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Общая характеристика работы

Актуальность темы. Чаще всего задачи анализа данных формулируются для данных, кото-
рые можно представить объектно-признаковыми таблицами. Если посмотреть на задачи машинного
обучения в корпоративной среде или соревнования по анализу данных1, то за редким исключени-
ем они сводятся к анализу объектно-признаковых таблиц. При этом данные со сложной структу-
рой (тексты, изображения) тоже представляются в некотором признаковом пространстве (TF-IDF,
word2vec, нейросетевые признаки изображений и т.д.). Однако в последнее время активно развива-
ются методы анализа сложно структурированных данных, для которых теоретически сложно либо
практически неэффективно составлять признаковые описания, зато можно судить о свойствах объ-
ектов на основе сходства их описаний. Такие задачи встречаются в химической информатике (Misra
et al., 2011), анализе текстов (Jurafsky et al., 2000) и изображений (Navarin, 2014) . Далее в этой
работе под сложно структурированными данными мы будем понимать данные, для которых можно
определить узорную структуру.

Важным аспектом в решении задач классификации является интерпретируемость полученных
результатов. Во многих приложениях, особенно в медицине, необходима интерпретация результатов
классификации в виде понятных человеку правил, к которым можно применить экспертный анализ
и на его основе судить о релевантности используемых моделей, алгоритмов и мер сходства объектов
в конкретной задаче. В разных задачах интерпретируемость определяется по-разному, но в данной
работе под интерпретируемостью алгоритмов мы будем понимать их возможность объяснить клас-
сификацию тестовых примеров. Конкретней, под локальной интерпретируемостью классификации
мы пониманием среднюю длину посылок правил, с помощью которых делается прогноз для тестово-
го примера. В (Holte, 1993) показано, что методы классификации на основе коротких правил хорошо
работают на большинстве наборах данных популярного репозитория UCI, при этом методы хорошо
интерпретируемы, то есть полученные правила могут анализироваться экспертами.

Одним из успешных инструментов для анализа сложно структурированных данных является
ДСМ-метод автоматического восстановления зависимостей из эмпирических данных (Финн В.К.,
1983), (Финн В.К, 2010), (Кузнецов С.О., 1991), (Дюкова Е.В., 2002). Классификация на основе
ДСМ-метода относится к интерпретируемым подходам, поскольку позволяет анализировать струк-
турное сходство тестового примера и обучающих. Однако по качеству классификации, определя-
емому по метрике типа доли верных ответов на кросс-валидации или отложенной выборке, такой
подход уступает ядерным методам (kernel methods) (T. Hofmann et al., 2008), в особенности, методу
опорных векторов (C. Cortes, V. Vapnik, 1995). Было предложено множество ядерных функций для
оценки сходства объектов со сложной структурой – строковые ядра (H. Lodhi et al., 2002), ядра для
последовательностей (C. Cortes, 2008), и графовые ядра (S. Vishwanathan et al., 2010). Недостатком
метода опорных векторов является плохая интерпретируемость полученных результатов.

Необходимость анализа данных со сложными структурными описаниями и решения связанных
с ними задач классификации делает актуальным применение методов, позволяющих работать со
структурным сходством и использовать эффективные приближения описаний. Методы анализа фор-
мальных понятий и решеток замкнутых описаний (узорных структур) предоставляют удобный и
эффективный математический аппарат для построения моделей в решении целого ряда важных
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научных и прикладных задач. В задачах обучения без учителя эти методы актуальны, поскольку
позволяют находить и интерпретировать сходство произвольного множества объектов, а в задачах
обучения с учителем – потому что с их помощью можно получить наборы классифицирующих пра-
вил, понятных человеку (интерпретируемых) и позволяющих далее применять к ним экспертный
анализ. Аппарат проекций узорных структур позволяет эффективно работать с приближенными
описаниями сложно структурированных объектов, учитывая основные свойства структуры и пони-
жая вычислительную и временную сложность обработки таких описаний.

Таким образом, объектом исследования являются данные со сложной структурой.
Предметом исследования являются методы, алгоритмы и программы для классификации дан-
ных со сложной структурой с помощью классифицирующих правил, а также их экспертного анализа.

Целью диссертационного исследования является разработка единого подхода к классификации
данных со сложной структурой. Результатами работы алгоритма должны быть как приемлемое
для конкретной задачи качество классификации, так и интерпретируемый вывод алгоритма в виде
коротких классифицирующих правил, подходящий для дальнейшего экспертного анализа.

В соответствии с целью исследования были поставлены следующие задачи:

1. Предложить универсальный подход к классификации данных со сложной структурой на ос-
нове решеток замкнутых описаний;

2. В частном случае описаний в виде бинарных, категориальных и количественных признаков
предложить подход к классификации на основе правил, решающий задачу классификации
лучше (по точности), чем деревья решений, и порождающий более короткие правила, чем
алгоритм случайного леса;

3. Разработать комплекс программ для классификации данных со сложной структурой и апроби-
ровать его в задачах классификации как с бинарными, категориальными и количественными
признаками, так и с описаниями со сложной структурой в виде последовательностей и графов.

Следующие особенности работы определяют ее научную новизну:

1. Предложен новый подход к классификации данных со сложной структурой на основе узорных
структур;

2. Предложен специальный вид проекций узорных структур для данных с количественными
признаками, обобщающий подход к обучению на основе деревьев решений;

3. Создан комплекс программ для классификации данных со сложной структурой на основе
решеток замкнутых описаний. Соответствующие алгоритмы были апробированы на многих
наборах данных с категориальными и количественными признаками, а также на данных по
токсичности химических веществ со сложной структурой в виде молекулярных графов.

Теоретическая ценность данной работы состоит

1. в представлении методов классификации числовых данных, в том числе деревьев решений, с
помощью проекций интервальных узорных структур;
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2. в представлении подхода к классификации на основе правил, гарантирующего нахождение
правил с лучшим значением выбранного критерия информативности, чем правила, получен-
ные с помощью деревьев решений;

3. во введении и исследовании дискретизирующей проекции для интервальных узорных струк-
тур.

Практическая ценность работы состоит

1. в получении качественных (по доле правильных ответов) и интерпретируемых решений задач
классификации данных в виде последовательностей и графов;

2. в получении качества классификации в экспериментах с реальными данными, статистически
значимо лучшего, чем у алгоритмов построения деревьев решений;

3. в представлении алгоритма классификации на основе правил, более коротких по длине (числу
признаков в посылке), а потому легче интерпретируемых, чем правила, построенные алгорит-
мом случайного леса;

4. в разработке программного комплекса, позволяющего анализировать сложно структурирован-
ные данные и решать для них задачи классификации с помощью интерпретируемых наборов
правил, подходящих для дальнейшего экспертного анализа.

Положения, выносимые на защиту:

1. Предложен универсальный подход к классификации данных со сложной структурой на основе
решеток замкнутых описаний. При этом для каждого объекта порождаются наборы коротких
и интерпретируемых классифицирующих правил;

2. Показано, что предложенный алгоритм классификации на основе правил демонстрирует более
высокое качество классификации (в терминах средней доли правильных ответов и F1-метрики
на кросс-валидации), чем деревья решений. Также он порождает в среднем более короткие и
интерпретируемые правила, чем алгоритм случайного леса;

3. Показано, что для любого объекта можно найти подходящее классифицирующее правило, та-
кое что его посылка будет замкнутым множеством признаков, а качество правила (измеряемое
с помощью критерия типа прироста информации) – выше, чем у любого подходящего правила,
построенного деревом решений.

4. Предложен вид приближений числовых описаний (в терминах проекций интервальных узор-
ных структур), на основе которых представлены посылки правил, полученных с помощью
деревьев решений. Эффективность использования таких проекций экспериментально подтвер-
ждена в задаче классификации для нескольких наборов данных с количественными призна-
ками;

5. Разработан комплекс программ для анализа данных со сложной структурой на основе решеток
замкнутых описаний. Поддерживаются 4 типа данных: числовые (бинарные, категориальные
и количественные признаки), интервальные, последовательности и помеченные графы.
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Достоверность полученных результатов опирается на строгость использованных матема-
тических моделей, их экспериментальное подтверждение и практическую эффективность программ-
ных реализаций.

Апробация работы. Основные результаты работы докладывались и обсуждались на следую-
щих конференциях и семинарах:

1. Семинар Межфакультетской кафедры математического моделирования и компьютерных ис-
следований МГУ имени М.В. Ломоносова 31 октября 2017 года, г. Москва;

2. Семинары отдела Интеллектуальных систем ВЦ РАН им. А.А. Дородницына 20 октября 2016
года, 7 июля 2017 года и 14 сентября 2017 года, г. Москва;

3. 23-ий Международный симпозиум по методологиям интеллектуальных систем (ISMIS 2017),
июнь 2017 г., г. Варшава, Польша.

4. Семинары Департамента Анализа Данных и Искусственного Интеллекта НИУ ВШЭ (6 вы-
ступлений в мае и октябре 2015-2016 гг., а также в декабре 2016 г. и марте 2017 г.), г. Москва;

5. Пятнадцатая национальная конференция по искусственному интеллекту с международным
участием (КИИ-2016), сентябрь 2016 г., г. Смоленск;

6. Семинар “What can FCA do for Artificial Intelligence?” при Европейской конференции по ис-
кусственному интеллекту ECAI, август 2016 г., г. Гаага, Нидерланды;

7. 13-ая международная конференция по решеткам понятий и их приложениям (The 13th
International Conference on Concept Lattices and Their Applications), июль 2016 г., г. Москва;

8. Конференция “Технологии Больших Данных” (ТБД-2016), июнь 2016 г., г. Москва;

9. Пятая международная конференция по Анализу Изображений, Сетей и Текстов АИСТ 2016, г.
Екатеринбург (награда за лучший доклад в секции “Data Analysis, Graphs & Complex Data”);

10. Семинар “What can FCA do for Artificial Intelligence?” при международной объединенной кон-
ференции по искусственному интеллекту IJCAI, июль 2015 г., г. Буэнос-Айрес, Аргентина;

11. Ph.D.-семинар при Европейской конференции по машинному обучению и теоретическим осно-
вам и практике обнаружения знаний в базах данных ECML/PKDD, 2014 г., г. Нанси, Франция;

12. Семинар “What can FCA do for Artificial Intelligence?” при Европейской конференции по ис-
кусственному интеллекту ECAI, июль 2014 г., г. Прага, Чехия;

13. Третья международная конференция по Анализу Изображений, Сетей и Текстов АИСТ, ап-
рель 2014 г., г. Екатеринбург;

Публикации. Основные результаты по теме диссертации изложены в 8 научных работах, 1 из
которых издана в издании, рекомендованном ВАК, 7 � в рецензируемых трудах международных
конференций, индексируемых в базе данных научного цитирования Scopus.

Диссертация состоит из введения, 4 глав, заключения, списка литературы, а также списков
рисунков, таблиц и приложений. Общий объем работы � 111 страниц. Список литературы включает
107 наименований.
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Содержание работы

Во введении обосновывается актуальность исследований, проводимых в рамках данной диссер-
тационной работы, формулируется цель, ставятся задачи работы, указываются научная новизна и
практическая значимость представляемой работы.

Первая глава посвящена обзору базовых понятий теории решеток и Анализа Формальных По-
нятий, приводится обзор методов классификации в машинном обучении, основанных на ассоциа-
тивных правилах, а также рассматриваются критерии отбора классифицирующих правил. Кроме
того, обсуждаются подходы к решению задачи классификации, основанные на Анализе Формаль-
ных Понятий. Деревья решений интерпретируются в терминах АФП и показывается, как с помощью
алгоритма построения решетки формальных понятий предложить отбор правил в задаче классифи-
кации, при котором гарантируется, что каждый объект тестовой выборки классифицируется пра-
вилом не хуже (в терминах выбранного критерия информативности, такого как неопределенность
Джини или прирост информации), чем при классификации на основе дерева решений (Теорема 1).

Во второй главе рассматривается аппарат узорных структур (Pattern Structures) (B. Ganter,
S.O. Kuznetsov, 2001), который позволяет расширить методы Анализа Формальных Понятий на слу-
чай, когда объекты задаются не бинарными признаками, а сложными описаниями. Такими описани-
ями могут быть интервалы числовых значений, множества последовательностей, строк или графов.
Формулируется теорема, аналогичная Теореме 1), но для случая количественных признаков и ин-
тервальных узорных структур. Для этого предложена дискретизирующая проекция интервальной
узорной структуры (Определение 7). Рассматриваются подходы к классификации данных со слож-
ной структурой на основе ядерных функций и метода опорных векторов, а также на основе узорных
структур и их проекций.

Определение 1. Узорная структура – это тройка (G,(D, u), �), где G – множество объектов,
(D, u) – полная полурешетка всевозможных описаний, а � : G ! D – функция, которая сопостав-
ляет каждому объекту из множества G его описание из D.

Соответствие Галуа между подмножествами множества объектов и множеством описаний для
узорной структуры (G, (D, u), �) записывается следующим образом:

A
⇧ :=

l

g2A
�(g), где A ✓ G

d
⇧ := {g 2 G | d v �(g)}, где d 2 D.

Здесь v – это отношение поглощения, однозначно задающееся через полурешёточную операцию как:
a v b , a u b = a.

Определение 2. Узорное понятие узорной структуры (G, (D, u), �) – это пара (A, d), в которой
A ✓ G – подмножество множества объектов, d 2 D – одно из описаний из полурешетки (D, u),
такие что A

⇧ = d и d
⇧ = A. Множество объектов A называется узорным объемом понятия, а d

– его узорным содержанием.

Количество формальных понятий в решетке, построенной по формальному контексту, может
быть экспоненциальным от количества объектов (R. Wille, B. Ganter, 1997). Формальный контекст
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– это частный случай узорных структур, и поэтому количество узорных понятий в решетке, постро-
енной для некоторой узорной структуры, может быть экспоненциальным от количества объектов
в множестве G. Значит, построение полной полурешетки узорных понятий может быть очень вы-
числительно сложным. Более того, большинство найденных узорных понятий не интересны для
дальнейшего исследования, хотя занимают существенную часть времени вычислений. В случае, ко-
гда сама полурешёточная операция сходства вычислительно сложна, построение решетки узорных
понятий может стать невозможным. Например, в качестве полурешеточной операции сходства на
узорной структуре на графах нужно определять изоморфизм подграфу (С.О. Кузнецов, 2005), что
является NP-полной задачей. Для сокращения времени работы алгоритмов построения узорных
решеток были введены проекции узорных структур (B. Ganter, S.O. Kuznetsov, 2001). Проекция
может быть рассмотрена как способ фильтрации полурешетки описаний с определенными матема-
тическими свойствами. Эти свойства позволяют задать связь между понятиями в спроецирован-
ной и начальной узорных структурах. К тому же полурешетка, построенная для спроецированной
узорной структуры может оказаться значительно меньше исходной, что упрощает ее построение и
исследование.

Определение 3. Проекция полурешетки (D, u) – это функция  : D ! D, которая является
оператором ядра, т.е. для любых двух x, y 2 D верно:

– x v y )  (x) v  (y) (монотонность)

–  (x) v x (сжимаемость)

–  ( (x)) =  (x) (идемпотентность)

Определение 4. Проекция узорной структуры, полученная из узорной структуры (G, (D, u), �)
с помощью проекции  – это такая узорная структура (G , (D , u ), � ), в которой G = G,
D =  (D) = {d 2 D | d =  (d)}, с полурешеточной операцией u такой, что 8x, y 2 D x u y :=

 (x u y), а � =  � �.

Для анализа данных с вещественными значениями признаков в Анализе Формальных Понятий
вводятся интервальные узорные структуры.

Описания D объектов узорной структуры образуют полную полурешетку (D, u), где u – ком-
мутативная, ассоциативная и идемпотентная операция, определенная на описаниях объектов. Ин-
туитивный смысл этой операции – “сходство” описаний. Для интервалов операция сходства u опре-
деляется следующим образом (M. Kaytoue et al., 2011):

Определение 5. Пусть [a1,b1] и [a2,b2] – два интервала на множестве действительных чисел,
т.е. a1, b1, a2, b2 2 R, a1  b1, a2  b2. Тогда операция сходства для двух интервалов определяется
как [a1, b1] u [a2, b2] = [min(a1, a2), max(b1, b2)].

Определение 6. Для множества объектов G, множества описаний
D = h[ai, bi]ii2[1,m](ai, bi 2 R, ai  bi), полурешеточной операции u и функции
�(G) := {�(g) | g 2 G} соответствующая узорная структура (G, (D, u), �) называется интер-

вальной узорной структурой.
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Рисунок 1: Решетка формальных понятий для контекста из Таблицы 1 и изоморфная ей
решетка узорных понятий для узорной структуры.

Интервальные узорные структуры были успешно применены для анализа экспрессии генов (M.
Kaytoue et al, 2011). В этой задаче каждый ген описывается степенью своей экспрессии в определен-
ных условиях. Таким образом, задано несколько признаков одного гена, соответствующих условиям
и имеющие численные значения.

Для последующего сравнения алгоритмов классификации на основе деревьев решений и на ос-
нове АФП введем специальный вид проекций для интервальных узорных структур.

Определение 7. Пусть (G, (D, u), �) – интервальная узорная структура и m – размерность
векторов описаний (см. Определение 6). Пусть Ti = {⌧i1, . . . , ⌧iti} (⌧ij 2 R, i 2 [1,m], j 2 [1,ti], ti 2 N)
– множества вещественных чисел. Тогда,  (h[ai,bi]ii2[1,m]) =

h[max{⌧ | ⌧ 2 Ti [ {�1,+1}, ⌧  ai},min{⌧ | ⌧ 2 Ti [ {�1,+1}, ⌧ � bi}]i называется дискрети-

зирующей проекцией для интервальной узорной структуры (G, (D, u), �).

a
1 4.6
2 4.7
3 4.9
4 5.0
5 5.1

a  4.65 a  4.95 a � 4.65 a � 4.95
1 ⇥ ⇥
2 ⇥ ⇥
3 ⇥ ⇥
4 ⇥ ⇥
5 ⇥ ⇥

Таблица 1: Простой многозначный контекст и контекст, полученный дискретизированием
признака a порогами 4.65 и 4.95.

Пример 1. Возьмем признак a и дискретизируем его порогами T = {4.65, 4.95}. Полученный фор-
мальный контекст представлен Таблицей 1, а соответствующая решетка формальных понятий
показана на Рисунке 1 (слева).

 ([a,b]) = [max{⌧ | ⌧ 2 T
+
, ⌧  a},min{⌧ | ⌧ 2 T

+
, ⌧ � b}] с T

+ = {�1, 4.65, 4.95,+1} – это
проекция полурешетки из прошлого примера, а соответствующая решетка узорных понятий изо-
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морфна решетке формальных понятий дискретизированного контекста (Рис. 1 (слева)) и показана
на Рис 1 (справа).

Проекция  сопоставляет каждому узорному понятию из прошлого примера узорное понятие
спроецированной узорной структуры.

Далее покажем, что при помощи CbO-дерева, используемого алгоритмом построения множества
формальных понятий “Замыкай по-Одному” (С.О. Кузнецов, 1993) в задаче бинарной классифи-
кации можно находить классифицирующие правила с приростом информации, не меньшим, чем в
дереве решений соответствующей глубины.

Определение 8. Пусть дан формальный контекст K = (G,M,I) и признаки из множества M

пронумерованы, т.е. для множества признаков M задан порядок (↵(M), <), 8m 2 M ↵(m) 2
[1, |M |]. Пусть для B ✓ M min(B) выдает признаки из B c минимальным номером:
min(B) = {m | m 2 B,↵(m) < ↵(m̃) 8m̃ 2 B\{m}}.

Обозначим suc(B) – множество всех наследников множества B: понятий с содержанием вида
(B [ {i})00, таких что min((B [ {i})00 \ B) = {i}. Признаковым CbO-деревом для формального
контекста K называется дерево, состоящее из всевозможных множеств suc(B), дуги которого
задаются отношением (B, suc(B)).

Теорема 1. Пусть решается задача бинарной классификации, и обучающая выборка задана фор-
мальным контекстом K+� = (G+ [ G�, M [ ⌧, I+ [ I�). Пусть также множество признаков
дихотомизировано: M = M0[¬M0. Пусть для данного формального контекста построено призна-
ковое CbO-дерево TCbO. Для любого пути решения hm1, . . . ,mji дерева решений T глубины k (j  k)
с приростом информации IG(hm1, . . . ,mji) найдется замкнутое множество признаков, являюще-
еся вершиной CbO-дерева на глубине не более k, а также посылкой классифицирующего правила c
не меньшим приростом информации, чем у hm1, . . . ,mji.

Говоря про реализацию алгоритма поиска посылок классифицирующих правил среди формаль-
ных понятий, отметим, что доказанное утверждение означает, что для любого правила, построенного
деревом решений и имеющего мощность посылки k, можно найти правило с не меньшим приростом
информации при построении CbO-дерева с глубиной рекурсии k. Легко показать, что аналогичные
утверждения верны и для неопределенности Джини.

В первой и второй главах показано, что Анализ Формальных Понятий предлагает удобный фор-
мализм для того чтобы, с одной стороны, выразить на этом языке многие алгоритмы, основанные
на классифицирующих ассоциативных правилах, а с другой, чтобы обобщить эти алгоритмы на
случай данных со сложной структурой. В третьей главе предлагается алгоритм классификации
произвольных данных со сложной структурой, для которых можно ввести полурешёточную опера-
цию сходства. Отдельно и с подробными примерами рассматриваются частные случаи, когда данные
представлены бинарными, количественными и интервальными признаками, а также помеченными
графами.

Предлагаемый подход в случае бинарных признаков в обучающей и тестовой выборке описан в
Алгоритме 1 – CoLiBRi (Concept Lattice-Based Rule-learner, классификация на основе правил с по-
мощью решеток формальных понятий). Для категориальных признаков предлагается использовать
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One Hot Encoding, то есть для каждого категориального признака порождать бинарные признаки
в количестве, равном уникальному числу значений этого категориального признака.

На вход алгоритму подаются обучающий и тестовый формальные контексты
Ktrain = (Gtrain,M0 [ M0 [ ctrain, Itrain) и Ktest = (Gtest,M0 [ M0, Itest). Множество признаков M

дихотомизировано: M = M0[M0, где 8g 2 Gtrain,m 2 M0 9 m 2 M0 : gItrainm ! ¬(gItrainm). Также
алгоритм использует модификацию программной реализации In-Close 2 (Andrews, 2009) алгоритма
“Замыкай по-Одному” (CbO(K,min_supp)) (С.О. Кузнецов, 1993), в которой выдаются все формаль-
ные понятия формального контекста K, поддержки которых ограничены снизу значением параметра
min_supp. Для выбора классифицирующих правил используется критерий inf : M[ctrain ! R типа
неопределенности Джини или энтропийного прироста информации (в программной реализации по
умолчанию – неопределенность Джини). Параметры алгоритма: min_supp и n – минимальная под-
держка классифицирующих правил и число правил, используемых для классификации тестового
объекта.

Алгоритм состоит из следующих шагов:

1. Инициализировать ctest пустым списком, а rtest – пустым словарем. В ctest будут добавляться
предсказанные значения целевого признака для тестовых объектов, а в rtest – правила для
каждого тестового объекта (ключ в словаре – номер объекта, значение – список правил).

2. Посчитать долю положительных объектов в выборке cpos =
|c0train|
|Gtrain| .

3. С помощью алгоритма CbO(K,min_supp) найти все формальные понятия обучающего кон-
текста Ktrain cо значением поддержки не менее min_supp. Параллельно с этим для каждого
формального понятия вычислять значение качества соответствующего классифицирующего
правила inf . Таким образом, получится словарь S, ключами которого будут содержания фор-
мальный понятий, а значениями – соответствующие значения функционала inf .

4. Отсортировать все формальные понятия S по посчитанным значениям критерия inf в порядке
“улучшения”, то есть по возрастанию inf , если малые значения критерия говорят о хороших
правилах (как в случае неопределенности Джини) или по убыванию, если, наоборот, боль-
шие значения критерия свидетельствуют о хороших правилах (прирост информации, среднее
уменьшение Джини).

5. Для каждого тестового объекта gt 2 Gtest:

– Отобрать nrules “подходящих” содержаний формальных понятий, то есть {Bi}i2[1,nrules] =

{B | (A,B) 2 S, g0t ✓ B}

– Для каждого из отобранных содержаний формальных понятий {Bi}i2[1,nrules] определить
долю положительных объектов ci =

|B0
i \ c

0
train|

|B0
i|

– Сформировать таким образом набор правил {Bi !ci +}i2[1,nrules] с достоверностями ci.
Записать его в словарь rtest для ключа t (номер объекта gt)

– Предсказанное значение целевого признака ctraint определить как индикатор того, что
средняя арифметическая достоверность найденных правил превышает долю положи-
тельных объектов во всей выборке:
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G\M os ¬os oo ¬oo or ¬or th ¬th tm ¬tm tc ¬tc ¬hn hn w ¬w play

1 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
2 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
3 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
4 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
5 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
6 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
7 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
8 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
9 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
10 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
11 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ?
12 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ?
13 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ?
14 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ?

Таблица 2: Пример классификационного контекста.

ctraint = [
1

n_rules

n_rulesX

i=1

ci � cpos].

Добавить это значение в ctest.

Algorithm 1 Concept Lattice-Based Rule-learner (CoLiBRi) – случай бинарных признаков.
Input: Ktrain = (Gtrain,M0 [M0 [ ctrain, Itrain)
Ktest = (Gtest,M0 [M0, Itest)
min_supp 2 R+, nrules 2 N;
CbO(K,min_supp) : K ! S;
inf : M [ ctrain ! R;
sort(S, inf) : S ! S

Output: ctest, rtest

ctest = ;, rtest = ;
cpos =

|c0train|
|Gtrain|

S = {(A,B) : inf(B, ctrain) | A ✓ Gtrain, B ✓ M,A0 = B,B0 = A, |A| � min_supp} =
CbO(Ktrain,min_supp)
S = sort(S, inf)
for gt 2 Gtest do

{Bi}i2[1,nrules] = {B | (A,B) 2 S, g0
t
✓ B}

ci =
|B0

i \ c
0
train|

|B0
i|

rtest[i] = {Bi !ci +}i2[1,nrules]

ctest[i] = [ 1
n_rules

Pn_rules

i=1 ci � cpos]
end for

Пример 2. Продемонстрируем работу алгоритма для набора данных из Таблицы 2. Здесь:

– Ktrain = (Gtrain,M0 [M0 [ ctrain, Itrain)

– Gtrain = {1,2, . . . , 10}
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{w, tm}
Yes NO

play 3 3
¬play 1 3

Таблица 3: Таблица сопряженности для {w, tm} и целевого признака play.

– M0 = {or,oo,os,tc,tm,th,hn,w} – множество признаков Outlook=rainy, Outlook=overcast,
Outlook=sunny, Temperature=cool, Temperature=mild, Temperature=hot, Humidity=normal,
Windy соответственно.

– M0 = {or,oo,os,tc,tm,th,hn,w} – множество “отрицаний” признаков из M0.

– Itrain ✓ Gtrain ⇥ M0 [ M0 [ ctrain – бинарное отношение, показанное в Таблице 2 в строках
1–10.

– Ktest = (Gtest,M0 [M0, Itest).

– Gtest = {11,12,13,14}

– Itest ✓ Gtrain ⇥M0 [M0 – бинарное отношение, показанное в Таблице 2 в строках 11–14.

– Зафиксируем среднее значение неопределенности Джини как критерий отбора классифици-
рующих правил inf : M [ ctrain ! R.

– Выберем параметры алгоритма min_supp = 0.4 и n = 3. Это значит, что каждый тесто-
вый объект будет классифицироваться 3 правилами, посылками которых будут замкнутые
множества признаков с относительной поддержкой не менее 0.4.

Заметим, что в обучающем контексте доля положительных объектов равна 0.6 (6 из 10).
Построим все формальные понятия обучающего контекста Ktrain с мощностью объемов не

менее 4 (т.к. min_supp ⇤ |Gtrain| = 0.4 ⇤ 10 = 4). Также для всех формальных понятий посчитаем
среднее значение неопределенности Джини соответствующего классифицирующего правила.

Поясним, как это делается, на примере формального понятия ({1,3,5,9},{w, tm}).

– Составим сводную таблицу по одновременному наличию признаков {w, tm}, а также по
наличию признака целевого класса play. См. Таблицу 3.

– Поскольку большинство объектов, имеющих признаки {w, tm} одновременно, положительны
(также имеют признак “play”), породим с помощью формального понятия ({1,3,5,9},{w, tm})
классифицирующее правило “w, tm ! play”.

– Для такого правила среднее значение неопределенности Джини равно 1+3
10 ⇤Gini(14 ,

3
4)+

3+3
10 ⇤

Gini(12 ,
1
2) = 0.4 ⇤ (1� (14)

2 � (34)
2) + 0.4 ⇤ (1� (12)

2 � (12)
2) = 0.45.

Топ-10 классифицирующих правил в порядке возрастания средней неопределенности Джини
правила (т.е. в порядке “ухудшения” правил) показаны в Таблице 4.

Чтобы определить метки тестового объекта 11, проведем следующие действия согласно Ал-
горитму 1:
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Классифицирующее

правило

Средняя

неопределенность

Джини

1 os,¬tc,¬hn !(1) + 0.171
2 ¬os,¬w !(1) + 0.267
3 ¬oo,¬tm,w !(1) � 0.3
4 os,¬tc,¬hn,¬w !(1) � 0.3
5 os,th,¬hn,!(1) � 0.3
6 os !(0.75) � 0.317
7 ¬oo,¬tc,¬hn !(0.75) � 0.317
8 ¬or,¬tc,¬hn !(0.75) � 0.317
9 ¬os !(0.83) + 0.317
10 or,¬th,¬w !(1) + 0.343

Таблица 4: 10 лучших классифицирующих правил, полученных нахождением формальных
понятий контекста из Таблицы 2.

Классифицирующее правило

Средняя

неопределенность

Джини

os !(0.75) � 0.317
¬oo !(0.5) � 0.4

¬th, hn !(0.5) � 0.4

Таблица 5: 3 “лучших” правила для классификации объекта Outlook=sunny,
Temperature=mild, Humidity=normal, Windy=true

1. Отбираем среди найденных 3 первых формальных понятия, содержания которых являют-
ся подмножествами множества признаков объекта 11 (Outlook=sunny, Temperature=mild,
Humidity=normal, Windy=true) – {ōr, ōo, os, t̄c, tm, t̄h, hn,w}

2. Составляем на их основе 3 “лучших” правила, которые показаны в Таблице 5.

3. Найденные правила определяют значение 0 целевого признака для объекта “Outlook=sunny,
Temperature=mild, Humidity=normal, Windy=true”, поскольку 1

3(0.25 + 0.5 + 0.5) ⇡ 0.41 < 0.6.
Модификация подхода к классификации с помощью формальных (узорных) понятий для данных

со сложной структурой описана в Алгоритме 2.
На вход алгоритму подаются обучающая и тестовая узорные структуры

PStrain = (Gtrain, ((D, u), ctrain), �train) и PStest = (Gtest, (D, u), �test). Алгоритм использует моди-
фикацию алгоритма “Замыкай по-Одному” (CbOPS(PS,min_supp)) (С.О. Кузнецов, 1993), в кото-
рой выдаются все узорные понятия узорной структуры PS, поддержки которых ограничены снизу
значением параметра min_supp. Для выбора классифицирующих правил используется критерий
inf : D ⇥ ctrain ! R типа неопределенности Джини или энтропийного прироста информации (в
программной реализации по умолчанию – среднее значение неопределенности Джини). Параметры
алгоритма: min_supp и n – минимальная поддержка классифицирующих правил и число правил,
используемых для классификации тестового объекта.

Алгоритм состоит из следующих шагов:
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Рисунок 2: Решетка формальных понятий, соответствующая обучающему контексту из
Примера 2. Выше зеленой линии лежат формальные понятия с минимальной

относительной поддержкой 0.4.

1. Инициализировать ctest пустым списком, а rtest – пустым словарем. В ctest будут добавляться
предсказанные значения целевого признака для тестовых объектов, а в rtest – правила для
каждого тестового объекта (ключ в словаре – номер объекта, значение – список правил).

2. Посчитать долю положительных объектов в выборке cpos =
|c0train|
|Gtrain| .

3. С помощью алгоритма CbOPS(PS,min_supp) найти все узорные понятия обучающей узор-
ной структуры PStrain cо значением поддержки не менее min_supp. Параллельно с этим для
каждого узорного понятия вычислять значение качества соответствующего классифицирую-
щего правила inf . Таким образом, получится словарь S, ключами которого будут содержания
узорных понятий, а значениями – соответствующие значения функционала inf .

4. Отсортировать все узорные понятия S по посчитанным значениям критерия inf в порядке
“улучшения” (то есть по возрастанию inf , если малые значения критерия говорят о хороших
правилах (как в случае неопределенности Джини) или по убыванию, если, наоборот, боль-
шие значения критерия свидетельствуют о хороших правилах (прирост информации, среднее
уменьшение Джини)).

5. Для каждого тестового объекта gt 2 Gtest:

– Отобрать nrules “подходящих” содержаний формальных понятий, то есть {di}i2[1,nrules] =

{d | (A,d) 2 S, g⇧t v B}

– Для каждого из отобранных содержаний формальных понятий {di}i2[1,nrules] определить
долю положительных объектов ci =

|d⇧i \ c
0
train|

|d⇧i |
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– Сформировать таким образом набор правил {di !ci +}i2[1,nrules]. Записать его в словарь
rtest для ключа t (номер объекта gt).

– Предсказанное значение целевого признака ctraint определить как индикатор того, что
усредненное заключение найденных правил превышает долю положительных объектов
во всей выборке:

ctraint = [
1

n_rules

n_rulesX

i=1

ci � cpos].

Добавить это значение в ctest.

Algorithm 2 Concept Lattice-Based Rule-learner (CoLiBRi) – случай данных со сложной
структурой.
Input: PStrain = (Gtrain, ((D, u), ctrain), �train)
PStest = (Gtest, (D, u), �test)
min_supp 2 R+, nrules 2 N;
CbOPS(PS,min_supp) : PS ! S;
inf : D ⇥ ctrain ! R;
sort(S, inf) : S ! S

Output: ctest, rtest

ctest = ;, rtest = ;
cpos =

|c0train|
|Gtrain|

S = {(A,d) : inf(d, ctrain) | A ✓ Gtrain, d 2 D,A⇧ = d, d⇧ = A, |A| � min_supp} =
CbOPS(PStrain,min_supp)
S = sort(S, inf)
for gt 2 Gtest do

{di}i2[1,nrules] = {d | (A,d) 2 S, g⇧
t
v d}

ci =
|d⇧i \ c

0
train|

|d⇧i |
rtest[i] = {di !ci +}i2[1,nrules]

ctest[i] = [ 1
n_rules

Pn_rules

i=1 ci � cpos]
end for

Пример 3. В задаче предсказания наличия некоторого свойства P химических веществ дана обу-
чающая выборка в виде упрощенной молекулярной структуры 4 положительных веществ и 3 от-
рицательных веществ. Про положительные объекты известно, что они обладают свойством P ,
про отрицательные известно, что нет. Для тестовых объектов необходимо сделать прогноз, об-
ладают ли они свойством P .
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Классифицирующее

правило
Объекты

Средняя

неопределенность

Джини

1 {CH3 � C = C,OH � C = C} ��!
(0.8)

+ 1,2,3,4 | 6 0.22

2 {C = C �NH2} ��!
(0.4)

+ 1,2 | 5,6,7 0.34

3 {C = C � CH3} ���!
(0.67)

+ 1,2,3,4 | 5,6 0.38

4 {C = C �OH} ���!
(0.67)

+ 1,2,3,4 | 6,7 0.38

5 {CH3 � C = C �OH} ���!
(0.75)

+ 2,3,4 | 6 0.4

6 {CH3 � C = C �NH2} ��!
(0.5)

+ 1,2 | 5,6 0.47

7 {C = C} ���!
(0.57)

+ 1,2,3,4 | 5,6,7 0.49

Таблица 6: Классифицирующие правила в Примере 3. Символом | отделены
положительные объекты от отрицательных.

Положительные объекты:

1 : C

CH3C OH

NH2H2N

2 : C

CH3C OH

OHH2N

3 : C

CH3C OH

CH3Cl

4 : C

CH3C Cl

ClHO

Отрицательные объекты:

5 : C

CH3C NH2

NH2H2N

6 : C

CH2N OH

H3C Cl

7 : C

CH2N OH

ClH2N

Тестовые объекты:

8 : C

CH3C OH

NH2Cl

9 : C

CH2N CH3

HO Cl

10 : C

CH3C NH2

NH2Cl

11 : C

CH3C Cl

NH2HO

Доля положительных объектов в обучающей выборке равна 0.57 (4 из 7).
Найдем все узорные понятия обучающей узорной структуры PStrain =

(Gtrain, ((D, u), ctrain), �train) с абсолютной поддержкой не менее 4 (min_supp = 4
7). Здесь

Gtrain = {1, . . . ,7}, D – пространство всех помеченных графов, u – полурешёточная операция
для помеченных графов, функция �train задана выше, а ctrain = {+, + , + , + , � , � ,�}. Правила,
построенные на основе найденных узорных понятий, указаны в Таблице 6. Если делать прогнозы
с помощью 3 лучших правил (n_rules = 3), то объекты 8,9,11 классифицируются положительно
(13(0.8 + 0.4 + 0.66) ⇡ 0.62 > 0.57), а объект 10 – отрицательно (13(0.4 + 0.66 + 0.5) ⇡ 0.52 < 0.57).

В четвертой главе описывается разработанный программный комплекс, реализующий алго-
ритмы, описанные в третьей главе, затем приводятся результаты вычислительных экспериментов с
наборами данных репозитория UCI (UC Irvine Machine Learning Repository)2 – крупнейшего репо-

2http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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зитория реальных и модельных задач машинного обучения. Также приводятся результаты экспери-
ментов в задачах прогнозирования свойств химических веществ.

Структура основных классов программного комплекса CoLiBRi, реализующего алгоритмы, опи-
санные в Главе 3, представлена на Рис. 3. На схеме стрелки синего цвета соответствуют отношению
“быть наследником класса”, а стрелки черного цвета – отношению “задействовать”.

Рисунок 3: Структура основных классов программного комплекса CoLiBRi.

Имеются 4 абстрактных класса: DescriptionElement, Description, Concept и CoLiBRi. У каждого
из них, в свою очередь, есть по 4 наследника. Технические детали программной реализации описаны
в Разделе 4.2. диссертационной работы.

Версия алгоритма CoLiBRi (“Concept Lattice-Based Rule-learner”) для работы с бинарными при-
знаками (Алгоритм 1) была протестирована на 13 наборах данных UCI3. Сравнение проводилось
с реализациями Scikit-learn4 алгоритмов построения деревьев решений CART (Breiman, 1984), слу-
чайного леса (Breiman, 2001), а также с методом ближайших соседей. Для каждого набора данных
решалась задача бинарной классификации, где выделялись самый частый класс и все остальные.
Категориальные признаки были преобразованы в бинарные методом One Hot Encoding. Отслежива-

3http://repository.seasr.org/Datasets/UCI/csv/
4http://scikit-learn.org/stable/index.html

http://repository.seasr.org/Datasets/UCI/csv/
http://scikit-learn.org/stable/index.html
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(a) Доля верных ответов (b) F1

Рисунок 4: Кривые валидации по числу правил (для CoLiBRi) или деревьев (для
случайного леса) в сравнении с деревом решений CART. 5-кратная стратифицированная

кросс-валидация для набора данных Breast Cancer репозитория UCI.

лись значения доли правильных ответов и F1-метрики при 5-кратной кросс-валидации. Результаты
представлены в Таблице 7.

Данные DT acc RF acc kNN acc CoLiBRi acc DT F1 RF F1 kNN F1 CoLiBRi F1

audiology 0.75 0.8 0.63 0.79* 0.71 0.74 0.58 0.74

breast-cancer 0.63 0.66 0.76 0.65 0.58 0.63 0.75 0.61
breast-wisc 0.7 0.74 0.73 0.76 0.45 0.42 0.38 0.44*
car 0.75 0.78* 0.71 0.79 0.75 0.76 0.71 0.76

hayses-roth 0.84* 0.83* 0.49 0.86 0.84* 0.82 0.49 0.85

lymph 0.8 0.83 0.86 0.83 0.77 0.85 0.84* 0.84*
mol-bio-prom 0.78 0.83 0.83 0.82* 0.78 0.84 0.8 0.83*
nursery 0.64 0.65 0.72 0.65 0.62 0.62 0.7 0.62
primary-tumor 0.41 0.46 0.41 0.45* 0.37 0.41 0.37 0.4*
solar-flare 0.7* 0.7* 0.63 0.72 0.67 0.69* 0.6 0.71

soybean 0.91* 0.91* 0.92 0.91* 0.91* 0.93 0.92* 0.91*
spect-train 0.61 0.69 0.68 0.7 0.34 0.36 0.23 0.38
tic-tac-toe 0.79 0.79 0.85 0.78 0.82 0.86 0.89 0.85

Таблица 7: Значения доли правильных ответов и F1-метрики для 13 наборов данных
репозитория UCI. “DT acc” и “DT F1” означают средние по 5 запускам доли правильных

ответов и F1-метрики алгоритма CART при 5-кратной кросс-валидации , . . . , “CoLiBRi F1”
означает среднее по 5 запускам значение F1-метрики алгоритма CoLiBRi при 5-кратной
кросс-валидации. Жирным выделены лучшие значения метрик, звездочками отмечены

значения, которые не являются статистически значимо уступающими лучшим.

Также изучалась зависимость качества алгоритмов от значений параметров. Для этого были
построены кривые валидации по числу правил, минимальной поддержке и максимальной мощности
посылки правил для наборов данных репозитория UCI. Для набора данных Breast Cancer кривые
валидации по числу правил представлены на Рис. 4a (доля правильных ответов) и 4b (F1-метрика),
а по минимальной поддержке – на Рис. 5a (доля правильных ответов) и 5b (F1-метрика).

Распределения мощностей посылок правил (“длин” правил), которыми определялись метки те-
стовых объектов для 3 наборов данных UCI и для 3 алгоритмов (CART, RF и CoLiBRi) показаны в
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(a) Доля верных ответов (b) F1

Рисунок 5: Кривые валидации по минимальной поддержке для CoLiBRi, случайного леса и
дерева решений CART. 5-кратная стратифицированная кросс-валидация для набора

данных Breast Cancer репозитория UCI.

виде “ящиков с усами” (boxplots) на Рис. 6, 7 и 8. Средние мощности посылок правил для 13 наборов
данных UCI и 3 алгоритмов показаны на Рисунке 9.

Видно, что в целом правила, получаемые с CoLiBRi сравнимы с теми, что порождаются алгорит-
мом CART (хотя у дерева решений это одно правило для одного объекта, а у CoLiBRi – несколько),
но короче, чем у случайного леса. Это делает алгоритм CoLiBRi более интерпретируемым, чем слу-
чайный лес, если речь идет об интерпретации отнесения конкретного тестового объекта к одному
из классов. Заметим, что длину правил CoLiBRi можно еще сильнее понизить, если для посылки
каждого правила считать соответствующий минимальный генератор.

Версия алгоритма CoLiBRi (“Concept Lattice-Based Rule-learner”) для работы с описаниями в
виде последовательностей (Алгоритм 2) была протестирована в серии экспериментов с данными в
виде последовательностей.

Рассматривались 7 наборов данных. Подробно эти задачи описаны в (Moerchen, Fradkin, 2010).
Далее в Таблице 8 приведены средние доли правильных ответов при 10-кратной кросс-валидации
для 7 алгоритмов и 7 задач классификации. Описания алгоритмов даны на следующих ресурсах:
http://misere.co.nf/, http://adrem.ua.ac.be/scii. Результаты позволяют утверждать, что каче-
ство классификации метода SequentialCoLiBRi достаточно высокое в сравнении с прочими алгорит-
мами классификации последовательностей.

Также проводились вычислительные эксперименты еще с 4 алгоритмами и 5 наборами данных,
представленных графами.

Наборы данных IMDB, MUTAG, NCI, NCI109 и PROTEINS5 известны тем, что в задачах клас-
сификации с этими данными часто проверяются алгоритмы графовой классификации.

Краткое описание задач:

– IMDB – граф отношения совместной съемки в фильме для актеров; фильмы поделены на 2
жанра: романтические и боевики;

5https://ls11-www.cs.uni-dortmund.de/staff/morris/graphkerneldatasets

http://misere.co.nf/
http://adrem.ua.ac.be/scii
https://ls11-www.cs.uni-dortmund.de/staff/morris/graphkerneldatasets
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Рисунок 6: Средние мощности посылок правил, которыми были классифицированы
тестовые объекты набора данных Breast Cancer репозитория UCI, для 3 алгоритмов.

Рисунок 7: Средние мощности посылок правил, которыми были классифицированы
тестовые объекты набора данных Breast Cancer Wisconsin репозитория UCI, для 3

алгоритмов.
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Рисунок 8: Средние мощности посылок правил, которыми были классифицированы
тестовые объекты набора данных Lymph репозитория UCI, для 3 алгоритмов.

Рисунок 9: Средние мощности посылок правил, которыми были классифицированы
тестовые объекты, для 3 алгоритмов и 13 наборов данных репозитория UCI (лучше

смотреть в цвете).
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CBS BayesFM
SCII

Match

SCII

CBS
MiSeRe

Binary

CoLiBRi

Sequential

CoLiBRi

aslbu 0.43 0.7 0.57 0.56 0.7 0.48 0.62
aslgt 0.23 0.738 0.04 0.04 0.77 0.32 0.71
auslan 0.32 0.34 0.04 0.03 0.34 0.33 0.35

blocks 1 1 0.08 0.08 1 0.99 1

context 0.58 0.896 0.32 0.33 0.9 0.74 0.9

pioneer 0.79 0.96 0.97 0.95 1 0.77 0.97
skater 0.55 0.87 0.18 0.18 0.86 0.69 0.87

Таблица 8: Доля верных ответов при 10-кратной кросс-валидации в задачах классификации
последовательностей.

CBA DT
SVM

graphlet
CoLiBRi

IMDB 60.1 55.6 62.1 59.3
MUTAG 72.1 68.4 77.4 74.6
NCI1 55.1 52.1 59.6 58.3
NCI109 56.6 52.8 59.7 58.8
PROTEINS 60.5 60.2 66.3 68.9

Таблица 9: Доли правильных ответов 4 алгоритмов на 5 графовых наборах данных.

– MUTAG – 188 структур химических веществ, поделенных на 2 класса по мутагенному эффек-
ту, производимому на бактерии;

– NCI, NCI109 – два сбалансированных подмножества наборов данных химических соединений,
у которых измерена, соответственно, активность борьбы против немелкоклеточного рака лег-
ких и раковых клеток яичников;

– PROTEINS – предсказание функциональных классов принадлежности ферментов.

Для всех графов были построены бинарные признаки по включению подграфов до 6 вершин.
Проверялись 4 алгоритма: CBA – классификация на основе ассоциативных правил (реализация
LUCS-KDD6), DT – дерево решений (sklearn7), SVM graphlet – метод опорных векторов (sklearn),
CoLiBRi – предлагаемый алгоритм.

Данные были поделены в пропорции 7/3 на обучающую и проверочную выборку. В Таблице
9 указаны доли правильных ответов 4 алгоритмов проверенных на 5 графовых наборах данных.
Можно заметить, что в целом SVM справляется лучше остальных алгоритмов, зато остальные ал-
горитмы � интерпретируемые, на выходе можно получить набор классифицирующих правил для
каждого тестового примера.

В Таблице 10 представлены средние мощности посылок правил, участвовавших в классифика-
ции тестовых примеров в задачах классификации, результаты которых представлены в Таблице 9.
Можно сделать вывод, что в данных задачах алгоритм CoLiBRi демонстрирует качество классифи-
кации выше, чем CBA и DT, при этом сохраняется интерпретируемость алгоритма (в отличие от

6http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html
7http://scikit-learn.org

http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html
http://scikit-learn.org
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CBA DT CoLiBRi

IMDB 5.1 5.2 5.5
MUTAG 6.8 7.8 7.2
NCI1 8.3 10.5 12.7
NCI109 8.5 11.3 10.5
PROTEINS 7.6 12.2 8.6

Таблица 10: Средние мощности посылок правил, участвовавших в классификации тестовых
примеров.

случая применения SVM) – мощности посылок правил, участвовавших в классификации тестовых
примеров в случае CoLiBRi примерно такие же, как и в случае CBA и DT.

В заключении приведены основные результаты работы, которые состоят в следующем:

1. Предложен универсальный подход к классификации данных со сложной структурой на основе
решеток замкнутых описаний;

2. В рамках этого подхода предложены алгоритмы для классификации данных, представленных
последовательностями и графами, а также числовыми и интервальными признаками;

3. Алгоритмы апробированы в задачах классификации последовательностей и графов и показали
высокие значения доли правильных ответов. При этом классификация проводилась с помощью
коротких классифицирующих правил;

4. На данных Predictive Toxicology Challenge показаны метрики качества выше, чем у SVM c
графлет-ядром, и сравнимые с лучшими из результатов участников соревнования;

5. В вычислительных экспериментах с данными репозитория UCI получены значения метрик
качества классификации на кросс-валидации, статистически значимо более высокие, чем у
алгоритмов построения деревьев решений;

6. При этом показано, что интерпретируемость полученных правил, понимаемая как средняя
мощность посылок правил, которыми определялись метки тестовых объектов, у предлагаемого
алгоритма лучше, чем у случайного леса;

7. Методы классификации, основанные на правилах, в том числе деревья решений, представлены
с помощью проекций интервальных узорных структур;

8. Предложены и исследованы дискретизирующие проекции для интервальных узорных струк-
тур. На их основе предложен способ выбора правил на основе множеств формальных понятий,
гарантирующий нахождение правил не хуже, чем построенные деревом решений, по выбран-
ному критерию информативности;

9. Разработан программный комплекс, позволяющий анализировать сложно структурированные
данные и решать для них задачи классификации с помощью интерпретируемых наборов пра-
вил, подходящих для дальнейшего экспертного анализа.
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