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ВВЕДЕНИЕ

В современной математике, в отличие от математики начала XX века, по-

явилось большое количество новых направлений, широко применяемых на

практике [38]. К ним, например, можно отнести и дискретную математику.

Данная дисциплина – это ряд математических теорий, не связанных непо-

средственно с концепцией предельного перехода и непрерывности. В настоя-

щее время дискретная математика является одним из интенсивно развиваю-

щихся разделов математики. Это связано с повсеместным распространением

кибернетических систем, языком описания которых она является. Кроме то-

го, дискретная математика является теоретической базой информатики, ко-

торая все глубже проникает не только в науку и технику, но и в повседневную

жизнь [8,38] в тех областях, которые так или иначе связаны с моделированием

мышления, и в первую очередь в вычислительной технике и программирова-

нии.

Среди дисциплин дискретной математики видное место занимает теория

графов. Данная теория родилась при решении головоломок [38] и в настоя-

щее время играет важную роль как для теоретических исследований, так и

для разнообразных приложений. Практическая роль теории графов особенно

возросла во второй половине ХХ века в связи с проектированием различных

АСУ и вычислительных устройств дискретного действия, а в начале XXI ве-

ка – в связи с развитием Интернета и социальных сетей [97]. В теоретическом

же плане, помимо давнишних связей с комбинаторной топологией и геомет-

рией, наметились существенные сдвиги на стыке теории графов с алгеброй,

математической логикой, лингвистикой, теорией игр, общей теорией систем

[18] и др.

Дискретные математические модели получили широкое распространение

в науке, технике, экономике, военном деле и т.д. Это связано с тем, что такие

модели имеют большое число интерпретаций и многочисленные и разнооб-
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разные дискретные задачи, как правило, могут быть описаны немногочис-

ленными комбинаторными моделями [37]. В свою очередь, их исследование

и решение прикладых дискретных задач привело к развитию теоретической

информатики и существенным продвижениям в ней.

Известно, что первой работой по теории графов как математической дис-

циплине считается статья Эйлера (1736 г.), в которой рассматривалась задача

о Кенигсбергских мостах. Эйлер показал, что нельзя обойти семь городских

мостов и вернуться в исходную точку, пройдя по каждому мосту ровно один

раз. Следующий импульс теория графов получила лишь спустя почти 100

лет с развитием исследований по электрическим сетям, кристаллографии,

органической химии и другим наукам.

В настоящее время интенсивно развивается раздел теории графов, касаю-

щийся построения маршрутов, удовлетворяющих специальным ограничени-

ям: эйлеровы и гамильтоновы циклы; маршруты, избегающие запрещенных

переходов; самонепересекающиеся и непересекающиеся цепи; бинаправлен-

ные двойные обходы и т.д. [53].

Одной из работ по специальным вопросам эйлеровых графов является

монография Г.Фляйшнера «Эйлеровы графы и смежные вопросы» [109,118],

где систематизировано и достаточно подробно рассмотрены некоторые виды

эйлеровых цепей, например, цепи, не содержащие запрещенных переходов,

попарно-совместимые эйлеровы цепи, A-цепи в графах.

Имеется ряд журнальных публикаций других авторов, в которых также

рассматриваются задачи, посвященные эйлеровым цепям специального вида

[133], например, расширение класса запрещенных переходов [157], самоне-

пересекающиеся и непересекающиеся цепи [9, 132], бинаправленные двойные

обходы [109, 118], маршруты Петри [160], прямолинейные маршруты [156],

реберно-упорядоченные маршруты [113] и т.д.

Многие задачи нахождения маршрутов, удовлетворяющих определенным

ограничениям, появились из конкретных практических ситуаций. Например,
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в задачах раскроя листового материала моделью раскройного плана яв-

ляется плоский граф, а маршрут, покрывающий все ребра, определяет тра-

екторию движения режущего инструмента. Ограничением является от-

сутствие пересечения внутренних граней любой начальной части маршрута с

ребрами его оставшейся части [133, 135]. При построении систем управления

манипуляторами с помощью неориентированного графа отображают всевоз-

можные элементы траектории манипулятора. При этом возникают пробле-

мы построения маршрутов, удовлетворяющих различным ограничениям, на-

пример: прямолинейных маршрутов [156]; маршрутов, в которых следующее

ребро определяется заданным циклическим порядком на множестве ребер,

инцидентных текущей вершине [117,118]; маршрутов, в которых часть ребер

следует пройти в заданном порядке [117].

Интерес к задачам маршрутизации объясняется их использованием в ка-

честве математических моделей многих проблем управления и автоматизации

проектирования.

Например, задача линейного упорядочения вершин параллельно-

последовательных графов возникает в задаче размещения объектов с учетом

связей между ними (проектирование расположения технологического обору-

дования нефтехимического предприятия). Технологическая схема производ-

ства задает порядок обработки сырья. Требуется разместить единицы обору-

дования таким образом, чтобы суммарная стоимость трубопроводных связей

была минимальной [17].

В [6] cформулирована задача определения оптимальных путей в потоко-

вой сети, когда элементарные требования на организацию потоков продуктов

между полюсами возникают последовательно. В статье указано принципи-

альное отличие этой задачи от классической многопродуктовой проблемы

и предложены два алгоритма решения задачи и получены вычислительные

процедуры нахождения оптимальных путей. В работе [5] рассматривается

моделирование двухуровневой маршрутизации в задаче последовательного
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заполнения сети потоками продуктов, производится сравнение результатов

работы одно- и двухуровневых алгоритмов на сетях с кластерной и стохасти-

ческой топологий по таким параметрам, как время работы имитационного

моделирования и суммарное количество проведенного потока.

Для планирования и оперативного управления выбора маршрута достав-

ки решается задача, основанная на представлении совокупности типовых

состояний системы в виде узлов графа, переходы которого соответствуют

управляющим решениям нечеткой ситуационной сети [107].

Математическая модель выбора оптимального маршрута между различ-

ными объектами, фиксированными как вершины ориентированного графа,

вообще, является одной из самых исследуемых областей [39,101].

На основе автоматического построения обхода графа возможно исследо-

вание эффективности генерации тестов. Здесь необходимо построение марш-

рута, проходящего через все дуги графа [4].

С помощью модифицированного метода Дейкстры удается построить оп-

тимальные маршруты в беспроводных эпизодических сетях [23]. Для поиска

эффективных и полуэффективных решений на графах с векторными весами

ребер используется метод сверток. В качестве ограничений применены кри-

терий общей загрузки сети, показатель относительной нагрузки на канал и

длина маршрута.

При решении задачи маршрутизации при распределении пассажирских и

транспортных потоков [104], учитывающей специфику перемещений пасса-

жиров в крупных городах, необходимо правильно описать поведение пасса-

жира при выборе им пути следования. На его поведение оказывает влияние

множество факторов. Для обеспечения единого информационного простан-

ства задач в [104] предлагается использовать специальный граф, который

представляет собой систему всех возможных перемещений в пределах города

или граф путей сообщения (представляющего собой объединение подграфов

метрополитена, железной дороги, пеших перемещений, автомобильных до-
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рог и пр.). Все дуги данного графа обладают конечным жизненным циклом:

каждый элемент графа характеризует момент создания и момент пометки на

удаление. Такая организация хранения данных предоставляет возможность

отслеживать изменения городской ситуации и генерировать варианты срезов

ситуации на расчетный период времени [7].

Рациональный раскрой материалов является одним из путей решения та-

кой сложной комплексной проблемы как экономия материалов. В 1951 г. вы-

шло первое издание монографии [19], в которой впервые рассмотрены вопро-

сы применения линейного программирования для оптимального гильотинно-

го раскроя (т.е. построения раскройного плана с определением последователь-

ности сквозных резов на гильотине). В Уфимской научной школе раскроя-

упаковки была разработана промышленная система технологической подго-

товки процессов гильотинного раскроя [41]. Развитие автоматизации произ-

водства привело к появлению технологического оборудования с числовым

программным управлением (ЧПУ), используемого для резки листовых мате-

риалов: машин газовой (кислородной), плазменной, лазерной и электроэро-

зионной резки материала. Новые технологии позволяют осуществлять выре-

зание по произвольной траектории с достаточной для практики точностью.

Снятие требования резки только сквозными прямолинейными резами поз-

воляет существенно снизить отходы материала, в связи с этим появилось мно-

жество публикаций, посвященных вопросам негильотинного раскроя и его оп-

тимизации в различных производствах и на разных уровнях автоматизации.

Подробный обзор задач раскроя, алгоритмов и методов их решения специа-

листами уфимской научной школы приведен в работе А.С. Филипповой [108].

Для промышленных и проектных предприятий, связанных по роду дея-

тельности с задачами раскроя-упаковки, возникает необходимость исполь-

зования автоматизированных систем технологической подготовки процес-

сов раскроя плоских деталей. Обычно подобные системы имеют модульную

структуру. Каждый модуль такой системы позволяет автоматизировать неко-
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торый этап. Учет технологических ограничений позволяет формализовать

и решать задачу оптимизации маршрута движения режущего инструмента,

что, в свою очередь, может привести к существенной экономии ресурсов. В

зависимости от количества вырезаемых деталей, типа материала, количества

точек врезки и прочих параметров, характеризующих процесс раскроя, ти-

пичный процесс вырезания может занимать от нескольких минут до несколь-

ких часов. Так, совмещение границ контуров вырезаемых деталей позволяет

сократить длину реза и количество точек врезки, перемещение инструмента

между точками врезки также зависит от составленного раскройного плана

и выбранной траектории движения режущего инструмента и должно быть

минимизировано [114,115].

В настоящее время имеется потенциальная возможность применения тех-

нологий, допускающих совмещение границ вырезаемых деталей. Эти техно-

логии позволяют сократить расход материала, длину резки, и длину и коли-

чество холостых проходов. Однако разработка алгоритмов решения задачи

маршрутизации для этого случая является открытой задачей.

В [25,128] показано, что с точностью до гомеоморфизма раскройный план

можно представить в виде плоского графа, поэтому задача маршрутизации в

плоских графах является актуальной. Для решения данной проблемы отсут-

ствуют соответствующая формальная постановка в терминах задачи постро-

ения маршрута в плоском графе и, как следствие, эффективные алгоритмы

определения рациональных траекторий. Недостаточность исследований в об-

ласти разработки алгоритмов маршрутизации инструмента по стоимостным

критериям (например, по затратам электроэнергии при резке), а также по

суммарному времени резки при использовании нестандартных техник резки

отмечается во многих работах, в частности в [105,114,115].

Цели и задачи исследования

Предмет исследования – задачи маршрутизации специального вида в

плоском графе. Основными объектами исследования являются: плоский
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граф, представляющий гомеоморфный образ раскройного плана; алгоритмы

построения маршрутов специального вида, удовлетворяющих технологиче-

ским ограничениям.

Методы исследования. В диссертационной работе для решения задачи

маршрутизации в графе, полученном в результате абстрагирования раскрой-

ного плана использован современный аппарат теории графов.

Целью диссертационного исследования является решение проблемы

маршрутизации специального вида в плоских графах, являющихся гомео-

морфными образами раскройного плана.

Для достижения поставленной цели была поставлены и решались следу-

ющие задачи:

\bullet определить способ представления гомеоморфного образа раскройного

плана, позволяющего эффективно решать проблемы маршрутизации;

\bullet доказать существование маршрутов, удовлетворяющих набору ограни-

чений, для плоских графов;

\bullet разработать методы и алгоритмы решения проблемы построения марш-

рутов специального вида в плоских графах;

\bullet доказать корректность разработанных алгоритмов;

\bullet разработать программное обеспечение для реализации представленных

алгоритмов;

\bullet получить оценки количества полученных маршрутов специального ви-

да.

Научная новизна полученных в диссертации результатов заключается

в формировании общего подхода к решению задач маршрутизации специаль-

ного вида в плоских графах и состоит в следующем.

\bullet Введен класс OE-маршрутов в плоских графах. Маршруты введенного

класса удовлетворяют требованию отсутствия пересечения внутренних

граней пройденной части маршрута с ребрами его непройденной части.
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Доказано, что минимальное число OE-цепей, покрывающих граф, сов-

падает с минимальным числом цепей, покрывающих данный граф.

\bullet Доказано, что плоские эйлеровы графы имеют эйлеровы циклы, при-

надлежащие классу OE.

\bullet Введен класс AOE-маршрутов в плоских графах. Маршруты введен-

ного класса, как и в классе OE удовлетворяют требованию отсутствия

пересечения внутренних граней пройденной части маршрута с ребра-

ми его непройденной части, но на них наложено дополнительное ло-

кальное ограничение: следующее ребро определяется заданным цикли-

ческим порядком на множестве ребер, инцидентных текущей вершине

(т.е. построенная цепь является A-цепью).

\bullet Введен класс NOE-маршрутов в плоских графах. Этот класс является

расширением класса AOE и в него входят все непересекающиеся OE-

цепи.

\bullet Разработаны эффективные алгоритмы нахождения в плоском графе

G = (V,E) маршрутов введенных классов, имеющие полиномиальную

вычислительную сложность. Данные алгоритмы позволяют минимизи-

ровать длину дополнительных переходов между концевыми вершинами

цепей графа G = (V,E).

\bullet Определены оценки количества OE-цепей для фиксированной системы

переходов (последовательности обхода ребер).

Теоретическая ценность. Полученные теоретические результаты поз-

воляют расширить класс задач построения маршрутов специального ви-

да, ориентированных на использование ресурсоберегающих технологий, и

являются продолжением исследований Г. Фляйшнера, М.А. Верхотурова,

Э.А. Мухачевой, А.А. Петунина и позволяют решать задачу построения

маршрутов специального вида.

Практическая ценность заключается в разработке новых и совершен-

ствовании существующих методов и средств анализа данных и управления
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системами CAD/CAM, повышения эффективности надежности и качества

этих систем. Разработанные алгоритмы могут быть применены в проекти-

ровании программ вырезания деталей по заданному раскройному плану с

использованием ресурсосберегающих технологий. Предложенная теория да-

ет новый импульс для построения новых методов решения задач раскроя.

Появляются новые требования к раскройным планам.

Достоверность результатов, полученных в диссертационной работе,

базируется на использовании апробированных научных положений, методов

исследования, корректном применени математического аппарата, согласова-

нии новых научных результатов с известными теоретическими положениями.

Новизна и результативность предложенных алгоритмов подтверждены сви-

детельствами о регистрации программ.

Новизна и результативность предложенных алгоритмов подтверждены

публикациями и свидетельствами о регистрации программ [34,35,80–83].

Апробация работы. Все результаты диссертационной работы, разра-

ботанные методы, алгоритмы и результаты вычислительных экспериментов

докладывались и получили одобрение на следующих международных, все-

российских и региональных конференциях.

1. 8th MIM Conference, Manufacturing Modelling, Management and Control

(Troyes, France, 28–30 июня, 2016).

2. 15-я Международная конференция «Системы проектирования техноло-

гической подготовки производства и управления этапами жизненного

цикла промышленного продукта(CAD/CAM/PDM-2015)» (Москва, 26–

28 октября, 2015).

3. Международная научно-техническая конференция «Пром-Инжини-

ринг» (Челябинск, 2015–2016).

4. International Conference «Information Technologies for Intelligent Decision

Making Support» (2013, 2015, 2016).

13



5. 2nd International conference ”Intelligent Technologies for Information

Processing and Management” (ITIPM-2014, Уфа, 10–12 ноября, 2014).

6. 5th International conference ”Optimization and Applications” (Optima-

2014, Petrovac, Montenegro, Sep. 27–Oct.4, 2014).

7. Workshop on Computer Science and Information Technologies (2003, 2008,

2010, 2011, 2013).

8. Czech-Slovak International Symposium on Graph Theory, Combinatorics,

Algorithms and Applications (2006, 2013).

9. Международная конференция «Дискретная оптимизация и исследова-

ние операций» (2010, 2013, 2016).

10. Третья Международная конференция «Математическое моделирова-

ние, оптимизация и информационные технологии» (Кишинев, Молдова,

2012 г.).

11. Международная конференция «Информационные технологии и систе-

мы», респ. Башкортостан, оз. Банное, (2012–2016).

12. Всероссийская конференция «Статистика. Моделирова-

ние.Оптимизация» (Челябинск, 28 ноября – 2 декабря, 2011 г.).

13. Международная научно-практическая конференция «Современные ин-

формационные технологии и ИТ-образование», Москва, МГУ им. М.В.

Ломоносова, (2011–2013).

14. XIV Всероссийская конференция «Математическое программирование

и приложения», Екатеринбург, (2011 и 2015).

15. 8th French Combinatorial Conference, Orsay, France (June,28–July,2, 2010).

16. X Международный семинар «Дискретная математика и ее приложе-

ния» (Москва, МГУ им. М.В. Ломоносова, 2001, 2004, 2010, 2016 г.)

17. Международная научная конференция «Дискретная математика, ал-

гебра и их приложения», Минск, Институт математики НАН Беларуси,

(2009 и 2015).
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18. IV Всероссийская конференция «Проблемы оптимизации и экономиче-

ские приложения» (Омск, 2003, 2009).

19. 13-th IFAC Symposium on Information Control Problems in Manufacturing,

Moscow, 2009.

20. X Белорусская математическая конференция, Минск, Институт мате-

матики НАН Беларуси, 3–7 ноября 2008 г.

21. Научно-практическая конференция «Обратные задачи в приложениях»,

Бирск, БирГСПА, 2008.

22. Международная научная конференция «Информационно-математичес-

кие технологии в экономике, технике и образовании», Екатеринбург,

УГТУ-УПИ, (2007–2008).

23. International meeting «Euler and Modern Combinatorics», St. Petersburg,

June 1–7, 2007.

24. 6-th International Congress on Industrial and Applied Mathematics, Zurich,

16–20 July, 2007.

25. Молодежная конференция «Проблемы теоретической и прикладной ма-

тематики», Екатеринбург, ИММ, УрО РАН, (2005–2009).

26. Российская конференция «Дискретный анализ и исследование опера-

ций», Новосибирск, Институт математики им. С.Л. Соболева СО РАН,

2002, 2004).

27. XIII Международная конференция «Проблемы теоретической кибер-

нетики», МГУ им.М.В.Ломоносова, Институт прикладной математики

им.М.В.Келдыша РАН, ННГУ им. Н.И. Лобачевского, КазГУ, (1999,

2002).

28. Второй международный конгресс студентов, аспирантов и молодых уче-

ных «Молодежь и наука – третье тысячелетие», Москва, МГТУ им. Н.Э.

Баумана, 15–19 апреля, 2002 г.

29. XI Соревнование молодых ученых Европейского Союза, Греция, 19–26

сентября, 1999 г.
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30. Российская молодежная инженерная выставка «Шаг в будущее»,

Москва, МГТУ им. Н.Э. Баумана, 9–13 марта, 1999 г.

Кроме того, результаты работы были представлены на ежегодных научно-

практических конференциях Южно-Уральского государственного универси-

тета.

Публикации. По материалам проведенных исследований опубликовано

84 печатные работы, в числе которых 10 публикаций из списка ВАК [25, 31,

42,56,59,67–69,86,138], 6 публикаций, индексируемых в SCOPUS [126,128,138,

141–143] (статья [141] является переводом на английский язык статьи [69]) и

6 свидетельств о регистрации программного продукта [34,35,80–83].

Структура и объем работы. Диссертация состоит из введения, шести

глав, заключения, списка использованной литературы (160 наименований),

двух приложений. Основная часть работы содержит 209 страниц машино-

писного текста, 66 иллюстраций.

В первой главе на основе аналитического обзора литературы, отража-

ющего состояние проблемы применения графов в математическом моделиро-

вании, показано место решаемой в данной работе задачи относительно ранее

опубликованных в научной литературе результатов. С тем, чтобы более четко

очертить круг решаемых в данной работе задач и показать их место в общей

теории графов, приведено краткое описание постановки задачи нахождения

эйлеровых (обход по всем ребрам ровно по одному разу с возвратом в исход-

ную вершину) маршрутов, указаны известные алгоритмы построения эйле-

ровых цепей и отмечено, что эти алгоритмы находят в графе произвольную

эйлерову цепь, на которую не наложено никаких ограничений.

Результаты анализа ограничений различных задач маршрутизации дают

возможность классифицировать их на локальные, когда следующее ребро в

маршруте определяется условиями, заданными в текущей вершине или на

текущем ребре (цепи, избегающие запрещенных переходов; А-цепи; прямоли-
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нейные цепи), и на глобальные (маршруты Петри, бинаправленные двойные

обходы и т.п.).

Анализ публикаций показал, что большинство работ посвящено алгорит-

мам с локальными ограничениями на порядок обхода ребер (например, запре-

щение левых поворотов; маршруты без поворотов; использование в каждой

вершине графа заданного циклического порядка включения ребер в маршрут

и т.п.). Обобщение большинства частных случаев задачи построения марш-

рутов с локальными ограничениями дано С. Зейдером [157]. Им предложено

представлять локальные ограничения в каждой вершине v исходного графа

G в виде грфа GE(v) возможных переходов. Множеством вершин графа GE(v)

являются все ребра, инцидентные вершине v; смежные вершины графа GE(v)

соответствуют разрешенным переходам.

Проблемы построения допустимого маршрута или множества маршрутов,

покрывающих все ребра исходного графа, не освещены в рассмотренных ис-

точниках. Их решение приведено в диссертационном исследовании.

Среди публикаций, посвященных задачам маршрутизации с глобальны-

ми ограничениями, не удалось найти каких-либо результатов о маршрутах

с запрещенными последовательностями ребер. Задача построения маршру-

тов в плоских графах, у которых отсутствует пересечение внутренних граней

пройденной части маршрута с ребрами его непройденной части в связных и

несвязных графах не рассмотрена в исследованной автором литературе, то же

самое можно сказать и про задачу построения A-цепей, в которых отсутству-

ет пересечение внутренних граней пройденной части с ребрами непройденной

части.

Во второй главе проанализированы задачи построения допустимого

маршрута или множества маршрутов, покрывающих все ребра исходного гра-

фа. Предполагается, что ограничения на маршруты удовлетворяют услови-

ям теоремы С. Зейдера [157]. Отмечена связь графов переходов с поняти-

ем системы разбиения графа, используемой Г. Фляйшнером [109]. На основе
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установленной связи построен алгоритм «РАЗМЕТКА» для распознавания

выполнения условий теоремы С. Зейдера и алгоритм «PG-СОВМЕСТИМЫЙ

ПУТЬ» для построения допустимого пути [56,151].

Сложность алгоритмов не превосходит величины O(| E| ), где E – число

ребер графаG. Приведены примеры использования построенных алгоритмов,

рассмотрена техника программной реализации данных алгоритмов [59,83].

Заметим, что с помощью алгоритма нахождения PG-совместимого пути

возможно построение только простой цепи между двумя различными верши-

нами (т.е. цепи, в которой любая ее вершина встречается в ней ровно один

раз).

Построен также алгоритм «PG-СОВМЕСТИМЫЙ МАРШРУТ» для на-

хождения эйлерова покрытия графа G допустимыми маршрутами. Алгоритм

является рекурсивным и имеет вычислительную сложность O(| E| \cdot | V | ) [56].

Алгоритмы, рассмотренные во второй главе, имеют самостоятетьный тео-

ретический интерес, реализованы в виде программ для ЭВМ [83] и могут быть

использованы для решения ряда практических задач. Однако, наложенные

на порядок обхода ограничения носят локальный характер, т.е. присутству-

ют ограничения на последовательности из двух ребер, инцидентных общей

вершине. Поэтому открытой остается задача построения маршрутов с ограни-

чениями на использование в маршрутах более длинных последовательностей

ребер. По-видимому, алгоритмы решения таких задач должны существенным

образом использовать их специфику.

В третьей главе поставлена и решена задача построения в плоском гра-

фе маршрутов, удовлетворяющих условию отсутствия пересечения внутрен-

них граней любой его начальной части с ребрами его оставшейся части. Фор-

мально такие маршруты определены как упорядоченная последовательность

OE-цепей графа G = (V,E) [135].

Сформулирована и доказана теорема существования OE-цикла в плос-

ком эйлеровом графе [86, 137], OE-маршрута с минимальным по мощности
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множеством цепей [142], OE-маршрута с минимальным по мощности множе-

ством цепей и минимальной длиной этих цепей [67]. Приведены алгоритмы

решения задачи для общего случая: плоского несвязного графа [27]. Доказа-

тельства данных результатов конструктивны и фактически сводятся к опи-

санию и доказательству результативности алгоритмов построения искомых

циклов (маршрутов).

Рассмотренные алгоритмы реализованы в виде компьютерных программ

[82]–[81], в которых для представления заданного плоского графа G исполь-

зовано задание для каждого ребра e следующих функций: v1(e), v2(e) – вер-

шины, инцидентные ребру e; l1(e), l2(e) – ребра, следующие за e при его вра-

щении против часовой стрелки вокруг вершин v1(e) и v2(e) соответственно.

Анализ сложности построенных алгоритмов показывает, что поставленную

задачу можно решить за полиномиальное время.

В четвертой главе решена задача построения A-цепей с упорядоченным

охватыванием для плоского связного 4-регулярного плоского графа (AOE-

цепи) [28, 32]. Также доказано, что для существующей системы переходов,

которая соответствует некоторой A-цепи, можно построить OE-цепь. Введен

класс NOE-маршрутов в плоских графах. Этот класс является расширени-

ем класса AOE и в него входят все непересекающиеся OE-цепи [30]. По-

казано, что число OE-цепей, соответствующих фиксированной системе пе-

реходов, равно удвоенному числу вершин графа, смежных внешней грани

[31]. Разработан и запрограммирован алгоритм поиска AOE-цепи в плоском

4-регулярном графе [35, 36]. Показано, что алгоритм решает задачу за поли-

номиальное время.

В пятой главе рассмотрены разработанные программные средства для

построения OE-цепей и покрытий, а также AOE-цепей для 4-регулярных

графов [35,80–82].

С помощью разработанного программного обеспечения возможно проте-

стировать работу всех рассмотренных в главах 3 и 4 алгоритмов. Программ-
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ное обеспечение позволяет вводить/выводить данные в текстовом и графи-

ческом формате, просматривать результат работы алгоритмов в динамике

(анимация обхода).

Представлен алгоритм OrderedEnclosingTest [46], позволяющий прове-

рить соответствие маршрута обхода плоского графа критерию упорядочен-

ного охватывания. В случае нарушения рассмотренного критерия алгоритм

определяет ребро цепи, повлекшее нарушение. Алгоритм может быть при-

менен для повышения надежности программных комплексов, формирующих

управляющие программы для станков раскроя, а так же на этапе тестиро-

вания системы технологической подготовки раскроя в ручном и автоматиче-

ском режиме.

В шестой главе отмечено, что в отличие от гильотинного раскроя, неги-

льотинный раскройный план не дает программу вырезания деталей. Постро-

ение программы управления раскройным автоматом для реализации задан-

ного раскройного плана является самостоятельной задачей. Приведена клас-

сификация задач маршрутизации инструмента машин листовой резки, пред-

ложенная в работах Дж. Хоэфта и У. С. Палекара [121].

Показано, что технологии ECP и ICP за счет возможности совмещения

границ вырезаемых деталей позволяют сократить расход материала, длину

резки, и длину и количество холостых проходов. Проблемы уменьшения от-

ходов материала и максимального совмещения фрагментов контуров выре-

заемых деталей решается на этапе составления раскройного плана.

Отмечено [27,126], что применение технологий ECP и ICP в системе тех-

нологической подготовки процессов раскроя плоских деталей предполагает

следующие этапы.

1. Составление раскройного плана, заключающееся в нахождении тако-

го варианта размещения вырезаемых деталей на прямоугольном листе или

ленте, при котором минимизируются отходы и максимизируется длина сов-

мещенных элементов контуров вырезаемых деталей.
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2. Абстрагирование раскройного плана до плоского графа. Для определе-

ния последовательности резки фрагментов раскоройного плана не использу-

ется информация о форме детали, поэтому все кривые без самопересечений и

соприкосновений на плоскости, представляющие форму деталей, интерпрети-

руются в виде ребер графа, а все точки пересечений и соприкосновений пред-

ставляются в виде вершин графа. Для анализа выполнения технологических

ограничений необходимо введение дополнительных функций на множестве

вершин, граней и ребер полученного графа.

3. Решение задачи построения оптимальных маршрутов с ограничения-

ми, наложенными на порядок обхода ребер. Данные ограничения непосред-

ственно вытекают из технологических ограничений, наложенных на порядок

вырезания деталей: отрезанная от листа часть не должна требовать дополни-

тельных разрезаний, должны отсутствовать пересечения резов, необходимо

оптимизировать длину холостых переходов, минимизировать количество то-

чек врезки и т.д.

4. Составление программы управления процессом раскроя на основе

маршрута, найденного с помощью алгоритма решения абстрагированной

задачи маршрутизации. Выполняется обратная замена абстрактных ребер

плоского графа системой команд раскройному автомату, обеспечивающей

движение по кривым на плоскости, соответствующим форме вырезаемой де-

тали.

Этапы построения раскройного плана и интерпретации найденного марш-

рута в терминах команд раскройному автомату являются общими для всех

технологий и достаточно известны. Реализация второго и третьего этапов

для технологий ECP и ICP возможна применением разработанных в работе

алгоритмов построения OE-покрытий [126].

Для прямоугольного негильотинного раскройного плана разработан эф-

фективный алгоритм его кодировки для применения алгоритмов построения
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OE-маршрутов. Предложен полиномиальный алгоритм построения AOE-

покрытий использующий данную кодировку [68].

В заключении перечислены основные результаты работы.

Работа выполнялась в соответствии с планами госбюджетных НИР

ЮУрГУ (номер гос. регистрации 01.2001 05137) и в рамках соглашения

№14.В37.21.0395 с Министерством образования и науки Российской Федера-

ции от 06 августа 2012 года. Работа поддерживалась грантами РФФИ «Урал»

(проекты 01-01-96401, 10-07-96002-р_урал_а), Грантом Президента РФ МК-

2603.2008.9, Губернаторским грантом Челябинской области р2001урчел-01-04

и грантами губернатора Челябинской области для студентов, аспирантов и

молодых ученых в 2002, 2003, 2013 гг.
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ГЛАВА 1

ПРИМЕНЕНИЕ ГРАФОВ В ЗАДАЧАХ

МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

СИСТЕМ УПРАВЛЕНИЯ

Дискретные математические модели получили широкое распространение

в науке, технике, экономике, военном деле и т.д. Это связано с тем, что такие

модели имеют большое число интерпретаций и многочисленные и разнооб-

разные дискретные задачи, как правило, могут быть описаны немногочис-

ленными комбинаторными моделями [37]. В свою очередь, их исследование и

решение прикладых дискретных задач привело к развитию теории графов.

С помощью графовых моделей формализуется широкий класс задач, на-

чиная от занимательных (задача о кенигсбергских мостах, задача четырех

красок и др.), до ряда серьезных теоретических и прикладных задач элек-

тротехники, физики, химии, топологии и др. Аппарат теории графов исполь-

зуется для построения моделей Интернета и социальных сетей [97]. Моде-

лью Интернета является ориентированный граф, вершинами которого слу-

жат сайты, а ребрами – ссылки. Например, с помощью графа, изображаю-

щего сеть дорог между населенными пунктами, можно определить не только

маршрут проезда от одного до другого пункта, но, если таких маршрутов

окажется несколько, – выбрать в определенном смысле оптимальный (самый

короткий или самый безопасный, самый дешевый или путь, который требует

минимум энергии и т.п.). Для каждой прикладной задачи существуют неко-

торые особенности, которые накладывают определенные ограничения на гра-

фы. Дополнительные ограничения, вызванные практическими требованиями

прикладной задачи, могут быть наложены и на порядок обхода ребер графа.
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В современной дискретной математике созданы и развиваются различные

теории исчисления на графах, которые носят комбинаторный, вероятност-

ный характер, а также ряд других задач (потоки в сетях, задачи о разрезе,

о максимальном потоке и др.). При решении подобных задач используется

алгебраическая техника [8].

В настоящее время теория графов активно развивается. Изучение правил

и законов человеческого мышления обусловило применение методов дискрет-

ной математики в тех областях техники, которые так или иначе связаны с

моделированиием мышления, и в первую очередь в вычислительной технике

и программировании.

Интерес к задачам маршрутизации обусловлен тем, что такие задачи поз-

воляют построить математические модели для многих проблем управления

и автоматизации проектирования. Приведем некоторые из таких задач.

1. Задача линейного упорядочения вершин параллельно-

последовательных графов возникает в задаче размещения объектов с

учетом связей между ними (например, проектирование расположения

технологического оборудования нефтехимического предприятия). В

этом случае технологическая схема производства задает порядок

обработки сырья. Требуется разместить единицы оборудования таким

образом, чтобы суммарная стоимость трубопроводных связей была

минимальной [17].

2. Задача, основанная на представлении совокупности типовых состояний

системы в виде узлов графа, переходы которого соответствуют управ-

ляющим решениям нечеткой ситуационной сети [107], возникает при

планировании и оперативном управлении выбора маршрута доставки.

3. Задача выбора оптимального маршрута между различными объекта-

ми, фиксированными как вершины ориентированного графа, является

распространенной математической моделью для широкого круга иссле-

дуемых областей [39,101].
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4. Задачи автоматического построения обхода графа дают возможность

исследовать эффективность генерации тестов. В этом случае необходи-

мо построение маршрута, проходящего через все дуги графа [4].

5. Модифицированный метод Дейкстры дает возможность построить оп-

тимальные маршруты в беспроводных эпизодических сетях [23]. Для

поиска эффективных и полуэффективных решений на графах с вектор-

ными весами ребер используется метод сверток. В качестве ограничений

применены критерий общей загрузки сети, показатель относительной

нагрузки на канал и длина маршрута.

6. Специальные задачи, которые определяются практической деятельно-

стью. Например, при решении задачи маршрутизации распределения

пассажирских и транспортных потоков [104], учитывающей специфи-

ку перемещений пассажиров в крупных городах, необходимо правиль-

но описать поведение пассажира при выборе им пути следования. На

его поведение оказывает влияние множество факторов. Для обеспече-

ния единого информационного пространства задач в [104] предлагается

использовать специальный граф, который представляет собой систему

всех возможных перемещений в пределах города или граф путей со-

общения (представляющий собой объединение подграфов метрополите-

на, железной дороги, пеших перемещений, автомобильных дорог и пр.).

Все дуги данного графа обладают конечным жизненным циклом: каж-

дый элемент графа характеризует момент создания и момент пометки

на удаление. Такая организация хранения данных предоставляет воз-

можность отслеживать изменения городской ситуации и генерировать

варианты срезов ситуации на расчетный период времени [7].

25



1.1 Основные понятия и определения

В дальнейшем будем использовать терминологию, введенную в моногра-

фиях [18], [109] и [118]. Для цельности изложения приведем понятия и опре-

деления, используемые в данной диссертационной работе.

Обыкновенным графом G = (V,E) будем называть упорядоченную пару

множеств: конечное непустое V , элементы которого называются вершинами

графа G, и подмножество E, элементы которого называются ребрами графа.

Ребро, соединяющее вершины x и y (или, что то же самое, y и x), будем обо-

значать xy. Также говорят, что ребро xy инцидентно каждой из этих вершин

(и наоборот, они обе инцидентны данному ребру). Если не требуется напо-

минать, какие именно вершины соединяет ребро, то его можно обозначать и

одной буквой (e, u и др.). Вершины x, y \in V смежны, если ребро xy \in E, и

несмежны, если xy /\in E.

Часть G\prime = (V \prime , E \prime ) называется подграфом графа G, если E \prime =

\{ xy \in E | x, y \in V \prime \} ; иными словами, при образовании подграфа G\prime из графа

G удаляются все вершины множества V \setminus V \prime и только те ребра, которые инци-

дентны хотя бы одной удаляемой вершине. Таким образом, подграф данного

графа G однозначно определяется заданием непустого подмножества вершин

V \prime или, что равносильно, заданием строгого подмножества W = V \setminus V \prime \subset V

тех вершин, которые надо удалить; в последнем случае будем кратко писать

G\prime = G \setminus W . В частности, при V \prime = V имеем G\prime = G\setminus \emptyset = G.

Граф называется связным, если множество его вершин невозможно так

разбить на попарно непересекающиеся непустые подмножества, чтобы ника-

кие две вершины из разных подмножеств не были бы смежны. Несвязный

же граф однозначно разбивается указанным способом на связные подграфы,

называемые компонентами связности.

В дальнейшем, если не оговорено противное, будем рассматривать только

связные графы.
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Обобщением понятия обыкновенного графа является понятие мультигра-

фа. Под мультиграфом будем понимать упорядоченную тройку G = (V,E, \phi ),

где V \not = \emptyset – множество вершин, E – множество ребер, оба конечные, а

\phi : E \rightarrow V 2 – отображение, относящее каждому ребру e \in E неупорядо-

ченную пару \phi (e) = \~xy вершин x, y \in V , называемых концами этого ребра.

Возможной формой представления графов является матрица инцидент-

ности «вершины/ребра». Строкам данной матрицы соответствуют вершины

графа G, а столбцам – ребра. Если ребро e = \{ v1v2\} , то на пересечении

столбца e и строк v1 и v2 будут стоять единицы. Остальные элементы столб-

ца e – нулевые. Пространственная сложность такого представления равна

O(| V | \cdot | E| ).

Очевидно, что для представления графа можно организовать список ре-

бер, с указанием для каждого ребра пары инцидентных вершин. Простран-

ственная сложность такого представления будет O(| E| \cdot log2 | V | ). Логарифм в

данном выражении появляется в связи с необходимостью нумерации вершин.

Для обозначения мультиграфаG(V,E, \phi ) будем использовать обозначение

G = (V,E), если это не приводит к двусмысленности.

Топологическим графом называют такой граф G = (V,E, \phi ), вершинами

которого служат некоторые выделенные точки трехмерного евклидова про-

странства, а ребрами – жордановы дуги, соединяющие эти точки; у звена

обе инцидентные вершины (концевые точки) различны, у петли совпадают.

Требуется еще, чтобы никакая внутренняя (неконцевая) точка ребра не сов-

падала ни с одной вершиной графа и ни с одной точкой другого ребра; всякое

нарушение этого требования будем кратко называть пересечением. Таким об-

разом, изображение абстрактного графа на рисунке само является топологи-

ческим графом, изоморфным исходному лишь при условии, что рисунок не

содержит пересечений.

Всякий абстрактный граф допускает топологическое представление, т. е.

в пространстве R3 существует изоморфный ему топологический граф.

27



Как в теории, так и в приложениях особо важную роль играют те топо-

логические свойства графа, которые связаны с возможностью или невозмож-

ностью поместить его в плоскость. Известно, что евклидова плоскость гомео-

морфна сфере, из которой удалена одна точка; соответствующее отображение

можно осуществить, например, с помощью стереографического проектирова-

ния. Этим же отображением топологический граф на сфере переводится в

изоморфный топологический граф на плоскости и наоборот. Граф, допус-

кающий такие топологические представления, называется планарным, а его

конкретное представление в плоскости – плоским графом.

Если GS – топологическое представление графа G в плоскости S, то ком-

поненты связности множества G\setminus S называются гранями плоского графа GS,

а множество граничных точек грани – ее краем; теоретико-множественное

объединение краев всех граней равно GS, поэтому каждое ребро и каждая

вершина принадлежат краю хотя бы одной грани, и ясно также, что никакое

ребро (в отличие от вершины) не может принадлежать краям более чем двух

граней.

Ровно одна из граней плоского графаGS является внешней (бесконечной).

Причем всегда можно так изменить расположение графа GS в плоскости S

(т. е. построить изоморфный ему граф G\prime 
S), чтобы наперед заданная грань

стала внешней: для этого достаточно сначала отобразить стереографически

GS на сферу, затем повернуть ее так, чтобы полюс N попал в образ выбран-

ной в качестве внешней грани, и, наконец, спроектировать граф обратно на

плоскость S.

Далее для плоского графа G через E(G) будем обозначать множество его

ребер, представляющих плоские жордановы кривые с попарно непересекаю-

щимися внутренностями, гомеоморфные отрезкам. Ребро, у которого начало

и конец совпадают, называют петлей в графе. Через V (G) обозначим множе-

ство граничных точек этих кривых. Топологическое представление плоского
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Рисунок 1.1: Функции для представления плоского графа

графа G = (V,E) на плоскости S с точностью до гомеоморфизма определя-

ется заданием для каждого ребра e \in E следующих функций [86]:

\bullet vk(e), k = 1, 2 – вершины, инцидентные ребру e,

\bullet lk(e), k = 1, 2 – ребра, полученные вращением ребра e против часовой

стрелки вокруг вершины v(k),

\bullet rk(e), k = 1, 2 – ребра, полученные вращением ребра e по часовой стрел-

ке вокруг вершины v(k),

\bullet fk(e) – грань, находящаяся слева при движении по ребру e от вершины

vk(e) к вершине v3 - k(e), k = 1, 2.

Иллюстрация введенных функций дана на рисунке 1.1. Таким образом, про-

странственная сложность представления гомеоморфного образа графа G =

(V,E) равна O (| E| \cdot log2 | V | ).

1.2 Маршруты в графах

Пусть G = (V,E) – граф. Последовательность вида

v0e1v1e2v2 . . . vn - 1envn, (1.1)

где v0, v1, v2, . . . , vn \in V , а e1 = \{ v0, v1\} , e2 = \{ v1, v2\} , . . . , en = \{ vn - 1, vn\} \in E,

называется связным маршрутом длины n из вершины v0 в вершину vn.

Замечание 1. Упорядоченную последовательность маршрутов вида (1.1)

также будем называть маршрутом.

При v0 = vn и n \geq 1 маршрут будем называть циклическим. Маршрут, все

ребра которого различны, называется цепью. Маршрут, не содержащий по-
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вторяющихся вершин, называется путем. Циклический маршрут, в котором

каждое ребро встречается ровно по одному разу, называется упорядоченным

циклом [13]. Упорядоченный цикл, который включает все ребра графа G

ровно по одному разу, называется эйлеровым циклом, а граф, содержащий

эйлеров цикл – эйлеровым графом [3].

Именно с задачи нахождения эйлерова цикла зародилась теория графов.

Но результаты, полученные более двухсот лет назад, не только актуальны и

по сей день, но активно развиваются и применяются на практике в решении

самых разнообразных задач с более сложными ограничениями на порядок

обхода вершин и ребер [9, 56, 67, 124, 137, 142, 157, 160]. Причем область при-

менения алгоритмов построения маршрутов в эйлеровых графах не ограни-

чивается классическими примерами (сбора мусора, доставки почты, чистки

улиц, проверки работы линий электропередач и т.п.).

Эйлером доказана следующая теорема [109].

Теорема 1. [Эйлер] Связный неориентированный граф G содержит эйле-

ров цикл (эйлерову цепь) тогда и только тогда, когда число вершин нечет-

ной степени равно 0 (0 или 2).

Доказательство теоремы об эйлеровых графах имеет конструктивный ха-

рактер и на его основе можно построить рекурсивный алгоритм нахождения

эйлерова цикла [118]. В данной работе будем рассматривать вопросы построе-

ния наборов цепей, покрывающих все ребра графа, и удовлетворяющие опре-

деленным ограничениям на порядок обхода ребер.

Несмотря на возможность нахождения эйлерова цикла за полиномиальное

время, существует тесная взаимосвязь между эйлеровыми и гамильтоновыми

циклами (когда требуется построить цикл, проходящий через каждую верши-

ну ровно по одному разу) [53] и зачастую задача построения эйлерова цикла

с ограничениями на порядок обхода ребер или посещения вершин сводится к

известной задаче комивояжера. Это задача нахождения гамильтонова цикла с
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минимальным общим весом ребер. В отличие от задачи построения эйлерова

цикла без ограничений, задача комивояжера является \scrN \scrP -полной. Напри-

мер, в статье [119] приводятся различные взаимосвязи между эйлеровыми

графами и прочими свойствами графов (как то гамильтоновость, существо-

вание нигде ненулевых потоков, существование треугольных циклов и пр.).

Представление о непосредственных применениях гамильтоновых цепей

дает следующая ситуация [15]. Имеется машина и n заданий, каждое из ко-

торых она способна выполнить после соответствующей настройки. При этом

необходимо затратить на переналадку tij единиц времени для того, чтобы по-

сле выполнения i-го задания выполнить j-е. В предположении, что tij = tji,

требуется найти последовательность выполнения заданий, при которой вре-

мя каждой переналадки не превосходит величины t. Если построить граф G,

у которого V = \{ 1, 2, . . . n\} , E = \{ i, j | tij \leq t\} , то описанная задача сводится

к отысканию гамильтоновой цепи в этом графе.

1.3 Разложения графов на цепи

Будем говорить, что набор реберно-непересекающихся цепей покрывает

граф G, если каждое ребро графа G входит в одну из этих цепей. Из теоремы

1 фактически следует, что связный граф обладает открытой или замкнутой

покрывающей цепью тогда и только тогда, когда он имеет не более двух

вершин нечетной степени.

Пусть связный граф G содержит m вершин нечетной степени. Очевидно,

что m четно, т.е. m = 2k. Рассмотрим граф G\prime , полученный добавлением к

G новой вершины v и ребер, соединяющих v с вершинами графа G нечетной

степени. Поскольку степени всех вершин графа G\prime четны, то G\prime содержит

эйлеров цикл. Если теперь выбросить v из этого цикла, то получится k цепей,

содержащих все ребра графа G, т.е. покрывающих G. С другой стороны,

граф, являющийся объединением r реберно-непересекающихся цепей, имеет
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самое большее 2r вершин нечетной степени. Поэтому меньшим числом цепей

граф G покрыть нельзя. Данный результат известен как теорема Листинга-

Люка [109,118].

Теорема 2. [Листинг, Люк] Если связный граф содержит ровно 2k вер-

шин нечетной степени, то минимальное число покрывающих его реберно-

непересекающихся цепей равно k.

В эйлеровом графе существует, как правило, несколько эйлеровых циклов.

Зная один такой цикл, получить новый можно следующим простым приемом.

Пусть C – исходный эйлеров цикл, и вершина v проходится в этом цикле

более одного раза. Рассмотрим часть (подцикл) цикла C, состоящую из ре-

бер и вершин, проходимых между k-м и l-м (k < l) посещениями вершины v.

Это будет некоторый цикл C1. Цикл C, как и всякий эйлеров цикл, задает

некоторый порядок обхода ребер графа и индуцирует порядок прохождения

ребер цикла C1. Итак, изменив указанным способом эйлеров цикл, получаем

новый эйлеров цикл. Теорема Коцига [15] утверждает, что последовательно-

сти таких изменений достаточно для получения всех эйлеровых циклов из

данного.

Теорема 3. [А.Коциг]. Если C и C \prime – эйлеровы циклы графа G, то

в G существует такая последовательность эйлеровых циклов C =

C1, C2, . . . , Ck = C \prime , что Ci+1 получается из Ci путем изменения поряд-

ка обхода ребер некоторого подцикла на обратный.

Таким образом, из теоремы Коцига можно заключить, что граф G как

правило имеет много эйлеровых цепей, а, следовательно, и разложений на

цепи, поэтому имеется возможность построения разложений, удовлетворяю-

щих дополнительным ограничениям.

Большое число примеров различных типов эйлеровых цепей приведено в

первом томе монографии Г. Фляйшнера «Эйлеровы графы и смежные вопро-
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сы» [109], где систематизированно и достаточно подробно рассматриваются

некоторые виды эйлеровых цепей, например:

\bullet цепи, не содержащие запрещенных переходов;

\bullet попарно-совместимые эйлеровы цепи;

\bullet A-цепи в графах;

\bullet самонепересекающиеся и непересекающиеся цепи;

\bullet бинаправленные двойные обходы.

В последнее время появились публикации, посвященные новым видам

маршрутов в графах [9, 24,109,113,118,123,124,134,156,157,160], например:

\bullet расширение класса запрещенных переходов [157];

\bullet маршруты Петри [160];

\bullet k-реберно-упорядоченные графы [113];

\bullet задачи теории расписаний с логическими условиями предшествования,

которым эквивалентны задачи циклических игр [1, 24];

\bullet прямолинейные маршруты в эйлеровых графах [156] и т.п.

Однако, среди публикаций, рассматривающих задачу построения марш-

рутов в плоских графах, у которых отсутствует пересечение внутренних гра-

ней пройденной части маршрута с ребрами его непройденной части, можно

отметить только [133]. В работе [137] автора диссертации данная задача по-

ставлена и решена для случая плоских эйлеровых графов, предложены эф-

фективные алгоритмы ее решения, а в работах [69, 141] автора диссертации

рассмотрен случай связного неэйлерова графа и предложен алгоритм поиска

допустимого эйлерова покрытия графа. В диссертационной работе обобщены

решенные автором задачи маршрутизации в графах:

\bullet задача поиска допустимого пути, избегающего запрещенных переходов

[59];

\bullet задача построения маршрутов в плоских графах, у которых отсутствует

пересечение внутренних граней пройденной части маршрута с ребрами

его непройденной части (для связных [67] и несвязных [44,140] графов);
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\bullet задача построения A-цепей, в которых отсутствует пересечение внут-

ренних граней пройденной части с ребрами непройденной части [61,66].

Поскольку построение разложений на цепи фактически сводится к по-

строению эйлерова цикла, рассмотрим более подробно некоторые известные

классические алгоритмы решения этой задачи.

В [118] отмечено, что основу всем алгоритмам построения эйлеровых це-

пей составляет расщепляющий алгоритм. Он является далеко не самым быст-

рым. Тем не менее он служит основой для целой серии алгоритмов с полино-

миально ограниченной временной сложностью. В большинстве монографий

по теории графов для нахождения эйлеровой цепи изложен алгоритм Флёри,

являющийся одним из самых старых алгоритмов для эйлеровых цепей [118].

Расщепляющий алгоритм последовательно строит графы H с возраста-

ющим числом вершин степени 2, тогда как в алгоритме Флёри цепь Ti хра-

нится отдельно, поэтому размер графа Gi строго убывает. Таким образом,

алгоритм Флёри представляется более удобным с практической точки зре-

ния, нежели расщепляющий алгоритм. Несмотря на практические недостат-

ки расщепляющего алгоритма, из него можно вывести алгоритм построения

P (G)-совместимых эйлеровых цепей (а, значит, и эйлеровых цепей в оргра-

фах), или алгоритм построения непересекающихся эйлеровых цепей графа

G, уложенного на некоторую поверхность. Для этого требуется ограничить

подходящим образом выбор ребер.

Что касается сложности расщепляющего алгоритма (а, следовательно, и

алгоритма Флёри), время его выполнения в худшем случае составляет вели-

чину O(| V | \cdot | E| ). Так, распознать связность графа можно за время O(| V | ).

Поскольку операция расщепления применяется тогда и только тогда, когда

deg(v) > 2, и так как эта операция в вершине v уменьшает ее степень deg(v)

на 2, то распознавать связность придется не более\sum 
v\in V (G)

1

2
(deg(v) - 2) = | V |  - | E| 
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раз. Это и приводит к указанной выше оценке O(| V | \cdot | E| ). Следовательно,

время выполнения каждого полученного на основе расщепляющего алгорит-

ма будет также не хуже O(| V | \cdot | E| ). Эту верхнюю оценку можно улучшить

с помощью параллельных вычислений [118].

Наиболее эффективный алгоритм приведен в статье Хирхольцера [109].

Данный алгоритм работает быстрее расщепляющего алгоритма и алгорит-

ма Флёри. Временная и емкостная сложность этого алгоритма составляет

величину O(| E| ). Тем не менее, алгоритм Хирхольцера был сформулирован

только для простых графов.

Описанные выше алгоритмы находят в графе произвольную эйлерову

цепь, на которую не наложено никаких ограничений [144]. Анализ публи-

каций, посвященных задачам построения маршрутов специального вида, по-

казал, что большинство работ посвящено алгоритмам с локальными ограни-

чениями на порядок обхода ребер (например, запрещение левых поворотов;

маршруты без поворотов; использование в каждой вершине графа заданного

циклического порядка включения ребер в маршрут и т.п.). Как уже отме-

чалось выше, обобщение большинства частных случаев задачи построения

маршрутов с локальными ограничениями дано С. Зейдером [157].

Ограничения на порядок обхода вершин и ребер графа можно классифи-

цировать как

\bullet локальные, когда следующее ребро в маршруте определяется условия-

ми, заданными в текущей вершине или на текущем ребре [109,117,118,

124,156,157];

\bullet глобальные (эйлеровы, гамильтоновы циклы, бинаправленные двойные

обходы [118] и т.д.).

Большинство опубликованных работ посвящено алгоритмам с локальны-

ми ограничениями на порядок обхода ребер.

Известны публикации других авторов, в которых также рассматриваются

задачи, посвященные эйлеровым цепям специального вида, например, расши-
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рение класса запрещенных переходов [157], самонепересекающиеся и непере-

секающиеся цепи, бинаправленные двойные обходы [109,118], маршруты Пет-

ри [160], прямолинейные маршруты [156], реберно-упорядоченные маршруты

[113] и т.д.

Большинство задач нахождения маршрутов, удовлетворяющих опреде-

ленным ограничениям, появились из конкретных практических ситуаций.

Например, в упомянутых выше задачах раскроя листового материала моде-

лью раскройного плана является плоский граф, а маршрут, покрыва-

ющий все ребра, определяет траекторию движения режущего инстру-

мента. Ограничением является отсутствие пересечения внутренних граней

любой начальной части маршрута с ребрами его оставшейся части [135]. При

построении систем управления манипуляторами с помощью неориентирован-

ного графа отображают всевозможные элементы траектории манипулятора.

При этом возникают задачи построения маршрутов, удовлетворяющих раз-

личным ограничениям, например: прямолинейных маршрутов [156]; маршру-

тов, в которых следующее ребро определяется заданным циклическим поряд-

ком на множестве ребер, инцидентных текущей вершине [117, 118]; маршру-

тов, в которых часть ребер следует пройти в заданном порядке [117].

Выводы по главе 1

Известные алгоритмы позволяют построить эйлеровы цепи или покрытия

цепями без учета ограничений на порядок обхода ребер. Тем не менее, прак-

тика требует построения маршрутов, удовлетворяющих различным ограни-

чениям на последовательность ребер. В частности, ограничения можно клас-

сифицировать на:

\bullet локальные, когда следующее ребро в маршруте определяется условия-

ми, заданными в текущей вершине или на текущем ребре (например,

исключение запрещенных переходов);
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\bullet глобальные (отсутствие пересечения внутренности пройденной части

плоского графа с ребрами его непройденной части и т.д.).

Во второй главе будут приведены новые научные результаты для марш-

рутов с локальными ограничениями, в третьей главе – с глобальными огра-

ничениями, в четвертой – смешанные задачи (построение маршрутов, удо-

влетворяющих как локальным, так и глобальным ограничениям).
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ГЛАВА 2

МАРШРУТЫ С ЛОКАЛЬНЫМИ

ОГРАНИЧЕНИЯМИ

Задачи нахождения маршрутов на графах, удовлетворяющих определен-

ным ограничениям, вызываются конкретными практическими потребностя-

ми. Как уже отмечалось выше, в настоящее время интенсивно развивается

раздел теории графов, касающийся построения маршрутов, удовлетворяю-

щих специальным ограничениям: эйлеровы и гамильтоновы циклы; маршру-

ты, избегающие запрещенных переходов [124,156,157]; самонепересекающиеся

и непересекающиеся цепи; бинаправленные двойные обходы [109,118] и т.д.

Интерес к задачам маршрутизации объясняется их использованием в ка-

честве математических моделей для проблем управления и автоматизации

проектирования.

Рассмотрим задачу покрытия графа минимальным числом цепей, удовле-

творяющих заданным локальным ограничениям в каждой вершине [157]. Ре-

шение данной задачи может быть использовано, например, при поиске марш-

рутов между заданными точками на карте, удовлетворяющих правилам пово-

ротов на перекрестке либо заданной последовательности проезда по улицам.

2.1 Алгоритм построения допустимой цепи

Обобщение большинства частных случаев задачи построения простой

цепи с локальными ограничениями и анализ вычислительной сложности дан-

ной проблемы даны С.Зейдером [157]. Приведем основные определения и ре-

зультаты данной работы.

Ограничимся рассмотрением конечных простых графов. Множество вер-

шин и множество ребер графаG будем обозначать соответственно через V (G)
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и E(G). Для вершины v \in V (G) определим EG(v), множество всех ребер гра-

фа G, инцидентных вершине v. Степень вершины v будем обозначать как

deg(v); для d > 0 положим Vd(G) := \{ v \in V (G) | deg(v) = d\} . Будем писать

H \leq G, если H – вершинно-индуцированный подграф графа G, т.е. подграф,

полученный из графа G отбрасыванием некоторого множества вершин и всех

ребер, инцидентных вершинам этого множества, и только их.

Ограничения на маршруты в графе G можно сформулировать в терминах

графа разрешенных переходов [55,57].

Определение 1. Пусть G – граф. Графом переходов TG(v) вершины

v \in V (G) будем называть граф, вершинами которого являются ребра, ин-

цидентные вершине v, т.е. V (TG(v)) = EG(v), а множество ребер – допу-

стимые переходы.

Определение 2. Системой разрешенных переходов (или короче, си-

стемой переходов) TG будем называть множество \{ TG(v) | v \in V (G)\} ,

где TG(v) – граф переходов в вершине v.

Определение 3. Путь P = v0e1v1 . . . ekvk в графе G является TG-

совместимым, если \{ ei, ei+1\} \in E(TG(vi)) для каждого i (1 \leq i \leq k  - 1).

Теорема 4. [С. Зейдер]. Если все графы переходов принадлежат либо

классу M полных многодольных графов, либо классу P паросочетаний, то

задача построения TG-совместимой цепи является разрешимой за время

O(| E(G)| ). В противном случае данная задача является \scrN \scrP -полной.

Если система переходов вершины v \in V (G) является паросочетанием, то

задача сводится к задаче для графа

G\prime : V (G\prime ) = V (G)\setminus \{ v\} ,

E(G\prime ) = (E(G)\setminus EG(v)) \cup \{ \{ vivj\} : \{ viv, vvj\} \in E(TG(v))\} .
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Если для любой вершины v \in V (G) граф TG(v) является полным много-

дольным графом, то цепь можно построить с помощью следующего алгорит-

ма [58].

Алгоритм TG-СОВМЕСТИМЫЙ ПУТЬ

Входные данные:

\bullet граф G = (V,E);

\bullet вершины x, y, между которыми требуется найти цепь без запрещенных

переходов;

\bullet система переходов TG : (\forall v \in V (G)) TG(v) \in M.

Выходные данные:

\bullet последовательность ребер, определяющая TG-совместимый путь между

вершинами x и y, либо сообщение об его отсутствии.

Шаг 1. Если вершина x или вершина y является изолированной, останов:

пути нет.

Шаг 2. Удалить из графа G изолированные вершины.

Шаг 3. Построить вспомогательный граф G\prime следующим образом (рису-

нок 2.1):

Рисунок 2.1: Иллюстрация построения вспомогательного графа G\prime 

\bullet каждую вершину v \in V (G) расщепить на вершины v1, v2, . . . , vp(v), где

p(v) – число долей графа TG(v). Вершине vp инцидентны ребра соот-

ветствующей доли графа TG(v) и одна дополнительная вершина v\prime p(v);
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\bullet добавить две новые вершины w1(v) и w2(v), ребро w1(v)w2(v), и ребро

v\prime p(v)wj(v) для каждой доли графа TG(v), 1 \leq j \leq 2.

Шаг 4. Построить первоначальное паросочетание в графе G\prime 

M(G\prime ) =
\bigcup 

v\in V (G)

\left(  \bigcup 
p=1,2,...p(v)

\bigl\{ 
vpv

\prime 
p

\bigr\} \bigcup 
\{ w1(v)w2(v)\} 

\right)  .

Шаг 5. Искать чередующуюся последовательность между вершинами x

и y, увеличивающую мощность паросочетания в графе G\prime . Если такую по-

следовательность найти не удается – останов (паросочетание M(G\prime ) имеет

максимальную мощность, а граф не имеет TG-совместимого пути). В против-

ном случае все ребра данного увеличивающего пути за исключением ребер,

добавленных при построении графа G\prime , образуют TG-совместимую цепь меж-

ду вершинами x и y. Останов.

Покажем на примере графа G, представленного на рисунке 2.2, что

Рисунок 2.2: Пример графа

алгоритм TG-СОВМЕСТИМЫЙ ПУТЬ не может быть использован

для построения маршрутов, покрывающих все ребра графа G. Допустим

для графа задана следующая система переходов TG: \{ \{ v2v1\} , \{ v1v5\} \} ,

\{ \{ v6v1\} , \{ v1v4\} \} , \{ \{ v4v3\} , \{ v3v7\} \} , \{ \{ v8v3\} , \{ v3v2\} \} , \{ \{ v3v2\} , \{ v2v8\} \} ,

\{ \{ v5v2\} , \{ v2v1\} \} , \{ \{ v1v4\} , \{ v4v6\} \} , \{ \{ v7v4\} , \{ v4v3\} \} , \{ \{ v2v5\} , \{ v5v8\} \} ,

\{ \{ v2v8\} , \{ v8v5\} \} , \{ \{ v3v8\} , \{ v8v7\} \} , \{ \{ v3v7\} , \{ v7v8\} \} , \{ \{ v4v7\} , \{ v7v6\} \} ,

\{ \{ v4v6\} , \{ v6v7\} \} , \{ \{ v1v6\} , \{ v6v5\} \} , \{ \{ v1v5\} , \{ v5v6\} \} .
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Граф G\prime , необходимый для нахождения TG-совместимого пути между вер-

шинами v1 и v7, построение которого описано нашаге 3 алгоритма, приведен

на рисунке 2.3.

Рисунок 2.3: Граф G\prime , полученный с помощью вспомогательных построений из графа G

Первоначальное паросочетаниеM(G\prime ) выделено на рисунке жирными ли-

ниями. Для данного паросочетания чередующейся увеличивающей после-

довательностью ребер является \{ v1,1v5,2\} ,
\bigl\{ 
v5,2v

\prime 
5,2

\bigr\} 
,
\bigl\{ 
v\prime 5,2w5,2

\bigr\} 
, \{ w5,2w5,1\} ,\bigl\{ 

w5,1v
\prime 
5,1

\bigr\} 
,
\bigl\{ 
v\prime 5,1v5,1

\bigr\} 
, \{ v5,1v6,2\} ,

\bigl\{ 
v6,2v

\prime 
6,2

\bigr\} 
,
\bigl\{ 
v\prime 6,2w6,2

\bigr\} 
, \{ w6,2w6,1\} ,

\bigl\{ 
w6,1v

\prime 
6,1

\bigr\} 
,\bigl\{ 

v\prime 6,1v6,1
\bigr\} 
, \{ v6,1v7,2\} . Ребра этой последовательности, не вошедшие в первона-

чальное паросочетание, изображены пунктирной линией. Эти ребра образуют

множество\bigl\{ 
\{ v1,1v5,2\} ,

\bigl\{ 
v\prime 5,2w5,2

\bigr\} 
,
\bigl\{ 
w5,1v

\prime 
5,1

\bigr\} 
, \{ v5,1v6,2\} ,

\bigl\{ 
w6,1v

\prime 
6,1

\bigr\} 
, \{ v6,1v7,2\} 

\bigr\} 
.

Все ребра данного множества, принадлежащие графу G, т.е. \{ v1v5\} , \{ v5v6\} ,

\{ v6v7\} , образуют TG-совместимый путь из вершины v1 в вершину v7.

С помощью алгоритма TG-СОВМЕСТИМЫЙ ПУТЬ возможно по-

строение только простой цепи между двумя различными вершинами (т.е. це-

пи, в которых любая вершина встречается ровно один раз).
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Однако в общем случае непосредственное применение данного алгорит-

ма не позволяет решить задачу нахождения TG-совместимого маршрута, со-

держащего максимальное число ребер. Действительно, паросочетание макси-

мальной мощности в графе G\prime не может содержать пары ребер, образующих

запрещенный переход, т.к. они инцидентны одной общей вершине графа G\prime . В

то же время, в общем случае может существовать TG-совместимый маршрут,

содержащий такую пару ребер. Заметим, что в работе С. Зейдера [157] остал-

ся открытым вопрос распознавания многодольности графов TG(v), а также

проблема построения допустимого маршрута или множества маршрутов, по-

крывающих все ребра исходного графа.

Например, в графе G, приведенном на рисунке 2.2, маршрут

\{ v2v1\} , \{ v1v4\} , \{ v4v8\} , \{ v8v1\} , \{ v1v5\} , \{ v5v2\} 

принципиально не может быть получен с помощью построения паросоче-

тания максимального веса в графе G\prime . Этот маршрут начинается с ребра

v2v1, а заканчивается ребром v5v2, которые образуют запрещенный переход

\{ v5v2\} , \{ v2v1\} , следовательно, в графе G\prime не существует чередующегося пути,

содержащего оба эти ребра.

Таким образом, открытым остался вопрос распознавания многодольности

графов TG(v), а также задача построения допустимого маршрута или мно-

жества маршрутов, покрывающих все ребра исходного графа.

2.2 Алгоритм построения допустимой эйлеровой

цепи

В предыдущем разделе были сформулированы ограничения на допу-

стимость маршрутов в терминах системы разрешенных переходов [157] и по-

казано, что задача построения допустимого пути в графе G разрешима за

полиномиальное время, если система переходов TG содержит только паро-

сочетания и полные многодольные графы. Распознавание принадлежности
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графа разрешенных переходов классу паросочетаний тривиально. Для рас-

познавания принадлежности графа переходов классу полных многодольных

графов целесообразно использовать понятие системы разбиения [109,124].

Понятие системы разбиения используется для определения допустимой

цепи в терминах запрещенных переходов.

Определение 4. Пусть дан граф G = (V,E). Пусть PG(v) – некоторое раз-

биение множества EG(v). Системой разбиения графа G будем называть

систему множеств PG := \{ PG(v) | v \in V (G)\} .

Определение 5. Пусть p \in PG(v), \{ e, f\} \in p. Цепь, не содержащую пе-

реходов e \rightarrow v \rightarrow f и f \rightarrow v \rightarrow e, будем называть PG-совместимой, а

переходы e \rightarrow v \rightarrow f и f \rightarrow v \rightarrow e – запрещенными.

Заметим, что граф разрешенных переходов TG(v) однозначно определяет

граф запрещенных переходов TG(v), который является дополнением графа

разрешенных переходов до полного графа. Таким образом, с помощью опре-

делений 1–3 можно поставить задачу с любым графом разрешенных (запре-

щенных) переходов.

Напротив, граф разрешенных переходов, определяемый с помощью систе-

мы разбиения PG, не может быть произвольным, а принадлежит классу M

полных многодольных графов: элементы разбиения PG(v) определяют доли

графа TG(v) \in M , а множество его ребер

E(TG(v)) = \{ e, f \in EG(v) : (\forall p \in PG(v)) \{ e, f\} \not \subset p\} .

Графом запрещенных переходов TG(v) в данном случае будет являться на-

бор из | PG(v)| клик, этот факт может быть использован для распознавания

принадлежности T (v) \in M с помощью следующего алгоритма.

Алгоритм РАЗМЕТКА

Входные данные: граф переходов TG(v).

Шаг 1. Объявить все вершины графа TG(v) непомеченными. Положить

l = 1.
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Шаг 2. Пока список непомеченных вершин не пуст, выполнять шаги 3,

4 и 5. В противном случае – останов: граф TG(v) является многодольным

и вершины, принадлежащие одному элементу разбиения множества вершин,

имеют одинаковые пометки.

Шаг 3. Найти некоторую непомеченную вершину v. Присвоить ей помет-

ку l.

Шаг 4. Применить волновой алгоритм для присваивания пометки l всем

вершинам, достижимым из вершины v в графе TG(v). Очевидно, что все по-

меченные на данном шаге вершины будут принадлежать одной компоненте

связности графа TG(v).

Шаг 5. Если в выделенной компоненте связности любая пара вершин

является смежной, то найденная компонента связности является кликой. По-

ложить l = l + 1 и перейти к выполнению шага 3. В противном случае –

останов: граф TG(v) не является многодольным.

Оценим сложность приведенного алгоритма. Расстановка пометок в кон-

кретной компоненте связности Tk составляет величину O(| E(Tk)| ). Провер-

ка, является ли данная компонента связности кликой, также требует не более

O(| E(Tk)| ) операций. Таким образом, сложность алгоритма РАЗМЕТКА рав-

на

O

\Biggl( \sum 
\forall k

| E(Tk)| 

\Biggr) 
= O(| E(T )| ).

Как было отмечено, алгоритм С. Зейдера в общем случае не позволяет стро-

ить допустимые цепи максимальной длины. Особый интерес представляют

допустимые эйлеровы цепи. Необходимое и достаточное условие существова-

ния PG-совместимых цепей дает следующая теорема [124].

Теорема 5. [А. Коциг]. Связный эйлеров граф G имеет PG-совместимую

эйлерову цепь тогда и только тогда, когда

(\forall v \in V ) ( \forall p \in PG(v))

\biggl( 
| p| \leq 1

2
dG(v)

\biggr) 
.
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Очевидно, что сложность проверки условия существования PG-

совместимой эйлеровой цепи не превосходит величины O(| E(G)| ). Ниже

приведен алгоритм построения совместимой цепи [153].

Алгоритм PG-СОВМЕСТИМАЯ ЭЙЛЕРОВА ЦЕПЬ

Входные данные:

\bullet эйлеров граф G = (V,E), заданный списком смежности для каждой

вершины;

\bullet система переходов PG(v) \forall v \in V (G): в списке смежности вершины,

относящиеся к одному элементу разбиения, имеют одинаковые пометки.

Выходные данные:

\bullet допустимый эйлеров цикл Gk+1.

Шаг 1. Положить k = 0, Gk = G.

Шаг 2. Найти вершину v, у которой dGk
(v) > 2.

Шаг 3. Найти элемент разбиения, который содержит максимальное чис-

ло ребер:

\bullet просмотреть список смежности текущей вершины v;

\bullet посчитать число вхождений в этот список каждого элемента разбиения;

\bullet выбрать тот элемент, который встречается чаще: получим класс C1 \in 

PGk
(v) : | C1| = \{ max | C| | C \in PGk

(v)\} .

Шаг 4. Выбрать ребра e1(v) \in C1 и e2(v) \in EGk
(v) - C1. По возможности

выбрать ребра e1 и e2, инцидентные вершинам, степень которых больше двух.

Если множество EGk
(v)  - C1 = \emptyset , останов: PG-совместимой эйлеровой цепи

не существует. В противном случае перейти на шаг 5.

Шаг 5. Построить граф Gk+1, отщепив от вершины v вершину  \frown 
v, которой

инцидентны только ребра e1 и e2. Остальные ребра оставить инцидентными

вершине v. Так как новая вершина имеет степень 2, то она не рассматривается

на последующих шагах работы алгоритма.
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Шаг 6. Выбрать класс C2 \in PGk
(v), которому принадлежит ребро e2(v).

Исключить из системы разбиения вершины v классы C1 и C2. Для этого

нужно найти P - 
Gk
(v) := PGk

(v) - \{ C1, C2\} .

Для дальнейшей модификации системы разбиений выполнить следующие

действия.

Шаг 6.1. Системы разбиения, в которых отсутствует вершина v, перей-

дут в модифицированную систему полностью без изменений.

Шаг 6.2. Если системы C1 и C2 состояли из одного ребра: | C1| = | C2| = 1,

то P \prime 
Gk+1

(v) = P - 
Gk
(v).

Шаг 6.3. Если | C1| > | C2| = 1, то P \prime 
Gk+1

(v) = P - 
Gk
(v) \cup \{ C1  - \{ e1(v)\} \} .

Шаг 6.4. Если | C2| > 1, то P \prime 
Gk+1

(v) = P - 
Gk
(v)\cup \{ C1 - \{ e1(v)\} , C2 - \{ e2(v)\} \} .

Шаг 6.5. Построить

PGk+1
=

\bigcup 
x\in V (G1,2)

P \prime 
Gk+1

(x).

Шаг 7. Определить значение \sigma (Gk+1) = 2(| E(Gk+1)|  - | V (Gk+1)| ). Заме-

тим, что количество ребер графа остается неизменным, а количество вершин

на каждой итерации увеличивается на единицу.

Шаг 8. Если \sigma (Gk+1) > 0, положить k = k + 1, перейти на шаг 2, для

графа Gk+1. В противном случае перейти на шаг 9.

Шаг 9. Выбрать любую вершину v и пометить все вершины достижимые

из данной. Если остались непомеченные вершины перейти на шаг 10, иначе

останов – построенный граф Gk+1 является эйлеровой цепью, не содержащей

запрещенных переходов.

Шаг 10. Из списка помеченных и не помеченных вершин графа Gk+1

найти вершины v1 и v2, отщепленные от одной вершины v графа G0 и объ-

единить их в вершину v1,2. Получим модифицированный граф \^Gk+1, положим

k = k + 1.

Шаг 11. Выбрать ребра e1(v1,2) \in C1 и e2(v1,2) \in EGk
(v1,2) - C1, так что-

бы \{ e1, e2\} \not = E(v1) и \{ e1, e2\} \not = E(v2). Если множество EGk
(v1,2)  - C1 = \emptyset ,
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останов: PG-совместимой эйлеровой цепи не существует. В противном слу-

чае построить граф Gk+1, отщепив от вершины v1,2 вершину \^v1,2, которой

инцидентны только ребра e1 и e2. Остальные ребра оставить инцидентными

вершине v1,2 и перейти на шаг 9.

В [56] доказана следующая теорема.

Теорема 6. Алгоритм PG-СОВМЕСТИМАЯ ЭЙЛЕРОВА ЦЕПЬ коррект-

но решает задачу построения P (G)-совместимой эйлеровой цепи.

Доказательство. Если для некоторого k, такого что C \prime \prime \in P \prime 
Gk+1

(v), вы-

полнено неравенство | C \prime \prime | > | C1  - \{ e1(v)\} | , то C \prime \prime \in PGk+1
(v) и | C2| \leq | C \prime \prime | =

| C1| \leq 1
2dGk

(v) - 1 = 1
2dGk+1

(v). На основании этого факта можно заключить,

что | C| \leq 1
2dGk+1

(v) для каждой вершины v \in V (Gk+1) и каждого класса

C \in PGk+1
(v) \subset PGk+1

. При этом величина \sigma (Gk+1) = | E(Gk+1)|  - | V (Gk+1)| <

\sigma (Gk). Если графGk+1 является циклом, то число ребер в нем и число вершин

совпадает, т.е. в данном случае \sigma (Gk+1) = 0. Если же граф Gk+1 является це-

пью, то число вершин превышает число ребер на 2, следовательно, в данном

случае \sigma (Gk+1) =  - 2. Если же на некотором этапе для e1(v) \in C1 не удалось

найти e2(v) \in EGk
(v) - C1, это значит, что | C1| > deg(v)/2, т.е. не выполнены

необходимые и достаточные условия существования эйлерова цикла (теоре-

ма Коцига). Из этих фактов следует корректность выполнения алгоритма.

Теорема доказана.

Оценим вычислительную сложность предложенного алгоритма. Выпол-

нения шагов 2, 5, 6 и 7 можно организовать с использованием не более O(1)

операций (за счет специальных структур данных). Выполнения же шагов 3

и 4 можно организовать с использованием не более O(deg(v)Gk
) операций.

Цикл алгоритма будет повторен не более, чем \sigma (G) раз. В итоге имеем, что

алгоритм потребует число операций не более

O

\left(  \sum 
k=0,1...\sigma (G)

deg(vk)Gk

\right)  = O (| E(G)| \cdot | V (G)| ) .
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Рисунок 2.4: Пример графа и заданная система переходов

Таким образом, приведенные алгоритмы разрешимы за полиномиальное вре-

мя и могут быть легко реализованы с помощью стандартных вычислительных

средств.

Рассмотрим построение допустимой эйлеровой цепи для графа, приведен-

ного на рисунке 2.4 [59].

Построим допустимый эйлеров цикл, начинающийся и заканчивающийся

в вершине 1. На первой итерации будет осуществлено расщепление начальной

вершины. Для простоты на рисунках 2.5–2.11, иллюстрирующих пример, не

показаны дополнительные построения при расщеплении вершин.

На рисунке 2.5 приведен граф, для которого начальная вершина расщеп-

лена, а также список связности, в котором серым цветом помечены клетки с

новыми или модифицированными элементами.

На рисунках 2.6–2.11 приведены последующие итерации работы алгорит-

ма.

В результате граф оказывается расщеплен в простой цикл, из любой вер-

шины которого удается построить допустимый эйлеров цикл, удовлетворяю-

щий введенным ограничениям. Например, из вершины 1 может быть построен

следующий цикл: 1 \rightarrow 2 \rightarrow 6 \rightarrow 8 \rightarrow 1 \rightarrow 5 \rightarrow 3 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 

8 \rightarrow 7 \rightarrow 6 \rightarrow 1.
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Рисунок 2.5: Первая итерация алгоритма

Рисунок 2.6: Вторая итерация алгоритма

Рисунок 2.7: Третья итерация алгоритма
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Рисунок 2.8: Четвертая итерация алгоритма

Рисунок 2.9: Пятая итерация алгоритма

Рисунок 2.10: Шестая итерация алгоритма
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Рисунок 2.11: Седьмая (последняя) итерация алгоритма

2.3 Покрытие графа допустимыми цепями

Рассмотрим задачу покрытия графа допустимыми цепями. Будем счи-

тать, что система переходов TG содержит только паросочетания и полные

многодольные графы [56].

Алгоритм ПОКРЫТИЕ TG-ДОПУСТИМЫМИ ЦЕПЯМИ

Входные данные:

\bullet граф G = (V,E),

\bullet графы переходов TG(v) \forall v \in V (G).

Выходные данные:

\bullet набор цепей T i, i = 1, 2, . . . , k, покрывающих граф G, где m = 2k –

число вершин нечетной степени.

Шаг 1. Пусть U = \{ v \in V (G) : TG(v) - паросочетание\} . Сделать редук-

цию графа G до графа G\prime :

V (G\prime ) = V (G)\setminus U,

E(G\prime ) =

\Biggl( 
E(G)\setminus 

\bigcup 
v\in U

EG(v)

\Biggr) \bigcup \Biggl\{ \bigcup 
v\in U

\{ \{ vivj\} : \{ viv, vvj\} \in TG(v)\} 

\Biggr\} 
,

графы TG(v) редуцировать до графов TG\prime (v) заменой всех вхождений вершин

u \in U : vu, wu \in ETG
(u) вершиной w.

Шаг 2. Достроить граф G\prime до G\ast введением дополнительной вершины

v\ast , смежной всем вершинам нечетной степени графа G\prime . Систему переходов
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TG\prime (v) модифицировать до системы переходов TG\ast введением для всех v \in 

V \prime (G) : deg(v) \equiv 1 (mod 2) в граф переходов TG\ast (v) вершины vv\ast , смежной

всем вершинам в графе TG\ast (v).

Шаг 3. Для всех таких вершин v \in V (G), что \exists p \in P (v): | p| > deg(v)/2,

ввести 2| p|  - deg(v) дополнительных ребер (vv\ast )i, i = 1, 2, ..., 2 | p|  - deg(v) в

граф G\ast . Модифицировать граф переходов TG\ast (v) введением вершин (vv\ast )i,

смежных всем вершинам исходного графа TG\ast (v) и только им.

Шаг 4. Найти в G\ast TG\ast -совместимый эйлеров цикл T \ast .

Шаг 5. Построить покрытие T \prime графа G\prime цепями, удалив из T \ast ребра

(vv\ast ).

Шаг 6. Модифицировать маршруты из T \prime до маршрутов из T добавле-

нием вершин u \in U , удаленных на шаге 1.

Шаг 7. Останов.

Теорема 7. Алгоритм ПОКРЫТИЕ TG-ДОПУСТИМЫМИ ЦЕПЯ-

МИ корректно решает задачу минимального по мощности покрытия гра-

фа TG-допустимыми цепями. Его сложность не превосходит величины

O(| E(G)| \cdot | V (G)| ).

Доказательство. В результате выполнения шага 1 приходим к задаче

для полного многодольного графа G\prime . Данное преобразование возможно вы-

полнить, используя не более O(| E(G)| ) операций.

В результате выполнения шага 2 получаем задачу для эйлерова графа,

в каждой вершине v которого граф переходов TG\ast (v) является полным мно-

годольным. Введенная в граф TG\ast (v) дополнительная вершина vv\ast является

отдельным элементом разбиения в PG\ast (v).

На шаге 3 проверяется выполнение необходимых и достаточных условий

существования допустимого эйлерова цикла (теорема Коцига). Во всех вер-

шинах, где условия теоремы Коцига не выполнены, в граф G\ast добавляются

мультиребра (vv\ast )i, i = 1, 2, ..., 2 | p(v)|  - deg(v). Также модифицируется и
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система разбиения PG\ast (v) добавлением элемента разбиения, содержащего все

ребра (vv\ast )i. Такие модификации также выполняются за время, не превосхо-

дящее O(| V (G)| \cdot | E(G)| ).

В результате проведенных модификаций граф G\ast будет эйлеровым, а его

система разбиения будет удовлетворять теореме Коцига.

Для построения допустимого эйлерова цикла, содержащего и дополни-

тельные ребра, смежные v\ast , на шаге 4 требуется не более O(| V (G)| \cdot | E(G)| )

операций.

На шаге 5 получим l = deg(v\ast ) простых цепей удалением ребер, инцидент-

ных вершине v\ast , которые были добавлены на шагах 2 и 3. Все полученные

таким образом цепи будут PG\prime -допустимыми в графе G\prime . Сложность этого

этапа составляет величину O(| E(G)| ).

На шаге 6 происходит добавление удаленных на шаге 1 вершин, что также

требует не более чем O(| E(G)| ) операций вставки.

В результате выполненных операций получим покрытие графа l + 1 це-

пями за время O(| V (G)| \cdot | E(G)| ). Предположение существования покрытия

с меньшим числом цепей приведет к противоречию с теоремой Коцига. Тео-

рема доказана.

Выводы по главе 2

1. Показана возможность распознавание системы переходов, которая поз-

воляет решить задачу построения допустимого пути за линейное время.

2. Доказано, что с помощью разработанного алгоритма PG-

СОВМЕСТИМАЯ ЭЙЛЕРОВА ЦЕПЬ в эйлеровом графе

G возможно построить PG-совметимый эйлеров цикл или установить

его отсутствие за время O(| V (G)| \cdot | E(G)| ) .
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3. Покрытие графа G допустимыми цепями также возможно за вре-

мя O(| V (G)| \cdot | E(G)| ) с помощью алгоритма ПОКРЫТИЕ TG-

ДОПУСТИМЫМИ ЦЕПЯМИ.

4. Разработанное программное обеспечение позволяет решать задачи по-

строения допустимой цепи и допустимого эйлерова цикла.
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ГЛАВА 3

МАРШРУТЫ С УПОРЯДОЧЕННЫМ

ОХВАТЫВАНИЕМ

В данной главе рассмотрена задача построения маршрутов специально-

го вида (представляющих класс OE-маршрутов). Прикладной стороной дан-

ной задачи является задача построения маршрута движения инструмента

при разрезании листового материала. Моделью раскройного листа будем счи-

тать плоскость S, моделью раскройного плана – плоский граф G с внешней

гранью f0 на плоскости S. Для любой части графа J \subseteq G (части траек-

тории движения режущего инструмента) обозначим через Int (J) теоретико-

множественное объединение его внутренних граней (объединение всех связ-

ных компонент S \setminus J , не содержащих внешней грани). Тогда Int(J) можно

интерпретировать как отрезанную от листа часть. Множества вершин, ребер

и граней графа J будем обозначать через V (J), E(J) и F (J) соответственно,

а через | M | – число элементов множества M .

Будем любой маршрут в графе G рассматривать как часть графа, со-

держащую все вершины и ребра, принадлежащие маршруту. Это позволяет

формализовать требование к маршруту режущего инструмента как условие

отсутствия пересечения внутренних граней любой начальной части марш-

рута в заданном плоском графе G с ребрами его оставшейся части [135].

Такие маршруты будем называть маршрутами с упорядоченным охватыва-

нием [69,141] (или для кратости OE-маршрутами, где OE – от англ. «ordered

enclosing»).

Определение 6. Будем говорить, что цикл C = v1e1v2e2 . . . vk в эйлеровом

графе G имеет упорядоченное охватывание (является OE-циклом), ес-

ли для любой его начальной части Ci = v1e1v2e2 . . . ei, i \leq (| E(G)| ) выполне-
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но условие

Int (Ci) \cap G = \emptyset .

Например, для плоского эйлерова графа, приведенного на рисун-

ке 3.1, цикл v1e1v3e3v2e2v1e4v3e5v2e6v1 удовлетворяет условию упорядочен-

Рисунок 3.1: Пример эйлерова графа

ного охватывания, а цикл v1e4v3e5v2e6v1e1v3e3v2e2v1 – не удовлетворяет, т.к.

Int (v1e4v3e5v2e6v1) \supset \{ e1, e2, e3\} .

Если представлению раскройного плана соответствует плоский эйлеров

граф G, то его можно представить без холостых проходов [137]. Если же со-

ответствующий граф G не является эйлеровым и содержит 2k вершин нечет-

ной степени, то с помощью алгоритма Листинга-Люка [109, 118] возможно

покрыть граф k цепями. Алгоритм построения покрытия, удовлетворяющего

введенным ограничениям, был предложен в [86]. Маршруты, которые реали-

зуют построенное покрытие, содержат дополнительные ребра между концом

текущей цепи и началом последующей. Однако указанные выше алгоритмы

не учитывают длину дополнительных построений.

В практических задачах актуальным является сокращение длины допол-

нительных построений.

Ниже рассмотрим вопросы построения последовательности OE-цепей c

минимальной длиной дополнительных построений.

Для сохранения целостности изложения приведем основные определения

и доказанные ранее свойства эйлеровых покрытий плоского графа последо-

вательностью OE-цепей.
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3.1 Представление плоского графа

Для представления образа раскройного плана в виде плоского графа G =

(V, F,E) определим для каждого ребра e \in E(G) функции, представленные в

разделе 1.1. Это минимальная информация, необходимая для представления

любого плоского графа с точностью до гомеоморфизма.

Пространственная сложность такого представления будет O (| E| \cdot log | V | ).

Поскольку функции vk(e), fk(e), lk(e), rk(e), k = 1, 2, построенные на

ребрах графа G = (V, F,E), для каждого ребра определяют инцидентные

вершины, инцидентные грани и смежные ребра, то справедливо следующее

предложение.

Утверждение 7. Функции vk(e), fk(e), lk(e), rk(e), k = 1, 2 построенные

на ребрах графа G = (V, F,E) определяют плоский граф G = (V, F,E) с точ-

ностью до гомеоморфизма.

Таким образом, используя известные координаты прообразов вершин гра-

фа G = (V, F,E) и размещения фрагментов раскройного плана, являющихся

прообразами ребер графа G = (V, F,E), любой маршрут в графе G = (V,E)

можно интерпретировать как траекторию режущего инструмента.

Представление графа фактически задает ориентацию его ребер. Далее

предполагается, что движение по ребру для определенности осуществляется

от вершины v2(e) к вершине v1(e). Поскольку при задании графа G неиз-

вестно, какое из ребер в каком направлении будет пройдено, то при выполне-

нии алгоритма производится перестановка значений полей v1(e), v2(e) и l1(e),

l2(e) некоторых ребер. В алгоритме данную процедуру выполняет функция

REPLACE (алг.1). Функциональным назначением функции является переста-

новка индексов функций vk(e) и lk(e) на 3 - k, k = 1, 2.

Определение 7. [135]. Цепь C = v1e1v2e2 . . . vk в плоском графе G имеет

упорядоченное охватывание (является OE-цепью), если для любой его

58



Algorithm 1 Функция REPLACE
1: procedure REPLACE(In: Ret.Last – ребро, для которого нужно поменять функции
местами)

2: tmp1 = v2[Edge]; tmp2 = l2[Edge];
3: v2[Edge] = v1[Edge]; l2[Edge] = l1[Edge];
4: v1[Edge] = tmp1; l2[Edge] = tmp2;
5: end procedure

начальной части Cl = v1e1v2e2 . . . el, l \leq (| E| ) выполнено условие Int (Cl) \cap 

G = \emptyset .

Определение 8. Упорядоченная последовательность реберно-непересекаю-

щихся OE-цепей

C0 = v0e01v
0
1e

0
2...e

0
k0
v0k0, C1 = v1e11v

1
1e

1
2...e

1
k1
v1k1, . . . ,

Cn - 1 = vn - 1en - 1
1 vn - 1

1 en - 1
2 ...en - 1

kn - 1
vn - 1
kn - 1

,

покрывающая граф G и такая, что

(\forall m : m < n) ,
\Bigl( \bigcup m - 1

l=0
Int(C l)

\Bigr) 
\cap 
\Bigl( \bigcup n - 1

l=m
C l
\Bigr) 
= \emptyset 

называется маршрутом с упорядоченным охватыванием (OE-

маршрутом).

Построение OE-маршрута графа G решает поставленную задачу раскроя.

Наибольший интерес представляют маршруты с минимальным числом цепей,

поскольку переход от одной цепи к другой соответствует холостому проходу

режущего инструмента.

Определение 9. Маршрут, содержащий минимальную по мощности

упорядоченную последовательность реберно-непересекающихся OE-цепей в

плоском графе G будем называть эйлеровым маршрутом с упорядо-

ченным охватыванием (эйлеровым OE-маршрутом), а составляющие

его OE-цепи – эйлеровым OE-покрытием.

59



3.2 Существование эйлеровых OE-циклов

Существование эйлеровых OE-циклов в плоских эйлеровых графах дока-

зано в работах [135, 137]. Доказательство конструктивно и использует алго-

ритм, являющийся аналогом алгоритма из работы [133].

Теорема 8. Пусть G – плоский эйлеров граф. Для любой вершины v \in V (G),

инцидентной границе внешней (бесконечной) грани графа G, существует

эйлеров OE-цикл C = ve1v1e2v2 . . . v| E|  - 1e| E| v.

Доказательство. Воспользуемся методом математической индукции по

числу граней графа G.

Эйлеровы графы, содержащие две грани, являются простыми циклами.

Для простых циклов справедливость утверждения теоремы очевидна.

Предположим, что любой плоский эйлеров граф с числом граней m: 2 <

m < K имеет OE-цикл для любой его вершины v \in V (G), принадлежащей

внешней грани. Рассмотрим эйлеров граф, имеющий K граней. Не уменьшая

общности рассуждений, будем считать, что степени всех вершин графа G

больше или равны четырем.

Пусть f0 – внешняя грань графаG, а C(f0) = v1e1v2e2 . . . eiv1 представляет

цикл из ребер графа G, инцидентных внешней грани f0. Далее множество

вершин цикла C(f0) будем обозначать через V (C(f0)), а множество ребер –

через E(C(f0)).

Граф \~G = G \setminus E(C(f0)), полученный удалением из графа G ребер, огра-

ничивающих грань f0, содержит не более | V (C(f0))| компонент связности.

Цикл C(f0) естественным образом определяет линейный порядок L на мно-

жестве V (C(f0)). Пусть T \subset V (C(f0)) – семейство L-минимальных вершин-

представителей всех компонент связности подграфа \~G(t), t \in T графа \~G (т.е.

\forall v \in V ( \~G(t)) \cap V (C(f0)) имеет место tLv). Очевидно, что \~G(t), t \in T – это

плоские эйлеровы графы, содержащие менее K граней, у которых вершина
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t принадлежит границе внешней грани. Следовательно, каждый из графов

\~G(t), t \in T имеет эйлеров цикл с t-упорядоченным охватыванием (OE-цикл,

начинающийся в вершине t).

Рассмотрим маршрут R, полученный заменой в цикле C(f0) каждой вер-

шины t \in T эйлеровым циклом с t-упорядоченным охватыванием в графе

\~G(t). Покажем, что R – искомый эйлеров OE-цикл.

Действительно, маршрут R есть цикл, содержащий все ребра графа G

в точности по одному разу, т.е. R – эйлеров цикл. Для доказательства того

факта, что R имеет упорядоченное охватывание, вновь воспользуемся мате-

матической индукцией по числу ребер множества E(C(f0)) в начальной части

цикла R.

Начальная часть маршрута R, не содержащая ребер множества E(C(f0)),

представляет обход с v0-упорядоченным охватыванием графа \~G(v0). Пусть

начальная часть цикла R, содержащая k: 0 \leq k \leq | E(C(f0))| первых ребер

цикла C(f0) имеет упорядоченное охватывание. При добавлении (k + 1)-го

ребра [vk, vk+1] возможны два случая.

1. Если vk+1 \in T , то при движении по ребру [vk, vk+1] условие упорядо-

ченного охватывания не нарушается, т.к. не изменяется внутренность

пройденной части цикла R. Дальнейшее движение производится вдоль

цикла с упорядоченным охватыванием компоненты связности \~G(vk+1).

Поскольку (\forall v : vLvk+1)
\Bigl( 
v /\in V ( \~G(vk+1))

\Bigr) 
, то в рассматриваемом слу-

чае условие упорядоченного охватывания на всех частях маршрута, со-

держащих k + 1 ребер из E(C(f0)) также не будет нарушено.

2. Если vk+1 /\in T , то \exists u \in T : uLvk+1, vk+1 \in V ( \~G(u)). Однако, в соответ-

ствии со способом построения (\forall t \in T : vk+1Lt) \~G(t)\cap Int(C[vk,vk+1]) = \emptyset ,

т.е. условие упорядоченного охватывания не нарушается.

Итак, R – эйлеров OE-цикл. Теорема доказана.
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Доказательство данной теоремы в сущности дает рекурсивный алгоритм

построения эйлерова OE-цикла [47, 87, 150]. Описание алгоритма приведено

в следующем подразделе.

3.3 Рекурсивный алгоритм построения

эйлеровых OE-циклов

Рекурсивные алгоритмы построения таких циклов представлены в рабо-

тах [78, 135]. Для реализации рекурсивного алгоритма будем использовать

представление данных, описанное в подразделе 3.1.

В описании данного алгоритма и в алгоритмах, представленных ниже,

используется понятие ранга ребра e [79].

Определение 10. Рангом ребра e \in E(G) будем называть значение функ-

ции rank(e) : E(G) \rightarrow \BbbN , определяемое рекурсивно:

\bullet пусть E1 = \{ e \in E : e \subset f0\} – множество ребер, ограничивающих

внешнюю грань f0 графа G(V,E), тогда (\forall e \in E1) (rank(e) = 1);

\bullet пусть Ek(G) – множество ребер ранга 1 графа

Gk

\Biggl( 
V,E\setminus 

\Biggl( 
k - 1\bigcup 
l=1

El

\Biggr) \Biggr) 
,

тогда (\forall e \in Ek) (rank(e) = k).

Псевдокод рекурсивного алгоритма определения как ранга, так и соответ-

ствующего OE-цикла представлен ниже (алг.2). Алгоритм использует струк-

туры FirstLast и Edge. Структура FirstLast состоит из двух целочислен-

ных полей First и Last, предназначенных для возврата функциями номеров

первого и последнего ребер соответственно в построенных циклах. Исходный

граф G задается в виде массива структур Edge. Отдельный элемент масси-

ва соответствует ребру графа. Поля структуры предназначены для хранения

значений одноименных функций, определенных на соответствующем ребре.

Работу алгоритма RECURSIVE_OE можно разбить на две части.
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Первая часть функции, соответствующая первому циклу do...while,

предназначена для нахождения цикла из ребер, смежных внешней грани гра-

фа \~G, где t = v1(e0). Данный цикл представляется заданием поля Mark для

каждого его ребра.

Algorithm 2 RECURSIVE_OE (G, e0) (Часть 1)
Require: граф G = (V,E), первое рассматриваемое ребро e0 \in \partial f0;
Ensure: Очередь Mark, первое ребро в очереди Ret.First, последнее ребро в очереди

Ret.Last;

1: procedure RECURSIVE_OE(In: G = (V,E), e0 \in \partial f0 Out: Mark, Ret)
2: for all e \in E do  \triangleleft Инициализация. Все ребра не помечены
3: Mark[e] = \infty ;
4: end for
5: Start = e0; Next = l1[e0]
6: while Next \not = Start do  \triangleleft Обход ребер, смежных внешней грани
7: V ertex = v1[Next]; Next = l1[e0]; e0 = Next;  \triangleleft Переход к следующему ребру
8: if (Mark[Next] = \infty ) then  \triangleleft Если ребро не помечено
9: if (Next = Start) then  \triangleleft Если цепь пройдена

10: Mark[e0] = Next;  \triangleleft Пометить текущее ребро
11: break;  \triangleleft Цикл найден. Завершение просмотра ребер
12: end if
13: else  \triangleleft Для помеченного ребра
14: e = l2[Mark[Next]];  \triangleleft Перейти к следующему ребру
15: if (e \not = Start) then  \triangleleft Если не достигнуто начало цепи
16: while (Mark[e] \not = \infty ) do  \triangleleft Пока текущее ребро помечено
17: e = l2[l1[e]];  \triangleleft Выбирать следующее ребро
18: if e = Start then
19: break;  \triangleleft При достижении начала цепи, завершить выполнение

цикла
20: end if
21: end while
22: Next = e;  \triangleleft Переместить указатель на следующее ребро
23: end if
24: end if
25: if (V ertex = v2[Next]) then  \triangleleft Если порядок следования вершин в цепи

нарушен,
26: REPLACE(Next);  \triangleleft переопределить функции текущего ребра
27: end if
28: Mark[e0] = Next;  \triangleleft Пометить текущее ребро
29: end while

Вторая часть, соответствующая следующему циклу do...while, рекур-

сивно вызывает алгоритм RECURSIVE_OE для каждого ранее непомеченного

ребра, инцидентного вершинам цикла, построенного при прохождении перво-
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Algorithm 3 RECURSIVE_OE (G, e0) (Часть 2)
30: Mst = 0;  \triangleleft Флаг наличия вложенного цикла
31: while true do
32:  \triangleleft Если одной из вершин цикла инцидентно непомеченное ребро
33: if l2[Next] \not = e0 and Mark[l2[Next]] = \infty then
34: if Mst = 0 then  \triangleleft Имеется вложенный цикл?
35: Mst = l2[Next];  \triangleleft Записать в Mst его первое ребро
36: end if
37: if V ertex \not = v2[l2[Next]] then  \triangleleft Порядок на ребре нарушен,
38: REPLACE(l2[Next]));  \triangleleft переопределить функции ребра
39: end if
40:  \triangleleft Рекурсивный вызов алгоритма для вложенной компоненты
41: Ret=RECURSIVE_OE(G, l2[Next]);
42: if Mark[e0] \not = \infty then  \triangleleft Первое ребро компоненты помечено?
43: tmp = Mark[e0];  \triangleleft Запомнить пометку в tmp
44: end if
45:  \triangleleft Если пометки вершин v1 и v2 совпадают, то
46: if v2[Mark[Ret.F irst]] = v1[Mark[First]] then
47:  \triangleleft первое ребро цикла = первому ребру вложенного цикла
48: Mark[First] = Ret.F irst;
49: else
50:  \triangleleft Первое ребро цикла = левому соседу текущего ребра
51: Mark[First] = l2[Next];
52: end if
53: Mark[Ret.Last] = tmp;  \triangleleft Сохранить метку последнего ребра
54: end if
55: e0 = Next; Next = Mark[e0];  \triangleleft Перейти к следующей вершине
56: V ertex = v1[e];
57:  \triangleleft Если просмотрены все ребра, завершить выполнение цикла
58: if Next \not = Ret.F irst and Next \not = Start then
59: Break;
60: end if
61: end while
62: if Mst = 0 then  \triangleleft Если нет вложенных компонент связности,
63: Ret.F irst = Start;  \triangleleft Первое ребро найденного цикла
64: else  \triangleleft Первое ребро найденного цикла
65: Ret.F irst = Mst;
66: end if
67: Ret.Last = First;  \triangleleft Определить последнее ребро в цепи

return Ret;
68: end procedure
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го цикла do...while. После построения обхода соответствующей компоненты

связности, он включается в результирующий обход.

Таким образом, описанный алгоритм RECURSIVE_OE позволяет найти эй-

леров OE-цикл в плоском эйлеровом графе и определяет значения рангов

ребер.

3.4 Результативность рекурсивного

алгоритма

Результативность работы алгоритма RECURSIVE_OE следует из доказатель-

ства теоремы существования эйлерова OE-цикла. Произведем оценку слож-

ности алгоритма.

Как отмечено выше, алгоритм состоит из двух частей. При нахождении

в первой части алгоритма очередной пометки Next, требуется просмотреть в

худшем случае deg(v1(e)) инцидентных e ребер. Данный цикл с учетом ре-

курсии выполняется ровно | E(G)| раз, следовательно, сложность выполнения

цикла не превосходит величины, пропорциональной

| E(G)| \cdot 
\sum 
\forall v

deg(v) = | E| 2,

то есть эта часть алгоритма имеет сложность O(| E| 2).

Во второй части алгоритма осуществляется рекурсивный вызов, при этом

происходит последовательный просмотр всех вершин, поэтому сложность

этой части функции не превосходит O(| V (G)| ). Следовательно, сложность

всего алгоритма составляет величину O(| E(G)| 2). Таким образом, предло-

женный алгоритм решает задачу за полиномиальное время O(| E(G)| 2).
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3.5 Нерекурсивный алгоритм построения эйлерова

OE-цикла

В предыдущем разделе был рассмотрен рекурсивный алгоритм постро-

ения OE-цикла в плоском эйлеровом графе. В работе [137] предложен

еще один эффективный алгоритм построения OE-циклов в плоских эй-

леровых графах OECover (алг. 4), имеющий вычислительную сложность

O (| E| \cdot log | V | ).

Algorithm 4 OE-Cycle
Require: G = (V,E) – плоский граф;
Ensure: first \in E, last \in E, mark1 : E \rightarrow E;
1: procedure OECycle(In: G = (V,E); Out:first \in E, last \in E, mark1 : E \rightarrow E)
2: Initiate();
3: Order();
4: FormChain(v0);
5: end procedure

Граф G представлен списком ребер с заданными на них функциями vk(e),

lk(e), fk(e), k = 1, 2 (см. раздел 3.1).

При описании и анализе алгоритма будем использовать обозначения vk(),

lk(), fk(), k = 1, 2 для функций, построенных алгоритмом, в отличие от пер-

воначально заданных функций vk(), lk(), fk(), k = 1, 2.

В теле алгоритма кроме указанных выше функций vk(), lk(), fk(), k = 1, 2

формируются дополнительные функции:

1. Stack : V \rightarrow E: Stack(v) – указатель на очередь v-списка М2-

помеченных ребер;

2. markk() : E \rightarrow E и prevk() : E \rightarrow E, k = 1, 2 для организации

двусвязных списков с целью обеспечения операций вставки/удаления

за время O(1).

Кроме того, функция mark1() используется для представления результата

выполнения алгоритма.
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Алгоритм OECycle (алг. 4) состоит из последовательного выполнения про-

цедур Initiate, Order, и FormChain(), соответствующих трем этапам: «Ини-

циализация», «Упорядочение» и «Формрование». В алгоритме также исполь-

зуется описанная ранее процедура REPLACE() (см. раздел 3.3, алг.1).

Как уже отмечалось ранее, данная прцедура переопределяет введенные

функции vk(e), lk(e), fk(e), k = 1, 2 таким образом, чтобы движение по ребру

e \in E в построенном алгоритмом цикле происходило бы от вершины v2(e) к

вершине v1(e).

Этап «Инициализация». В теле процедуры Initiate (алг. 5) присва-

иваются начальные значения

S(v) = \emptyset , v \in V, mark1(e) = \infty , e \in E,

а также определяется ребро e0 \in E, принадлежащее границе внешней грани

f0. Функции на ребре e0 переопределяются таким образом, чтобы f1(e0) = f0,

Algorithm 5 Процедура Initiate
1: procedure Initiate
2: for all v \in V do
3: Stack(v) = \emptyset ;
4: end for
5: for all e \in E do
6: mark1(e) = mark2(e) = \infty ;
7: prev1(e) = prev2(e) = 0;
8: if (f1(e) = f0) or (f2(e) = f0) then
9: e0 = e;

10: end if
11: end for
12: if f2(e0) = f0 then
13: REPLACE(e0);
14: end if
15: first = last = e0; v0 = v = v1(e0);
16: ne = l1(e0);
17: k = 1; rank(e0) = 1;
18: end procedure

т.е. чтобы ребро l1(e0) принадлежало границе внешней грани. Также в те-

ле данной функции инициализируется очередь М1-помеченных ребер (рису-

нок 3.2), как состоящая из единственного ребра e0, переменные first и last

используются для указания соответственно первого и последнего элементов
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Рисунок 3.2: Организация очереди M1-помеченных ребер

очереди. Переменная ne используется для определения следующего кандида-

та для включения в список M1-помеченных ребер. Переменная v0 использу-

ется для запоминания вершины, принадлежащей границе внешней грани, а

переменная v – как текущая вершина для задания ориентации ребра, опре-

деляемого ne.

Этап «Упорядочение».Процедура Order (Упорядочение) представлена

в алг.6. Функциональное назначение процедуры Order состоит в:

\bullet определении на каждом ребре e \in E значения rank(e);

\bullet формировании для каждой вершины списка инцидентных ребер (рису-

нок 3.3), упорядоченных в порядке убывания значения rank().

Процедура Order использует переменную k как счетчик стадий и функ-

цию rank() : E \rightarrow N , указывающую номер стадии, на которой ребро ставится

в очередь M1-помеченных ребер. Содержательный смысл функции rank за-

ключается в том, что она определяет ранг ребра e (определение ранга ребра

приведено в разделе 3.3). Заметим, что ранг любого ребра плоского графа

может быть определен за время O(| E| ) с помощью процедуры Order.

Данная процедура выполняется следующим образом. На первой стадии

в очередь M1-помеченных ребер вводятся все ребра e \in E, ограничивающие

внешнюю грань f0, а их ориентация задается так, чтобы f1(e) = f0. На стадии

k + 1 каждое ребро e \in E, попавшее в очередь M1-помеченных на стадии

k, переводится в состояние M2-помеченного и помещается в списки вершин

vl(e), l = 1, 2 (см. рисунок 3.3), а в очередь M1-помеченных включаются все

непомеченные ребра, ограничивающие грань, общую с ребром e.
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Algorithm 6 Процедура Order
1: procedure Order
2: while first \not = \infty do
3: while (mark(ne) = \infty ) and (last \not = ne) do
4: M1:
5: rank(ne) = k;
6: mark1(last) = ne;
7: if v2(ne) \not = v then
8: REPLACE(ne);
9: end if

10: v = v1(ne); last = ne; ne = l1(ne);
11: end while
12: e = first; first = mark1(first); v = v2(e);ne = l2(e);
13: M2:
14: k = rank(e) + 1; mark1(e) = Stack(v1(e)); mark2(e) = Stack(v);
15: if mark1(e) \not = 0 then
16: if v1(e) = v1(mark1(e)) then
17: prev1(mark1(e)) = e;
18: else
19: prev2(mark1(e)) = e;
20: end if
21: end if
22: if mark2(e) \not = 0 then  \triangleleft Помещение ребра в стеки вершин v1(e) и v2(e)
23: if v = v1(mark2(e)) then
24: prev1(mark2(e)) = e;
25: else
26: prev2(mark2(e)) = e;
27: end if
28: Stack(v) = e; Stack(v1(e)) = e;
29: end if
30: end while
31: end procedure
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xk =

\biggl\{ 
1, v1(ek) = v0
2, v2(ek) = v0

Рисунок 3.3: Организация v0-списка М2-помеченных ребер

Для анализа результативности алгоритма положим

Ek = \{ e \in E : rank(e) = k\} , E\ast 
k = \{ e \in E : rank(e) \leq k\} ,

Ek = E\setminus E\ast 
k,

черезG(E \prime ) будем обозначать плоский граф, порожденный множеством ребер

E \prime \subset E.

Лемма 1. [86] Для любого k = 1, 2, 3, . . . ,M , где M = max
e\in E

rank(e), имеет

место следующее утверждение:

Int(G(Ek)) \supset G(Ek); S\setminus Int(G(Ek)) \supset G(E\ast 
k).

Доказательство леммы проведем методом математической индукции по

k. Из описания алгоритма следует, что k принимает значение, равное 1, при

выполнении процедуры Initiate, и значения rank() = 1 устанавливаются

только на ребрах, вводимых в очередь M1-помеченных при первом выполне-

нии тела внешнего цикла в процедуре Order. В соответствии с описанием

процедуры Initiate ребра e0 и e1 = l1(e0) ограничивают внешнюю грань f0

графа G, значение переменной ne указывает на ребро e1, а значение пере-

менной v = v1(e0) – на вершину v1, инцидентную ребрам e0 и e1. Поэтому

при первом выполнении тела цикла Order в очередь M1-помеченных будут

последовательно внесены все ребра цепи

v1e1v2e2 . . . emvm+1,
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удовлетворяющей условиям

v2 = e1 = v1, v2(ei+1) = vi+1 = v1(ei), i = 1, 2, . . . ,m,

ei+1 = l1(ei), i = 1, 2, . . . ,m - 1,

f1(ei) = f1(e1), i = 1, 2, . . . ,m - 1,

l1(em) = e0.

Таким образом, значение rank() = 1 будет определено на всех ребрах, ограни-

чивающих внешнюю грань f0 графа G. В этом случае справедливость утвер-

ждений леммы очевидна.

Предположим, что доказываемые утверждения имеют место для k < K \leq 

M . Рассмотрим множество

FK - 1 = \{ e \in EK - 1| l2(e) /\in E\ast 
K - 1\} .

Из связности графа G, а также из того, что FK - 1 \subset Int(G(EK)) следует

Fk - 1 \not = \emptyset , поэтому, в соответствии с описанием алгоритма, значение функции

rank() = K будут определены на ребрах максимальных по включению цепей

C(e) = v1e1v2e2 . . . emvm+1, e \in FK - 1,

удовлетворяющих условиям

v1 = v2(e), e1 = l2(e);

v2(ei+1) = vi+1 = v1(ei), i = 1, 2, . . . ,m;

ei+1 = l1(ei), mark(ei+1) = \infty , i = 1, 2, . . . ,m - 1,

f1(ei) = f2(e), i = 1, 2, . . . ,m.

Таким образом,

EK =
\bigcup 

e\in FK - 1

E (C(e))

и все цепи C(e), e \in F являются реберно-непересекающимися. Из связно-

сти графа G и отсутствия в нем висячих вершин следует, что в цепи C(e),

e \in FK - 1 ее последняя вершина vm+1 принадлежит V (EK - 1), где V (EK - 1) –

множество вершин, инцидентных ребрам из EK - 1.
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Если в цепи C(e), e \in FK - 1 имеет место равенство v1 = vm+1, то C(e)

– цикл. Если же v1 \not = vm+1, то, поскольку G\ast (EK - 1) – объединение непере-

секающихся по ребрам цепей, в цепи, содержащей ребро l1(em), существует

единственное ребро e\prime \in FK - 1: v2(e\prime ) = vm+1.

Кроме того, по построению

Int(G(EK)) = Int(G(EK - 1))\setminus 

\Biggl( \bigcup 
e\in EK

f1(e)

\Biggr) 
, (3.1)

S\setminus Int(G(EK)) =

\Biggl( \bigcup 
e\in EK

f1(e)

\Biggr) \bigcup 
(S\setminus Int(G(EK - 1))) . (3.2)

Поскольку

EK \subset EK - 1 \subseteq Int(G(EK - 1)), EK \not \subset 
\bigcup 

e\in EK

f1(e),

то из (3.1) следует S\setminus Int(G(EK)) \supseteq EK .

Поскольку

E\ast 
K \subseteq E\ast 

K - 1

\bigcup 
EK , EK \subseteq 

\bigcup 
e\in EK

f1(e), E
\ast 
K - 1 \subseteq S\setminus Int(G(EK)),

то из (3.2) следует S\setminus Int(G(EK)) \supseteq E\ast 
K . Лемма 1 доказана.

Лемма 2. [86] Если M = max
e\in E

rank(e), то EM = \emptyset .

Доказательство. Предположим противное, то есть EM \not = \emptyset . Из леммы

1 следует EM \subseteq IntG(EM).

Рассмотрим множество

FM =
\bigl\{ 
e \in EM

\bigm| \bigm| l2(e) \in EM

\bigr\} 
.

Из связности графа G следует FM \not = \emptyset . В соответствии с описанием алго-

ритма

(\forall e \in FM) (rank(e) = M + 1) ,

т.е. имеем противоречие с условием леммы. Лемма 2 доказана.

Из леммы 2 следует, что алгоритм определит на каждом ребре e \in E

значение функции rank(), т.е. каждое ребро e \in E будет включено в очередь

M1-помеченных ребер. Так как после включения ребра e \in E в эту очередь

72



mark1(e) \not = \infty , то такое включение возможно единственный раз. Каждое

ребро, попавшее в очередь M1-помеченных ребер, переводится в состояние

M2-помеченного включением его в стеки вершин vk(e), k = 1, 2 в порядке,

определяемом очередью, т.е. в порядке возрастания величины rank(e). По-

этому после завершения процедуры Order для каждой вершины v \in V будем

иметь

Stack(v) = arg max
e\in E(v)

rank(e);\biggl( 
e\prime \in E(v), rank(e\prime ) > min

e\in E(v)
rank(e)

\biggr) 
\Rightarrow 

\Rightarrow (\exists e\prime \prime = markx(e
\prime ) \in E(v), rank(e\prime \prime ) = rank(e\prime ) - 1) ,

где

E(v) = \{ e \in E : (v = v2(e)) \vee (v = v1(e))\} ,

x =

\left\{   1, если v1(e
\prime ) = v,

2, если v2(e
\prime ) = v.

Таким образом доказана результативность процедуры Order.

Кроме того, из лемм 1 и 2 следует

E\ast 
M = E, M = max

e\in E(v)
rank(e),

поэтому орграф G\ast = G\ast (A\ast 
M), как ориентированный образ графа G, яв-

ляется связным. Так как G\ast есть объединение непересекающихся по дугам

орциклов, то G\ast – эйлеров орграф.

Этап «Формирование». Функция FormChain(v) (см. алг.7) позволяет

построить максимальную по включению цепь

C = v1e1v2e2v3 . . . eLvL+1,

ei = arg max
e\in E(vi)\setminus \{ el| l<i\} 

rank(e), vi+1 = v1(ei), i = 1, 2, . . . , L,

которая удовлетворяет также следующим условиям:

\bullet v1 = v0 – вершина, ограничивающая внешнюю грань, найденная на

этапе инициализации (функция Initiate);
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\bullet для любой начальной части

Cl = v1e1v2e2 . . . el, l \leq L

и для любой вершины v \in V имеет место неравенство

min
e\in E(v)

\bigcap 
E(Cl)

rank(e) > max
e\in E(v)\setminus E(Cl)

rank(e).

Из эйлеровости орграфа G\ast следует, что C является циклом. Очевидно, что

цикл содержит все ребра, инцидентные вершине v1, следовательно, и всем

вершинам, принадлежащим границе внешней грани.

Algorithm 7 Процедура FormChain
1: procedure FormChain(In: v0 \in f0)
2: v = v0; e = Stack(v); First = Last = e;  \triangleleft Перейти в вершину стека v
3: while true do
4: if v1(e) = v then
5: REPLACE(e);  \triangleleft Установить правильный порядок индексов
6: end if
7: Stack(v) = mark2(e)  \triangleleft Извлечение ребра из стека вершины v2(e)
8: if v = v1(mark2(e)) then
9: prev1(mark2(e)) = 0;

10: else
11: prev2(mark2(e)) = 0;
12: end if
13: v = v1(e);
14: if prev1(e) \not = 0 then
15: if e = mark1(prev1(e)) then
16: mark1(prev1(e)) = mark1(e);
17: else
18: mark2(prev1(e)) = mark1(e);
19: end if
20: else
21: Stack(v) = mark1(e);
22: if v = v1(mark1(e)) then
23: prev1(mark1(e)) = 0;
24: else
25: prev2(mark1(e)) = 0;
26: end if
27: end if
28: e = Stack(v);  \triangleleft Извлечение ребра из стека вершины v1(e)
29: M3: mark1(Last) = e; Last = e;
30: if Last = 0 then
31: break;
32: end if
33: end while
34: end procedure
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Лемма 3. [86] Для любых l = 1, 2, . . . , L и k = 1, 2, . . . ,M имеет место

равенство Int(Cl)
\bigcap 
G(Ek) = \emptyset .

Для доказательства воспользуемся методом математической индукции

по переменной k.

Ребра множества E1 образуют цикл, ограничивающий внешнюю грань

f0 графа G, поэтому они будут включены в построенный алгоритмом цикл.

Кроме того

(\forall H \subseteq G)
\Bigl( 
E1

\bigcap 
Int(H) = \emptyset 

\Bigr) 
.

Покажем, что из

Int(Cl)
\bigcap 

G(EK) = \emptyset , l = 1, 2, . . . , L, k = 1, 2, . . . , K  - 1, K \leq M

следует

Int(Cl)
\bigcap 

G(EK) = \emptyset , l = 1, 2, . . . , L. (3.3)

Предположим противное, пусть нашлось такое l\prime , что v2(e
\prime ) = v \in V Cl\prime .

В соответствии с леммой 1

IntG(EK) \supseteq G(EK) = \{ e : rank(e) > k\} , k = 1, 2, . . . ,M

Из связности графа G и доказанных в лемме 1 свойств графов G(EK) и

орграфов G\ast (EK) следует, что множество Int(Cl\prime )
\bigcap 

EK содержит такое ребро

e\prime \in E, что v2(e
\prime ) = v \in V Cl\prime .

Поэтому

min
e\in E(v)

\bigcap 
ECl\prime 

rank(e) < rank(e\prime ) \leq max
e\in E(v)\setminus ECl\prime 

rank(e),

т.е. имеем противоречие с (3.2), что доказывает справедливость равенства

(3.3). Применяя принцип математической индукции, получаем утверждение

леммы: Int(Cl)
\bigcap 
G(EK) = \emptyset , l = 1, 2, . . . , L, k = 1, 2, . . . ,M.

Лемма 3 доказана.

Поскольку E =
M\bigcup 
k=1

Ek, то, в соответствии с леммой 3

Int(Cl)
\bigcap 

G(EK) = \emptyset , l = 1, 2, . . . , L.

75



Учитывая выше изложенное, заключаем, что L = | E| , а цикл, построенный

процедурой FormChain, является эйлеровым OE-циклом.

Очевидно, что вычислительная сложность этапов «Инициализация» (про-

цедура Initiate) и «Формирование» (процедура FormChain) составляет ве-

личину O(| E| ). Вычислительная сложность этапа «Упорядочение» (процеду-

ра Order) также составляет величину O(| E| ), так как каждое ребро един-

ственный раз ставится в очередь M1-помеченных ребер и затем переводится

из нее в стеки вершин, а вычислительная сложность этих операций состав-

ляет величину O(1). Таким образом, вычислительная сложность алгоритма

– O(| E| ).

Изложенное в данном разделе обобщим в виде следующей теоремы.

Теорема 9. Если G(V,E) – плоский эйлеров граф с множеством граней

F , заданными на E функциями vk : V \rightarrow E, lk : E \rightarrow E, fk : F \rightarrow E,

k = 1, 2, то алгоритм OE-Cycle находит в G эйлеров OE-цикл. При завер-

шении алгоритма переменные First и Last определяют первое и последнее

ребра найденного цикла, значение функции mark(e) – ребро, следующее за

ребром e \in E в найденном цикле. Вычислительная сложность алгоритма

не превосходит O(| E| ).

3.6 Эффективные алгоритмы построения

OE-маршрута в произвольном связном плоском

графе

В случае произвольного плоского графа (который в общем случае не

явлется эйлеровым) задачу построения OE-маршрута можно рассматривать

в двух формулировках:

\bullet как задачу построения OE-маршрута китайского почтальона;

\bullet как задачу построения OE-покрытия графа цепями.
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3.6.1 Алгоритм построения OE-маршрута китайского

почтальона

Пусть дан произвольный плоский граф G = (V,E). Рассмотрим задачу

построения на множестве его ребер E(G) маршрута C, удовлетворяющего

условию упорядоченного охватывания. В общем случае граф не является эй-

леровым, поэтому невозможно построить в нем замкнутый цикл. Для того

чтобы получить замкнутый маршрут, необходимо некоторые ребра проходить

дважды. В дальнейшем будем считать, что ребра, которые необходимо прой-

ти дважды, дублируются дополнительными ребрами, представленными

во множестве H(G).

В данном разделе показано, что алгоритм построения замкнутого марш-

рута P в неэйлеровом графе G является алгоритмом построения эйлерова

цикла C с упорядоченным охватыванием в эйлеровом графе \~G, представля-

ющего модификацию графа G, в которую добавлены ребра множества H(G).

Определение 11. Будем говорить, что маршрут C = v1e1v2e2 . . . vk

в графе G имеет упорядоченное охватывание (является OE-

маршрутом), если для любой его начальной части Ci = v1e1v2e2 . . . ei,

i \leq (| E(G)| + | H(G)| ) выполнено условие

Int(Ci) \cap G(E) = \emptyset ,

т.е. пересечение внутренних граней Ci с множеством ребер пусто.

В терминах задачи раскроя (для модели раскройного плана в виде плоско-

го неэйлерова графа) ребра множестваH(G) интерпретируются как холостые

проходы режущего инструмента.

Найти множество ребер, для которых требуются дубликаты, можно с по-

мощью подхода, аналогичного тому, что используется для задачи китайского

почтальона. Очевидно, что в этом случае вычислительная сложность алго-

ритма может возрасти.
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а) б)

Рисунок 3.4: Модификация указателей на ребро при добавлении дополнительных постро-
ений: а) для висячей вершины; б) для моста

Здесь будем вводить дубликаты ребер таким образом, чтобы алгоритм

RECURSIVE_OE (алг. 2) для эйлеровых графов претерпел минимум модифика-

ций. Данную модификацию можно получить следующим образом.

В первой части алгоритма, когда требуется найти цикл из ребер подгра-

фа, ограничивающих внешнюю грань текущего подграфа, возникает ситуа-

ция, когда поле Mark помещенного в очередь ребра указывает либо на само

себя (висячая вершина текущей компоненты связности), либо это ребро не

совпадает с начальным для данной компоненты связности, а указывает на

уже помеченные ребра (мост). В обоих случаях необходимо продублировать

данные ребра. Введение дополнительных ребер повлечет за собой такое из-

менение указателей, как показано на рисунках 3.4.а) – для висячей вершины

и 3.4.б) – для моста.

После выполнения соответствующих построений для всех ребер поле

Mark на первой стадии выполнения алгоритма оказывается сформирован-

ным таким образом, что остальные функции алгоритма, разработанного для

эйлерова графа, не будут требовать модификации. Таким образом, после вве-

дения некоторого числа дополнительных ребер, будет получен эйлеров граф,

а найденный в нем цикл будет иметь упорядоченное охватывание. В исходном

же графе будем иметь маршрут, в котором ни один цикл из уже пройденных

ребер не будет охватывать еще не пройденных. Описанную модификацию

алгоритма 2 будем называть алгоритмом CPP_OE (см. алг.12) (этот алгоритм
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решаетOE-задачу китайского почтальона). Рекурсивный вызов функции для

каждого непомеченного ребра, инцидентного вершинам цикла, полученного

на предыдущем этапе, производится без изменений. После построения обхода

для соответствующей компоненты связности, он включается в результирую-

щий обход.

Обобщим все сказанное выше в виде следующей теоремы.

Теорема 10. Маршрут, построенный с помощью алгоритма CPP_OE,

является OE-маршрутом. Сложность алгоритма составляет величину

O(| E(G)| \cdot | V (G)| ).

Доказательство этой теоремы очевидно, т.к. на самом деле ребра, по-

лученные в результате дополнительных построений, являются недостающи-

ми фрагментами выделяемых алгоритмом циклов. Потребуется не более чем

O(| E(G)| ) добавлений ребер, а добавление одного ребра требует изменения

шести указателей.

Для более наглядного представления последовательности выполняемых

действий организуем первую часть алгоритма в качестве отдельной функ-

ции ExternCycle (см. алг. 8) [138]. Входными параметрами для данной

функции являются:

\bullet стартовое ребро графа (ребро, с которого начинается поиск ребер, огра-

ничивающих внешнюю грань текущей компоненты связности);

\bullet ребро, следующее за стартовым;

\bullet начальная вершина для текущей компоненты связности (для организа-

ции правильной ориентации ребер);

\bullet некоторые вспомогательные переменные.

Функция обращается к добавлению ребер во всех описанных выше случаях.

Дублирование моста происходит непосредственно в функции ExternCycle,

в оставшихся двух случаях вызываются различные модификации функции

Add (см. алг. 10 и 11): для ликвидации висячей вершины текущей компо-
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ненты связности и для завершения цикла в данной компоненте связности

соответственно.

Algorithm 8 ExternCycle (Часть 1)
Require: G = (V,E) – плоский граф; First – первое рассматриваемое ребро; Next –

указатель на следующее ребро; V ertex – текущая вершина; Number – число ребер в
графе;

Ensure: NewFirst – номер дополнительного ребра, завершающего цикл;
1: procedure ExternCycle(In: G = (V,E), First, Next, V ertex, Number; Out:

NewFirst)
2: NewFirst = 0;
3: while true do
4: First = Next; V ertex = v1(First); Next = l1(First);
5: if ( thenMark(Next) \not = \infty )
6: if ( thenNext = Start)
7: if ( thenv1(First) = v1(Next))
8: Add(G, Next, Mark(Next)); Number = Number + 1;
9: Mark(First) = Number; Mark(Number) = Next;

10: Level(First) = L; Level(Number) = L; NewFirst = Number;
11: return NewFirst;
12: end if
13: Mark(First) = Next; Level(First) = L; return NewFirst;
14: else
15: e = l2(Mark(Next));
16: if e \not = Start then
17: while Mark(e) \not = \infty do
18: e = l2(l1(e));
19: if e = Start then
20: break;
21: end if
22: end while
23: end if

Пример работы алгоритма для плоского неэйлерова графа приведен на

рисунке 3.5. Подчеркнутые фрагменты маршрута соответствуют движению

по основным ребрам графа, неподчеркнутые – по дополнительным, которые

на рисунке обозначены пунктиром. Предложенный алгоритм находит марш-

рут

v1v3v7v10v8v10v9v10v7v8v6v4v6v5v6v8v9v11v12v11v13v11v9

v7v3v2v1v4v5v12v13v2v3v1. (3.4)

Предложенный алгоритм позволяет найти | \~V | различных маршрутов для

данного графа G. Здесь \~V – множество вершин графа G, принадлежащих
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Algorithm 9 ExternCycle (Часть 2)
24: if e \not = First then
25: if Mark(Next) \not = \infty and Level(Next) = L then
26: Number = Number + 1;
27: v1(Number) = v2(Next); v2(Number) = v1(Next);
28: l1(Number) = l2(Next); r1(l2(Next)) = Number;
29: r1(Number) = Next; l2(Next) = Number;
30: if v1(r1(Next)) = v2(Number) then
31: l1(r1(Next)) = Number;
32: else
33: l2(r1(Next)) = Number;
34: end if
35: r2(Number) = r1(Next); r1(Next) = Number; l2(Number) = Next;
36: Next = Number;
37: end if
38: Next = e;
39: else
40: Number = Number + 1; Add(G, Number, First);
41: Next = l1(First);
42: end if
43: end if
44: end if
45: if V ertex \not = v2(Next) then
46: REPLACE(Next);
47: end if
48: Mark(First) = Next; Level(First) = L;
49: if Next = Start then
50: break;
51: end if
52: end while
53: return NewFirst;
54: end procedure
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Algorithm 10 Add (Функция для добавления дополнительного ребра в слу-
чае нахождения в висячей вершине)
1: procedure Add(In: G = (V,E) – плоский граф; Number – номер добавляемого ребра;

First – ребро, приводящее в висячую вершину;)
2: v1(Number) = v2(First); v2(Number) = v1(First);
3: l1(Number) = l2(First); r1(Number) = First;
4: if v1(l2(First)) = v2(First) then
5: r1(l2(First)) = Number;
6: else
7: r2(l2(First)) = Number;
8: end if
9: l2(First) = Number;

10: r2(Number) = First;
11: if v1(r1(First)) = v1(First) then
12: l1(r1(First)) = Number;
13: else
14: l2(r1(First)) = Number;
15: end if
16: r1(First) = Number; l2(Number) = First; l1(First) = Number;
17: end procedure

Algorithm 11 Add (Функция добавления дополнительного ребра для за-
вершения цикла)
1: procedure Add(In: G = (V,E) – плоский граф; Number – номер добавляемого ребра;

Next – ребро, принадлежащее внешнему циклу;)
2: v1(Number) = v2(Next); v2(Number) = v1(Next);
3: l1(Number) = Next; l2(Next) = Number; l2(Number) = Mark(Next);
4: if v1(Mark(Next)) = v2(Number) then
5: r1(Mark(Next)) = Number;
6: else
7: r2(Mark(Next)) = Number;
8: end if
9: r2(Number) = Next; r1(Number) = Next; r2(Next) = Number;

10: end procedure
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Algorithm 12 CPP_OE (OE-задача китайского почтальона, часть 1)
Require: G = (V,E) – плоский граф; Number – число вершин графа; First – первое

рассматриваемое ребро;
Ensure: Очередь Mark, первое ребро в очереди Ret.F irst, последнее ребро в очереди

Ret.Last;
1: procedure CPP_OE(In: G = (V,E); Number; First; Out: Mark, Ret)
2: for all e \in E do
3: Mark(e) = \infty ;
4: end for
5: Start = Next = First;
6: NewFirst=ExternCycle (G, Start, Next, First, V ertex, Number);
7: Mst = 0;
8: while true do
9: if l2(Next) \not = First and Mark(l2(Next)) = \infty then

10: if Mst = 0 then
11: Mst = l2(Next);
12: end if
13: if v \not = v2(l2(Next)) then
14: REPLACE(l2(Next));
15: end if
16: Ret=CPP_OE (G, l2(Next), Number);
17: if Mark(First) \not = \infty then
18: Mark(Ret.Last) = Mark(First);
19: if v2(Ret.F irst) = v1(First) then
20: Mark(First) = l2(Next);
21: else
22: Mark.F irst = l2(Next);
23: end if
24: end if
25: First = Next; Next = Mark(First); V ertex = v1(e);
26: if Next = Ret.F irst or Next = Start then
27: break;
28: end if
29: end if
30: end while
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Algorithm 13 CPP_OE (OE-задача китайского почтальона, часть 2)
31: if Mst = 0 then
32: Ret.F irst = Start;
33: else
34: if v2(Ret.F irst) \not = v1(First)and NewFirst = 0 then
35: Ret.F irst = Mst;
36: end if
37: if v2(Ret.F irst) \not = v1(First)and NewFirst \not = 0 then
38: Ret.F irst = Next;
39: end if
40: end if
41: if NewFirst = 0 then
42: Ret.Last = First;
43: else
44: Ret.Last = NewFirst;
45: end if
46: return Ret;
47: end procedure

Рисунок 3.5: Пример работы алгоритма для плоского неэйлерова графа

внешней грани этого графа. На самом деле это только нижняя оценка числа

решений задачи. Однако предложенный алгоритм может найти только | \~V | 

различных решений в силу определенности выбора следующего ребра в об-

ходе [138]. Более подробно об определении количества OE-цепей в графе см.

главу 4.
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Рисунок 3.6: Пример неэйлерова графа, в котором две вершины нечетной степени смежны
разным граням

3.6.2 Задача построения OE-покрытия

Легко заметить, что любой граф можно достроить до эйлерова добавлени-

ем n/2 ребер, где n – число вершин нечетной степени. При условии сохране-

ния планарности данного представления графа дополнительное построение

из n ребер возможно лишь в случае, когда в графе найдется такое разбие-

ние вершин нечетной степени на пары, что они попарно будут смежны одной

грани. На рисунке 3.6 этому требованию удовлетворяют вершины v1, v2 и

v3. Для вершины v9 такой пары не существует, следовательно, для общего

случая нужно искать другие решения.

Проблеме построения OE-маршрута в плоском графе произвольного ви-

да посвящена работа [71], в которой разработан алгоритм построения таких

маршрутов, имеющий вычислительную сложность не более O
\Bigl( 
| E| 2

\Bigr) 
.

Покажем, что алгоритм построения замкнутого маршрута P в неэйле-

ровом графе G является алгоритмом построения эйлерова OE-цикла C в

эйлеровом графе \~G, представляющего модификацию графа G, в которую

добавлены дополнительные ребра. Множество этих ребер будем обозначать

через H(G).

В дальнейшем будем использовать представление графа, приведенное в

разделе 3.1.

В работе [45] сформулирована следующая теорема.
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Теорема 11. Пусть G = (V,E) – плоский связный граф на S, не имеющий

висячих вершин. Существует множество ребер F : (F \cap S)\setminus V = \emptyset такое,

что граф \^G = (V,E \cup F ) – эйлеров, и в графе \^G существует эйлеров цикл

C = v1e1v2e2...env1, n = | E| + | F | , для любой начальной части которого

Cl = v1e1v2e2...vl, l \leq | E| + | F | , выполнено условие Int(Cl) \cap G = \emptyset .

Доказательство теоремы дает результативность приведенного ниже алго-

ритма OECover (алг. 14) [86], который строит покрытие плоского графа G

Algorithm 14 OECover
Require: G = (V,E) – плоский граф; Vodd – множество вершин нечетной степени;
Ensure: first \in E, last \in E, mark1 : E \rightarrow E;
1: procedure OECover(In: G = (V,E), Vodd; Out:first \in E, last \in E, mark1 : E \rightarrow E)
2: Initiate();
3: Order();  \triangleleft Сортировка списка вершин нечетной степени по убыванию ранга

SortOdd();
4: while Vodd \not = \emptyset do
5: v0 = arg max

v\in Vodd

rank(v);

6: Vodd = Vodd\setminus \{ v0\} ;
7: v = FormChain(v0);
8: Vodd = Vodd\setminus \{ v\} ;
9: end while

10: FormChain(v0);
11: end procedure

последовательностью OE-цепей. Как и прежде, граф G представлен списком

ребер с заданными на них функциями vk(e), lk(e), fk(e), k = 1, 2 (см. раздел

3.1).

После выполнения процедур Initiate и Order (см. раздел 3.5) выполня-

ется упорядочение вершин нечетной степени v \in Vodd в порядке возрастания

их ранга с помощью процедуры SortOdd. За ранг вершины v принимается

значение функции rank(Stack(v)). Далее выполняется цикл while...do с ис-

пользованием процедуры FormChain,в которой строится последовательность

из | Vodd| /2 простых цепей между парами вершин нечетной степени.

Текст процедуры FormChain приведен в алг.15.

Функциональное назначение процедуры состоит в формировании OE-

цепи, начинающейся в заданной вершине w \in Vodd и заканчивающейся в
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Algorithm 15 Процедура FormChain
1: procedure FormChain(In: w – вершина нечетной степени, из которой будет построена
цепь; Out: v – вершина нечетной степени, завершающая построенную цепь)

2: v = w; e = Stack(v); first = last = e;
3: do
4: if v1(e) = v then
5: REPLACE(e);
6: end if
7: Stack(v) = mark2(e);
8: if v = v1(mark2(e)) then
9: prev1(mark2(e)) = 0;

10: else
11: prev2(mark2(e)) = 0;
12: end if
13: v = v1(e);
14: if prev1(e) \not = 0 then
15: if e = mark1(prev1(e)) then
16: mark1(prev1(e)) = mark1(e);
17: else
18: mark2(prev1(e)) = mark1(e);
19: end if
20: else
21: Stack(v) = mark1(e);
22: if v = v1(mark1(e)) then
23: prev1(mark1(e)) = 0;
24: else
25: prev2(mark1(e)) = 0;
26: end if
27: end if
28: if v \in Vodd then
29: mark1(last) = 0;
30: return v;
31: end if
32: e = Stack(v);
33: M3:
34: mark1(last) = e; last = e;
35: while (last \not = 0);
36: return v;
37: end procedure
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некоторой вершине v \in Vodd, v \not = w. В результате выполнения процедуры

будет построена простая цепь C = v0e1v1e2...ekvk, в которой

v1, v2, ...vk - 1 /\in Vodd, v0, vk \in Vodd,

ei = arg max
e\in E(vi)\setminus \{ el| l<i\} 

rank(e), vi+1 = v1(ei), i = 1, 2, . . . , k,

кроме того, для любой начальной части Cl = v0e1v1e2v2 . . . el, l \leq k и для

любой вершины v \in V имеет место неравенство

min
e\in E(v)

\bigcap 
E(Cl)

rank(e) > max
e\in E(v)\setminus E(Cl)

rank(e).

Сначала производится инициализация списка М3-помеченных ребер (ри-

сунок 3.7), который будет являться представлением построенной цепи. Из-

Рисунок 3.7: Организация списка М3-помеченных ребер

начально этот список состоит из ребра e, находящегося в начале w-списка

М2-помеченных ребер. Вершина w определяется как текущая вершина v. В

цикле do...while с помощью процедуры REPLACE устанавливается v2(e) = v,

и ребро e исключается из v1(e)- и v2(e)-списков М2-помеченных ребер, а теку-

щей устанавливается вершина v1(e). Если v /\in Vodd, очередь М3-помеченных

ребер пополняется ребром e, в противном случае процедура возвращает те-

кущую вершину v \in Vodd.

В результате выполнения процедуры FormChain() будет построена про-

стая цепь C = v0e1v1e2...ekvk, в которой

v1, v2, ...vk - 1 /\in Vodd, v0, vk \in Vodd,

ei = arg max
e\in E(vi)\setminus \{ el| l<i\} 

rank(e), vi+1 = v1(ei), i = 1, 2, . . . , k,

88



кроме того для любой начальной части Cl = v0e1v1e2v2 . . . el, l \leq k и для

любой вершины v \in V имеет место неравенство

min
e\in E(v)

\bigcap 
E(Cl)

rank(e) > max
e\in E(v)\setminus E(Cl)

rank(e).

Лемма 4. Для любых j = 1, 2, . . . , l и m = 1, 2, . . . ,M , где M = max
e\in E

rank(e),

имеет место равенство Int(Cj)
\bigcap 

G(Em) = \emptyset .

Для доказательства воспользуемся методом математической индукции

по переменной m.

Поскольку ребра множества E1 образуют цикл, ограничивающий внеш-

нюю грань f0 графа G, то имеет место

(\forall H \subseteq G)
\Bigl( 
E1

\bigcap 
IntG(H) = \emptyset 

\Bigr) 
,

что доказывает справедливость леммы для m = 1.

Покажем, что из

Int(Cj)
\bigcap 

G(Em) = \emptyset , j = 1, 2, ..., l, m = 1, 2, ..., K  - 1, где K \leq M

следует

Int(Cj)
\bigcap 

G(Em) = \emptyset , l = 1, 2, ..., L. (3.5)

Предположим противное, пусть нашлось такое l\prime , что

Int(Cl\prime )
\bigcap 

G(Em) \not = \emptyset .

В соответствии с леммой 1

Int(G(Em)) \supseteq Em = \{ e : rank(e) > m\} , m = 1, 2, ...,M.

Из связности графа G и леммы 1 следует, что множество Int(Cl\prime )
\bigcap 

Em

содержит ребро e\prime \in E такое, что v2(e
\prime ) = v \in V (Cl\prime ).

Поэтому

min
e\in E(v)

\bigcap 
ECl\prime 

rank(e) < rank(e\prime ) \leq max
e\in E(v)\setminus ECl\prime 

rank(e),

т.е. имеем противоречие с (3.2), что доказывает справедливость равенства

(3.5). Применяя принцип математической индукции, получаем утверждение

леммы:

Int(Cl)
\bigcap 

G(Em) = \emptyset , l = 1, 2, ..., L, m = 1, 2, ...,M.
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Лемма 4 доказана.

Доказательство леммы 4 завершает доказательство результативности про-

цедуры FormChain.

В результате выполнения цикла while...do алгоритм OE-Cover строит

последовательность OE-цепей

C0 = v0e01v
0
1e

0
2 . . . e

0
k0
v0k0, C

1 = v1e11v
1
1e

1
2 . . . e

1
k1
v1k1, . . . ,

Cn - 1 = vn - 1en - 1
1 vn - 1

1 en - 1
2 ...en - 1

kn - 1
vn - 1
kn - 1

, где n = | Vodd| /2,

в которой

Vodd =
\bigl\{ 
v0, vk0, v

1, vk1, . . . , v
n - 1, vkn - 1

\bigr\} 
,

(\forall k < (| Vodd| /2) - 1, \forall l > k) Int(
k\bigcup 

i=0

C i) \cap C l = \emptyset .

После этого выполняется процедура FormChain для вершины v0, смеж-

ной внешней грани. Результатом выполнения данной процедуры будет цикл

с упорядоченным охватыванием Cn, состоящий из ребер, не содержащихся в

цепях C i, i = 0, 1, . . . , n - 1, где n = | Vodd| /2.

Результативность алгоритма доказана.

Легко заметить, что вычислительная сложность алгоритма OE-Cover не

более O (| E| \cdot log | V | ) операций.

Различые аспекты алгоритма OECover отражены в работах [69,86,141].

Алгоритм OE-Cover определяет дополнительные ребра, соединяющие ко-

нец текущей и начало последующей цепей. Эти ребра образуют множествоM ,

существование которого утверждается в теореме 15. Они представляют собой

некоторое паросочетание на множестве Vodd. Приведем доказательство более

сильного результата, анонсированного в [56]: построение последовательностей

цепей с упорядоченным охватыванием с любым множествомM , образующим

паросочетание на множестве Vodd [65, 67,93].
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3.7 Ранжирование ребер, вершин и граней

Введенная в доказательстве функция rank(e) в дальнейшем будет суще-

ственным образом использоваться для решения задач маршрутизации в неэй-

леровых графах, несвязных графах и в задачах построения OE-цепей с до-

полнительными локальными ограничениями. Поэтому целесообразно опреде-

лить процедуру Ranking(G), которая для любого плоского графа для любого

e \in E(G) вычисляет значения rank(e). Наряду с функцией ранга ребра в

дальнейшем будут использованы функции ранга вершины rank(v) и ранга

грани rank(f).

Определение 12. Рангом вершины v \in V (G) будем называть значение

функции rank : V (G) \rightarrow N: rank(v) = maxe\in E(v) rank(e), где E(v) – множе-

ство ребер инцидентных вершине v \in V .

Определение 13. Рангом грани f \in F (G) будем называть значение функ-

ции rank : F (G) \rightarrow Z\geq 0:

rank(f) =

\left\{   0, при f = f0,

mine\in E(f) rank(e), в противном случае,
где E(f) –множество ребер инцидентных грани f \in F .

Из определения 10 ранга ребра следует, что его численное значение опре-

деляет удаленность этого ребра от внешней грани и показывает, какое ми-

нимальное число граней необходимо пересечь, чтобы добраться от внешней

грани f0 до этого ребра. Это позволяет для определения ранга использовать

граф G\prime (V,E, F ), топологически двойственный исходному графу G(V,E, F ).

Очевидно, что имеют место соотношения:

V (G\prime ) = F (G), V (G) = F (G\prime ), E(G\prime ) \updownarrow E(G).

Введенная функция ранга ребра rank(e) фактически может быть опре-

делена как расстояние в двойственном графе от f0 до ближайшей грани

f \in F (G), инцидентной ребру e. Поскольку граням графа G соответствуют
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вершины в двойственном графе, то это сводится к нахождению кратчайшего

пути между вершинами в двойственном графе G\prime . Для нахождения рангов

всех вершин достаточно построить в двойственном графе G\prime дерево кратчай-

ших путей с корнем в вершине f0.

Далее будем считать, что процедуру нахождения рангов всех ребер, вер-

шин и граней графа G реализует алгоритм Ranking(G). Фактически, дан-

ный алгоритм представляет алгоритм Дейкстры и его вычислительная слож-

ность при соответствующей организации структур данных не превосходит

O(| E| log | E| ). Для построения двойственного графа не нужно выполнять до-

полнительных операций, так как для каждого ребра e уже заданы функции

f1(e) и f2(e), соответствующие номерам граней, связываемых ребром.

В качестве примера рассмотрим граф, представленный на рисунке 3.8. На

рисунке круглой рамкой обведены номера граней, в соответствии с номерами

вершин двойственного графа G\prime (рисунок 3.9). Поиск начинается с вершины,

соответствующей внешней грани. Мосты в двойственном графе представля-

ются как петли. Таким образом, для рассмотренного примера ранг 1 имеют

ребра, инцидентные вершине 1, ранг 2 – все ребра, инцидентные вершине 2,

а ранг 3 – ребро 3 - 4, что соответствует рангам, отмеченным на рисунке 3.8

[46,51,99].

Рисунок 3.8: Исходный граф G
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Рисунок 3.9: Ранги ребер на графе, двойственном графу G

3.8 Оптимальное покрытие плоского графа

последовательностью OE-цепей

Рассмотрим алгоритм построения оптимального по длине дополнитель-

ных построений покрытия произвольного плоского связного графа без вися-

чих вершин и мостов последовательностью цепей с упорядоченным охваты-

ванием, а также доказательство его результативности [67,77].

Теорема 12. Пусть G = (V,E) – плоский связный граф на S, не имеющий

висячих вершин и мостов. Для любого множества M , являющегося паро-

сочетанием на множестве Vodd графа G, и такого, что (M \cap S)\setminus V = \emptyset ,

существует эйлеров цикл C = v1e1v2e2...env1, n = | E| + | M | , для любой на-

чальной части которого Cl = v1e1v2e2...vl, l \leq | E| + | M | , выполнено условие

Int(Cl) \cap G = \emptyset .

Доказательство этой теоремы также конструктивно и состоит в дока-

зательстве результативности алгоритма 16.

Через fv обозначим грань, для которой rank(fv) = rank(v).

Для анализа результативности алгоритма по аналогии с доказательством

теоремы 9 положим

Ek = \{ e \in E : rank(e) = k\} , E\ast 
k = \{ e \in E : rank(e) \leq k\} ,

Ek = E\setminus E\ast 
k,

черезG(E \prime ) будем обозначать плоский граф, порожденный множеством ребер

E \prime \subset E. Леммы 1 и 2 остаются справедливыми. Из этих лемм непосредственно

следует результативность шага 1 алгоритма M-Cover.
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Algorithm 16 Алгоритм M-Cover

Require: связный плоский граф G, функции vk(e), lk(e), e \in E(G), k = 1, 2;
вершина v0 \in V (G), инцидентная внешней грани; паросочетание M на
множестве вершин VOdd нечетной степени;

Ensure: вполне упорядоченное множество C из OE-цепей графа G, пред-
ставляющее OE покрытие графа G;
Промежуточные данные:
для каждого v \in V (G) очередь Q(v) инцидентных вершине ребер e \in 
E(V ), упорядоченная в порядке убывания ранга;
вершины u, v \in V (G); ребро e \in E(G); символ конца цепи \#;
для каждой вершины v \in V (G) пометка Odd(v);

1: C << v0;  \triangleleft Инициализация
2: for all v \in V (G) do

3: Odd(v) :=

\biggl\{ 
true, если v \in VOdd;
false, если v \not \in VOdd;

4: end for
5: for all e = \{ v, w\} \in M do
6: Flag(e = \{ v, w\} ) = ((v \in Int(fw)) \vee (w \in Int(fv))) .
7: end for
8: Ranking (G);
9: for all v \in V (G) do сформировать очередь Q(v);

10: end for
11: v := v0;  \triangleleft Построение
12: while Q(v) \not = \emptyset do
13: repeat
14: e << Q(v);  \triangleleft Переместить из Q(v) первый элемент в e

v := u : e = \{ v, u\} ; C << e << u;  \triangleleft Следующие ребро и вершина
15: until Odd(v);
16: if Q(v) = \emptyset then
17: u = M(v);  \triangleleft Вершина u является напарником вершины v

Odd(u) := Odd(v) := false;  \triangleleft Удалить вершины u, v из VOdd

C << v << \# << u; v := u;  \triangleleft Завершение текущей цепи
18: else
19: if (rank(v) \leq rank (M(v)) \wedge Flag(\{ v,M(v)\} )) then
20: C << v << \# << M(v); v := M(v);  \triangleleft Завершение цепи
21: end if
22: end if
23: end while

Останов
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В теле алгоритма M-Cover организована такая последовательность при-

менения шагов 2–7, при которой благодаря отсутствию мостов концом цепи

будет либо тупиковая вершина, либо транзитная вершина, у которой напар-

ник имеет более высокий ранг.

Для этой последовательности оказывается справедлива лемма, аналогич-

ная лемме 4. Рассмотрим ее доказательство, приведенное в [67].

Лемма 5. Для любых j = 1, 2, . . . , | E| + | Vodd| /2 и k = 1, 2, . . . , K, где

K = max
e\in E

rank(e),

имеет место равенство Int(Cj)
\bigcap 

G(Ek) = \emptyset , где Cj – начальная часть

маршрута, построенного алгоритмом M-Cover.

Для доказательства воспользуемся методом математической индукции

по переменной k.

Поскольку ребра множества E1 образуют цикл, ограничивающий внеш-

нюю грань f0 графа G, то имеет место

(\forall H \subseteq G)
\Bigl( 
E1

\bigcap 
Int(H) = \emptyset 

\Bigr) 
,

что доказывает справедливость леммы для k = 1.

Покажем, что из

Int(Cj)
\bigcap 

G(Ek) = \emptyset , j = 1, 2, ..., l, k = 1, 2, ..., L - 1, где L \leq K

следует

Int(Cj)
\bigcap 

G(Ek) = \emptyset , l = 1, 2, ..., L. (3.6)

Предположим противное, пусть нашлось такое l\prime , что

Int(Cl\prime )
\bigcap 

G(Ek) \not = \emptyset .

В соответствии с леммой 1 имеем

Int(G(Ek)) \supseteq Ek = \{ e : rank(e) > k\} , k = 1, 2, ..., K.

Из связности графа G, отсутствия в нем мостов и леммы 1 следует, что

множество Int(Cl\prime )
\bigcap 

G(Ek) содержит ребро e\prime \in E такое, что v2(e
\prime ) = v \in 

V (Cl\prime ).
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Поэтому

min
e\in E(v)

\bigcap 
ECl\prime 

rank(e) < rank(e\prime ) \leq max
e\in E(v)\setminus ECl\prime 

rank(e),

т.е. имеем противоречие с леммой 1, что доказывает справедливость равен-

ства (3.6). Применяя принцип математической индукции, получаем утвер-

ждение леммы:

Int(Cj)
\bigcap 

G(Em) = \emptyset , j = 1, 2, ..., l, k = 1, 2, ..., K.

Лемма 5 доказана.

Из справедливости леммы следует результативность алгоритма. Очевид-

но, что его вычислительная сложность алгоритма M-Cover не превосходит

величины O (| E| \cdot log | V | ). Теорема доказана.

При наличии мостов возможна ситуация, представленная на рисунке 3.10.

Если маршрут начинается в вершине v0, то он пройдет по мостам, обойдет

Рисунок 3.10: Пример графа с мостами, для которого алгоритм M-Cover не построит
OE-маршрут

самую вложенную петлю, попадет в тупиковую вершину v3 и перейдет в вер-

шину v11. При этом, при любом продолжении маршрута в соответствии с

алгоритмом M-Cover ребра \{ v2, v2\} и \{ v1, v1\} не будут пройдены.

В графе без мостов для построения оптимального покрытия (т.е. покры-

тия с минимальной длиной дополнительных построений) достаточно в ка-

честве M взять кратчайшее паросочетание на множестве Vodd а затем вос-

пользоваться алгоритмом M-Cover. Эти действия представлены в алгоритме

OptimalCover.
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Алгоритм OptimalCover

Входные данные:

\bullet плоский граф G, представленный списком ребер с заданными на них

функциями vk(e), lk(e), fk(e), k = 1, 2.

Выходные данные: Cj, j = 1, ..., | Vodd| /2, – покрытие графа G OE-

цепями.

Шаг 1. Найти кратчайшее паросочетание M на множестве Vodd.

Шаг 2. Выполнить алгоритм M-Cover для графа G и паросочетания M .

Шаг 3. Останов.

Сложность алгоритма OptimalCover не превосходит O(| E| \cdot 
\sqrt{} 

| V | ) [158].

Данная сложность достигается за счет решения задачи поиска кратчайшего

паросочетания на полном графе.

3.9 Построение OE-покрытия для несвязного графа

Практическую ценность представляет задача построения OE-маршрутов

в несвязных графах. В этом случае задачу поиска OE-покрытия графа цепя-

ми можно свести к ряду задач меньшей размерности: строить покрытие для

каждой компоненты связности в отдельности. Если полученный граф не со-

держит вложенных компонент, то данный подход является разумным. Одна-

ко при наличии вложенности компонент связности задача несколько услож-

няется и возникают следующие ограничения на порядок обхода компонент

связности: компоненты связности, состоящие из ребер более высокого ранга

необходимо обходить раньше компонент, состоящих из ребер более низкого

ранга.

Поскольку вырезаемые по раскройному плану фрагменты являются про-

образами граней, то требование к последовательности обхода граней, гаран-

тирующие отсутствия необходимости резки отрезанных фрагментов, легко

формализовать в терминах графа G\prime , двойственного графу G.
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Пусть\preceq – отношение частичного порядка на F (G), индуцируемое деревом

T f0
G\prime кратчайших путей до вершины f0 \in F :

(fi \preceq fj) \leftrightarrow 
\Bigl( 
fj принадлежит цепи в T f0

G\prime между fi и f0

\Bigr) 
.

Утверждение 12. Порядок обхода граней является допустимым в том и

только том случае, если он является расширением частичного порядка \preceq .

Определение 14. Под рангом компоненты связности будем пони-

мать минимальный ранг ребер этой компоненты связности.

Для задачи построения OE-покрытия в плоском графе можно постро-

ить нерекурсивный алгоритм, который находит решение за полиномиальное

время [48,89,90].

Алгоритм MultiComponent

Входные данные:

- несвязный плоский граф G, заданный функциями vk(e), fk(e), lk(e), e \in 

E(G), k = 1, 2;

Выходные данные:

- вполне упорядоченное множество C из OE-цепей графа G, представляющее

OE покрытие графа G;

Промежуточные данные:

- множество S(G) компонент связности графа;

- функции s(v), s(e) \in S(G) определяющие принадлежность вершин и ребер

графа компонентам связности s \in S(G);

- множество вершин v0(s) \in V (G), инцидентных внешней грани для каждой

компоненты связности;

- C(s) – OE покрытие компоненты связности s \in S(G) ; \# – символ конца

цепи;

Шаг 1. <Поиск> Выявить множество компонент связности S(G).
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Шаг 2. <Разметка> Определить ранги всех ребер, вершин, граней и ком-

понент связности графа G. Определить v0(s) для каждой компоненты связ-

ности s \in S(G).

Шаг 3. <Сортировка> Сформировать очередь Q(S) компонент связно-

сти s \in S(G) в порядке убывания ранга.

Шаг 4. Пока очередь Q(S) не пуста:

s << Q(S); /* переместить из очереди Q(S) первый элемент в переменную

s */

перейти на Шаг 4, иначе Останов.

Шаг 5. Найти покрытие C(s): выполнить алгоритм OE-Cover для мно-

жества вершин и ребер из s.

Шаг 6. C << C(s) << \#. /* завершение текущей цепи и начало следу-

ющей */

Конец алгоритма MultiComponent

Шаги <Поиск> и <Разметка> представленного алгоритма выполня-

ют поиск по графу в ширину, поэтому их сложность не более O(| E(G)| \cdot 

log | V (G)| ). Число компонент связности не превосходит числа вершин графа,

поэтому сложность шага <Сортировка> не превышает O(| E(G)| \cdot log | V (G)| ).

Сложность шагов 3–5 также не превосходит O(| E(G)| \cdot log | V (G)| ), так как

алгоритму OE-Cover последовательно передаются участки графа G без по-

вторений. Таким образом общая вычислительная сложность алгоритма не

превосходит O(| E(G)| \cdot log | V (G)| ).

Полученный в результате выполнения алгоритма маршрут будет удовле-

творять частичному порядоку \preceq по построению, однако длина холостых пе-

реходов между компонентами связности не оптимизирована.

Рассмотрим пример работы алгоритма. На рисунке 3.11 приведен несвяз-

ный граф, в котором предложенный алгоритм связывает все компоненты в

соответствии с их рангами ребрами \{ v12, v7\} , \{ v7, v2\} и \{ v2, v11\} , обходит по

всем внутренним компонентам, строя цепи C1 = v12v13v14v12 и C2 = v7v5v6v7,
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Рисунок 3.11: Пример несвязного графа, содержащего вложенные объединения, и выпол-
ненные алгоритмом MultiComponent дополнительные построения

и только после этого переходит к обходу внешних компонент и строит цепи

C3 = v2v1v3v4v2 и C4 = v11v8v9v10v11. Очевидно, в данном случае не будет

нарушено условие упорядоченного охватывания, однако дополнительные по-

строения не являются оптимальными.

В рамках второго подхода можно предложить несколько методов приве-

дения графа к связному виду.

Определение 15. Грань f \in F (G) будем называть разделяющей, если

она инцидентна двум и более компонентам связности.

Пусть граф \~G получен из графа G добавлением в разделяющих гранях

мостов между компонентами связности. Очевидно, что полученный граф \~G

будет плоским связным графом и для него может быть построенOE-маршрут

M( \~G). Искомый OE-маршрутM(G) может быть получен из маршрутаM( \~G)

если вершины инцидентные введенным мостам считать окончанием текущей

цепи и началом следующей (т.е. введенные мосты считать холостыми пере-

мещениями).

Рассмотрим способ построения мостов, связывающих граф G и имеющих

минимальную суммарную длину.

Алгоритм Bridging

Входные данные: плоский несвязный граф G.

Выходные данные:

плоский связный граф \~G и множество B добавленных мостов.
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Шаг 1. \~G := G; B = \emptyset .

Шаг 2. Найти множество CF всех разделяющих граней.

Шаг 3. Для каждой разделяющей грани f \in CF выполнить шаги с 3 по

6, после чего останов.

Шаг 4. Найти множество S(f) компонент связности графа G инцидент-

ных грани f .

Шаг 5. Построить полный абстрактный граф \scrT , вершинами которого яв-

ляются компоненты связности S(f), а длины ребер равны расстоянию между

соответствующими компонентами.

Шаг 6. Найти остовное дерево минимального веса T (\scrT ) в \scrT .

Шаг 7. Добавить ребра найденного остовного дерева в граф \~G: E( \~G :=

E( \~G) \cup E(T (\scrT )), B := B \cup E(T (\scrT )).

Конец алгоритма Bridging.

Плоский граф \~G, построенный алгоритмом Bridging, содержит мосты,

поэтому к нему можно применить только алгоритм OE-Cover (без оптими-

зации холостых переходов). Сократить длину холостых перемещений за счет

использования алгоритма M-OE-Cover можно, например, добавив ребра

остовного дерева T (\scrT ) полученного на шаге 5 в граф дважды. Скорректиро-

ванный таким образом алгоритм назовем DoubleBridging(рисунок 3.12(b)).

Сложность алгоритмов Bridging и DoubleBridging является полиномиаль-

ной, она зависит от метода определения расстояний между компонента-

ми связности. В случае, если расстояния заданы ее можно оценить как

O(| E(G)| \cdot log | V (G)| ).

(a) Bridging (b) DoubleBridging

Рисунок 3.12: Примеры объединения разделяющих граней
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Теорема 13. Если в каждой компоненте связности Gk графа G степени

вершин, инцидентных разделяющим граням графа G, четны, то маршрут

с минимальной длиной дополнительных построений реализуется алгорит-

мом DoubleBridging.

Доказательство. Очевидно, что обход каждой компоненты связности

должен заканчиваться на внешней границе. Если предположить, что обход

компоненты связности начинается из вершины, не принадлежащей внешней

границе, то завершится данный фрагмент OE-покрытия в вершине нечет-

ной степени, не принадлежащей границе. Поскольку на границе нет вершин

нечетной степени, то часть графа, содержащая внешнюю границу, останется

не пройденной. В оптимальном решении компоненты будут связаны парой

кратных ребер минимального веса. Причем, суммарный вес всех связываю-

щих ребер должен быть минимален. Очевидно, что такие ребра будут яв-

ляться ребрами остовного дерева минимального веса T (\scrT ), которое строится

алгоритмом Bridging. Теорема доказана.

При наличии на внешней границе некоторых компонент вершин нечетной

степени можно привести примеры отсутствия оптимальности в решениях, по-

лученных применением алгоритма DoubleBridging. Тем не менее, алгоритм

DoubleBridging дает решение не хуже решений, построенных алгоритмом

MultiComponent.

Для графа, приведенного на рисунке 3.13, покрытие, построенное алго-

ритмом DoubleBridging из вершины v5, будет следующим (приведена по-

следовательность цепей, состоящих из ребер исходного графа, в порядке их

обхода, здесь верхний индекс – номер компоненты связности, нижний индекс

– номер цепи для данной компоненты связности):

C1
1 = \{ v5v6v7v5\} , C2

1 = \{ v1v3\} , C3
1 = \{ v8v9v10\} , C4

1 = \{ v14v13v12v14\} ,

C3
2 = \{ v10v11v8\} , C2

2 = \{ v3v4v2v1\} .
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Рисунок 3.13: Добавление ребер, соединяющих компоненты связности, и ребер, делающих
граф эйлеровым

Алгоритм DoubleBridging позволяет получить не большую длину допол-

нительных построений, по сравнению с разработанным ранее алгоритмом

MultiComponent [48] (где переход по дополнительному ребру осуществлял-

ся к ближайшей компоненте связности с внешними ребрами того же ран-

га). Это объясняется тем, что в данном алгоритме переход осуществляется к

ближайшей возможной компоненте связности, а не к ближайшей возможной

компоненте связности максимального ранга.

Выводы по главе 3

1. Введенный класс OE-маршрутов является адекватной математической

моделью задачи нахождения оптимального (по длине) маршрута дви-

жения режущего инструмента при раскрое листового материала.

2. Разработанные алгоритмы решают задачу построения OE-маршрутов

для плоского эйлерова графа: связный маршрут китайского почтальона

и несвязный маршрут, представляющий OE-покрытие.

3. Разработанные алоритмы решают задачу построения OE-покрытия

произвольного плоского (возможно, не связного) графа.

4. Разработанные алгоритмы позволяют осуществить поиск решения для

произвольных плоских графов за полиномиальное время. Вычислитель-

ная сложность разработанных алгоритмов приведена в таблице 3.1.
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Таблица 3.1: Сложность алгоритмов построения OE-маршрутов

Тип маршрута Алг. сложность Комментарий
Эйлеров OE-цикл O(| V (G)| 2) Рекурсивный алгоритм
Эйлеров OE-цикл O(| E(G)| \cdot log2 | V (G)| ) Нерекурсивный алгоритм
Задача китайского почтальона O(| V (G)| \cdot | E(G)| ) При использовании

нерекурсивного алгоритма
Задача китайского почтальона O(| V (G)| 2) При использовании

рекурсивного алгоритма
OE-покрытие OE-Cover O(| E(G)| \cdot log2 | V (G)| ) При использовании

логарифмических методов
сортировки

Оптимальное OE-покрытие O(| E(G)| \cdot 
\sqrt{} 
| V (G)| ) Основные временные затраты –

(OptimalCover) поиск кратчайшего
паросочетания

OE-покрытие OE-Cover O(| E(G)| \cdot log2 | V (G)| ) При использовании алгоритма
несвязного графа OptimalCover –

(MultiComponent) O(| E(G)| \cdot 
\sqrt{} 
| V (G)| )

OE-покрытие OE-Cover O(| E(G)| \cdot log2 | V (G)| ) Если заданы расстояния
несвязного графа между компонентами
(DoubleBridging)
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ГЛАВА 4

ПОСТРОЕНИЕ OE-МАРШРУТОВ

С ДОПОЛНИТЕЛЬНЫМИ ОГРАНИЧЕНИЯМИ

При технологической подготовке процесса раскроя имеют место различ-

ные ограничения на траекторию движения режущего инструмента. Так, вы-

ше была рассмотрена задача построения маршрута, при котором отрезанная

часть листа не требовала дополнительных разрезаний. Последовательность

вырезания деталей была не важна. Однако на практике это зачастую не так.

Например, при огненной резке (flame cutting) требуется, чтобы вырезание

продолжалось только по примыкающему контуру. Для решения такой зада-

чи используется цепь с наложенным на нее локальным ограничением. В каж-

дой вершине графа задан циклический порядок обхода ребер, и продолжение

обхода по цепи осуществляется только в соответствии с этим циклическим

порядком. Данный вид цепей подробно описан в монографии [109]. В общем

случае задача поиска такой цепи в графе относится к классу \scrN \scrP -полных

задач, однако для некоторых частных случаев существуют эффективные ал-

горитмы ее решения.

В [109] Г. Фляйшнером приведено следующее определение.

Рассмотрим эйлерову цепь

T = v0e1v1 . . . envn, vn = v0

в графе G = (V,E). Предположим, что в каждой вершине v \in V задан цик-

лический порядок O\pm (v), определяющий систему переходов AG(v) \subset O\pm (v)

в этой вершине. В случае, когда для всех v \in V (G) AG(v) = O\pm (v), систему

переходов AG(v) будем называть полной системой переходов.
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Рисунок 4.1: Пример эйлерова графа

Определение 16. Эйлеров AG-совместимый цикл T называют A-цепью

[109]. Таким образом, последовательные ребра в цепи T (инцидентные вер-

шине v) являются соседями в циклическом порядке O\pm (v).

Определение 17. Будем говорить, что цепь является AOE-цепью, если

она одновременно является OE-цепью и A-цепью.

Рассмотрим граф, приведенный на рисунке 4.1. Жирными дугами отме-

чены допустимые переходы в графе.

Рассмотрим цепь

T1 = v1e1v3e3v2e2v1e4v3e5v2e6v1

в графе на рисунке 4.1. Данная цепь не является A-цепью, но является OE-

цепью. Цепь

T2 = v1e1v3e3v2e2v1e6v2e5v3e4v1

является AOE-цепью. Например, A-цепь

T3 = v1e4v3e5v2e6v1e2v2e3v3e1v1

не является OE-цепью.

В монографии Г. Фляйшнера [109] определены некоторые классы графов,

для которых распознавание наличия A-цепи требует полиномиального време-

ни. В работах данного автора приводятся также полиномиальный алгоритм

для внешнеплоских графов [112] и для 4-регулярных графов [109] (т.е. гра-

фов, степень каждой вершины которых равна 4). В [109, Следствие VI.6]

приводится доказательство существования A-цепи для любого связного 4-
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регулярного графа на любой поверхности. Для доказательства данного факта

автор использует Лемму о расщеплении ([109, Лемма III.26]). Также доказа-

но, что существует полиномиальный алгоритм для распознавания A-цепи в

4-регулярном графе.

4.1 О существовании системы переходов,

допускающей AOE-цепь

Цепь, для которой не выполнено условие упорядоченного охватывания,

всегда будет содержать переход через охватывающий цикл. Этот переход

несовместим с системой переходов A-цепи. С другой стороны имеет место

следующая теорема.

Теорема 14. Если в плоском графе G существует A-цепь, то существует

и AOE-цепь.

Доказательство. A-цепь в плоском эйлеровом графе представляет замкну-

тую жорданову кривую без самопересечений. Данную кривую можно полу-

чить следующим образом: рассмотрим граф G, в каждой вершине которого

задана система переходов, соответствующая A-цепи, и граф G\prime , полученный

из графа G расщеплением вершин [14, стр.180] в соответствии с системой

допустимых переходов (рисунок 4.2). Построенный таким образом граф G\prime 

представляет собой жорданову кривую без пересечений и в соответствии с

теоремой Жордана разбивает плоскость на внешнюю и внутреннюю компо-

ненты связности.

Очевидно, что на полученной кривой найдется вершина v0, инцидентная

внешней грани графа G и ребру en: rank(en) = 1. Если принять вершину v0

за начало AOE-цепи, а направление обхода выбрать таким образом, чтобы

ребро (en) было концом цепи Cn, то в силу отсутствия пересечений для внут-

ренности любой начальной части цепи Ci = v0e1v1e2 . . . ei, i \leq | E(G)| будет
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Рисунок 4.2: Плоский граф G с заданной системой переходов A-цепи и соответствующий
ему граф G\prime , являющийся жордановой кривой на плоскости

выполнено условие

Int (Ci) \cap G = \emptyset ,

т.е. такая A-цепь Cn будет являться и OE-цепью. Действительно, предполо-

жение существования ребра e \in Int (Ci) сразу приводит к противоречию с

тем, что в системе переходов цепи отсутствуют пересечения.

Теорема 15. В плоском связном 4-регулярном графе G существует AOE-

цепь.

Доказательство. Доказательство существования A-цепи в связном 4-

регулярном графе приведено в [109, Следствие VI.6]. Так как в этом графе

существует A-цепь, то в силу теоремы 14 в нем существует и AOE-цепь.

4.2 Алгоритм построения AOE-цепи

Рассмотрим алгоритм, позволяющий построить AOE-цепь в плоском

связном 4-регулярном графе. Для компактности изложения будем считать,

что входные и выходные данные являются глобальными переменными.

Определение 18. Суграф Gk графа G, для которого E(Gk) = \{ e \in E(G) :

rank(e) \geq k\} назовем суграфом ранга k.
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Приведенный далее алгоритм AOE-TRAIL накладывает достаточно жест-

кие ограничения на граф: требуется отсутствие точек сочленения для всех

суграфов Gk.

Тем не менее, если предварительно «правильно» расщепить все точки со-

членения суграфов Gk, то в результате расщепления получим граф, у которо-

го любой суграф Gk не содержит точек сочленения. Под «правильным» будем

понимать переход между дугами, соответствующими циклическому порядку

и инцидентными различным парам граней (см. рисунок 4.3).

Рисунок 4.3: Верная система переходов для расщепления точки сочленения в суграфе Gk

При поиске точек сочленения используются следующие свойства 4-

регулярных графов.

Предложение 1. Вершина, инцидентная четырем ребрам, смежным

внешней грани, является точкой сочленения.

Предложение 2. Внешняя грань суграфа Gk является объединением всех

граней ранга k в графе G.

Справедливость этих утверждений очевидна. Из них следует результатив-

ность алгоритма 17 [127].

Очевидно, что вычислительная сложность алгоритма не превосходит

O(| E(G)| log | V (G)| ).

Рассмотрим работу алгоритма на следующем примере (рисунок 4.4).

После выполнения алгоритма CUT-POINT-SPLITTING получим граф, пред-

ставленный на рисунке 4.5.

На рисунке 4.6 приведен гомеоморфный образ графа с рисунка 4.5.

109



Algorithm 17 Алгоритм CUT-POINT-SPLITTING
Require: плоский связный 4-регулярный граф G = (V,E), представленный для всех e \in 

E(G) функциями vs, ls, rs , s = 1, 2.
Ensure: гомеоморфный образ графа G = (V,E), представленный для всех e \in E(G)

функциями vs, ls, rs , s = 1, 2, в котором любой суграф Gk не имеет точек сочленения.
Промежуточные данные: \forall v \in V (G): массивы point(v), rank(v), count(v);
\forall f \in F (G): массив rank(f).

1: Initiate():  \triangleleft Инициализация
2:

3: for all dov \in V (G) point(v) = 0; count(v) = 0;
4: end for
5: Ranking(G);  \triangleleft //Определение ранга всех вершин, ребер и граней графа
6:

7: Finding():  \triangleleft Поиск
8:

9: for all e \in E(G) do
10: point(v1(e)) = e; point(v2(e)) = e;
11: end for
12: for all v \in V (G) do
13: e = point(v); k = rank(v);
14: if (v = v1(e)) then s = 1
15: elses = 2;
16: end if
17: e = ls(e);
18:

19: if (rank(e) = k) then count(v) = count(v) + 1, e = ls(e);
20: end if
21: if (rank(e) = k) then count(v) = count(v) + 1, e = ls(e);
22: end if
23: if (rank(e) = k) then count(v) = count(v) + 1,
24: end if
25: if (count(v) = 4) then
26: if ( (fs(e) = fs(ls(e)) and f3 - s(e) = f3 - s(ls(e))) or (fs(e) = f3 - s(ls(e)) and f3 - s(e) =

fs(ls(e))) ) then
27: e\ast = ls(e), ls(e) = rs(e), rs(rs(e)) = e,
28: rs(e

\ast ) = ls(e
\ast ), ls(ls(e

\ast )) = e\ast ;
29: else
30: e\ast = rs(e), rs(e) = ls(e), ls(ls(e) = e,
31: ls(e

\ast ) = rs(e
\ast ), rs(rs(e

\ast )) = e\ast ;
32: end if
33: end if
34: end for

Останов.
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Рисунок 4.4: Пример плоского 4-регулярного графа

Рисунок 4.5: Граф с расщепленными точками сочленения

Процедура инициализации (Initiate()) заключается в инциализации

значением 0 счетчика counter количества ребер, включенных в результи-

рующую цепь, а также в присваивании всем ребрам пометки true, соответ-

ствующей непройденному ребру.

Функциональное назначение процедуры Ranking() – определить для

каждого ребра e \in E(G) графа его ранг rank(e). Как отмечалось ранее,

различные алгоритмы вычисления значений функции rank(e) приведены в

работах [86, 99], их вычислительная сложность не превосходит величины

O(| E| log | V | ).

Ниже приведено описание процедуры Constructing().

При выполнении процедурыConstructing (e) производится взаимообмен

номеров инцидентных ребру e вершин, таким образом, чтобы вершина v1(e)

Рисунок 4.6: Гомеоморфный образ графа, представленного на рисунке 4.5
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Algorithm 18 Алгоритм AOE-TRAIL
Require: плоский связный 4-регулярный граф G = (V,E) без точек сочленения, пред-

ставленный функциями vk, lk, rk (рисунок 1.1), k = 1, 2;
1: начальная вершина v \in V (f0).
Ensure: ATrail – выходной поток, содержащий построенную алгоритмом AOE-цепь.
2: Initiate(G, v0);  \triangleleft Инициализация
3: Ranking(G);  \triangleleft Ранжирование
4: Constructing();  \triangleleft Построение

Конец Алгоритма

Algorithm 19 Процедура Constructing ()
1: e = argmaxe\in E(v) rank(e);
2: v = v1(e);
3: repeat
4: if (v \not = v1(e)) then REPLACE(e);
5: end if
6: ATrail << v << e;
7: mark(e) = \bff \bfa \bfl \bfs \bfe ; counter++; v = v2(e);
8: if (rank(r2(e)) \geq rank(l2(e))) then
9: if mark(r2(e)) then

10: e = r2(e)
11: else
12: e = l2(e);
13: end if
14: else
15: if (mark(l2(e)) then
16: e = l2(e)
17: else
18: e = r2(e);
19: end if
20: end if
21: until (counter > | E(G)| );

Конец Процедуры
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посещалась при обходе раньше вершины v2(e). Данную функцию реализует

процедура REPLACE.

Algorithm 20 Процедура REPLACE ( Edge )
1: tmp1 = v2(Edge); tmp2 = l2(Edge); tmp3 = r2(Edge);
2: v2(Edge) = v1(Edge); l2(Edge) = l1(Edge); r2(Edge) = r1(Edge);
3: v1(Edge) = tmp1; l2(Edge) = tmp2; r2(Edge) = tmp3;

Конец Процедуры

Справедлива следующая теорема.

Теорема 16. Алгоритм AOE-TRAIL строит AOE-цепь в плоском связном

4-регулярном графе G, любой суграф Gk, k = 1, 2, . . . которого не содержит

точек сочленения. Алгоритм находит решение за время

O(| E(G)| \cdot log | V (G)| ).

Доказательство. Результативность процедур Initiate() и Ranking()

очевидна, а их совокупная вычислительная сложность не превосходит

O(| E(G)| log | V (G)| ).

Основной цикл процедуры Constructing() состоит в выборе последующе-

го непройденного ребра максимального ранга, смежного ребру e. Процедура

выполняется до тех пор, пока все ребра не будут включены в результирую-

щую цепь (их пометка будет изменена на false).

Докажем результативность процедуры Constructing(). Если для теку-

щего ребра e вершина v = v2(e) посещается впервые, то выполнение тела

цикла можно интерпретировать как расщепление вершины v\ast = v2(e) в со-

ответствии с системой переходов A-цепи. После расщепления гомеоморфный

образ полученного графа уже не будет содержать вершины v\ast . При повтор-

ном попадании алгоритма в вершину v\ast \in V (G) алгоритм продолжает фор-

мирование цепи в соответствии с гомеоморфным образом полученного ранее

ребра.
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Гомеоморфный образ полученного графа после выполнения тела цикла

является плоским связным графом, так как ни один суграф ранга k не со-

держит точек сочленения.

После выполнения | V (G)| расщеплений в соответствии с системой перехо-

дов A-цепи получим гомеоморфный образ графа, являющийся окружностью.

В этом случае поток ATrail будет содержать полученную AOE-цепь.

При выполнении расщеплений гомеоморфный образ остается связным

графом, поэтому все ребра будут обработаны алгоритмом (получат пометку

false). Процедура Constructing() имеет единственный цикл. Вычислитель-

ная сложность тела цикла не превосходит величины O(log | V (G)| ), а число

итераций этого цикла равно | E(G)| . Следовательно, вычислительная слож-

ность алгоритма не превосходит величины O(| E(G)| log | V (G)| ).

AOE-цепь, начинающаяся в вершине v1 графа, приведенного на рисунке

4.4, будет ииметь вид

v1v7v9v8v7v2v8v3v9v1v3v2v1,

что соответствует цепи

v1\bfv \bffive v7v9v8v7\bfv \bffour v2\bfv \bffour v8\bfv \bfsix v3\bfv \bfsix v9\bfv \bffive v1v3v2v1

в исходном графе.

Рассмотрим произвольный плоский граф G, в котором, очевидно, нет эй-

леровой цепи и, соответственно, A-цепи.

Определение 19. [32] OE-покрытие будем называть AOE-покрытием,

если каждая цепь, входящая в него, соответствует системе переходов

AG(v) \subset O\pm (v).

Модификация алгоритма AOE-TRAIL для случая неэйлерова графа, все

степени степени вершин которого не превосходят 4, будет следующей. Граф

G необходимо дополнить граф до эйлерова G\ast введением вспомогательных

ребер, используя любой из методов, предложенных в главе 3.
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Началом или концом цепей в этом покрытии будут являться вершины

степени 3 и, возможно, одна вершина степени 4, смежная внешней грани [28].

\bullet Если вершина v является началом цепи (т.е. впервые посещается с до-

полнительного ребра), то первым ребром новой цепи будет ребро, ин-

цидентное вершине максимального ранга. В результате расщепления

вершины число вершин нечетной степени станет на 1 меньше.

\bullet Если в вершину v приходим по ребру e графа, то переход осуществляет-

ся по ребру (основному либо дополнительному), инцидентному вершине

максимального ранга. Если этот переход был осуществлен по дополни-

тельному ребру, то вершина v является концом текущей цепи, а ребро

e – последним в текущей цепи. В результате расщепления получим 4-

регулярный граф, гомеоморфный образ которого будет иметь на одну

вершину меньше.

При таком построении все цепи будут AG-совместимыми.

4.3 Алгоритм построения самонепересекающейся

OE-цепи

Класс AOE-цепей не охватывает полностью всех возможных маршру-

тов движения режущего инструмента, при которых отсутствуют пересечения

имеющихся резов. Общим случаем является решение задачи построения са-

монепересекающейсяOE-цепи, которую будем в дальнейшем называтьNOE-

цепью (non-intersecting OE-trail). Следует отметить, что в работе [132] оши-

бочно самонепересекающейся названа A-цепь, для построения которой по-

линомиальный алгоритм существует только для некоторых частных случаев

(например, для 4-регулярного графа). Как будет показано далее, для построе-

ния самонепересекающейся OE-цепи существует полиномиальный алгоритм.

В работе [9] рассматривается алгоритм построения самонепересекающейся

эйлеровой цепи, в общем случае не являющейся OE-цепью.
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Определение 20. [31] Эйлеров цикл в C плоском графе G называется са-

монепересекающимся, если он гомеоморфен циклическому графу \~G, который

может быть получен из графа G с помощью применения O(| E(G)| ) опера-

ций расщепления вершин.

Определение 21. [31] Систему переходов цепи, соответствующую само-

непересекающейся цепи, будем называть системой непересекающихся пере-

ходов.

Очевидно, что для системы переходов, соответствующей самонепересека-

ющемуся эйлерову циклу существует такая начальная вершина и такое ко-

нечное ребро, смежное внешней грани, для которых построенный цикл будет

OE-циклом. Доказательство данного факта во многом будет схоже с дока-

зательством теоремы 14 и будет представлять алгоритм построения такой

цепи.

Для построения самонепересекающегося эйлерова ОЕ-цикла в плоском

эйлеровом графе, для которого не задано фиксированной системы переходов,

можно поступить следующим образом [30].

На множестве вершин графа V (G) определим булеву функцию

Checked(v) =

\left\{   \ttt \ttr \ttu \tte , если вершина просмотрена;

\ttf \tta \ttl \tts \tte , в противном случае.
При выполнении функции инициализации Initiate() все вершины объ-

явить непросмотренными.

Процедура Non-intersecting (G) (алгоритм 21) расщепляет в графе G

все вершины v \in V (G), k \geq 3 на k искусственных вершин степени 4 и вводит

k искусственных ребер, инцидентных полученным после расщепления верши-

нам и образующим цикл.

В теле функции используется процедура Handle (e, vk(e), k) (алгоритм

22), которая обрабатывает каждую непросмотренную вершину графа G. Об-

работка заключается в расщеплении вершины vk(e) в соответствии с рис.4.7.
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Algorithm 21 Функция Non-intersecting (G)
Require: плоский эйлеров граф G;
Ensure: плоский связный 4-регулярный граф G\ast ;
1: for all (e \in E(G) ) do
2: k = 1;
3: while (k \leq 2) do

4: if (Checked(vk(e))) then
5: Handle ( e, vk(e), k);
6: end if
7: k ++;
8: end while
9: end forReturn G\ast ;

Конец Функции

Algorithm 22 Процедура Handle (e,v,k)
1:  \triangleleft Проход 1: Определение степени вершины v
2: efirst = e;
3: d = 0;  \triangleleft Степень вершины
4: repeat
5: le = lk(e);
6: if (vk(le) \not = v) then REPLACE(le);
7: end if
8: e = le; d = d+ 1;
9: until (e = efirst);

10:  \triangleleft Проход 2: Расщепление вершин, степень которых выше 4
11: if (d > 4) then
12: e = efirst; le = lk (e); fl=new EDGE; fle = fl; efirst = e; enext = lk (le);
13: repeat
14: e = enext; le = lk (e); fr = fl; fl=new EDGE; enext = lk (le);
15: Pointers(e,le,fr,fl);  \triangleleft Расставить указатели для ребер
16: until (lk(le) = efirst);
17: Pointers(efirst, lk(efirst), fle, fe);  \triangleleft Расставить указатели для ребер
18: end if

Конец Процедуры
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Рисунок 4.7: Расщепление вершины (жирными линиями показаны ребра графаG, тонкими
линиями – дополнительные (фиктивные) ребра) и модификация указателей в соответствии

с расщеплением

Введенные процедурой Handle k/2 искусственных вершин и k искусствен-

ных ребер, инцидентных этим вершинам, образуют цикл. В результате обра-

ботки всех вершин графа G получим модифицированный граф G\ast , являю-

щийся плоским связным 4-регулярным графом. Для G\ast можно применить

алгоритм AOE-TRAIL(), который построит в нем AOE-цепь T \ast . Если затем

в T \ast все искусственные ребра и инцидентные им вершины, полученные при

расщеплении вершины v, заменить на v, то получим NOE-цепь T в исходном

графе G.

Отметим, что данный алгоритм строит NOE-цепь в плоском эйлеровом

графе. В случае плоского неэйлерова (в общем случае не связного) графа G

необходимо расщепить все вершины степени выше 4 в соответствии с алго-

ритмом 22. В результате получим граф, степени вершин которого равны 3

или 4. Для этого графа применим алгоритм построения AOE-покрытия. В

цепях полученного покрытия удалим все искусственные ребра и стянем все

расщепленные вершины. В результате получим NOE-покрытие.

Рассмотрим работу алгоритма на примере графа, приведенного на рисун-

ке 4.8(a). Данный граф имеет две вершины нечетной степени: v3 и v6 – смеж-

ные внешней грани. Таким образом, построение NOE-маршрута начнем в

одной из этих вершин. Пусть это будет вершина v3.

После применения процедуры Handle() получим следующий граф, пред-

ставленный на рисунке 4.8(b). В полученном графе все вершины имеют сте-

пени 3 или 4. На рисунке 4.8(b) отмечены ребра рангов 2 и 3. Заметим, что
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Рисунок 4.8: (a) Пример графа G, имеющего вершины степени выше 4; (b) граф G\ast , по-
лученный из графа G расщеплением вершины v1 в соответствии с алгоритмом Handle; (c)
граф G\ast 

1, полученный из графа G
\ast применением алгоритма CUT-POINT-SPLITTING;(d)граф,

в котором вершины расщеплены в соответствии с системой непересекающихся переходов.

вершина v11 является точкой сочленения ранга 2, следовательно, ее необхо-

димо расщепить с помощью алгоритма CUT-POINT-SPLITTING. В результате

выполнения указанного алгоритма получим граф, представленный на рисун-

ке 4.8(с). С помощью алгоритма AOE-Trail в полученном графе определим

AOE-маршрут

T \ast = v\prime 3v12v11v
\prime 
2v

\prime 
7v

\prime 
11v13v

\prime 
12v

\prime 
4v

\prime 
5v

\prime 
13v

\prime 
6v5v4v3v2v7v6,

которому соответструет NOE-маршрут

T = v3v1v2v7v1v4v5v1v6v5v4v3v2v7v6

в исходном графе (на рисунке 4.8(d) представлен исходный граф с расщеплен-

ными в соответствии с системой непересекающихся переходов вершинами).
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4.4 О числе эйлеровых OE-цепей для заданной

системы переходов

Задача пересчета OE-цепей для плоского графа имеет большой практиче-

ский интерес, т.к. ее решение позволяет, например, определить возможность

раскроя по заданной траектории из различных начальных точек. Рассмотрим

плоский эйлеров граф G и OE-цепь T в этом графе. Пусть XT (G) – систе-

ма переходов, соответствующая цепи T , тогда верно следующе утверждение

[129].

Предложение 3. Пусть G(V,E) – плоский эйлеров граф без точек со-

членения и T представляет OE-цепь в графе G, которой соответствует

система переходов XT (G). Тогда число OE-цепей N для системы переходов

XT (G) удовлетворяет неравенству 1 \leq N \leq 2 \cdot | V (f0)| , V (f0) = \{ v| v \in f0\} ,

причем как верхняя, так и нижняя оценки достижимы.

Доказательство. Существование OE-цепи T доказано в работе [137],

откуда следует нижняя оценка. Зафиксируем систему переходов XT (G) OE-

цепи T . Для данной системы переходов все вершины множества V (f0) мож-

но разбить на два класса: V1 = \{ v : E(TG(v)) \in \{ e1, e2\} : e1, e2 \in f0\} и V2 =

\{ v : E(TG(v)) \in \{ e1, e2\} : e1, e2 /\in f0\} . Система переходов для V \in V1 допуска-

ет не более двух OE-цепей, стартующих с ребер, ограничивающих внешнюю

грань. Если предположить, что цепь стартует с ребра, которое не принадле-

жит внешней грани, то она и закончится ребром, которое не принадлежит

внешней грани, что не удовлетворяет требованию OE-цепи. Для вершин из

множества v \in V2, наоборот, построение OE-цепи возможно только при усло-

вии старта по ребру, не принадлежащему внешней грани. В противном слу-

чае при возврате в выбранную вершину v будет охвачено по крайней мере

одно ребро, не смежное внешней грани. Таким образом, заданная система

переходов допускает не более 2 \cdot | V (f0)| OE-цепей. Покажем, что эта оцен-
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ка достижима. Рассмотрим граф, приведенный на рисунке 4.9. В этом гра-

Рисунок 4.9: Пример графа с системой непересекающихся переходов

фе OE-цепь C1,1 = v1e1v3e3v2e2v1e6v2e5v3e4v1 индуцирует систему переходов

XC1,1
(G) = \{ TG(v1), TG(v2), TG(v3)\} , где

\bullet V (TG(v1)) = \{ e1, e2, e4, e6\} ; E(TG(v1)) = \{ \{ e1, e4\} , \{ e2, e6\} \} ;

\bullet V (TG(v2)) = \{ e2, e3, e5, e6\} ; E(TG(v2)) = \{ \{ e2, e3\} , \{ e5, e6\} \} ;

\bullet V (TG(v3)) = \{ e1, e3, e4, e5\} ; E(TG(v3)) = \{ \{ e1, e3\} , \{ e4, e5\} \} .

Для вершины v1 существует еще одна OE-цепь

C1,2 = v1e2v2e3v3e1v1e4v3e5v2e6v1.

При этом для вершины v2 \in f0 OE-цепи

C2,1 = v2e6v1e2v2e3v3e1v1e4v3e5v2

и

C2,2 = v2e5v3e4v1e1v3e3v2e2v1e6v2

удовлетворяют системе переходов XC1,1(G), а для вершины v3 данной системе

удовлетворяют OE-цепи

C3,1 = v3e4v1e1v3e3v2e2v1e6v2e5v3

и

C3,2 = v3e5v2e6v1e2v2e3v3e1v1e4v3.

Таким образом, в графе из трех вершин имеется шесть XT (G)-совместимых

OE-цепей.
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Рассмотрим теперь тот же граф с другой системой переходов XC(G) (ри-

сунок 4.10). Основным отличием данной системы переходов от системы пе-

Рисунок 4.10: Пример графа, система переходов которого имеет пересечения

реходов, заданной на рисунке 4.9, является наличие пересечений переходов в

вершинах v2 и v3.

В данном случае граф имеет единственную OE-цепь

C = v2e3v3e4v1e1v3e5v2e2v1e6v2

для заданной XC(G). В случае выбора как вершины v1, так и вершины v3

получим, что цикл v1e1v3e5v2e2v1 охватывает еще непройденное ребро e3. За-

метим, что стартовым ребром в данном случае может быть только ребро e3.

Следовательно, достижима и нижняя оценка Предложение доказано.

С практической точки зрения особый интерес представляют графы, для

которых верхняя оценка достижима. Из доказательства предложения 3 вид-

но, что не всякий OE-цикл индуцирует систему переходов, для которой будет

достигаться верхняя оценка. Отметим также, что для нахождения подходя-

щей системы переходов, для которой достигается верхняя оценка, недоста-

точно знать только начальную вершину и начальное ребро.
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4.4.1 Число OE-цепей для системы переходов,

соответствующей A-цепи

Определим число OE-цепей для системы переходов, соответствующей

некоторой A-цепи [129]. Очевидно, что пример, приведенный на рисунке 4.9,

удовлетворяет данному случаю. Для системы переходов, соответствующей

A-цепи, справедливо следующее утверждение об OE-циклах [31].

Теорема 17. Пусть плоский граф G = (V,E) без разделяющих вершин

имеет A-цепь T , которой соответствует система переходов XT (G). Если

V (f0) – множество вершин, смежных внешней грани, то число OE-циклов

для XT (G) равно 2 \cdot | V (f0)| .

Доказательство. Доказательство факта, что A-цепь, начинающаяся и

заканчивающаяся в вершине v0 \in f0, является OE-циклом, приведено в [79].

Подсчитаем число OE-циклов для фиксированной системы переходов. В

[86] доказано, что любой OE-цикл начинается в вершине v \in f0 и заверша-

ется ребром e \in f0 . В соответствии с условием теоремы, любая вершина

vj \in f0, j = 1, . . . | v(f0)| не является разделяющей, поэтому имеет ровно два

инцидентных ей ребра, смежных внешней грани f0. Так как система пере-

ходов соответствует A-цепи, то если по одному из этих ребер достигается

вершина vj, по другому цепь выходит из этой вершины. Если оба этих реб-

ра используются только для достижения вершины, то не выполнено условие

упорядоченного охватывания (в этом случае одно из этих входящих в вер-

шину ребер оказывается пройдено раньше, чем были пройдены некоторые

внутренние ребра). Если оба ребра используются только для покидания вер-

шины, то в системе переходов XT (G) возникнут пересечения. Однако такая

система переходов не соответствует системе переходов A-цепи.

Так как A-цепь является замкнутой последовательностью ребер и вершин,

то ее начало может быть помещено в любую вершину, например, в vj \in f0.
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Если vj является последней вершиной OE-цепи, то необходимо, чтобы в по-

следовательности ej - 1vjej ребро ej - 1 \in f0. Действительно, в противном слу-

чае последнее ребро ej - 1 OE-цепи окажется охваченным циклом из ребер,

смежных внешней грани. Если за начало цепи принять некоторую вершину

v \in V (f0), то в соответствии с предопределенным циклическим порядком

O\pm (G) можно выбрать одно из двух инцидентных ребер для покидания те-

кущей вершины. Следовательно, из произвольной вершины v \in V (f0) мож-

но построить два OE-цикла. Так как существует | V (f0)| вершин, смежных

внешней грани, число OE-циклов, соответствующих системе переходов для

A-цепи, равно 2 \cdot | V (f0)| . Теорема доказана.

Если в графе G(V,E) имеется несколько разделяющих вершин, то для

системы XT (G), соответствующей A-цепи в данном графе, справедливо сле-

дующее утверждение [31].

Теорема 18. Пусть плоский граф G = (V,E) имеет K разделящих вершин

v1, . . . vK \in f0 и пусть в этом графе существует A-цепь T . Пусть XT (G)

– система переходов, соответствующая T , а V (f0) – множество вершин,

смежных внешней грани. Существует

2 \cdot | V (f0)| +
K\sum 
i=1

(deg(vi) - 2)

OE-циклов для XT (G).

Доказательство. В соответствии с теоремой 17 плоский граф G без раз-

деляющих вершин имеет ровно 2 \cdot | V (f0)| OE-циклов для системы переходов,

соответствующей некоторой A-цепи. Пусть vi \in V (F0) – разделяющая верши-

на степени deg(vi) = 2 \cdot Mi. В циклическом порядке ребер, соответствующем

данной вершине, имеется ровно Mi ребер, по которым цепь достигает дан-

ную вершину и столько же ребер, по которым она покидает эту вершину.

Одна пара ребер уже подсчитана в | V (f0)| , но не учитывается еще Mi  - 1

возможность начала OE-цикла. Суммируя по всем разделяющим вершинам,

124



получим выражение, указанное в формулировке теоремы. Теорема доказа-

на.

Заметим, что если XT (G) не соответствует A-цепи, то верхняя оценка не

достигается даже если цепь T является самонепересекающейся. Подтвержде-

нием данного факта является пример, приведенный на рисунке 4.11.

Рисунок 4.11: Пример графа с системой непересекающихся переходов, не допускающей
A-цепи

В приведенном графе не существует A-цепи, однако, можно определить

систему непересекающихся переходов XT (G). Для этого графа при заданной

системе переходов XT (G), приведенной на рисунке 4.11, существует только

пять OE-цепей, начинающиеся в разных вершинах на внешней грани:

\bullet C1 = v0e7v1e1v0e2v1e4v2e5v1e6v2e3v0e9v2e8v0;

\bullet C2 = v0e8v2e9v0e3v2e6v1e5v2e4v1e2v0e1v1e7v0;

\bullet C3 = v1e1v0e2v1e4v2e5v1e6v2e3v0e9v2e8v0e7v1;

\bullet C4 = v2e3v0e9v2e8v0e7v1e1v0e2v1e4v2e5v1e6v2;

\bullet C5 = v2e9v0e3v2e6v1e5v2e4v1e2v0e1v1e7v0e8v2.

При построении цепи из вершины v1 возможно построение цепи, начина-

ющейся либо с ребра e1 (в этом случае будет построена цепь C3, последним

ребром которой будет e7), либо с ребра e5 (в этом случае последним в цепи

будет ребро e6, однако построенная цепь

C6 = v1e5v2e4v1e2v0e1v1e7v0e8v2e9v0e3v2e6v1
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не будет являться OE-цепью, т.к. ребра e9 и e3 к моменту их включения в

цепь окажутся охваченными).

В общем случае система переходов XT (G), соответствующая любой OE-

цепи, может иметь пересечения (пример цепи, соответствующей системе пере-

ходов с пересечениями, приведен на рисунке 4.10). Таким образом, в данном

случае число OE-цепей лежит в интервале от 1 до 2 \cdot | V (f0)| .

4.4.2 Необходимое условие существования OE-цепи

для заданной системы переходов

Рассмотрим частный случай, когда граф G(V,E) является 4-регулярным

плоским графом. Тогда вG существует эйлерова цепь T с соответствующей ей

системой переходов XT (G). Выше было доказано, что если XT (G) не имеет

пересечений, тогда число OE-цепей для этой системы переходов равно 2 \cdot 

| V (f0)| .

Предположим, что система переходовXT (G) имеет хотя бы один пересека-

ющийся переход. В общем случае существование OE-цепи определяется как

наличием пересечений в системе переходов, так и их расположением. Напри-

мер, в графе на рисунке 4.12 приведена система переходов с единственным

пересечением, для которой не существует OE-цепи.

Тем не менее, если изменить всего два перехода, то получим систему пере-

ходов, которой соответствует некоторая OE-цепь. Например, заменив всего

два перехода (в вершинах v1 и v2), получим OE-цепь

v2v6v7v0v5v8v0v6v5v1v4v8v7v3v2v3v4v1v2

(рисунок 4.13). Граф на рисунке 4.14 имеет систему переходов с тремя пересе-

чениями, которой соответствует также одна OE-цепь. Более того, несложно

найти примеры графов, имеющих до 2 \cdot | V (f0)| OE-цепей для систем перехо-

дов с пересечениями.

126



Рисунок 4.12: Пример системы переходов с единственным пересечением, которая не соот-
ветствует ни одной OE-цепи.

Рисунок 4.13: Пример системы переходов, соответствующей одной OE-цепи.

Прежде чем привести утверждения для 4-регулярных графов, докажем

следующее.

Предложение 4. Если система переходов XT (G) для некоторой эйлеровой

цепи T 2-вершинно-связного 4-регулярного плоского графа G без разделяю-

щих вершин имеет только пересекающиеся переходы, то XT (G) не соот-

ветствует ни одной OE-цепи в графе G.

Доказательство. Построим модифицированный граф G\ast , полученный

из графа G расщеплением вершин, имеющих непересекающиеся переходы.

Таким образом, если для некоторой вершины v графа G\ast ее степень deg(v) >
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Рисунок 4.14: Еще один пример системы переходов, которой соответствует единственная
OE-цепь.

2, то в этой вершине существует пересекающийся переход как в графе G\ast ,

так и в графе G. С точностью до гомеоморфизма будем считать, что все вер-

шины графа G\ast имеют степень больше 2, следовательно, во всех вершинах

графа G\ast имеются пересекающиеся переходы. Предположим, что заданная в

условии утверждения система переходовXT (G) соответствует некоторой OE-

цепи T . Рассмотрим 2-вершинно-связный граф G\ast (как было сказано выше,

имеющий только вершины с пересекающимися переходами) и цепь, начина-

ющуюся с ребра e0 (на рисунке 4.15 представлены фрагменты такого графа).

Все ребра, представленные на рис4.15, являются абстрактными и могут пред-

Рисунок 4.15: Некоторые фрагменты графа, имеющего только пересекающиеся переходы

ставлять различные множества ребер. В соответствии с заданной системой
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переходов, после e0 цепь проходит по «ребру» e2. Так как вершина x0 не явля-

ется разделяющей, то цепь, начинающаяся с «ребра» e2, должна будет пройти

по «ребру» e3, пересечься с «ребром», смежным e0, и вернуться в вершину

x0. Непосредственно из построения следует, что e4 в данном случае окажется

охваченным циклом, следовательно, построенная цепь не удовлетворяет усло-

вию упорядоченного охватывания. Легко видеть, что подобное охватывание

возникает и для цепей, начинающихся и с других «ребер». Предложение

доказано.

Рассмотрим эйлерову цепь T , соответствующую системе переходов XT (G)

4-регулярного плоского эйлерова графа G(V,E). Построим редуцированный

граф G\prime (V \prime , E). Вершины этого графа, для которых отсутствуют пересечения

переходов в системе XT (G), расщеплены на две вершины. В соответствии с

предложением 4 если в графе G\prime найдется блок, не являющийся циклом, то

в графе G для заданной системы переходов не существует OE-цепи.

С другой стороны, граф G\prime имеет OE-цепь только в том случае, когда

каждый блок в G\prime имеет OE-цепь. Доказательство данного факта очевид-

но, т.к. все блоки редуцированного графа обходятся последовательно один за

другим. Таким образом, если предположить, что существует блок, не имею-

щий OE-цепи, тогда этот блок, объединенный с остальными, никаким обра-

зом не будет иметь такой цепи.

Изложенное дает доказательство теоремы 19.

Теорема 19. (Необходимое условие существования OE-цепи). Если в ре-

дуцированном графе G\prime существует OE-цепь, соответствующая заданной

системе переходов, то в исходном графе G существует хотя бы одна OE-

цепь, начинающаяся в вершинах, соответствующих разделяющим верши-

нам графа G\prime .

К сожалению приведенное условие не является достаточным даже для

4-регулярных графов. Например, редуцированный граф G\prime графа G, пред-
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ставленного на рисунке 4.12 является парой петель, инцидентных висячей

вершине v0. В редуцированном графе G\prime существует OE-цепь, тем не ме-

нее, выше было показано, что для данной системы переходов не существует

OE-цепи в графе G. Вообще, вершина v0 в рассмотренном примере не смеж-

на внешней грани, потому из данной вершины невозможно начать построе-

ние OE-цепи. Но если начать построение цепи из любой вершины, смежной

внешней грани, построить OE-цепь для заданной системы XT (G) также не

удастся. Несмотря на это, в редуцированном графе G\prime имеется OE-цепь.

Выводы по главе 4

1. Разработанный алгоритм AOE-TRAIL позволяет построить AOE-цепь

для любого 4-регулярного графа, любой суграф Gk, k = 1, 2, . . . ко-

торого не содержит точек сочленения. Алгоритм находит решение за

время O(| E(G)| \cdot log | V (G)| ). Выполнения данного алгоритма не доста-

точно, чтобы ответить на вопрос о существовании A-цепи в графе. Для

графов, степени вершин которого превосходят 4, алгоритм может не

построить A-цепь, несмотря на ее существование.

2. Разработан алгоритм CUT-POINT-DELETING, позволяющий зафиксиро-

вать переходы для всех точек сочленения суграфов Gk, чтобы в ре-

зультате расщепления получить граф, суграф которого не содержит

точек сочленения. Для полученного графа можно применить алгоритм

AOE-TRAIL.

3. Показано, что OE-цепь можно считать последовательностью несколь-

ких AG-совместимых цепей.

4. Класс NOE-маршрутов в плоских графах является расширением клас-

са AOE и в него входят все OE-цепи, имеющие непересекающиеся пере-

ходы. Разработан алгоритм Non-intersecting построения NOE-цепи.

Его выполнение состоит в сведении исходного плоского графа к плоско-
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му связному 4-регулярному графу за счет расщепления вершин степени

выше 4 и дальнейшего выполнения алгоритма AOE-TRAIL.

5. В плоском графе G для непересекающейся системы переходов XT (G)

существует не более 2 \cdot | V (f0)| (где | V (f0)| – число вершин, смежных

внешней грани графа) OE-цепей. Если система переходов XT (G) име-

ет пересечения, то число ее OE-цепей лежит в промежутке от 1 до

2 \cdot | V (f0)| только тогда, когда в редуцированном графе G\prime существует

OE-цепь. Данные результаты могут быть использованы при технологи-

ческой подготовке процесса вырезания деталей, когда раскройный план

представлен в виде плоского графа, траектория движения режущего

инструмента является ОЕ-цепью и требуется определить все возмож-

ные точки старта процесса вырезания при фиксированной последова-

тельности вырезания деталей.
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ГЛАВА 5

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ

ПОСТРОЕНИЯ OE-ЦЕПЕЙ И OE-ПОКРЫТИЙ

В данной главе привено краткое описание программного обеспечения, поз-

воляющего решить задачи построения цепей и покрытий с упорядоченным

охватыванием. Все представленное программное обеспечение разработано ав-

тором диссертационной работы, либо под ее руководством ее учениками. Це-

лью создания данного программного обеспечения было проведение тестирова-

ния разработанных алгоритмов. Все приложения имеют простейший графи-

ческий интерфейс, осуществляющий лишь ввод информации о графе либо из

входного файла, либо с помощью графического редактора, который позволя-

ет создавать множество вершин графа и соединять их ребрами. При создании

ребра осуществляется проверка наличия пересечений с уже созданными реб-

рами графа, чтобы обеспечить корректность исходных данных (граф должен

быть плоским). Программы запрещают создание кратных ребер и пересека-

ющихся ребер. В зависимости от предпочтений пользователя программные

реализации алгоритмов могут быть использованы для подключения к про-

мышленным программам.

В дополнение к программам, иллюстрирующим работу алгоритмов, пред-

ставлен алгоритм OrderedEnclosingTest, позволяющий проверить соответ-

ствие маршрута обхода плоского графа критерию упорядоченного охваты-

вания. В случае нарушения рассмотренного критерия алгоритм определя-

ет ребро цепи, повлекшее нарушение. Алгоритм может быть применен для

повышения надежности программных комплексов, формирующих управляю-

щие программы для станков раскроя, а также на этапе тестирования системы

технологической подготовки раскроя в ручном или автоматическом режиме.
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Рисунок 5.1: Внешний вид приложения MakeCycle

5.1 Программное обеспечение задачи построения

эйлерова OE-цикла

5.1.1 Техника программной реализации рекурсивного

алгоритма построения эйлерова OE-цикла

Функция MakeCycle [82, 88] используется для построения эйлерова OE-

цикла в плоском эйлеровом графе.

Данная функция вызывается в приложении, разработанном в среде ви-

зуального программирования C++ Builder, которое представляет собой про-

стой графический редактор, позволяющий с помощью прямых изображать

различные плоские графы, сохранять и открывать уже созданные файлы

графов. Окно приложения показано на рисунке 5.1.

Слева на окне расположены следующие функциональные кнопки.

1.Vertex. Является инструментом для создания вершин графа. Вершины

задаются нажатием левой кнопки мыши в рабочей области окна в произволь-

ном порядке.

2. Edge. Дает возможность соединять уже обозначенные вершины между

собой. Программа не допускает нарушения планарности графа и не позволяет

вновь создаваемым ребрам пересекать уже созданные.

133



3. New graph. Вызывает сообщение «Очистить экран». При положитель-

ном ответе на сообщение: «Очистить экран» поле для рисования очищается

от созданного на нем ранее графа. Все переменные, содержащие информацию

о графе, обнуляются.

4. Finish Graph. Автоматически становится активной, когда в окне уже

создан граф (есть хотя бы две вершины, соединенные ребром). При нажатии

на эту кнопку происходит вызов функций построения OE-маршрута.

5. Open. Дает возможность загрузить в область рисования ранее создан-

ный граф. В данной версии программы разрешается загружать только один

граф, причем добавление в него новых ребер разрешается, но удаление уже

созданных ребер в данной версии программы не предусмотрено.

6. Save. Сохраняет граф, представленный в окне.

7. Close. Закрывает окно программы.

Данное приложение разработано с целью проведения более удобной де-

монстрации разработанных в диссертационной работе алгоритмов и их те-

стирования.

Для реализации рекурсивного алгоритма построения OE-цикла исполь-

зована структура, в которой для каждого ребра заносятся значения опреде-

ленных для него функций vk(e), lk(e), fk(e), k = 1, 2, в переменной Level

хранится ранг ребра, а переменная Mark используется для сохранения помет-

ки ребра:
typedef struct{

int Vertex1, Vertex2;
int LEdge1, LEdge2;
int REdge1, REdge2;
int Mark;
int Level;

}Edges;

Функция CYCLE, реализующая выполнение рекурсивного алгоритма, в ка-

честве входных данных принимает указатель на массив структур (граф), но-

мер первого ребра и информацию о количестве ребер графа. Функция выгля-

дит следующим образом.
FirstLast CYCLE(Edges *G,int First,int *Number){
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int Vertex, Start, Next, MNext, Edge, Last,MSt;
FirstLast ret;
Start=Next=First;
int NewFirst=ExternCycle(G,Start,&Next,&First,&Vertex,Number);
MSt=0;
do {

int tmp;
if(((MNext=G[Next].LEdge2)!=First)

&&(G[MNext].Mark==Infty)) {
if (!MSt) MSt=MNext;
if (Vertex!=G[MNext].Vertex2)

REPLACE(&G[MNext]);
L++;
ret=CYCLE(G,MNext,Number);
if (G[First].Mark!=Infty)

tmp=G[First].Mark;
if (G[ret.First].Vertex2==G[First].Vertex1)

G[First].Mark=ret.First;
else

G[First].Mark=MNext;
G[ret.Last].Mark=tmp;
}

First=Next;
Next=G[First].Mark;
Vertex=G[First].Vertex1;

}while(Next!=ret.First&&Next!=Start);
if (!MSt)

ret.First=Start;
else{

if (G[ret.First].Vertex2!=G[First].Vertex1&&NewFirst==0)
ret.First=MSt;

if (NewFirst!=0&&G[ret.First].Vertex2!=G[First].Vertex1)
ret.First=Next;

}
if (NewFirst==0)

ret.Last=First;
else

ret.Last=NewFirst;
return ret;
}

Здесь функция ExternCycle, соответствующая первой стадии работы ре-

курсивного алгоритма, определяет ребра, смежные внешней грани текущего

подграфа, а функция REPLACE меняет у всех функций текущего ребра индекс

k на 3  - k. Функция полностью соответствует алгоритму, приведенному в

разделе 3.3.

Приведем некоторые примеры эйлеровых графов, для которых с помощью

рекурсивного алгоритма (см. раздел 3.3) были получены OE-маршруты.

Сначала рассмотрим простейший случай графа с двумя гранями (см. ри-

сунок 5.2).
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Рисунок 5.2: Граф с двумя гранями

Рисунок 5.3: Граф с ребрами разных рангов

В нижней части экрана рабочего окна приведена последовательность об-

хода ребер, где в скобках указываются номера вершин. Начав обход в вер-

шине 1, пройдем по ребру 1 в вершину 2, далее по ребру 2 – в вершину 3,

а по ребру 3 возвращаемся в исходную вершину, получив, тем самым, цикл,

удовлетворяющий условию упорядоченного охватывания.

Рассмотрим более общий пример: граф, имеющий ребра разных рангов

(рисунок 5.3).

В данном случае полученный ответ не так очевиден, как в предыдущем

примере. Прокомментируем его и покажем, что выполняется условие упоря-
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Рисунок 5.4: Граф, в котором внешний цикл охватывает несколько компонент связности

доченного охватывания. В качестве начальной выберем вершину с номером

4 и начинем обход идущего из нее вложенного цикла, проходя по ребру 9.

Попав в вершину 8, находим инцидентные ей ребра более высокого ранга (в

данном случае – ранга 2), поэтому найдем вложенный цикл из ребер 4, 2, 7,

1, 3, 5, который, как видно из рисунка, и обходится в первую очередь. После

обхода самого внутреннего цикла (ранга 3), завершается обход цикла из ребер

9, 8, 18, 16, 15, 6, 13, 12 и лишь после этого обходится цикл из ребер, смеж-

ных внешней грани (имеющих ранг 1). Из этого примера легко видеть, что

полученный обход снова обладает свойством упорядоченного охватывания.

Приведем еще один пример, когда внешний цикл охватывает несколько

компонент связности (рисунок 5.4).

Обход цикла в данном случае также построен по тем же принципам, что и

обход из предыдущего примера. Как видно из результатов работы программы

две компоненты связности из вложенных циклов, полученные после удаления

ребер, смежных внешней грани, обходились в положенном им порядке.

Рассмотрение случаев, наиболее часто встречающихся на практике, по-

казывает корректность программной реализации алгоритма, построенного в

работе.
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5.1.2 Программа для построения OE-маршрута китайского

почтальона

Для реализации данного алгоритма использовалась графическая оболоч-

ка, описанная в предыдущем разделе.

Выполнение дополнительных построений (дублирование ребер, инцидент-

ных вершинам нечетных степеней) осуществляется только если для исходного

графа были найдены вершины нечетной степени. Данная процедура форми-

рует массив степеней вершин и проверяет четность каждого элемента сфор-

мированного массива. Функция дублирования ребра приведена ниже. Пара-

метрами функции является пара инцидентных дублируемому ребру вершин.

Функция просматривает список ребер, пока не будет найдено дублируемое

ребро (в силу отсутствия кратных ребер такое ребро единственно) и добав-

ляет в соответствии с описанным в разделе 3.6.1 построением информацию

о дополнительном ребре и увеличивает значение счетчика дополнительных

ребер numenew.
void AddEdge(int v1, int v2){

//Найдем ребро, которое дублируем
for (int i=0;i<nume;i++){

if ((ed[i].v[0].num==v1&&ed[i].v[1].num==v2)||
(ed[i].v[1].num==v1&&ed[i].v[0].num==v2)){

if (ed[i].v[0].num!=v1){
int t=v1;
v1=v2;
v2=t;

}
ed[nume+numenew].num=nume+numenew;
ed[nume+numenew].v[0].num=v1;
ed[nume+numenew].v[0].x=ver[v1].x;
ed[nume+numenew].v[0].y=ver[v1].y;
ed[nume+numenew].v[1].num=v2;
ed[nume+numenew].v[1].x=ver[v2].x;
ed[nume+numenew].v[1].y=ver[v2].y;
for (int l=0;l<2;l++)

if (ed[ed[i].el[0]].v[l].num==v1)
ed[ed[i].el[0]].er[l]=nume+numenew;

for (int l=0;l<2;l++)
if (ed[ed[i].er[1]].v[l].num==v2)

ed[ed[i].er[1]].el[l]=nume+numenew;
ed[nume+numenew].el[0]=ed[i].el[0];
ed[nume+numenew].el[1]=ed[i].num;
ed[nume+numenew].er[0]=ed[i].num;
ed[nume+numenew].er[1]=ed[i].er[1];
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Рисунок 5.5: Один из простейших примеров плоского неэйлерова графа

ed[i].el[0]=nume+numenew;
ed[i].er[1]=nume+numenew;

}
}

numenew++;
}

После выполнения дополнительных построений используется функция по-

строения OE-цикла, описанная в предыдущем подразделе.

Приведем несколько примеров, демонстрирующих работу программы с

неэйлеровыми графами.

На рисунке 5.5 приведен простейший пример, когда граф содержит только

две вершины нечетной степени (вершины 2 и 4) и они смежны одной грани.

Дополнительные ребра достраиваются ломаной линией. Смысл, который

вкладывается в дополнительные ребра, заложен на этапе конструирования

модели (в терминах задачи раскроя они понимаются, например, как холостые

проходы режущего инструмента), а не на этапе отыскания решения. В нижней

части окна, как и в случае эйлерова графа, выводится найденный маршрут с

заключенными в скобки номерами вершин, так как маршрут в данном случае

содержит и дополнительные ребра.

Для графа с рисунка 5.5 в процессе выполнения алгоритма достраивается

дополнительное ребро с номером 6, соединяющее вершины 2 и 4.
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Рисунок 5.6: Граф, не имеющий ни одной вершины четной степени

Рассмотрим теперь пример графа, не имеющего ни одной вершины четной

степени (см. рисунок 5.6).

Очевидно, что после пометки внешнего цикла из ребер 1, 3 и 6, остается

подграф с тремя висячими вершинами. Чтобы получить внутренний цикл,

необходимо достроить три дополнительных ребра 7, 8 и 9. Такое вспомога-

тельное построение не является оптимальным по числу введенных ребер, т.к.

для графа с четырьмя вершинами нечетной степени достаточно ввести два

дополнительных ребра, для преобразования графа до эйлерова. Тем не менее,

проведенное построение позволяет свести граф к эйлерову в процессе работы

алгоритма CPP_OE.

Приведем более сложный пример (см. рисунок 5.7), для которого необхо-

димо на втором уровне вложенности дублировать ребра-мосты.

Заметим, что условие упорядоченного охватывания выполняется, так как

дополнительные ребра являются недостающими звеньями во вложенных цик-

лах, а т.к. полученный эйлеров граф имеет OE-цикл, то и маршрут, в котором

некоторые ребра заменяются фиктивным переходом из вершины в вершину,

будет иметь упорядоченное охватывание.

Итак, мы рассмотрели несколько часто встречающихся на практике слу-

чаев с произвольными плоскими графами. Во всех этих случаях произведена
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Рисунок 5.7: Плоский неэйлеров граф, для которого не существует тривиальной достройки

оптимальная достройка исходного графа до эйлерова с помощью описанных

выше функций и найден маршрут в исходном графе, удовлетворяющий усло-

вию упорядоченного охватывания.

5.1.3 Техника программной реализации эффективного

алгоритма построения OE-покрытия

Описанный алгоритм также реализован в виде функции и включен в каче-

стве функции в разработанное ранее для реализации рекурсивного алгоритма

GUI-приложение [80].

Здесь осуществлена модификация используемых структур данных и граф

представлен в виде класса EG, содержащего все используемые переменные

(свойства) и прототипы функций (методы класса).
class EG{
public:
int EuNumber, EuVertNumb;
int NFace;
int First, Last;
unsigned * Vertex1, *Vertex2;
unsigned * LEdge1, *LEdge2;
int * Stack, *Mark1, *Mark2, *prev1, *prev2;
int *ExtEdge,Enum;
bool *nech;
int *NV;
int NechNum;
int* VerArray;
int *kmark;
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int *kmark_v;
int KM;
int edge, NextEdge, FirstEdge;
int vertex, i;
//Методы*******************************************************************
int* EuLoop(char *a, char *b, int g, int*nv, int k,double **rasst,int t);
void WriteToFile(char *OutFile);
void ReadFromFile (char *InFile);
void Form(int v);
int FormNech(int V_Max);
void Making();
void Initialisation(int f);
void REPLACE(int edge);
void SortNech ();
void DelVer(int what);
void GetFromStacks(int vertex);

};

Приведем функцию построения OE-покрытия. После считывания данных

из файла, выполняется инициализация всех переменных и далее выполняется

построение OE-покрытия с помощью алгоритма OECover.
int* EG::EuLoop(char *InFile, char *OutFile, int first, int*nv,

int k,double **rasst){
ReadFromFile(InFile);
NV=nv;
NechNum=k;
VerArray=new int [EuVertNumb+k/2];
Initialisation(first);
Making();

SortNech();
int v=Vertex1[FirstEdge];
while(NechNum!=0){

int q=NV[NechNum];
DelVer(q);
v=FormNech(q);
WriteToFile(OutFile);
DelVer(v);

}
Form(v);
WriteToFile(OutFile);
return VerArray;

}

Отметим, что данный алгоритм находит только допустимое OE-покрытие

плоского графа, так как он не использует поиск кратчайшего паросочета-

ния между парами вершин нечетной степени, а сортирует эти вершины в

соответствии с их рангами с помощью функции SortNech(). В данной реа-

лизации функция SortNech() использует пузырьковую сортировку, однако,

программная реализация допускает ее замену другой функцией, использу-

ющей более эффективные методы сортировки. Программный код функций
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Рисунок 5.8: Работа алгоритма OECover для эйлерова графа, в котором цикл из ребер,
смежных внешней грани, охватывает несколько компонент связности

Рисунок 5.9: Работа алгоритма OECover для эйлерова графа

Initialisation(), Making(), FormNech() и Form() приводить не будем, так

как он полностью соответствует описанному в разделе 3.6.2 на псевдокоде ал-

горитму. Полный текст перечисленных функций приведен в Приложении 1.

Рассмотрим работу алгоритма OECover для случая эйлеровых графов,

представленных на рисунке 5.8 и 5.9.

Как видно из полученной последовательности ребер, в первую очередь

проходятся ребра, имеющие более высокий ранг. В отличие от рекурсивного

алгоритма RECURSIVE_OE, для нерекурсивного алгоритма OECover существу-

ют примеры (рисунок 5.9), когда он не проходит по циклам ребер одного

ранга, а выбирает последовательность пройденных ребер по принципу «отре-
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Рисунок 5.10: Работа алгоритма OECover для графа с мостом, принадлежащим внешней
грани

зания» циклов из ребер разного ранга. Несмотря на такой порядок обхода ре-

бер, условие упорядоченного охватывания сохраняется, а сложность работы

алгоритма OECover на порядок меньше сложности алгоритма RECURSIVE_OE,

как это было показано в главе 3.

В случае плоских неэйлеровых графов алгоритм OECover выполняет по-

строение эйлеровой цепи с помощью | Vodd| /2 дополнительных построений, где

| Vodd| – число вершин нечетной степени. Дополнительные ребра отображают-

ся красным цветом (см. рисунок 5.10–5.12). После полученных дополнитель-

ных построений не обязательно модифицированный граф останется плоским

(например, см. рисунок 5.12). Легко видеть, что полученные с помощью алго-

ритма OECover эйлеровы цепи удовлетворяют условию упорядоченного охва-

тывания.
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Рисунок 5.11: Работа алгоритма OECover для графа, не имеющего вершин четной степени

Рисунок 5.12: Работа алгоритма OECover для графа
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5.2 Программное обеспечение для построения

оптимального OE-покрытия плоского связного

графа и допустимого OE-покрытия несвязного

графа

На основе приведенного в разделе 3.9 алгоритма MultiComponent разра-

ботана программа «Graph Editor». Она представляет собой простейший гра-

фический редактор, позволяющий изображать планарные графы, сохранять

информацию о сконструированном с помощью инструментов вставки вершин

и ребер графе в файле, загружать, отображать сохраненные программой гра-

фы, масштабировать их [42,81,85,152].

Данная программа разрабатывалась с целью отладки алгоритма построе-

ния оптимального OE-покрытия для произвольного плоского графа. Пользо-

ватель может как решить задачу за один этап (выбрав в главном меню соот-

ветствующую команду), так и разбить процесс решения задачи на несколько

этапов:

\bullet добавлять и удалять дополнительные ребра;

\bullet помечать компоненты связности;

\bullet находить дополнительные построения минимальной длины между ком-

понентами связности (для этого используется алгоритм Краскала);

\bullet находить OE-покрытие для изображенного в рабочей области экрана

графа.

Для представления графа в памяти компьютера в соответствии с указан-

ным в главе 3 способом, а также для задания вспомогательных свойств графа

сконструирован следующий класс:
class EulerWayMaker {
private:

struct Vert {
int x,y; //Координаты вершины
int selected; //выделена ли вершина

//(вспомогательная переменная для поиска мостов)
int kmark; //уровень вложенности вершины
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int deg; //Степень вершины
int odd_go; //вершина нечетной степени оптимальная для перехода
bool can_go; //true - can make dop edge
int max_kmark;
bool mark; //mark for isWay function

};
struct Edge { //Ребро графа

int v1, v2; //id вершин в векторе V
int x1, y1, x2, y2; //Координаты начала и конца ребра
int type; /*тип ребра {

0 - внутреннее;
1 - внешнее;
2 - дополнительное в маршруте;
3 - дополнительное длЯ свЯзи компонент свЯзности;}*/

int bridge; //явлЯетсЯ ли мостом
double left_angle,right_angle; //Угол в радианах для поиска смежных ребер
int left_edge, right_edge; //Ближайшее по повороту против часовой стрелки

//ребро длЯ первой и второй вершин
int left_face, right_face; //Номера граней разделенных ребром
int kmark; //Уровень вложенности ребра
bool free; //not in way

};
//Вспомогательные переменные
int* out_e; //ДлЯ вывода ребер
int* out_v; //ДлЯ вывода вершин
vector<Vert> V; //Вершины графа
vector<Edge> E; //Ребра графа
vector<Edge> dop; //additional edges
vector<int> F; //Грани графа
vector<int> way; //Маршрут в графе (хранит id вектора E)
int hasBridges; //В графе присутствуют мосты
//Функции построениЯ обхода
void Init(); //Собрать информацию о графе
void Order(); //УпорЯдочение (вложенность ребер, списки инцедентных ребер)
void Form(); //сформировать путь
//Вспомогательные функции
int formWay(int s_v,int last_e); //переход из начаьной вершины в очередную

//вершину нечетной степени, возвращает end_vert
int getNextWayVert(int n_v, int n_e); //возвращает следующую вершину пути
int getNextWayEdge(int n_v);//возвращает следующее ребро для текущей вершины
int getNextWayEdge(int n_v, int n_e); //возвращает следующее ребро
int maxVertKmark(int n); //Определение максимального ранга
int minVertKmark(int n_v); //Определение минимального ранга
bool hasFreeEdges(); //Проверка непройденных ребер
bool isWay(int start_v, int end_v); //есть ли маршрут из start_v в end_v
void addToWay(int n); //Добавление ребра в маршрут
void addToWayDop(int v1, int v2); //добавлеие дополнительного ребра
int getVertId(int x, int y); //возвращает номер вершины в векторе V или -1

// (если вершина не найдена)
void findBridges(); //Найти все мосты графа
int isBridge(int id); //ЯвлЯетсЯ ли ребро id мостом
void countAngles(); //Рассчитать углы ребра
void countSmej(); //Найти ближайшие по повороту против часовой стрелки ребра

//для каждой вершины всех рЮбер
void countSmej(int id); //Найти ближайшие по повороту против часовой стрелки

//ребра для ребра id
int findBorderEdge(); //Ребро внешней грани длЯ обхода внешней грани
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void findBorder(); //Отметить внешнюю грань
void markFace(int fn, int e, int v); //Обойти грань, отметить все ее ребра
void findFaces(); //Отметить все грани
void countEdgeKmark(); //Определить уровни вложенности рЮбер
void findOddPairs(); //Найти вершины нечетной степени

public:
EulerWayMaker();
virtual ~EulerWayMaker();

//Поиск пути
void findWay(); //Найти обход графа

//Заполнение графа
void addEdge(int x1, int y1, int x2, int y2); //Добавить ребро
//Вывод информации
int getEdgeCount(); //Количество ребер
int getWayLength(); //Длина полученного пути
int getVertCount(); //Боличество вершин
int* getEdge(int id); //Вернуть вектор ребер {x1,y1,x2,y2,type}
int* getWayEdge(int id); //Вернуть ребро шага в пути
int* getVert(int id); //Вернуть вершину {x,y}

};

Полный текст всех описанных методов класса EulerWayMaker приведен в

Приложении 2.

При построении покрытия можно либо использовать оптимизацию (ис-

кать решение с помощью алгоритма MultiComponent), либо ограничиться по-

иском решения без оптимизации длины дополнительных построений (в этом

случае будут построены дополнительные ребра оптимальной длины между

компонентами связности, а для полученного односвязного графа использу-

ется алгоритм лексикографического (по возрастанию порядковых номеров

вершин) упорядочения дополнительных построений).

Пользователь имеет возможность анимировать полученное решение и

просмотреть процесс обхода ребер.

На рисунке 5.13 приведен пример несвязного графа, для которого с помо-

щью разработанного программного обеспечения построено OE-покрытие.

Ребра 6 и 10 построены на этапе связывания компонент. Ребра 18, 21, 23,

28 – дополнительные ребра, имеющие минималную суммарную длину, по ко-

торым осуществляется переход между цепями в покрытии. Все ребра прону-
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Рисунок 5.13: Работа алгоритма MultiComponent для графа с тремя не вложенными ком-
понентами

мерованы в порядке осуществления обхода. Нетрудно видеть, что полученное

покрытие имеет упорядоченное охватывание.

5.3 Верификация результатов работы алгоритмов

Рассмотрим алгоритм OrderedEnclosingTest, который для заданного

графа и маршрута его обхода устанавливает, соответствует ли маршрут усло-

вию упорядоченного охватывания [46].

В процессе работы алгоритма построим граневый двойственный граф G\ast 

к графу G, представляющему карту раскроя. Для построения двойственно-

го графа не требуются дополнительные вычислительные операции, так как

для каждого ребра e определены грани fk(e), k = 1, 2, смежные этому реб-

ру. Двойственный граф имеет одну компоненту связности, так как исходный

граф имеет общую внешнюю грань. Вершину, соответствующую внешней гра-

ни графа обозначим как f0. Приведем алгоритм OrderedEnclosingTest про-

верки маршрута обхода плоского графа на соответствие критерию упорядо-

ченного охватывания.
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Алгоритм OrderedEnclosingTest

Входные данные:

\bullet Плоский граф G(V,E);

\bullet Маршрут обхода C = e1e2 . . . en.

Выходные данные: номер ребра в маршруте обхода, нарушающего упо-

рядоченное охватывание (0 – если условие соблюдается)

Шаг 1. Отметить все рёбра графа как не пройденные.

Шаг 2. Выбрать e = e1 \in C первое ребро обхода.

Шаг 3. Отметить ребро e как пройденное. Выполнить шаги 4–5 для i =

1, 2.

Шаг 4. Если в двойственном графе нет пути от fi(e) до f0, проходящего

только по не пройденным ребрам – перейти к шагу 5.

Шаг 5. Если существует e\prime , не пройденное ребро, инцидентное fi(e), то

условие упорядоченного охватывания нарушается ребром e (перейти к шагу

7).

Шаг 6. Выбрать e – следующее ребро маршрута C, перейти к шагу 3.

Шаг 7. Конец алгоритма. Если e не найдено – вывод 0, иначе вывести

e\prime .

Алгоритм имеет сложность O(| E| 2 \cdot log | E| ) за счет цикла из шагов 3–6,

выполняемых для каждого ребра цепи и поиска пути в графе, выполняемого

внутри этого цикла на шаге 4.

На каждой итерации цикла (шаги 3–6) рассматривается только грань,

включенная в Int(C) последним добавленным ребром. Чтобы доказать спра-

ведливость алгоритма рассмотрим лемму.

Лемма 6. Пусть C = v1e1v2e2 . . . vk – маршрут обхода графа, а Ci =

v1e1v2e2 . . . ei – начальная часть маршрута, являющаяся OE-цепью, тогда

если Int(Ci+1 \setminus Int(Ci)) \cap E = \emptyset , то Ci+1 – тоже является OE-цепью.
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Доказательство. Чтобы Ci+1 была OE-цепью, по определению необхо-

димо выполнение следующего тождества

Int(Ci+1) \cap E = \emptyset .

Это тождество можно преобразовать, разбив его на два подмножества Int(Ci)

и (Int(Ci+1)\setminus Int(Ci)). Получим

(Int(Ci) \cap Int(Ci+1))\setminus Int(Ci)) \cap E =

= Int(Ci) \cap E \cup (Int(Ci+1)\setminus Int(Ci)) \cap E = \emptyset .

Так как Int(Ci) \cap E = \emptyset по определению, то, чтобы тождество было верным,

необходимо (Int(Ci+1)\setminus Int(Ci)). Лемма 6 доказана.

5.4 Программа построения AOE-цепи

Программа обеспечивает определение последовательности ребер в плос-

ком 4-регулярном графе без точек сочленения ранга k = 1, 2, . . ., удовлетво-

ряющей двум ограничениям на порядок обхода [35]:

\bullet цикл из пройденных ребер не должен охватывать еще не пройденных

(условие упорядоченного охватывания);

\bullet в качестве следующего ребра цепи выбирается правый либо левый сосед

текущего ребра (A-цепь).

Программа является реализацией представленного в главе 4 алгоритма и мо-

жет быть использована для демонстрации разработанных алгоритмов поиска

решения указанной задачи [33].

Каждое ребро графа представляется списком инцидентных ему вершин и

левых и правых соседних ребер, инцдентных каждой из вершин и значением

ранга каждого ребра. Например, для графа, представленного на рисунке 5.14,

данные закодированы следующим образом:
16
1 2 4 12 2 10 1 1
1 6 1 13 3 12 0 2
1 5 2 5 4 13 0 2
1 4 3 7 1 5 1 1
4 5 4 14 6 3 0 2
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Рисунок 5.14: Пример 4-ругулярного графа с помеченными вершинами и ребрами

4 8 5 8 7 14 0 2
4 3 6 10 4 8 1 1
3 8 7 15 9 6 0 2
3 7 8 11 10 15 0 2
3 2 9 1 7 11 1 1
2 7 10 16 12 9 0 2
2 6 11 2 1 16 0 2
6 5 16 3 2 14 0 3
5 8 13 6 5 15 0 3
8 7 14 9 8 16 0 3
7 6 15 12 11 13 0 3

Для представления графа в памяти компьютера используются следующие

классы:
struct GraphEdge{

int v1,v2; //Инцидентные вершины
int l1,l2; //Соседние ребра при вращении против часовой стрелки
int r1,r2; //Соседние ребра при вращении по часовой стрелке
bool f0; //Флаг смежности ребра внешней грани
int rank; //ранг ребра
void REPLACE();
GraphEdge(){

};
};

class Graph{
public:

GraphEdge *E; //Набор ребер графа
int EdgeNum; //Число ребер графа
Graph(int N){ //Конструктор графа из N ребер

EdgeNum=N+1;
E=new GraphEdge[N+1];

};
Graph(){};
void WriteData(int *ATrail); //Запись ответа
int *FindATrail(int v0); //Поиск А-цепи
int Deg(int vertex);//Определение степени вершины

};
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Приведем текст функции FindATrail, реализующей поиск AOE-цепи со-

гласно заданным данным. Функция реализует работу этапа «ПОСТРОЕ-

НИЕ» алгоритма AOE-TRAIL [36].
int *Graph::FindATrail(int v0){

//NextEdge - текущее ребро, curV - ее конец
//Выделим память под массив номеров ребер результирующей цепи
int *ATrail=new int [EdgeNum];
//Инициализируем элементы массива
for (int i=1;i<=EdgeNum;i++) ATrail[i]=INT_MAX;
int m=0;
//В качестве текущей выберем первую вершину
int curV=v0;
//Считаем, что следующее ребро не определено
int NextEdge=INT_MAX;
//k -- счетчик ребер в построенной A-цепи
int k=1;
//Отыщем первое ребро и вершину, в которую оно приводит.
//В силу 4-регулярности графа, это ребро будет иметь ранг 2
//либо 1 (если начальной выбрана вершина степени 2)
//В дальнейшем все ребра нумеруются с 1
for (int i=1;i<=EdgeNum;i++){

if ((E[i].v1==curV||E[i].v2==curV)&&(E[i].rank==2||Deg(curV)==2)){
NextEdge=i;
ATrail[k]=NextEdge;
//В качестве текущей должна быть задана v1 ребра.
//Если это не так, меняем индексы местами
if (E[i].v1!=curV) E[i].REPLACE();
curV=E[i].v2;
break;
}

}//for
//Цикл для построения А-цепи
do{

k++;
//Если ребро задано наоборот, поменять индексы местами
if (E[NextEdge].v1!=curV)

E[NextEdge].REPLACE();
//Ищем самое вложенное непройденное ребро, делаем его текущим,
//и находим его концевую вершину с учетом возможности задания
//ребра наоборот
//Попав в тупик, выводим сообщение об отсутствии решения
if (E[E[NextEdge].l1].rank > E[E[NextEdge].r1].rank){

if (!Included(ATrail,EdgeNum,E[NextEdge].l1)){
NextEdge=E[NextEdge].l1;
if (curV==E[NextEdge].v2) curV=E[NextEdge].v1;

else curV=E[NextEdge].v2;
}
else{

if (!Included(ATrail,EdgeNum,E[NextEdge].r1)){
NextEdge=E[NextEdge].r1;
if (curV==E[NextEdge].v1) curV=E[NextEdge].v2;

else curV=E[NextEdge].v1;
}else{

cout<<"There is no OE-A-trail!\n"; break;
}

}
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}else{
if (!Included(ATrail,EdgeNum,E[NextEdge].r1)) {

NextEdge=E[NextEdge].r1;
if (curV==E[NextEdge].v2) curV=E[NextEdge].v1;

else curV=E[NextEdge].v2;
}
else{

if (!Included(ATrail,EdgeNum,E[NextEdge].l1)){
NextEdge=E[NextEdge].l1;
if (curV==E[NextEdge].v1) curV=E[NextEdge].v2;

else curV=E[NextEdge].v1;
}else{

cout<<"There is no OE-A-trail!\n"; break;
}

}
}
//Заносим найденное ребро в результирующий массив
ATrail[k]=NextEdge;

}while (k!=EdgeNum-1); //Продолжаем цикл до тех пор,
//пока не перебрали все ребра

return ATrail; //Возвращаем результирующий массив
}
//**********************************************
bool Included (int *ATrail, int N, int K){

//Проверка, пройдено ли ребро. Если ребро пройдено,
//то оно находится в результирующем массиве
for (int i=1;i<=N;i++)

if (ATrail[i]==K) return true;
return false;

}

Разработанная программа в зависимости от номера начальной вершины

определяет AOE-цепь в графе, либо выводит сообщение, что задача не имеет

решения. Для рассмотренного примера при указании вершины с номером 1

в качестве начальной программа находит цепь:

2 - 13 - 14 - 15 - 16 - 12 - 11 - 9 - 87 - 6 - 5 - 3 - 4 - 7 - 20 - 1.

В перспективе предполагается разработать графическую оболочку, позволя-

ющую демонстрировать полученную цепь в динамике.

Выводы по главе 5

1. С помощью разработанного программного обеспечения возможно про-

тестировать работу всех рассмотренных в разделах 3 и 4 алгоритмов.

Программное обеспечение позволяет вводить/выводить данные в тек-
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стовом и графическом формате, просматривать результат работы алго-

ритмов в динамике (анимация обхода).

2. С помощью программной реализацици алгоритма

OrderedEnclosingTest возможно провести верификацию результатов

работы программного обеспечения. Алгоритм может использоваться

для повышения надежности разработанных программ.
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ГЛАВА 6

ПРИМЕНЕНИЕ АЛГОРИТМОВ МАРШРУТИЗАЦИИ

В САПР ТЕХНОЛОГИЧЕСКОЙ ПОДГОТОВКИ

ПРОЦЕССОВ РАСКРОЯ

В настоящее время применение ресурсосберегающих технологий являет-

ся актуальным. На количество отходов, образующихся в процессе раскроя,

влияют:

\bullet технологические допуски на кромку;

\bullet резы и перемычки между отдельными заготовками;

\bullet сочетание конфигураций взаимно прилегающих заготовок;

\bullet некратность размеров заготовки и размеров материала (особенно ощу-

тим при раскрое крупных заготовок).

Меры борьбы за уменьшение потерь при раскрое:

\bullet утилизация отходов;

\bullet ужесточение технологических допусков;

\bullet совмещение резов;

\bullet сокращение времени холостых переходов при вырезании.

В 1949 г. за рубежом появились первые публикации по линейному про-

граммированию. В 1951 г. вышло первое издание монографии [19], в которой

впервые рассмотрены вопросы применения линейного программирования для

оптимального гильотинного раскроя (т.е. построения раскройного плана с

определением последовательности сквозных резов на гильотине).

Развитие автоматизации производства привело к появлению технологиче-

ского оборудования с числовым программным управлением (ЧПУ), исполь-

зуемого для резки листовых материалов: машин газовой (кислородной), плаз-

менной, лазерной и электроэрозионной резки материала. Новые технологии
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Рисунок 6.1: Классификация задач вырезания деталей

позволяют осуществлять вырезание по произвольной траектории с достаточ-

ной для практики точностью. Снятие требования резки только сквозными

прямолинейными резами позволяет существенно снизить отходы материала.

В связи с этим появилось множество публикаций, например, [41], [40], [20],

[116], посвященных вопросам негильотинного раскроя и его оптимизации в

различных производствах и на разных уровнях автоматизации.

В отличие от гильотинного раскроя, негильотинный раскройный план не

дает программу вырезания деталей. Построение программы управления рас-

кройным автоматом для реализации заданного раскройного плана является

самостоятельной задачей. В работе [114] предложена следующая классифика-

ция задач маршрутизации инструмента машин листовой резки (рисунок 6.1):

1. Обобщенная задача коммивояжера (GTSP) (Generalized

Travelling Salesman Problem ): режущий инструмент последова-

тельно проходит по контуру каждой детали. Возможные точки врезки

в каждый контур заданы. Данная технология не допускает совмещения

фрагментов контуров вырезаемых деталей. Оптимальным маршрутом

является решение обобщенной задачи коммивояжера на множестве

точек врезки с ограничениями предшествования, учитывающими

вложенность одних контуров во внутренность других (рисунок 6.2.a).

2. Задача последовательной резки (CCP) (Continuous Cutting

Problem): детали вырезаются последовательно. Точка врезки может на-
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(a) GTSP-технология (b) CPP-технология

(c) ECP-технология (d) ICP-технология

Рисунок 6.2: Примеры раскройных планов с решением задачи маршрутизации

ходиться в любой части контура, переход к другому контуру осуществ-

ляется только после окончания вырезания текущего. Данная техноло-

гия, как и GTSP, не допускает совмещения фрагментов контуров вы-

резаемых деталей. Оптимальным маршрутом является решение обоб-

щенной задачи коммивояжера на множестве выбранных алгоритмом

точек врезки с ограничениями предшествования, учитывающими вло-

женность одних контуров во внутренность других (рисунок 6.2.b).

3. Задача с фиксированными точками врезки (ECP) (Endpoint

Cutting Problem): инструмент осуществляет врезку и переходит к дру-

гому фрагменту раскройного плана в заданных точках на границе. До-

пускается совмещение контуров вырезаемых деталей, что приводит к

вырезанию контура отдельных деталей по частям (рисунок 6.2.c).
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4. Задача прерывистого раскроя (ICP) (Intermittent Cutting

Problem): общий случай задачи раскроя, когда допускается совмеще-

ние контуров вырезаемых деталей, и нет ограничений на выбор точек

врезки (рисунок 6.2.d).

Технологии GTSP и CCP различаются размерами и значениями элемен-

тов матриц расстояний между контурами. Данные технологии предполагают

только оптимизацию холостых перемещений, а программы вырезания кон-

туров транслируются с точностью до точки врезки. При этом длина резки

равна сумме длин вырезаемых контуров, а также необходим зазор между вы-

резаемыми контурами, что приводит к дополнительному расходу материала.

Технология CCP в сравнении с технологией GTSP позволяет сократить толь-

ко время на холостые проходы между точками врезки. Имеется множество

эвристических алгоритмов построения маршрутов для данных технологий,

например [159]–[12]. В работе [94] рассмотрены способы повышения эффек-

тивности точного алгоритма построения маршрутов для данных технологий.

Технологии ECP и ICP за счет возможности совмещения границ выре-

заемых деталей позволяют сократить расход материала, длину резки, ко-

личество и длину холостых проходов (см., например, рисунок 6.2). Однако,

это существенно усложняет процесс составления программы вырезания: (1)

последовательные фрагменты контуров детали не всегда являются последо-

вательными элементами траектории режущего инструмента, (2) нетривиаль-

ной становится проблема нахождения такой последовательности вырезания

фрагментов, чтобы отрезанная от листа часть не требовала дополнительных

разрезаний. В работе [121] сделана попытка оценить эффект от совмещения

фрагментов границ вырезаемых деталей, в этой же работе констатируется

отсутствие эффективных алгоритмов нахождения маршрутов резки при ис-

пользовании технологий ECP и ICP, в частности отмечается, что предложен-

ный в работе [120] подход, требующий решения задачи сельских почтальонов,

является трудно реализуемым. Применение технологий ECP и ICP в системе
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технологической подготовки процессов раскроя плоских деталей предполага-

ет следующие этапы:

1. Составление раскройного плана, заключающееся в нахождении та-

кого варианта размещения вырезаемых деталей на прямоугольном ли-

сте, при котором минимизируются отходы и максимизируется длина

совмещенных элементов контуров вырезаемых деталей. Решению дан-

ной задачи отражено в публикациях [41], [40], [20], [116].

2. Абстрагирование раскройного плана до плоского графа. Для

определения последовательности резки фрагментов раскройного пла-

на не используется информация о форме детали, поэтому все кривые

без самопересечений и соприкосновений на плоскости, представляющие

форму деталей, интерпретируются в виде ребер графа, а все точки пере-

сечений и соприкосновений представляются в виде вершин графа. Для

анализа выполнения технологических ограничений необходимо введе-

ние дополнительных функций на множестве вершин, граней и ребер

полученного графа.

3. Решение задачи построения оптимальных маршрутов с ограни-

чениями, наложенными на порядок обхода ребер. Данные ограничения

непосредственно вытекают из технологических ограничений, наложен-

ных на порядок вырезания деталей: отрезанная от листа часть не долж-

на требовать дополнительных разрезаний, должны отсутствовать пере-

сечения резов, необходимо оптимизировать длину холостых переходов,

минимизировать количество точек врезки [11] и т.д.

4. Составление программы управления процессом раскроя на основе

маршрута, найденного с помощью алгоритма решения абстрагирован-

ной задачи маршрутизации. Здесь выполняется обратная замена аб-

страктных ребер плоского графа системой команд раскройному авто-

мату, обеспечивающей движение по кривым на плоскости, соответству-

ющим форме вырезаемой детали.
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Этапы построения раскройного плана и интерпретации найденного марш-

рута в терминах команд раскройному автомату являются общими для всех

технологий и достаточно известны. На международной конференции САD/-

САМ/РDМ – 2015 [26, 27] рассмотрены особенности реализации второго и

третьего этапов для ресурсосберегающих технологий ECP и ICP. Рассмот-

рим подробнее применение результатов работы, описанных в предыдущих

главах, для решения возникающих проблем [128].

6.1 Особенности и различия составления раскройных

планов для различных технологий

Рассмотрим более подробно особенности и различия составления раскрой-

ного плана для различных технологий.

Составление раскройного плана для технологии GTSP предполагает по-

контурное вырезание деталей, поэтому если D – ширина реза, то при отсут-

ствии совмещения резов детали должны находиться на расстоянии не менее

3D (рисунок 6.3.a)). Напротив, при совмещении резов реальные границы де-

талей должны находиться на расстоянии D (рисунок 6.3.b)).

(a) Технология GTSP (b) Технология ICP

Рисунок 6.3: Определение нименьшего расстояния между деталями (a) без совмещения
резов и (b) при наличии совмещения

Рассмотрим экстремальный случай, когда требуется разместитьm\cdot n квад-

ратных заготовок размера s [131]. На рисунке 6.4 приведена оптимальная

упаковка таких заготовок.
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Рисунок 6.4: Раскройный план, состоящий из m \cdot n одинаковых квадратных заготовок

В этом случае при отсутствии совмещения резов непродуктивный рас-

ход материала составит величину

3D(n - 1) + 3D(m - 1) = 3D(n+m - 2).

При совмещении резов непродуктивный расход составит величину

D(n - 1) +D(m - 1) = D(n+m - 2).

Таким образом, непродуктивный расход материала за счет совмещения резов

может быть сокращен в данном случае в 3 раза.

Рассчитаем длину реза L без учета холостых перемещений и ширины

реза [131]. При отсутствии совмещения резов будет равна произведению пе-

риметра прямоугольника на общее число таких прямоугольников

L \geq (4 \cdot s) \cdot (m \cdot n).

При совмещении резов получим величину

L = (m - 1) \cdot (n - 1) \cdot 2 \cdot s+2 \cdot m+2 \cdot n = 2 \cdot s \cdot n \cdot m+2 \cdot s = 2 \cdot s \cdot (m \cdot n+1).

То есть длина реза при совмещении может быть сокращена почти в два раза.

При отсутствии совмещения резов количество точек врезки | Vodd| =

m \cdot n, т.е. совпадает с числом прямоугольников. При совмещении резов все

точки врезки (являющиеся в гомеоморфном образе раскройного плана вер-

шинами нечетной степени) находятся на внешней границе раскройного плана

и на каждой из четырех границ таких точек на единицу меньше числа пря-

моугольников в ряду (столбце), то есть | Vodd| = 2 \cdot (n  - 1) + 2 \cdot (m  - 1).

Следовательно, при совмещении резов количество точек врезки на порядок

меньше, нежели при отсутствии совмещения.
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Таким образом, показано, что технология ICP является ресурсосберега-

ющей по таким важным критериям как непродуктивный расход материала,

длина горячей резки и количество точек врезки, – по отношению к техноло-

гии GTSP, используемой современными CAD/CAM системами.

6.2 Абстрагирование раскройного плана до плоского

графа

Моделью раскройного листа будем считать плоскость S, моделью рас-

кройного плана – плоский граф [18] G с внешней гранью f0 на плоско-

сти S. Множество вершин компонент связности графа G негомеоморфных

окружности будем считать точки соприкосновения трех и более фрагментов

раскройного плана, а соответствующие фрагменты ребрами, инцидентными

данной вершине. Компоненту связности гомеоморфную окружности будем

считать петлей. На рисунке 6.5 представлены плоские графы, являющиеся

гомеоморфными образами ESP и ICP раскройных планов, приведенных на

рисунке 6.2. Для любой части графа J \subseteq G обозначим через Int (J) теоретико-

(a) ECP-граф (b) ICP-граф
Рисунок 6.5: Примеры абстрагирования раскройных планов до плоских графов

множественное объединение его внутренних граней (объединение всех связ-

ных компонент S \setminus J , не содержащих внешней грани). Если считать, что

режущий инструмент прошел по всем фрагментам графа J , то Int(J) можно

интерпретировать как отрезанную от листа часть. Множества вершин, ребер
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и граней графа J будем обозначать через V (J), E(J) и F (J) соответственно,

а через | M | – число элементов множества M .

Для представления образа раскройного плана в виде плоского графа

G = (V, F,E) определим для каждого ребра e \in E(G) функции, введен-

ные в разделе 1 (рисунок 1.1). В таблице 6.2 дано представление графов,

изображенных на рисунке 6.5.

Таким образом, используя известные координаты прообразов вершин гра-

фа G = (V, F,E) и размещения фрагментов раскройного плана, являющихся

прообразами ребер графа G = (V, F,E), любой маршрут в графе G = (V,E)

можно интерпретировать как траекторию режущего инструмента.

6.3 Ранжирование ребер плоского графа

Ранжирование заключается в присваивании рангов всем ребрам графа.

Ранг ребра определяет его удаленность от внешней грани и показыва-

ет, какое минимальное число граней необходимо пересечь, чтобы добраться

от внешней грани f0 до этого ребра. Это позволяет для определения ранга

использовать граф G\prime (F, V,E), топологически двойственный исходному гра-

фу G(V, F,E): множеством вершин графа G\prime является множество F граней

графа G, а ребрам графа G\prime соответствует наличие между двумя гранями

границы ненулевой длины, т.е. ребра e \in E(G). Изображение графов, двой-

ственных представленным в таблице 6.2, приведено на рисунке 6.6 [25].

(a) двойственный ECP-граф (b) двойственный ICP-граф
Рисунок 6.6: Двойственные графы
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Для всех f \in F (G) расстояние в графе G\prime между f и внешней гранью

f0 можно определить, построив в графе G\prime дерево T f0
G\prime кратчайших путей до

вершины f0 \in F . Наличие в представлении графа G функций lk : E(G) \rightarrow 

E(G), k = 1, 2 позволяет найти функции ранга за время не превосходящее

величины O(| E| log2 | V | ) [137]. В таблице 6.2 приведены ранги ребер графов,

изображенных на рисунке 6.5.

6.4 Добавление дополнительных ребер и построение

маршрута

Добавление дополнительных ребер подразумевает построение крат-

чайшего паросочетания M на множестве вершин нечетной степени. Под дли-

ной ребра при поиске дополнительных построений (холостых переходов) бу-

дем понимать кратчайший путь по прямой между двумя точками на плоско-

сти (соответствующими точкам врезки на раскройном плане). Для графов,

соответствующих технологиям ICP и ECP, такие переходы показаны на ри-

сунке 6.2 пунктирными линиями.

Для построения маршрута можно воспользоваться любым, приемле-

мым для рассматриваемого связного графа, алгоритмом построения OE-

маршрута. Построенные маршруты приведены на рисунке 6.2.

6.5 Задача прямоугольного раскроя и OE-покрытия

Рассмотрим задачу прямоугольного раскроя на полубесконечной полосе.

Особенностью этой задачи является то, что плоский граф, соответствующий

раскройному плану, содержит только вершины степеней 2, 3 или 4. Каждой

вершиной такого графа является точка соприкосновения (возможно, малая

окрестность) нескольких деталей на плоскости [73].
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Для такого графа возможно применение как любого из алгоритмов по-

строения OE-покрытия в плоском графе [68], так и алгоритма построения

AOE-покрытия [32].

Схема кодирования графа для решения задачи раскроя-упаковки не сов-

падает со схемой кодирования графа для задачи построения OE-покрытия, в

которой осуществляется поиск траектории движения режущего инструмента

с определенным ограничением.

Кодирование раскройного плана предполагает указание для каждого пря-

моугольника декартовых координат его верхней левой и нижней правой вер-

шин. Примером кодировния прямоугольной укладки, представленной на ри-

сунке 6.7 является матрица

A =

\left(           

№ прямоугольника xверх yверх xнижн yнижн

1 0 0 3 2

2 1 2 2 4

3 3 1 5 4

4 0 4 4 6

\right)           
.

В общем случае количество строк матрицы A равно числу прямоугольни-

ков.

Рассмотрим алгоритм преобразования раскройного плана в граф и опре-

деления функций для каждого ребра на примере укладки, приведенной на

рисунке 6.7.

Заметим, что функции f1(e) и f2(e) определяются автоматически с помо-

щью программы, разработанной для построения OE-покрытий [81], поэтому

достаточно определить только функции lk(e), k = 1, 2 и vk(e), k = 1, 2.

Очевидно, что вершинами графа с учетом кратности будут все вершины

прямоугольников и только они. Вертикальные и горизонтальные отрезки, со-

единяющие пары соседних вершин, являются ребрами графа. Можно умень-

шить число ребер, удалив вершины степени два и объединив инцидентные
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Рисунок 6.7: (а) Пример прямоугольной укладки. (б) Пример покрытия раскройного пла-
на, состоящего из прямоугольников, OE-цепями

этим вершинам ребра. Однако полученный гомеоморфный граф представля-

ет лишь теоретический интерес.

6.5.1 Алгоритмы перекодирования раскройного плана

Алгоритм перекодирования данных о прямоугольном раскройном плане

в кодировку для ребер графа, принятую в [68, 75, 142, 143, 145], можно пред-

ставить следующим образом.

Алгоритм RECODE

Входные данные: раскройный план, представленный в виде матрицы A.

Выходные данные: представление графа с помощью функций vk(e),

lk(e), k = 1, 2.

Шаг 1. Найти максимальные значения координат раскройного плана

xmax = max\{ x3,i : i = 1, . . . , NA\} и ymax = max\{ y4,j : j = 1, . . . , NA\} .

Шаг 2. Для каждого yk \in [0, ymax] найти все горизонтальные ребра

графа. Для этого просмотреть все узлы сетки от (0, yk) до (xmax, yk). Ес-

ли отрезок [(xi, yk), (xj, yk)], i < j принадлежит границе хотя бы одного

из прямоугольников, то [(xi, yk), (xj, yk)] является ребром графа. Положить

v1(e) = (xi, yk), v2(e) = (xj, yk).
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Шаг 3. Для каждого xk \in [0, xmax] найти все вертикальные ребра гра-

фа: просмотреть все узлы сетки от (xk, 0) до (xk, ymax) и найти отрезки

[(xk, yi), (xk, yj)], i < j, принадлежащие границе хотя бы одного из прямоу-

гольников. Тогда [(xk, yi), (xk, yj)] является ребром графа. Положить v1(e) =

(xk, yi), v2(e) = (xk, yj).

Шаг 4. Для каждого ребра e выполнить следующие действия.

Шаг 4.1. Перейти в вершину v1(e). Среди ребер, инцидентных этой вер-

шине, выбрать ребро \~e1, образующее с ребром e минимальный угол (угол

между ребрами отсчитывается как на рисунке 4.12, т.е. против часовой стрел-

ки). Положить l1(e) = \~e1.

Шаг 4.2. Перейти в вершину v2(e). Среди ребер, инцидентных этой вер-

шине, выбрать ребро \~e2, образующее с ребром e минимальный угол. Поло-

жить l2(e) = \~e2.

Шаг 5. Конец алгоритма.

Для нахождения покрытия соответствующего раскройному плану плос-

кого графа OE-цепями необходимо загрузить закодированный файл в про-

грамму «Eulerian Cover Constructor» [81]. Эта программа позволяет найти

покрытие OE-цепями для любого плоского графа без висячих вершин. В

частности, для укладки, представленной на рисунке 6.7(а), будет найдена по-

следовательность цепей, приведенная на рисунке 6.7(б). В скобках указаны

вершины, из которых начинается построение цепи и в которых оно заверша-

ется. Первые три цепи соединяют вершины нечетной степени, четвертая же

является эйлеровой цепью суграфа, содержащего все оставшиеся ребра.

Модифицируем алгоритм RECODE таким образом, чтобы с его помощью

можно было находить кодировку заданного графа в терминах функций vk(e),

lk(e), fk(e), k = 1, 2;

Для решения задачи выделим все прямые, содержащие стороны прямо-

угольников. Для каждой такой прямой рассмотрим отрезки (стороны прямо-

угольников), лежащие на ней. Отсортируем полученные отрезки по возрас-
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танию координаты начала отрезка. Для решения задачи достаточно рассмот-

реть отрезки на текущей прямой, их области пересечения будут соответство-

вать ребрам, не смежным внешней грани, а остальные – ребрам, смежным

внешней грани f0. Заметим, что, благодаря специфике задачи (ракройный

план состоит из прямоугольных деталей), пересекаться могут не более двух

отрезков. Кроме того пересекающиеся отрезки будут соседними элементами

в списке, так как отрезки отсортированы.

Допустим, что отрезки, находящиеся на одной прямой, отсортированы по

возрастанию координаты начала отрезка. Список отрезков представлен в ви-

де очереди M длиной n. Текущая точка pm – координата, которую алгоритм

рассматривает в данный момент. Начало отрезка i будем обозначать Mi,0,

а конец – Mi,1. Описанный выше процесс можно обобщить и представить в

качестве алгоритма STRAIGHT LINE [54], осуществляющего проход вдоль пря-

мой.

Алгоритм STRAIGHT LINE

Входные данные: массив M , содержащий отрезки, находящиеся на од-

ной прямой.

Выходные данные: список ребер, смежных внешней грани.

Шаг 1. Перейти в начало отсчета: i = 0, j = 0, текущая рассматриваемая

точка pm = M [0].

Шаг 2. Если рассмотрены не все отрезки (j < n) перейти к шагу 3,

иначе – к шагу 6.

Шаг 3. Рассмотреть отрезки Mi,k и Mj,l (k, l = 0, 1). Если Mi,1 > Mj,1, а

pm \not = Mj,0, то отрезок [pm;Mj,0] смежен внешней грани, а ребро [Mj,0;Mj,1]

— нет. Если Mi,1 \not = Mj,1, то переместить указатель на текущую координату

pm в Mj,1 и положить j = j + 1, в противном случае i = j + 1, j = j + 2, а в

качестве pm будет рассматриваться Mi,0. Перейти к шагу 2.
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Шаг 4. Если Mi,1 < Mj,0, то отрезок [pm;Mi,1] смежен внешней грани.

Переместить указатель pm в точку Mj,0. Положить i = j, j = j + 1. Перейти

к шагу 2.

Шаг 5. Если Mi,1 < Mj,1, то в случае, когда рт \not = Mj,0 отрезок [pm;Mj,0]

смежен внешней грани, а когда Mj,0 \not = Mi,1, то отрезок [Mj,0;Mi,1] не смежен

внешней грани. Положить рт = Mi,1, i = j, j = j + 1 и перейти к шагу 2.

Шаг 6. Останов.

Сложность алгоритма STRAIGHT LINE составляет величину O(| V | ). Ис-

пользуется только один цикл и в каждой итерации параметр цикла увеличи-

вается хотя бы на 1.

Приведем алгоритм RECODE2 [54], осуществляющий представление множе-

ства графов в рассмотренной выше кодировке.

Алгоритм RECODE2

Входные данные: n раскройных планов, представленных в виде матри-

цы Ai, i = 1, . . . , n.

Выходные данные: представление графов Gi, i = 1, . . . , n с помощью

функций vk(e), lk(e), k = 1, 2.

Вертикальные прямые

Шаг 1. Выделить все вертикальные прямые Vi, i = 1, . . . , n (сложность

данного шага составляет величину O(| V | )).

Шаг 2. Удалить повторения (сложность – O(| V | log2 | V | )).

Шаг 3. Отсортировать прямоугольники по возрастанию координаты Y

(сложность – O(| V | log2 | V | )). Для каждой вертикальной прямой выполнить

следующие действия.

Шаг 3.1.Выбрать отрезки фигуры принадлежащие этой прямой (слож-

ность – O(| V | )).

Шаг 3.2. Применить алгоритм STRAIGHT LINE прохода вдоль прямой для

вертикальных отрезков (сложность – O(| V | )).
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Рисунок 6.8: Решение задачи построения маршрута для прямоугольного раскройного пла-
на с помощью разработанного программного обеспечения

Горизонтальные прямые

Шаг 4. Выделить все горизонтальные прямые Hj, j = 1, . . . , n (слож-

ность – O(| V | )).

Шаг 5. Удалить повторения (сложность O(| V | log2 | V | )).

Шаг 6. Отсортировать прямоугольники по возрастанию координаты X

(сложность –O(| V | log2 | V | )). Для каждой горизонтальной прямой выполнить

следующие действия.

Шаг 6.1.Выбрать отрезки фигуры принадлежащие этой прямой (слож-

ность – O(| V | )).

Шаг 6.2. Применить алгоритм STRAIGHT LINE прохода вдоль прямой для

отрезков, принадлежащих Hj (сложность – O(| V | )).

Конец алгоритма.

Легко видеть, что общая сложность алгоритма O(| V | log2 | V | )). Для на-

хождения покрытия полученного плоского графа OE-цепями необходимо за-

грузить закодированный файл в программу «Eulerian Cover Constructor» [81].
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Эта программа позволяет найти покрытие OE-цепями для любого плоского

графа без висячих вершин.

6.5.2 Выбор оптимальной укладки деталей

Полученную с помощью рассмотренного алгоритма кодировку можно ис-

пользовать при решении следующей задачи оптимизации [62]. Предположим,

что для некоторого набора прямоугольных деталей известно несколько опти-

мальных упаковок. Требуется найти множество упаковок, для которых по-

крытие OE-цепями было бы оптимальным.

Рассмотрим возможные критерии оптимальности. Стоимость раскроя за-

висит в основном от трех факторов: длины пути холостого хода, длины пути

реза и количества холостых проходов (т.е. точек врезки) [63]. Перечисленные

параметры не являются независимыми.

Количество холостых проходов (число точек врезки). Задача их миними-

зации тривиальна. В данном случае необходимо рассмотреть все имеющиеся

в качестве исходных данных упаковки и выбрать те, для которых в соответ-

ствующем им плоском графе число вершин нечетной степени будет мини-

мально, и построить для них покрытия OE-цепями. Такая задача решается

за линейное время.

Суммарная длина пути реза. Эта задача также может быть решена за

линейное время еще на этапе кодирования графа.

Длина пути холостого хода. Эта задача не так тривиальна. В частности,

алгоритм для задачи китайского почтальона не сможет решить эту задачу,

т.к. в данном случае при построении маршрута уровень вложенности каж-

дой вершины определяет допустимый порядок обхода. С целью уменьшения

длины маршрута можно рекомендовать идти в ближайшую непомеченную

вершину v \in Vodd с максимальным рангом (т.е. жадный алгоритм). Вычисли-

тельный эксперимент показывает, что построенный таким образом маршрут
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Рисунок 6.9: Найденные оптимальные решения

имеет длину не больше маршрута найденного с помощью алгоритма [135], ко-

гда очередная вершина v \in Vodd для врезки выбиралась лексикографически.

Результаты тестирования алгоритма для раскройного плана, представленно-

го на рисунке 6.8, представлены на рисунке 6.9.

Выводы по главе 6

1. Рассмотренные алгоритмы могут быть применены в проектировании

программ вырезания деталей с использованием ресурсосберегающих

ECP и ICP технологий.

2. В случае прямоугольного раскройного плана возможна эффектив-

ная инкапсуляция программ построения AOE-маршрутов для 4-

регулярных графов и OE-маршрутов в систему технологической подго-

товки процессов прямоугольного раскроя. Это позволяют осуществить

разработанные алгоритмы RECODE и RECODE2 перекодировки раскрой-

ных планов.
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ВЫВОДЫ И ОСНОВНЫЕ РЕЗУЛЬТАТЫ

1. Введен класс маршрутов с упорядоченным охватыванием (OE-маршру-

тов). В общем случае такие маршруты представляют покрытие графа

упорядоченной последовательностью цепей. Доказаны теоремы суще-

ствования OE-маршрутов в связном графе с числом цепей, равным k,

где 2k – число вершин нечетной степени в гомеоморфном образе рас-

кройного плана.

2. Разработаны алгоритмы решения задачи для разных случаев: плоский

эйлеров граф, произвольный плоский связный граф (задача китайского

почтальона и задача построения OE-покрытия), произвольный несвяз-

ный граф.

3. Разработаны алгоритмы поиска оптимального решения для произволь-

ных плоских графов. Оптимальным решением в данном случае счита-

ется OE-покрытие с минимальной длиной дополнительных построений

и минимальным числом цепей.

4. Показано, что все разработанные алгоритмы имеют полиномиальную

сложность.

5. Введен класс AOE-цепей, в котором на цепь наложено локальное огра-

ничение: смежные ребра цепи соответствуют системе переходов A-цепи.

Разработан алгоритм AOE-TRAIL, который позволяет построить AOE-

цепь для плоского связного 4-регулярного графа. Алгоритм находит

решение за время O(| E(G)| \cdot log | V (G)| ).

6. Введен класс NOE-маршрутов в плоских графах. Этот класс являет-

ся расширением класса AOE и в него входят все OE-цепи, имеющие

непересекающиеся переходы. Разработан алгоритм Non-intersecting

построения NOE-цепи. Его выполнение состоит в сведении исходно-

го плоского графа к плоскому связному 4-регулярному графу за счет
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расщепления вершин степени выше 4 и дальнейшего выполнения алго-

ритма AOE-TRAIL.

7. Определены оценки количества OE-цепей в эйлеровом графе для фик-

сированной системы переходов. Решение данной задачи может быть по-

лезно при генерации допустимых вариантов маршрутизации.

8. Рассмотренные алгоритмы могут быть применены в проектировании

CAD/CAM систем технологической подготовки процессов раскроя, ори-

ентированных на применение ресурсосберегающих ECP и ICP техноло-

гий.
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ПРИЛОЖЕНИЯ

Приложение 1. Определения функций построения OE-

покрытия

//---------------------------------------------------------------------------

#include <vcl.h>
#pragma hdrstop
#include <fstream.h>
#include "Unit3.h"
bool wasopened;
int I;
int ADD;

//===========================================================================
void EG::REPLACE(int edge){
int rv, rl;
int mt, pt;

mt=Mark1[edge];
Mark1[edge]=Mark2[edge];
Mark2[edge]=mt;
rv=Vertex2[edge];
rl=LEdge2[edge];
Vertex2[edge]=Vertex1[edge];
LEdge2[edge]=LEdge1[edge];
Vertex1[edge]=rv;
LEdge1[edge]=rl;
pt=prev1[edge];
prev1[edge]=prev2[edge];
prev2[edge]=pt;

}

//============================================================================
void EG::Initialisation(int first){
int Ege;
Stack=new int[EuVertNumb+1];
Mark1=new int[EuNumber+1];
Mark2=new int[EuNumber+1];
prev1=new int[EuNumber+1];
prev2=new int[EuNumber+1];
kmark=new int[EuNumber+1];
nech=new bool[EuVertNumb+1];
for (vertex=1;vertex<=EuVertNumb;vertex++){

nech[vertex]=false;
Stack[vertex]=0;
for (int l=0;l<NechNum;l++){

if (vertex==NV[l]){
nech[vertex]=true;
break;

}
}

}
FirstEdge=first;
for (Ege=1; Ege<=EuNumber;Ege++){

Mark1[Ege]=Mark2[Ege]=N;
prev1[Ege]=prev2[Ege]=0;

}
First=FirstEdge;
Last=FirstEdge;
vertex=Vertex1[FirstEdge];
NextEdge=LEdge1[FirstEdge];
kmark[FirstEdge]=1;
KM=1;
wasopened=false;
I=0; ADD=EuNumber;

}
//============================================================================
void EG::Making(){

while (First!=N){
while (Mark1[NextEdge]==N&&Last!=NextEdge){

kmark[NextEdge]=KM;
Mark1[Last]=NextEdge;
if (Vertex2[NextEdge]!=vertex) REPLACE(NextEdge);
vertex=Vertex1[NextEdge];
Last=NextEdge;
NextEdge=LEdge1[NextEdge];

}
edge=First;
First=Mark1[First];
vertex=Vertex2[edge];
NextEdge=LEdge2[edge];
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Mark1[edge]=Stack[Vertex1[edge]];
Mark2[edge]=Stack[vertex];
if (Mark1[edge]!=0){

if (Vertex1[edge]==Vertex1[Mark1[edge]])
prev1[Mark1[edge]]=edge;

else prev2[Mark1[edge]]=edge;
}
if (Mark2[edge]!=0){

if (vertex==Vertex1[Mark2[edge]])
prev1[Mark2[edge]]=edge;

else prev2[Mark2[edge]]=edge;
}
Stack[vertex]=edge;
Stack[Vertex1[edge]]=edge;
KM=kmark[edge]+1;

}
}

//==========================================================================
void EG::Form(int vertex){

edge=Stack[vertex];
First=edge;
Last=edge;

do{
if (Vertex1[edge]==vertex){

REPLACE(edge);
}

Stack[vertex]=Mark2[edge];
if (vertex==Vertex1[Mark2[edge]])

prev1[Mark2[edge]]=0;
else

prev2[Mark2[edge]]=0;
vertex=Vertex1[edge];
int pprev=prev1[edge];
if (pprev!=0){ //Edge - внутри стека vertex

if (edge==Mark1[pprev])
Mark1[pprev]=Mark1[edge];

else
Mark2[pprev]=Mark1[edge];

}else {
//Edge - в вершине стека vertex
Stack[vertex]=Mark1[edge];
if (vertex==Vertex1[Mark1[edge]])

prev1[Mark1[edge]]=0;
else

prev2[Mark1[edge]]=0;
}

edge=Stack[vertex];
Mark1[Last]=edge;

// KS[Last]=K;
Last=edge;

}while (Last!=0);
}

//===========================================================================
void EG::ReadFromFile (char *InFile){

edge=1;
ifstream inf;
inf.open(InFile);
if (inf){
inf>>EuNumber>>EuVertNumb;
Vertex1=new unsigned[EuNumber+1];
Vertex2=new unsigned[EuNumber+1];
LEdge1=new unsigned[EuNumber+1];
LEdge2=new unsigned[EuNumber+1];

// KS=new int [EuNumber+1];
for (edge=1;edge<=EuNumber;edge++){

inf>>Vertex1[edge]>>Vertex2[edge]>>LEdge1[edge]>>LEdge2[edge];
// KS[edge]=0;
}
inf.close();
}else{

ShowMessage("Проблемы с файлом!!!");
}

}

//============================================================================
void EG::WriteToFile(char *OutFile){

ofstream outf;
if (!wasopened){

outf.open(OutFile);
wasopened=true;

}else
outf.open(OutFile,ios::app);

do{
outf<<First<<"-> ";
VerArray[I]=First;
First=Mark1[First];
I++;

}while (First!=0);
outf<<"\n";
if (NechNum>2){

ADD++;
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VerArray[I]=ADD;
I++;

}else{
if (NechNum==0) VerArray[I]=INT_MAX;

}
outf<<"\n";
outf.close();

}
//============================================================================
int Nearest(double **rasst,int k){
}
//============================================================================
int* EG::EuLoop(char *InFile, char *OutFile, int first, int*nv, int k,double **rasst){

ReadFromFile(InFile);// { code1.dat }
NV=nv;
NechNum=k;
VerArray=new int [EuVertNumb+k/2];
Initialisation(first);
Making();
SortNech();
int v=Vertex1[FirstEdge];

// int q=NV[NechNum];
while(NechNum!=0){

int q=NV[NechNum];
/* int v2=INT_MAX;
for(int i=1;i<=k;i++)

if (NV[i]==q)
v2=i;*/

DelVer(q);
v=FormNech(q);
WriteToFile(OutFile);
//**********
/* int v1=INT_MAX;
for(int i=1;i<=k;i++)

if (NV[i]==v) v1=i;
for (int i=1;i<=k;i++){

rasst[v1][i]=INT_MAX;
rasst[i][v1]=INT_MAX;
rasst[v2][i]=INT_MAX;
rasst[i][v2]=INT_MAX;

}
int z=INT_MAX;
for (int i=0;i<k;i++){

if (z>rasst[v1][i]) z=rasst[v1][i];
q=NV[i+1];

}*/
//**********
DelVer(v);

}
Form(v);
//Route(OutFile);
WriteToFile(OutFile); //{output.dat}
return VerArray;

}
//==============================================================================
void EG::SortNech(){

bool fl;
int n=NechNum-1;
do{

fl=false;
for (int i=1;i<=n;i++){

if (kmark[Stack[NV[i]]]>kmark[Stack[NV[i+1]]]){
int t=NV[i];
NV[i]=NV[i+1];
NV[i+1]=t;
fl=true;

}
}
n--;

}while (fl);
}
//==============================================================================
void EG::DelVer(int what){
int i=1;

while (NV[i]!=what)i++;
for (int j=i;j<(NechNum);j++){

NV[j]=NV[j+1];
}
NV[NechNum]=INT_MAX;
nech[what]=false;
NechNum--;
}
//==============================================================================
int EG::FormNech(int V_Max){

vertex=V_Max;
edge=Stack[vertex];
First=edge;
Last=edge;

do{
if (Vertex1[edge]==vertex){

REPLACE(edge);
}

Stack[vertex]=Mark2[edge];
if (vertex==Vertex1[Mark2[edge]])

prev1[Mark2[edge]]=0;
else

prev2[Mark2[edge]]=0;
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vertex=Vertex1[edge];
int pprev=prev1[edge];
if (pprev!=0){ //Edge - внутри стека vertex

if (edge==Mark1[pprev])
Mark1[pprev]=Mark1[edge];

else
Mark2[pprev]=Mark1[edge];

}else {
//Edge - в вершине стека vertex
Stack[vertex]=Mark1[edge];
if (vertex==Vertex1[Mark1[edge]])

prev1[Mark1[edge]]=0;
else

prev2[Mark1[edge]]=0;
}

if (nech[vertex]){
Mark1[Last]=0;

// KS[Last]=K;
return vertex;

}
edge=Stack[vertex];
Mark1[Last]=edge;

// KS[Last]=K;
Last=edge;

}while (Last!=0);
return vertex;
}

//==============================================================================
#pragma package(smart_init)
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Приложение 2. Определение методов класса

EulerWayMaker
#include "EulerWayMaker.h"

EulerWayMaker::EulerWayMaker() {
out_e = new int[5];
out_v = new int[2];
hasBridges = 0;

}

EulerWayMaker::~EulerWayMaker() {
delete[] out_e;
delete[] out_v;

}

void EulerWayMaker::findWay() { //Найти путь в графе
Init();
Order();
Form();

}

void EulerWayMaker::Init() { //Собрать информацию о графе
//Начальные значения
for (int i = 0; i < V.size(); i++) {

V[i].kmark = 0;
V[i].odd_go = -1;

}
for (int i = 0; i < E.size(); i++) {

E[i].kmark = 0;
E[i].free = true;
E[i].left_face = -1;
E[i].right_face = -1;

}
Edge e;
dop.push_back(e);
F.push_back(0); //Определили внешнюю грань
findBridges(); //Найти мосты
countSmej(); //Определить смежные вершины
findBorder(); //Найти внешнюю грань
findFaces(); //Отметить все грани

}

void EulerWayMaker::Order() { //Упорядочение (вложенность ребер, списки инцедентных ребер)
countEdgeKmark(); //Определить уровни вложенности ребер и вершин
findOddPairs(); //Найти вершины нечетной степени

}

void EulerWayMaker::Form() { //сформировать путь
int start_v = 0; //start vertex
for (int i = 0; i < V.size(); i++) {

V[i].max_kmark = maxVertKmark(i);
V[i].kmark = minVertKmark(i);
if (V[i].odd_go != -1)

V[i].can_go = true;
else

V[i].can_go = false;
}
for (int i = 0; i < E.size(); i++) {

if (E[i].kmark == 1) {
start_v = E[i].v1;
break;

}
} //for (first vertex)
for (int i = 0; i < E.size(); i++) {

if (E[i].kmark == 1) {
if (V[E[i].v1].max_kmark >= V[start_v].max_kmark

&& V[E[i].v1].can_go)
start_v = E[i].v1;

if (V[E[i].v2].max_kmark >= V[start_v].max_kmark
&& V[E[i].v2].can_go)

start_v = E[i].v2;
}

}

if (V[start_v].kmark <= V[V[start_v].odd_go].kmark) {
if (V[start_v].can_go) {

V[start_v].can_go = false;
V[V[start_v].odd_go].can_go = false;
start_v = V[start_v].odd_go;

}
}

bool was_dop = true;
while (V[start_v].deg > 0) { //(hasFreeEdges()) //while has edges

if (V[start_v].can_go == false && V[start_v].odd_go != -1)
was_dop = true;

if (was_dop) {
start_v = formWay(start_v, -1);
was_dop = false;
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} else
start_v = formWay(start_v, way[way.size() - 1]);

if (V[start_v].odd_go != -1) { //is this vertex odd
if (V[start_v].deg == 0) { //no more way

V[start_v].can_go = false; //make dop
V[V[start_v].odd_go].can_go = false;
addToWayDop(start_v, V[start_v].odd_go);
start_v = V[start_v].odd_go;

} else if (V[start_v].kmark <= V[V[start_v].odd_go].kmark) { //if kmark to go not less
if (V[start_v].can_go) { //if can make dop edge

if (isWay(start_v, V[start_v].odd_go)) { // can go back
V[start_v].can_go = false;
V[V[start_v].odd_go].can_go = false;
addToWayDop(start_v, V[start_v].odd_go);
start_v = V[start_v].odd_go;
//was_dop = true;

}
}

}
}

}
}

int EulerWayMaker::formWay(int s_v, int last_e) { //goes from start vert to next odd vert
int next_v, next_e;

//find first edge
if (last_e == -1) {

next_e = getNextWayEdge(s_v);
addToWay(next_e);
next_v = getNextWayVert(s_v, next_e);

} else {
next_e = getNextWayEdge(s_v, last_e);
addToWay(next_e);
next_v = getNextWayVert(s_v, next_e);

}
//while not odd of deg == 0 next vert goes on

while ((V[next_v].odd_go == -1) && (V[next_v].deg > 0)) {
next_e = getNextWayEdge(next_v, next_e);
if (E[next_e].bridge == 1)

next_e = getNextWayEdge(next_v);
addToWay(next_e);
next_v = getNextWayVert(next_v, next_e);

}
return next_v; // returns end_vert

}

int EulerWayMaker::getNextWayVert(int last_v, int next_e) { //returns next vert by last vert and edge
if (E[next_e].v1 == last_v)

return E[next_e].v2;
else

return E[next_e].v1;
}

int EulerWayMaker::getNextWayEdge(int last_v) { //returns next edge by curent vert
int imax, maxe = 0, max = 0;
for (int i = 0; i < E.size(); i++)

if (E[i].free && (E[i].v1 == last_v || E[i].v2 == last_v)
&& E[i].kmark > maxe)

maxe = E[i].kmark;
for (int i = 0; i < E.size(); i++) {

if (E[i].free && E[i].kmark == maxe) {
if (E[i].v1 == last_v && F[E[i].left_face] > max) {

max = F[E[i].left_face];
imax = i;

} else if (E[i].v2 == last_v && F[E[i].right_face] > max) {
max = F[E[i].right_face];
imax = i;

}
}

}
return imax;

}

int EulerWayMaker::getNextWayEdge(int last_v, int last_e) { //returns next edge by current vert and last edge
int max_v_kmark = maxVertKmark(last_v);

//init next_e
int next_e = last_e;
while (!E[next_e].free) {

if (E[next_e].v1 == last_v)
next_e = E[next_e].left_edge;

else
next_e = E[next_e].right_edge;

}
//if has biger kmark => goes there

while ((E[next_e].kmark < max_v_kmark) || !E[next_e].free) {
if (E[next_e].v1 == last_v)

next_e = E[next_e].left_edge;
else

next_e = E[next_e].right_edge;
}
return next_e;

}

int EulerWayMaker::maxVertKmark(int n_v) { //find max kmark
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int max = 0;
for (int i = 0; i < E.size(); i++) {

if (E[i].free && (E[i].v1 == n_v || E[i].v2 == n_v)
&& E[i].kmark > max) {

max = E[i].kmark;
}

}
return max;

}

int EulerWayMaker::minVertKmark(int n_v) { //find min kmark
int min = 100;
for (int i = 0; i < E.size(); i++) {

if (E[i].free && (E[i].v1 == n_v || E[i].v2 == n_v)
&& E[i].kmark < min) {

min = E[i].kmark;
}

}
return min;

}

bool EulerWayMaker::hasFreeEdges() { //has edges not in way
for (int i = 0; i < E.size(); i++) {

if (E[i].free)
return true;

}
return false;

}

bool EulerWayMaker::isWay(int start_v, int end_v) { //is way from start_v to end_v
for (int i = 0; i < V.size(); i++) //init mark

V[i].mark = false;
bool f = true; //vertex was marked
V[start_v].mark = true;
while (f) {

f = false;
for (int i = 0; i < E.size(); i++) { //for all edges

if (E[i].free) { //can go this edge
if (V[E[i].v1].mark && !V[E[i].v2].mark) {

V[E[i].v2].mark = true;
f = true;

}
if (!V[E[i].v1].mark && V[E[i].v2].mark) {

V[E[i].v1].mark = true;
f = true;

}
}

}
if (V[end_v].mark)

return true;
}
return false;

}

void EulerWayMaker::addToWay(int n) { //add edge to way
way.push_back(n);
V[E[n].v1].deg--;
V[E[n].v2].deg--;
E[n].free = false;

}

void EulerWayMaker::addToWayDop(int v1, int v2) { //add edge to way as dop
Edge e;
e.bridge = 0;
e.free = false;
e.kmark = -1;
e.type = 2;
e.v1 = v1;
e.x1 = V[v1].x;
e.y1 = V[v1].y;
e.v2 = v2;
e.x2 = V[v2].x;
e.y2 = V[v2].y;
dop.push_back(e); //TODO
way.push_back(-(dop.size() - 1));

}

int EulerWayMaker::getVertId(int x, int y) { //возвращает номер вершины в векторе V или -1 (если вершина не найдена)
for (int i = 0; i < V.size(); i++) {

if (V[i].x == x && V[i].y == y)
return i;

}
return -1;

}

void EulerWayMaker::findBridges() { //Найти все мосты графа
//Найти все мосты

int i, res = 0;
for (i = 0; i < E.size(); i++) {

E[i].bridge = isBridge(i);
if (E[i].bridge)

res = 1;
}
for (i = 0; i < V.size(); i++)

V[i].selected = 0; //снимаем выделение со всех вершин
hasBridges = res;

}
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int EulerWayMaker::isBridge(int id) { //Является ли ребро id мостом
int i;
for (i = 0; i < V.size(); i++)

V[i].selected = 0; //снимаем выделение со всех вершин
//Если дошли из одной вершины ребра до второй не проходя через него - не является

V[E[id].v1].selected = 1; //выделяем первую вершину
int f = 0; //флаг завершения
while (!f) {

f = 1; //нет изменений
for (i = 0; i < E.size(); i++) {

if (i != id && V[E[i].v1].selected && !V[E[i].v2].selected) {
V[E[i].v2].selected = 1;
f = 0;

}
if (i != id && V[E[i].v2].selected && !V[E[i].v1].selected) {

V[E[i].v1].selected = 1;
f = 0;

}
}

}
if (V[E[id].v2].selected)

return 0;
else

return 1;
}

void EulerWayMaker::countSmej() { //Найти ближайшие по повороту против часовой стрелки ребра для
//каждой вершины всех ребер

countAngles(); //Найти угол наклона каждого ребра
for (int i = 0; i < E.size(); i++)

countSmej(i);
}

void EulerWayMaker::countAngles() { //Рассчитать углы ребра
for (int i = 0; i < E.size(); i++) {

//Рассчитываем угол ребра
if (E[i].x1 == E[i].x2) {

if (E[i].y1 < E[i].y2) {
E[i].left_angle = M_PI / 2;
E[i].right_angle = 3 * M_PI / 2;

}
if (E[i].y2 < E[i].y1) {

E[i].left_angle = 3 * M_PI / 2;
E[i].right_angle = M_PI / 2;

}
}
if (E[i].x1 < E[i].x2) {

if (E[i].y1 < E[i].y2) {
E[i].left_angle = atan(

(double) (E[i].y2 - E[i].y1) / (E[i].x2 - E[i].x1));
E[i].right_angle = E[i].left_angle + M_PI;

}
if (E[i].y1 > E[i].y2) {

E[i].left_angle = atan(
(double) (E[i].y2 - E[i].y1)

/ (E[i].x2 - E[i].x1))+2*M_PI;
E[i].right_angle = E[i].left_angle - M_PI;

}
if (E[i].y1 == E[i].y2) {

E[i].left_angle = 0;
E[i].right_angle = M_PI;

}
}

}
}

void EulerWayMaker::countSmej(int id) { //Найти ближайшие по повороту против часовой стрелки ребра для ребра id
//считаем

struct angl {
int num;
double a;

};
angl *M = new angl[E.size()]; //Cоздаем массив длЯ углов
int count = 0; //Число выбраных углов

//Выбираем все инцедентные 1-й вершине ребра
for (int i = 0; i < E.size(); i++) {

if (i != id) {
if ((E[i].v1 == E[id].v1) && (E[i].v2 != E[id].v2)) {

M[count].num = i;
M[count].a = E[i].left_angle;
count++;

}
if ((E[i].v2 == E[id].v1) && (E[i].v1 != E[id].v2)) {

M[count].num = i;
M[count].a = E[i].right_angle;
count++;

}
}

}
//Находим ближайшее по повороту против часовой стрелки

int imin = 0;
//Добавляем 2пи

for (int i = 0; i < count; i++)
M[i].a += 2 * M_PI;

//
'
ычитаем угол
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for (int i = 0; i < count; i++)
M[i].a -= E[id].left_angle;

//Находим остаток от деления на 2пи
for (int i = 0; i < count; i++)

M[i].a = fmod(M[i].a, 2 * M_PI);
//сам минимум

for (int i = 0; i < count; i++)
if (M[i].a > M[imin].a)

imin = i;
E[id].left_edge = M[imin].num; //Запоминаем номер
delete[] M;

/*То же длЯ 2й вершины */

M = new angl[E.size()]; //Создаем массив длЯ углов
count = 0; //Число выбраных углов

//Выбираем все инцедентные 2-й вершине ребра
for (int i = 0; i < E.size(); i++) {

if (i != id) {
if ((E[i].v1 == E[id].v2) && (E[i].v2 != E[id].v1)) {

M[count].num = i;
M[count].a = E[i].left_angle;
count++;

}
if ((E[i].v2 == E[id].v2) && (E[i].v1 != E[id].v1)) {

M[count].num = i;
M[count].a = E[i].right_angle;
count++;

}
}

}
//Находим ближайшее по повороту против часовой стрелки

imin = 0;
//Добавляем 2пи

for (int i = 0; i < count; i++)
M[i].a += 2 * M_PI;

//Вычитаем угол
for (int i = 0; i < count; i++)

M[i].a -= E[id].right_angle;
//Находим остаток от деления на 2пи

for (int i = 0; i < count; i++)
M[i].a = fmod(M[i].a, 2 * M_PI);

//сам минимум
for (int i = 0; i < count; i++)

if (M[i].a > M[imin].a)
imin = i;

E[id].right_edge = M[imin].num; //Напоминаем номер
delete[] M;

}

int EulerWayMaker::findBorderEdge() { //Ребро внешней грани для обхода внешней грани
int n_v = 0;
int n_r = 0;
int r_x;

//Найдем верхнюю вершину графа
for (int i = 0; i < V.size(); i++) {

if (V[i].y < V[n_v].y)
n_v = i;

} //for i
//Найдем ребро, связывающее эту вершину с другой высокой вершиной

for (int j = 0; j < E.size(); j++) {
if (E[j].y1 == V[n_v].y && E[j].x1 == V[n_v].x) {

n_r = j;
r_x = E[j].x2;
break;

}
if (E[j].y2 == V[n_v].y && E[j].x2 == V[n_v].x) {

n_r = j;
r_x = E[j].x1;
break;

}
} //for j
for (int j = 0; j < E.size(); j++) {

if (E[j].y1 == V[n_v].y && E[j].x1 == V[n_v].x)
if (E[j].x2 < r_x) {

r_x = E[j].x2;
n_r = j;

}
if (E[j].y2 == V[n_v].y && E[j].x2 == V[n_v].x)

if (E[j].x1 < r_x) {
r_x = E[j].x1;
n_r = j;

}
} //for j

//Напоминаем внешнее ребро
return n_r;

}

void EulerWayMaker::findBorder() { //Отметить внешнюю грань
for (int i = 0; i < E.size(); i++)

E[i].type = 0;
int n_r = findBorderEdge();
int first = n_r; //запоминаем с какой начали

E[n_r].type = 1;
int last = n_r;
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if (E[n_r].y2 > E[n_r].y1) {
E[n_r].right_face = 0; //внешняя грань
n_r = E[n_r].right_edge;

} else {
E[n_r].left_face = 0; //внешняя грань
n_r = E[n_r].left_edge;

}
int f = 0;
while (!f) {

int next = -1;
E[n_r].type = 1;
if (E[last].v1 == E[n_r].v1 || E[last].v2 == E[n_r].v1) {

E[n_r].right_face = 0;
next = E[n_r].right_edge;

} //if v1
if (E[last].v1 == E[n_r].v2 || E[last].v2 == E[n_r].v2) {

E[n_r].left_face = 0;
next = E[n_r].left_edge;

} //if v2
last = n_r;
n_r = next;
if (first == next)

f = 1; //Дошли до конца
} //while

}

void EulerWayMaker::markFace(int fn, int e, int v) { //Обойти грань, отметить все ее ребра
int next_e;
int next_v;
if (E[e].v1 == v) {

E[e].left_face = fn;
next_e = E[e].left_edge;

} else if (E[e].v2 == v) {
E[e].right_face = fn;
next_e = E[e].right_edge;

}
if (E[next_e].v1 == v)

next_v = E[next_e].v2;
else if (E[next_e].v2 == v)

next_v = E[next_e].v1;
while ((next_e != e) && (next_v != v)) {

if (E[next_e].v1 == next_v) {
E[next_e].left_face = fn;
next_e = E[next_e].left_edge;

} else if (E[next_e].v2 == next_v) {
E[next_e].right_face = fn;
next_e = E[next_e].right_edge;

}
if (E[next_e].v1 == next_v)

next_v = E[next_e].v2;
else if (E[next_e].v2 == next_v)

next_v = E[next_e].v1;
}

}

void EulerWayMaker::findFaces() { //Обозначить все грани графа
bool f = true;
while (f) {

f = false;
for (int i = 0; i < E.size(); i++) {

if (E[i].left_face == -1) {
F.push_back(0);
markFace(F.size() - 1, i, E[i].v1);
f = true;
break;

}
if (E[i].right_face == -1) {

F.push_back(0);
markFace(F.size() - 1, i, E[i].v2);
f = true;
break;

}
} //for

} //while
}

void EulerWayMaker::countEdgeKmark() { //Определить уровни вложенности ребер
//Начиная от face 0

int klevel = 1;
F[0] = 1; //Начинаем отмечать с внешней грани
bool f = true;
while (f) {

f = false; //Если ничего не отметили - конец
for (int i = 0; i < E.size(); i++) {

if (E[i].kmark == 0) { //еще не определили
if ((F[E[i].left_face] > 0) || (F[E[i].right_face] > 0)) {

E[i].kmark = klevel;
V[E[i].v1].kmark = klevel;
V[E[i].v2].kmark = klevel;
if (F[E[i].left_face] == 0)

F[E[i].left_face] = -2;
if (F[E[i].right_face] == 0)

F[E[i].right_face] = -2;
f = true;

}
}

} //for
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for (int i = 0; i < F.size(); i++)
if (F[i] == -2)

F[i] = klevel + 1;
klevel++;

}
}

void EulerWayMaker::findOddPairs() { //Найти вершины нечетной степени TODO оптимизировать
//Досчитать вершины нечетной степени

vector<int> Vert;
for (int i = 0; i < V.size(); i++)

if (V[i].deg % 2 == 1)
Vert.push_back(i);

int n = Vert.size();
//Достроить матрицу расстояний

double* r;
double d1, d2, l;
r = new double[n * n]; //Расстояния между нечетными вершинами
for (int i = 0; i < n; i++)

for (int j = i + 1; j < n; j++) {
d1 = V[Vert[i]].x - V[Vert[j]].x;
d2 = V[Vert[i]].y - V[Vert[j]].y;
l = sqrt(d1 * d1 + d2 * d2);
r[i * n + j] = l;
r[j * n + i] = l;

}
for (int i = 0; i < n; i++)

r[i * n + i] = -1;
//Найти опорное решение

int* w; //матрица смежности длЯ паросочетания
w = new int[n * n];
for (int i = 0; i < n; i++) //инициализация

for (int j = 0; j < n; j++)
w[i * n + j] = 0;

double min;
int i_min, j_min;
int* use = new int[n]; //использовались ли вершины
for (int i = 0; i < n; i++)

use[i] = -1; //Не использовались изначально
for (int t = 0; t < n / 2; t++) {

//найти начальные min, i_min, j_min
for (int i = 0; i < n; i++) //находим i_min начальный

if (use[i] == -1) {
i_min = i;
break;

}
for (int i = i_min + 1; i < n; i++) //находим j_min начальный

if (use[i] == -1) {
j_min = i;
break;

}
min = r[i_min * n + j_min]; //
//найти минимум
for (int i = 0; i < n; i++)

for (int j = i + 1; j < n; j++)
if ((r[i * n + j] < min) && use[i] == -1 && use[j] == -1) { //минимум+i и j еще не использовались

min = r[i * n + j];
i_min = i;
j_min = j;

}
w[i_min * n + j_min] = 1;
w[j_min * n + i_min] = 1;
use[i_min] = j_min;
use[j_min] = i_min;

}
//Улучшить опорное решение до оптимального TODO
//Сохранить результат

for (int i = 0; i < n; i++)
V[Vert[i]].odd_go = Vert[use[i]];

//очистить память
delete[] r;
delete[] w;
delete[] use;

}

void EulerWayMaker::addEdge(int x1, int y1, int x2, int y2) { //Добавить ребро
Edge e;
if (x2 < x1) {

e.x1 = x1;
e.y1 = y1;
x1 = x2;
y1 = y2;
x2 = e.x1;
y2 = e.y1;

}
e.v1 = getVertId(x1, y1);
if (e.v1 == -1) {

Vert v;
v.x = x1;
v.y = y1;
v.deg = 0;
V.push_back(v);
e.v1 = V.size() - 1;

}
V[e.v1].deg++;
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e.v2 = getVertId(x2, y2);
if (e.v2 == -1) {

Vert v;
v.x = x2;
v.y = y2;
v.deg = 0;
V.push_back(v);
e.v2 = V.size() - 1;

}
V[e.v2].deg++;
e.x1 = x1;
e.y1 = y1;
e.x2 = x2;
e.y2 = y2;
E.push_back(e);

}

int EulerWayMaker::getEdgeCount() { //Количество ребер
return E.size();

}

int EulerWayMaker::getWayLength() { //Длина полученного пути
return way.size();

}

int EulerWayMaker::getVertCount() { //Количество вершин
return V.size();

}

int* EulerWayMaker::getEdge(int id) { //Вернуть вектор ребер
out_e[0] = E[id].x1;
out_e[1] = E[id].y1;
out_e[2] = E[id].x2;
out_e[3] = E[id].y2;
out_e[4] = E[id].kmark;
return out_e;

}

int* EulerWayMaker::getWayEdge(int id) { //Вернуть вектор ребер
if (way[id] >= 0) {

out_e[0] = E[way[id]].x1;
out_e[1] = E[way[id]].y1;
out_e[2] = E[way[id]].x2;
out_e[3] = E[way[id]].y2;
out_e[4] = E[way[id]].type;

} else {
out_e[0] = dop[-way[id]].x1;
out_e[1] = dop[-way[id]].y1;
out_e[2] = dop[-way[id]].x2;
out_e[3] = dop[-way[id]].y2;
out_e[4] = dop[-way[id]].type;

}
return out_e;

}

int* EulerWayMaker::getVert(int id) { //Вернуть вершину
out_v[0] = V[id].x;
out_v[1] = V[id].y;
return out_v;

}
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