
0ιm, (3.72)

и пересчитать значения параметров распределения q(θk) согласно (3.65).
4. Пересчитать вариационные параметры ξn = s̃n согласно (3.70). Если на

одном из шагов 2-4 параметры изменились значимо, вернуться на шаг 2.
Шаг 2 и шаг 3 данного алгоритма являются E шагом, на котором обновля-

ются параметры распределений. Шаг 4 является M шагом, на котором мини-
мизируется L̂(q, ξ) по вариационным параметрам ξ.

Предсказание класса нового документа. Обозначим z̃tk случайную ве-
личину равную единице, если неразмеченный документ x̃t принадлежит класте-
ру ch,k нижнего уровня, и нулю иначе. Для предсказание класса x̃t с помощью
найденной аппроксимации q апостериорного распределения строятся два опе-
ратора релевантности.

Оператор R1 ранжирует кластеры нижнего уровня по значению иерархи-
ческой функции сходства с параметрами θMAP

k и αMAP, максимизирующими q.
Согласно теор. 3, факторы q(θk) и q(α) имеют нормальные распределения, по-
этому θMAP

k и αMAP совпадают с их математическим ожиданием.
Оператор R2 ранжирует кластеры нижнего уровня по вероятности p(z̃tk|x̃t)

принадлежности документа x̃t кластеру ch,k нижнего уровня:

p(z̃tk|x̃t) =

∫
softmax

(
sh(x̃t|θ,α)

)
k
q(θ,α)dθdα. (3.73)

Интеграл (3.73) не берется аналитически из-за суммы экспонент в знаменателе
softmax. Воспользовавшись верхней оценкой (3.52) получаем

softmax
(
sh(x̃t|θ,α)

)
k
≡ p(z̃tk|θ,α, x̃t) ≤ p̃(z̃tk|θ,α, ξ̃t, x̃t) ≡

≡ 1

g(ξ̃t)
exp

(
st,k +

Kh∑
k′=1

exp(ξ̃tk′)

g(ξ̃t)
(ξ̃tk′ − st,k′)

)
, st,k = x̃T

tΛMkθk. (3.74)

Однако подстановка верхней границы (3.74) в (3.73) все равно не позволяет
вычислить интеграл (3.73), так как экспонента в (3.74) неявно содержит про-
изведение параметров θ и α. Воспользуемся методом локальных вариаций для
аппроксимации полученной экспоненты в (3.74). Для любой точки x для функ-
ции exp(x) выполняется неравенство

exp(x) ≥ exp(ψ) + exp(ψ)(x− ψ), (3.75)

обращающееся в равенство в точке ψ = x. Подставляя (3.75) в (3.74) получаем

p̃(z̃tk|θ,α, ξ̃t, x̃t) ≥
exp(ψtk)

g(ξ̃t)

(
1− ψtk + st,k +

Kh∑
k′=1

exp(ξ̃tk′)

g(ξ̃t)
(ξ̃tk′ − st,k′)

)
.

(3.76)
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Подставляя (3.76) в (3.73) и вычисляя интеграл, получаем оценку вероятности
класса

p̂(z̃tk|x̃t, ξ̃t, ψtk) =
exp(ψtk)

g(ξ̃t)

(
1− ψtk + s̃t,k +

Kh∑
k′=1

exp(ξ̃tk′)

g(ξ̃t)
(ξ̃tk′ − s̃t,k′)

)
, (3.77)

где s̃t,k = x̃T
t Λ̃Mkm

′
0k.

Параметры ξ̃t, ψtk находятся с помощью оптимизации

p̂(z̃tk|x̃t)∗ = max
ψtk

min
ξ̃t

p̂(z̃tk|x̃t, ξ̃t, ψtk). (3.78)

Теорема 5. Значение качества AUCH(R1) и AUCH(R2) построенных операто-
ров релевантности при оптимальных значениях вариационных параметров ξ̃t
и ψtk совпадает.

Доказательство. Структура выражения (3.77) относительно ψtk совпадает со
структурой (3.75). Так как (3.75) принимает максимальное значение по ψ в
точке x, оптимальным значением ψtk для (3.77) будет

ψtk = s̃t,k +

Kh∑
k′=1

exp(ξ̃tk′)

g(ξ̃t)
(ξ̃tk′ − s̃t,k′).

Подставляя его в (3.77), получаем

p̂(z̃tk|x̃t, ξ̃t) =
1

g(ξ̃t)
exp

(
s̃t,k +

Kh∑
k′=1

exp(ξ̃tk′)

g(ξ̃t)
(ξ̃tk′ − s̃t,k′)

)
. (3.79)

В свою очередь из выражения (3.79) можно выделить часть, совпадающую
с (3.52), которая принимает минимальное значение в точке

ξ̃tk = s̃t,k.

Подставляя найденные ξ̃t в (3.79), получаем выражение

p̂(z̃tk|x̃t) =
exp(s̃t,k)∑Kh

k′=1 exp (s̃t,k′)
,

совпадающее с softmax от иерархической функции сходства, использующей ма-
тематическое ожидание параметров θ и α от найденной аппроксимации апо-
стериорного распределения q. Данные математические ожидания совпадают
с θMAP

k и αMAP, поэтому ранжирование в случае R1 и R2 дает одинаковый
результат.
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Аппроксимация совместного апостериорного распределения. При
построении оператора R2, конечной целью описанного выше вариационного вы-
вода является получение оценки p̂(z̃tk|x̃t) вероятности принадлежности нераз-
меченного документа x̃t кластеру ch,k. Однако зная оценку апостериорного рас-
пределения q, взять интеграл (3.73) аналитически не получается. Рассмотрим
альтернативный подход, в котором с помощью вариационного вывода вместо
аппроксимации апостериорного распределения параметров ищется аппроксима-
ция совместного апостериорного распределения параметров и классов Z̃ нераз-
меченных документов. Данное распределение является оценкой всего подынте-
грального выражения (3.73) и позволяет взять интеграл, не используя допол-
нительных оценок.

Совместное распределение (3.44) и распределение меток неизвестных клас-
сов Z̃ имеет вид

p(Z̃,Z,θ,m,V,α) = p(Z̃|θ,α)p(Z,θ,α,m,V). (3.80)

В качестве q(Z̃,θ,m,V,α) будем искать аппроксимацию распределе-
ния p(Z̃,θ,m,V,α|Z). Предполагается, что q факторизуется следующим об-
разом:

q(Z̃,θ,m,V,α) = q(θ)q(α,m,V)q(Z̃). (3.81)

Стоит отметить, что подобное предположение о факторизации не влечет неза-
висимость распределения меток классов Z̃ и параметров θ,α. Наоборот, па-
раметры распределения q(Z̃) будут выражаться через параметры остальных
распределений таким образом, чтобы найденная аппроксимация q была макси-
мально приближена к p(Z̃,θ,m,V,α|Z). Выписав выражение для нижней гра-
ницы L(q) и сгруппировав его аналогично (3.47), получаем вид оптимальных
факторов q, максимизирующих L(q) при фиксированных остальных факторах:

ln q(θ) = Eα,m,V,Z̃

[
ln p(Z̃,Z,θ,m,V,α)

]
+ const(θ),

ln q(α,m,V) = Eθ,Z̃
[
ln p(Z̃,Z,θ,m,V,α)

]
+ const(α,m,V),

ln q(Z̃) = Eα,m,V,θ

[
ln p(Z̃,Z,θ,m,V,α)

]
+ const(Z̃).

(3.82)

Подставляя в выражение (3.80) совместную модель (3.44), априорные
распределения параметров (3.55), правдоподобие (3.32) вместо p(Z|θ,α)
и p(Z̃|θ,α), воспользовавшись верхней оценкой softmax (3.52) и взяв логарифм
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от обоих частей получившегося равенства, получаем

ln p̂ =
T∑
t=1

− ln g(ξ̃t) +

Kh∑
k=1

z̃tk

[
x̃T
tΛMkθk +

(
Kh∑
k′=1

exp(ξ̃tk′)

g(ξ̃t)
(ξ̃tk′ − x̃T

tΛMk′θk′)

)]
+

+
N∑
n=1

− ln g(ξn) +

Kh∑
k=1

[
xT
nΛMkθk

(
znk −

exp(ξnk)

g(ξn)

)
+
ξnk exp(ξnk)

g(ξn)

]
+

+
h

2
ln a− h ln 2π

2
− a

2
αTα+

+

Kh∑
k=1

ln |Vk|
2
− h

2
ln 2π − 1

2
(θk −mk)

TVk(θk −mk)+

+
ln |bVk|

2
− h

2
ln 2π − b

2
(mk −m0)

TVk(mk −m0)+

+ lnB(W, ν) +
(ν − h− 1)

2
ln |Vk| −

1

2
Tr
(
W−1Vk

)
,

(3.83)

где B(W, ν) – нормировочный множитель в распределении Уишарта (3.55), ин-
декс t ∈ {1, . . . , T} соответствует документам x̃t тестовой выборки DT , T – чис-
ло документов тестовой выборки, а вектор вариационных параметров ξ̃t соот-
ветствует верхней оценке softmax для документа x̃t. Подставляя (3.83) в (3.82)
и группируя соответствующие слагаемые, получаем следующие леммы.

Лемма 5. Фактор q(α) из (3.82) имеет нормальное распределение.

Доказательство. Оставляя в (3.83) только члены, зависящие от α получаем:

ln q(α) =
T∑
t=1

Kh∑
k=1

Ez̃tkx̃
T
tΛMkEθk − Ez̃tk

(
Kh∑
k′=1

exp(ξ̃tk′)

g(ξ̃t)
x̃T
tΛMk′Eθk′

)
+

+
N∑
n=1

Kh∑
k=1

xT
nΛMkEθk

(
znk −

exp(ξnk)

g(ξn)

)
− a

2
αTα+ aαTα0 + const(α).

(3.84)

Преобразуем иерархическую функцию сходства так, чтобы она явным образом
зависела от α:

xT
nΛMkθk =

|W |∑
m=1

xnm(Mkθk)m +αT

|W |∑
m=1

xnm(Mkθk)mιm =

= αT

|W |∑
m=1

xnm(Mkθk)mιm + const(α). (3.85)
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Подставив (3.85) в (3.86) получаем выражение, которое после группировки сла-
гаемых, содержащих α, принимает вид квадратичной формы

ln q(α) = −a
2

(α−α0)
TI(α−α0) + const(α), (3.86)

где α0 задается как

α0 =
1

a

|W |∑
m=1

T∑
t=1

x̃tmιm

Kh∑
k=1

(MkEθk)m

[
Ez̃tk −

exp(ξ̃tk)

g(ξ̃t)

(
Kh∑
k′=1

Ez̃tk′

)]
+

+
1

a

|W |∑
m=1

N∑
n=1

xnmιm

Kh∑
k=1

(MkEθk)m

(
znk −

exp(ξnk)

g(ξn)

)
.

(3.87)

Так как при умножении (3.44) на p(Z̃|θ,α), слагаемые, зависящие от mk

и Vk никак не изменились, то факторы q(mk,Vk) имеют вид, полученный в
леммах 1 и 2. Получим выражение для факторов q(θk).
Лемма 6. Фактор q(θ) из (3.82) разбивается на произведение факторов q(θk),
каждый из которых имеет нормальное распределение.

Доказательство. Оставляя в (3.83) только члены, зависящие от θ получаем:

ln q(θ) =
T∑
t=1

Kh∑
k=1

Ez̃tkx̃
T
tEαΛMkθk − Ez̃tk

(
Kh∑
k′=1

exp(ξ̃tk′)

g(ξ̃t)
x̃T
tEαΛMk′θk′

)
+

+
N∑
n=1

Kh∑
k=1

xT
nEαΛMkθk

(
znk −

exp(ξnk)

g(ξn)

)
−

− 1

2

Kh∑
k=1

Emk,Vk
(θk −mk)

TVk(θk −mk) + const(θ).

(3.88)

Подставляя математическое ожидание (3.64) и группируя (3.88) относитель-
но θk получаем, что фактор q(θ) представим в виде произведения нормаль-
ных распределений, так как его логарифм разбивается на сумму квадратичных
форм относительно θk:

ln q(θ) =

Kh∑
k=1

−ν
′

2
(θk −m′0k)

TWk(θk −m′0k) + const(θ), (3.89)

где параметры m0k выражаются как

m′0k = m0k +
1

ν ′
(W−1

k )TMT
kEαΛ

T∑
t=1

x̃t

[
Ez̃tk −

exp(ξ̃tk)

g(ξ̃t)

(
Kh∑
k′=1

Ez̃tk′

)]
+

+
1

ν ′
(W−1

k )TMT
kEαΛ

N∑
n=1

xn

(
znk −

exp(ξnk)

g(ξn)

)
. (3.90)
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Лемма 7. Фактор q(Z̃) из (3.82) факторизуется на произведение факто-
ров q(z̃tk), каждый из которых имеет вид распределения Бернулли.

Доказательство. Логарифм распределения Бернулли представим в виде

ln p(z̃tk) = ln pz̃tktk (1− ptk)1−z̃tk = z̃tk ln ptk + (1− z̃tk) ln(1− ptk) =

= z̃tk ln

(
1

1− ptk
− 1

)
+ ln(1− ptk). (3.91)

Взяв математическое ожидание (3.83) по всем параметрам кроме z̃tk и оставив
только слагаемые, зависящие от z̃tk, получаем

q(z̃tk) = z̃tk

[
− ln g(ξ̃t) + ζtk

]
+ const(z̃tk) = z̃tk ln

[
1

g(ξ̃t)
exp (ζtk)

]
+ const(z̃tk),

(3.92)
где для удобства введено обозначение

ζtk = x̃T
tEαΛMkEθk +

Kh∑
k′=1

exp(ξ̃tk′)

g(ξ̃t)
(ξ̃tk′ − x̃T

tEαΛMk′Eθk′). (3.93)

Параметр распределения ptk является решением уравнения

1

1− ptk
− 1 =

1

g(ξ̃t)
exp (ζtk)⇒ ptk =

exp(ζtk)

exp(ζtk) + g(ξ̃t)
. (3.94)

Таким образом, факторы q(z̃tk) имеют распределение Бернулли с параметра-
ми ptk, заданными (3.94).

Теорема 6. Функцией q из класса (3.81), заданной оптимальными оценками
факторов (3.82), в которых правдоподобие L (3.32) оценивается с помощью
верхней оценки функции softmax (3.52), а априорные распределения парамет-
ров θ,m,V,α задаются как (3.43) и (3.42), является

q(Z̃,θ,m,V,α) = q(α)

Kh∏
k=1

q(θk)q(mk|Vk)q(Vk)

|T |∏
t=1

q(z̃tk),

q(θk) ∼ N (m′0k, (ν
′Vk)

−1),

q(mk|Vk) ∼ N (m0k, (b
′Vk)

−1),

q(Vk) ∼ W(Wk, ν
′),

q(α) ∼ N (α̃0, a
−1I),

q(z̃tk) ∼ Bern(ptk),

(3.95)

с параметрами, заданными (3.58), (3.60), (3.87), (3.90), и (3.94) соответственно.
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Доказательство. Согласно (3.82), подставляем результаты лемм 1, 2, 5, 6, 7
в (3.81), что дает утверждение теоремы.

Для настройки параметров данных распределений используется аналогич-
ный EM-алгоритм, как и в случае оценки апостериорного распределения. На E
шаг добавляется вычисление математического ожидания Ez̃tk = ptk и пересчет
параметров ptk. Применяя результаты теоремы 4 для вариационных парамет-
ров ξ̃t, получаем их оптимальные значения при фиксированных параметрах q:

ξ̃tk = x̃T
t Λ̃Mkm

′
0k.

Прогноз класса нового документа. Используя найденную оценку (3.95)
совместного апостериорного распределения параметров и классов неразмечен-
ных документов, получаем искомую вероятность p(z̃tk|x̃t):

p(z̃tk|x̃t) =

∫
p(Z̃,θ,m,V,α|Z, x̃t)dθdmdVdαdZ̃(−tk) ≈

≈
∫
q(Z̃,θ,m,V,α|Z, x̃t)dθdmdVdαdZ̃(−tk) = Bern(ptk), (3.96)

где dZ̃(−tk) означает интегрирование по всем z̃ кроме z̃tk. Задача классификации
нового документа записывается как

z(x̃t) = arg max
k

ptk,

а оператор релевантности R строится путем ранжирования кластеров по веро-
ятности ptk.

Теорема 7. Пусть выполняются следующие соотношения:

|DV | ∼ |DT | ∼ |D|, Kh < |D|, h < Kh,

Сложность EM-алгоритма настройки параметров распределения q из теоремы 6
равна O(b|D||W |hKh), где b – число EM шагов.

Доказательство. В данном алгоритме чередуются два шага – оптимизация
параметров распределения факторов q и вариационных параметров ξ и ξ̃. На
E шаге пересчитываются параметры

α за O(|W |Khh+ |W ||DV |Kh + |W |) ∼ O(|W ||DV |Kh),
θk за O

(
h2|W |+ |W |+ (|DV |+ |DT |)(|W |+Kh)

)
∼ O(|W ||D|),

W−1
k за O(h2),

m0k за O(h),
ptk за O(|DT |W ||Khh).
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На M шаге ищутся оптимальные вариационные параметры ξ и ξ̃. Данный шаг
сводится к вычислению иерархической функции сходства за O(|W ||D|Khh).

С учетом условия теоремы, наиболее трудоемким местом данного алгоритма
является вычисление иерархического сходства. Так как EM-алгоритм делает b
шагов, то общая сложность

O(b|D||W |hKh). (3.97)

В поставленных экспериментах, значение b ∼ 10. Таким образом, асимпто-
тическая сложность данного алгоритма в ah меньше асимптотической сложно-
сти 3.31 алгоритма прямой оптимизации AUCH. При этом обучающая выборка
не разбивается на части, и все параметры настраиваются по всей обучающей
выборке DV .

3.8. Построение тематической модели конференции

Для анализа предложенных алгоритмов использовалась коллекция D, со-
держащая 5318 тезисов конференции EURO с экспертной тематической мо-
делью M . Модель M состояла из k2 = 24 кластеров второго уровня Area
и k3 = 163 кластера уровня Stream, см. рис. 5.1. Для оптимизации параметров
алгоритма использовалась подвыборка DV , содержащая 3655 тезисов. В каче-
стве набора неразмеченных документов DT использовалась подвыборка разме-
ром в 1663 документа. Словарь коллекции W состоял из |W | = 1675 слов.

Базовый оператор релевантности. Базовый оператор релевантно-
сти R1(x) строился следующим образом. Все кластеры нижнего уровня сор-
тировались по убыванию их размера в выборке DV . Пусть c3, k1, . . . , c3, kKh

– по-
рядок кластеров по убыванию их размера, тогда

|c3, k1| ≥ |c3, k2| ≥ . . . ≥ |c3, kKh
|.

Оператор R1(x) независимо от документа x возвращал одну и ту же переста-
новку номеров кластеров нижнего уровня (k1, k2, . . . , kKh

), то есть

R1(x) = (k1, k2, . . . , kKh
).

Оптимизация параметров иерархической функции сходства. Для
поиска оптимальных параметров α и θ, использовалась модель (3.80) совмест-
ного распределения параметров и классов неразмеченных документов из вы-
борки DT . Параметры распределения q, аппроксимирующего совместное апо-
стериорное распределение параметров модели и классов неразмеченных доку-
ментов, оценивались согласно результатам теоремы 6 с помощью EM-алгоритма
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по выборке DV . Зависимость изменения параметров от итерации показана на
рис. 3.7 a. Искомый оператор релевантности R строился путем ранжирования
классов по убыванию найденной вероятности (3.96) для каждого документа x̃t
из DT .

На рис. 3.7 б. приводится сравнение значения качества AUCH описан-
ного выше оператора релевантности R (красная линяя), со значением каче-
ства AUCH оператора релевантности R′ построенного с помощью иерархиче-
ской функции сходства, использующей оценки максимума апостериорной веро-
ятности θMAP

k и αMAP, найденные согласно результатам теоремы 3 (пунктирная
синяя линяя). Видно, что при оптимальных значениях параметров, качество
оператора релевантности R выше.
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Рис. 3.7. Иллюстрация свойств вариационного вывода параметров модели и
сравнение способов построения оператора релевантности с помощью оценок
апостериорного распределения и совместного апостериорного распределения.

Сравнение базового оператора релевантности с предложенным. Ре-
зультаты базового операторов релевантности R1 сравнивались с результатами
предложенного оператора R на выборке DT . Из таблицы 3.1 видно, что пред-
ложенный оператор релевантности R значительно превосходит базовый опера-
тор R1. На рис. 3.8 приведены огибающие кумулятивных гистограмм (3.17) опе-
раторов R и R1. На рис. 3.9 a. и б. приведены гистограммы распределения (3.16)
для k ∈ [1, K3], показывающие для столбца с абсциссой k долю документов, у
которых экспертный Stream лежит на позиции k в перестановке, возвращаемой
оператором релевантности.

На рис. 3.10 показана визуализация матрицы значений парного сходства
экспертных кластеров уровня Area. На рис. 3.10 a. приведены результаты для
функции сходства, использующей матрицу важности слов Λ = Λ∗ с оптималь-
ными значениями параметра α, а на рис. 3.10 б. – без оптимизации, Λ = I. Из
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Рис. 3.8. Сравнение операторов релевантности R(·) и R1(·) по AUCH.
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Рис. 3.9. Иллюстрация свойств операторов релевантности R1(·) и R(·).

рисунков видно, что после оптимизации значений Λ, внутрикластерные сход-
ства, соответствующие диагональным элементам, стали заметно больше недиа-
гональных элементов, соответствующих значениям межкластерного сходства.
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Рис. 3.10. Средние парные сходства экспертных кластеров.

Таблица 3.1. Значения функционалов качества для сравниваемых операторов
релевантности Q (3.15) и AUCH (3.17).

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Функционал качества

Оператор релевантности
R1(·) R(·)

AUCH(·) 0.72 0.84

Так, при Λ∗ среднее значение внутрикластерного сходства документов рав-
но 0.047, а межкластерного 0.012.
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Глава 4
Верификация тематической модели

Пусть задана экспертная тематическая модель M коллекции документов D
и ее критерий качества Ξ(M). Решением задачи верификации является измене-
ние значений классов у фиксированного числа документов вM таким образом,
чтобы качество Ξ(M̂) полученной тематической модели M̂ было максималь-
ным.

4.1. Построение иерархической модели схожей с экспертной

По аналогии с функционалом качества (3.7) для плоского случая, вводит-
ся функционал качества иерархической тематической модели как комбинация
внутри- и межкластерного сходства.

Определение 20. Качество Ξ(M) иерархической тематической модели M
определяется как

Ξ(M) =
h∑
l=1

[
1− β
Kl

Kl∑
k=1

|cl,k|sc(cl,k, cl,k)−
2β

Kl(Kl − 1)

Kl∑
k=1

Kl∑
k′=k+1

sc(cl,k, cl,k′)

]
.

(4.1)
Структурный параметр β ∈ [0, 1] – отвечает за приоритет межкластерного

сходства. При β → 0 качество определяется только внутрикластерным сход-
ством, и наоборот при β → 1 качество определяется только межкластерным
сходством.

Алгоритм неметрической иерархической кластеризации докумен-
тов. В качестве начального приближения M̂ используется экспертная темати-
ческая модель M . На каждом шаге алгоритма выбирается один документ x
из коллекции D и переносится в другой кластер таким образом, чтобы значе-
ние функционала качества Ξ (4.1) максимально возросло. Это повторяется пока
кластеризация не стабилизируется в терминах Ξ (4.1). Стоит отметить, что при
переносе одного документа изменение параметров модели носит локальный ха-
рактер, что делает перенос и оценку изменения качества (4.1) вычислительно-
эффективной операцией

Утверждение 15. При переносе документа x ∈ ch,k в кластер ch,k′ новые сред-
ние векторы кластеров cl,k и cl,k′ определяются по x и старым средним векторам
как

µ(cl,k)→
|cl,k|
|cl,k| − 1

µ(cl,k)−
1

|cl,k| − 1
x,

µ(cl,k′)→
|cl,k′|
|cl,k′|+ 1

µ(cl,k′) +
1

|cl,k′|+ 1
x.
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Доказательство. Пусть c̃l,k и c̃l,k′ – кластеры после изменения, тогда

µ(c̃l,k) =
1

|c̃l,k|
∑
y∈c̃l,k

y =
1

|cl,k| − 1

−x +
∑
y∈cl,k

y

 =
|cl,k|
|cl,k| − 1

µ(cl,k)−
1

|cl,k| − 1
x,

µ(c̃l,k′) =
1

|c̃l,k′|
∑

y∈c̃l,k′
y =

1

|cl,k′|+ 1

x +
∑

y∈cl,k′
y

 =
|cl,k′|
|cl,k′|+ 1

µ(cl,k′) +
1

|cl,k′|+ 1
x.

В силу вложенности тематической модели, в качестве возможных измене-
ний кластеризации документа x рассматриваются только переносы документов
из одного кластера нижнего уровня в другой, так как кластер документа на
нижнем уровне однозначно определяет его принадлежность к кластерам более
высоких уровней.

Построение модели, схожей с экспертной. Для верификации темати-
ческой модели необходимо построить тематическую модель, схожую с эксперт-
ной. Для этого алгоритм кластеризации модифицируется следующим образом.
Сопоставим каждому документу x вектор длины h− 1:

ζ(x) =
[
[Bh−2

(
c(x)

)
= Bh−2

(
ĉ(x)

)
], . . . , [B0

(
c(x)

)
= B0

(
ĉ(x)

)
]
]
.

Элемент вектора [Bh−l(c(x)
)

= Bh−l(ĉ(x)
)
] равняется одному, если на уровне l

экспертный кластер Bh−l(c(x)) для данного документа x совпадает с его алго-
ритмическим кластером Bh−l(ĉ(x)

)
. В силу вложенности тематической модели,

векторы ζ(x) могут иметь только следующий вид:

ζ
(
x, c(x), ĉ(x)

)
= [1, . . . 1, 0, . . . , 0] ,

где первые m единиц означают, что для первых m уровней экспертная класте-
ризация и алгоритмическая кластеризация совпали, а последующие h−m− 1
нулей означают, что для оставшихся h−m− 1 уровней алгоритмическая кла-
стеризация для данного документа отличается от экспертной. Всего возможно
h вариантов вектора ζ(x). Сумма элементов ‖ζ

(
x, c(x), ĉ(x)

)
‖1 показывает, на

скольких уровнях совпадает экспертная кластеризация с алгоритмической для
документа x.

Каждой операции переноса документа x из кластера ch,k в кластер ch,k′ ста-
вится в соответствие пара векторов ζ вида

ζ
(
x, c(x), ch,k

)
7→ ζ

(
x, c(x), ch,k′

)
.

Каждому уникальному варианту переноса ставится в соответствие штраф δ за
его осуществление. Всего возможно h2 различных штрафов. Для их определе-



85

ния используется таблица размером h× h. Пример таблицы штрафов для слу-
чая h = 3 показан в таблице. 4.1. Предполагается, что δ11 = · · · = δhh = 0, так
как переносы документа x такого вида не добавляют отличий в кластеризации.

Обозначим

ζ = ζ
(
x, c(x), ch,k

)
, ζ ′ = ζ

(
x, c(x), ch,k′

)
, ζ ′′ = ζ

(
x, c(x), ch,k′′

)
,

Ξ1 – значение оптимизируемой функции Ξ (3.1) до переноса ζ 7→ ζ ′ документа x,
и Ξ2 – ее значение после переноса. Перенос ζ 7→ ζ ′ документа x осуществляется
только при выполнении условия:

Ξ2 − Ξ1 ≥ γδ(ζ 7→ ζ ′), (4.2)

где δ(ζ 7→ ζ ′) – штраф, соответствующий переносу ζ 7→ ζ ′, а γ ≥ 0 – весо-
вой множитель штрафов, регулирующий допустимую степень несоответствия
построенной кластеризации и экспертной.

Таблица 4.1. Матрица штрафа F.
H
HHH

HHH
Из

В
(1, 1) (1, 0) (0, 0)

(1, 1) δ11 δ12 δ13

(1, 0) δ21 δ22 δ23

(0, 0) δ31 δ32 δ33

Таблица 4.2. Матрица штрафа F̃.
HH

HHH
HH

Из
В

(1, 1) (1, 0) (0, 0)

(1, 1) 0 0.002 0.005
(1, 0) -0.001 0 0.003
(0, 0) -0.003 -0.002 0

Различные штрафы позволяют учитывать существующую экспертную мо-
дель с различным весом. Если требуется выявить небольшое число наиболее
сильных тематических противоречий, то штрафы на перемещение документа
из его экспертного кластера задаются большие. Если целью является построить
модель, не основываясь на экспертной, то штрафы следует устремить к нулю.
Элементы матрицы штрафа должны удовлетворять следующим условиям.

1. Чем больше создается различий с экспертной моделью в результате пере-
мещения документа, тем больше величина штрафа за этот перенос:

‖ζ ′‖1 < ‖ζ ′′‖1 ⇒ δ(ζ 7→ ζ ′) > δ(ζ 7→ ζ ′′).

2. Для любых двух последовательных переносов, каждый из которых увели-
чивает число различий, должно выполняться свойство транзитивности:

‖ζ‖1 > ‖ζ ′‖1, ‖ζ ′‖1 > ‖ζ ′′‖1 ⇒ δ(ζ 7→ ζ ′) + δ(ζ ′ 7→ ζ ′′) = δ(ζ 7→ ζ ′′).

3. Штраф за перенос, уменьшающий число различий, отрицательный.

‖ζ‖1 < ‖ζ ′‖1 ⇒ δ(ζ 7→ ζ ′) < 0.

4. Сумма порогов для последовательности переносов, возвращающих доку-
мент в исходный кластер, больше нуля:

‖ζ‖1 − ‖ζ ′′‖1 = 0⇒ δ(ζ 7→ ζ ′) + δ(ζ ′ 7→ ζ ′′) > 0.
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4.2. Верификация тематической модели конференции

Для анализа работы предложенных алгоритмов проводилась верификация
тематической модели конференции EURO. В качестве исходных данных был
взят набор из 2313 тезисов конференции и ее экспертная тематическая модель,
состоявшая из трех уровней h = 3, как показано на рис. 5.1.

Рис. 4.1. Зависимость внутри- и межкластерного сходства на уровнях областей
и направлений от параметра γ.

С помощью алгоритма, описанного в разделе 4.1. строилась алгоритмиче-
ская тематическая модель с параметром оптимизируемой функции Ξ (4.1) β =
0.1. В таблице 4.2 приведена матрица штрафов, использованная для построения
модели. При изменении параметра γ в условии для переноса (4.2), изменялось
сходство алгоритмической и экспертной модели. Результаты кластеризации, со-
ответствующие разным значений параметра γ приведены на рис. 4.1. По левой
оси отложено количество документов, для которых экспертная и алгоритми-
ческая кластеризации совпали, по правой оси значения среднего внутрикла-
стерного сходства (3.3), а по нижней оси отложено соответствующее значение
параметра γ. Чем больше задавался штраф γ, тем меньше документов попа-
дали в чужие кластеры, но и внутрикластерное сходство становилось меньше.
Так при значении γ > 2, 99% документов попали в свои экспертные кластеры.
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а. Экспертная кластеризация. б. Построенная кластеризация.

Рис. 4.2. Сравнение среднего сходства по областям.

а. Распределение по областям. б. Распределение по направлениям.

Рис. 4.3. Процентное распределение документов по областям и направлениям.

На рис. 4.2 a приведены результаты визуализации матрицы парного сход-
ства кластеров уровня Area до процесса верификации, а на рис. 4.2 б – после.
По осям отложены номера областей. Цвет клетки (x, y) соответствует значению
сходства (3.3) между кластером Area с номером x и кластером Area с номе-
ром y. Клетки диагонали (x, x) соответствуют внутрикластерному сходству, а
клетки (x, y), x 6= y — межкластерному.

На рис. 4.3 клетка с координатами (x, y) показывает количество докумен-
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тов, которые эксперт отнес к кластеру с номером x, а алгоритм к кластеру с
номером y. На диагонали находятся документы, для которых экспертная кла-
стеризация совпала с алгоритмической.
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Глава 5
Анализ прикладных задач

Глава содержит анализ свойств предложенных моделей и рекомендации по
их использованию. Качество предложенных моделей сравнивается с качеством
известных решений.

5.1. Иерархическая классификация тезисов крупной конференции

Ежегодно программный комитет крупной конференции решает задачу
построения иерархической модели тезисов конференции. Рассмотрим та-
кую модель на примере конференции European Conference on Operational
Research (EURO). Конференция содержит в себе 26 главных областей. Каждая
область содержит в себе 10−15 научных направлений, каждое направление де-
лится на 5−10 сессий, а каждая сессия состоит из четырех докладов. Для пода-
чи заявки участники конференции присылают программному комитету тезисы
их докладов –документы состоящие из не более чем 600 символов, и выбирают
три ключевых слова, наиболее связанных по их мнению с тематикой работы.
Все участники делятся на две группы – вновь поступившие и приглашенные. У
приглашенных участников заранее известна сессия, в которой они будут высту-
пать. Для остальных участников эксперты из программного комитета должны
выбрать наиболее подходящую сессию на основании содержания полученных
документов и выбранных ключевых слов. Данная конференция представлена в
виде дерева на рис. 5.1. Для построения данной иерархической тематической
модели привлекается до 200 экспертов из различных областей.

c1,1

c2,1 c2,2 c2,k2

c4,1 c4,2 c4,3

d1 d2 d3

c4,k4

d|D|

c3,1 c3,k3

EURO

Areas

Streams

Sessions

Documents

b b b

b b b

b b b

b b b

Рис. 5.1. Иерархическая структура конференции в виде дерева.
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Из года в год кластерная структура уровня Area и кластерная структура
уровня Stream изменяются незначительно. Для исследования свойств предло-
женных моделей и методов, описанных в главе 3, была построена экспертная
система, позволяющая искать релевантные кластеры для неразмеченных до-
кументов, используя экспертные тематические модели конференций прошлых
лет.

Предобработка текстовой коллекции. Для создания коллекции доку-
ментов использовались программы конференций EURO и IFORS за период
с 2006 по 2016 год [119]. Для задачи классификации рассматривались толь-
ко уровни Area и Stream иерархической модели. Процедура получения экс-
пертных тематических моделей и предобработанных текстов тезисов показана
на рис. 5.2. На вход подавались тексты тезисов в формате pdf, пример тези-
са представлен на рис. 5.3 а. С помощью программы pdftotext данные фай-
лы переформатировались в простой текст EURO.txt, рис. 5.3 б. С помощью
программы-парсера из EURO.txt выделялись названия Area, Stream и текст
тезиса. Они записывались в новый файл через разделитель “##”, как пока-
зано на рис. 5.3 в. Для нормализации слов в полученном структурированном
файле использовался пакет NLTK [120]. Из текста отбрасывались стоп-слова, а
остальные слова приводились к нормальной форме с помощью лемматизатора,
ипользующего семантическую сеть wordNet [121] для английского языка, после
чего использовался стеммер Snowball [122] и отбрасывались все слова, для ко-
торых не было векторного представления в обученной модели word2vec [42]. На
выходе получался документ, показанный на рис. 5.3 г.

Описание коллекции. Все документы объединялись в одну общую кол-
лекцию. Чтобы уменьшить различие тематических моделей конференций раз-
ных лет и построить общую экспертную тематическую модель, была проведена
следующая процедура:

1) модель конференции EURO 2016 была взята за основу общей модели,
2) для каждого кластера уровня Stream и Area конференций 2010-2015 года

эксперты либо находили соответствующий ему кластер в общей модели,
либо добавляли новый кластер в общую модель,

3) для конференций 2006-2010 года автоматически искался соответствующий
кластер в общей модели с учетом всевозможных перестановок слов в на-
звании кластера без учета регистра, знаков препинания и артиклей. Если
соответствующий кластер не был найден, то документы из данного кла-
стера не добавлялись в модель.

В результате была получена предобработанная коллекция с экспертной
иерархической тематической моделью:

1) размер коллекции |D| = 15527 документов,
2) размер словаря |W | = 24304 слова,
3) число кластеров второго уровня (Area) K2 = 26,
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Рис. 5.2. Процесс предобработки программ конференций EURO.

4) число кластеров третьего уровня (Stream) K3 = 264.

Результаты классификации неразмеченных тезисов конференции.
Для проверки предложенных методов – иерархической взвешенной функции
сходства hSim (3.12) и ее аналогу, построенному с помощью обученной языковой
модели и векторного представления слов hSimWV (3.24), их результаты срав-
нивались с результатами других алгоритмов, описанных в разделе 1.9.: иерар-
хическим наивным байесом hNB, вероятностной моделью SuhiPLSA и иерархи-
ческим мультиклассовым svm.

Коллекция документов D делилась на две части: обучающую DV и те-
стовую DT . Для анализа работы алгоритмов при различном объеме данных
для обучения, размер обучающей выборки |DV | менялся от 500 документов
до 10000. Из тестовой выборки DT случайным образом выбиралась подвыбор-
ка DT ′, в которой число документов было фиксированным, |DT ′| = 5000, вне
зависимости от размера обучающей выборки.

По обучающей выборкеDV с помощью каждого из алгоритмов строился опе-
ратор релевантности R (3.14), возвращающий ранжированный список класте-
ров нижнего уровня в порядке убывания их релевантности новому документу.
Качество построенных операторов оценивалось на тестовой выборке DT ′ как
площадь под кумулятивной гистограммой AUCH (3.17).

Рассматривались два случая – плоской классификации для одного уровня
Area, и иерархической классификации для модели с уровнями Area и Stream. В
таблицах 5.1 и 5.2 приведены значения AUCH для операторов релевантности,
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а. Pdf файл с тезисом программы
конференции EURO. б. Текстовое представление тезиса из

программы конференции.

в. Area, Stream и текст тезиса конфе-
ренции в структурированном виде.

г. Нормализованный текст тезиса кон-
ференции.

Рис. 5.3. Предобработка коллекции тезисов EURO.

построенных с помощью заданных алгоритмов для различного числа докумен-
тов в обучающей выборке для плоского и иерархического случая соответствен-
но. Для плоского случая сравнивались алгоритмы svm, hNB, suhiPLSA и hSim,
а для иерархического случая svm, hNB, suhiPLSA, hSim и hSimWV. Жирным
шрифтом выделены лучшие статистически эквивалентные результаты для каж-
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дого размера выборки. На рис. 5.4 данные из таблиц показаны в виде графиков
зависимостей значения AUCH по оси ординат от размера выборки по оси абс-
цисс.

Таблица 5.1. Значения функционала качества AUCH (3.17) на уровне Area для
операторов релевантности, построенных с помощью сравниваемых алгоритмов.
PPPPPPPPPPPPPPPPPPPP
Алгоритм

Размер
выборки
|DV | 500 1000 1500 3000 5000 7000 10000

svm 0.81 0.84 0.85 0.86 0.87 0.88 0.88
hNB 0.76 0.77 0.79 0.79 0.81 0.82 0.83
suhiPLSA 0.76 0.79 0.80 0.82 0.83 0.85 0.85
hSim 0.80 0.84 0.87 0.87 0.88 0.88 0.89

Таблица 5.2. Значения функционала качества AUCH (3.17) на уровне Stream
для операторов релевантности, построенных с помощью сравниваемых алго-
ритмов.
PPPPPPPPPPPPPPPPPPPP
Алгоритм

Размер
выборки
|DV | 500 1000 1500 3000 5000 7000 10000

svm 0.76 0.80 0.81 0.84 0.85 0.86 0.87
hNB 0.77 0.82 0.84 0.87 0.90 0.91 0.92
suhiPLSA 0.75 0.79 0.80 0.81 0.82 0.84 0.84
hSim 0.80 0.86 0.88 0.90 0.91 0.92 0.93
hSimWV 0.82 0.86 0.87 0.89 0.92 0.92 0.92

Из таблицы 5.1 видно, что для плоской классификации на уровне Area дан-
ной иерархической модели при размере выборки меньше 1000 документов svm
показывает более высокий результат, однако при увеличении числа докумен-
тов в обучении иерархическая взвешенная функция сходства hSim показывает
значительно более высокий результат. Алгоритм, основанный на наивном бай-
есовском предположении, имеет наименьший показатель качества при любом
размере выборки.
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Рис. 5.4. Зависимость значений AUCH от размера обучающей выборки для опе-
раторов релевантности R(·), построенных с помощью алгоритмов svm, hNB,
suhiPLSA, hSim и hSimWV.
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Рис. 5.5. Огибающие кумулятивных гистограмм операторов релевантностиR(·),
построенных с помощью алгоритмов svm, hNB, suhiPLSA, hSim, hSimWV.

Для случая иерархической классификации при размере выборки мень-
ше 1000 документов наилучшее качество показывает алгоритм hSimWV, но
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при дальнейшем увеличении количества документов в обучающей выборке ал-
горитм hSim показывает либо превосходящие, либо эквивалентные результаты
по критерию AUCH (3.17), см. таблицу 5.2. Стоит отметить, что в отличие от
плоского случая, для иерархической классификации алгоритм hNB показывает
значительно лучшие результаты чем иерархическая версия svm и вероятност-
ная модель suhiPLSA.

На рис. 5.5 показаны огибающие кумулятивных гистограмм (3.16) для обу-
чающей выборки размером DV = 10000 документов для плоской и иерархи-
ческой классификации. Точка на кривой с координатами (x, y) означает, что
для данного алгоритма, у доли документов x экспертный кластер лежит на
первых y позициях в ранжированных списках, полученных с помощью опера-
тора релевантности (3.14). Из рис. 5.5 видно, что hSim для данного размера
обучающей выборки показывает наилучший результат.

Рис. 5.6. Экспертная система для поиска релевантных кластеров для неразме-
ченных документов.

Экспертная система. Для программного комитета конференции EURO
была реализована экспертная система, изображенная на рис. 5.6. В поля “Title”
и “Abstract” вставлялись название и аннотация к неразмеченному документу.
После нажатия на кнопку “Search” введенный текст предобрабатывался спо-
собом, описанным в разделе 5.1. Документу ставилось в соответствие его век-
торное описание x. Оператор релевантности R (3.14), построенный с помощью
предложенного алгоритма hSim, ставил в соответствие x ранжированный спи-
сок кластеров общей экспертной тематической модели, который отображался
в поле “Search results”. Эксперт выбирал из этого списка подходящий кластер
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для данного документа, после чего документ добавлялся в обучающую подвы-
борку DV и оценки параметров модели пересчитывались согласно алгоритму,
описанному в разделе 3.5.

5.2. Визуализация иерархической тематической модели на плоско-
сти

В данном разделе описывается алгоритм визуализации имеющейся эксперт-
ной иерархической модели на плоскости, обладающей свойством вложенности.
Предлагается способ визуализации тематических несоответствий, выявленных
методами, описанными в разделе 4.1.

Определение 21. Визуализацию иерархической модели M на плоскости бу-
дем называть вложенной, если границы кластеров не пересекаются, а дочерние
кластеры лежат внутри родительских. Пример вложенной визуализации изоб-
ражен на рис. 5.7.

Рис. 5.7. Вложенная визуализация иерархической модели.

Построение вложенной визуализации. Пусть µ(cl,1), . . . , µ(cl,Kl
) – ко-

ординаты центров кластеров на l-м уровне иерархии в исходном пространстве,
а µ̂(cl,1), . . . , µ̂(cl,Kl

) – их координаты на плоскости. Пусть r(cl,1), . . . , r(cl,Kl
) –

радиусы кластеров, понимаемые как расстояния от центра кластера до
самого далекого документа из этого кластера в исходном пространстве,
а r̂(cl,1), . . . , r̂(cl,Kl

) – их радиусы на плоскости. В качестве расстояния в исход-
ном пространстве используется евклидова метрика ρ(·, ·).
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Начиная с верхнего уровня иерархии выполняется проекция центров класте-
ров на плоскость с помощью проекции Саммона [34] и вычисляются двумерные
координаты проекций центров кластеров µ̂(cl,1), . . . , µ̂(cl,Kl

). Радиус кластера
на плоскости определяется как

r̂(cl,k) = min
k′ 6=k : cl,k′∈B(cl,k)

r(cl,k)

r(cl,k) + r(cl,k′)
ρ
(
µ̂(cl,k), µ̂(cl,k′)

)
, (5.1)

где B(cl,k) – родительский кластер кластера cl,k на уровне l − 1. Для вложе-
ния следующего уровня иерархии в предыдущий делается следующее. Рассмат-
ривается кластер cl,k на уровне l иерархии. Пусть в нем содержатся класте-
ры cl+1,k1, . . . , cl+1,kq уровня l+ 1. Их центры проецируются на плоскость и вы-
числяются их радиусы r̂(cl+1,k1), . . . , r̂(cl+1,kq) описанным выше способом. Центр
масс полученной системы проекций совмещается с центром µ̂(cl,k) рассматри-
ваемого кластера на плоскости. Расстояние ρ̂ от центра µ̂(cl,k) до максимально
удаленной границы дочернего кластера уровня l + 1 определяется как

ρ̂ = max
k′∈{k1, ..., kq}

ρ
(
µ̂(cl,k), µ̂(cl+1,k′)

)
+ r̂(cl+1,k′). (5.2)

Для сохранения вложенности структуры проводится гомотетия: стягивание,
если ρ̂ > r̂(cl,k) и растяжение, если ρ̂ < r̂(cl,k) с коэффициентом r̂(cl,k)/ρ̂ и
центром µ̂(cl,k). После этого наиболее удаленные документы дочерних класте-
ров cl,k1, . . . , cl+1,kq будут находиться внутри рассматриваемого родительско-
го кластера cl,k. Эта операция повторяется для всех кластеров по возраста-
нию уровня кластера. Получается плоская визуализация иерархии, обладаю-
щая свойством вложенности.

Результат визуализации На рис. 5.8, 5.9, 5.10 показаны результаты визу-
ализации экспертной модели M алгоритмом, описанным выше. Центры уровня
областей отмечены меткой – «×», уровня направлений – «+», a документы d
отображаются метками – «◦». Вокруг центра каждого кластера проводится его
граница. Все объекты, лежащие внутри границы данного кластера, принадле-
жат ему.

Цвет документа d определяется степенью отличия (2.10) его экспертной кла-
стеризации от верифицированной модели M̂ , построенной с помощью алгорит-
ма, описанного в разделе 4.1. с весовым параметром матрицы штрафов γ (4.2).
Полученный диапазон значений некорректности отображается в цветовую шка-
лу от RGB (255; 0; 0) – красный (документ, для которого алгоритмическая и
экспертная кластеризации отличаются сильнее всего) до RGB (0; 255; 0) – зе-
леный (документ, для которых экспертная и алгоритмическая кластеризации
совпадают).

Как видно из рис. 5.8, 5.9, 5.10, при увеличении значений штрафов γ число
документов, отображаемых как некорректно классифицированные, растет.
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Рис. 5.8. Иерархическая визуализация несоответствий с большими штрафа-
ми γ = 1.25.

Построенная визуализация экспертной иерархической тематической модели
на плоскости показывает

1) сходство между кластерами одного уровня иерархии l, лежащими в одном
родительском кластере: схожие Area лежат на плоскости рядом, два те-
матически схожих Stream, лежащие внутри одной Area, также находятся
рядом на плоскости,

2) качество отнесения документа к кластеру: если документ находится вдали
от других документов из его родительского кластера или на краю класте-
ра, а алгоритм выделяет его красным цветом, то данный документ отлича-
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Рис. 5.9. Иерархическая визуализация несоответствий со средними штрафа-
ми γ = 0.7.

ется по терминологическому составу от остальных документов, лежащих
в данном кластере.

Визуализация переноса документов. Для каждого документа, для ко-
торого экспертная и алгоритмическая кластеризации на совпали, алгоритм ве-
рификации, описанный в разделе 4.1. предлагает более релевантный кластер.
На рис. 5.11 изображен пример переноса документов в их алгоритмические кла-
стеры.
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Рис. 5.10. Иерархическая визуализация несоответствий с малыми штрафа-
ми γ = 0.5.

5.3. Иерархическая классификация веб-сайтов индустриального
сектора

Для выявления компаний индустриального сектора, работающих в опреде-
ленной сфере, была построена экспертная система, позволяющая определять
для заданного веб-сайта компании наиболее релевантные сферы, используя
экспертную кластерную структуру и набор уже размеченных экспертами веб-
сайтов.
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Рис. 5.11. Перенос документов.

Описание данных. Рассматривалась коллекция из 1036 веб-сайтов ин-
дустриального сектора, разбитая экспертами на 11 индустрий и 78 подинду-
стрий [123]. Каждый веб-сайт был представлен в виде набора HTML докумен-
тов. Данная структура представлена в виде дерева на рис. 5.12.

Для получения матрицы документ признак все HTML-документы, соответ-
ствующие одному сайту, объединялись в один. Из полученного документа уда-
лялись все специальные символы и теги разметки после чего использовалась
процедура предобработки текстовых документов, описанная в разделе 5.1. В
результате была получена предобработанная коллекция с экспертной иерархи-
ческой тематической моделью:

1) размер коллекции |D| = 1036 документов,
2) размер словаря |W | = 18775 слова,
3) число кластеров второго уровня K2 = 11,
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Рис. 5.12. Экспертная иерархическая структура коллекции сайтов индустри-
ального сектора.

4) число кластеров третьего уровня K3 = 78.

Результаты классификации сайтов индустриального сектора. Кол-
лекция разбивалась на обучающуюDV и тестовуюDT в пропорции 3 : 1. Опера-
торы релевантности R (3.14), основанные на иерархической функции сходства
hSim (3.12) и алгоритмах svm и hNB, описанных в разделе 1.9., настраивались
по выборке DV , после чего оценивалось их качество AUCH (3.17). В таблице 5.3
приведены соответствующие значения AUCH. Для плоской кластеризации svm
показал наилучший результат, для задачи иерархической классификации, опе-
ратор релевантности, построенный с помощью иерархической функции сход-
ства hSim, показал наилучший результат.

На рис. 5.13 показаны соответствующие результатам из таблицы 5.3 огиба-
ющие кумулятивных гистограмм (3.16) для плоской и иерархической класси-
фикации выборки DT с помощью данных алгоритмов.
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Таблица 5.3. Значения функционала качества AUCH (3.17) для операторов ре-
левантности, построенных с помощью сравниваемых алгоритмов.

``````````````````````̀Алгоритм

Тип
классификации Плоская Иерархическая

svm 0.86 0.83
hNB 0.80 0.83
hSim 0.83 0.89
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б. Случай иерархической классифика-
ции.

Рис. 5.13. Огибающие кумулятивных гистограмм операторов релевантно-
сти R(·), построенных с помощью алгоритмов svm, hNB, hSim.
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Заключение

Основные результаты диссертационной работы заключаются в следующем.
В главе 1 введены основные понятия, поставлены задачи иерархической кла-

стеризации и классификации и разобраны основные этапы построения иерар-
хических тематических моделей коллекции документов: методы предобработки
текстовых документов, методы составления словаря коллекции, методы пред-
ставления слов и документов в виде векторов действительного пространства
и методы иерархической кластеризации и классификации, включающие в се-
бя алгоритмы построения жестких, вероятностных, описательно-вероятностных
моделей и смесей моделей.

В главе 2 проанализированы способы векторного представления документа
с помощью булевых, целочисленных и частотных признаков слов. Для класте-
ризации полученных векторов использована взвешенная метрика на базе рас-
стояния Минковского. Предложен способ оценки качества этой метрики в зави-
симости от весов и алгоритм построения локально оптимального набора весов.
Проведено сравнение агломеративного и дивизимного подходов иерархической
кластеризации. Свойства алгоритмов анализировались при решении задачи по-
строения плоской и иерархической кластерной модели коллекции аннотаций к
докладам крупной конференции.

В главе 3 предложена взвешенная функция сходства документа и класте-
ра, учитывающая информативность слов в задачах кластеризации и класси-
фикации. Предложен алгоритм оптимизации параметров взвешенной функции
сходства, использующий энтропию слов относительно экспертной кластериза-
ции на различных уровнях иерархии. Предложен иерархический вариант взве-
шенной функции сходства, позволяющий вычислять сходство документа с вет-
кой экспертной иерархической кластерной структуры, как сходство с кластером
нижнего уровня, а также со всеми его родительскими кластерами с заданны-
ми весами. Для классификации нового документа предложен оператор реле-
вантности, возвращающий ранжированный список кластеров нижнего уровня
по убыванию их релевантности этому документу. Предложен метод иерархиче-
ской классификации на основе данного оператора. Для оценки качества опе-
ратора релевантности введен критерий качества AUCH. Предложена вероят-
ностная модель иерархической классификации, построена вероятностная мо-
дель коллекции, разработан способ оценки вероятности принадлежности доку-
мента кластеру нижнего уровня с помощью иерархической функции сходства.
Предложен алгоритм оптимизации параметров и гиперпараметров вероятност-
ной модели, максимизирующий ее правдоподобие по размеченным документам.
Для случая, когда на параметры модели накладываются априорные распреде-
ления, получена аппроксимация апостериорного распределения параметров, а
также совместного апостериорного распределения параметров и классов нераз-
меченных документов. Получены аналитические оценки вероятности принад-
лежности неразмеченных документов кластерам нижнего уровня экспертной
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иерархической структуры. Предложен способ учета синонимичности слов с по-
мощью векторных представлений слов.

В главе 4 рассмотрена задача верификации экспертной тематической мо-
дели. Введен функционал качества экспертной модели. Предложен неметриче-
ский алгоритм построения иерархической тематической модели, схожей с экс-
пертной, изменяющий класс документа в экспертной модели, если при этом
прирост качества больше заданного штрафа за такое изменение. Предложен
критерий выбора соотношения штрафов за различные виды переносов.

В главе 5 проведен анализ свойств предложенных методов. Описан реализо-
ванный программный комплекс, классифицирующий аннотации докладов круп-
ной конференции EURO с помощью экспертных тематических моделей прошед-
ших конференций. Построена экспертная система, позволяющая классифициро-
вать веб-сайты компаний индустриального сектора. Проведено сравнение пред-
ложенных алгоритмов с известными решениями. Предложенные алгоритмы по-
казали более высокие результаты. Для визуализации результатов верификации
экспертной модели предложен метод вложенной визуализации иерархической
модели на плоскости. На полученном изображении модели выделялись выяв-
ленные тематические несоответствия и предлагались способы их устранения.
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Список основных обозначений

Матрицы обозначены заглавными жирными буквами, векторы — жирными
прописными буквами.
d — текстовый документ
D — коллекция документов
w — слово, любой неразрывный набор символов. w1w2 . . . wn – словосочетание,
состоящее из слов w1, w2, . . . , wn
W — словарь коллекции, содержащий различные слова w и словосочета-
ния w1w2 . . . wn из документов коллекции D
N(w1w2 . . . wn, D) — число слов или словосочетаний w1w2 . . . wn в множестве
из одного или нескольких документов D
N(t,D) — число документов с темой t в коллекции D
w(w) — представление слова w в виде вектора
x — представление документа d в виде вектора
M — тематическая модель
h — число уровней в сбалансированной иерархической модели
Kl — число кластеров на уровне l в тематической модели
cl,k — кластер на уровне l с порядковым номером k среди кластеров данного
уровня
c(x) — экспертный кластер документа x на уровне h
ĉ(x) — алгоритмический кластер документа x на уровне h
Z — матрица экспертной классификации, znk = [xn ∈ ch,k]
µ(cl,k) — вектор центра кластера cl,k, µl,k – средний вектор родительского
кластера на уровне l кластера нижнего уровня ch,k.
Mk = [µ1,k, . . . ,µh,k] – матрица центров родительских кластеров для кластера
нижнего уровня ch,k
r(cl,k) — радиус кластера cl,k
r̂(cl,k) — радиус кластера cl,k на плоскости
Bh−l(ch,k) — родительский кластер кластера ch,k на уровне l
λm — важность слова с номером m из словаря W
Λ — матрица важности слов
Hl(w) — энтропия слова w относительно экспертной кластеризации на уровне l
α — вектор структурных параметров энтропийной модели оценки важности
слов по экспертной кластеризации
sw(w1, w2) — сходство слов w1 и w2

s(x,y) — сходство документов x и y
s(x, cl,k) — сходство документа x и кластера cl,k
sh(xn, ch,k) — иерархическое сходство документа xn и кластера нижнего
уровня ch,k, сокращенное обозначение – sn,k
sn = [sn,1, . . . , sn,Kh

]T – вектор значений иерархического сходства документа xn
со всеми кластерами нижнего уровня
sc(cl,k, cl,k′) — сходство кластеров cl,k и cl,k′
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ρ(λ,x,y) — взвешенное расстояние между документами x и y
θ — вектор параметров модели
tf(w,D) — частота слова w в одном или нескольких документах D
idf(w,D) — обратная частота слова w в документах коллекции D
q — аппроксимация апостериорного распределения параметров или совмест-
ного апостериорного распределения параметров и классов неразмеченных
документов
L(q) — нижняя граница распределения p(Z)
ξn — вектор вариационных параметров, соответствующий оценке функции
softmax в точке sn
R(x) — оператор релевантности, возвращающий ранжированный список
кластеров нижнего уровня в порядке убывания их релевантности документу x
AUCH(R) — критерий качества оператора релевантности, площадь под огиба-
ющей кумулятивной гистограммы
Q(R) — средняя позиция экспертного кластера в перестановках, возвращаемых
оператором релевантности R
Ξ(M) — качество иерархической тематической модели как взвешенная сумма
средних внутрикластерных и межкластерных сходств
υ(x,M, M̂) — ошибка классификации документа x в построенной алгоритми-
ческой модели M̂ относительно экспертной модели M
Υ(M, M̂) — расстояние между экспертной моделью M и алгоритмической
моделью M̂
V (ρ) — функция качества метрики ρ
I — индексы документов коллекции D. V , T — индексы документов для
обучения и тестирования модели соответственно.
pos(q, k) — позиция числа k в перестановке q
F — матрица штрафов
γ — весовой множитель матрицы штрафов
δ — элемент F, штраф за перенос документа
e(k) — единичный вектор, с единицей на позиции k
R — множество действительных чисел
| · | — число элементов в множестве
[i = j] — индикаторная функция
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Probabilités de Saint-Flour XIII — 1983. — Springer Berlin Heidelberg, 1985.
— Vol. 1117 of Lecture Notes in Mathematics. — Pp. 1–198.

111. Johnson Norman L., Kotz Samuel. Urn Models and Their Applications: An
Approach to Modern Discrete Probability Theory. — New York: Wiley, 1977.

112. Li Wei, McCallum Andrew. Pachinko Allocation: DAG-structured Mixture
Models of Topic Correlations // Proceedings of the 23rd International
Conference on Machine Learning. — ICML ’06. — New York, NY, USA:
ACM, 2006. — Pp. 577–584.

113. An Introduction to MCMC for Machine Learning / Christophe Andrieu,
Nando de Freitas, Arnaud Doucet, MichaelI. Jordan // Machine Learning.
— 2003. — Vol. 50, no. 1-2. — Pp. 5–43.

114. Mardia K. V., Jupp. P. Directional Statistics (2nd edition). — John Wiley
and Sons Ltd., 2000.

115. Dhillon Inderjit S., Sra Suvrit. Modeling Data using Directional Distributions:
Tech. Rep. TR-03-06: The University of Texas, Department of Computer
Sciences, 2003.

116. Константинов Р. В. Функциональный анализ. Курс лекций. — Долго-
прудный: МФТИ, 2009.

117. Stochastic Variational Inference / Matthew D. Hoffman, David M. Blei,
Chong Wang, John Paisley // J. Mach. Learn. Res. — 2013. — Vol. 14,
no. 1. — Pp. 1303–1347.

118. Gibbs M. Bayesian Gaussian Processes for Regression and Classification: Ph.D.
thesis. — 1997.

119. Collection of EURO and IFORS abstracts. — URL: https://sourceforge.net/
p/mlalgorithms/code/HEAD/tree/PhDThesis/Kuzmin/Data/EURO/. (last
checked: 26.09.2016).

120. Loper Edward, Bird Steven. NLTK: The Natural Language Toolkit //
Proceedings of the ACL Workshop on Effective Tools and Methodologies
for Teaching Natural Language Processing and Computational Linguistics.
— Philadelphia: 2002. — Pp. 62–69.

121. Miller George A.WordNet: A Lexical Database for English // Commun. ACM.
— 1995. — Vol. 38, no. 11. — Pp. 39–41.

122. Porter M. F. Readings in Information Retrieval. — San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1997. — Pp. 313–316.



120

123. Collection of industry sector websites. — URL: https://sourceforge.net/
p/mlalgorithms/code/HEAD/tree/PhDThesis/Kuzmin/Data/Industry_Sector/.
(last checked: 26.09.2016).


