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Введение

Актуальность темы. Чаще всего задачи анализа данных формулируются для данных, кото-
рые можно представить объектно-признаковыми таблицами. Если посмотреть на задачи машин-
ного обучения в корпоративной среде или соревнования по анализу данных1, то за редким ис-
ключением они сводятся к анализу объектно-признаковых таблиц. При этом данные со сложной
структурой (тексты, изображения) тоже представляются в некотором признаковом пространстве
(TF-IDF, word2vec, нейросетевые признаки изображений и т.д.). Однако в последнее время актив-
но развиваются методы анализа сложно структурированных данных, для которых теоретически
сложно либо практически неэффективно составлять признаковые описания, зато можно судить
о свойствах объектов на основе сходства их описаний. Такие задачи встречаются в химической
информатике [MMF11], анализе текстов [JM00] и изображений [Nav14]. Далее в этой работе под
сложно структурированными данными мы будем понимать данные, для которых можно опреде-
лить узорную структуру (Определение 28).

Важным аспектом в решении задач классификации является интерпретируемость полученных
результатов. Во многих приложениях, особенно в медицине, необходима интерпретация резуль-
татов классификации в виде понятных человеку правил, к которым можно применить экспертный
анализ и на его основе судить о релевантности используемых моделей, алгоритмов и мер сходства
объектов в конкретной задаче. В разных задачах интерпретируемость определяется по-разному,
но в данной работе под интерпретируемостью алгоритмов мы будем понимать их возможность
объяснить классификацию тестовых примеров. Конкретней, под локальной интерпретируемостью
классификации мы пониманием среднюю длину посылок правил, с помощью которых делается
прогноз для тестового примера (Определение 21). В [Hol93b] показано, что методы классифика-
ции на основе коротких правил хорошо работают на большинстве наборах данных популярного
репозитория UCI, при этом методы хорошо интерпретируемы, то есть полученные правила могут
анализироваться экспертами.

Одним из успешных инструментов для анализа сложно структурированных данных являет-
ся ДСМ-метод автоматического восстановления зависимостей из эмпирических данных [Фин83;
Фин10a; Фин10b; Куз91; Дюк02] . Классификация на основе ДСМ-метода относится к интерпре-
тируемым подходам, поскольку позволяет анализировать структурное сходство тестового примера
и обучающих. Однако по качеству классификации, определяемому по метрике типа доли верных
ответов на кросс-валидации или отложенной выборке, такой подход уступает ядерным методам

1www.kaggle.com/competitions

www.kaggle.com/competitions
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(kernel methods) [HSS08], в особенности, методу опорных векторов [CV95]. Было предложеномно-
жество ядерных функций для оценки сходства объектов со сложной структурой – строковые ядра
[Lod+02], ядра для последовательностей [CMR08] и графовые ядра [Vis+10]. Недостатком метода
опорных векторов является плохая интерпретируемость полученных результатов.

Необходимость анализа данных со сложными структурными описаниями и решения связан-
ных с ними задач классификации делает актуальным применение методов, позволяющих рабо-
тать со структурным сходством и использовать эффективные приближения описаний. Методы
анализа формальных понятий и решеток замкнутых описаний (узорных структур) предоставля-
ют удобный и эффективный математический аппарат для построения моделей в решении целого
ряда важных научных и прикладных задач. В задачах обучения без учителя эти методы актуальны,
поскольку позволяют находить и интерпретировать сходство произвольного множества объектов,
а в задачах обучения с учителем – потому что с их помощью можно получить наборы классифи-
цирующих правил, понятных человеку (интерпретируемых) и позволяющих далее применять к
ним экспертный анализ. Аппарат проекций узорных структур позволяет эффективно работать с
приближенными описаниями сложно структурированных объектов, учитывая основные свойства
структуры и понижая вычислительную и временную сложность обработки таких описаний.

Таким образом, объектом исследования являются данные со сложной структурой.
Предметом исследования являются методы, алгоритмы и программы для классификации
данных со сложной структурой с помощью классифицирующих правил, а также для их эксперт-
ного анализа.

Целью диссертационного исследования является разработка единого подхода к классифика-
ции данных со сложной структурой. Результатами работы алгоритма должны быть как приемле-
мое для конкретной задачи качество классификации, так и интерпретируемый вывод алгоритма в
виде классифицирующих правил, подходящий для дальнейшего экспертного анализа.

В соответствии с целью исследования были поставлены следующие задачи:

1. Предложить универсальный подход к классификации данных со сложной структурой на ос-
нове решеток замкнутых описаний;

2. В частном случае описаний в виде бинарных, категориальных и количественных признаков
предложить подход к классификации на основе правил, решающий задачу классификации
лучше (по точности), чем деревья решений, и порождающий более короткие правила, чем
алгоритм случайного леса;

3. Разработать комплекс программ для классификации данных со сложной структурой и апро-
бировать его в задачах классификации как с бинарными, категориальными и количествен-
ными признаками, так и с описаниями со сложной структурой в виде последовательностей
и графов.

Следующие особенности работы определяют ее научную новизну:
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1. Предложен новый подход к классификации данных со сложной структурой на основе узор-
ных структур;

2. Предложен специальный вид проекций узорных структур для данных с количественными
признаками, обобщающий подход к обучению на основе деревьев решений;

3. Создан комплекс программ для классификации данных со сложной структурой на основе
решеток замкнутых описаний. Соответствующие алгоритмы были апробированы на многих
наборах данных с категориальными и количественными признаками, а также на данных по
токсичности химических веществ со сложной структурой в виде молекулярных графов.

Теоретическая ценность данной работы состоит

1. в представлении методов классификации числовых данных, в том числе деревьев решений,
с помощью проекций интервальных узорных структур;

2. в представлении подхода к классификации на основе правил, гарантирующего нахождение
правил с лучшим значением выбранного критерия информативности, чем правила, получен-
ные с помощью деревьев решений;

3. во введении и исследовании дискретизирующей проекции для интервальных узорных струк-
тур.

Практическая ценность работы состоит

1. в получении качественных (по доле правильных ответов) и интерпретируемых решений за-
дач классификации данных в виде последовательностей и графов;

2. в получении качества классификации в экспериментах с реальными данными, статистически
значимо лучшего, чем у алгоритмов построения деревьев решений;

3. в представлении алгоритма классификации на основе правил, более коротких по длине (чис-
лу признаков в посылке), а потому легче интерпретируемых, чем правила, построенные ал-
горитмом случайного леса;

4. в разработке программного комплекса, позволяющего анализировать сложно структуриро-
ванные данные и решать для них задачи классификации с помощью интерпретируемых на-
боров правил, подходящих для дальнейшего экспертного анализа.
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Положения, выносимые на защиту:

1. Предложен универсальный подход к классификации данных со сложной структурой на ос-
нове решеток замкнутых описаний. При этом для каждого объекта порождаются наборы
коротких и интерпретируемых классифицирующих правил;

2. Показано, что предложенный алгоритм классификации на основе правил демонстрирует бо-
лее высокое качество классификации (в терминах средней доли правильных ответов и F1-
метрики на кросс-валидации), чем деревья решений. Также он порождает в среднем более
короткие и интерпретируемые правила, чем алгоритм случайного леса;

3. Показано, что для любого объекта можно найти подходящее классифицирующее правило,
такое что его посылка будет замкнутым множеством признаков, а качество правила (измеря-
емое с помощью критерия типа прироста информации) – выше, чем у любого подходящего
правила, построенного деревом решений.

4. Предложен вид приближений числовых описаний (в терминах проекций интервальных узор-
ных структур), на основе которых представлены посылки правил, полученных с помощью
деревьев решений. Эффективность использования таких проекций экспериментально под-
тверждена в задаче классификации для нескольких наборов данных с количественными при-
знаками;

5. Разработан комплекс программ для анализа данных со сложной структурой на основе ре-
шеток замкнутых описаний. Поддерживаются 4 типа данных: числовые (бинарные, катего-
риальные и количественные признаки), интервальные, последовательности и помеченные
графы.

Достоверность полученных результатов опирается на строгость использованных математи-
ческихмоделей, их экспериментальное подтверждение и практическую эффективность программ-
ных реализаций.

Апробация работы. Основные результаты работы докладывались и обсуждались на следую-
щих конференциях и семинарах:

1. Семинар Межфакультетской кафедры математического моделирования и компьютерных ис-
следований МГУ имени М.В. Ломоносова 31 октября 2017 года, г. Москва, Россия;

2. Семинары отделаИнтеллектуальных системВЦРАНим. А.А. Дородницына 20 октября 2016
года, 7 июля 2017 года и 14 сентября 2017 года, г. Москва, Россия;

3. 23-ий Международный симпозиум по методологиям интеллектуальных систем (ISMIS
2017), июнь 2017 г., г. Варшава, Польша.

4. Семинары Департамента Анализа Данных и Искусственного Интеллекта НИУ ВШЭ (6 вы-
ступлений в мае и октябре 2015-2016 гг., а также в декабре 2016 г. и марте 2017 г.), г. Москва,
Россия;
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5. Пятнадцатая национальная конференция по искусственному интеллекту с международным
участием (КИИ-2016), сентябрь 2016 г., г. Смоленск, Россия;

6. Семинар “What can FCA do for Artificial Intelligence?” при Европейской конференции по ис-
кусственному интеллекту ECAI, август 2016 г., г. Гаага, Нидерланды;

7. 13-ая международная конференция по решеткам понятий и их приложениям (The 13th
International Conference on Concept Lattices and Their Applications), июль 2016 г., г. Москва,
Россия;

8. Конференция “Технологии Больших Данных” (ТБД-2016), июнь 2016 г., г. Москва, Россия;

9. Пятая международная конференция по Анализу Изображений, Сетей и Текстов АИСТ 2016,
апрель 2016 г., г. Екатеринбург, Россия (награда за лучший доклад в секции “Data Analysis,
Graphs & Complex Data”);

10. Семинар “What can FCA do for Artificial Intelligence?” при международной объединенной
конференции по искусственному интеллекту IJCAI, июль 2015 г., г. Буэнос-Айрес, Арген-
тина;

11. Ph.D.-семинар при Европейской конференции по машинному обучению и теоретическим ос-
новам и практике обнаружения знаний в базах данных ECML/PKDD, июль 2014 г., г. Нанси,
Франция;

12. Семинар “What can FCA do for Artificial Intelligence?” при Европейской конференции по ис-
кусственному интеллекту ECAI, июль 2014 г., г. Прага, Чехия;

13. Третья международная конференция по Анализу Изображений, Сетей и Текстов АИСТ, ап-
рель 2014 г., г. Екатеринбург, Россия;

Публикации. Основные результаты по теме диссертации изложены в 8 научных работах, 2 из
которых изданы в изданиях, рекомендованных ВАК, 6— в рецензируемых трудах международных
конференций, индексируемых в базе данных научного цитирования Scopus.

Диссертация состоит из введения, 4 глав, заключения, списка литературы, а также списков
рисунков, таблиц и приложений.

В Главе 1 рассматриваются некоторые базовые понятия теории решеток и Анализа Формаль-
ных Понятий, приводится обзор методов классификации в машинном обучении, основанных на
ассоциативных правилах, а также рассматриваются критерии отбора классифицирующих правил.

В Главе 2 сначала дается введение в узорные структуры и их проекции для анализа сложно
структурированных данных. Затем предлагается специальный вид проекций узорных структур,
позволяющий интерпретировать алгоритмы построения деревьев решений в терминах АФП.

Глава 3 посвящена описанию предлагаемых алгоритмов классификации с помощью узорных
структур и их проекций.
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В Главе 4 приводятся результаты экспериментов, посвященных исследованию предлагаемых
алгоритмов и их использованию в прикладных задачах анализа данных. Также описывается про-
граммный комплекс, реализующий предлагаемые алгоритмы. Рассматривается как абстрактный
интерфейс для анализа данных с произвольной сложной структурой, так и частный случай интер-
фейса для данных, представимых в объектно-признаковом виде.
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Глава 1

Анализ Формальных Понятий и
классификация на основе ассоциативных
правил

1.1. Введение

Термин “Анализ Формальных Понятий” (АФП, Formal Concept Analysis, FCA) был предложен
Рудольфом Вилле (Rudolf Wille) [Wil09] в конце 1970-х годов в Техническом университете Дарм-
штадта. АФП уходит корнями в предшествующие работы, посвященные соответствиям Галуа и
решеткам замкнутых множеств [Bir40], и ранние работы о приложениях теории решеток к зада-
чам информатики. Основной вклад в развитие этого направления математики сделан Рудольфом
Вилле и Бернардом Гантером (Bernhard Ganter) [GW97].

Поначалу Анализ Формальных Понятий зачастую воспринимался как формализм для работы с
таблицами из нулей и единиц. Однако сейчас актуальность АФП подтверждается его использова-
нием в задачах обработки больших объёмов сложных динамических данных, связанных с допол-
нительными знаниями предметной области. В течение трех последних десятилетий основанные
на АФП модели представления, выявления [Her02] и интенсивной обработки знаний разработаны
и используются во многих научно-исследовательских и промышленных проектах во всем мире.
Среди работ, освещающих методы и приложения АФП, можно выделить обзоры Йонаса Пуль-
манса (J. Poelmans) с коллегами [Poe+13b; Poe+13a], обзор Клаудио Карпинето (C. Carpineto) и
Джовани Романо (G. Romano) [CR04], обзор Уты Присс (U. Priss) по применению АФП к инфор-
мационному поиску и выявлению знаний [Pri06], обзор программного обеспечения, использую-
щего АФП [Til04], а также аналитический обзор с библиометрическим анализом публикаций и
изучением научно-исследовательского сообщества АФП [DJS12]. В то же время были показаны
связи с другими направлениями в области выявления и обработки знаний: дескриптивными ло-
гиками, понятийными структурами [Sow84], нахождением ассоциативных правил [Smi09], би- и



11

трикластеров [Ign+15], машинным обучением [Kuz04], теорией “неточных” (rough) и “нечетких”
(fuzzy) множеств [Poe+14] и другими.

Отдельное важное направление АФП связано с уходом от представления данных в виде бинар-
ного отношения для анализа сложно структурированных данных [GK01]. Этому посвящена Глава
2.

В данной работе основной акцент сделан на исследовании подходов к задаче классификации
в машинном обучении, основанных на АФП, особенно в задачах со сложно структурированными
данными. Поэтому далее в этой главе мы рассмотрим основные термины и идеи АФП [GW97]
и теории решеток (Раздел 1.2), постановку задачи классификации в машинном обучении (Раздел
1.3), а также подходы к классификации данных на основе АФП (Раздел 1.4).

1.2. Теория решеток и Анализ Формальных Понятий

1.2.1. Частично-упорядоченные множества и решетки

Приведем стандартные определения из областей теории отношений, порядков и решеток
[Бир84].

Определение 1. [Бир84] Бинарное отношение ≤ на множестве A называется отношением
(нестрогого) частичного порядка, если оно рефлексивное, антисимметричное и транзитивное,
то есть для a, b, c ∈ A:

1. a ≤ a (рефлексивность);

2. a ≤ b, b ≤ a⇒ a = b (антисимметричность);

3. a ≤ b, b ≤ c⇒ a ≤ c (транзитивность).

МножествоA с определенным на нем отношением частичного порядка≤ называется частично-
упорядоченным множеством (A, ≤). В случае a ≤ b (a, b ∈ A) говорят, что элемент a меньше
элемента b. Если при этом a ̸= b, то элемент a строго меньше элемента b (a < b). Если для
a ! b : a ≤ b, то a – максимальный элемент множества A относительно порядка ≤.

Определение 2. [Бир84] Пусть имеется частичный порядок≤. Тогда соответствующее ему от-
ношение покрытия ≺ задаётся следующим образом:

x ≺ y := x ≤ y, x ̸= y, ! z ̸= x,y : x ≤ z ≤ y

или, эквивалентно,
x ≺ y := x < y, ! z : x < z < y.

Определение 3. [Бир84] Бинарная операция ⊓ : A × A → A называется полурешеточной, если
для некоторого e ∈ A и любых a, b, c ∈ A :
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1. a ⊓ a = a (идемпотентность);

2. a ⊓ b = b ⊓ a (коммутативность);

3. (a ⊓ b) ⊓ c = a ⊓ (b ⊓ c) (ассоциативность);

4. a ⊓ e = e.

Определение 4. [Бир84] Множество A с определенной на нем полурешеточной операцией назы-
вается полурешеткой (A, ⊓).

Полурешеточная операция ⊓ задает два частичных порядка ⊑ и ⊒ на A (a, b ∈ A):

a ⊑ b↔ a ⊓ b = a

При этом частичный порядок на полурешетке задаётся как x ≤ y ⇔ x ⊓ y = x.

Определение 5. [Бир84] Решеткой называется множество L, на котором определены две полу-
решёточные операции ⊓ и - такие что:

– x - (x ⊓ y) = x

– x ⊓ (x - y) = x

Решётку можно также определить другим эквивалентными способом через два определения
полурешётки.

Определение 6. [Бир84] Верхней гранью подмножества X упорядоченного множества A назы-
вается элемент l ∈ A, такой что l ≥ x ∀x ∈ X . Точная (наименьшая) верхняя граньмножества
X (также называется супремумом X – supX) - это верхняя грань l множества X , такая что
l ≤ m для любой верхней граниm множества X . Аналогично определяется точная (наибольшая)
нижняя грань множества X , или инфимум X .

Определение 7. [Бир84] Частично-упорядоченное множество (SL, ≤) называется верхней полу-
решеткой, если для любой пары элементов множества x, y ∈ SL существует супремум sup{x,y}.

Двойственным образом вводится понятие нижней полурешетки, определяемой относительно
инфимума.

Определение 8. [Бир84] Частично-упорядоченное множество (SL, ≤) называется нижней по-
лурешеткой, если для любой пары элементов множества x, y ∈ SL существует инфимум
inf{x,y}.

Определение 9. [Бир84] Решеткой называется упорядоченное множество (L, ≤), которое яв-
ляется верхней и нижней полурешёткой.
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Определение 10. [Бир84] Диаграмма (Хaссе) частично-упорядоченного множества (L, ≤) – это
плоский геометрический объект, состоящий из кругов, центры которых соответствуют элемен-
там порядка, и связывающих центры кругов отрезков, соответствующих отношению покрытия
(L, ≺), со следующими свойствами:

1. a ≺ b =⇒ точка, соответствующая вершине a, имеет строго меньшую вертикальную
координату чем точка, соответствующая вершине b.

2. Отрезки не проходят через круги, центры которых не являются их границами.

Пример 1. Граф и диаграмма частичного порядка [Kuz96].

a b c d e
a 1 0 1 1 1
b 0 1 1 1 1
c 0 0 1 0 1
d 0 0 0 1 1
e 0 0 0 0 1
ациклический граф

a b

c d

e

диаграмма порядка

Анализ Формальных Понятий и аппарат узорных структур основываются на следующем опре-
делении соответствия Галуа [GW97].

Определение 11. [Бир84] Пусть (P, ≤P ) и (Q, ≤Q) – частично упорядоченные множества. Со-
ответствием Галуа между этими множествами называется пара отображений: ϕ : P 0→ Q и
ψ : Q 0→ P такие, что для любых pi, pj ∈ P и qk, ql ∈ Q (i,j,k,l ∈ N) верно:

– pi ≤P pj ⇒ ϕ(pi) ≥Q ϕ(pj);

– qk ≤Q ql ⇒ ψ(qk) ≥P ψ(ql);

– pi ≤P ψ(ϕ(pi)) и ql ≤Q ϕ(ψ(ql)).

1.2.2. Анализ Формальных Понятий

Анализ Формальных Понятий (АФП) – это область прикладной теории решёток, методы кото-
рого используются для решения различных задач анализа и интеллектуального данных. Приведём
основные определения АФП согласно [GW97].

Определение 12. [GW97] Формальный контекст – это тройка (G, M, I), в которой G – это
множество объектов,M – множество признаков, I ⊆ G×M – бинарное отношение междуG и
M .
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ВТаблице 1.1 дан пример формального контекста.Междумножествами подмножеств объектов
и признаков можно задать соответствие Галуа с помощью следующих отображений:

A′ = {m ∈M | (g,m) ∈ I для всех g ∈ A}, где A ⊆ G

B′ = {g ∈ G | (g,m) ∈ I для всехm ∈ B}, где B ⊆M

Для отдельных объектов и признаков a ∈ A и b ∈ B понимаем a′ как {a}′ и b′ как {b}′.

3G LTE GSM jack
Iphone 5 × × ×
Galaxy S7 × × × ×
Iphone 7 × × ×
ThinkPad × × ×
Acer A200 × ×

Таблица 1.1: Пример формального контекста

Рисунок 1.1: Решетка формальных понятий для формального контекста, изображенного
Таблицей 1.1.

Соответствие Галуа сопоставляет множеству объектов максимальное множество при-
знаков, каждый из которых находится в отношении с каждым объектом. Аналогич-
но для множества признаков. Например, для формального контекста, изображенно-
го Таблицей 1.1, {Iphone 5, Acer A200}′ = {3G, GSM}, в то время как {LTE}′ =

{Galaxy S7, Iphone 7, ThinkPad}. Соответствие Галуа лежит в основе формальных поня-
тий и соответствующей решетки формальных понятий.
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Определение 13. [GW97] Формальное понятие – это пара (A,B), где A – это подмножество
объектов, A ⊆ G; B – признаков, B ⊆ M , причём A′ = B, а A = B′. Множество объектов A
называют объёмом, а множество признаков B – содержанием формального понятия (A,B).

Примером формального понятия для контекста, изображенного в Таблице 1.1, явля-
ется пара ({Galaxy S7, Iphone 7, ThinkPad} , {3G, LTE}), которой соответствует мак-
симальное подмножество объектов, обладающих признаками {3G, LTE}, в то время
как мы не можем расширить множество признаков, не изменив множество объектов,
соответствующих ему. При этом {Galaxy S7, Iphone 7, ThinkPad}′′ = {3G, LTE} и
{3G, LTE}′′ = {Galaxy S7, Iphone 7, ThinkPad}. Множество понятий упорядочено
согласно теоретико-множественному включению объемов или содержаний. Например,
({ThinkPad} ; {3G, LTE, jack}) ≤ ({Galaxy S7, Iphone 7, ThinkPad} , {3G, LTE}), так
как {ThinkPad} ⊆ {Galaxy S7, Iphone 7, ThinkPad}, или двойственно {3G, LTE} ⊆
{3G, LTE, jack}. Данный частичный порядок является решеткой, то есть для любой пары
понятий существуют верхняя и нижняя грани. Рисунок 1.1 показывает диаграмму решетки,
соответствующей формальному контексту, изображенному в Таблице 1.1.

Для возможности работы с количественными признаками в АФП вводится понятие многознач-
ного формального контекста.

Определение 14. [GW97]Многозначный формальный контекст— это четверка (G, M, W, I),
где G – множество объектов,M – множество признаков,W – множество значений признаков,
I ⊆ G×M ×W , такое что ((g,m,w) ∈ I)& ((g,m,v) ∈ I)⇒ w = v. Признакm полный, если для
всех g ∈ G существует w ∈ W , такое что (g,m,w) ∈ I . Многозначный контекст полон, если
все его признаки полны. Для полных многозначных контекстов значение признакаm на объекте g
обозначается черезm(g), таким образом (g,m,m(g)) ∈ I .

Далее нам также пригодится определение генератора замкнутого множества признаков.

Определение 15. [GW97] Подмножество признаков D ⊆ M есть генератор замкнутого под-
множества признаков B ⊆M , B′′ = B, если D ⊆ B, D′′ = B = B′′.

Подмножество D ⊆ M есть минимальный генератор, если для любого E ⊂ D имеет место
E ′′ ̸= D′′ = B′′.

Генератор D ⊆ M называется нетривиальным, если D ̸= D′′ = B′′. Множество всех нетри-
виальных минимальных генераторов B обозначимmingen(B).

1.2.3. Алгоритмы построения решетки формальных понятий

Существует немалое число алгоритмов для нахождения множества формальных понятий,
таких как “Замыкай по-Одному” (Close-by-One, CbO) [Куз93; Kuz96], его модификация In-
Close [And09], NextClosure [Gan10] и др., а также для нахождения решётки формальных по-
нятий, таких как AddIntent [Kou+09] (см. обзор алгоритмов [KO02]). Алгоритмическая слож-
ность нахождения всех формальных понятий контекста для указанных алгоритмов составляет
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O(|G||M ||L|min(|G|,|M |)), где |G| – количество объектов, |M | – количество признаков, |L| – ко-
нечный размер решётки. Стоит отметить, что размер решётки может быть экспоненциальным от
числа объектов или признаков, точнее 2min(|G|,|M |).

Далее в Главе 1.4 для представления деревьев решений в терминахАФПнам понадобится опре-
деление признакового CbO-дерева, перефразированное на основе [Куз93].

Определение 16. Пусть дан формальный контекст K = (G,M,I) и признаки из множества M

пронумерованы, т.е. для множества признаков M задан порядок (α(M), <), ∀m ∈ M α(m) ∈
[1, |M |]. Пусть для B ⊆M min(B) выдает признаки из B c минимальным номером:
min(B) = {m | m ∈ B,α(m) < α(m̃) ∀m̃ ∈ B\{m}}.

Обозначим suc(B) – множество всех наследников множества B: понятий с содержанием
вида (B ∪ {i})′′, таких что min((B ∪ {i})′′ \ B) = {i}. Признаковым CbO-деревом для фор-
мального контекста K называется дерево, состоящее из всевозможных множеств suc(B), дуги
которого задаются отношением (B, suc(B)).

При замене множеств признаков на множества объектов в определении выше получается опре-
деление объектного CbO-дерева.

1.3. Задача классификации в машинном обучении

1.3.1. Постановка задачи классификации

Машинное обучение – одно из ключевых направлений искусственного интеллекта и анали-
за данных. Определений у этого термина немало, в одном из них теория машинного обучения
определяется через решаемые ей задачи предсказания будущего поведения сложных систем в том
случае, когда отсутствуют точные гипотезы о механизмах, управляющих поведением таких систем
[Вью13]. Классическим определением обучающейся программы считается данное ТомомМитчел-
лом [Mit97] (хоть оно и не строго формальное): “Компьютерная программа обучается решению
некоторого класса задач T согласно метрике качества P с накоплением опыта E, если качество
решения задач класса T этой программой, измеренное с помощью метрики P , растет при накоп-
лении опыта E”.

Существует несколько областей машинного обучения (остановимся на самых крупных): обуче-
ние с учителем (supervised learning), (в частности, задачи классификации и восстановления регрес-
сии), обучение без учителя (unsupervised learning) (в частности, задачи кластеризации и снижения
размерности), обучение с подкреплением (reinforcement learning) и др. Далее нас будет интересо-
вать первый тип машинного обучения – обучение с учителем, а именно, задача классификации.

Классическая постановка задачи классификации в машинном обучении формулируется следу-
ющим образом [Вью13]. Имеется множество объектов (ситуаций), описанное с помощью некото-
рого множества признаков и разделенное некоторым образом на классы. Задано конечное множе-
ство объектов, для которых известно, к каким классам они относятся. Это множество называется
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обучающей выборкой. Принадлежность остальных объектов к классам неизвестна. Требуется по-
строить алгоритм, способный классифицировать произвольный объект из исходного множества,
то есть, указать номер (или наименование класса), к которому относится данный объект.

Формализация постановки задачи [Вью13]:
Пусть X — множество объектов, Y — конечное множество ответов (меток, имён классов).
Существует неизвестная целевая зависимость y∗ : X → Y — отображение, значения которого

известны только на объектах конечной обучающей выборки Xℓ = {(x1,y1),...,(xℓ,yℓ)}. Требуется
построить алгоритм a : X → Y , способный приближать целевую функцию y∗(x) для произволь-
ного объекта x ∈ X .

Отметим, что мы выбрали именно это определение, поскольку оно не накладывает никаких
ограничений на природу объектов множества X , хотя зачастую задачу классификации опреде-
ляют сразу для элементов признакового пространства, то есть предполагают, что каждый объект
x ∈ X описан с помощью признаков f1, . . . ,fd: x = (f1(x), . . . ,fd(x)), где f : X → Df называется
признаком (Df – множество допустимых значений признака, в зависимости от этого множества
признаки делятся на бинарные, номинальные, порядковые и количественные). В главе 2 мы будем
говорить про постановку задачи классификации и для объектов с произвольной сложной структу-
рой, не только с признаковым описанием.

Примеры применения методов классификации для объектов, заданных признаковым описани-
ем, можно найти в задачах медицинской диагностики [Вью13]. В роли объектов выступают паци-
енты. Признаки характеризуют результаты обследований, симптомы заболевания и применявши-
еся методы лечения. Признаки могут быть бинарными (пол, наличие головной боли, слабости),
порядковыми (тяжесть состояния – удовлетворительное, средней тяжести, тяжёлое, крайне тяжё-
лое), количественными (возраст, пульс, артериальное давление, содержание гемоглобина в крови,
доза препарата). Признаковое описание пациента является, по сути дела, формализованной исто-
рией болезни. Накопив обучающую выборку, можно классифицировать вид заболевания (диффе-
ренциальная диагностика), определять наиболее целесообразный способ лечения, предсказывать
длительность и исход заболевания, оценивать риск осложнений а также находить синдромы —
наиболее характерные для данного заболевания совокупности симптомов [Вью13].

Помимо медицинских приложений, классификация используется в множестве других задач:
распознавание образов и компьютерное зрение, распознавание речи, предсказание оттока клиен-
тов, кредитный скоринг, обнаружение спама, классификация документов, семантический анализ
текста и во многих других [PR08].

Методы классификации, основанные на сходстве объектов, образуют целое семейство алгорит-
мов машинного обучения (классификации и не только). Самый известный подход к работе с объ-
ектами на основе их сходства – ядерные методы [Mül+01]. Примером задачи классификации, ре-
шаемой на основе сходства объектов и в которой объекты задаются сложными описаниями, может
служить задача прогнозирования мутагенности химических веществ [Hel+04]. Здесь описаниями
объектов будут их молекулярные графы. Обзор методов классификации данных, представленных
графами, можно найти в [Nav14].
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Задача классификации известна также как задача корректного распознавания корректного рас-
познавания образов, в случае целочисленных признаков задача эффективно решается методами
логического подхода [Жур66; Жур71; Жур02; Руд87; Дья05; Вор00]. Вычислительные аспекты по-
строения логических корректоров в таких задачах исследованы в работе [Про16].

Постановки задачи классификации в терминах АФП

Далее для единообразия изложения материала мы переформулируем задачу классификации в
машинном обучении в терминах АФП. В частности, выделим задачу классификации для данных
с бинарными признаками и для данных с вещественными признаками.

Определение 17. Пусть даныKtrain = (Gtrain, M∪{t}, Itrain) иKtest = (Gtest, M∪{t}, Itest) – обу-
чающий итестовыйформальные контексты. КонтекстK = (Gtrain∪Gtest,M∪{t}, Itrain∪ Itest)
– классификационный, признак t – целевой. Задачей бинарной классификации для классифика-
ционного контекста K называется построение функции y∗ : Gtrain ∪ Gtest → y, где y = t или
y = ¬t, которая каждому объекту g ∈ Gtrain ∪Gtest ставит в соответствие t или ¬t. При этом
множествоM называется признаковым пространством, а g′ для ∀g ∈ K называется призна-
ковым описанием объекта g. Контекст Ktrain также будем называть обучающей выборкой.

Обучающий контекст из определения выше также будем называть обучающей выборкой. Чтобы
сформулировать задачу классификации для данных с количественными признаками, используем
Определение 14 многозначного формального контекста.

Определение 18. Пусть даны Ktrain = (Gtrain, M ∪ t, Wtrain, Itrain) и Ktest = (Gtest, M ∪
t, Wtest, Itest) – обучающий и тестовый многозначные формальные контексты. Контекст K =

(Gtrain ∪Gtest, M ∪ {t}, Wtrain ∪Wtest, Itrain ∪ Itest) – классификационный, признак t – целевой.
Задачей бинарной классификации для многозначного классификационного контекстаK называ-
ется построение функции y∗ : Gtrain∪Gtest → y, где y = t или y = ¬t, которая каждому объекту
g ∈ Gtrain ∪ Gtest ставит в соответствие t или ¬t. Контекст Ktrain также будем называть
обучающей выборкой.

Если в условиях предыдущего определения целевой признак t является многозначным, то со-
ответствующая задача классификации называется не бинарной, а многоклассовой.

Пример 2. В качестве примера возьмем задачу классификации для “классического” набора дан-
ных из [Mit97]. Классификационный контекст (обучающая и тестовая выборки) представлен
Таблицей 1.2 :K = (Gtrain∪Gtest, M ∪ {t}, I), гдеGtrain = {1, . . . , 10}, Gtest = {11, . . . , 14},M =

{or, oo, os, tc, tm, th, hn, w}, t = play, a I – бинарное отношение, определенное на G ×M ∪ {t},
такое что элемент этого отношения представлен крестом (×) в соответствующей клеткетаб-
лицы. Диаграмма решетки формальных понятий данного контекста представлена на Рис. 1.2.
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G\M or oo os tc tm th hn w play
1 × ×
2 × × ×
3 × × ×
4 × × ×
5 × × × ×
6 × × × ×
7 × × × × × ×
8 × ×
9 × × × ×
10 × × × ×
11 × × × × ?
12 × × × ?
13 × × × ?
14 × × × ?

Таблица 1.2: Формальный контекст, соответствующий задаче классификации из [Mit97].
Признаки: or – outlook = rainy, oo – outlook = overcast, os – outlook = sunny, tc – temperature =
cool, tm – temperature = mild, th – temperature = high, hn – humidity = normal, w – windy, play –

играть в теннис или нет (целевой признак).

Рисунок 1.2: Решетка формальных понятий для формального контекста, представленного
Таблицей 1.2.
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1.3.2. Методы классификации на основе классифицирующих ассоциатив-
ных правил

В этой главе мы рассмотрим подход к классификации в машинном обучении, основанный на
поиске классифицирующих ассоциативных правил, а также критерии отбора таких правил для
улучшения качества и интерпретируемости классификации.

Ассоциативное правило – это утверждение об условной вероятности (называемой достовер-
ностью) события по отношению к другому событию в совокупности с утверждением о совмест-
ной вероятности обоих событий (называемым поддержкой), где оба события описаны в терминах
множеств признаков. Поиск ассоциативных правил – одна из основных задач интеллектуально-
го анализа данных (data mining) [AS94]. Дадим определение ассоциативного правила в терминах
Анализа Формальных Понятий.

Определение 19. Ассоциативное правило формального контекста (G,M, I) – это выражение
вида A→c,s B, где A,B ⊆M – подмножества признаков, а

– c, s ∈ [0, 1];

– c = |(A∪B)′|
|A′| – достоверность (confidence, conf);

– s = |(A∪B)′|
|G| – поддержка (support, supp).

Множество A называется посылкой правила, а B – заключением.

Если посылкой правила является набор признаков объектов обучающей выборки, а заключе-
нием – метка целевого класса объектов обучающей выборки, то такое ассоциативное правило на-
зывается классифицирующим [VMZ06]:

Определение 20. Классифицирующее ассоциативное правило формального контекста (G,M ∪
{t}, I) – это выражение вида A→c,s y, где y = t или y = ¬t, A ⊆M – подмножество признаков,
а c,s – достоверность и поддержка правила соответственно, определяющиеся так же, как в
Определении 19.

Чаще всего мы не будем указывать поддержку правил и писать A →c t для обозначения клас-
сифицирующего правила с достоверностью c, например {a,b,c} →0.8 t. Также иногда мы будем
опускать и обозначение достоверности правила. Еще в случае бинарной классификации будем
обозначать целевой признак как “+” и писать {a,b,c}→ “+”.

Определение 21. Пусть в условиях Определения 17 {{Bij →cij t}} – множество классифицирую-
щих правил для классификации тестовых объектов из Gtest. Здесь i ∈ 1, . . . , |Gtest|, j ∈ 1, . . . , Ni,
где Ni – число правил для классификации i-го примера. Локальной интерпретируемостью мно-
жества правил называется величина

1

|Gtest|

|Gtest|∑

i=1

1

Ni

Ni∑

j=1

|Bij|,
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то есть длина посылки правила, усредненная по всем правилам для тестового объекта и по всем
тестовым объектам.

Деревья решений

Дерево решений воспроизводит логические правила, позволяющие получить окончательное
решение о классификации объекта с помощью ответов на иерархически организованную систему
вопросов. Каждый узел в дереве решений представляет признак классифицируемого объекта, а
каждая ветка – значение, которое может принимать признак. Проблема построения оптимального
двоичного дерева решений NP-полна [Bre+84], поэтому существует множество эвристик для по-
строения “почти оптимального” дерева [Mur97]. Признак, лучше всего разделяющий примеры из
обучающей выборки согласно некоторому критерию типа неопределенности Джини или приро-
ста информации [Qui93], помещается в корень дерева, далее в большинстве алгоритмов, напри-
мер, в С4.5 [Qui93] и CART [Bre+84], построение дерева происходит рекурсивно, пока множество
объектов, удовлетворяющих всем ограничениям значений признаков в узлах дерева (которые “чи-
таются” по ветвям), не будет представлять один класс. Существует много методов нахождения
оптимального признака для разделения обучающей выборки, но ни один из них не подтвердил
наличие идеальной стратегии [Mur97]. Некоторые из этих методов будут рассмотрены далее.

Одно из главных полезных свойств деревьев решений — это их интерпретируемость. Челове-
ку понятно, как именно, на основе каких доводов, дерево решений классифицировало какой-либо
пример. Также бывает плюсом отсутствие параметров модели. Минус же деревьев решений —
невысокое качество классификации по сравнению с другими, более продвинутыми алгоритма-
ми классификации, такими как нейронные сети или композиции алгоритмов [CN06]. Например,
случайный лес (random forest) [Bre01] может значительно повысить качество классификации по
сравнению с одним отдельно взятым деревом, теряя, однако, при этом в интерпретируемости ал-
горитма. Далее в разделе 1.4.1 мы переформулируем деревья решений в терминах АФП.

Пример построенного дерева решений показан на Рис. 1.3. Здесь в каждой вершине дерева
показано, какое условие в ней проверяется (кроме листовых вершин), число примеров, удовле-
творяющих всем условиям от данной вершины до корня (samples), соответствующее значение
неопределенности Джини (gini) и соотношение классов (value).

Классифицирующие (решающие) правила

Деревья решений можно представить набором правил, если следовать от корня дерева к ли-
стьям. Однако такие классифицирующие правила можно порождать и на основе самих данных
без построения дерева. В статье [Für99] проведен обзор алгоритмов построения наименьшего
возможного набора решающих правил, согласующихся с обучающей выборкой. Слишком боль-
шое количество порожденных решающих правил обычно свидетельствует о том, что алгоритм
пытается “запомнить” данные, а не обнаружить закономерности в них, и часто ведет к пробле-
ме переобучения. Поэтому большинство алгоритмов классификации, основанных на решающих
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Рисунок 1.3: Дерево решений для задачи классификации с данными, представленными в Таблице
1.2 (В Scikit-learn деревья решений поддерживают только числовые признаки, так что запись

os ≤ 0.5 надо понимать как проверку на отсутствие признака os).

правилах, предлагают эвристики для отбора правил. Среди наиболее известных алгоритмов тако-
го вида можно выделить RIPPER [Coh95] и PART [Für97]. Преимущества и недостатки решающих
правил в целом те же, что и у деревьев решений – хорошая интерпретируемость, возможность уче-
та экспертных знаний предметной области, представленных также в виде правил, но невысокое
качество классификации в сложных задачах. Тем не менее, во многих задачах зачастую простые
классифицирующие правила имеют хорошие результаты [Hol93a].

1.3.3. Критерии выбора классифицирующих правил

Как при построении дерева решений, так и при нахождении классифицирующих правил по
выборке необходимо задать критерий отбора правил. При решении задачи классификации чаще
всего такие критерии называют критериями информативности. При обучении без учителя в за-
даче интеллектуального анализа данных чаще такие критерии называют мерами “интересности”
наборов признаков (pattern interestingness measures, см. обзор [GH06]).

Применительно к бинарным деревьям решений критерий информативности Q(A,m) опреде-
ляют для разбиения выборки A ⊆ X по наличию или отсутствию признакаm в задаче классифи-
кации с обучающей выборкой X и вектором ответов y.
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Определение 22. Пусть в условиях Определения 17 A – некоторое множество объектов обучаю-
щей выборки в задаче бинарной классификации,A ∈ Gtrain. ПустьAm – подмножество объектов
изA, обладающих признакомm, аA¬m – подмножество объектов изA, не обладающих признаком
m, то есть aItrainm ∀ a ∈ Am и ¬(aItrainm) ∀ a ∈ A¬m.

Тогда критерий информативности признакаm в задаче бинарной классификации с обучаю-
щей выборкой Ktrain определяется для множества объектов A следующим образом:

Q(A,m) = F (A)− |Am|
|A| F (Am)−

|A¬m|
|A| F (A¬m),

где F (X) – некоторая функция F : X → R с аргументом X ⊆ 2Gtrain , а 2Gtrain – множество всех
подмножеств множества Gtrain.

В зависимости от выбора функцииF в определении выше обычно выделяют следующие крите-
рии информативности: ошибка классификации, прирост информации, неопределенность Джини
(все три – в задаче классификации) и дисперсионный критерий (в задаче восстановления регрес-
сии). Далее мы рассмотрим прирост информации и неопределенность Джини.

Прирост информации

Если дискретная случайная величина принимает значения 1, . . . , K с вероятностями p1, . . . , pK
соответственно, то энтропия этой случайной величины определяется как [Вью13]

H(p) ≡ H(p1, . . . , pK) = −
K∑

k=1

pk log2 pk.

(Энтропийный) прирост информации как критерий информативности разбиения множества
объектов A по признакуm в задаче классификации на K классов определяется как

QH(A,m) = H(pA)−
|Am|
|A| H(pAm)−

|A¬m|
|A| H(pA¬m),

гдеAm – подмножество объектов изA, обладающих признакомm,A¬m – соответственно, не обла-
дающих, pA = ( |A1|

|A| , . . .
|AK |
|A| ) – распределение классов для объектов изA, аAj ⊆ A – подмножество

объектов, отнесенных к классу j (j = 1, . . . , K).
Сформулируем определение (энтропийного) прироста информации классифицирующего пра-

вила в задаче бинарной классификации.

Определение 23. Пусть дан классификационный контекст K = (Gtrain ∪ Gtest, M ∪ {t}, Itrain ∪
Itest) и целевой признак t – бинарный. ПустьB →c,s t – классифицирующее ассоциативное правило
(см. Определение 20), где B ⊆ M , c,s – достоверность и поддержка правила. Тогда множество
объектовGtrain можно разделить на 4 непересекающихся множества:Gtrain = G+

B ∪G−
B ∪G+

¬B ∪
G−

¬B, где

G+
B = B′ ∩ t′ – множество положительных объектов, подходящих под правило B →c,s t;



24

G−
B = B′\t′ – множество отрицательных объектов, подходящих под правило B →c,s t;

G+
¬B = t′\B′ – множество положительных объектов, не подходящих под правило B →c,s t;

G−
¬B = Gtrain\(B′ ∪ t′) – множество отрицательных объектов, не подходящих под правило

B →c,s t.

(Энтропийным) приростом информации правила B →c,s t называется величина

QH(Gtrain, B) = H0 −
|G+

B ∪G−
B|

|Gtrain|
HB −

|G+
¬B ∪G−

¬B|
|Gtrain|

H¬B,

где HB = H(
|G+

B |
|G+

B ∪ G−
B | ,

|G−
B |

|G+
B ∪ G−

B |), H¬B = H(
|G+

¬B |
|G+

¬B ∪ G−
¬B | ,

|G−
¬B |

|G+
¬B ∪ G−

¬B |), а H0 = H( |t′|
|Gtrain| ,

|Gtrain\t′|
|Gtrain| ).

Неопределенность Джини

Если дискретная случайная величина принимает значения 1, . . . , K с вероятностями p1, . . . , pK
соответственно, то неопределенность Джини (Gini impurity) этой случайной величины определя-
ется как [Вью13]

G(p) ≡ G(p1, . . . , pK) =
K∑

k=1

pk(1− pk).

Неопределенность Джини как критерий информативности разбиения множества объектов A

по признакуm в задаче классификации на K классов определяется как

QG(A,m) = G(pA)−
|Am|
|A| G(pAm)−

|A¬m|
|A| G(pA¬m),

гдеAm – подмножество объектов изA, обладающих признакомm,A¬m – соответственно, не обла-
дающих, pA = ( |A1|

|A| , . . .
|AK |
|A| ) – распределение классов для объектов изA, аAj ⊆ A – подмножество

объектов, отнесенных к классу j (j = 1, . . . , K).
Сформулируем определение неопределенности Джини классифицирующего правила в задаче

бинарной классификации.

Определение 24. В условиях Определения 23 неопределенностью Джини правила B →c,s t на-
зывается величина

QG(Gtrain, B) =
|G+

B ∪ G−
B|

|Gtrain|
G(

|G+
B|

|G+
B ∪ G−

B|
,

|G−
B|

|G+
B ∪ G−

B|
)+

|G+
¬B ∪ G−

¬B|
|Gtrain|

G(
|G+

¬B|
|G+

¬B ∪ G−
¬B|

,
|G−

¬B|
|G+

¬B ∪ G−
¬B|

),

где G(p1, p2) = 1− p21 − p22.
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1.3.4. Методы классификации по запросу

“Ленивые” деревья решений

Алгоритм построения “ленивых” деревьев решений LazyDT [FKY96] имеет некоторые пре-
имущества по сравнению с обычными деревьями решений. Во-первых, построенные решающие
правила получаются намного короче и поэтому лучше интерпретируются. Во-вторых, при огра-
ниченной обучающей выборке многие алгоритмы построения деревьев решений сталкиваются с
проблемой сильной фрагментации [PH90]. В алгоритмах типа С4.5 [Qui93] и ID3 [Qui86] на каж-
дом шаге построения дерева выбирается лучшее разбиение на основе среднего улучшения какого-
то критерия, например, прироста информации. Поскольку выбор делается на основе усредненного
значения критерия, для некоторых дочерних ветвей он может быть и отрицательным. Для объек-
тов, которые “попадают” на такой путь в дереве, дальнейшее разбиение может приводить толь-
ко к лишней фрагментации данных. В алгоритме 1 построения “ленивых” деревьев решений для
каждого тестового объекта строится свой путь дерева решений, что позволяет избежать лишней
фрагментации данных. На каждом шаге алгоритма выбирается разбиение, приводящее к макси-
мальному уменьшению энтропии целевого класса.

Algorithm 1 Алгоритм построения “ленивых” деревьев решений LazyDT [FKY96].
Вход: X – обучающая выборка, t – объект из тестовой выборки
Выход: yt – предсказанная метка целевого класса для объекта t
1. Если все объекты в X имеют одну и ту же метку l, вернуть l
2. В противном случае выбрать признак A, пусть a — значение признака A у объекта t. Пусть
X ′ – подмножество обучающих объектов со значением признака A, равным a.
Применить алгоритм для X ′

Алгоритмы классификации на основе ассоциативных правил

Еще одна альтернатива деревьям решений – классификаторы, построенные по ассоциативным
правилам, или просто ассоциативные классификаторы (Eager Associative Classifier, EAC). Как бы-
ло показано [LHM98], они по качеству классификации часто превосходят деревья решений, по-
скольку ищут правила с глобальным максимумом критерия (например, прироста информации).
Однако число порождаемых ассоциативных правил может быть очень большим.

Суть ассоциативных алгоритмов классификации, основанных на ассоциативных правилах
(Eager Associative Classifiers, EAC):

– построить множество всех классифицирующих ассоциативных правил (правил, в заключе-
нии которых стоит метка целевого класса). Это можно сделать с помощью немного моди-
фицированных версий классических алгоритмов поиска ассоциативных правил, таких как
Apriori [AS94] или FP-growth [HPY00];

– отсортировать правила по некоторому критерию (например, по приросту информации);



26

– определять метки тестовых объектов с помощью первого “подходящего” правила (то есть с
помощью правила, имеющего максимальный прирост информации среди всех правил, по-
сылка которых является подмножеством тестового объекта).

В работе [VMZ06] показывается, что дерево решений может быть выражено в терминах EAC,
и что метка каждого тестового объекта определяется с помощью EAC правилом с не меньшим
приростом информации, чем соответствующее правило, построенное деревом решений.

Недостатком этого семейства алгоритмов является слишком большое количество построенных
классифицирующих правил и, как следствие, высокая вычислительная сложность.

Algorithm 2 Алгоритм классификации на основе ассоциативных правил (Eager Associative
Classifier) [VMZ06]
Вход: X – обучающая выборка, t – объект из тестовой выборки
Выход: yt – предсказанная метка целевого класса для объекта t
1. Найти вXtrain множествоC ассоциативных правил вида {χ→ yi}, где χ – подмножество при-
знаков из объектовXtrain, yi – метка целевого класса. Это можно сделать с помощью алгоритма
типа Apriori
2. Отсортировать правила C по приросту информации
3. Определить метку yt как заключение “первого подходящего” правила {χi → yi} ∈ C, где χi

– подмножество признаков объекта t

Классификация по запросу на основе ассоциативных правил

В отличие от алгоритмов классификации, основанных на ассоциативных правилах, при “ле-
нивом” подходе (Lazy Associative Classification) все множество правил по обучающей выборке не
строится. Суть данного подхода (этапы классификации каждого тестового объекта) [VMZ06]:

– построить “проекцию” обучающей выборки на тестовый объект – выборку, составленную из
объектов, множество признаков которых имеет ненулевое пересечение с множеством при-
знаков данного тестового объекта (предполагается, что на входе признаки уже дискретизи-
рованы);

– построить множество всех классифицирующих ассоциативных правил (правил, в заключе-
нии которых стоит метка целевого класса) по “проекции” обучающей выборки на данный
тестовый объект;

– отсортировать правила по некоторому критерию (например, по приросту информации);

– определить метку данного тестового объекта с помощью первого “подходящего” правила
(то есть с помощью правила, имеющего максимальный прирост информации среди постро-
енных).

В работе [VMZ06] показывается, что “ленивый” (LAC) подход к классификации на основе
ассоциативных правил позволяет для заданного множества признаков и заданного порога на ми-
нимальную поддержку правила найти все те же правила, что и ассоциативный классификатор, и,
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Algorithm 3 Алгоритм классификации по запросу на основе ассоциативных правил (Lazy
Associative Classifier) [VMZ06]
Вход: Xtrain – обучающая выборка, Xtest – тестовая выборка
Выход: yt – вектор предсказанных меток целевого класса для объекта тестовой выборки Для каж-
дого ti ∈ Xtest

1. Пусть X i
train – проекция обучающей выборки Xtrain на признаки объекта ti

2. Найти в X i
train множество Cti ассоциативных правил вида {χ → yi}, где χ – подмножество

признаков объекта ti, yi – метка целевого класса
3. Отсортировать правила Cti по приросту информации
4. Определить метку yti как посылку правила из Cti с максимальным приростом информации
5. Добавить метку yti в вектор yt

возможно, какие-то другие, поскольку LAC может найти привила с хорошим приростом информа-
ции, которые были отброшены EAC из-за невысокой поддержки. Это во многих случаях приводит
к лучшему качеству классификации. При этом в среднем правила получаются “короче” (мощность
посылки правил в среднем ниже, чем у правил, полученных при EAC подходе), а значит, лучше
интерпретируются.

1.3.5. Замкнутые множества признаков как компактное представление пра-
вил

Поиск частых замкнутых множеств признаков (frequent closed itemset mining) – известная за-
дача интеллектуального анализа данных [Pas+99]. Связано это с тем, что поддержка любого ге-
нератора (см. Определение 15) замкнутого множества признаков (а это не что иное как содер-
жание формального понятия) равна поддержке самого замкнутого множества признаков. Заме-
тим, что в определениях выше все G+

B, G
−
B, G

+
B̄
, G−

B̄
выражаются только через B′ (а также Gtrain

и t′). Учитывая свойство ∀B ⊆ M B′′′ = B′, справедливы равенства H(B, τ) = H(B′′, τ) и
G(B, τ) = G(B′′, τ).

То есть значения критериев информативности H(B, τ) и G(B, τ) для правил вида B → τ , по-
сылками которых являются генераторыB содержаний формальных понятийB′′, будут такими же,
как и для правил B′′ → τ с посылками в виде самих содержаний. Значит, для нахождения всего
множества ассоциативных правил достаточно найти множество замкнутых множеств признаков.
В терминах АФП применительно к задаче классификации это значит, что множество классифи-
цирующих ассоциативных правил для обучающего формального контекста K = (G, M ∪ τ, I)
можно представить в виде {Bi → τi}, где Bi ⊆ M – замкнутые множества признаков (B′′

i = Bi),
τi ∈ {0,1} – значения целевого признака t.

1.4. Классификация на основе Анализа Формальных Понятий

Применение Анализа Формальных Понятий в задачах классификации активно изучается. Ос-
новной плюс таких алгоритмов – это вывод в виде интерпретируемых (понятных) человеку набо-
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ров правил. Эти плюсы описаны в статье [Kuz04]. В статьях [TMM16; PGO13] даны обзор и систе-
матизация методов классификации на основе Анализа Формальных Понятий. В статье [Каш15]
рассмотрен ансамбль алгоритмов, который строится на основе АФП, а [MKK15; KK15; Kas16;
KK16a] рассматривают примеры применения алгоритмов на основе АФП в задачах кредитного
скоринга и графовой классификации. В статьях [KK16b; MK17] сравниваются алгоритмы на ос-
нове деревьев решений и на основе АФП, сравнение делается по качеству классификации и по
интерпретируемости результатов в задаче кредитного скоринга. Далее подробней об этом.

1.4.1. Деревья решений в терминах АФП

Пусть решается задача бинарной классификации на два класса, и обучающая выборка задана
формальным контекстом K = (G+ ∪ G−, M ∪ τ, I+ ∪ I−), где τ – целевой признак объектов
обучающей выборки G = G+ ∪G−,M – множество признаков объектов обучающей выборки, не
включая целевой признак τ , G+ – множество объектов, обладающих целевым признаком τ (мно-
жество положительных объектов),G− – множество объектов, не обладающих целевым признаком
τ (множество отрицательных объектов), I+ и I− – бинарные отношения, заданные на G+ ×M и
G− ×M , где (g,m) ∈ Iy означает, что объект g ∈ Gy обладает признакомm и y ∈ {+,−}.

Пусть также множество признаков M дихотомизировано [Kuz96]: M = M0 ∪ ¬M0 и для
каждого признака m ∈ M0 существует признак ¬m ∈ ¬M0 (“отрицание” признака m): ∀g ∈
G ¬m ∈ g′ ⇐⇒ m ̸∈ g′.

Будем говорить, что подмножество признаков A ⊆M [Kuz96]:

– непротиворечиво еслиm ̸∈ A или ¬m ̸∈ A.

– полно если для каждогоm ∈M имеет местоm ∈ A или ¬m ∈ A.

Построение произвольного дерева решений сводится к последовательному выбору признаков.
Сперва мы игнорируем оптимизационный аспект, относящийся к приросту информации.

Последовательность признаков ⟨m1, . . . ,mk⟩ называется путем решения если множество
признаков {m1, . . . ,mk} непротиворечиво и существует пример g ∈ G+ ∪ G− такой что
{m1, . . . ,mk}′ ⊆ g′ (то есть имеется пример с тем же множеством признаков).

– Путь решения ⟨m1, . . . ,mi⟩ называется (собственным) подпутем пути решения
⟨m1, . . . ,mk⟩ если i ≤ k (i < k, соответственно).

– Путь решения ⟨m1, . . . ,mk⟩ называется полным, если объекты, обладающие множеством
признаков {m1, . . . ,mk}, являются либо положительными либо отрицательными примера-
ми.

– Полный путь решения называется неизбыточным, если ни один из его подпутей не являет-
ся полным путем решения. Множество всех выбранных признаков в полном пути решения
можно рассматривать как достаточное условие того, что объект обладает целевым признаком
τ .



29

Деревом решений называется множество полных путей решения.

– Замыканием пути решения ⟨m1, . . . ,mk⟩ называется замыкание соответствующего мно-
жества признаков, т.е. {m1, . . . ,mk}′′.

– Последовательность понятий с уменьшающимися объемами называется нисходящей це-
пью.

– Цепь, начинающаяся в корневой вершине, называется корневой.

Деревья решений и полупроизведения дихотомических шкал

Определение 25. [Kuz96] Полупроизведением двух контекстов K1 = (G1,M1, I1) и K2 =

(G2,M2, I2) называется K1

!
" K2 : = (G1 ×G2,M1 ∪M2,

!
), где

(g1,g2)
"

mj : ⇐⇒ gjIjm, mj ∈Mj, gj ∈ Gj, j ∈ {1,2}

Определение 26. [Kuz96]Дихотомическойшкалой называется формальный контекст видаD =

({g1, g2}, {m,¬m}, I), где |G| = 2, g1Im, g2I¬m.

Пример 3. Полупроизведение D1

!
" D2

!
" D3 трех дихотомических шкал D1, D2 и D3 выглядит

следующим образом:

D1

a ¬a
g11 ×
g12 ×

D2

b ¬b
g21 ×
g22 ×

D3

c ¬c
g31 ×
g32 ×

D1

!
" D2

!
" D3

a ¬a b ¬b c ¬c
(g11, g21, g31) × × ×
(g11, g22, g31) × × ×
(g12, g21, g31) × × ×
(g12, g22, g31) × × ×
(g11, g21, g32) × × ×
(g11, g22, g32) × × ×
(g12, g21, g32) × × ×
(g12, g22, g32) × × ×

Рассмотрим контекст K = (G, M, I) = D1

!
" D2

!
" . . . D|M |/2 - полупроизведение |M |/2 дихо-

томических шкал. Обозначим его
!
"
M D, где каждая дихотомическая шкалаDi соответствует паре

признаков (m,¬m).
Отметим, что множество объектов G имеет размер 2|M |/2, а отношение I таково, что множе-

ство объектных содержаний есть в точности множество полных непротиворечивых подмножеств
признаков.
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Рисунок 1.4: Решетка понятий полупроизведения трех дихотомических шкал, вершины
диаграммы помечены содержаниями.

Утверждение 1. [Kuz96] Каждый путь решения есть корневая нисходящая цепь в решетке
B(

!
"
M D) и каждая нисходящая цепь понятий с непустыми объемами в решеткеB(

!
"
M D) есть

путь решения.

Для дихотомизированных признаков прирост информации естественно определять для пары
признаковm,¬m ∈M .

Для пути решения ⟨m1, . . . ,mk⟩ имеет место

IG(m,m1, . . . ,mk) = −
|A′

m|
|G| H(Am)−

|A′
¬m|
|G| H(A¬m),

где Am := {m1, . . . ,mk,m}, A¬m := {m1, . . . ,mk,¬m}, и для каждого A ⊆M

H(A) = −
∑

y∈{τ,¬τ}

p(y | A) · log2 p(y | A),

где p(τ | A) есть условная выборочная вероятность того, что объект, обладающий множеством
признаков A, также обладает целевым признаком τ . Аналогично для p(¬τ | A).

При замене H(A) на G(A) = −
∑

y∈{τ,¬τ} p(y | A) · (1 − p(y | A)) получаем неопределенность
Джини Gini(m,m1, . . . ,mk) для пары признаковm,¬m ∈M .

В работе [Kuz96] показано, что прирост информации не изменяется при замыкании множеств
признаков. Докажем аналогичное утверждение для неопределенности Джини.
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Утверждение 2. Значение неопределенности Джини для пути решения равно значению неопре-
деленности Джини для замыкания этого пути. Аналогично, значение прироста информации для
пути решения равно значению прироста информации для замыкания этого пути.

Доказательство. Пусть оператор Галуа (·)′ связан с контекстом K = (G+ ∪ G−,M ∪ {τ},I+ ∪
I−) и A ⊆ M – подмножество признаков. Тогда для условной выборочной вероятности p(τ | A)
того, что объект, обладающий множеством признаков A, также обладает целевым признаком τ ,
справедливо:

p(τ | A) = |A′ ∩Gτ |
|A′| =

|(A′′)′ ∩Gτ |
|(A′′)′| = p(τ | A′′)

по свойству оператора Галуа (·)′: (A′′)′ = A′. ТогдаG(A) = G(A′′) и для пути решения ⟨m1, . . . ,mk⟩

Это означает, что вместо решетки понятий B(
!
"
M D) можно рассматривать решетку понятий

B(K+−) = B(G+ ∪G−,M ∪ τ, I+ ∪ I−), которая может быть намного меньше.

Определение 27. [Kuz96] Пусть T – дерево решений для контекстаK+− = (G+∪G−, M0∪¬M0∪
τ, I+ ∪ I−). Назовем дерево решений Tk, составленное из всех подпутей решения T ограниченной
мощности признаков, поддеревом дерева решений T глубины k. Tk = {P | P ∈ T, |P | ≤ k}.

Аналогично будем говорить о глубине признакового CbO-дерева (см. Определение 16) и его
поддеревьях глубины k.

Теорема 1. Пусть решается задача бинарной классификации, и обучающая выборка задана фор-
мальным контекстом K+− = (G+ ∪ G−, M ∪ τ, I+ ∪ I−). Пусть также множество признаков
дихотомизировано:M = M0 ∪¬M0. Пусть для данного формального контекста построено при-
знаковое CbO-дерево TCbO. Для любого пути решения ⟨m1, . . . ,mj⟩ дерева решений T глубины k

(j ≤ k) с приростом информации IG(⟨m1, . . . ,mj⟩) найдется замкнутое множество признаков,
являющееся вершиной CbO-дерева на глубине не более k, а также посылкой классифицирующего
правила c не меньшим приростом информации, чем у ⟨m1, . . . ,mj⟩.

Доказательство. Обозначим Bj = {m1, . . . ,mj}. По доказанному выше свойству 2 IG(Bj) =

IG(B′′
j ). Значит, надо показать, что depthCbO(B′′

j ) ≤ k, где depthCbO(A) – глубина CbO-дерева, на
которой расположен элемент A.

Рассмотрим 2 случая, когда множество Bj замкнуто и когда оно не замкнуто.
Случай 1. Пусть Bj = B′′

j . Значит, Bj является вершиной CbO-дерева. Покажем по индукции,
что ∀A ∈ TCbO справедливо |A| ≥ depthCbO(A).

1. Для |A| = 1 неравенство выполняется тривиально, так как по построению CbO-дерева в нем
на глубине 1 располагаются элементы вида a′′, a ∈M и |a′′| ≥ |a| = 1.

2. Пусть |A| ≥ depthCbO(A) для ∀A ∈ TCbO такого что |A| = n. Покажем, что ∀suc(A) выпол-
нено |suc(A)| ≥ depthCbO(suc(A)).
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Действительно, suc(A) = (A ∪ i)′′ ⇒ |suc(A)| ≥ |A ∪ i| = |A| + 1 ≥ depthCbO(A) + 1 =

depthCbO(suc(A)).

Итак, мы показали, что мощность любого элемента CbO-дерева не меньше глубины, на которой
этот элемент располагается в CbO-дереве.

Применяя это свойство к Bj , получаем depthCbO(Bj) ≤ |Bj| = j ≤ k.
Случай 2. Пусть Bj ̸= B′′

j . ∃ перестановка (i1, . . . , ij) чисел 1, . . . , j такая что α(i1) < . . . <

α(ij), где α – порядок на признаках, заданный в Определении 16. Тогда в CbO-дереве ∃ путь
(mi1)

′′ → (mi1 ∪ mi2)
′′ → . . . (mi1 ∪ mi2 ∪ . . .mij)

′′ = B′′
j , длина которого равна j. То есть, на

глубине j в CbO-дереве ∃ вершина B′′
j , или depthCbO(B′′

j ) = j ≤ k.

Забегая вперед и говоря про реализацию алгоритма поиска посылок классифицирующих пра-
вил среди формальных понятий, отметим, что доказанная теорема означает, что для любого пра-
вила, построенного деревом решений и имеющего мощность посылки k, можно найти правило с
не меньшим приростом информации при построении CbO-дерева с глубиной рекурсии k. Легко
показать, что аналогичные утверждения верны и для неопределенности Джини в силу доказанного
утверждения 2.

Пример 4. Покажем, что в доказанной выше теореме важно наличие отрицаний признаков в
обучающем контексте. Приведем простой контрпример к утверждению выше в случае, когда
отрицания признаков не добавляются.

Рассмотрим пример обучающего формального контекста, представленного Таблицей 1.3.
Сначала рассмотрим шкалирование признака “цвет” без отрицаний признаков (то есть име-
ются бинарные признаки “w” (белый), “y” (желтый), “g” (зеленый), “b” (синий), но нет “¬w”,
“¬y”, “¬g”, “¬b”). CbO-дерево построения множества формальных понятий для этого кон-
текста показано на Рис. 1.7. Диаграмма решетки формальных понятий для данного контекста
показана на Рис. 1.5. Рассмотрим также тестовый контекст (Таблица 1.4). Дерево решений, по-
строенное по обучающему контексту и классифицирующее все обучающие объекты без ошибок,
состоит всего из двух условий и представлено на Рис. 1.6.

Посмотрим, какими правилами классифицируются объекты тестовой выборки деревом ре-
шений:

Объект Правило
Попадает
фруктов

Попадает
не фруктов

Не попадает
фруктов

Не попадает
не фруктов

Gini

манго ¬w¬f → “+” 4 0 0 3 0
мыло w → “–” 1 2 3 1 0.4
шампиньон w → “–” 1 2 3 1 0.4
арбуз ¬wf → “–” 0 1 4 2 0.38

Видим, что объект “манго” классифицируется “идеальным” правилом ¬w¬f → “+”, кото-
рое не совершает ошибок на обучающем контексте. Но можно убедиться, что в CbO-дереве,
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показанном на Рис. 1.7, вплоть до глубины 2 нет посылок правил с нулевой средней неопределен-
ностью Джини.

Теперь если добавить к обучающему контексту отрицания признаков w, y, g и b, то есть при-
знаки ¬w,¬y,¬g и ¬b, уже получается 48 формальных понятий. Диаграмма решетки формаль-
ных понятий и CbO-дерево становятся слегка перегруженными и не показаны. Но можно легко
убедиться, что в CbO-дереве на глубине 2 как раз будет элемент {¬w,¬f} (т.к. это множество
признаков замкнуто). В таком случае утверждение 1 справедливо.

G \ M w y g b f ¬f s ¬s r ¬r фрукт
яблоко × × × × +

грейпфрут × × × × +
киви × × × × +
слива × × × × +
кубик × × × × –
яйцо × × × × –

теннисный мяч × × × × –

Таблица 1.3: Пример обучающего формального контекста.

G \ M w y g b f ¬f s ¬s r ¬r фрукт
манго × × × × ?
мыло × × × × ?

шампиньон × × × × ?
арбуз × × × × ?

Таблица 1.4: Пример тестового формального контекста.
Итак, неформально говоря, для того чтобы с помощью множества формальных понятий на-

ходить классифицирующие правила с качеством как минимум не хуже, чем у дерева решений,
надо к обучающему контексту добавить отрицания исходных признаков.

1.4.2. ДСМ-метод

Одной из первых моделей машинного обучения, неявно использовавших системы замыканий
и решетки, был ДСМ-метод, предложенный впервые в [Фин83] и являющийся формализацией
философского метода сходства Д.С. Милля.

Метод сходства (Первое правило индуктивной логики) [Mil43]

“Если два или большее число примеров исследуемого явления обладают только одним об-
щим признаком, то ... [этот признак] есть причина (или следствие) данного явления.”

В ДСМ-методе гипотезы относительно причины явления ищутся среди пересечений описаний
положительных примеров явления.

ДСМ-метод в терминах АФП

В задаче бинарной классификации, согласно Определению 18, объекты классификационного
контекста разделяются в зависимости от значения целевого признака t на [Bli+03; Kuz96]:
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Рисунок 1.5: Диаграмма решетки формальных понятий для контекста из Таблицы 1.3.

Рисунок 1.6: Дерево решений для контекста из Таблицы 1.3.

– положительные примеры: Множество G+ ⊆ Gtrain объектов, про которые известно, что
они обладают целевым признаком t,

– отрицательные примеры: МножествоG− ⊆ Gtest объектов, про которые известно, что они
не обладают целевым признаком t,

– недоопределенные примеры: Множество Gτ = Gtest объектов, про которые не известно,
обладают ли они целевым признаком или нет.

Возникают три подконтекста: Kε := (Gε, M, Iε), ε ∈ {−,+, τ}.
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Рисунок 1.7: Признаковое CbO-дерево для контекста, представленного Таблицей 1.3.

В подконтекстах Kε := (Gε,M,Iε), ε ∈ {−,+, τ} операторы Галуа и соответствующие опера-
торы замыкания обозначаются через (·)ε, (·)εε.

Формальное содержание H ⊆ M контекста K+ есть положительная гипотеза, если H не
является подмножеством содержания ни одного отрицательного примера g ∈ G−:

H++ = H, ∀g ∈ G− H ̸⊆ g−.

Отрицательные гипотезы определяются симметрично (c заменой + на –):

Формальное содержание H ⊆ M контекста K− есть отрицательная гипотеза, если H не
является подмножеством содержания ни одного положительного примера g ∈ G+:

H−− = H, ∀g ∈ G+ H ̸⊆ g+.

Классификация недоопределенного примера gτ :

– Если gττ содержит в качестве подмножества положительную гипотезу и не содержит ни од-
ной отрицательной гипотезы, то gτ классифицируется положительно (предсказывается на-
личие целевого признака w).

– Если gττ содержит в качестве подмножества отрицательную гипотезу и не содержит ни одной
положительной гипотезы, то gτ классифицируется отрицательно (предсказывается отсут-
ствие целевого признака w).

– Если gττ содержит в качестве подмножеств гипотезы обоих знаков или
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если gττ вообще не содержит в качестве подмножеств ни положительных ни отрицательных
гипотез, то классификация объекта, соответственно, противоречива или недоопределена.

Как следует из определения, для классификации достаточно иметь множество всехминималь-
ных (относительно ⊆) гипотез.

Пример 5. В Примере 2 классификационного контекста выделяются 3 подконтекста:

K+ = (G+, M ∪ {t}, I+), где G+ = {3,4,5,7,9,10};

K− = (G−, M ∪ {t}, I−), где G− = {1,2,6,8};

Kτ = (Gτ , M, Iτ ), где Gτ = {11,12,13,14}.

ЗдесьM = {or, oo, os, tc, tm, th, hn, w}, t = play.
Решетки формальных понятий контекстовK+ иK− изображены на Рисунке 1.8 слева и спра-

ва соответственно. Красным обведены минимальные положительные и отрицательные гипоте-
зы: H+ = {{oo,th}, {os,tc,hn}, {or,tm}} и H− = {{os,tm}, {os,th}, {or,tc,hn.w}}.

Рисунок 1.8: Решетки формальных понятий положительного (слева) и отрицательного (справа)
контекстов Примера 5.

Объекты 11 и 12 из Gτ классифицируются ДСМ-методом неопределенно, поскольку
! h ∈ H+ ∪ Hi : h ⊆ 11′, 12′ (или проще, для них нет “подходящих” гипотез). Объекты 13 и 14
классифицируются положительно ({oo,th} ⊆ 13′, {or,tm} ⊆ 14′).

1.5. Заключение

В Главе 1 мы рассмотрели основные термины и понятия, принятые в теории решеток и Ана-
лизе Формальных Понятий (Раздел 1.2), а также постановку задачи классификации в машинном
обучении (Раздел 1.3). Был представлен обзор методов классификации, основанных на классифи-
цирующих ассоциативных правилах, в том числе деревьев решений и методов классификации по
запросу. Также задача классификации была сформулирована в терминах АФП. В Разделе 1.4 бы-
ли рассмотрены методы классификации, основанные на АФП, в том числе в терминах АФП были
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представлены деревья решений. Также было доказано утверждение про то, как с помощью мно-
жеств формальных понятий находить классифицирующие правила гарантированно не хуже тех,
что строятся деревом решений, по критерию качества типа прироста информации или неопреде-
ленности Джини.

Далее в Главе 2 мы перейдем от объектно-признаковых описаний данных в задаче классифи-
кации к данным, в которых объекты представляются сложными описаниями. Для этого введем
основные термины, связанные с узорными структурами и их проекциями.
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Глава 2

Узорные структуры и их проекции

2.1. Введение

В классической постановке Анализа Формальных Понятий входные данные представляются
бинарным отношением (формальным контекстом) и на его основе строится решетка формальных
понятий. Однако зачастую объекты либо представляются не бинарными признаками (а, скажем,
вещественными или строковыми) либо вообще не могут быть описаны вектором признаков. В та-
ких случаях будем говорить, что объект задается сложным описанием. В Разделе 2.2 мы рассмот-
рим аппарат узорных структур (Pattern Structures) [GK01], который позволяет расширить методы
Анализа Формальных Понятий на случай, когда объекты задаются не бинарными признаками, а
сложными описаниями. Такими описаниями могут быть интервалы числовых значений, множе-
ства последовательностей, строк или графов.

В Разделе 2.3 будут рассмотрены подходы к классификации данных со сложной структурой
(последовательности, строки, графы) на основе ядерных функций и метода опорных векторов, а в
Разделе 2.5 будет дано описание методов классификации данных со сложной структурой на основе
узорных структур и их проекций.

2.2. Узорные структуры

Определение 28. [GK01] Узорная структура – это тройка (G,(D, ⊓), δ), где G – множество
объектов, (D, ⊓) – полная полурешётка всевозможных описаний, а δ : G→ D – функция, которая
сопоставляет каждому объекту из множества G его описание из D.

Соответствие Галуа между подмножествами множества объектов и множеством описаний для
узорной структуры (G, (D, ⊓), δ) записывается следующим образом:

A⋄ :=
#

g∈A

δ(g), где A ⊆ G

d⋄ := {g ∈ G | d ⊑ δ(g)}, где d ∈ D.
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Здесь ⊑ – это отношение поглощения, однозначно задающееся через полурешёточную операцию
как: a ⊑ b⇔ a ⊓ b = a. Для одного объекта a ∈ G a⋄ понимаем как {a}⋄ = δ(a).

Определение 29. [GK01] Узорное понятие узорной структуры (G, (D, ⊓), δ) – это пара (A, d), в
которойA ⊆ G – подмножество множества объектов, d ∈ D – одно из описаний из полурешётки
(D, ⊓), такие что A⋄ = d и d⋄ = A. Множество объектов A называется узорным объёмом
понятия, а d – его узорным содержанием.

Как и в классическом случае бинарных признаков, объём понятия – это максимальное мно-
жество объектов, разделяющих одно описание, которое не может быть дальше уточнено. Узорные
понятия упорядочены отношением (A1,d1) ≤ (A2,d2)⇔ A1 ⊆ A2 (что также равносильно d1 ⊒ d2)
и формируют решётку L(G,(D, ⊓), δ).

Узорная структура может быть построена для произвольных описаний, на множестве которых
определено отношение частичного порядка. Во многих задачах такой частичный порядок соответ-
ствует отношениям часть–целое или подкласс–класс. При этом суть операций ⊓ и ⊑ – сходство
описаний и поглощение одного описания другим.

Например, для данных, описываемых графами, естественный частичный порядок задается от-
ношением изоморфизма подграфу и может быть применен для анализа молекулярных графов на
основе их подструктур [KS05]. Для данных, представленных последовательностями некоторых
элементов полурешетки, естественно вводится отношение поглощения через понятие подпосле-
довательности. В этом контексте узорные структуры были применены для анализа последователь-
ностей (траекторий) госпитализации пациентов с целью выявления связи между причинами гос-
питализации и соответствующими процедурами [Buz+13; Buz+16].

2.2.1. Проекции узорных структур

Количество формальных понятий в решётке, построенной по формальному контексту, может
быть экспоненциальным от количества объектов [GW97]. Формальный контекст – это частный
случай узорных структур, и поэтому количество узорных понятий в решётке, построенной для
некоторой узорной структуры, может быть экспоненциальным от количества объектов в множе-
стве G. Значит, построение полной полурешётки узорных понятий может быть очень вычисли-
тельно сложным. Более того, большинство найденных узорных понятий не интересны для даль-
нейшего исследования, хотя занимают существенную часть времени вычислений. В случае, когда
сама полурешёточная операция сходства вычислительно сложна, построение решётки узорных
понятий может стать невозможным. Например, в качестве полурешёточной операции сходства
на узорной структуре на графах нужно определять изоморфизм подграфу [KS05], что является
NP-полной задачей. Для сокращения времени работы алгоритмов построения узорных решёток
были введены проекции узорных структур [GK01]. Проекция может быть рассмотрена как способ
фильтрации полурешётки описаний с определенными математическими свойствами. Эти свой-
ства позволяют задать связь между понятиями в спроецированной и начальной узорных структу-
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рах. К тому же полурешетка, построенная для спроецированной узорной структуры может ока-
заться значительно меньше исходной, что упрощает ее построение и исследование.

Определение 30. [GK01] Проекция полурешётки (D, ⊓) – это функция ψ : D → D, которая
является оператором ядра [GK01], т.е. для любых двух x, y ∈ D верно:

– x ⊑ y ⇒ ψ(x) ⊑ ψ(y) (монотонность)

– ψ(x) ⊑ x (сжимаемость)

– ψ(ψ(x)) = ψ(x) (идемпотентность)

Определение 31. [GK01] Проекция узорной структуры, полученная из узорной структуры
(G, (D, ⊓), δ) с помощью проекции ψ – это такая узорная структура (Gψ, (Dψ, ⊓ψ), δψ), в кото-
рой Gψ = G, Dψ = ψ(D) = {d ∈ D | d = ψ(d)}, с полурешёточной операцией ⊓ψ такой, что
∀x, y ∈ D x ⊓ψ y := ψ(x ⊓ y), а δψ = ψ ◦ δ.

В работе [Буз15] показано, что определение 31 корректно, то есть что проекция узорной струк-
туры тоже является узорной структурой в смысле определения 29 ((Dψ, ⊓ψ) – полурешётка). Там
же доказываются еще несколько утверждений о связи узорных понятий в исходной и спроециро-
ванной узорных структурах.

2.2.2. Интервальные узорные структуры

Для анализа данных с вещественными значениями признаков в Анализе Формальных Понятий
вводятся интервальные узорные структуры.

Описания D объектов узорной структуры образуют полную полурешетку (D, ⊓), где ⊓ – ком-
мутативная, ассоциативная и идемпотентная операция, определенная на описаниях объектов. Ин-
туитивный смысл этой операции – “сходство” описаний. Для интервалов операция сходства ⊓
определяется следующим образом:

Определение 32. [Kay+11] Пусть [a1,b1] и [a2,b2] – два интервала на множестве действительных
чисел, расширенном до включения {−∞,+∞} т.е. a1, b1, a2, b2 ∈ R+ = R ∪ {−∞,+∞}, a1 ≤
b1, a2 ≤ b2. Тогда операция сходства для двух интервалов определяется как [a1, b1] ⊓ [a2, b2] =
[min(a1, a2), max(b1, b2)].

Утверждение 3. Операция сходства, заданная на интервалах в Определении 32, удовлетворяет
Определению 3 полурешеточной операции.

Доказательство. Все 4 свойства полурешеточной операции в данном случае очень просто прове-
рить.

– Идемпотентность: [a, b] ⊓ [a, b] = [a, b];

– Коммутативность: [a1, b1] ⊓ [a2, b2] = [min(a1, a2), max(b1, b2)] = [a2, b2] ⊓ [a1, b1];
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– Ассоциативность: ([a1, b1] ⊓ [a2, b2]) ⊓ [a3, b3] = [min(a1, a2), max(b1, b2)] ⊓ [a3, b3] =

[min(a1, a2, a3), max(b1, b2, b3)] = [a1, b1] ⊓ ([a2, b2] ⊓ [a3, b3]);

– ∃ e = [−∞,+∞] ∀a, b ∈ R+, a ≤ b : [a, b] ⊓ e = e.

Заметим, что определенная полурешёточная операция сходства на интервалах не соответствует
интуитивному представлению о сходстве интервалов как их пересечении. Результатом такой полу-
решеточной операции будет больший интервал, соответствующий большему множеству объектов,
подобно тому как при уменьшении множества бинарных признаков число объектов, обладающих
всеми этими признаками, увеличивается (другими словами, операторы Галуа, определенные на
множествах объектов и признаков, обладают свойством экстенсивности).

Частичный порядок на интервалах ⊑ (отношение поглощения) задается через полурешёточ-
ную операцию следующим образом (согласно Определению 4):

[a1, b1] ⊑ [a2, b2]⇔ [a1, b1] ⊓ [a2, b2] = [a1, b1]⇔ a1 ≤ a2, b1 ≥ b2.

Определения операций ⊓ и⊑ позволяют применять их покомпонентно к векторам интервалов:

Определение 33. [Kay+11] Полурешеточная операция (операция сходства) для двух векторов ин-
тервалов ⟨[a1i, b1i]⟩i∈[1,m] и ⟨[a2i, b2i]⟩i∈[1,m] (где m ∈ N) определяется как покомпонентное сход-
ство составляющих интервалов:

⟨[a1i, b1i]⟩i∈[1,m] ⊓ ⟨[a2i, b2i]⟩i∈[1,m] = ⟨[a1i ⊓ a2i, b1i ⊓ b2i]⟩i∈[1,m].

Операция поглощения для двух векторов интервалов задается через покомпонентное погло-
щение интервалов:

⟨[a1i, b2i]⟩i∈[1,m] ⊑ ⟨[a2i, b2i]⟩i∈[1,m] ⇔ [a1i, b1i] ⊑ [a2i, b2i], i ∈ [1,m].

Определение 34. ПустьG – некоторое множество, понимаемое как множество объектов, (D,⊓)
– полурешетка описаний объектов, где полурешёточная операция ⊓ задается в Определении 33,
а каждый элемент d ∈ D – вектор интервалов d = ⟨[ai, bi]⟩i∈[1,m],m ∈ N. Пусть δ : G → D –
отображение. Тогда (G, (D, ⊓), δ) называется интервальной узорной структурой.

Пример 6. В Таблице 2.1 представлена простая интервальная узорная структура. Здесь призна-
ки объектов не бинарны и не вещественны, а представляются интервалами вещественных чисел.
Описаниями объектов являются вектора интервалов.
Например, g⋄2 = ⟨[5,7],[4,6],[2,5]⟩. Сходством двух векторов интервалов будет вектор, состоящий
из интервалов, каждый из которых будет выпуклой оболочкой двух соответствующих интерва-
лов (согласно Определению 32).

Например, g⋄2 ⊓ g⋄3 = ⟨[5,7],[4,6],[2,5]⟩ ⊓ ⟨[1,9],[2,7],[6,6]⟩ = ⟨[1,9],[2,7],[2,6]⟩.
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Множество {g2, g3} не является замкнутым, так как {g2,g3}⋄⋄ = ⟨[1,9],[2,7],[2,6]⟩⋄ =

{g1, g2, g3}.

m1 m2 m3

g1 [1,3] [3,5] [2,4]
g2 [5,7] [4,6] [2,5]
g3 [1,9] [2,7] [6,6]

Таблица 2.1: Узорная структура на интервалах [Буз15].

Рисунок 2.1: Решётка узорных понятий для узорной структуры из Таблицы 2.1 [Буз15].

В статье [Kuz09] доказывается наличие изоморфизма между решеткой понятий интервальной
узорной структуры и решеткой понятий формального контекста, полученного межпорядковым
шкалированием соответствующего многозначного контекста.

Пример 7. Рассмотрим многозначный контекст, представленный Таблицей 2.2.

a
1 4.6
2 4.7
3 4.9
4 5.0
5 5.1

a ≤ 4.6 a ≤ 4.7 a ≤ 4.9 a ≤ 5.0 a ≤ 5.1 a ≥ 4.6 a ≥ 4.7 a ≥ 4.9 a ≥ 5.0 a ≥ 5.1
1 × × × × × ×
2 × × × × × ×
3 × × × × × ×
4 × × × × × ×
5 × × × × × ×

Таблица 2.2: Простой многозначный контекст и межпорядковая шкала.

Решетка формальных понятий, соответствующая контексту, полученному межпорядковым
шкалированием, представлена на Рисунке 2.2.

Интервальная узорная структура, соответствующая многозначному контексту в Таблице
2.2 (слева), – это тройка {G, (D, ⊓), δ}, где

– G = {1,2,3,4,5} – множество объектов;

– D = {[a,b]}, a,b ∈ R ∪ {−∞,+∞}, a ≤ b – множество интервалов (описаний);

– ⊓ – полурешёточная операция сходства для интервалов (согласно Определению 32);
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– δ : G → D – функция, сопоставляющая каждому объекту из G описание (интервал) из D.
В примере δ(1) = [4.6,4.6], . . . , δ(5) = [5.1,5.1].

На Рисунке 2.2 показана решетка узорных понятий, соответствующая описанной выше ин-
тервальной узорной структуре. Она изоморфна решетке на Рисунке 2.2, построенной по шкали-
рованному формальному контексту (Таблица 2.2 (слева)).

Рисунок 2.2: Решетка формальных понятий, соответствующая контексту справа в Таблице 2.2.

Интервальные узорные структуры были успешно применены для анализа экспрессии ге-
нов [Kay+11]. В этой задаче каждый ген описывается степенью своей экспрессии в определённых
условиях. Таким образом, задано несколько признаков одного гена, соответствующих условиям и
имеющие численные значения. Такая узорная структура может выглядеть, как в Таблице 2.1, где
m1,m2,m3 соответствуют условиям, а интервалы – изменчивости экспрессии определенного гена.
Полурешеточная операция для такой интервальной узорной структуры задается Определением 33.
Решетка, соответствующая узорной структуре из Таблицы 2.1, показана на Рисунке 2.1.

2.2.3. Проекции интервальных узорных структур

Для последующего сравнения деревьев решений и алгоритмов машинного обучения на основе
АФП введем специальный вид проекций интервальных узорных структур [KK16b; Каш16].

Определение 35. Пусть (G, (D, ⊓), δ) – интервальная узорная структура иm – размерность век-
торов описаний (см. Определение 34). Пусть Ti = {τi1, . . . , τiti} (τij ∈ R+ = R ∪ {−∞,+∞}, i =
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Рисунок 2.3: Решетка узорных понятий, соответствующая интервальной узорной структуре
для контекста справа в Таблице 2.2.

1, . . .m, j = 1, . . . , ti i, j,m, ti ∈ N) – множества вещественных чисел. Тогда, ψ(⟨[ai,bi]⟩i∈[1,m]) =

⟨[max{τ | τ ∈ Ti ∪ {−∞,+∞}, τ ≤ ai},min{τ | τ ∈ Ti ∪ {−∞,+∞}, τ ≥ bi}]⟩ называется
дискретизацией интервальной узорной структуры (G, (D, ⊓), δ).

Утверждение 4. Дискретизация интервальной узорной структуры, введенная в Определении 35,
является проекцией по Определению 30.

Доказательство. Для краткости покажем, что свойства проекций справедливы для m = 1 (опи-
сания состоят только из одного интервала):
ψ([a,b]) = [max{τ | τ ∈ T ∪ {−∞,+∞}, τ ≤ a},min{τ | τ ∈ T ∪ {−∞,+∞}, τ ≥ b}], где
T = {τi}i∈[1,t].

Обозначим T+ = T ∪ {−∞,+∞}.

– Пусть [a1, b1] ⊑ [a2, b2]. Тогда ψ([a1,b1]) ⊓ ψ([a2,b2]) =
[max{τ | τ ∈ T+, τ ≤ a1},min{τ | τ ∈ T+, τ ≥ b1}] ⊓
[max{τ | τ ∈ T+, τ ≤ a2}, min{τ | τ ∈ T+, τ ≥ b2}] =
[max{τ | τ ∈ T+, τ ≤ min(a1, a2)}, min{τ | τ ∈ T+, τ ≥ max(b1, b2)}] =
[max{τ | τ ∈ T+, τ ≤ a1}, min{τ | τ ∈ T+, τ ≥ b1}] = ψ([a1,b1]).
Значит, ψ([a,b]) монотонна;
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– Очевидно, max{τ | τ ∈ T+, τ ≤ a1} ≤ a1 и min{τ | τ ∈ T+, τ ≥ b1} ≥ b1. Значит,
ψ([a,b]) ⊑ [a,b] и ψ([a,b]) обладает свойством сжимаемости;

– ψ(ψ([a,b])) = ψ([max{τ | τ ∈ T+, τ ≤ a1},min{τ | τ ∈ T+, τ ≥ b1}]) =
ψ([max{τ | τ ∈ T+, τ ≤ max{τ | τ ∈ T+, τ ≤ a1}},
min{τ | τ ∈ T+, τ ≥ min{τ | τ ∈ T+, τ ≥ b1}}] =
ψ([max{τ | τ ∈ T+, τ ≤ a1},min{τ | τ ∈ T+, τ ≥ b1}]) = ψ([a,b]).
Значит, ψ([a,b]) идемпотентна.

Мы показали, что дляm = 1 функция
ψ([a,b]) = [max{τ | τ ∈ T ∪ {−∞,∞}, τ ≤ a},min{τ | τ ∈ T ∪ {−∞,∞}, τ ≥ b}]
является монотонной, сжимающей и идемпотентной, то есть проекцией. Дляm > 1 рассуждения
аналогичны.

Далее дискретизацию узорной структуры также будем называть дискретизирующей проекци-
ей.

a ≤ 4.65 a ≤ 4.95 a ≥ 4.65 a ≥ 4.95
1 × ×
2 × ×
3 × ×
4 × ×
5 × ×

Таблица 2.3: Контекст, полученный дискретизированием признака a из Примера 6 порогами 4.65
и 4.95.

Рисунок 2.4: Решетка формальных понятий для контекста из Таблицы 2.3 и изоморфная ей
решетка узорных понятий для узорной структуры из Примера 8.
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Пример 8. Для набора данных из Примера 6 дискретизируем признак a порогами T = {4.65, 4.95}.
Полученный формальный контекст представлен Таблицей 2.3, а соответствующая решетка
формальных понятий показана на Рисунке 2.4 (слева).

ψ([a,b]) = [max{τ | τ ∈ T+, τ ≤ a},min{τ | τ ∈ T+, τ ≥ b}] с T+ = {−∞, 1.5, 3.5,+∞} – это
проекция полурешетки из Примера 6, а соответствующая решетка узорных понятий изоморфна
решетке формальных понятий дискретизированного контекста (Рис. 2.4 (слева)) и показана на
Рис 2.4 (справа).

Проекция ψ сопоставляет каждому узорному понятию из Примера 6 узорное понятие спро-
ецированной узорной структуры.

Графически это можно представить так, как показано на Рисунке 2.5. Здесь иллюстриру-
ется, что ψ([4.6,4.8]) = [−∞, 4.95]. Левой границей результата проекции будет максимальный
порог, меньший 4.6 или −∞, если такого нет, а правой – минимальный порог, больший 4.8 или
+∞, если такого нет. То есть суть проекции – максимальный по вложению (т.е. минимальный в
“привычном” смысле, по длине) интервал, который поглощается данным ([4.6,4.8]), и границами
которого являются заданные пороги 4.65,4.95 а также −∞ и +∞.

Полностью для данной узорной структуры дискретизирующая проекция задается Таблицей
2.4.

[a,b] ψ([a,b])
[4.6,4.6] (−∞, 4.65]
[4.7,4.7], [4.9,4.9], [4.7,4.9] [4.65,4.95]
[5.0,5.0],[5.1,5.1],[5.0,5.1] [4.95,+∞)
[4.7,5.0], [4.7,5.1], [4.9,5.0], [4.9,5.1] [4.65,+∞)
[4.6,4.7], [4.6,4.9] (−∞, 4.95]
[4.6,5.0],[4.6,5.1] (−∞,+∞)

Таблица 2.4: Значения дискретизирующей проекции ψ.

Рисунок 2.5: Пояснение к примеру с дискретизирующей проекцией.
Наконец, дискретизирующая проекция может быть иллюстрирована с помощью Рисунка 2.6

как отображение из одного множества узорных понятий в другое. Слева нарисована решетка
узорных понятий исходной интервальной узорной структуры, справа – спроецированная решет-
ка. Зеленые линии задают проекцию.

2.2.4. Постановка задачи классификации для узорных структур

Введенные нами в Главах 1.2 и 1.3 определения задачи бинарной классификации для фор-
мального контекста (Определение 17), ассоциативных правил (Определение 19), классифицирую-
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Рисунок 2.6: Дискретизирующая проекция как отображение из одного множества узорных
понятий в другое.

щих ассоциативных правил (Определение 20), локальной интерпретируемости множества правил
(Определение 21), критерия информативности признака в задаче бинарной классификации (Опре-
деление 22), энтропийного прироста информации классифицирующего правила (Определение 23)
и CbO-дерева (Определение 16) можно адаптировать и для узорных структур с целью получения
Теоремы 2, подобной Теореме 1, только для узорных структур, а не формальных контекстов.

Определение 36. Пусть даны (Gtrain, (D, ⊓), δtrain) и (Gtest, (D, ⊓), δtest) – обучающая и тесто-
вая узорные структуры. Пусть также задана функция разметки ℓ : Gtrain → Y, |Y| < ∞.
Узорную структуру (Gtrain ∪ Gtest, (D, ⊓), δtrain ∪ δtest) назовем классификационной, а об-
ласть определений функции ℓ – целевым признаком y. Элементы Y также будем называть
метками целевого класса. Задачей классификации для классификационной узорной структуры
(Gtrain ∪ Gtest, (D, ⊓), δtrain ∪ δtest) называется построение функции y∗ : Gtrain ∪ Gtest → y,
где y ∈ Y, которая каждому объекту g ∈ Gtrain ∪ Gtest ставит в соответствие значение
(метку целевого класса) из y ∈ Y. При этом полурешетку D будем называть полурешеткой
описаний, а g⋄ для ∀g ∈ Gtrain ∪ Gtest называется описанием объекта g. Узорную структу-
ру (Gtrain, (D, ⊓), δtrain) также будем называть обучающей выборкой. Если |Y| = 2, то такую
задачу классификации назовем задачей бинарной классификации.

Определение 37. Ассоциативное правило узорной структуры (G, (D, ⊓), δ) – это выражение
вида A→c,s B, где A,B – множества описаний из D (A ⊆ D, B ⊆ D) и

– c, s ∈ [0, 1];

– c = |(A∪B)⋄|
|A⋄| – достоверность (confidence, conf);

– s = |(A∪B)⋄|
|G| – поддержка (support, supp).
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Множество A называется посылкой правила, а B – заключением.

Если посылкой правила является множество описаний объектов обучающей выборки, а заклю-
чением – метка целевого класса объектов обучающей выборки, то такое ассоциативное правило
называется классифицирующим:

Определение 38. В условиях Определений 36 и 37 классифицирующее ассоциативное правило
узорной структуры (G, (D, ⊓), δ) – это выражение вида A →c,s y, где y ∈ Y, A ⊆ D – подмно-
жество описаний из D, а c,s – достоверность и поддержка правила соответственно, определя-
ющиеся так же, как в Определении 37.

Чаще всего мы не будем указывать поддержку правил и писать A →c t для обозначения клас-
сифицирующего правила с достоверностью c, например {a,b,c} →0.8 t. Также в случае бинарной
классификации будем обозначать целевой признак как “+” и писать, например, {a,b,c}→0.8 “+”.

Определение локальной интерпретируемости 21 остается ровно тем же и для классифициру-
ющих ассоциативных правил, определенных для узорных структур.

Определение 39. Пусть в условиях Определения 36 A – некоторое множество объектов обучаю-
щей выборки в задаче бинарной классификации, A ∈ Gtrain. Пусть Ad – подмножество объектов
из A, обладающих описанием d, а A¬d – подмножество объектов из A, не обладающих описанием
d, то есть ∀ a ∈ Am справедливо d ∈ δ(a) и ∀ a ∈ A¬m – d ̸∈ δ(a).

Тогда критерий информативности описания d в задаче бинарной классификации с обучаю-
щей выборкой (Gtrain, (D, ⊓), δtrain) определяется для множества объектов A следующим обра-
зом:

Q(A, d) = F (A)− |Ad|
|A| F (Ad)−

|A¬d|
|A| F (A¬d),

где F (X) – некоторая функция F : X → R с аргументом X ⊆ 2Gtrain , а 2Gtrain – множество всех
подмножеств множества Gtrain.

Наконец, определим энтропийный прирост информации для классифицирующего ассоциатив-
ного правила в случае узорных структур.

Определение 40. Пусть дана классификационная узорная структура
(Gtrain ∪ Gtest, (D, ⊓), δtrain ∪ δtest) и целевой признак – бинарный, то есть задана функ-
ция ℓ : Gtrain → Y и |Y| = 2. Пусть, без потери общности, множество уникальных значений
Y – {0,1}. Тогда Gtrain можно поделить на 2 непересекающихся множества положительных и
отрицательных объектов: Gtrain = G+

train ∪ G−
train и δ(g) = 1 ∀g ∈ G+

train, δ(g) = 0 ∀g ∈ G−
train.

Пусть B →c,s y – классифицирующее ассоциативное правило (см. Определение 38), где
B ⊆ D, c,s – достоверность и поддержка правила. Тогда множество объектов Gtrain можно
разделить на 4 непересекающихся множества: Gtrain = G+

B ∪ G−
B ∪ G+

¬B ∪ G−
¬B, где

G+
B = B⋄ ∩G+

train – множество положительных объектов, подходящих под правилоB →c,s y;



49

G−
B = B⋄\G+

train – множество отрицательных объектов, подходящих под правилоB →c,s y;

G+
¬B = G+

train\B⋄ – множество положительных объектов, не подходящих под правило
B →c,s y;

G−
¬B = G−

train\B⋄ – множество отрицательных объектов, не подходящих под правило
B →c,s y.

(Энтропийным) приростом информации правила B →c,s y называется величина

QH(Gtrain, B) = H0 −
|G+

B ∪ G−
B|

|Gtrain|
HB −

|G+
¬B ∪ G−

¬B|
|Gtrain|

H¬B,

где HB = H(
|G+

B |
|G+

B ∪ G−
B | ,

|G−
B |

|G+
B ∪ G−

B |), H¬B = H(
|G+

¬B |
|G+

¬B ∪ G−
¬B | ,

|G−
¬B |

|G+
¬B ∪ G−

¬B |), а H0 = H(
|G+

train|
|Gtrain| ,

|G−
train|

|Gtrain|),
и H – энтропия, введенная ранее перед Определением 22.

Утверждение 5. В условиях определений этой главы значение прироста информации для класси-
фицирующего ассоциативного правила равно значению прироста информации для классифици-
рующего ассоциативного правила, полученного из исходного заменой посылки на замыкание этой
посылки.

Доказательство. Пусть оператор Галуа (·)⋄ связан с узорной структурой (G, (D, ⊓), δ) и функция
разметки ℓ : Gtrain → Y, где A ⊆ D – подмножество описаний. Тогда для условной выбороч-
ной вероятности p(τ | A) того, что объект, обладающий множеством описаний A, также обладает
целевым признаком τ , справедливо:

p(τ | A) = |A⋄ ∩Gτ |
|A⋄| =

|(A⋄⋄)⋄ ∩Gτ |
|(A⋄⋄)⋄| = p(τ | A⋄⋄)

по свойству оператора Галуа (·)′: (A⋄⋄)⋄ = A⋄. Тогда G(A) = G(A⋄⋄) и для пути решения
⟨m1, . . . ,mk⟩

Gini(m,m1, . . . ,mk) = − |A⋄
m|

|G| G(Am) − |A⋄
¬m|
|G| G(A¬m) = − |(A⋄⋄)⋄m|

|G| G(A⋄⋄
m ) − |(A⋄⋄)⋄¬m|

|G| G(A¬m) =

Gini({m,m1, . . . ,mk}⋄⋄,
IG(m,m1, . . . ,mk) = − |A⋄

m|
|G| H(Am) − |A⋄

¬m|
|G| H(A¬m) = − |(A⋄⋄)⋄m|

|G| H(A⋄⋄
m ) − |(A⋄⋄)⋄¬m|

|G| H(A¬m) =

IG({m,m1, . . . ,mk}⋄⋄.
Здесь G иH – это введенные выше неопределенность Джини и прирост информации соответ-

ственно.

Определение 41. Пусть дана узорная структура (G, (D, ⊓), δ) и элементы множества D про-
нумерованы, т.е. для множества D задан порядок (α(D), <), ∀d ∈ D α(d) ∈ [1, |D|]. Пусть для
B ⊆ D min(B) выдает элементы из B c минимальным номером:
min(B) = {d | d ∈ B,α(d) < α(d̃) ∀d̃ ∈ B\{d}}.

Обозначим suc(B) – множество всех наследников множества B: узорных понятий с узорным
содержанием вида (B ∪ {i})⋄⋄, таких что min((B ∪ {i})⋄⋄ \ B) = {i}. CbO-деревом для узор-
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ной структуры (G, (D,⊓), δ) называется дерево, состоящее из всевозможных множеств suc(B),
дуги которого задаются отношением (B, suc(B)).

Теорема 2. Пусть решается задача бинарной классификации, и обучающая выборка задана ин-
тервальной узорной структурой PS = (G+

train ∪ G−
train, (D,⊓), δtrain) c функцией разметки

ℓ : Gtrain → {0,1}, где Gtrain = G+
train ∪ G−

train. Пусть для данной узорной структуры постро-
ено CbO-дерево TCbO.

1. Существует многозначныйформальный контекстK = (Gtrain,M,W, I) и формальный кон-
текстKI, полученный изK межпорядковым шкалированием, такие что решетка формаль-
ных понятий, построенная для контекста KI, изоморфна решетке узорных понятий, по-
строенной для узорной структуры PS.

2. Можно установить взаимно-однозначное соответствие между вершинами признакового
CbO-дерева TICbO

, построенного по контексту KI, и вершинами CbO-дерева TCbO.

3. Для любого пути решения ⟨m1, . . . ,mj⟩ дерева решений T глубины k (j ≤ k) с приростом
информации IG(⟨m1, . . . ,mj⟩) найдется замкнутое описание, являющееся вершиной CbO-
дерева на глубине не более k, а также посылкой классифицирующего правила c не меньшим
приростом информации, чем у ⟨m1, . . . ,mj⟩.

Доказательство. 1. Напрямую следует из утверждения, доказанного в [Kuz09], про наличие
изоморфизма между решеткой понятий интервальной узорной структуры и решеткой по-
нятий формального контекста, полученного межпорядковым шкалированием соответству-
ющего многозначного контекста. Обозначим KI = (Gtrain,MI , I). Отсюда же следует, что
∀A ⊆ Gtrain мощность A′ равна мощности A⋄, где операция (·)′ определена в контексте KI,
а операция (·)⋄ – в узорной структуре PS

2. Из п. 1. следует, что любому формальному понятию (A,B) контекста KI можно поставить
во взаимно-однозначное соответствие узорное понятие (A,C) узорной структуры PS. Здесь
A ⊆ Gtrain, B ⊆ MI , C ∈ D. Тогда для множества B со множеством наследников suc(B)

(см. Определение 16 признакового CbO-дерева) можно поставить во взаимно-однозначное
соответствие описание C со множеством наследников suc(C) вида (C ∪ {i})⋄⋄, таких что
min((C ∪ {i})⋄⋄ \ C) = {i} (см. Определение 16 CbO-дерева для узорной структуры).

3. – Пусть Cj = C⋄⋄
j –замкнутое описание, о котором идет речь. По доказанному свойству

5 IG(Cj) = IG(C⋄⋄
j )

– Применяя Теорему 1 к контексту KI, получаем, что для любого пути решения
⟨m1, . . . ,mj⟩ дерева решений T глубины k (j ≤ k) с приростом информации
IG(⟨m1, . . . ,mj⟩) найдется замкнутое множество признаков BI , являющееся верши-
ной CbO-дерева TICbO

на глубине не более k, а также посылкой классифицирующего
правила c не меньшим приростом информации, чем у ⟨m1, . . . ,mj⟩.
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– Из п. 2 следует, что этой вершине BI CbO-дерева TICbO
соответствует некоторая вер-

шина C CbO-дерева TCbO.

– Из п.1 заключаем, что, |BI | = |C| и тогда проводя рассуждения, аналогичные тем, что
сделаны в доказательстве Теоремы 1, получаем, что вершина C располагается в CbO-
дерева TCbO на глубине не более k. Приведем эти рассуждения.

ОбозначимCj = {d1, . . . , dj}, где d1 ∈ D, . . . dj ∈ D. Надо показать, что depthCbO(⋄⋄j ) ≤
k, где depthCbO(A) – глубина CbO-дерева, на которой расположен элемент A.

Рассмотрим 2 случая, когда множество Cj замкнуто и когда оно не замкнуто.

Случай 1. Пусть Cj = C⋄⋄
j . Значит, Cj является вершиной CbO-дерева. Покажем по

индукции, что ∀A ∈ TCbO справедливо |A| ≥ depthCbO(A).

(a) Для |A| = 1 неравенство выполняется тривиально, так как по построению CbO-
дерева в нем на глубине 1 располагаются элементы вида d⋄⋄, d ∈ D и |d⋄⋄| ≥ |d| = 1.

(b) Пусть |A| ≥ depthCbO(A) для ∀A ∈ TCbO такого что |A| = n. Покажем, что ∀suc(A)
выполнено |suc(A)| ≥ depthCbO(suc(A)).
Действительно, suc(A) = (A∪ i)⋄⋄ ⇒ |suc(A)| ≥ |A∪ i| = |A|+1 ≥ depthCbO(A)+

1 = depthCbO(suc(A)).

Мы показали, что мощность любого элемента CbO-дерева не меньше глубины, на кото-
рой этот элемент располагается в CbO-дереве. Применяя это свойство к Cj , получаем
depthCbO(Cj) ≤ |Cj| = j ≤ k.

Случай 2. Пусть Cj ̸= C⋄⋄
j . ∃ перестановка (i1, . . . , ij) чисел 1, . . . , j такая что α(i1) <

. . . < α(ij), где α – порядок на описаниях, заданный в Определении 41. Тогда в CbO-
дереве ∃ путь (di1)⋄⋄ → (di1 ∪ di2)

⋄⋄ → . . . (di1 ∪ di2 ∪ . . .mij)
⋄⋄ = ⋄⋄

j , длина которого
равна j. То есть, на глубине j в CbO-дереве ∃ вершина ⋄⋄

j , или depthCbO(⋄⋄j ) = j ≤ k.

2.3. Порядок на помеченных графах и графовая узорная струк-

тура

Приведем основные определения из [Ore62] и [Сам06].
Помеченный граф – это пятерка вида ((V,lv), (E,le), L), где V – множество вершин,E ⊆ V ×V

– множество ребер, а функции lv : V → L и le : V → L сопоставляют метки из множества L

вершинам и ребрам соответственно
Помеченный граф Γ1 := ((V1,lv1), (E1,le1), L1) доминирует над помеченным графом

Γ2 := ((V2,lv2), (E2,le2), L2), или Γ2 ≤ Γ1, если существует взаимно-однозначное отображение
ϕ : V2 → V1, которое

– учитывает ребра: (v,w) ∈ E2 ⇒ (ϕ(v), ϕ(w)) ∈ E1,
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– учитывает порядок на метках: lv2(v) ≤ lv1(ϕ(v)), le2(v,w) ≤ le1(ϕ(v),ϕ(w)).

Пример:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH2N CH3

ClHO

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⊓

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH3C OH

OHH2N

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH2N

HO

, C

CH3C

OH

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Метки вершин упорядочены (слева), x ≼ A для произвольной вершинной метки A ∈ L (спра-
ва).

Полурешеточная операция для двух графов задается следующим образом [Сам06]:

{X} ⊓ {Y } := {Z | Z ≤ X, Y, ∀Z∗ ≤ X,Y Z∗ ̸≥ Z}

–множество всех максимальных общих подграфов графов X и Y .

Пример:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH2N CH3

ClHO

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⊓

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH3C OH

OHH2N

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH2N

HO

, C

CH3C

OH

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Для множеств графов X = {X1, . . . , Xk} и Y = {Y1, . . . , Yk} операция задается следующим
образом:

X ⊓ Y := MAX (
⋃

i,j

({Xi} ⊓ {Yj}))

Операция⊓ идемпотентна, коммутативна и ассоциативна [Kuz99], то есть действительно является
полурешеточной операцией по Определению 3.
Пример:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH3C NH2

H2N

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⊓

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

CH3C Cl

HO

, C

C CH3

Cl

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C

C

HO

, C

C

CH3

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Поскольку операция⊓ задает полурешетку на множестве помеченных графов, через нее можно
определить отношение естественного порядка следующим образом: G ⊑ H ⇐⇒ G ⊓H = G.

Такое определение отношения ⊑ эквивалентно следующему: G ⊑ H ⇐⇒ ∀g ∈ G ∃h ∈
H такой что g ≤ h.

Приведем пример узорной структуры, определенной на множестве объектов, описаниями ко-
торых являются помеченные графы.

Пример 9. Пусть {1,2,3} – множество, {G1,G2,G3} – множество их описаний в виде помеченного
графа:
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G1 : C

CH3C NH2

NH2H2N

G2 : C

CH2N OH

H3C Cl

G3 : C

CH2N OH

ClH2N

D – множество всех помеченных графов, ⊓ – операция пересечения на графах, D = (D, ⊓).
Множество {1,2,3}, их “описаний” (графов)D = {G1,G2,G3} (δ(i) = Gi, i = 1, . . . ,3), и оператор
⊓ образуют узорную структуру ({1,2,3}, D, δ).
{1,2,3}⋄ = {NH2 − C = C}, т.к. {NH2 − C = C} – единственный граф, изоморфный подграфу
каждого из графов {G1,G2,G3}. Аналогично {NH2 − C = C}⋄ = {1,2,3}, поскольку объекты 1,2,
и 3 имеют описания, подграфу которых изоморфен граф {NH2 − C = C}.

Все узорные понятия такой узорной структуры:
(
{1,2,3} , C

CH2N )
,

(
{1,2} , C

CH3C

NH2

)
,

(
{1,3} , C

CH2N

NH2

)
,

(
{2,3} , C

CH2N OH

Cl

)
, (1,{G1}) , (2,{G2}) , (3,{G3}) , (∅, {G1, G2, G3}) .

2.4. Классификация данных со сложной структурой методом

ядерных функций

2.4.1. Ядра и ядерный трюк

Ядерные методы обучения работают не с явными описаниями объектов, а только с информа-
цией об их попарном сходстве — ядерной функцией [Mül+01].

Функция K : X ×X → R, определенная на множестве X , называется ядром на X ×X , если
она:

– Симметрична, т.е. для любых x ∈ X, y ∈ X → K(x,y) = K(y,x);

– Положительно полуопределена, т.е. для любых x1, . . . , xN ∈ X (N ≥ 1) матрица K, та-
кая что Ki,j = K(xi, xj), положительно полуопределена, а именно:

∑
i,j cicjKi,j ≥ 0, или,

эквивалентно, все собственные числа матрицы K неотрицательны.

Если x ∈ X описывается в виде φ(x) = {φn(x)}n≥1, и функция K представляется в виде
скалярного произведения K(x,y) =< φ(x),φ(y) >=

∑
n φn(x)φn(y), то K — ядро. Векторное

пространство, полученное с помощью функции φ(x), называется признаковым.
Ядерные методы работают в признаковом пространстве и ищут линейные зависимости между

признаковыми описаниями. В частности, в алгоритме SVM в простейшем случае бинарной
классификации ищется оптимальная разделяющая плоскость в признаковом пространстве.

Ядерный трюк (“kernel trick”)
Если векторы {φ(x)} используются оптимизационным алгоритмом только в скалярном произве-
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дении < φ(xi),φ(xj) >, то алгоритм работает в признаковом пространстве только опосредованно
через ядерную функцию [Mül+01].

“Ядерный трюк” в SVM: в признаковом пространстве разделяющая гиперплоскость определя-
ется вектором w =

∑
i αiyiφ(xi), где xi — опорные вектора. Для классификации нового примера

x надо считать скалярное произведение < w,φ(x) >=
∑

i αiyiK(xi,x). Таким образом, не надо
считать сложное скалярное произведение видаK(φ(x),φ(y)) в признаковом пространстве, вычис-
ления свелись к подсчету скалярных произведений в пространстве относительно небольшой раз-
мерности.

Среди ядер для данных со сложной структурой выделяют: ядра свертки (Convolution kernels),
ядра для деревьев (Tree kernels) и графовые ядра (Graph kernels).

Ядра свертки — это ядра на сложных структурах, определенные с помощью более простых
ядер на подструктурах описаний объектов.

Пусть X — пространство объектов, и каждому объекту x соответствует подпространство X§

пространства X . Пусть также определено ядро k : X × X → R. Если имеется отношение
R ⊆ X ×X , то следующее ядро называется ядром свертки:K(x,y) =

∑
(x′,x)∈R

∑
(y′,y)∈R k(x′,y′)

или K(x,y) =
∑

(x′,y′)∈(X§,X†)
k(x′,y′), где X§,X† — конечные подмножества X , определенные объ-

ектами x и y.
Среди ядер свертки – ядра отображения (Mapping kernels), строковые ядра (String kernels).
Среди ядер для деревьев выделяют [Mül+01] ядро редакторских расстояний (Tree edit distances

kernel), ядро поддеревьев (Subtree kernel), ядро деревьев из подмножеств вершин (Subset tree
kernel) и ядро частичного сходства деревьев (Partial tree kernel).

2.4.2. Графовые ядра

Рассмотрим подробней некоторые ядра для графов.

Ядра случайного обхода (Random walk kernels)

Идея ядра произведения графов (product graph kernel) [Vis+10] – вычисление общих путей с
одинаковыми метками в двух графах. Хоть число таких путей может быть и бесконечно, тем не
менее скалярное произведение в ядре может быть посчитано за полиномиальное время с помощью
вычисления произведения двух ядер и предела последовательности степеней матрицы смежности
этого графа.

Вычисление таких ядер полиномиально только в случае непомеченных графов. При правиль-
ном выборе параметров вычислительную сложность ядра можно понизить доO(n3), где n—мак-
симальное число вершин в графах.

Прямое произведение двух графов: P× = X × Y = (V×), E×, где V (X) = {(x,y) : x ∈
V (X), y ∈ V (Y ), LX(x) = LY (y)}, а E× = {((x, y), (x′, y′)) ∈ V× × V× : (x,y) ∈ E(X), (x′,y′) ∈
E(Y ), LX(x,y) = LY (x′,y′)}.
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K×(X,Y ) =
∑|V×|

x,y=0

∑∞
k=0

(
λkAk

×
)
x,y
, где A× – матрица смежности произведения X и Y , {λi}

— последовательность весов (λi ∈ R,λi ≥ 0).
Предел может быть эффективно подсчитан при правильном выборе {λi} – за O(n3).

Ядро циклов (Cyclic pattern kernel)

Основная идея [HGW04] – разбить граф на простые цикла и оставшиеся ребра (“мосты”).
KCP = |C(X)

⋂
C(Y )|+ |T (X)

⋂
T (Y )|, где C(X) = {can(c)| c ∈ S(X)},

S(X) — множество простых циклов в графе X , can(c) — каноническое представление цикла c
(строка, которая уникально представляет этот цикл). T (X)— множество дуг, полученных удале-
нием простых циклов S(X) из графа X .

Ядро полиномиально по числу вершин и простых циклов в графе. Применяется в химической
информатике, где число циклов в графах невелико.

Ядро поддеревьев (Subtree pattern kernel)

Введение ядер поддеревьев [SB09] – попытка побороть такой недостаток ядер случайного об-
хода, что некоторые пары графов отображаются в одну и то же точку признакового пространства.

Псевдокод алгоритма вычисления ядра:

– Используется базовое ядро на подграфах графов X и Y с небольшим числом вершин (на-
пример, ядро всех подграфов);

– Для каждой пары вершин (x,y) ∈ V (X)× V (Y ):

• применить преобразование базового ядра к вершинам x и y

• рекурсивно применить преобразование ядра ко всем вершинам из множеств соседей
соседей вершин x и y вплоть до определенной глубины h.

Ядро поддеревьев лучше отражает структурную природу объектов, чем ядра случайного обхо-
да (“более выразительно”), но сложность вычислений растет экспоненциально с ростом глубины
“просмотра соседей” h.

Ядро кратчайших путей (Shortest path kernels)

Ядра случайного обхода недостаточно выразительны, а ядра поддеревьев обладают большой
вычислительной сложностью. [RG03]. Нужен компромисс. Идея ядер кратчайших путей [BK05] –
сравнивать кратчайшие пути между всеми парами вершин в графах.

Известно, что кратчайший путь между двумя вершинами в графе ищется за полиномиальное
время, например, алгоритмом Дейкстры для одной вершины (сложность O(m+ nlogn), n иm—
числа вершин и ребер соответственно) и алгоритмом Флойда-Уоршелла для всех вершин в графе
(сложность O(n3)).
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Строится “граф кратчайших путей” S(X), включающий все те же вершины, что и графX , а на
каждом ребре ставится метка — длина кратчайшего пути между соответствующими вершинами.

Ksp(X,Y ) =
∑

e∈E(S(X))

∑
e′∈E(S(Y )) k

1
walk(e,e

′), где k1
walk – ядро случайного обхода на обходах

единичной длины 1, то есть ядро на ребрах.
Поскольку сравниваются все пары ребер (которых максимум O(n2)), сложность вычисления

такого ядра – O(n4).

Ядро подграфов фиксированного размера (Graphlet kernel)

Принцип Graphlet-ядра [She+09] – определить сходство графов через количество их общих
подграфов с фиксированным максимальным числом вершин.

M -графлетом графа с N вершинами (M ≤ N ), называется его подграф, содержащий не более
M вершин.

Графлет-ядро сM -графлетами – это ядро KM(X,Y ) =
∑

S∈Mi(X)

∑
Ŝ∈Mi(Y ) δ(S, Ŝ), гдеMi(X)

– множество всех матриц, полученных из матрицы смежности графаX удалениемm строк и соот-
ветствующих столбцов, а δ – символ Кронекера, в определение которого в случае графов заложена
проблема изоморфизма.

На практике для непомеченных графов множество всех подграфов и изоморфизм считают за-
ранее, что ускоряет классификацию.

Ядра Вайсфайлера-Лемана (Weisfeiler-Lehman kernels)

Основная идея ядер Вайсфайлера-Лемана [She+11] – представить каждый граф последователь-
ностью графов с разными функциями помечивания вершин, удовлетворяющими специальному
тесту Вайсфайлера-Лемана на изоморфизм.

{X0, . . . ,Xh} = {(V,E,L0), . . . ,(V,E,Lh)}, где Li — функция помечивания вершин графа, удо-
влетворяющая тесту Вайсфайлера-Лемана на изоморфизм до глубины i.

Kh
WL(X,Y ) = k(X0, Y0) + . . .+ k(Xh, Yh).

Ядро Вайсфайлера-Лемана вычисляется заO(hm) для двух графов (m—максимальное число
ребер в этих двух графах) и за O(Nhm+N2hn) для N графов (n—максимальное число вершин
графа по всей выборке).

Оно стало “state-of-the-art”-ядром среди графовых ядер благодаря низкой сложности вычисле-
ния и хорошим экспериментальным показателям классификации.
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2.5. Классификация данных со сложной структурой на основе

узорных структур

Классификация по запросу для узорных структур

Алгоритм классификации по запросу для данных со сложной структурой на основе аппарата
узорных структур был предложен в [Kuz13]. Его основное отличие от алгоритма классификации
по запросу, основанного на ассоциативных правилах (рассмотренного в Параграфе 1.3.4), заклю-
чается в том, что алгоритм может работать с произвольными типами данных, для которых задано
описание объекта (это может быть как множество признаков, так и последовательности, интер-
валы или графы) и полурешёточная операция сходства этих описаний. То есть алгоритм предна-
значен для данных со сложной структурой, в которых обучающая выборка может быть представ-
лена узорной структурой. Эта постановка была реализована для интервальных данных в задаче
кредитного скоринга [MKK15] и для данных, представленных графами [KK15], в задаче прогно-
зирования токсичности химических веществ.

Рассмотрим подробней пример работы алгоритма из [KK15].

Пример 10. В задаче предсказания наличия некоторого свойстваP химических веществ дана обу-
чающая выборка в виде упрощенной молекулярной структуры 4 положительных веществ (обла-
дающих свойством P ) и 3 отрицательных веществ (не обладающих свойством P ). Для тестовых
объектов необходимо сделать прогноз, обладают ли они свойством P .

Описания положительных примеров:

G1 : C

CA B

DD

G2 : C

CA B

DB

G3 : C

CA B

EA

G4 : C

CA E

EB

Описания отрицательных примеров:

G5 : C

CA D

DD

G6 : C

CA E

B D

G7 : C

CB D

ED

Описания тестовых примеров:

G8 : C

CA B

ED

G9 : C

CA D

B E

G10 : C

CA D

D E

G11 : C

CA B

DA

Все общие 3-подграфы тестовых (G8 −G11) и обучающих примеров показаны в Таблице 2.5.
Таблица 2.6 резюмирует классификацию тестовых примеров. Скажем, “+4” для графов G1

и G8 что все общие подграфы графов G1 и G8 (то есть, A–C– B, A–C=C, B–C=C и C=C–D) не
изоморфны отрицательным примерам G5,G6,G7. Таким образом, пересечение G1 ⊓ G8 “вносит
вклад +4” в положительную классификацию примераG8. А вот все графы в пересеченииG4 ⊓G8



58

G8 G9 G10 G11

G1 ACB, ACC, BCC, CCD ACC, BCC, CCD ACC, CCD ACB, ACC, BCC, CCD
G2 ACB, ACC, BCC, CCD ACC, BCC, CCD ACC, CCD ACB, ACC, BCC, CCD
G3 ACB, ACC, BCC, CCE ACC, BCC, CCE ACC, CCE ACB, ACC, BCC
G4 ACC, BCC, CCE ACC, BCC, BCE, CCE ACC, CCE ACC, BCC
G5 ACC, CCD ACC, ACD, CCD ACC, ACD, CCD ACC, ACD, CCD
G6 ACC, BCC, CCD, CCE ACC, BCC, CCD, CCE ACC, CCD, CCE ACC, BCC, CCD
G7 BCC, CCD, CCE, DCE BCC, CCD, CCE CCD, CCE, CDE BCC, CCD

Таблица 2.5: Общие 3-подграфы тестовых и обучающих примеров.

(A–C=C, B–C=C и C=C–E) в то же время изоморфны подграфу отрицательного примера G6,
поэтому пересечение G4 ⊓G8 не “вносит вклад” в положительную классификацию примера G8.

G1 G2 G3 G4 G5 G6 G7 Итого Класс
G7 +4 +4 +4 G6 G1 –4 –4 +4 +
G8 G6 G6 G6 +4 –3 –4 –3 -6 —
G10 G5 G5 G6 G6 –3 –3 –3 -9 —
G11 +4 +4 +3 G6 –3 G1 G1 +8 +

Таблица 2.6: Классификация тестовых примеров голосованием большинством

Таким образом, примеры G8 и G11 классифицируются как обладающие свойством P , а G9 и
G10 – как не обладающие этим свойством.

ДСМ для узорных структур

ДСМ-метод, рассмотренный ранее, естественно адаптируется для классификации данных со
сложной структурой. ДСМ-метод для узорных структур описан в [Kuz04].

2.6. Заключение

В Главе 2 были рассмотрены методы классификации данных со сложной структурой, которая
не может быть представлена без потерь в виде объектно-признаковой таблицы или формального
контекста. Для этого в Разделе 2.2 описан аппарат узорных структур и их проекций в общем виде,
а также в частном случае, когда объекты представляются количественными или интервальными
признаками. С помощью специального вида проекций интервальных узорных структур показано,
как в случае данных с количественными признаками находить классифицирующие правила не
хуже, чем правила, построенные деревом решений, по критерию информативности типа прироста
информации или неопределенности Джини.

В Разделе 2.3 приведен обзор методов классификации данных со сложной структурой с по-
мощью ядерных функций и метода опорных векторов, а в Разделе 2.5 рассмотрена альтернатива
ядерным методам, основанная на узорных структурах.
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Глава 3

Алгоритмы классификации данных на
основе множеств формальных и узорных
понятий

3.1. Введение

В Главах 1 и 2 показано, что Анализ Формальных Понятий предлагает удобный формализм
для того чтобы, с одной стороны, выразить на этом языке многие алгоритмы, основанные на клас-
сифицирующих ассоциативных правилах, а с другой, чтобы обобщить эти алгоритмы на случай
данных со сложной структурой. В Главе 3 мы предлагаем алгоритм классификации произвольных
данных со сложной структурой, для которых можно ввести полурешёточную операцию сходства.
Отдельно и с подробными примерами рассматриваются частные случаи, когда данные представле-
ны бинарными, количественными и интервальными признаками, а также помеченными графами.

3.2. Классификация данных с бинарными и категориальными

признаками на основе множества формальных понятий

Предлагаемый подход в случае бинарных признаков в обучающей и тестовой выборке описан
в Алгоритме 4 – CoLiBRi (Concept Lattice-Based Rule-learner, классификация на основе правил
с помощью решеток формальных понятий) на основе [Каш16]. Для категориальных признаков
предлагается использовать One Hot Encoding, то есть для каждого категориального признака по-
рождать бинарные признаки в количестве, равном уникальному числу значений этого категори-
ального признака.

На вход алгоритму подаются обучающий и тестовый формальные контексты
Ktrain = (Gtrain,M0 ∪ M0 ∪ ctrain, Itrain) и Ktest = (Gtest,M0 ∪ M0, Itest). Множество призна-
ков M дихотомизировано: M = M0 ∪ M0, где ∀g ∈ Gtrain,m ∈ M0 ∃ m ∈ M0 : gItrainm →
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¬(gItrainm). Также алгоритм использует модификацию программной реализации In-Close 2 1 алго-
ритма “Замыкай-по-Одному” (CbO(K,min_supp)) [Куз93], в которой выдаются все формальные
понятия формального контекста K, поддержки которых ограничены снизу значением параметра
min_supp. Для выбора классифицирующих правил используется критерий inf : M ∪ ctrain → R
типа неопределенности Джини или энтропийного прироста информации (в программной реа-
лизации по умолчанию – среднее значение неопределенности Джини). Параметры алгоритма:
min_supp и n – минимальная поддержка классифицирующих правил и число правил, используе-
мых для классификации тестового объекта.

Алгоритм состоит из следующих шагов:

1. Инициализировать ctest пустым списком, а rtest – пустым словарем. В ctest будут добавляться
предсказанные значения целевого признака для тестовых объектов, а в rtest – правила для
каждого тестового объекта (ключ в словаре – номер объекта, значение – список правил).

2. Посчитать долю положительных объектов в выборке cpos =
|c′train|
|Gtrain| .

3. С помощью алгоритмаCbO(K,min_supp) найти все формальные понятия обучающего кон-
текста Ktrain cо значением поддержки не менееmin_supp. Параллельно с этим для каждого
формального понятия вычислять значение качества соответствующего классифицирующе-
го правила inf . Таким образом, получится словарь S , ключами которого будут содержания
формальный понятий, а значениями – соответствующие значения функционала inf .

4. Отсортировать все формальные понятия S по посчитанным значениям критерия inf в по-
рядке “улучшения”,то есть по возрастанию inf , если малые значения критерия говорят о хо-
роших правилах (как в случае неопределенности Джини) или по убыванию, если, наоборот,
большие значения критерия свидетельствуют о хороших правилах (прирост информации,
среднее уменьшение Джини).

5. Для каждого тестового объекта gt ∈ Gtest:

– Отобрать nrules “подходящих” содержаний формальных понятий, то есть
{Bi}i∈[1,nrules] = {B | (A,B) ∈ S, g′t ⊆ B}

– Для каждого из отобранных содержаний формальных понятий {Bi}i∈[1,nrules] опреде-
лить долю положительных объектов ci =

|B′
i ∩ c′train|

|B′
i|

– Сформировать таким образом набор правил {Bi →ci +}i∈[1,nrules] с достоверностями ci.
Записать его в словарь rtest для ключа t (номер объекта gt).

– Предсказанное значение целевого признака ctraint определить как индикатор того,
что средняя арифметическая достоверность найденных правил превышает долю

1http://shura.shu.ac.uk/38/

http://shura.shu.ac.uk/38/
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положительных объектов во всей выборке:

ctraint = [
1

n_rules

n_rules∑

i=1

ci ≥ cpos].

Добавить это значение в ctest.

Algorithm 4 Concept Lattice-Based Rule-learner (CoLiBRi) – случай бинарных признаков.
Input: Ktrain = (Gtrain,M0 ∪M0 ∪ ctrain, Itrain)
Ktest = (Gtest,M0 ∪M0, Itest)
min_supp ∈ R+, nrules ∈ N;
CbO(K,min_supp) : K → S;
inf : M ∪ ctrain → R;
sort(S, inf) : S → S

Output: ctest, rtest

ctest = ∅, rtest = ∅
cpos =

|c′train|
|Gtrain|

S = {(A,B) : inf(B, ctrain) | A ⊆ Gtrain, B ⊆ M,A′ = B,B′ = A, |A| ≥ min_supp} =
CbO(Ktrain,min_supp)
S = sort(S, inf)
for gt ∈ Gtest do
{Bi}i∈[1,nrules] = {B | (A,B) ∈ S, g′t ⊆ B}
ci =

|B′
i ∩ c′train|

|B′
i|

rtest[i] = {Bi →ci +}i∈[1,nrules]

ctest[i] = [ 1
n_rules

∑n_rules
i=1 ci ≥ cpos]

end for

Пример 11. Продемонстрируем суть работы алгоритма для набора данных из Таблицы 3.1. Это
тот же пример, что представлен Таблицей 1.2, только теперь с “отрицаниями” признаков.
Здесь:

– Ktrain = (Gtrain,M0 ∪M0 ∪ ctrain, Itrain)

– Gtrain = {1,2, . . . , 10}

– M0 = {or,oo,os,tc,tm,th,hn,w} – множество признаков Outlook=rainy, Outlook=overcast,
Outlook=sunny, Temperature=cool, Temperature=mild, Temperature=hot, Humidity=normal,
Windy соответственно.

– M0 = {or,oo,os,tc,tm,th,hn,w} – множество “отрицаний” признаков изM0.

– Itrain ⊆ Gtrain×M0∪M0∪ ctrain – бинарное отношение, показанное в Таблице 3.1 в строках
1–10.
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G\M os ¬os oo ¬oo or ¬or th ¬th tm ¬tm tc ¬tc ¬hn hn w ¬w play
1 × × × × × × × ×
2 × × × × × × × ×
3 × × × × × × × × ×
4 × × × × × × × × ×
5 × × × × × × × × ×
6 × × × × × × × ×
7 × × × × × × × × ×
8 × × × × × × × ×
9 × × × × × × × × ×
10 × × × × × × × × ×
11 × × × × × × × × ?
12 × × × × × × × × ?
13 × × × × × × × × ?
14 × × × × × × × × ?

Таблица 3.1: Формальный контекст, полученный из контекста Таблицы 1.2 добавлением
признаков {or,oo,os,tc,tm,th,hn,w}.

– Ktest = (Gtest,M0 ∪M0, Itest).

– Gtest = {11,12,13,14}

– Itest ⊆ Gtrain ×M0 ∪M0 – бинарное отношение, показанное в Таблице 3.1 в строках 11–14.

– Зафиксируем среднее значение неопределенности Джини (Gini gain) как критерий отбора
классифицирующих правил inf : M ∪ ctrain → R.

– Выберем параметры алгоритмаmin_supp = 0.4 и n = 3. Это значит, что каждый тесто-
вый объект будет классифицироваться 3 правилами, посылками которых будут замкнутые
множества признаков с относительной поддержкой не менее 0.4.

Заметим, что в обучающем контексте доля положительных объектов равна 0.6 (6 из 10).
Построим все формальные понятия обучающего контекста Ktrain с мощностью объемов не

менее 4 (т.к.min_supp ∗ |Gtrain| = 0.4 ∗ 10 = 4). Также для всех формальных понятий посчитаем
среднее значение неопределенности Джини соответствующего классифицирующего правила.

Поясним, как это делается, на примере формального понятия ({1,3,5,9},{w, tm}).

– Составим сводную таблицу по одновременному наличию признаков {w, tm}, а также по
наличию признака целевого класса play. См. Таблицу 3.2.

{w, tm}
Yes NO

play 3 3
¬play 1 3

Таблица 3.2: Таблица сопряженности для {w, tm} и целевого признака play.

– Поскольку большинство объектов, имеющих признаки {w, tm} одновременно, положи-
тельны (также имеют признак “play”), породим с помощью формального понятия
({1,3,5,9},{w, tm}) классифицирующее правило “w, tm→ play”.
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– Для такого правила среднее значение неопределенности Джини равно 1+3
10 ∗ Gini(14 ,

3
4) +

3+3
10 ∗Gini(12 ,

1
2) = 0.4 ∗ (1− (14)

2 − (34)
2) + 0.4 ∗ (1− (12)

2 − (12)
2) = 0.45.

Классифицирующее
правило

Средняя
неопределенность
Джини

1 os,¬tc,¬hn→(1) + 0.171
2 ¬os,¬w →(1) + 0.267
3 ¬oo,¬tm,w →(1) − 0.3
4 os,¬tc,¬hn,¬w →(1) − 0.3
5 os,th,¬hn,→(1) − 0.3
6 os→(0.75) − 0.317
7 ¬oo,¬tc,¬hn→(0.75) − 0.317
8 ¬or,¬tc,¬hn→(0.75) − 0.317
9 ¬os→(0.83) + 0.317
10 or,¬th,¬w →(1) + 0.343

Таблица 3.3: 10 лучших классифицирующих правил, полученных нахождением формальных
понятий контекста из Таблицы 3.1.

Топ-10 классифицирующих правил в порядке возрастания средней неопределенности Джини
правила (т.е. в порядке “ухудшения” правил) показаны в Таблице 3.3.

Чтобы определить метки тестового объекта 11, проведем следующие действия согласно Ал-
горитму 4:

1. Отбираем среди найденных 3 первые формальные понятия, содержания которых являют-
ся подмножествами множества признаков объекта 11 (Outlook=sunny, Temperature=mild,
Humidity=normal, Windy=true) – {ōr, ōo, os, t̄c, tm, t̄h, hn, w}

2. Составляем на их основе 3 “лучших” правила, которые показаны в Таблице 3.4.

3. Найденные правила определяют значение 0 целевого признака для объекта “Outlook=sunny,
Temperature=mild, Humidity=normal, Windy=true”, поскольку 1

3(0.25+0.5+0.5) ≈ 0.41 < 0.6.

Классифицирующее правило
Средняя
неопределенность
Джини

os→(0.75) − 0.317
¬oo→(0.5) − 0.4

¬th, hn→(0.5) − 0.4

Таблица 3.4: 3 “лучших” правила для классификации объекта Outlook=sunny, Temperature=mild,
Humidity=normal, Windy=true
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Рисунок 3.1: Решетка формальных понятий, соответствующая обучающему контексту из
Примера 11. Выше зеленой линии лежат формальные понятия с минимальной относительной

поддержкой 0.4.

3.3. Классификация данных c количественными признаками

на основе множества формальных понятий

Рассмотрим, как обобщить Алгоритм 4 на случай решения задач классификации данных с ко-
личественными и интервальными признаками.

Предлагаемый подход в случае количественных признаков в обучающей и тестовой выборке
описан в Алгоритме 5 на основе [KK16b].

На вход алгоритму подаются обучающий и тестовый многозначные формальные контексты
Km

train = (Gtrain,M ∪ ctrain,W, Itrain) и Km
test = (Gtest,M,W, Itest). Также алгоритм принимает

на вход функцию дискретизации признаков d : M ∪ ctrain × W → Mbinary, которая возвращает
множество бинарных признаков Mbinary. Прочие параметры алгоритма аналогичны параметрам
Алгоритма 4.

Алгоритм состоит из следующих шагов:

1. Инициализировать ctest пустым списком, а rtest – пустым словарем. В ctest будут добавляться
предсказанные значения целевого признака для тестовых объектов, а в rtest – правила для
каждого тестового объекта (ключ в словаре – номер объекта, значение – список правил).

2. Посчитать долю положительных объектов в выборке cpos =
|c′train|
|Gtrain| .

3. Применить дискретизацию к формальному обучающему контексту и составить новые обу-
чающий и тестовый формальные контексты (уже не многозначные)
Ktrain = (Gtrain, d(M,W, ctrain) ∪ ctrain, Itrain) и Ktest = (Gtest,d(M,W ), Itest).
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Algorithm 5 Concept Lattice-Based Rule-learner (CoLiBRi) – случай количественных признаков.
Input: Ktrain = (Gtrain,M ∪ ctrain,W, Itrain), Ktest = (Gtest,M,W, Itest), min_supp ∈ R+, nrules ∈
N;
CbO(K,min_supp) : K → S;
sort(S, inf) : S → S
d : M ×W → R, inf : M ∪ ctrain → R;
Output: ctest, rtest

ctest = ∅, rtest = ∅
cpos =

|c′train|
|Gtrain|

S = {(A,B) | A ⊆ Gtrain, B ⊆ M,A⋄ = B,B⋄ = A, |A| ≥ min_supp} = CbO(Ktrain,min_supp)

S = sort(S, inf)
for gt ∈ Gtest do
{Bi}i∈[1,nrules] = {B | (A,B) ∈ S, g⋄t ⊑ B}
ci =

|B′
i ∩ c′train|

|B′
i|

rtest[i] = {Bi →ci +}i∈[1,nrules]

ctest[i] = [ 1
n_rules

∑n_rules
i=1 ci ≥ cpos]

end for

4. С помощью алгоритмаCbO(K,min_supp) найти все формальные понятия обучающего кон-
текста Ktrain cо значением поддержки не менееmin_supp. Параллельно с этим для каждого
формального понятия вычислять значение качества соответствующего классифицирующе-
го правила inf . Таким образом, получится словарь S , ключами которого будут содержания
формальных понятий, а значениями – соответствующие значения функционала inf .

5. Отсортировать все формальные понятия S по посчитанным значениям критерия inf в по-
рядке “улучшения” (то есть по возрастанию inf , если малые значения критерия говорят о хо-
роших правилах (как в случае неопределенности Джини) или по убыванию, если, наоборот,
большие значения критерия свидетельствуют о хороших правилах (прирост информации,
среднее уменьшение Джини)).

6. Для каждого тестового объекта gt ∈ Gtest:

– Отобрать nrules “подходящих” содержаний формальных понятий, то есть
{Bi}i∈[1,nrules] = {B | (A,B) ∈ S, g′t ⊆ B}

– Для каждого из отобранных содержаний формальных понятий {Bi}i∈[1,nrules] опреде-
лить долю положительных объектов c+ = |B′

i ∩ c′train|
|B′

i|

– Сформировать таким образом набор правил {Bi →ci +}i∈[1,nrules]. Записать его в сло-
варь rtest для ключа t (номер объекта gt).

– Предсказанное значение целевого признака ctraint определить как индикатор того,
что усредненное заключение найденных правил превышает долю положительных
объектов во всей выборке:
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Id Pclass Age City Survived
1 3 39 S 1
2 3 16 S 1
3 1 62 C 1
4 3 42 S 0
5 2 30 C 0
6 2 18 C 0
7 2 28 C ?
8 1 47 C ?

Таблица 3.5: Подвыборка набора данных о пассажирах Титаника. Признаки: “Pclass” – класс
каюты, “City” – место посадки (в данной подвыборке только Шербур (Cherburg, С) или

Саутгемптон (Southampton, S), “Age” – возраст пассажира, “Survived” – выжил ли пассажир в
катастрофе Титаника.

Id 2 6 5 1 4 3
Age 16 18 30 39 42 62
Survived 1 0 0 1 0 1

ctraint = [
1

n_rules

n_rules∑

i=1

ci ≥ cpos].

Добавить это значение в ctest.

Пример 12. В Таблице 3.5 представлена подвыборка набора данных о пассажирах Титаника2.
Покажем, как для такой выборки применить Алгоритм 4 и сделать прогноз для объекта 7 с при-
знаками “Pclass=2, Age=28, City=C”. В выборке имеется количественный признак Age. Дискре-
тизируем его с помощью простой процедуры, которая применяется в алгоритме CART [Bre+84].
Отсортируем объекты по признаку Age в порядке возрастания и будем отслеживать целевой
признак Survived:

Видно, что признак Survived меняет значение с 1 на 0 при переходе от значения Age=16 к
Age=18 (среднее между ними – 17), а также при переходе от значения Age=39 к Age=42 (среднее
между ними – 34.5). Кроме того, признак Survived меняет значение с 0 на 1 при переходе от
значения Age=39 к Age=42 (среднее между ними – 40.5) и от Age=42 к Age=62 (среднее между
ними – 52). Таким образом, признак Age дискретизируется порогами T = {17, 34.5, 40.5, 52}, то
есть порождаются 8 новых признаков: “Age ≤ 17”, “Age ≥ 17”, “Age ≤ 34.5”, “Age ≥ 34.5”,
“Age ≤ 40.5”, “Age ≥ 40.5”, “Age ≤ 52” и “Age ≥ 52”.

Признак Pclass – категориальный. Применив к нему One Hot Encoding и добавив отрица-
ния новых признаков, получим 6 признаков: “Pclass == 1”, “Pclass ̸= 1”, “Pclass == 2”,
“Pclass ̸= 2”, “Pclass ̸= 3” и “Pclass ̸= 3”.

2https://www.kaggle.com/c/titanic

https://www.kaggle.com/c/titanic
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Длина
чашелистика

(petal
length, pl)

Ширина
чашелистика

(petal
width, pw)

Длина
лепестка
(sepal

length, sl)

Ширина
лепестка
(sepal

width, sw)

Вид ириса
(+ - versicolor,
– - virginica)

1 6.2 2.9 4.3 1.3 1
2 5.1 2.5 3.0 1.1 1
3 5.7 2.8 4.1 1.3 1
4 6.3 3.3 6.0 2.5 2
5 5.8 2.7 5.1 1.9 2
6 7.1 3.0 5.9 2.1 2
7 4.9 2.5 4.5 2.7 ?
8 6.6 3.0 4.4 1.4 ?

Таблица 3.6: Бинарная классификация на 2 вида цветков ириса.

Признак City – категориальный с двумя уникальными значениями (в данной подвыборке), по-
этому заменим его на 2 признака: “City == C” и “City ̸= C”.

В итоге с 16 новыми бинарными признаками и одним целевым (Survived) задача классифика-
ции сводится к предыдущему случаю, для которого предложен Алгоритм 4. Тестовый объект 7
описывается бинарными признаками
“Pclass == 1, P class ̸= 2, P class ̸= 3, Age ≥ 17, Age ≤ 34.5, Age ≤ 40.5, Age ≤ 52, City ==

C”, и классифицирующие правила будут подбираться соответствующие.

В случае наличия у объектов количественных и интервальных признаков алгоритм в общем
остается тем же, что и Алгоритм 4, только для частного случая интервальных узорных структур.
Заметим, что на вход Алгоритму 4 можно подавать обучающую и тестовую узорные структуры,
являющиеся проекцией некоторой другой узорной структуры. В данном случае они могут полу-
чаться с помощью дискретизирующих проекций.

Пример 13. Рассмотрим пример бинарной классификации для подвыборки цветов ирисаФишера3

– Таблица 3.6.
Если перейти от многозначного контекста к бинарному, то, согласно Алгоритму 5, надо вы-

брать пороги T = {pl : {5.75, 5.85, 6.0, 6.25}, pw : {2.75, 2.95}, sl : {4.7}, sw : {1.6}} для дискре-
тизации исходных признаков, то есть перейти к формальному контексту с признаками pl ≤ 5.75,
pl ≥ 5.75, pl ≤ 5.85, . . ., sw ≥ 1.6. Решетка формальных понятий такого контекста показана на
Рис. 3.2. Как было показано ранее, решетка узорных понятий узорной структуры, полученной из
исходной с помощью дискретизирующей проекции с порогами T , изоморфна данной.

Получается список классифицирующих правил, представленный Таблицей 3.7. Если для клас-
сификации брать одно лучшее правило, то объект 7 классифицируется положительно (как тип
ириса versicolor) правилом 1, а объект 8 – отрицательно (как тип ириса virginica) правилом 2.3http://archive.ics.uci.edu/ml/datasets/Iris

http://archive.ics.uci.edu/ml/datasets/Iris
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Рисунок 3.2: Диаграмма решетки формальных понятий для контекста, полученного из
контекста в Таблице 3.6 дискретизацией с порогами

T = {pl : {5.75, 5.85, 6.0, 6.25}, pw : {2.75, 2.95}, sl : {4.7}, sw : {1.6}}.

Классифицирующее
правило Объекты Неопределенность

Джини
1 ⟨[6.25,+∞], [2.95,+∞],[4.7,+∞],[1.6,+∞]⟩ →(1) 2 | 4,5,6 0
2 ⟨[−∞,6.25], [−∞,2.95],[−∞,4.7],[−∞,1.6]⟩ →() 1 1,2,3 | 0
3 ⟨[5.75,+∞], [−∞,+∞],[−∞,+∞],[−∞,+∞]⟩ →(0.75) 2 1 | 4,5,6 0.25
4 ⟨[−∞, 6.25], [−∞,2.95],[−∞,+∞],[−∞,+∞]⟩ →(0.75) 1 1,2,3 | 5 0.25
5 ⟨[6.0,+∞], [2.75,+∞],[−∞+∞],[−∞,+∞]⟩ →→(0.66) 2 1 | 4,6 0.44
6 ⟨[−∞,5.85], [−∞,2.95],[−∞,+∞],[−∞+∞]⟩ →→(0.66) 1 2,3 | 5 0.44

Таблица 3.7: Классифицирующие правила в Примере 13. Символ | отделяет объекты разных
классов.

3.4. Классификация данных со сложной структурой на основе

множества узорных понятий

Для работы со сложными структурами используется модификация алгоритмов построения ре-
шеток узорных понятий. В целом используется тот же подход, что и в алгоритме “Замыкай по-
Одному” [Куз93], только теоретико-множественная операция пересечения заменяется на полуре-
шёточную операцию сходства (см. Раздел 2.3), а операция проверки того, что одно множество
есть подмножество другого заменяется на проверку поглощения одного элемента полурешетки
другим. В Алгоритме 6, демонстрируется псевдокод алгоритма “Замыкай по-Одному”, адапти-
рованного для работы с произвольными замкнутыми описаниями (узорными структурами). Для
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каждого узорного понятия находятся все его канонические соседи сверху. Для всех допустимых
расширений объема исходного понятия проверяется, является ли допустимым замыкание этого
расширения. При этом допустимость объема проверяется в точности как и в оригинальном алго-
ритме [Куз93].

Algorithm 6 Версия алгоритма “Замыкай по-Одному”, вычисляющая решетку узорных понятий.

Input: (G, (D, ⊓), δ), объем Ext и содержание Int некоторого понятия.

Output: Все канонические предки (Ext, Int) в решётке понятий.

Function CloseByOne(Ext, Int)

for S ⊆ G, S ≻ Ext do
NewInt←−

$$$
g∈S

δ(g)

NewExt←− {g ∈ G | NewInt ⊑⊑⊑ δ(g)}
if IsCanonicExtension(Ext, NewExt) then
SaveConcept(NewExt, NewInt);
CloseByOne(NewExt, NewInt);

end if
end for

CloseByOne(∅, ⊤);

Ранее в Главе 3.2 мы описывали алгоритм классификации данных с бинарными признаками с
помощью формальных понятий – CoLiBRi. Теперь, обсудив, как алгоритм нахождения формаль-
ных понятий обобщается для нахождения узорных понятий произвольной узорной структуры,
опишем в Алгоритме 7, преложенном в [KK16b], модификацию подхода CoLiBRi для классифи-
кации данных со сложной структурой.

На вход алгоритму подаются обучающая и тестовая узорные структуры
PStrain = (Gtrain, ((D, ⊓), ctrain). δtrain) и PStest = (Gtest, (D, ⊓), δtest). Алгоритм использу-
ет модификацию 6 алгоритма “Замыкай по-Одному” (CbOPS(PS,min_supp)) [Куз93], в которой
выдаются все узорные понятия узорной структуры PS, поддержки которых ограничены снизу
значением параметра min_supp. Для выбора классифицирующих правил используется критерий
inf : D × ctrain → R типа неопределенности Джини или энтропийного прироста информации
(в программной реализации по умолчанию – среднее значение неопределенности Джини). Пара-
метры алгоритма: min_supp и n – минимальная поддержка классифицирующих правил и число
правил, используемых для классификации тестового объекта.

Алгоритм состоит из следующих шагов:

1. Инициализировать ctest пустым списком, а rtest – пустым словарем. В ctest будут добавляться
предсказанные значения целевого признака для тестовых объектов, а в rtest – правила для
каждого тестового объекта (ключ в словаре – номер объекта, значение – список правил).

2. Посчитать долю положительных объектов в выборке cpos =
|c′train|
|Gtrain| .
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3. С помощью алгоритма CbOPS(PS,min_supp) найти все узорные понятия обучающей узор-
ной структуры PStrain cо значением поддержки не менееmin_supp. Параллельно с этим для
каждого узорного понятия вычислять значение качества соответствующего классифициру-
ющего правила inf . Таким образом, получится словарь S , ключами которого будут содер-
жания узорных понятий, а значениями – соответствующие значения функционала inf .

4. Отсортировать все узорные понятия S по посчитанным значениям критерия inf в порядке
“улучшения” (то есть по возрастанию inf , если малые значения критерия говорят о хоро-
ших правилах (как в случае неопределенности Джини) или по убыванию, если, наоборот,
большие значения критерия свидетельствуют о хороших правилах (прирост информации,
среднее уменьшение Джини)).

5. Для каждого тестового объекта gt ∈ Gtest:

– Отобрать nrules “подходящих” содержаний формальных понятий, то есть
{di}i∈[1,nrules] = {d | (A,d) ∈ S, g⋄t ⊑ B}

– Для каждого из отобранных содержанийформальных понятий {di}i∈[1,nrules] определить
долю положительных объектов ci =

|d⋄i ∩ c′train|
|d⋄i |

– Сформировать таким образом набор правил {di →ci +}i∈[1,nrules]. Записать его в словарь
rtest для ключа t (номер объекта gt).

– Предсказанное значение целевого признака ctraint определить как индикатор того,
что усредненное заключение найденных правил превышает долю положительных
объектов во всей выборке:

ctraint = [
1

n_rules

n_rules∑

i=1

ci ≥ cpos].

Добавить это значение в ctest.

Пример 14. В задаче предсказания наличия некоторого свойства P химических веществ дана
обучающая выборка в виде упрощенной молекулярной структуры 4 положительных веществ и 3
отрицательных веществ. Про положительные объекты известно, что они обладают свойством
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Algorithm 7Concept Lattice-Based Rule-learner (CoLiBRi) – случай данных со сложной структурой.
Input: PStrain = (Gtrain, ((D, ⊓), ctrain), δtrain)
PStest = (Gtest, (D, ⊓), δtest)
min_supp ∈ R+, nrules ∈ N;
CbOPS(PS,min_supp) : PS → S;
inf : D × ctrain → R;
sort(S, inf) : S → S

Output: ctest, rtest

ctest = ∅, rtest = ∅
cpos =

|c′train|
|Gtrain|

S = {(A,d) : inf(d, ctrain) | A ⊆ Gtrain, d ∈ D,A⋄ = d, d⋄ = A, |A| ≥ min_supp} =
CbOPS(PStrain,min_supp)
S = sort(S, inf)
for gt ∈ Gtest do
{di}i∈[1,nrules] = {d | (A,d) ∈ S, g⋄t ⊑ d}
ci =

|d⋄i ∩ c′train|
|d⋄i |

rtest[i] = {di →ci +}i∈[1,nrules]

ctest[i] = [ 1
n_rules

∑n_rules
i=1 ci ≥ cpos]

end for

P , про отрицательные известно, что нет. Для тестовых объектов необходимо сделать прогноз,
обладают ли они свойством P .

Положительные объекты:

1 : C

CH3C OH

NH2H2N

2 : C

CH3C OH

OHH2N

3 : C

CH3C OH

CH3Cl

4 : C

CH3C Cl

ClHO

Отрицательные объекты:

5 : C

CH3C NH2

NH2H2N

6 : C

CH2N OH

H3C Cl

7 : C

CH2N OH

ClH2N

Тестовые объекты:

8 : C

CH3C OH

NH2Cl

9 : C

CH2N CH3

HO Cl

10 : C

CH3C NH2

NH2Cl

11 : C

CH3C Cl

NH2HO

Доля положительных объектов в обучающей выборке равна 0.57 (4 из 7).
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Найдем все узорные понятия обучающей узорной структуры PStrain =

(Gtrain, ((D, ⊓), ctrain), δtrain) с абсолютной поддержкой не менее 4 (min_supp = 4
7 ). Здесь

Gtrain = {1, . . . ,7}, D – множество всех помеченных графов, ⊓ – полурешёточная операция
для помеченных графов, функция δtrain задана выше, а ctrain = {+, + , + , + , − , − ,−}.
Правила, построенные на основе найденных узорных понятий, указаны в Таблице 3.8. Если
делать прогнозы с помощью трех лучших правил (n_rules = 3), то объекты 8,9,11 классифи-
цируются положительно (13(0.8 + 0.4 + 0.66) ≈ 0.62 > 0.57), а объект 10 – отрицательно
(13(0.4 + 0.66 + 0.5) ≈ 0.52 < 0.57).

Классифицирующее
правило Объекты

Средняя
неопределенность

Джини
1 {CH3 − C = C,OH − C = C} −−→

(0.8)
+ 1,2,3,4 | 6 0.22

2 {C = C −NH2} −−→
(0.4)

+ 1,2 | 5,6,7 0.34

3 {C = C − CH3} −−−→
(0.67)

+ 1,2,3,4 | 5,6 0.38

4 {C = C −OH} −−−→
(0.67)

+ 1,2,3,4 | 6,7 0.38

5 {CH3 − C = C −OH} −−−→
(0.75)

+ 2,3,4 | 6 0.4

6 {CH3 − C = C −NH2} −−→
(0.5)

+ 1,2 | 5,6 0.47

7 {C = C} −−−→
(0.57)

+ 1,2,3,4 | 5,6,7 0.49

Таблица 3.8: Классифицирующие правила в Примере 14. Символом | отделены положительные
объекты от отрицательных.

3.5. Заключение

В Главе 3 описан алгоритм классификации данных со сложной структурой, основанный на
узорных структурах и их проекциях, а также разобраны примеры применения этих алгоритмов в
задачах классификации данных с бинарными признаками (Раздел 3.2), c количественными при-
знаками (Раздел 3.3), а также в случае данных, где объекты представлены описаниями в виде по-
меченных графов (Раздел 3.4).
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Глава 4

Эксперименты с реальными данными

4.1. Введение

В этой главе мы опишем разработанный программный комплекс, реализующий алгоритмы,
описанные в Главе 3, затем приведем результаты вычислительных экспериментов с наборами дан-
ных репозитория UCI (UC Irvine Machine Learning Repository)1 – крупнейшего репозитория ре-
альных и модельных задач машинного обучения. Репозиторий содержит данные по прикладным
задачам в области биологии, медицины, физики, техники, социологии, и др. Именно эти задачи и
наборы данных чаще всего используются научным сообществом для эмпирического анализа ал-
горитмов машинного обучения.

Также в этой главе приводятся результаты экспериментов с данными, представленными по-
следовательностями и графами.

4.2. Программная реализация алгоритмов классификации на

основе множеств формальных и узорных понятий

Структура основных классов программного комплекса CoLiBRi, реализующего Алгоритмы 4,
5 и 7, описанные в Главе 3, представлена на Рис. 4.1. На схеме стрелки синего цвета соответствуют
отношению “быть наследником класса”, а стрелки черного цвета – отношению “задействовать”.

Имеются 4 абстрактных класса: DescriptionElement, Description, Concept и CoLiBRi. У каждого
из них, в свою очередь по 4 наследника.

Класс BinaryCoLiBRi реализует Алгоритм 4, используя класс BinaryConcept. Каждый экзем-
пляр класса BinaryConcept – это кортеж из множества чисел (номеров объектов) и экземпляра
класса BinaryDescription. Каждый экземпляр класса BinaryDescription – это упорядоченное мно-
жество экземпляров класса BinaryDescriptionElement (число 0 или 1 в зависимости от того, при-
сутствует определенный признак в описании объекта или нет).

1http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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Рисунок 4.1: Структура основных классов программного комплекса CoLiBRi.

Класс IntervalCoLiBRi реализует Алгоритм 5, используя класс IntervalConcept. Каждый экзем-
пляр класса IntervalConcept – это кортеж из множества чисел (номеров объектов) и экземпляра
класса IntervalDescription. Каждый экземпляр класса IntervalDescription – это упорядоченное мно-
жество экземпляров класса IntervalDescriptionElement (упорядоченная пара двух чисел, соответ-
ствующая интервалу).

Класс SequentialCoLiBRi реализует адаптациюАлгоритма 7 для работы с узорными структура-
ми для последовательностей и их проекциями, используя класс SequentialConcept. Каждый экзем-
пляр класса SequentialConcept – это кортеж из множества чисел (номеров объектов) и экземпляра
класса SequentialDescription. Каждый экземпляр класса SequentialDescription – это упорядоченное
множество экземпляров класса SequentialDescriptionElement (по сути, строк в формате последо-
вательностей SPMF2).

Класс GraphCoLiBRi реализует Алгоритм 7, используя класс GraphConcept. Каждый экземпляр
класса GraphConcept – это кортеж из множества чисел (номеров объектов) и экземпляра класса
GraphDescription. Каждый экземпляр класса GraphDescription – это множество экземпляров класса
GraphDescriptionElement.

Общая информация о программном комплексе:

– Комплекс реализован на языках Python, Java и C++
2http://www.philippe-fournier-viger.com/spmf/

http://www.philippe-fournier-viger.com/spmf/
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– Размер кода: ≈ 2200 строк

– Основные классы:

– AbstractDescriptionElement (наследники Binary*, Interval*, Sequential*, Graph*) –
элемент описания. Среди наследников это может быть просто номер признака
(BinaryDescriptionElement), вещественный интервал (IntervalDescriptionElement), стро-
ка, задающая последовательность признаков (SequentialDescriptionElement), или поме-
ченный граф (GraphDescriptionElement);

– AbstractDescription (+ наследники) – описание в терминах узорных структур. В реали-
зации – контейнер экземпляров класса AbstractDescriptionElement;

– AbstractConcept (+ наследники) – узорное понятие;

– AbstractCoLiBRi (+ наследники) – реализации Алгоритма 4 (BinaryCoLiBRi), Алгорит-
ма 5 (IntervalCoLiBRi) и Алгоритма 7 (SequentialCoLiBRi и GraphCoLiBRi)

– AbstractJSM (+ наследники) – реализации классического ДСМ-метода классификации
и его версии для узорных структур;

– AbstractLAC (+ наследники) – реализации алгоритма классификации по запросу и его
версии для узорных структур;

– AbstractCbO (+ наследники) – алгоритм “Замыкай-по-Одному” (“Close-by-One”) для
бинарных признаков и узорных структур, используется в AbstractJSM и наследниках;

– BinaryInCloseWrapper – расширение алгоритма In-Close 2.63 [And09] для подсчета кри-
териев информативности типа неопределенности Джини и прироста информации для
каждого замкнутого множества признаков, удовлетворяющего ограничениям на под-
держку, мощность множества признаков и т.д.;

– SeqCharmWrapper – расширение реализации алгоритма Charm4 [ZH02] в SPMF для
подсчета критериев информативности типа неопределенности Джини и прироста ин-
формации для каждого замкнутого множества последовательностей, удовлетворяюще-
го ограничениям на поддержку, число элементов последовательности и т.д.;

– GraphGastoneWrapper – расширение реализации алгоритма Gaston5 [NK05] для подсче-
та критериев информативности типа неопределенности Джини и прироста информа-
ции для каждого замкнутого множества графов, удовлетворяющего ограничениям на
поддержку, число подграфов и т.д.

3https://sourceforge.net/projects/inclose/
4http://www.philippe-fournier-viger.com/spmf/index.php?link=download.php
5http://liacs.leidenuniv.nl/~nijssensgr/gaston/

https://sourceforge.net/projects/inclose/
http://www.philippe-fournier-viger.com/spmf/index.php?link=download.php
http://liacs.leidenuniv.nl/~nijssensgr/gaston/
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4.3. Эксперименты на данных репозитория UCI

4.3.1. Данные с бинарными и категориальными признаками

Версия алгоритмаCoLiBRi (“Concept Lattice-Based Rule-learner”) для работы с бинарными при-
знаками (Алгоритм 4) была протестирована на 13 наборах данных UCI6. Сравнение проводилось
с реализациями Scikit-learn [Ped+11] алгоритмов построения деревьев решений CART [Bre+84],
случайного леса [Bre01], а также с методом ближайших соседей. Для каждого набора данных ре-
шалась задача бинарной классификации, где выделялись самый частый класс и все остальные.
Категориальные признаки были преобразованы в бинарные методом One Hot Encoding. Отслежи-
вались значения доли правильных ответов и F1-метрики при 5-кратной кросс-валидации.

Данные DT acc RF acc kNN acc CoLiBRi acc DT F1 RF F1 kNN F1 CoLiBRi F1
audiology 0.75 0.8 0.63 0.79* 0.71 0.74 0.58 0.74
breast-cancer 0.63 0.66 0.76 0.65 0.58 0.63 0.75 0.61
breast-wisc 0.7 0.74 0.73 0.76 0.45 0.42 0.38 0.44*
car 0.75 0.78* 0.71 0.79 0.75 0.76 0.71 0.76
hayses-roth 0.84* 0.83* 0.49 0.86 0.84* 0.82 0.49 0.85
lymph 0.8 0.83 0.86 0.83 0.77 0.85 0.84* 0.84*
mol-bio-prom 0.78 0.83 0.83 0.82* 0.78 0.84 0.8 0.83*
nursery 0.64 0.65 0.72 0.65 0.62 0.62 0.7 0.62
primary-tumor 0.41 0.46 0.41 0.45* 0.37 0.41 0.37 0.4*
solar-flare 0.7* 0.7* 0.63 0.72 0.67 0.69* 0.6 0.71
soybean 0.91* 0.91* 0.92 0.91* 0.91* 0.93 0.92* 0.91*
spect-train 0.61 0.69 0.68 0.7 0.34 0.36 0.23 0.38
tic-tac-toe 0.79 0.79 0.85 0.78 0.82 0.86 0.89 0.85

Таблица 4.1: Значения доли правильных ответов и F1-метрики для 13 наборов данных
репозитория UCI. “DT acc” и “DT F1” означают средние по 5 запускам доли правильных ответов
и F1-метрики алгоритма CART при 5-кратной кросс-валидации , …, “CoLiBRi F1” означает

среднее по 5 запускам значение F1-метрики алгоритма CoLiBRi при 5-кратной кросс-валидации.
Жирным выделены лучшие значения метрик, звездочками отмечены значения, которые не

являются статистически значимо уступающими лучшим.

Мы использовали неопределенность Джини как критерий выбора правил. Значения параметра
min_samples_leaf ∈ [1,10] для деревьев и леса, а также
n_neighbors ∈ {1,2,5,15,30,50} для метода ближайших соседей подбирались в процессе 5-кратной
кросс-валидации. Для случайного леса каждый раз строилось 10 деревьев.

Параметр min_supp для “CoLiBRi” брался равным параметру min_samples_leaf алгоритма
CART для каждого набора данных. Для определения метки каждого тестового объекта использо-
валось n_rules = 10 правил.

Результаты представлены в Таблице 4.1. Каждое значение – это усредненные по 5 запускам
5-кратной кросс-валидации значения доли правильных ответов и F1-метрики. Жирным шрифтом
выделены лучшие значения метрик, звездочками отмечены значения, которые не являются ста-
тистически значимо уступающими лучшим. В качестве статистического критерия использовался

6http://repository.seasr.org/Datasets/UCI/csv/

http://repository.seasr.org/Datasets/UCI/csv/
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(a) Доля верных ответов (b) F1

Рисунок 4.2: Кривые валидации по числу правил (для CoLiBRi) или деревьев (для случайного
леса) в сравнении с деревом решений CART. 5-кратная стратифицированная кросс-валидация

для набора данных Breast Cancer репозитория UCI.

(c) Доля верных ответов (d) F1

Рисунок 4.3: Кривые валидации по минимальной поддержке для CoLiBRi, случайного леса и
дерева решений CART. 5-кратная стратифицированная кросс-валидация для набора данных

Breast Cancer репозитория UCI.

непараметрический критерий знаков для связанных выборок на уровне значимости 0.05. Лучшие
значения параметров для каждого алгоритма можно найти в Приложении 4.6 в Таблице 4.12.

По результатам вычислительных экспериментов можно заключить, что для большинства набо-
ров данных CoLiBRi имеет статистически лучшие метрики качества классификации, чем CART.
При этом по сравнению со случайным лесом и методом ближайших соседей результаты получа-
ются примерно одинаковыми (статистически не значимо хуже и не значимо лучше).

Также изучалась зависимость качества алгоритмов от значений параметров. Для этого были
построены кривые валидации по числу правил, минимальной поддержке и максимальной мощно-
сти посылки правил для наборов данных репозитория UCI.

Для набора данных по по раку молочной железы репозитория UCI (Breast Cancer7) кривые
валидации по числу правил представлены на Рис. 4.2a (доля правильных ответов) и 4.2b (F1-
метрика), по минимальной поддержке – на Рис. 4.3c (доля правильных ответов) и 4.3d (F1-

7https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer
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(a) Доля верных ответов (b) F1

Рисунок 4.4: Кривые валидации по максимальной длине посылки правил для CoLiBRi,
случайного леса и дерева решений CART. 5-кратная стратифицированная кросс-валидация для

набора данных Breast Cancer репозитория UCI.

(a) Доля верных ответов (b) F1

Рисунок 4.5: Кривые валидации по числу правил (для CoLiBRi) или деревьев (для случайного
леса) в сравнении с деревом решений CART. 5-кратная стратифицированная кросс-валидация

для набора данных Breast Cancer репозитория UCI.
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(a) Доля верных ответов (b) F1

Рисунок 4.6: Кривые валидации по минимальной поддержке для CoLiBRi, случайного леса и
дерева решений CART. 5-кратная стратифицированная кросс-валидация для набора данных

Breast Cancer Wisconsin репозитория UCI.

(a) Доля верных ответов (b) F1

Рисунок 4.7: Кривые валидации по максимальной длине посылки правил для CoLiBRi,
случайного леса и дерева решений CART. 5-кратная стратифицированная кросс-валидация для

набора данных Breast Cancer Wisconsin репозитория UCI.
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(a) Доля верных ответов (b) F1

Рисунок 4.8: Кривые валидации по числу правил (для CoLiBRi) или деревьев (для случайного
леса) в сравнении с деревом решений CART. 5-кратная стратифицированная кросс-валидация

для набора данных Lymph репозитория UCI.

(a) Доля верных ответов (b) F1

Рисунок 4.9: Кривые валидации по минимальной поддержке для CoLiBRi, случайного леса и
дерева решений CART. 5-кратная стратифицированная кросс-валидация для набора данных

Lymph репозитория UCI.
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(a) Доля верных ответов (b) F1

Рисунок 4.10: Кривые валидации по максимальной длине посылки правил для CoLiBRi,
случайного леса и дерева решений CART. 5-кратная стратифицированная кросс-валидация для

набора данных Lymph репозитория UCI.

метрика), а по максимальной мощности посылки правил (для деревьев это максимальная глубина)
– на Рис. 4.4a (доля правильных ответов) и 4.4b (F1-метрика).

Для расширенного набора данных по раку молочной железы репозитория UCI (Breast Cancer
Wisconsin8) кривые валидации по числу правил представлены на Рис. 4.5a (доля правильных отве-
тов) и 4.5b (F1-метрика), по минимальной поддержке – на Рис. 4.6a (доля правильных ответов) и
4.6b (F1-метрика), а по максимальной мощности посылки правил (для деревьев это максимальная
глубина) – на Рис. 4.7a (доля правильных ответов) и 4.7b (F1-метрика).

Для набора данных по лимфографии репозитория UCI (Lymph9) кривые валидации по числу
правил представлены на Рис. 4.8a (доля правильных ответов) и 4.8b (F1-метрика), по минимальной
поддержке – на Рис. 4.9a (доля правильных ответов) и 4.9b (F1-метрика), а по максимальной мощ-
ности посылки правил (для деревьев это максимальная глубина) – на Рис. 4.10a (доля правильных
ответов) и 4.10b (F1-метрика).

Распределения мощностей посылок правил (“длин” правил), которыми определялись метки
тестовых объектов для 3 наборов данных UCI и для 3 алгоритмов (CART, RF и CoLiBRi) показаны
в виде “ящиков с усами” (boxplots) на Рис. 4.11, 4.12 и 4.13. Средние мощности посылок правил
для 13 наборов данных UCI и 3 алгоритмов показаны на Рисунке 4.14.

Средние “длины” правил, которыми определялись метки тестовых объектов для каждого набо-
ра данных и для 3 алгоритмов (CART, RF и CoLiBRi) указаны в Таблице 4.2, а также изображены
графически на Рис. 4.14. Видно, что в среднем правила, получаемые с CoLiBRi длиннее, чем у
CART, но короче, чем у случайного леса, что делает алгоритм CoLiBRi более интерпретируемым,
чем случайный лес. Заметим, что длину правил CoLiBRi можно еще сильнее понизить, если для
посылки каждого правила считать соответствующий минимальный генератор (см. Определение
15).8https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)

9https://archive.ics.uci.edu/ml/datasets/Lymphography

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
https://archive.ics.uci.edu/ml/datasets/Lymphography
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Рисунок 4.11: Средние мощности посылок правил, которыми были классифицированы тестовые
объекты набора данных Breast Cancer репозитория UCI, для 3 алгоритмов.

Рисунок 4.12: Средние мощности посылок правил, которыми были классифицированы тестовые
объекты набора данных Breast Cancer Wisconsin репозитория UCI, для 3 алгоритмов.
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Рисунок 4.13: Средние мощности посылок правил, которыми были классифицированы тестовые
объекты набора данных Lymph репозитория UCI, для 3 алгоритмов.

Рисунок 4.14: Средние мощности посылок правил, которыми были классифицированы тестовые
объекты, для 3 алгоритмов и 13 наборов данных репозитория UCI (лучше смотреть в цвете).
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Алгоритм \
набор данных aud br-wisc breast car hayes lymph mol nurs. solar soy spect tic-tac tumor

CoLiBRi 6.7 2.2 2.3 3.7 2.7 3.6 4.2 3.8 3.4 4.2 4.6 3.9 3.5
RF 11.2 6.0 8.8 8.2 7.2 4.3 9.2 10.2 6.6 6.8 6.2 9.2 7.4
CART 6.3 3.1 4.0 3.3 2.9 3.0 3.6 4.3 3.3 4.4 3.7 2.9 3.6

Таблица 4.2: Средние мощности посылок правил, которыми были классифицированы тестовые
объекты, для 3 алгоритмов и 13 наборов данных репозитория UCI.

4.3.2. Данные с количественными признаками

Версия алгоритма CoLiBRi (“Concept Lattice-Based Rule-learner”) для работы с количествен-
ными признаками (Алгоритм 5) была протестирована на 14 наборах данных UCI10.

Количественные признаки дискретизировались с теми же порогами, как у CART (метод дис-
кретизации один и тот же). Параметр min_supp для CoLiBRi брался равным min_sample_leaf
CART, использовались n_rules = 5 правил для классификации каждого тестового объекта.

Результаты представлены в Таблице 4.3. Значения лучших параметров и времена работы алго-
ритмов указаны в Приложении A в Таблице 4.14. Результаты свидетельствуют, что предлагаемый
алгоритм демонстрирует лучшие результаты, чем CART, на большинстве наборов данных. При-
мечательно, что результаты kNN часто лучше, когда размерность набора данных не очень высока
(“проклятие размерности”).

Данные CART acc kNN acc CoLiBRi acc CART F1 kNN F1 CoLiBRi F1
colic 0.647 0.644 0.653 0.619 0.569 0.664

heart-h 0.782 0.837 0.791 0.664 0.831 0.787
heart-statlog 0.804 0.848 0.816 0.761 0.846 0.823
hepatitis 0.794 0.794 0.782 0.867 0.702 0.755

hypothyroid 0.975 0.923 0.968 0.974 0.886 0.948
ionosphere 0.9 0.783 0.924 0.923 0.757 0.938
kr-vs-kp 0.98 0.761 0.98 0.981 0.756 0.984
segment 0.938 0.872 0.947 0.938 0.869 0.928
sonar 0.697 0.663 0.73 0.665 0.658 0.718
soybean 0.877 0.89 0.88 0.868 0.883 0.879
vehicle 0.708 0.677 0.692 0.708 0.667 0.62
vote 0.956 0.929 0.968 0.946 0.929 0.955
vowel 0.436 0.405 0.442 0.428 0.387 0.406

waveform-5000 0.761 0.834 0.783 0.761 0.583 0.774

Таблица 4.3: Значения доли правильных ответов и F1-метрики для 14 наборов данных
репозитория UCI. “DT acc” и “DT F1” обозначают средние по 5 запускам доли правильных
ответов и F1-метрики алгоритма CART при 5-кратной кросс-валидации , …, “CoLiBRi F1”

обозначают среднее по 5 запускам значение F1-метрики алгоритма CoLiBRi. Жирным выделены
лучшие значения метрик.

Также были проведены эксперименты еще с 8 наборами данных репозитория UCI для сравне-
ния с результатами, опубликованными в [VMZ06]. Краткую статистику по этим 8 наборам данных
можно найти в Приложении A в Таблице 4.13.

Качество классификации (доля ошибок) предлагаемого алгоритма CoLiBRi (версия с количе-
ственными признаками и дискретизацией, как в CART, Алгоритм 5) сравнивается в процессе 10-

10http://repository.seasr.org/Datasets/UCI/csv/

http://repository.seasr.org/Datasets/UCI/csv/
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кратной кросс-валидации с результатами алгоритмов C4.5 [Qui93], LazyDT [FKY96], EAC (Eager
Associative Classifier) и LAC (Lazy Associative Classifier), опубликованными в [VMZ06]. Много-
классовая классификация для 3 наборов данных (iris, wine и zoo) сводилась к бинарной классифи-
кации методом “Один против Всех” (подход OneVsAll).

Результаты представлены в Таблице 4.4 и говорят о том, что предлагаемый алгоритм на указан-
ных 8 наборах данных репозитория UCI выдает качество классификации, сравнимое с подходом
классификации по запросу с помощью ассоциативных правил (LAC) и лучше, чем у C4.5, LazyDT
и EAC.

Набор данных C4.5 LazyDT EAC LAC CoLiBRi
heart 18.9 17.7 18.1 16.9 16.5
hepatitis 22.6 20.3 17.9 17.1 17.2
horse 16.3 17.2 15.4 14.5 14.2
ionosphere 8.0 8.0 7.6 7.8 7.7
iris 5.3 5.3 4.9 3.2 4.5
pima 27.5 25.9 27.5 22.0 21.6
wine 7.9 7.9 7.2 3.4 4.1
zoo 7.8 7.8 6.6 6.5 7.1
В среднем 13.92 13.53 12.9 11.37 11.41

Таблица 4.4: Процент ошибок на 8 наборах данных UCI для 5 алгоритмов.

4.4. Прогнозирование оттока клиентов телеком-оператора

Описанный алгоритм CoLiBRi для количественных и категориальных признаков был проте-
стирован в задаче прогнозирования оттока клиентов на данных российского телеком-оператора.
Данные выглядят следующим образом (Рис. 4.15).

Рисунок 4.15: Первые 5 строк обучающей выборки в задаче прогнозирования оттока клиентов
телеком-оператора.

Для 2482 клиентов известны 6 признаков: начисления по договору за 4 периода (“Начисле-
ния1” – “Начисления4”) и индикаторы подключения тарифного плана (“План”) и объем услуг,
оказанных при подключении некоторого сервиса (“Сервис”). Также для этих клиентов извест-
но, определены ли они компанией как ушедшие клиенты или нет (определение компанией оттока
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неизвестно). Задача – прогнозировать отток клиентов с высокой долей правильных ответов, кото-
рая оценивается с помощью кросс-валидации.

На Рис. 4.16 показано дерево решений, обученное на представленной выборке. Гиперпарамет-
ры дерева настроены на 5-кратной стратифицированной кросс-валидации. Среднее значение пло-
щади под ROC-кривой (ROC AUC) на кросс-валидации для данной модели – 0.866. На аналогич-
ной кросс-валидации проверялись также случайный лес из 10 деревьев (среднее значение ROC
AUC – 0.9) и предлагаемый алгоритм CoLiBRi (среднее значение ROC AUC – 0.875).

Рисунок 4.16: Дерево решений, построенное для прогнозирования оттока клиентов
телеком-оператора.

На Рис. 4.17 показан путь в построенном дереве решений, “объясняющий” классификацию
одного из примеров обучающей выборки. На Рис. 4.17 представлены два примера из обучающей
выборки и пути в дереве решений, которыми определялись прогнозы для этих двух примеров.

Рисунок 4.17: Путь в дереве, “объясняющий” классификацию конкретного примера в задаче
прогнозирования оттока клиентов телеком-оператора.

На Рис. 4.19 изображены статистики распределения длин посылок правил, которыми были
классифицированы все примеры обучающей выборке в случае дерева решений, CoLiBRi и слу-
чайного леса. Видно, что CoLiBRi строит в среднем более короткие классифицирующие правила,
которые, соответственно, проще интерпретировать.
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Рисунок 4.18: Два примера из обучающей выборки в задаче прогнозирования оттока клиентов
телеком-оператора.

Пример 17: {Начисления1 ≤ 27.9, План = 0, Сервис ≤ 3.5 }−−−−→
(0.026)

+

Пример 1548: {Начисления1 ≥ 44.9, Начисления2 ≥ 14.2, Начисления1 ≤ 48.9, Начисления2 ≤
19.1, Начисления3 ≤ 9.1} −−→

(0.2)
+

Рисунок 4.19: Средние длины правил, которыми определялся класс тестовых примеров в задаче
прогнозирования оттока клиентов телеком-оператора.

4.5. Эксперименты с задачами классификации последователь-

ностей и графов

4.5.1. Эксперименты с задачами классификации последовательностей

Версия алгоритма CoLiBRi (“Concept Lattice-Based Rule-learner”) для работы с описаниями в
виде последовательностей (Алгоритм 7) была протестирована в серии экспериментов с данными
в виде последовательностей.

Рассматривались 7 наборов данных, краткая статистика по которым приведена в Таблице 4.5.
Подробно эти задачи описаны в [MF10].

– ASL-BU (aslbu) – транскрипции американских видеозаписей языка жестов глухонемых лю-
дей. Помечены последовательности движений, таких как “движение головы медленное”,
“плечи вперед” и т.п. Последовательности принадлежат одному из 7 классов типа “вопрос
типа Да-Нет”, “риторический вопрос” и т.п;
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– ASL-GT (aslgt) – те же данные, но целевой класс – расшифровка 40 простых слов, а признаки
количественные;

– Auslan – транскрипции австралийских видеозаписей языка жестов глухонемых людей. Це-
левой класс – одно из 10 простых слов;

– Blocks – видео взаимодействия руки человека с предметом. Элементы последовательности
– действия человека (какие участки предмета человек трогает), целевой класс – тип взаимо-
действия (поднятия, опускание) и сценарии (сборка “пирамидки”);

– Context – данные о том, как человек пользуется мобильным телефоном, элементы последо-
вательности – признаки взаимодействия с телефоном (созданы вручную), целевой класс –
сценарий использования (встреча, улица и т.д.);

– Pioneer – данные репозитория UCI, целевой класс – 3 вида взаимодействия робота с пред-
метом (захват, толчок, поворот);

– Skating – элементы последовательности – предобработанные признаки временного ряда му-
скульной активности и позиции ног профессиональных лыжников во время тестирования
тренажера. Целевой класс – соответствующий лыжник и его скоростной режим.

Далее в Таблице 4.6 приведены средние доли правильных ответов при 10-кратной кросс-
валидации для 7 алгоритмов и 7 задач классификации. Описания алгоритмов даны на следующих
ресурсах11 и в статьях [ZCG13] (CBS, BayesFM, SCII Match и SCII CBA) и [Egh+15] (MiSeRe).

Результаты позволяют утверждать, что качество классификации метода SequentialCoLiBRi до-
статочно высокое в сравнении с прочими алгоритмами классификации последовательностей.

Число
послед-тей

Число
элементов

Число
классов

aslbu 441 140 7
aslgt 3493 47 40
auslan 200 12 10
blocks 210 8 8
context 240 54 5
pioneer 160 92 3
skater 530 41 6

Таблица 4.5: Краткая статистика 7 наборов данных по последовательностям.

4.5.2. Предсказание токсичности химических веществ

Версия алгоритма CoLiBRi (“Concept Lattice-Based Rule-learner”) для работы с описаниями в
виде графов (Алгоритм 7) была протестирована в эксперименте Predictive Toxicology Challenge12:
Описание набора данных и эксперимента [HK03]:

11http://misere.co.nf/,http://adrem.ua.ac.be/scii
12http://www.predictive-toxicology.org/ptc/

http://misere.co.nf/
http://adrem.ua.ac.be/scii
http://www.predictive-toxicology.org/ptc/
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CBS BayesFM SCII
Match

SCII
CBS MiSeRe Binary

CoLiBRi
Sequential
CoLiBRi

aslbu 0.43 0.7 0.57 0.56 0.7 0.48 0.62
aslgt 0.23 0.738 0.04 0.04 0.77 0.32 0.71
auslan 0.32 0.34 0.04 0.03 0.34 0.33 0.35
blocks 1 1 0.08 0.08 1 0.99 1
context 0.58 0.896 0.32 0.33 0.9 0.74 0.9
pioneer 0.79 0.96 0.97 0.95 1 0.77 0.97
skater 0.55 0.87 0.18 0.18 0.86 0.69 0.87

Таблица 4.6: Доля верных ответов при 10-кратной кросс-валидации в задачах классификации
последовательностей.

– Обучающая выборка состоит из 417 упрощенных молекулярных структур химических ве-
ществ с указанием того, является ли вещество токсичным для представителей одной из че-
тырех групп: {mice, rats}× {male, female}.

– Четыре отдельных набора данных для крыс-самцов (MR, 274 вещества, 117 – токсичны, 157
– нетоксичны), крыс-самок (FR, 281, 86, 195) мышей-самцов (MM, 266, 94, 172) и мышей-
самок (FM, 279, 108, 171).

Сравнивались 4 алгоритма:

– CoLiBRi (“Concept Lattice-based Rule-learner”) - предлагаемый Алгоритм 7;

– “GLAC” (“Graphlet-based Lazy Associative Graph Classification”) – алгоритм ленивой класси-
фикации для графов на основе их подграфов (графлетов) [KK15];

– SVM c графлет-ядром;

– Метод k ближайших соседей с расстоянием Хэмминга по включению графлетов.

Результаты 5-кратной кросс-валидации для подвыборки самцов крыс Predictive Toxicology
Challenge13 представлены в Таблице 4.7.

Результаты алгоритма CoLiBRi на тестовых наборах данных Predictive Toxicology Challenge
представлены в Таблице 4.8, а также на Рис. 4.20 и 4.21, где показатели доли верных и ошибочных
классификаций (TPR и FPR соответственно) алгоритма CoLiBRi сравниваются с аналогичными
показателями алгоритмов-участников соревнования.

4.5.3. Результаты экспериментов с классификацией данных, представлен-
ных графами

Также проводились вычислительные эксперименты еще с 4 алгоритмами и 5 наборами данных,
представленных графами.

13http://www.predictive-toxicology.org/ptc/

http://www.predictive-toxicology.org/ptc/
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Рисунок 4.20: Сравнение алгоритма CoLiBRi c алгоритмами участников Predictive Toxicology
Challenge на тестовых выборках PTC-FM (female mice) и PTC-FR (female rats)

Рисунок 4.21: Сравнение алгоритма CoLiBRi c алгоритмами участников Predictive Toxicology
Challenge на тестовых выборках PTC-MM (male mice) и PTC-MR (male rats)



91

K Accuracy Precision Recall F1-score Time (sec.)
2 0.36 0.32 0.33 0.32 1.8
3 0.68 0.83 0.68 0.75 3.2
4 0.59 0.57 0.62 0.59 4GLAC

5 0.55 0.7 0.62 0.66 6.8
2 0.45 0.15 0.33 0.21 1.5
3 0.52 0.35 0.35 0.35 2.2
4 0.41 0.27 0.28 0.28 2.6SVM

5 0.36 0.24 0.25 0.24 3.2
2 0.45 0.15 0.33 0.21 0.6
3 0.34 0.21 0.23 0.22 0.8
4 0.48 0.31 0.32 0.31 1.2kNN

5 0.45 0.30 0.31 0.30 2.3
2 0.42 0.4 0.36 0.38 7.4
3 0.71 0.78 0.7 0.74 11
4 0.63 0.52 0.68 0.6 25.2CoLiBRi

5 0.57 0.72 0.66 0.69 62.2

Таблица 4.7: Результаты кросс-валидации для группы самцов мышей. “GLAC” означает
“Graphlet-based lazy associative classification”, “SVM” – машина опорных векторов с

графлет-ядром, “kNN” – метод ближайших соседей с расстоянием Хэмминга.

Набор данных Accuracy Precision Recall F-score
PTC-FM 0.7 0.71 0.69 0.7
PTC-FR 0.72 0.77 0.75 0.76
PTC-MM 0.73 0.76 0.81 0.78
PTC-MR 0.71 0.74 0.8 0.77

Таблица 4.8: Качество классификации алгоритма CoLiBRi (версия 7) на 4 тестовых выборках
набора данных Predictive Toxicology Challenge.

Наборы данных IMDB,MUTAG, NCI, NCI109 и PROTEINS14 известны тем, что в задачах клас-
сификации с этими данными часто проверяются алгоритмы графовой классификации [Ker+16].

Краткое описание задач:

– IMDB – граф отношения совместной съемки в фильме для актеров; фильмы поделены на 2
жанра: романтические и боевики [YV15];

– MUTAG – 188 структур химических веществ, поделенных на 2 класса по мутагенному эф-
фекту, производимому на бактерии [Deb+91];

– NCI, NCI109 – два сбалансированных подмножества наборов данных химических соеди-
нений, у которых измерена, соответственно, активность борьбы против немелкоклеточного
рака легких и раковых клеток яичников [WWK08];

– PROTEINS – предсказание функциональных классов принадлежности ферментов [Bor+05].

Для всех графов с помощью расширения алгоритма Gaston [NK05] LibGastonForSofia15 были
построены бинарные признаки по включению подграфов до 6 вершин, что заняло от 6 до 42 минут
в зависимости от набора данных. Проверялись 4 алгоритма:

14https://ls11-www.cs.uni-dortmund.de/staff/morris/graphkerneldatasets
15https://github.com/AlekseyBuzmakov/LibGastonForSofia

https://ls11-www.cs.uni-dortmund.de/staff/morris/graphkerneldatasets
https://github.com/AlekseyBuzmakov/LibGastonForSofia
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– CBA – классификация на основе ассоциативных правил (реализация LUCS-KDD16);

– DT – дерево решений (sklearn);

– SVM graphlet – линейный метод опорных векторов (sklearn);

– CoLiBRi – предлагаемый алгоритм.

Данные были поделены в пропорции 7/3 на обучающую и проверочную выборку. В Таблице 4.9
указаны доли правильных ответов 4 алгоритмов проверенных на 5 графовых наборах данных.
Можно заметить, что в целом SVM справляется лучше остальных алгоритмов, зато остальные
алгоритмы –- интерпретируемые, на выходе можно получить набор классифицирующих правил
для каждого тестового примера.

CBA DT SVM
graphlet CoLiBRi

IMDB 60.1 55.6 62.1 59.3
MUTAG 72.1 68.4 77.4 74.6
NCI1 55.1 52.1 59.6 58.3
NCI109 56.6 52.8 59.7 58.8
PROTEINS 60.5 60.2 66.3 68.9

Таблица 4.9: Доли правильных ответов 4 алгоритмов на 5 графовых наборах данных.

В Таблице 4.10 представлены средние мощности посылок правил, участвовавших в классифи-
кации тестовых примеров в задачах классификации, результаты которых представлены в Таблице
4.9. Можно сделать вывод, что в данных задачах алгоритм CoLiBRi демонстрирует качество клас-
сификации выше, чем CBA и DT, при этом сохраняется интерпретируемость алгоритма (в отличие
от случая применения SVM) – мощности посылок правил, участвовавших в классификации тесто-
вых примеров в случае CoLiBRi примерно такие же, как и в случае CBA и DT.

CBA DT CoLiBRi
IMDB 5.1 5.2 5.5
MUTAG 6.8 7.8 7.2
NCI1 8.3 10.5 12.7
NCI109 8.5 11.3 10.5
PROTEINS 7.6 12.2 8.6

Таблица 4.10: Средние мощности посылок правил, участвовавших в классификации тестовых
примеров.

В Таблице 4.11 указано время работы рассмотренных алгоритмов классификации в секундах.
Отметим, что тут уже был проделан самый затратный этап, построение бинарных признаков по
включению подграфов до 6 вершин, и поэтому время работы алгоритмов на таких бинарных при-
знаках невелико, при этом методы, основанные на классифицирующих ассоциативных правилах
(CBA и CoLiBRi) работают намного дольше, чем деревья решений и SVM.

16http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html

http://cgi.csc.liv.ac.uk/~frans/KDD/Software/CBA/cba.html
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CBA DT SVM
graphlet CoLiBRi

IMDB 7.2 0.3 2.5 26.7
MUTAG 1.3 0.05 0.8 6.8
NCI1 28.5 1.2 5.2 153.6
NCI109 35.6 1.6 4.6 183.2
PROTEINS 13.5 0.7 2.9 54.3

Таблица 4.11: Время работы алгоритмов в задачах графовой классификации (сек).

4.6. Заключение

Результаты вычислительных экспериментов по решению задачи классификации реальных на-
боров данных свидетельствуют о том, что предлагаемые алгоритмы имеют лучшее качество клас-
сификации, чем у деревьев решений С4.5 и CART и лучшую интерпретируемость (средний размер
посылок правил), чем у случайного леса.

В задачах классификации данных, представленными последовательностями и графами, пока-
зано, что с помощью предлагаемых алгоритмов можно добиваться высокого качества классифи-
кации с помощью коротких классифицирующих правил.
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Заключение

В данной работе предложен универсальный подход к классификации данных со сложной
структурой. Также предложены модификации для данных с признаками разной природы.

Предложенные вычислительные методы легли в основу программного комплекса, позволяю-
щего решать задачи классификации для данных со сложной структурой. С помощью этого ком-
плекса предлагаемые алгоритмы были протестированы на большом числе данных из разных об-
ластей, а также для данных, представленных графами в задачах прогнозирования свойств хими-
ческих веществ, и в нескольких задачах классификации данных, представленных последователь-
ностями.

Таким образом, основные результаты всей работы могут быть описаны следующим образом:

1. Предложен универсальный подход к классификации данных со сложной структурой на ос-
нове решеток замкнутых описаний;

2. В рамках этого подхода предложены алгоритмы для классификации данных, представлен-
ных последовательностями и графами, а также числовыми и интервальными признаками;

3. Алгоритмы апробированы в задачах классификации последовательностей и графов и пока-
зали высокие значения доли правильных ответов. При этом классификация проводилась с
помощью коротких классифицирующих правил;

4. На данных Predictive Toxicology Challenge показаны метрики качества выше, чем у SVM c
графлет-ядром, и сравнимые с лучшими из результатов участников соревнования;

5. В вычислительных экспериментах с данными репозитория UCI получены значения метрик
качества классификации на кросс-валидации, статистически значимо более высокие, чем у
алгоритмов построения деревьев решений;

6. При этом показано, что интерпретируемость полученных правил, понимаемая как средняя
мощность посылок правил, которыми определялись метки тестовых объектов, у предлагае-
мого алгоритма лучше, чем у случайного леса;

7. Методы классификации, основанные на правилах, в том числе деревья решений, представ-
лены с помощью проекций интервальных узорных структур;
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8. Предложены и исследованы дискретизирующие проекции для интервальных узорных струк-
тур. На их основе предложен способ выбора правил на основе множеств формальных поня-
тий, гарантирующий нахождение правил не хуже, чем построенные деревом решений, по
выбранному критерию информативности;

9. Разработан программный комплекс, позволяющий анализировать сложно структурирован-
ные данные и решать для них задачи классификации с помощью интерпретируемых наборов
правил, подходящих для дальнейшего экспертного анализа.
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Приложения

Приложение A.

Данные DT msl RF msl kNN k
audiology 1 1 2
balance-scale 6 1 50
breast cancer 4 3 5
car 3 2 5
hayses-roth 3 1 15
lymph 1 1 5
mol-bio-prom 3 3 5
nursery 3 4 50
primary tumor 4 4 30
solar flare 3 1 30
soybean 1 1 2
spect train 9 5 10
tic-tac-toe 10 3 10

Таблица 4.12: Лучшие найденные значения параметров в процессе кросс-валидации для 13
наборов данных репозитория UCI. “DT msl” и “RF msl” означают параметрmin_samples_leaf –

минимальное число объектов в листе дерева и леса соответственно.
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Название Описание # obj # attr # class

heart
Определение наличия или
отсутствия сердечного
заболевания у пациента

303 13 2

hepatitis
Предсказание выживания
пациента при заболевании
гепатитом

155 19 2

horse

Данные о том, проводилось ли
лечение колик у лошадей с
хирургическим вмешательством
или нет

300 27 2

ionosphere

Классификация сигналов от радаров
на несущие полезную информацию
о структуре ионосферы и
не несущие

351 34 2

iris
Данные по длине и ширине
чашелистника и лепестка
для трех видов цветков ириса

150 4 3

pima
Определение склонности
пациентов женского пола
к заболеванию диабетом

768 8 2

wine
Результаты химического анализа
вина на винограде с
3 плантаций в Италии

178 13 3

zoo Классификация животных
на 7 групп 101 17 7

Таблица 4.13: Информация об используемых в экспериментах наборах данных UCI.
Здесь # obj, # attr и # class – числа объектов, признаков и значений целевого класса в обучающей

выборке.

Данные # objects # attr CART msl kNN k CART time kNN time CoLiBRi time
colic 368 59 1 30 0.3 0.52 6.41

heart-h 294 24 2 20 0.3 0.52 0.89
heart-statlog 270 13 5 45 0.3 0.53 3.76
hepatitis 155 285 2 10 0.29 0.55 62.9

hypothyroid 3772 126 7 15 0.63 1.39 298.84
ionosphere 351 34 4 10 0.41 0.54 2.03
kr-vs-kp 3196 38 1 50 0.4 2.03 23.15
segment 2310 19 1 10 1.05 0.83 4.17
sonar 208 60 3 15 0.41 0.53 3.79
soybean 683 98 1 10 0.3 0.73 32.6
vehicle 846 18 4 10 0.62 0.63 1.34
vote 435 32 2 10 0.31 0.53 2.65
vowel 990 26 2 35 0.63 0.63 3.29

waveform-5000 5000 40 5 82 3.79 1.34 40.2

Таблица 4.14: Значения параметров алгоритмов и время их работы в вычислительных
экспериметнах с 14 наборами данных репозитория UCI. “CART msl” означает параметр

min_samples_leaf – минимальное число объектов в листе дерева, “kNN k” означает параметр
“число соседей” для метода ближайших соседей.
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