
 

 

Федеральное государственное учреждение  

«Федеральный исследовательский центр «Информатика и управление» 

Российской академии наук» 

(ФИЦ ИУ РАН) 

 

 

На правах рукописи 

 

 

 

Мелешко Анна Константиновна 

 

ПЕРЕЧИСЛЕНИЕ  ПОМЕЧЕННЫХ СВЯЗНЫХ ГРАФОВ С  

ЗАДАННЫМИ СВОЙСТВАМИ БЛОКОВ 

 

01.01.09 ‒ Дискретная математика и математическая кибернетика 

 

Диссертация на соискание ученой степени 

 кандидата физико-математических наук  

 

 

Научные руководители                                                Леонтьев В. К.,        

                                                                                        д.ф.-м.н., профессор 

                                                                                        Воблый В.А., д.ф.-м.н. 

 

 

 

Москва 2017



2 
 

Оглавление 

Введение ............................................................................................................. 4 

Глава 1. Перечисление графов с простой структурой блоков ................. 15 

1.1. Кактусы с заданным числом вершин .................................................... 15 

1.2. Кактусы без треугольников ................................................................... 17 

1.3. Гладкие кактусы ..................................................................................... 18 

1.4. Двудольные кактусы .............................................................................. 19 

1.5. Полноблочно-кактусные графы............................................................. 21 

1.6. k- циклические полноблочно-кактусные графы ................................... 23 

1.7. Блочно-колесные графы ......................................................................... 29 

Глава 2.  Перечисление эйлеровых графов ................................................ 33 

2.1. Эйлеровы полноблочные графы ............................................................ 33 

2.2. Эйлеровы двудольные кактусы ............................................................. 34 

2.3. Эйлеровы полноблочно-кактусные графы ............................................ 36 

2.4. Эйлеровы тетрациклические блоки и графы ........................................ 38 

Глава 3. Перечисление геодезических графов ........................................... 47 

3.1. Геодезические эйлеровы кактусы.......................................................... 47 

3.2. Геодезические полноблочно-кактусные графы .................................... 49 

3.3. Геодезические k- циклические кактусы ................................................ 51 

Глава 4. Перечисление планарных графов ................................................ 53 

4.1. Планарные полноблочно-кактусные графы .......................................... 53 

4.2. Внешнепланарные бициклические и трициклические графы ............. 54 

4.3. Непланарные тетрациклические графы ................................................ 60 

 

 



3 
 

Глава 5. Асимптотическое перечисление графов...................................... 62 

5.1. Кактусы без треугольников ................................................................... 62 

5.2. Эйлеровы кактусы .................................................................................. 64 

5.3. Полноблочно-кактусные графы............................................................. 66 

5.4. Планарные полноблочно-кактусные графы .......................................... 67 

5.5. Эйлеровы пентациклические блоки ...................................................... 69 

5.6. Внешнепланарные бициклические и трициклические графы ............. 70 

Заключение ..................................................................................................... 74 

Список литературы........................................................................................ 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

Введение 

Актуальность темы исследования. Важным разделом теории графов 

является теория их перечисления.  

Первые работы, опубликованные в 1857 ‒ 1889 гг.,  по перечислению 

помеченных графов принадлежат британскому  ученому А. Кэли, который  

перечислил  помеченных деревья и связанные с ними химические структуры. 

Эти работы лежат у истоков теории графов. Но только  прогресс 

вычислительной техники и кибернетики во второй половине XX века 

обусловил интенсивное развитие  всей дискретной математики  и в том числе 

теории перечисления графов [25, 34].  

Перечисление графов применяют в таких областях естествознания, как 

статистическая физика [68] и структурная химия [47]. Результаты перечисления 

помеченных графов используются также для их случайной генерации и анализа 

эффективности алгоритмов [51]. 

Известно, что данный граф � с � вершинами можно пометить �! |���(�)|
  

способами, где |���(�)| ‒ порядок группы автоморфизмов графа. Во многих 

случаях число непомеченных графов с � вершинами асимптотически равно 

числу соответствующих помеченных графов, деленному на �!, то есть почти 

все графы являются асимметричными (|���(�)| = 1). Кроме того, в 

статистической физике используются как раз помеченные графы [30, 31, 32]. Во 

всех представлениях графа в компьютере необходимо сначала пометить 

числами вершины графа. Поэтому при анализе эффективности алгоритмов на 

графах используется перечисление помеченных графов. Перечисление графов 

тесно связано с теорией случайных графов, в которой исследуются помеченные 

графы. Все это объясняет причину того, что в большинстве современных работ 

по перечислению графов рассматриваются помеченные графы.  

Цикломатическим числом связного графа называется увеличенная на 

единицу разность между числом ребер графа и числом его вершин. Под  k-

циклическим графом понимается связный граф с цикломатическим числом 
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равным �. Деревья ‒ это 0-циклические графы. Они перечислены Кэли в 1857 

году. Но только через 100 лет в 1959 году Реньи перечислил унициклические 

графы [76], а в 1973 Багаев перечислил бициклические графы  [1]. В 1977 году 

Райтом [84] была получена рекуррентная формула для числа  ��,��� 

помеченных связных графов с � вершинами и  � + � ребрами, не содержащих 

петель и кратных ребер: 2(� + � + 1)��,����� = 2(�(� − 1) 2 − � − �⁄ )��,��� 

+ � ���� �(� − �) � ��,�������,�������.���
� ��

�
� �  

 В 1980 году Райт [85] получил асимптотику для числа ��,���  при � → ∞, когда   

� = #(�� $⁄ ): 

��,��� = %��($���) &⁄ �� �1 + #'��� &⁄ (�, 
где %) = *+ , %� = √*$-(���).-&(/-01) 2⁄ Г($� &⁄ ) , � ≥ 1 и 5� удовлетворяет рекуррентному 

соотношению: 

5� = 5& = 536,   5��� = 5� + � 5�5���(� + 1) ��ℎ� ,    � ≥ 1.���
� �  

 В 1990 году Бендер, Кенфилд и МакКей [48] представили рекуррентное 

соотношение Райта [84] в виде дифференциальных уравнений и получили  

асимптотику в более широком диапазоне для цикломатического числа.  

Пусть   �(�, ;) ‒ число помеченных блоков с � вершинами и ; ребрами, а  

< = <(=, >) = ∑ ∑ �(�, ;) @ABC
�!DE �D� & ‒экспоненциальная производящая функция  

для   �(�, ;). Из уравнения в частных производных для  < [86]: 

=& + =& F&<F=& G1 − = F&<F=&H�� = 2(1 + >) F<F> 

в 1978 году Райт [86]  получил рекуррентную формулу для числа помеченных  (� + 1) ‒ циклических  блоков �(�, � + �). 
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Для перечисления помеченных гладких k-циклических графов Райт 

применил второй метод, ранее использованный им для помеченных связных k-

циклических графов. Два графа гомеоморфны (имеют один гомеоморфный 

тип), если их можно получить из одного общего графа (допускаются петли и 

кратные ребра), не содержащего вершин степени 2, и, называемого 

гомеоморфным типом, с помощью подразбиения ребер. Задача перечисления 

помеченных графов с заданным гомеоморфным типом сводится к выбору меток 

для вершин гомеоморфного типа, а затем к распределению вершин степени 2 по 

ребрам и петлям гомеоморфного типа с учетом его симметрии. Таким образом, 

перечисляли помеченные блоки и гладкие графы Форд и Уленбек [59], Е.Ф. 

Дмитриев [27] и В.Е. Степанов [43].  

Второй метод Райта отличается тем, что он вместо гомеоморфного типа 

использует базисный граф, который получается из гомеоморфных типа 

вставкой двух вершин степени 2 в каждую его петлю и по максимум одной 

вершине степени 2 в его кратные ребра так, чтобы из общего графа получился 

простой граф. Хотя число базисных графов больше числа соответствующих 

гомеоморфных типов, этот метод является более гибким и позволяет, в 

частности, перечислять внешнепланарные графы.  

Пусть �� и I� ‒ числа помеченных связных графов с � вершинами, 

соответственно, а �(J) = ∑ �� KA
�!D� �  и I(J) = ∑ I� KA

�!D� &  ‒ их производящие 

функции. Известно классическое соотношение [46, c. 20]: 

                           L��M(J) = IM(J�M(J)).                         (1) 

Это соотношение является универсальным, оно верно также для подклассов 

связных графов и блоков [66]. В частности, оно выполняется для блочно-

устойчивых классов графов [73]. Класс графов называется блочно-устойчивым, 

если граф принадлежит этому классу тогда и только тогда, когда каждый блок 

графа принадлежит этому классу [69]. Кактусы, полноблочные графы, 

полноблочно-кактусные графы, эйлеровы графы, геодезические графы, 

планарные графы ‒ блочно-устойчивые классы графов.  
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Из формулы (1) в 2012 году Воблым В.А. была получена формула  

�� = (���)!� NJ���OPJQ(�I′(J)) = (���)!� NJ��O exp'�IM(J)( J��,      (2) 

где NJ�O ‒ коэффициентный оператор и  NJ��O ‒ оператор  формального вычета 

[26]. Это соотношение эквивалентно (1), так как получено из (1) с помощью 

формулы обращения Лагранжа. Поэтому формула (2) верна не только для всего 

класса связных графов, но и для блочно-устойчивых классов графов. 

Как следствие основной формулы (2), в 2016 году Воблый В.А. [5] 

получил формулу для числа помеченных связных графов с заданными 

количествами вершин и цикломатическим числом с помощью многочленов 

разбиений. 

Пусть <(�, �) ‒ число помеченных связных графов с � вершинами и 

цикломатическим числом �, а I�(V) ‒ экспоненциальная производящая 

функция для числа помеченных блоков с цикломатическим числом �. 

Тогда  

<(�, �) = (���)!�&-�! NV��O exp(�V) >�'�I�M (V), … , ��! I�M (V)(V��,      (3) 

где NV��O ‒ оператор формального вычета [26], а >�(J�, … , J�) ‒ многочлен 

разбиений. 

Многочлены разбиений (многочлены Белла) >X(J�, … , JX) могут быть 

определены с помощью формулы [42]: 

>X(J�, … JX) = � Y!��! … �X! �J�1!��1 … �JXY!��Z ,*(X)  

где суммирование проводится по всем разбиениям [(Y) числа Y: �� + 2�& +⋯ + Y�X = Y,    �^ ≥ 0,    ` = 1, … , Y. 
В 1967 году Муном [70], были представлены комбинаторные и 

вероятностные результаты о помеченных деревьях и сделан обзор наиболее 

важных методов по перечислению помеченных деревьев. Деревья также 

являются кактусами. Кактусы являются после деревьев следующим по простоте 

классом графом и находят широкое применение в различных областях 

математики и информатики [56, 80]. В 1950 году К. Хусими [62] перечислил 
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помеченные кактусы и полноблочные графы. В 1956 году Форд и Уленбек [58] 

перечислили помеченные кактусы �a� с заданным распределением числа 

вершин по многоугольникам: 

�a�(�&, �$, … ) = (���)!�-01
�2! ∏ &Ac �c!cde , 

где � − 1 = �& + 2�$ + ⋯ , �& + �$ + ⋯ = � ‒ число блоков, и нашли 

соответствующую асимптотику при большом числе вершин [57, 70]: 

�a�~�! g2√[ a���� &⁄ ��h &⁄ , 
где g = 0.87170 и a = 0.23874.  

В 1962  году Рид [74] перечислил помеченные четные и эйлеровы графы с 

заданными числами вершин и ребер. Пусть �� ‒ число помеченных эйлеровых 

графов с � вершинами, I� ‒ число помеченных эйлеровых блоков с � 

вершинами, �(J) = ∑ �� KA
�! ,   I(J) = ∑ I� KA

�!D� �D� �  ‒ соответствующие 

производящие функции. В 1998 Тазава [79] получил соотношение �M(J) =PJQmIM(J�M(J))n, которое аналогично соотношению между производящими 

функциями помеченных связных графов и блоков. 

В 2012  Воблый В.А. [2] перечислил помеченные эйлеровы кактусы o� с 

заданным числом вершин: 

o� = (� − 1)! � �����! 2� �� − � − 2� − 1 � .
p���& q
� �  

В 2012 году Воблым В.А. [3] были получены явные формулы для числа 

помеченных эйлеровых n-вершинных бициклических P(�, � + 1)  и 

трициклических графов  P(�, � + 2): P(�, � + 1) = ��r+ �!, P(�, � + 2) =
�!&++ (4�$ − 33�& + 53� + 84) и найдена соответствующая асимптотика для 

числа таких графов с большим числом вершин: 

P(�, � + 1)~ �+ �,            P(�, � + 2)~ �e
s& �!. 
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Однако общая задача перечисления эйлеровых k-циклических графов не 

решена до сих пор. 

Геодезические графы применяются при проектировании структуры 

компьютерных сетей [60]. Класс геодезических графов не был перечислен до 

последнего времени. В 2015 году Воблый В.А. [6] впервые перечислил 

планарные геодезические графы: 

t� = (� − 1)!� NV���OPJQ G�V + �V&2(1 − V&) + �(V$ + 2Vu)6(1 − V)h H, 
а затем геодезические графы с малым цикломатическим числом [7].  

Планарный граф ‒ граф, который можно уложить на плоскости без 

пересечения ребер [45, c. 127]. Внешнепланарным графом называется 

планарный граф, если его можно уложить на плоскости так, что все его 

вершины принадлежат одной грани [45, c. 131]. В 2007 году Бодирски, Грепль и 

Канг [52] получили систему рекуррентных формул для числа помеченных 

планарных графов с заданными числами вершин  и ребер. Полученные 

рекуррентные формулы пригодны только для компьютерных вычислений.  В 

2002 году Бендером, Гао и Уормалдом [49] была получена асимптотика для 

числа помеченных планарных графов I�:  

I�~v&��s &⁄ w&��!, 
где w& ≈ 26.18. 

В 2016 году [9] Воблым В. А. была получена формула для числа  #I(�, �) 

помеченных внешнепланарных k-циклических блоков с � вершинами при � ≥ 1 

и � ≥ � + 2: 
#I(�, �) = (� − 3)! (� + � − 2)!2(� − 1)! �! (� − � − 2)!. 

Также Воблым В. А. была найдена соответствующая асимптотика для числа 

таких графов при фиксированном � ≥ 1 и � → ∞: 

#I(�, �)~�! �&��$2(� − 1)! �!. 
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Перечисление графов тесно связано с теорией  случайных графов [33, 41, 

53, 63]. Если в модели Эрдеша ‒ Реньи случайных графов �(�, Q) вероятность 

появления ребра Q = �&, то имеем равномерное распределение вероятностей на 

множестве графов, то есть все графы равновероятны. При этом вероятность 

принадлежности графа к некоторому классу равна отношению числа графов из 

этого класса к общему числу графов. Таким образом, из решения 

перечислительной задачи теории графов получаются следствия о свойствах 

соответствующих случайных графов. 

Обозначим через �(�) множество всех помеченных простых графов с 

множеством вершин y = m1,2, … , �n.  
Пусть t ‒ некоторое свойство, которым каждый отдельно взятый граф из �(�) может обладать или не обладать. Через �t(�) обозначим множество тех 

графов из �(�), которые обладают свойством t. Будем говорить, что почти все 

графы (почти каждый граф)  обладают свойством t  [29], если 

lim�→D
�t(�)�(�) = 1 

и почти нет графов, обладающих свойством t, если  

lim�→D
�t(�)�(�) = 0. 

Следовательно, если почти все графы обладают свойством t, то почти 

нет графов, не обладающих свойством t. К настоящему времени получены 

результаты о большом количестве свойств графов в терминах “почти всех 

графов” [29]: 

• Почти все графы связны. 

• Почти все связные графы являются блоками [46]. 

• Группа автоморфизмов почти каждого графа совпадает с единичной 

группой.  

Несмотря на то, что теория перечисления графов ведет начало с 19 века, 

интерес к этому разделу теории графов не ослабевает до сих пор. 
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Цели и задачи. Перечисление некоторых классов помеченных связных 

графов с заданными свойствами блоков, нахождение для них явных формул и 

соответствующей асимптотики. 

Научная новизна. Все основные результаты диссертации являются 

новыми и ранее получены не были.  

Теоретическая и практическая значимость работы. Диссертация 

имеет теоретический характер. Результаты диссертации могут найти 

применение в исследованиях по перечислению графов. Ряд разделов 

диссертации могут быть использованы в спецкурсе для аспирантов по 

специальности “Дискретная математика и математическая кибернетика”. 

Методология и методы исследования. В работе использованы методы 

теории графов, комбинаторного анализа и теории функций комплексного 

переменного.  

Положения, выносимые на защиту: 

• Перечислены полноблочно-кактусные графы и найдена соответствующая 

асимптотика для этих графов. Получены явные формулы для числа  

кактусов: кактусов с заданным числом вершин, кактусов без 

треугольников, гладких кактусов, двудольных кактусов. Также были 

получены явные формулы для числа  k-циклических полноблочно-

кактусных графов и  блочно-колесных графов. Найдена асимптотика для 

числа кактусов без треугольников.  

• Перечислены эйлеровы графы: эйлеровы полноблочные графы, эйлеровы 

двудольные кактусы, эйлеровы полноблочно-кактусные графы. Получены 

явные формулы для числа эйлеровых тетрациклических блоков и графов. 

Была получена явная формула для числа графов розы, которые являются 

кактусами, а также k-циклическими эйлеровыми графами. Найдена 

асимптотика для числа  эйлеровых кактусов и эйлеровых 

пентациклических блоков. 
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• Получены явные формулы для числа геодезических графов: 

геодезических эйлеровых кактусов, геодезических полноблочно-

кактусных графов, геодезических k-циклических кактусов. 

• Перечислены внешнепланарные бициклические и трициклические графы 

и получена соответствующая асимптотика для числа таких графов. Были 

получены явные формулы для числа  планарных полноблочно-кактусных 

графов и найдена соответствующая асимптотика для числа таких графов.  

Степень достоверности и апробация результатов.  Достоверность 

изложенных в диссертации результатов обусловлена строгостью 

математических доказательств всех утверждений, а также независимой 

экспериментальной проверкой всех полученных формул.  

Основные результаты, полученные в диссертации, докладывались и 

обсуждались на Международной научной конференции «Дискретная 

математика, теория графов и их приложения» (Минск, 2013), Международной 

научной конференции “Дискретная математика, алгебра и их приложения” 

(Минск, 2015), Международной конференции «Проблемы теоретической 

кибернетики» (Казань, 2014, 2017), IX Международной конференции  

«Дискретная математика и теории управляющих систем» (Москва, МГУ, 2015), 

International Russian-Chinese conference “Actual problems of Applied Mathematics 

and Physics”(Нальчик, 2015), Шестнадцатом симпозиуме по прикладной и 

промышленной математике, (Сочи-Дагомыс, 2015), Всероссийской 

конференции “XV Сибирская научная школа-семинар с международным 

участием “Компьютерная безопасность и криптография”, SIBERCRYPT’16”, 

(Новосибирск, 2016), Международном научно-практическом семинаре 

«Комбинаторные конфигурации и их приложения» (Кировоград, 2013, 2015, 

2016, 2017), X Молодежной научной школе по дискретной математике и ее 

приложениям. (Москва, 2015), XX Международном семинаре «Дискретная 

математика и ее приложения» имени академика О.Б. Лупанова, (МГУ, 2016). 

Материалы, составляющие основное содержание диссертации, 

опубликованы в 19 печатных работах, из них 3 статьи ‒ в изданиях, 
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включенных в перечень ВАК РФ [12], [15], [22],  16 ‒ в сборниках и трудах 

конференций [10-11, 13-14, 16-21, 35-37, 81, 23-24]. 

Личный вклад автора в работе с соавторами. В работах, 

опубликованных в соавторстве с научным руководителем В.А. Воблым, вклад 

соискателя состоит в решении задачи, поставленной руководителем, и 

изложении результатов, а вклад руководителя ‒ в постановке задачи и 

редактировании текста. 

Структура и объем диссертации. Работа состоит из введения, пяти глав, 

заключения, списка литературы, содержащего 87 источника. Полный объем 

диссертации составляет 85 страниц.  

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ 

Работа посвящена получению явных формул для числа помеченных 

связных графов с заданными свойствами блоков и соответствующих 

асимптотик. 

Во введении обосновывается актуальность темы исследования, 

определяются цели и задачи работы, раскрывается научная новизна, 

теоретическая и практическая значимость диссертационной работы, 

выдвигаются основные положения, выносимые на защиту, и дается краткое 

содержание работы. 

В главах I-IV при получении явных формул для числа помеченных 

связных графов с заданной структурой блоков была применена формула (2). 

В первой главе получены явные формулы для числа помеченных графов 

с простой структурой блоков.  

Получены явные формулы для числа помеченных  кактусов с заданным 

числом вершин, кактусов без треугольников, гладких кактусов, двудольных 

кактусов и полноблочно-кактусных графов. Также  перечислены  k-

циклические полноблочно-кактусные графы с малым цикломатическим числом 

и  блочно-колесные графы.  

При перечислении k-циклических полноблочно-кактусных графов с 

малым цикломатическим числом была применена формула, полученная 
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Воблым В.А. [5],  для числа помеченных связных графов с заданными 

количествами вершин и цикломатическим числом с помощью многочленов 

разбиений.  

Во второй главе перечислены эйлеровы графы. Получены явные 

формулы для числа помеченных эйлеровых полноблочных графов, эйлеровых 

двудольных кактусов и эйлеровых полноблочно-кактусных графов. Для 

перечисления помеченных  эйлеровых тетрациклических блоков  и графов была 

применена лемма Степанова [43].   

В третьей главе получены явные формулы для геодезических графов. 

Перечислены геодезические эйлеровы кактусы, геодезические полноблочно-

кактусные графы, геодезические k-циклические графы. 

В четвертой главе перечислены планарные графы. Получены явные 

формулы для числа помеченных планарных полноблочно-кактусных графов. 

Для перечисления помеченных внешнепланарных бициклических и 

трициклических графов были применены лемма Степанова [43] и формула 

Райта [84].   

В пятой главе получена асимптотика для кактусов, эйлеровых графов, 

полноблочно-кактусных графов и k-циклических графов. Была применена 

теорема Флажоле-Седжвика [55] для получения асимптотических равенств 

кактусов, эйлеровых графов и полноблочно-кактусных графов. Используя 

лемму Степанова [43, лемма 4], была получена асимптотика для числа 

помеченных эйлеровых пентациклических блоков. Для получения асимптотик 

для внешнепланарных бициклических и трициклических графов было 

применено асимптотическое равенство, полученное Кнутом и Питтелем [65]. 

Заключение содержит результаты и выводы диссертации. 
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Глава 1. Перечисление графов с простой структурой блоков 

1.1. Кактусы с заданным числом вершин 

Точкой сочленения связного графа называется его вершина, после 

удаления, которой вместе с инцидентными ей ребрами, граф становится 

несвязным [45]. Блок ‒ это связный граф без точек сочленения, а также 

максимальный связный нетривиальный подграф, не имеющий точек сочленения 

[45, c. 41]. Кактусом называется связный граф, в котором нет ребер, лежащих 

более чем на одном простом цикле [46]. Все блоки кактуса ‒ ребра или простые 

циклы (многоугольники). Перечисление кактусов используется в 

статистической физике [68], комбинаторной оптимизации [56] и теории кодов, 

исправляющих ошибки [80]. В [4] была получена формула для числа 

помеченных кактусов с заданным числом вершин: 

�a� = ���&2��� + (� − 1)! � ����2��! � ��̀� �� − ` − 2� − ` − 1� .���
^ )

���
� �  

Однако первое слагаемое в формуле не имеет ясной комбинаторной 

интерпретации. В предлагаемой новой формуле первое слагаемое совпадает с 

формулой Кэли, что естественно, так как деревья также являются кактусами. 

Теорема 1.  Пусть �a� ‒ число помеченных кактусов с � вершинами. При � ≥ 3 верна формула 

�a� = ���& + (� − 1)! � � �� − � − } − 2} − 1 � �����! }! 2~ .��&~��
� )

p���& q
~ �  

Доказательство. Пусть �� ‒ число помеченных связных графов с � 

вершинами, а I� ‒ число помеченных блоков с � вершинами. Введем 

производящую функцию: I(V) = ∑ I� �A
�!D� $ . 

Для доказательства теоремы воспользуемся соотношением (2), 

полученным В.А. Воблым в [4]: 

�� = (���)!� NV���OPJQ(�I′(V)) = (���)!� NV��O exp'�IM(V)( V��,      



16 
 

где NV�O ‒ коэффициентный оператор и  NV��O ‒ оператор  формального вычета 

[26]. 

Обозначая через I�(V) экспоненциальную производящую функцию для 

числа помеченных блоков, которые являются ребром или простым циклом с � 

вершинами, получим 

�a� = (� − 1)!� NV��O exp'�IM���(V)( V��. 
Так как число помеченных циклов с � вершинами равно (� − 1)! 2⁄ , 

имеем  

I�(V) = V&2 + � 12 (� − 1)! V�� ,D
� $         IM���(V) = V + � 12 V��! = V + V&2(1 − V) .D

� $  

Следовательно, 

�a� = (� − 1)!� NV��O exp(�V) PJQ G �V&2(1 − V)H V��. 
Разлагая экспоненту в степенной ряд, найдем 

�a� = (� − 1)!� NV��O � ��V����! �V�� + � �~V&~��}! 2~(1 − V)~
D

~ � � .D
� )  

Используя известный ряд [42, с. 141] 

(1 − V)�~ = ∑ �Y + } − 1} − 1 � VX,DX )          (4) 

имеем 

�a� = ���& + (� − 1)! NV��O � � � �Y + } − 1} − 1 � ���~��V&~�����X�! }! 2~
D

� )
D

X )
D

~ �  

= ���& + (� − 1)! � � �� − � − } − 2} − 1 � ���~���! }! 2~ .D
� )

D
~ �  

Учитывая, что биномиальный коэффициент обращается в нуль при � − � − } − 2 < } − 1, получим утверждение теоремы. 

В [10] была допущена опечатка в формуле для числа помеченных 

кактусов �a�: был пропущен биномиальный коэффициент.  
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В следующей таблице представлены числа �a�, вычисленные с помощью 

формулы из теоремы. 

Таблица 1. � 3 4 5 6 7 8 9 10 �a� 6 76 1250 23976 521122 12657688 340147404 10029364300 
 

1.2. Кактусы без треугольников 

Графы без треугольников являются важным классом графов. По теореме 

Грецша каждый планарный граф без треугольников 3-раскрашиваем. 

Теорема 2.  Пусть ��� ‒  число помеченных кактусов без треугольников с � вершинами. При � ≥ 3 верна формула 

��� = ���& + (� − 1)! � � �� − � − 2} − 2} − 1 � ���~���! }! 2~ .��$~��
� )

p���$ q
~ �  

Доказательство. Пусть �� ‒ число помеченных связных графов с � 

вершинами, а I� ‒ число помеченных блоков с � вершинами. Введем 

производящую функцию: I(V) = ∑ I� �A
�!D� $ . 

Для доказательства теоремы используем соотношение (2), полученное 

В.А. Воблым в [4]: 

�� = (���)!� NV���OPJQ(�I′(V)) = (���)!� NV��O exp'�IM(V)( V��,      
где NV�O ‒ коэффициентный оператор и  NV��O ‒ оператор  формального вычета 

[26]. 

 Обозначим через I�(V) экспоненциальную производящую функцию для 

числа блоков помеченных кактусов без треугольников, получим   

��� = (� − 1)!� NV��O exp'�IM���(V)( V��. 
Так как число помеченных циклов с � вершинами равно (� − 1)!/2, 

имеем 

I�(V) = �2
& + ∑ �& (� − 1)! �A

�!D� r , IM���(V) = V + �& ∑ V� = V + �& � �e
(���)� .D� $  
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Подставив I�(V) в (2), получим 

��� = (���)!� NV��Oexp (�V)exp � ��e
&(���)� V��. 

Разлагая экспоненту в степенной ряд, найдем 

��� = (���)!� NV��O ∑ �-�-
�! �V�� + ∑ ���e�0A

~!&�(���)�D~ � �D� ) . 

Используя разложение в ряд (4), получим 

��� = ���& + (� − 1)! � � � �Y + } − 1} − 1 � ���~���! }! 2~ V��$~���X =D
X )

D
~ �

D
� )  

= ���& + (� − 1)! � � �� − � − 2} − 2} − 1 � ���~���! }! 2~ .D
� )

D
~ �  

Учитывая, что биномиальный коэффициент обращается в нуль при � − � − 2} − 2 < } − 1, получим утверждение теоремы. 

В таблице 2 представлены числа ���, вычисленные с помощью формулы 

из теоремы 

Таблица 2 � 4 5 6 7 8 9 ��� 19 197 2796 49717 1060984 26471601 
 

1.3. Гладкие кактусы 

Гладкий граф ‒ это связный граф без висячих вершин [87]. Гладкий граф 

также называется 2-графом [72]. 

Теорема 3. Пусть <�� ‒ число помеченных гладких кактусов с � 

вершинами, тогда при � ≥ 3 верна формула 

<�� = � (−1)��X�!(� − Y)! � � �Y − � − } − 2} − 1 � Y��X���~�&�! }! 2~ .X�&~��
� )

pX��& q
~ �

�
X $  

Доказательство. Пусть y� ‒ число гладких связных графов с � 

помеченными вершинами, а �� ‒ число связных графов с � помеченными 

вершинами. В [8] из работы Рида [75] была получена формула 
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y� = � (−1)��X �!Y! (� − Y)! Y��X�X,�
X )  

где �X = �X − YX�&. 
Подставив в �X вместо �X выражение для числа помеченных кактусов, 

полученных в теореме 1, получим утверждение теоремы. Теорема доказана. 

В следующей таблице представлены числа <��, вычисленные с помощью 

формулы из теоремы. 

Таблица 3. � 3 4 5 6 7 8 9 <�� 1 3 27 330 4875 85680 1752345 
 

1.4. Двудольные кактусы 

Двудольный граф � ‒ это граф, множество вершин y которого можно 

разбить на два подмножества y� и y& таким образом, что каждое ребро графа � 

соединяет вершины из разных множеств y� и y& [45, c. 31]. 

Теорема 4. Пусть o� ‒ число помеченных двудольных кактусов с � 

вершинами, тогда при � ≥ 4 верна формула 

o� = ���& + (� − 1)! � � �` + � − 1� � ���&^�&��&2^`! (� − 3` − 2� − 1)! .
p��$^��& q

� )
p���$ q

^ �  

Доказательство. По теореме Кенига граф является двудольным только 

тогда, когда все его простые циклы четны [45, c. 32]. Пусть �� ‒ число 

помеченных связных графов с � вершинами, а I� ‒ число помеченных блоков с 

� вершинами. Введем производящую функцию: I(V) = ∑ I� �A
�!D� $ . 

Для доказательства теоремы используем соотношение (2), полученное 

В.А. Воблым в [4]: 

�� = (���)!� NV���OPJQ(�I′(V)) = (���)!� NV��O exp'�IM(V)( V��,      
где NV�O ‒ коэффициентный оператор и  NV��O ‒ оператор  формального вычета 

[26]. 
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Обозначим через I(V) экспоненциальную производящую функцию для 

числа помеченных двудольных кактусов. 

Следовательно,  

o� = (� − 1)!� NV��O exp'�I′(V)( V��. 
 Так как число циклов с � помеченными вершинами равно (� − 1)! 2,⁄  

получим  

I(V) = V&2 + � 12 (2� − 1)! V&�(2�)!,       IM(V) = V + V$2(1 − V&) .D
� &  

Подставив I(V) в формулу (2), получим  

o� = (� − 1)!� NV��OPJQ G�V + �V$2(1 − V&)H V��. 
Разлагая экспоненту в степенной ряд, найдем 

o� = ���& + (� − 1)!� NV��O �� ��V��! � �^V$^��2^`! (1 − V&)^
D

^ �
D

� ) �. 
Используя ряд (4), имеем 

o� = ���& + (� − 1)! NV��O � ����V��! � �^V$^��2^`! � �` + � − 1� � V&� =D
� )

D
^ �

D
� )  

= ���& + (� − 1)! � � �` + � − 1� � ���&^�&��&2^`! (� − 3` − 2� − 1)! .D
� )

D
^ �  

Учитывая, что факториал обнуляет слагаемые при � − 3` − 2� − 1 < 0, 
получим утверждение теоремы. 

В таблице 4 представлены числа o�, вычисленные с помощью формулы 

из теоремы. 

Таблица 4 � 3 4 5 6 7 8 9 o� 3 19 185 2436 40537 815704 19261881 
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1.5. Полноблочно-кактусные графы 

Полноблочным графом называется связный граф, у которого все блоки ‒ 

полные графы. Он называется также графом Хусими или графом блоков [68]. 

Полноблочно-кактусным графом называется связный граф, у которого все 

блоки или полные графы, или циклы. Класс полноблочно-кактусных графов ‒ 

естественное расширение классов кактусов и полноблочных графов. Ряд задач 

алгоритмической теории графов, как, например, задача k-доминирования, 

являющихся в общем случае NP-полными задачами, могут быть решены в 

классе полноблочно-кактусных графов полиномиальными алгоритмами [72]. 

Теорема 5.  Пусть �� ‒ число помеченных полноблочно-кактусных 

графов с � вершинами. При � ≥ 4 верна формула 

�� = 1� t���(�) + (� − 1)! � � �� − ` − 2Q − 2Q − 1 � t̂ (�)����2�Q! `! ,��$���
^ )

p���$ q
� �  

где t̂ (J) ‒ многочлен Белла одной переменной [54]. 

Доказательство. Множества полноблочных графов и кактусов имеют 

непустое пересечение, так как деревья и кактусы, у которых все блоки ‒ ребра 

или треугольники, являются одновременно полноблочными графами и 

кактусами. 

Пусть �� ‒ число помеченных связных графов с � вершинами, а I� ‒ 

число помеченных блоков с � вершинами. Введем производящую функцию: 

I(V) = ∑ I� �A
�!D� $ . 

Для доказательства теоремы воспользуемся соотношением (2), 

полученным В.А. Воблым в [4]: 

�� = (���)!� NV���OPJQ(�I′(V)) = (���)!� NV��O exp'�IM(V)( V��,      
где NV�O ‒ коэффициентный оператор и  NV��O ‒ оператор  формального вычета 

[26]. 
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Обозначая через I(V) экспоненциальную производящую функцию для 

числа блоков помеченных полноблочно-кактусных графов, имеем 

�� = (� − 1)!� NV��O exp'�I(V)( V��. 
Так как у полноблочно-кактусного графа все блоки или полные графы, 

или циклы, а число помеченных циклов с � вершинами равно (� − 1)! 2⁄ , то 

экспоненциальная производящая функция запишется в виде 

I(V) = � V��! + � 12 (� − 1)! V��! ,D
� r

D
� &  

IM(V) = � V��! + � 12 V� = P� − 1 + V$2(1 − V) .D
� $

D
� �  

Подставив I(V) в формулу (2), получим 

�� = (� − 1)!� NV��OPJQ'�(P� − 1)(PJQ G �V$2(1 − V)H V��.             (5) 

Многочлен Белла одной переменной определяется через числа Стирлинга 

2-го рода и имеет следующую производящую функцию: 

t�(J) = � <(�, �)J� ,    exp'J(P� − 1)( = � t̂ (J) V^`! .D
^ )

�
� )  

Таким образом, разлагая вторую экспоненту в степенной ряд, найдем  

�� = (� − 1)!� NV��O � t̂ (�)`! V^ �1 + � ��V$�2�(1 − V)�Q!
D

� � � V��.D
^ )  

Используя ряд (4), получим 

�� = t���(�)� + (� − 1)! NV��O � t̂ (�)`! � ����2�Q! � �} + Q − 1Q − 1 � V$��~�^��D
~ )

D
� �

D
^ )  

= t���(�)� + (� − 1)! � � t̂ (�)����2�Q! `! �� − ` − 2Q − 2Q − 1 � .D
� �

D
^ )  

Учитывая, что биномиальный коэффициент при Q − 1 > � − ` − 2Q − 2 

обращается в нуль, завершим доказательство теоремы. 
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Заметим, что первое слагаемое в формуле для числа помеченных 

полноблочно-кактусных графов равно числу помеченных полноблочных графов 

[68]. 

В таблице 5 представлены числа ��, вычисленные с помощью формулы из 

теоремы 5. 

Таблица 5 � 2 3 4 5 6 7 8 9 �� 1 4 32 383 6127 123155 2986041 84856924 
 

1.6. k- циклические полноблочно-кактусные графы 

Теорема 6. Пусть <(�, 2) число помеченных бициклических 

полноблочно-кактусных графов. Тогда при � ≥ 5 верна формула 

<(�, 2) = (� − 1)!8 �(L + 1) �����r(� − L − 5)! .��h
� )  

Доказательство. Пусть <(�, �) ‒ число помеченных связных графов с � 

вершинами и цикломатическим числом �, а I�(V) ‒ экспоненциальная 

производящая функция для числа помеченных блоков с цикломатическим 

числом �. 

Для доказательства теоремы воспользуемся соотношением (3), 

полученным В.А. Воблым в [5]: 

<(�, �) = (� − 1)!�2��! NV��O exp(�V) >�'�I�M (V), … , ��! I�M (V)(V�� 

где NV��O ‒ оператор формального вычета [26], а >�(J�, … , J�) ‒ многочлен 

разбиений. 

Бициклические полноблочно-кактусные графы содержат только блоки с 

цикломатическим числом � = 1, тогда I& = 0 и >&(J�, J&) = J�& + J& = J�&. 

Число помеченных циклов с � вершинами равно (� − 1)! 2,⁄  имеем 

I�(V) = 12 �(� − 1)!D
� $

V��! ,               I�M (V) = � 12 V�D
� $ = V&2(1 − V). 

После разложения экспоненты в ряд, получим 



24 
 

<(�, 2) = (� − 1)!2 NV��O � ����V��! G V&2(1 − V)H& V�� =D
� )

= (� − 1)!8 NV��O � �����! Vr����(1 − V)& .D
� )  

Используя известный ряд [42, c. 141] и формулу (3) 

 (1 − �)�X�� = ∑ �Y + LY � ��,D� )             (6) 

имеем 

<(�, 2) = (� − 1)!8 NV��O � � �����! �L + 11 � Vr������D
� )

D
� )

= (� − 1)!8 �(L + 1) �����r(� − L − 5)!
D

� )  

Учитывая, что биномиальный коэффициент обращается в нуль при � − L − 5 < 0, получим утверждение теоремы.  

В таблице 6 представлены числа <(�, 2), вычисленные с помощью 

формулы из теоремы. 

Таблица 6 � 5 6 7 8 9 10 <(�, 2) 15 720 26145 893760 30793770 1098921600 
 

Теорема 7. Пусть <(�, 3) число помеченных трициклических 

полноблочно-кактусных графов. Тогда при � ≥ 4 верна формула 

<(�, 3) = (� − 1)!48 � (L + 2)!2! L! �����h(� − L − 7)! + ���r6 (� − 1)(� − 2)(� − 3).��s
� )  

Доказательство. Пусть <(�, �) ‒ число помеченных связных графов с � 

вершинами и цикломатическим числом �, а I�(V) ‒ экспоненциальная 

производящая функция для числа помеченных блоков с цикломатическим 

числом �. 
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Для доказательства теоремы воспользуемся соотношением (3), 

полученным В.А. Воблым в [5]: 

<(�, �) = (� − 1)!�2��! NV��O exp(�V) >�'�I�M (V), … , ��! I�M (V)(V�� 

где NV��O ‒ оператор формального вычета [26], а >�(J�, … , J�) ‒ многочлен 

разбиений. 

Трициклические полноблочно-кактусные графы не содержат блоков с 

цикломатическим числом � = 2. Тогда 

I�(V) = � 12
D

� ) (� − 1)! V��! ,      I&(V) = 0,        I$(V) = Vr4!. 
IM�(V) = V&2(1 − V),      IM$(V) = V$6 .  

Многочлен разбиений запишется в виде >$(J�, J&, J$) = J�$ + 3J�J& + J$ = J�$ +J$. 
Используя формулу (3) и разложение экспоненты в степенной ряд, 

получим  

<(�, 3) = (� − 1)!6 NV��O � ��V��! ��& G V&2(1 − V)H$ + V$� V��D
� )

= (� − 1)!48 NV��O � ���&V��u���! (1 − V)$ + (� − 1)!6 NV��O � ��V��$���! .D
� )

D
� )  

Применив ряд (6), имеем 

<(�, 3) = (� − 1)!48 � �L + 22 � �����h(� − L − 7)! + ���r6 (� − 1)(� − 2)(� − 3).D
� )  

Учитывая, что биномиальный коэффициент обращается в нуль при � − L − 7 < 0, получим утверждение теоремы. 

В таблице 7 представлены числа <(�, 3), вычисленные с помощью 

формулы из теоремы. 
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Таблица 7 � 4 5 6 7 8 9 10 <(�, 3) 1 20 360 7595 217280 8307684 376320000 
 

Теорема 8. Пусть <(�, 4) число помеченных тетрациклических 

полноблочно-кактусных графов. Тогда при � ≥ 6 верна формула 

<(�, 4) = (� − 1)!384 � (L + 3)!3! L! �����u(� − L − 9)! + (� − 1)!12 � ���X�h(� − Y − 6)!
��u
X )

���
� ) . 

Доказательство. Пусть <(�, �) ‒ число помеченных связных графов с � 

вершинами и цикломатическим числом �, а I�(V) ‒ экспоненциальная 

производящая функция для числа помеченных блоков с цикломатическим 

числом �. 

Для доказательства теоремы воспользуемся соотношением (3), 

полученным В.А. Воблым в [5]: 

<(�, �) = (� − 1)!�2��! NV��O exp(�V) >�'�I�M (V), … , ��! I�M (V)(V�� 

где NV��O ‒ оператор формального вычета [26], а >�(J�, … , J�) ‒ многочлен 

разбиений. 

Тетрациклические полноблочно-кактусные графы не содержат блоков с 

цикломатическими числами � = 2 и � = 4.Тогда 

I�(V) = � 12
D

� ) (� − 1)! V��! ,      I&(V) = 0,        I$(V) = Vr4! ,        Ir(V) = 0 

IM�(V) = V&2(1 − V),      IM$(V) = V$6 .  
Многочлен разбиений запишется в виде >r(J�, J&, J$, Jr) = J�r + 6J&J�& +4J$J� + 3J&& + Jr = J�r + 4J�J$. 
Применив формулу (3) и разложив экспоненту в степенной ряд, имеем 

<(�, 4) = (� − 1)!24� NV��O � ��V��! G �rV+16(1 − V)r + 2�&Vh1 − V H V��.D
� )  

Используя ряд (6), найдем 
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<(�, 4) = (� − 1)!384 NV��O � � �L + 33 � ���$�! V+������D
� )

D
� )

+ (� − 1)!12 NV��O � � �����! V��h���X =D
X )

D
� )

= (� − 1)!384 � �L + 33 � �����u(� − L − 9)! + (� − 1)!12 � ���X�h(� − Y − 6)! .��u
X )

���
� )  

Учитывая, что биномиальные коэффициенты обращаются в нуль при � − L − 9 < 0 и � − Y − 6 < 0, получим утверждение теоремы.  

В таблице 8 представлены числа <(�, 4), вычисленные с помощью 

формул из теоремы. 

Таблица 8 � 6 7 8 9 10 11 <(�, 4) 60 3360 137760 5277825 208076400 8912821995 
 

Теорема 9. Пусть <(�, 5) число помеченных пентациклических  

полноблочно-кактусных графов. Тогда при � ≥ 8 верна формула 

<(�, 5) = (� − 1)!92160 � (L + 4)!L! �����s(� − L − 11)! +����
� )  

+ (� − 1)!48 �(L + 1) �����u(� − L − 8)!
��+
� ) . 

Доказательство. Пусть <(�, �) ‒ число помеченных связных графов с � 

вершинами и цикломатическим числом �, а I�(V) ‒ экспоненциальная 

производящая функция для числа помеченных блоков с цикломатическим 

числом �. 

Для доказательства теоремы воспользуемся соотношением (3), 

полученным В.А. Воблым в [5]: 

<(�, �) = (� − 1)!�2��! NV��O exp(�V) >�'�I�M (V), … , ��! I�M (V)(V�� 
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где NV��O ‒ оператор формального вычета [26], а >�(J�, … , J�) ‒ многочлен 

разбиений. 

Пентациклические полноблочно-кактусные графы не содержат блоков с 

цикломатическими числами � = 2, � = 4, � = 5.Тогда 

I�(V) = � 12
D

� ) (� − 1)! V��! , I&(V) = 0,
I$(V) = Vr4! ,   Ir(V) = 0,   Ih(V) = 0. 

IM�(V) = V&2(1 − V),      IM$(V) = V$6 .  
Многочлен разбиений запишется в виде >h(J�, J&, J$, Jr, Jh) =J�h + 10J&J�$ + 10J$J�& + 15J&&J� + 5JrJ� + 10J$J& + Jh = J�h + 10J$J�&. 
Используя формулу (3) и разложение  экспоненты в  степенной ряд, 

имеем 

<(�, 5) = (� − 1)!120� NV��O � ��V��! G �hV�)32(1 − V)h + 5�$Vs2(1 − V)&H V��.D
� )  

Применив ряд (6), получим 

<(�, 5) = (� − 1)!3840 NV��O � � �L + 44 � ���r�! V�)������D
� )

D
� )

+ (� − 1)!48 NV��O � � �L + 11 � ���&�! V��s���� =D
� )

D
� )  

= (� − 1)!3840 � �L + 44 � ���r�! + (� − 1)!48 � �L + 11 � ���&�! =D
� )

D
� )  

= (� − 1)!3840 � �L + 44 � �����s(� − L − 11)! + (� − 1)!48 � �L + 11 � �����u(� − L − 8)! =D
� )

D
� )  

Учитывая, что биномиальные коэффициенты обращаются в нуль при � − L − 11 < 0 и � − L − 8 < 0 получим утверждение теоремы. 

В таблице 9 представлены числа <(�, 5), вычисленные с помощью 

формулы из теоремы. 
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Таблица 9 � 8 9 10 11 12 <(�, 5) 6720 680400 46116000 2706279345 151795607040 
 

1.7. Блочно-колесные графы 

 Колесо �� ‒ граф с � ≥ 4 вершинами, который образован соединением 

единственной вершины со всеми вершинами (� − 1) ‒ цикла [46, с. 63]. 

Цветочно-колесный граф с Y лепестками ‒ это связный граф с одной точкой 

сочленения, у которого все Y блоков (лепестков) ‒ колеса, причем вершина, 

являющаяся осью колеса, не может быть точкой сочленения. Цветочно-

колесные графы представляют топологию коммуникационных, компьютерных 

и других сложных сетей [51]. 

Теорема 10.  Число ��(�, Y) помеченных цветочно-колесных графов с � 

вершинами и Y лепестками при � ≥ 7 и Y ≥ 2 равно 

��(�, Y) = �!Y! 6X � �Ỳ� �� − 2Y − ` − 2Y − 1 � 2^ ,~
^ )  

где } = min(Y, � − 3Y − 1). 
Доказательство. Пусть �X(V) = ∑ ��(�, Y) �A

�! ,D� r  ��� ‒ число 

помеченных колес с � вершинами, ��� ‒ число помеченных корневых колес с 

� вершинами, �(V) = ∑ ��� �A
�! .D� r  

Так как метку для оси колеса �� можно выбрать � способами и число 

циклов с � − 1 помеченными вершинами равно (� − 2)! 2⁄  при � ≥ 5, ��r = 1. 
Поскольку корень колеса �� не должен быть вершиной ‒ осью колеса, то метку 

для него можно выбрать � − 1 способами и при � ≥ 5 ��� = (� − 1)��� =�! 2.⁄  Однако в случае �r (полный граф) осью может быть любая вершина и ��r = ���r = 4. 
Поэтому имеем 

�(V) = Vr6 + 12 � V� = Vr6 + Vh2(1 − V) .D
� h  
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Граф с одной точкой сочленения может рассматриваться как корневой 

граф с корнем в точке сочленения. Такой граф можно получить склейкой в одну 

вершину непомеченных корней  блоков. После склейки для непомеченной 

вершины вводится новая метка. Снятию метки с корня соответствует операция 

деления соответствующей производящей функции на V, а введение метки ‒ 

операция умножения производящей функции на V [64, 77]. С учетом 

перестановок блоков вокруг точки сочленения, получим 

�X(V) = VY! ��(V)V �X = VY! GV$6 + Vr2(1 − V)HX = V$X��(1 + 2V)XY! 6X(1 − V)X . 
С помощью бинома Ньютона и ряда (4) найдем 

�X(V) = V$X��Y! 6X � �Ỳ� 2^V^ � �� + Y − 1Y − 1 � V� .D
� )

X
^ )  

Следовательно, имеем ��(�, Y) = �! NV��O�X(V)V����, где NV��O ‒ оператор 

формального вычета [26]. 

��(�, Y) = �!Y! 6X NV��O � � �Ỳ� �� + Y − 1Y − 1 � 2^V^���$X��D
� )

D
^ ) = 

= �!Y! 6X � �Ỳ� �� − 2Y − ` − 2Y − 1 � 2^ .X
^ )  

Поскольку биномиальный коэффициент обращается в ноль при Y < ` и � − 2Y − ` − 2 < 0, верхний предел суммы равен } = min(Y, � − 3Y − 1). 
Доказательство закончено. 

В следующей таблице представлены числа ��(�, Y), вычисленные с 

помощью формулы из теоремы  

Таблица 10 � 7 8 9 10 11 12 Y 2 2 3 3 3 3 ��(�, Y) 70 3360 0 2800 277200 13305600 
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Цветочно-колесные графы являются частным случаем блочно-колесных 

графов. Граф �r изоморфен полному графу �r. Блочно- колесный граф ‒ граф, 

у которого каждый блок ‒ колесо.  

Теорема 11. Для числа I�� помеченных блочно-колесных графов с � 

вершинами при � ≥ 4 верна формула 

I�� = (� − 1)!� NV���O 1(1 − V)� &⁄ PJQ G �Vr2(1 − V) − �V2 − �V&4 H. 
Доказательство. Пусть �� ‒ число помеченных связных графов с � 

вершинами, а I� ‒ число помеченных блоков с � вершинами. Введем 

производящую функцию: I(V) = ∑ I� �A
�!D� $ . 

Для доказательства теоремы воспользуемся соотношением (2), 

полученным В.А. Воблым в [4]: 

�� = (���)!� NV���OPJQ(�I′(V)) = (���)!� NV��O exp'�IM(V)( V��,      
где NV�O ‒ коэффициентный оператор и  NV��O ‒ оператор  формального вычета 

[26]. 

Обозначим через I(V) экспоненциальную производящую функцию для 

числа помеченных блочно-колесных графов, тогда 

I�� = (� − 1)!� NV��O exp'�I(V)( V��. 
Рассмотрим граф колесо как единый блок. Так как число помеченных 

колес с � вершинами равно �! 2(� − 1)⁄ , то производящая функция запишется в 

виде: 

I(V) = Vr4! + 12 � V�� − 1 .D
� h  

IM(V) = − ln(1 − V)2 + Vr2(1 − V) − V2 − V&4 . 
Подставим I(V) в (2) и получим 

I�� = (� − 1)!� NV���OPJQ G− � ln(1 − V)2 + �Vr2(1 − V) − �V2 − �V&4 H = 
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= (� − 1)!� NV���O 1(1 − V)� &⁄ PJQ G �Vr2(1 − V) − �V2 − �V&4 H. 
Теорема доказана. 

В таблице 11 представлены числа I�� , вычисленные с помощью формулы 

из теоремы 

Таблица 11 � 4 5 6 7 8 9 10 I�� 1 15 72 490 7080 129843 1275750 
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Глава 2.  Перечисление эйлеровых графов 

Эйлеров граф ‒ это связный граф, все вершины которого имеют четную 

степень [46, c. 22]. В [12] доказано, что граф эйлеров тогда и только тогда, 

когда каждый его блок ‒ эйлеров граф. Следовательно, класс эйлеровых графов 

является блочно-устойчивым классом. 

2.1. Эйлеровы полноблочные графы  

Мостом связного графа называется его ребро, после удаления, которого 

граф становится несвязным [45, c. 41]. Эйлеровы графы являются графами без 

мостов [2]. 

Теорема 12. Пусть ��� ‒ число помеченных эйлеровых полноблочных 

графов с � вершинами. При � ≥ 3 верна формула: 

��� = 1� � �� − 1` � t̂ ��2� t����^ ��2����
^ ) , 

где t̂ (V)  ‒ многочлен Белла одной переменной [54]. 

Доказательство. Пусть �� ‒ число помеченных связных графов с � 

вершинами, а I� ‒ число помеченных блоков с � вершинами. Введем 

производящую функцию: I(J) = ∑ I� KA
�!D� $ . 

Для доказательства теоремы воспользуемся соотношением (2), 

полученным В.А. Воблым в [4]: 

�� = (���)!� NJ���OPJQ(�I′(J)) = (���)!� NJ��O exp'�IM(J)( J��,      
где NJ�O ‒ коэффициентный оператор и  NJ��O ‒ оператор  формального вычета 

[26]. 

Обозначим через I(х) экспоненциальную производящую функцию для 

числа блоков помеченных эйлеровых полноблочных графов, тогда 

��� = (� − 1)!� NJ��O exp'�I(J)( J��. 
Так как у эйлеровых полноблочных графов не может быть блоков с 

четным числом вершин, имеем I(J) = ∑ K2A01(&���)!D� & . 



34 
 

Продифференцировав и сделав замену � − 1 = �, получим 

IM(J) = � J&�(2�)! = cosh(J) − 1 = PK + P�K2 − 1.D
� �  

Подставив I(J) в (2), имеем 

��� = (� − 1)!� NJ��OPJQ �� �PK + P�K2 − 1�� J��. 
Используя известное соотношение для многочленов Белла одной 

переменной, найдем  

��� = (� − 1)!� NJ��O � �(−1)^ t� ��2� t̂ ��2��! `! J��^�� =�
^ )

�
� )  

= (� − 1)!� �(−1)^ t����^ ��2� t̂ ��2�(� − 1 − `)! `! .D
^ )  

Введем биномиальный коэффициент и учтем, что предел суммирования 

изменяется от 0 до � − 1. Теорема доказана. 

В таблице 12 представлены числа ���, вычисленные с помощью 

формулы из теоремы. 

Таблица 12 � 3 4 5 6 7 8 9 10 ��� 4 29 311 4447 79745 1722681 43578820 1264185051 
 

2.2. Эйлеровы двудольные кактусы 

По теореме Кенига граф является двудольным тогда и только тогда, когда 

все его простые циклы четны [45, c. 22]. 

Теорема 13. Пусть I�� число помеченных эйлеровых двудольных 

кактусов с � вершинами, тогда при Q ≥ 2 верны формулы 

I�&� = (2Q − 1)!2Q � 2Q&���2&���(2L − 1)! �Q − L − 12L − 2 �,         (7)
p���$ q

� �  
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I�&��� = (2Q)! � (2Q + 1)&���2&�(2L)! �Q − L − 12L − 1 �.                    (8)
p�$q
� �  

Доказательство. Пусть �� ‒ число помеченных связных графов с � 

вершинами, а I� ‒ число помеченных блоков с � вершинами. Введем 

производящую функцию: I(V) = ∑ I� �A
�!D� $ . 

Для доказательства теоремы воспользуемся соотношением (2), 

полученным В.А. Воблым в [4]: 

�� = (���)!� NV���OPJQ(�I′(V)) = (���)!� NV��O exp'�IM(V)( V��,      
где NV�O ‒ коэффициентный оператор и  NV��O ‒ оператор  формального вычета 

[26]. 

Обозначая через I(V) экспоненциальную производящую функцию для 

числа блоков помеченных эйлеровых двудольных кактусов, имеем 

I�� = (� − 1)!� NV��O exp'�I(V)( V��. 
Так как эйлеровы графы не имеют блоков, состоящих из одного ребра, а 

по теореме Кенига все простые циклы двудольного графа четны, то  все блоки 

эйлеровых двудольных кактусов ‒ циклы с четным числом  вершин. 

Так как число циклов с � помеченными вершинами равно (� − 1)! 2,⁄  тогда  

I(V) = � 12 (2� − 1)! V&�(2�)!,       IM(V) = 12 � V&��� = V$2(1 − V&) .D
� &

D
� &  

Подставив I(V) в (2), получим  

I�� = (� − 1)!� NV��OPJQ G �V$2(1 − V&)H V��. 
Разлагая экспоненту в степенной ряд, найдем 

I�� = (� − 1)!� NV��O � ��V$����! 2�(1 − V&)� .D
� )  

 Используя ряд (4), получим  
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I�� = (� − 1)! NV��O � ����2��! � �Y + � − 1� − 1 � V$����&X.D
X )

D
� )  

Найдем решение уравнения 3� − � + 2Y = −1 в целых числах. 

Пусть число вершин � ‒ четное число. Так как 3� = 2Q − 2Y − 1, то 

число � нечетное. Положим � = 2L − 1, следовательно, 6L − 3 = 2Q − 2Y − 1 и Y = Q − 3L + 1. 

Вычислив вычет функции, найдем  

I�&� = (2Q − 1)!2Q � 2Q&���2&���(2L − 1)! �Q − L − 12L − 2 � .D
� �  

Учитывая, что биномиальный коэффициент обращается в ноль при Q − L − 1 <2L − 2, получим (7).  

Пусть число вершин � нечетно. Значит 3� = 2Q + 2Y и число � четное. 

Положим � = 2L, тогда 6L = 2Q − 2Y и Y = Q − 3L. 
Вычислив вычет функции, найдем  

I�&��� = (2Q)! � (2Q + 1)&���2�(2L)! �Q − L − 12L − 1 � .D
� )  

Так как биномиальный коэффициент обращается в ноль при Q − L − 1 < 2L − 1, 

получим (8). Теорема доказана. 

В следующей таблице представлены числа I�� , вычисленные с помощью 

формулы из теоремы 

Таблица 13 � 4 5 6 7 8 9 10 I�� 3 0 60 630 2520 90720 937440 
 

2.3. Эйлеровы полноблочно-кактусные графы  

Теорема 14. Пусть ��� ‒ число помеченных эйлеровых полноблочно-

кактусных графов с � вершинами. При � ≥ 4 верна формула 

��� = 1� �(−1)~ �� − 1} ����
~ ) t~ ��2� t����~ ��2� + 
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+(� − 1)! � � � (−1)~ t� ��2� t~ ��2� ����
�! }! L! 2� �� − } − � − 2L − 2L − 1 ���~�$���

� )
��$���

~ )
p���$ q

� � , 
где t̂ (J) ‒ многочлен Белла одной переменной [54]. 

Доказательство. Первое слагаемое в формуле для ���  равно числу 

помеченных эйлеровых полноблочных графов, полученных в § 2.1. 

Пусть �� ‒ число помеченных связных графов с � вершинами, а I� ‒ 

число помеченных блоков с � вершинами. Введем производящую функцию: 

I(V) = ∑ I� �A
�!D� $ . 

Для доказательства теоремы воспользуемся соотношением (2), 

полученным В.А. Воблым в [4]: 

�� = (���)!� NV���OPJQ(�I′(V)) = (���)!� NV��O exp'�IM(V)( V��,      
где NV�O ‒ коэффициентный оператор и  NV��O ‒ оператор  формального вычета 

[26]. 

Обозначим через I(V) экспоненциальную производящую функцию для 

числа блоков помеченных эйлеровых полноблочно-кактусных графов, тогда 

��� = (� − 1)!� NV��O exp'�I(V)( V��. 
 У эйлеровых полноблочно-кактусных графов нет блоков, состоящих из 

одного ребра [2], а все блоки-полные графы имеют нечетное число вершин, так 

как в эйлеровом графе все вершины имеют четную степень, получим 

I(V) = � V&���(2� − 1)! + � 12 (� − 1)! V��! ,D
� r

D
� &  

IM(V) = � V&�(2�)! + 12 � V� = vℎV − 1 + V$2(1 − V) .D
� $

D
� �  

Следовательно,  

��� = (� − 1)!� NV��OPJQ �� GvℎV − 1 + V$2(1 − V)H� V��, 
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��� = (� − 1)!� NV��OPJQ �� P� − 12 � PJQ �� P�� − 12 � PJQ G �V$2(1 − V)H V��. 
Применяя производящую функцию для многочленов Белла одной 

переменной и разлагая третью экспоненту в степенной ряд, найдем 

��� = (� − 1)!� NV��O � t� ��2��! V� �(−1)~ t~ ��2�}! V~ � ��V$�2�(1 − V)�L! V��.D
� )

D
~ )

D
� )  

Воспользовавшись (4), получим 

��� = 1� �(−1)~ �� − 1} � t��~�� ��2� t~ ��2� +���
~ )  

+ (� − 1)!� NV��O � � � �(−1)~ t� ��2� t~ ��2� ��
�! }! L! 2� �Q + L − 1L − 1 � V��$��~����D

� ) =D
� )

D
~ )

D
� �  

= 1� � �� − 1} � t����~ ��2� t~ ��2� +���
~ )  

+(� − 1)! � � �(−1)~ t� ��2� t~ ��2� ����
�! }! L! 2� �� − � − } − 2L − 2L − 1 � .D

� )
D

~ )
D

� �  

Учитывая, что биномиальный коэффициент при L − 1 > � − � − } − 2L − 2 

обращается в нуль, получим утверждение теоремы. Теорема доказана. 

В таблице 14 представлены числа ���, вычисленные с помощью формулы 

из теоремы. 

Таблица 14 � 2 3 4 5 6 7 8 9 ��� 0 1 3 28 240 3091 43680 756883 
 

2.4. Эйлеровы тетрациклические блоки и графы 

Под тетрациклическим графом понимается связный граф с 

цикломатическим числом равным 4. 

Включением вершины степени 2 в ребро (петлю) графа называется его 

(ее) подразбиение этой вершиной. Обратная операция называется исключением 
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вершины степени 2 из ребра. В результате применения этой операции в графе 

могут появиться кратные ребра или петля. Два графа называются 

гомеоморфными, если они могут быть получены друг из друга с помощью 

последовательности операций включения и исключения вершин степени 2. 

Отношение «быть гомеоморфным» является отношением эквивалентности, оно 

однозначно разбивает множество рассматриваемых графов на классы 

эквивалентности. Эти классы называются гомеоморфными типами 

(топологическими графами). Гомеоморфный тип ‒ это общий граф 

(допускаются петли и кратные ребра), не содержащий вершин степени 2, из 

которого с помощью операций включения вершин степени 2 могут быть 

получены все графы данного класса гомеоморфных графов [43, 27, 59]. 

Лемма 1 [Степанов, 43]. Пусть гомеоморфный тип � ‒ связный гладкий 

общий граф, отличный от изолированной вершины или петли, который имеет a 

вершин, g ребер (включая петли), g) петель, g^ пучков ребер кратности `, и 

пусть �(�) ‒ порядок вершинно-реберной группы автоморфизмов графа �. 

Тогда число помеченных графов с � вершинами и гомеоморфным типом � 

равно 

�� = �!2 ¡�(�) �¢P%KA0£ J � ¡�∑  c¤c¥1 ∏ (J + `(1 − J)) c ̂ �(1 − J)  . 
 

Пусть � ‒ базисный граф, т.е. связный гладкий граф, полученный из 

гомеоморфного типа � включением двух вершин степени 2 в каждую петлю, а 

также максимум по одной вершине степени 2 в кратные ребра �  так, чтобы из 

общего графа получился простой граф. Назовем специальными вершинами 

вершины степени больше 2 в � и специальными цепями ‒ простые цепи, у 

которых концевые вершины являются специальными вершинами, а все 

внутренние вершины, если они есть, имеют степень 2. 

Лемма 2 [Райт, 84]. Пусть a ‒ число специальных цепей в базисном графе �, полученных из петли (¦-цепей), g ‒ число специальных цепей, состоящих из 
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одного ребра, при условии, что две специальные вершины соединены только 

одной специальной цепью (§-цепей), v ‒ число специальных цепей, имеющих 

внутреннюю вершину степени 2 (w-цепей). Пусть, кроме того, } ‒ число 

специальных вершин в �, а ¨ ‒ его число симметрии, т.е. порядок вершинной 

группы автоморфизмов. Тогда число помеченных графов с � вершинами, 

гомеоморфных графу �, равно  

�� = �!̈ �� − } − a + g − 1a + g + v − 1 � 

Теорема 15. Пусть I� ‒ число помеченных тетрациклических эйлеровых 

блоков с � вершинами, тогда при � ≥ 6 верна формула 

I� = �!5760 (� − 2)(� − 4)(� − 5)(�& + 11� + 18). 
Доказательство. Из 17 гомеоморфных типов тетрациклических блоков 

только один ‒ эйлеров [61]. Он имеет вид треугольника с двойными ребрами. 

Тогда в силу леммы 1 и известного ряда (6) для нашего типа имеем a = 3, g = 6, g) = g� = 0, g& = 3, g$ = gr = gh = gu = 0, �(�) = 48 

I� = �!48 �¢P%KA0e J$'J + 2(1 − J)($
(1 − J)u = 

= �!48 �¢P%KA0e G J$(1 − J)$ + 3 J$(1 − J)r + 3 J$(1 − J)h + J$(1 − J)uH 

= �!48 �¢P%KA0e �� �� + 22 � J��$ + 3D
� ) � �� + 33 � J��$ + 3 � �� + 44 � J��$ +D

� )
D

� )  

+ � �� + 55 � J��$D
� ) � = �!48 ��� − 42 � + 3 �� − 33 � + 3 �� − 24 � + �� − 15 �H = 

= �!5760 (� − 2)(� − 4)(� − 5)(�& + 11� + 18). 
Теорема доказана. 

В следующей таблице представлены числа I�, вычисленные с помощью 

формулы из теоремы. 
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Таблица 15 � 6 7 8 9 10 I� 120 3780 85680 1746360 34473600 
 

Следствие 1. При равномерном распределении вероятностей, 

вероятность t�  того, что помеченный связный эйлеров тетрациклический граф 

с �  вершинами является блоком, равна 
&��.  

Доказательство. В [15] была получена асимптотика для числа 

помеченных тетрациклических эйлеровых графов: 

��~ 11�h11520 �!. 
В [14] было получено асимптотическое равенство для числа помеченных 

тетрациклических эйлеровых блоков: 

I�~ �h5760 �!. 
Тогда  

lim�→D t� = lim�→D
I��� = �h�!5760 1152011�h�! = 211 . 

Следствие доказано. 

Граф розы с � лепестками получается склеиванием в одну вершину 

единственных вершин каждого из � циклов. Такой граф называется еще графом 

k-розы [82, 83]. Графы розы являются кактусами, а также k-циклическими 

эйлеровыми графами. Частным случаем графов розы является ромашка-граф, 

где каждый цикл ‒ треугольник [38]. Графы розы называются также 

обобщенными графами дружбы [71]. 

Теорема 16. Пусть ��,� ‒ число помеченных графов розы с � вершинами 

и � лепестками. При � ≥ 5 и � ≥ 2 верна формула  

��,� = �!�! 2� �� − � − 2� − 1 �. 
Доказательство. Введем производящую функцию для чисел ��,�: 
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��(�) = � ��,� ���! .D
� $  

Графы розы являются графами с одной точкой сочленения, у которых 

каждый блок является простым циклом. Пусть I� ‒ число помеченных блоков с � вершинами, а I�,� ‒ число помеченных графов с � вершинами и � блоками, 

инцидентными единственной точке сочленения. В работе Джина [64] была 

получена производящая функция для числа помеченных графов с � вершинами, 

одной точкой сочленения и � блоками: 

I�(�) = ∑ I�,� ©A
�! = � (ªM(©))-

�! ,D� $  где I(�) = ∑ ªA©A
�! .D� �  

Поскольку все блоки ‒ простые циклы, а число помеченных простых 

циклов с � вершинами равно 
(���)!& , имеем 

I(�) = � 12 (� − 1)! ���! ,      IM(�) = �&2(1 − �),         ��(�) = �&����! 2�(1 − �)� .D
� $  

Используя разложение в ряд (4), получим 

��(�) = � �} + � − 1� − 1 � �~�&����! 2� .D
~ )  

Заменив } + 2� + 1 = �, найдем  

��(�) = � �� − � − 2� − 1 �D
� &���

���! 2� . 
Окончательно, имеем 

��,� = �!�! 2� �� − � − 2� − 1 �, 
что и требовалось доказать. 

Отметим, что при � = 2 получим ��,& = ��r+ �!, что совпадает с 

выражением для числа помеченных бициклических эйлеровых графов с � 

вершинами, найденными в работе [3]. 

В таблице 16 представлены числа ��,�, вычисленные с помощью 

формулы из теоремы. 
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Таблица 16 � 5 6 7 8 9 10 � 2 2 2 3 3 3 ��,� 15 180 1890 2520 45360 756000 
 

Теорема 17. При � ≥ 6 число �� помеченных тетрациклических 

эйлеровых графов с � вершинами равно  

�� = �!11520 (11�h − 135�r + 440�$ + 510�& − 3556� − 720). 
Доказательство. Граф является эйлеровым только тогда, когда его 

гомеоморфный тип ‒ эйлеров граф. Гладкие тетрациклические графы, не 

являющиеся блоками, могут содержать только унициклические, бициклические 

или трициклические блоки. Число таких графов в списке Дмитриева [28] равно 

105-15=90. Добавляя 17 тетрациклических блоков из списка Хипа [61], 

получим, что существует 107 гладких тетрациклических графов. Из 107 гладких 

тетрациклических гомеоморфных графов только 7 являются эйлеровыми 

графами. Эти типы графов представлены на рис.1. 

 

Рис. 1. 

Используя лемму 1, перечислим гомеоморфные типы графов, 

изображенные на рис.1. Тогда в силу леммы 1, получим 

1) a = 3, g = 6, g) = 2, g& = 2, g� = g$ = gr = gh = gu = 0, �(�) = 8 
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��,� = �!32 �¢P%KA0e Ju(1 + 2(1 − J))&(1 − J)u . 
С помощью  разложения в ряд (6) получим 

��,� = �!32 �¢P%KA0e G J+(1 − J)u + 4 Js(1 − J)h + 4 Ju(1 − J)rH = 

�!32 �¢P%KA0e �� �� + 55 � J��+ + 4 � �� + 44 � J��s + 4 � �� + 33 � J��uD
� )

D
� )

D
� ) � = 

�!32 G�� − 65 � + 4 �� − 64 � + 4 �� − 63 �H =
= �!3840 (� − 6)(� − 7)(� − 8)(�& + � − 10). 

Аналогично, для остальных гомеоморфных типов графов найдем 

2) a = 2, g = 5, g) = 3, g& = 1, g� = g$ = gr = gh = 0, �(�) = 4 

�&,� = �!32 �¢P%KA02 Js(J + 2(1 − J))(1 − J)h = �!32 �¢P%KA02 G J+(1 − J)h + 2Js(1 − J)rH = 

�!32 �¢P%KA02 �� �� + 44 � J��+ + � �� + 33 � J��sD
� )

D
� ) � = 

�!32 G�� − 64 � + 2 �� − 63 �H = �!768 (� − 1)(� − 6)(� − 7)(� − 8). 
3) a = 3, g = 6, g) = 3, g� = 3, g& = g$ = gr = gh = gu = 0, �(�) = 6 

�$,� = �!48 �¢P%KA0e Ju(1 − J)u = �!48 �¢P%KA0e � �� + 55 � J��u =D
� )  

�!5760 �� − 45 � = �!5760 (� − 4)(� − 5)(� − 6)(� − 7)(� − 8). 
4) a = 1, g = 4, g) = 4, g� = g& = g$ = gr = 0, �(�) = 24 

�r,� = �!384 �¢P%KA01 J+(1 − J)r = �!384 �¢P%KA01 � �� + 33 � J��+ =D
� )  

�!384 �� − 63 � = �!2304 (� − 6)(� − 7)(� − 8). 
5) a = 3, g = 6, g) = 1, g� = 2, g$ = 1, g& = gr = gh = gu = 0, �(�) = 12 
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�h,� = �!24 �¢P%KA0e Jr(J + 3(1 − J))(1 − J)u = �!24 �¢P%KA0e G Jh(1 − J)u + 3 Jr(1 − J)hH = 

�!24 �¢P%KA0e �� �� + 55 � J��h + 3 � �� + 44 � J��rD
� )

D
� ) � = 

�!24 G�� − 35 � + 3 �� − 34 �H = �!2880 (� − 3)(� − 4)(� − 5)(� − 6)(� + 8). 
6) a = 2, g = 5, g) = 1, gr = 1, g� = g& = g$ = gh = 0, �(�) = 24 

�u,� = �!48 �¢P%KA02 Jh(J + 4(1 − J))(1 − J)h = �!48 �¢P%KA02 G Ju(1 − J)h + 4 Jh(1 − J)rH = 

�!48 �¢P%KA02 �� �� + 44 � J��u + 4 � �� + 33 � J��hD
� )

D
� ) � = 

�!48 G�� − 44 � + 4 �� − 43 �H = �!1152 (� − 4)(� − 5)(� − 6)(� + 9). 
7) a = 3, g = 6, g) = 0, g& = 3, g� = g$ = gr = gh = gu = 0, �(�) = 48 

�s,� = �!48 �¢P%KA0e J$(J + 2(1 − J))$(1 − J)u = �!48 �¢P%KA0e J$(1 + (1 − J))$(1 − J)u = 

�!48 �¢P%KA0e G J$(1 − J)$ + 3 J$(1 − J)r + 3 J$(1 − J)h + J$(1 − J)uH = 

�!48 �¢P%KA0e �� �� + 22 � J��$ + 3 � �� + 33 � J��$ + 3 � �� + 44 � J��$ +D
� )

D
� )

D
� )  

+ � �� + 55 � J��$D
� ) � = �!48 G�� − 42 � + 3 �� − 33 � + 3 �� − 24 � + �� − 15 �H = 

= �!5760 (� − 2)(� − 4)(� − 5)(�& + 11� + 18). 
Сложим сначала числа графов 1-4 типов (эти графы-кактусы) 

��(�) = ��,� + �&,� + �$,� + �r,� = �!3840 (� − 6)(� − 7)(� − 8)(�& + � − 10) + 

�!768 (� − 1)(� − 6)(� − 7)(� − 8) + �!5760 (� − 4)(� − 5)(� − 6)(� − 7)(� − 8) 
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 + �!2304 (� − 6)(� − 7)(� − 8) = �!11520 (� − 6)(� − 7)(� − 8)5�&

= �! �&384 �� − 63 �. 
Сложим теперь числа графов 5-7 типов 

��(&) = �h,� + �u,� + �s,� = �!2880 (� − 3)(� − 4)(� − 5)(� − 6)(� + 8) + 

�!1152 (� − 4)(� − 5)(� − 6)(� + 9)
+ �!5760 (� − 2)(� − 4)(� − 5)(�& + 11� + 18) 

= �!5760 (� − 4)(� − 5)(3�$ + 12�& − 97� − 18). 
Учитывая, что �� = ��(�) + ��(&) получим 

�� = �!5760 G15�& �� − 63 � + (� − 4)(� − 5)(3�$ + 12�& − 97� − 18)H. 
Раскрывая скобки и приводя подобные члены, получим утверждение теоремы. 

Доказательство закончено. 

В таблице 17 представлены числа ��, вычисленные с помощью формулы из 

теоремы. 

Таблица 17 � 6 7 8 9 10 11 �� 120 4830 126840 2934225 64486800 1394801100 

 

В [14] при перечислении тетрациклических эйлеровых блоков и графов 

были рассмотрены диаграммы из работы Дмитриева [27], которая содержит 

неполный список тетрациклических  блоков. В диссертации дана ссылка на 

работу Хипа [61], в которой содержатся все гомеоморфные типы 

тетрациклических блоков. Данный недостаток не повлиял на итоговый  

результат, так как из всех гомеоморфных типов тетрациклических эйлеровых 

блоков и графов только один является эйлеровым.  
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Глава 3. Перечисление геодезических графов 

Геодезический граф ‒ это связный граф, у которого любая пара вершин 

связана единственной кратчайшей цепью (геодезической) [78]. В [78] доказано, 

что граф геодезический тогда и только тогда, когда каждый его блок ‒ 

геодезический граф. Следовательно, класс геодезических графов является 

блочно-устойчивым классом. Геодезические графы применяют при 

проектировании компьютерных систем и сетей [44]. 

3.1. Геодезические эйлеровы кактусы 

Два графа называются гомеоморфными, если их можно получить из 

одного графа с помощью последовательности подразбиений ребер. 

Лемма 3. Все помеченные геодезические эйлеровы кактусы ‒ графы с 

нечетным числом вершин. 

Доказательство. Используем индукцию по числу блоков. Пусть 

геодезический эйлеров кактус состоит из одного блока. Стемпл и Уотсон [78] 

доказали, что граф является геодезическим планарным только тогда, когда 

каждый его блок ‒ ребро, нечетный цикл или граф, гомеоморфный полному 

графу �r. Так как кактусы являются планарными графами, а эйлеровы графы – 

графы без мостов, то блоки геодезического эйлерова кактуса – нечетные циклы. 

Следовательно, для геодезического эйлерова кактуса, состоящего из одного 

блока, лемма верна. 

Допустим, что лемма верна для графа, состоящего из  � блоков, � ≥ 1, и 

докажем, что она верна для графа, состоящего из � + 1 блоков. Пусть 

геодезический эйлеров кактус, состоящий из � блоков, имеет нечетное число 

вершин �. Тогда к любой вершине кактуса присоединим блок с нечетным 

числом вершин Y и получим граф, состоящий из � + 1 блоков, имеет нечетное 

число вершин: Y + � − 1.  Лемма доказана. 

Теорема 18. Пусть ��� ‒ число помеченных геодезических эйлеровых 

кактусов с � вершинами, тогда при Q ≥ 1 верна формула 
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��&��� = (2Q)! � (2Q + 1)���2��! �Q − 1� − 1� .�
� �  

Доказательство. Пусть �� ‒ число помеченных связных графов с � 

вершинами, а I� ‒ число помеченных блоков с � вершинами. Введем 

производящую функцию: I(V) = ∑ I� �A
�!D� $ . 

Для доказательства теоремы воспользуемся соотношением (2), 

полученным В.А. Воблым в [4]: 

�� = (���)!� NV���OPJQ(�I′(V)) = (���)!� NV��O exp'�IM(V)( V��,      
где NV�O ‒ коэффициентный оператор и  NV��O ‒ оператор  формального вычета 

[26]. 

Обозначая через I(V) экспоненциальную производящую функцию для 

числа блоков помеченных геодезических эйлеровых  графов, имеем 

��� = (� − 1)!� NV��O exp'�I(V)( V��. 
Так как, согласно лемме у геодезических эйлеровых кактусов не может 

быть блоков с четным числом вершин, то 

I(V) = � 12 (2�)! V&���(2� + 1)! ,    IM(V) = � 12 V&� = V&2(1 − V&) .D
� �

D
� �  

Подставив I(V) в  формулу (2), получим 

��� = (� − 1)!� NV��OPJQ G �V&2(1 − V&)H V��. 
Разлагая экспоненту в степенной ряд, имеем 

��� = (� − 1)! NV��O � ����V&���2�(1 − V&)��! .D
� )  

Используя ряд (4), найдем 

��� = (� − 1)! NV��O � � ����V&����&X2��! �Y + � − 1� − 1 � .D
X )

D
� )  



49 
 

Найдем решение уравнения 2� + 2Y − � = −1 в целых числах. Так как 

не существует геодезических эйлеровых кактусов с четным числом вершин, то � = 2Q + 1. Тогда 2� + 2Y − (2Q + 1) = −1 и Y = Q − �. 
Вычислив вычет функции, найдем 

��&��� = (2Q)! � (2Q + 1)���2��! �Q − 1� − 1� .D
� )  

Учитывая, что биномиальный коэффициент обращается в нуль при Q − 1 < � − 1, получим утверждение теоремы. 

В соответствующей таблице представлены числа I�� , вычисленные с 

помощью формулы из теоремы. 

Таблица 18 � 3 5 7 9 11 I�� 1 27 2355 436905 140805945 
 

3.2. Геодезические полноблочно-кактусные графы 

Теорема 19. Пусть ��� ‒ число помеченных геодезических полноблочно-

кактусных графов с � вершинами, тогда при � ≥ 3 верна формула 

��� = t���(�)� + (� − 1)! � � ����t��r��&X��(�)2��! (� − 4� − 2Y − 1)! �Y + � − 1� − 1 � ,
p��r���& q

X )
p���r q
� �  

где t̂ (J) ‒ многочлен Белла одной переменной [54]. 

Доказательство. Пусть �� ‒ число помеченных связных графов с � 

вершинами, а I� ‒ число помеченных блоков с � вершинами. Введем 

производящую функцию: I(V) = ∑ I� �A
�!D� $ . 

Для доказательства теоремы воспользуемся соотношением (2), 

полученным В.А. Воблым в [4]: 

�� = (���)!� NV���OPJQ(�I′(V)) = (���)!� NV��O exp'�IM(V)( V��,      
где NV�O ‒ коэффициентный оператор и  NV��O ‒ оператор  формального вычета 

[26]. 
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Обозначим через I(V) экспоненциальную производящую функцию для 

числа блоков помеченных геодезических полноблочно-кактусных графов, 

имеем 

�� = (� − 1)!� NV��O exp'�I(V)( V��. 
Так как у геодезических полноблочно-кактусных графов все блоки или 

полные графы, или циклы нечетной длины, то  

I(V) = � V��! + � 12 (2�)! V&���(2� + 1)!,     IM(V) = P� − 1 + Vr2(1 − V&) .D
� &

D
� &  

Следовательно,  

��� = (� − 1)!� NV��O exp'�(P� − 1)( PJQ G �Vr2(1 − V&)H V��. 
Многочлен Белла одной переменной определяется через числа Стирлинга 2-го 

рода и имеют следующую производящую функцию: 

t�(J) = � <(�, �)J� ,        exp'J(P� − 1)( = � t̂ (J) V^`! .D
^ )

�
� )  

Таким образом, разлагая экспоненту в степенной ряд, найдем 

��� = (� − 1)!� NV��O � t̂ (�)`! V^ �1 + � ��Vr�2�(1 − V&)��!
D

� � � V��.D
^ )  

Используя  ряд (4), получим 

��� = t���(�)� + (� − 1)! � � ����t��r��&X��(�)2��! (� − 4� − 2Y − 1)! �Y + � − 1� − 1 � .D
X )

D
� �  

Учитывая, что факториал обнуляет слагаемые при � − 4� − 2Y − 1 < 0, 
получим утверждение теоремы. Теорема доказана. 

В соответствующей таблице  представлены числа ���, вычисленные с 

помощью формулы из теоремы. 

Таблица 19 � 3 4 5 6 7 8 9 10 ��� 4 29 323 4807 90185 2041881 54220780 1652632971 
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3.3. Геодезические k- циклические кактусы 

Теорема 20. Число помеченных геодезических k-циклических кактусов с � вершинами ��(�, �) равно 

��(�, �) = (� − 1)!�2��! � �Y + � − 1� − 1 � ���&X����(� − 2Y − 2� − 1)! .
p��&���& q

X )  

Доказательство. Пусть <(�, �) ‒ число помеченных связных графов с � 

вершинами и цикломатическим числом �, а I�(V) ‒ экспоненциальная 

производящая функция для числа помеченных блоков с цикломатическим 

числом �. 

Для доказательства теоремы воспользуемся соотношением (3), 

полученным В.А. Воблым в [5]: 

<(�, �) = (� − 1)!�2��! NV��O exp(�V) >�'�I�M (V), … , ��! I�M (V)(V�� 

где NV��O ‒ оператор формального вычета [26], а >�(J�, … , J�) ‒ многочлен 

разбиений. 

Так как у кактусов нет блоков с цикломатическим числом � > 1, то I� = 0 при � > 1 и >X(J�, 0, … ,0) = J�X. Кроме того, у геодезических кактусов 

все циклы имеют нечетную длину и поскольку число помеченных циклов с 2� + 1 вершинами равно (2�)! 2⁄ , получим  

I�(V) = � 12 (2�)! V&���(2� + 1)! ,        I�M (V) = � 12 V&� = V&2(1 − V&) .D
� �

D
� �  

Подставив в (3) и разложив экспоненту в ряд, имеем 

��(�, �) = (� − 1)!��! NV��O � ��V�L! G �V&2(1 − V&)H� V�� =D
� )  

= (� − 1)!��! NV��O � ����L! V��&���2�(1 − V&)� .D
� )  

Используя разложение в ряд (4), получим 
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��(�, �) = (� − 1)!�2��! NV��O � � �Y + � − 1� − 1 � ����L! V��&����&X =D
X )

D
� )  

= (� − 1)!�2��! � �Y + � − 1� − 1 � ���&X����(� − 2Y − 2� − 1)! .D
X )  

Учитывая, что биномиальный коэффициент обращается в нуль при � − 2Y − 2� − 1 < 0, получим утверждение теоремы. 
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Глава 4. Перечисление планарных графов 

В [45] доказано, что граф является планарным тогда и только тогда, когда 

каждый его блок планарен. Следовательно, класс планарных графов является 

блочно-устойчивым классом.  

4.1. Планарные полноблочно-кактусные графы 

Из теоремы Понтрягина-Куратовского следует, что граф планарный тогда 

и только тогда, когда он не содержит подграфов, гомеоморфных полному графу �h и �$,$. 
Теорема 21. Для числа t�� помеченных планарных полноблочно-

кактусных графов с � вершинами при � ≥ 3 верна формула 

t�� = (� − 1)!� NV���OPJQ G�V + �V&2 + �V$6 + �V$2(1 − V)H. 
Доказательство. Пусть �� ‒ число помеченных связных графов с � 

вершинами, а I� ‒ число помеченных блоков с � вершинами. Введем 

производящую функцию: I(V) = ∑ I� �A
�!D� $ . 

Для доказательства теоремы воспользуемся соотношением (2), 

полученным В.А. Воблым в [4]: 

�� = (���)!� NV���OPJQ(�I′(V)) = (���)!� NV��O exp'�IM(V)( V��,      
где NV�O ‒ коэффициентный оператор и  NV��O ‒ оператор  формального вычета 

[26]. 

Обозначая через I�(V) экспоненциальную производящую функцию для 

числа блоков помеченных планарных полноблочно-кактусных графов, получим 

t�� = (� − 1)!� NV��O exp'�I�(V)( V��. 
  Из теоремы Понтрягина-Куратовского следует, что в рассматриваемых 

графах нет блоков-полных графов с числом вершин � > 4. Учитывая, что число 

помеченных циклов с � вершинами равно (� − 1)! 2,⁄  найдем 

I�(V) = � V��! + � 12 (� − 1)! V��! ,D
� r

r
� &  
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I� M(V) = �V + �V&2 + �V$6 + �V$2(1 − V). 
Подставив I�(V) в (2), получим утверждение теоремы. 

В следующей таблице представлены числа t�� , вычисленные с помощью 

формулы из теоремы. 

Теорема 21 � 3 4 5 6 7 8 t�� 4 32 382 6096 122272 2958712 
 

4.2. Внешнепланарные бициклические и трициклические графы 

Под бициклическим (трициклическим) графом понимается связный граф 

с цикломатическим числом, равным 2 (соответственно 3).  

Класс внешнепланарных графов является тестовым для класса планарных 

графов. Случайный помеченный внешнепланарный граф может быть 

сгенерирован полиномиальным алгоритмом, базирующимся на результатах 

перечисления таких графов.  

Теорема 22. Число #I(�, 2) помеченных внешнепланарных 

бициклических блоков с � вершинами при � ≥ 4 равно 

#I(�, 2) = �! (� − 3)4 . 
Доказательство. Все гомеоморфные типы и базисные графы 

бициклических гладких графов изображены на рис. 2 и 3 соответственно [84]. 

 

Рис. 2. 

 

Рис. 3. 

Только последний гомеоморфный тип является блоком, причем ему 

соответствует два базисных графа ‒ 3 и 4. Но базисный граф 3 не является 
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внешнепланарным графом. В силу леммы 2 для графа 4 имеем } = 2, ¨ = 4, a =
g = 0, v = 2, �� = �!r �� − 31 �. Лемма доказана.  

Следствие 2. При � → ∞ верно асимптотическое равенство 

#I(�, 2)~ �4 �!. 
Теорема 23. Число #t(�, 2) помеченных связных внешнепланарных 

бициклических графов с � вершинами при � ≥ 4 равно 

#t(�, 2) = (� − 1)!16 � �&(� − 3)(� − �)! ����.�
� r  

Доказательство.  Пусть �� ‒ число связных графов с � помеченными 

вершинами, не являющихся деревьями, y� ‒ число гладких связных графов с � 

помеченными вершинами. Введем производящие функции y(V) = ∑ y� �A
�!D� $  и 

�(V) = ∑ �� �A
�! .D� $  Рид вывел [71] формулы 

y(V) = �(VP��),    �(V) = y'�(V)(,                     (9) 

где �(V) = ∑ �A01
�! V�D� �  ‒ древесная функция, удовлетворяющая уравнению 

�(V) exp'−�(V)( = V. В [38] из первой формулы Рида получено соотношение  

�� = ∑ ���� �������y� .�� $                                   (10) 

Перечислим первый и второй гомеоморфные типы графов, которым 

соответствуют базисные графы 1 и 2. В силу леммы Райта для графа 1 имеем 

} = 1, a = 2, g = 0, v = 0, ¨ = 8, ��,� = �!+ �� − 41 � = �!+ (� − 4). 
Аналогично для графа 2 получим } = 2, a = 2, g = 1, v = 0, ¨ = 8, �&,� =

�!+ �� − 42 � = �!�u (� − 4)(� − 5).  
Сложив числа графов ��,� и �&,� с числом #I(�, 2) помеченных 

внешнепланарных бициклических блоков, найдем число y� помеченных 

гладких внешнепланарных бициклических графов: y� = ��,� + �&,� + #I(�, 2) 
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Так как в нашем случае #t(�, 2) = ��, в силу (4) получим требуемое. Теорема 

доказана. 

В таблице 22 представлены числа #I(�, 2) и #t(�, 2), вычисленные с 

помощью формул из теорем 22 и 23. 

Таблица 22 � 4 5 6 7 8 9 10 #I(�, 2) 6 60 540 5040 50400 544320 6350400 #t(�, 2) 6 195 5220 139125 3887520 115839234 3699460800 
 

Теорема 24. Число #I(�, 3) помеченных внешнепланарных 

трициклических блоков с � вершинами при � ≥ 5 равно 

#I(�, 3) = �! (� − 3)(� − 4)(� + 1)24 . 
Доказательство. Все гомеоморфные типы трициклических гладких 

графов изображены на рис. 4 [27]. 

Из них только типы 12-15 являются блоками, причем блоков типов 14 и 

15 не являются внешнепланарными графами. На рис. 5. изображены базисные 

графы Райта для гомеоморфных типов 8 ‒ 13. Гомеоморфным типам 12 и 13 

соответствуют базисные графы 9 ‒ 14, из которых только типы 9 и 12 ‒ 

внешнепланарные графы. 

В силу леммы Райта для блока типа 12 (базисный граф 9) имеем } =
3, a = 0, g = 1, v = 2, ¨ = 2, ��,� = �!& �� − 32 � = �!r (� − 3)(� − 4). 

Также для блока типа 13 (базисный граф 12) получим  } = 4, a = 0, g =
2, v = 2, ¨ = 4, �&,� = �!r �� − 33 � = �!&r (� − 3)(� − 4)(� − 5). 

Сложив числа графов ��,� и�&,�, получим требуемое. Лемма доказана.  
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Рис. 4. 

Следствие 3. При � → ∞ верно асимптотическое равенство 

#I(�, 3)~ �$24 �!.  
Теорема 25. Число #t(�, 3) помеченных связных внешнепланарных 

трициклических графов с � вершинами при � ≥ 5 равно 

#t(�, 3) = (� − 1)!5760 � �(� − 3)(� − 4)(4�$ + 23�& + 103� − 150)(� − �)! ����.�
� h  

Доказательство. Используя лемму 1, перечислим 1 и 3 ‒ 7 

гомеоморфные типы графов, изображенные на рис. 4. Тогда в силу леммы 1 и 

известного ряда (4) 

для типа 1 имеем a = 2, g = 4, g) = 2, g& = 1, g� = g$ = gr = 0, �(�) = 4, 
��,� = �!16 �¢P%KA02 Jh(J + 2(1 − J))(1 − J)r  

= �!16 �¢P%KA02 G Ju(1 − J)r + 2 Jh(1 − J)$H 

= �!16 �¢P%KA02 �� �� + 33 � J��u + 2 � �� + 22 � J��hD
� )

D
� ) � 

= �!16 G�� − 53 � + 2 �� − 52 �H = �!16 (� − 5)(� − 6)(� − 1); 
для типа 3: a = 4, g = 6, g) = 2, g� = 2, g& = 1, g$ = gr = gh = gu = 0, �(�) = 4, 
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�$,� = �!16 �¢P%KA0¬ Jh(J + 2(1 − J))(1 − J)u
= �!16 �¢P%KA0¬ �� �� + 55 � J��u + 2 � �� + 44 � J��hD

� )
D

� ) � 

= �!16 G�� − 55 � + 2 �� − 54 �H = �!1920 (� − 5)(� − 6)(� − 7)(� − 8)(� + 1); 
для типа 4: a = 3, g = 5, g) = 2, g� = 1, g& = 1, g$ = gr = gh = 0, �(�) = 2,  

�r,� = �!8 �¢P%KA0e Jh(J + 2(1 − J))(1 − J)h = �!8 �¢P%KA0e G Ju(1 − J)h + 2 Jh(1 − J)rH 

= �!8 �¢P%KA0e �� �� + 44 � J��u + 2 � �� + 33 � J��hD
� )

D
� ) � 

= �!8 G�� − 54 � + 2 �� − 53 �H = �!192 �(� − 5)(� − 6)(� − 7); 
для типа 5: a = 5, g = 6, g) = 3, g� = 3, g& = g$ = gr = gh = gu = 0, �(�) = 6,  

�h,� = �!48 �¢P%KA0¬ Ju(1 − J)u = �!48 �¢P%KA0¬ � �� + 55 � J��uD
� )  

= �!48 �� − 55 � = �!5760 (� − 5)(� − 6)(� − 7)(� − 8)(� − 9); 
для типа 6: a = 3, g = 5, g) = 3, g� = 2, g& = g$ = gr = gh = 0, �(�) = 2,  

�u,� = �!16 �¢P%KA0e Ju(1 − J)h = �!16 �¢P%KA0e � �� + 44 � J��uD
� )  

= �!16 �¢P%KA0e �� − 54 � = �!384 (� − 5)(� − 6)(� − 7)(� − 8); 
для типа 7: a = 2, g = 4, g) = 3, g� = 1, g& = g$ = gr = 0, �(�) = 2, 

�s,� = �!16 �¢P%KA02 Ju(1 − J)r = �!16 �¢P%KA02 � �� + 33 � J��uD
� )  

= �!16 �� − 53 � = �!96 (� − 5)(� − 6)(� − 7). 
Гомеоморфный тип 2 (см. рис. 4) является графом розы с тремя лепестками. 

Используем формулу для графов роз: 
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 ��,� = �!�! 2� �� − � − 2� − 1 �, 

где � ‒ количество лепестков. Тогда  

��,$ = �!48 �� − 52 � = �!96 (� − 5)(� − 6). 

 

Рис. 5.  

Гомеоморфным типам графов 8 ‒ 11 на рис. 4 соответствуют базисные графы 1 

‒ 8 на рис. 5, из которых только типы 1,3,5,7 ‒ внешнепланарные графы. 

Поэтому в силу леммы Райта имеем 

для типа  8: } = 2, a = 1, g = 0, v = 2, ¨ = 4, 
�+,� = �!4 �� − 42 � = �!8 (� − 4)(� − 5); 

для типа 9: } = 3, a = 1, g = 2, v = 1, ¨ = 4,  
��,� = �!4 �� − 33 � = �!24 (� − 3)(� − 4)(� − 5); 

для типа 10: } = 3, a = 1, g = 1, v = 2, ¨ = 4, 
��),� = �!4 �� − 43 � = �!24 (� − 4)(� − 5)(� − 6); 

для типа 11: } = 4, a = 1, g = 3, v = 1, ¨ = 4, 
���,� = �!4 �� − 34 � = �!96 (� − 3)(� − 4)(� − 5)(� − 6). 
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Остается сложить числа графов типов 1 ‒ 13: y� = ��,� + ��,$ + �$,� + �r,� + �h,� + �u,� + �s,� + �+,� + ��,� + ��),� + ���,� +
#I(�, 3) = �!hsu) (� − 3)(� − 4)(4�$ + 23�& + 103� − 150)  

и подставить в (4). Теорема доказана. 

В таблице 23 представлены числа #I(�, 3) и #t(�, 3), вычисленные с 

помощью формул из теорем 23 и 24. 

Таблица 23 � 5 6 7 8 9 10 

#I(�, 3) 60 1260 20160 302400 4536000 69854400 

#t(�, 3) 60 3420 144375 5644800 219576420 8753774400 

 

4.3. Непланарные тетрациклические графы 

Теорема 26. Пусть �� ‒ число помеченных непланарных 

тетрациклических блоков с � вершинами, тогда при � > 6 верна формула 

�� = �!72 �� + 28 �. 
Доказательство. Теорема Понтрягина-Куратовского утверждает, что 

граф планарен тогда и только тогда, когда он не содержит подграфов, 

гомеоморфных полному графу К$,$ и �h. Известно, что существует 107 

гомеоморфных типов гладких тетрациклических графов [28]. Из всех 

гомеоморфных типов тетрациклических блоков только один непланарный граф 

‒ �$,$. 

Воспользуемся леммой Степанова. Так  как в нашем случае � = �$,$, то �(�) = 72, a = 6, g = 9, g) = 0, g� = 9, g^ = 0, ` = 2 … 9 и тогда 

�� = �!72 �¢P%KA0® 1(1 − J)�. 
Используя  разложение (4), получим 

�� = �!72 �¢P%KA0® � �� + 88 � J� = �!72 �� + 28 � .D
� )  
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Доказательство закончено. 

В следующей таблице представлены числа ��, вычисленные с помощью 

формулы из теоремы.  

Таблица 24 � 6 7 8 9 10 �� 10 630 25200 831600 24948000 
 

Теорема 27. Число ��� помеченных связных непланарных 

тетрациклических графов с � вершинами при � ≥ 6 равно 

��� = ����72 � �� + 28 ��
� u

��!(� − �)! �� . 
Доказательство. Заметим, что непланарный тетрациклический граф 

должен иметь хотя бы один непланарный блок. Однако все унициклические, 

бициклические и трициклические блоки ‒ планарные графы. Следовательно, 

непланарный тетрациклический граф состоит из единственного блока, который 

является непланарным тетрациклическим  графов, и прикрепленных к нему 

деревьев. 

Подставив в  формулу (10) выражение для числа помеченных 

непланарных блоков  �� = �!s& �� + 28 � вместо y� , получим утверждение 

теоремы.  

В следующей таблице представлены числа ���, вычисленные с помощью 

формулы из теоремы.  

Таблица 25 � 6 7 8 9 10 

�� 10 1050 73920 4483080 256032000 

 

Следует отметить, что Дмитриев Е.Ф. другими методами перечислил 

помеченные непланарные тетрациклические блоки и связные графы, но не 

опубликовал свои результаты [28]. 
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Глава 5. Асимптотическое перечисление графов 

5.1. Кактусы без треугольников 

Теорема 28. Для числа ���  помеченных кактусов без треугольников с � 

вершинами при � → ∞ верна асимптотическая формула 

���~v���h &⁄ a���!, 
где с� ≈ 0.1203161248,      a� ≈ 3.73649.  

Доказательство. В §1.2 была получена формула 

��� = (� − 1)!� NV��O exp G�V + �V$2(1 − V)H V��, 
где  NV��O ‒ оператор формального вычета [26]. 

Используем теорему Флажоле и Седжвика [55], являющуюся вариантом 

метода перевала. 

 Обозначим F(N, n) = Nz³O´a(z)'b(z)(·¸ = �&¹º ∮ a(z)'b(z)(· ¼½½¾¿1 .  
Теорема Флажоле ‒ Седжвика [55]. Пусть функции a(z) и b(z) удовлетворяют 

следующим условиям: 

1. Функции a(z) = ∑ aÀzÀÀÁ)  и b(z) = ∑ bÀzÀÀÁ)  аналитические в точке 

z = 0 и имеют неотрицательные коэффициенты, кроме того b(0) ≠ 0. 
2. НОДÆj|bÀ > 0È = 1. 
3. Если R ≤ ∞ радиус сходимости b(z), то радиус сходимости a(z) не 

меньше R. 
Через T обозначим величину T = limÌ→Í�) ÌÎÏ(Ì)Î(Ì) . Пусть λ положительное число 

такое, что 0 < λ < T,  и пусть r ‒ единственный действительный корень 

уравнения r ÎÏ(Ò)Î(Ò) = λ.  Обозначим σ = ¼2
¼Ò2 (lnb(r) − λ lnr). 

Тогда для N = λn целого при n → ∞ и N → ∞ верно асимптотическое равенство 

F(N, n)~a(r) 'b(r)(·
r³��√2πnσ. 
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Заметим, что нужно требовать единственность действительного корня, 

лежащего внутри круга сходимости, так как все остальные корни, не лежащие в 

круге сходимости, будут посторонними корнями. В работах [12, 13] была 

допущена погрешность в формулировке теоремы Флажоле-Седжвика. При 

“единственности положительного корня”  [теорема 1, 13] дает только 

асимптотическую оценку сверху вместо асимптотического равенства. При 

написании диссертации все расчеты были проведены заново, и всегда при 

решении уравнения был единственный действительный корень внутри круга 

сходимости. 

Формула для ��� может быть представлена в виде  

��� = (� − 1)!� NV�O ÕV GPJQ GV + V$2(1 − V)H�HÖ = (� − 1)!� �(�, �), 
где � = �, × = 1, a(V) = V, g(V) = PJQ �V + �e

&(���)�. 
Так как ряд для I�(V) сходится при |V| < 1, оператор формального вычета 

является контурным интегралом. Очевидно, функции a(V) и g(V) 

аналитические в точке V = 0 и g(0) = 1. Функция g(V) имеет положительные 

коэффициенты, так как g(V) = exp (I�(V)) и I�(V) ‒ производящая функция для 

числа помеченных блоков частного вида. Поскольку g& > 0, g$ > 0, имеем НОДÆ�Øg� > 0È = 1. Так как  V = 1 ‒ ближайшая к началу координат особая 

точка g(V), радиус сходимости R функции g(V) равен 1. Очевидно, a(V) имеет 

бесконечный радиус сходимости. Таким образом, условия 1-3 теоремы 

Флажоле-Седжвика выполнены. 

Найдем � = limK→��) K Ï(K) (K) = limK→��) K(&�rK�hK2�&Ke)&(��K)2 = +∞,    0 < × < �. В 

нашем случае уравнение }  Ï(~) (~) = × имеет вид } &�r~�h~2�&~e
&(��~)2 = 1. Решая это 

уравнение с помощью Wolfram Mathematica, видим, что его единственным 

действительным корнем является число } = 0.5. Вычисляя величину, 

Ù = Gg′(})g(}) HM + ×}& = G2 − 4} + 5}& − 2}$2(1 − })& HM + 1}& = }(3} − 3 − }&)(1 − })& + 1}& 
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Получим Ù = 11. Также с помощью Wolfram Mathematica вычислим  

v = a(})}√2[Ù = 1√2[Ù ≈ 0.1203161248, a = g(})} ≈ 3.73649 

Окончательно при � → ∞ имеем асимптотику 

��� = (� − 1)!� �(�, �)~ (� − 1)!� 1√2[Ù ��� &⁄ �g(})} �� ~�! v��h &⁄ a� . 
Следствие 4. Почти все помеченные кактусы содержат треугольники. 

Доказательство. Известно [76, теорема 2], что для числа  �a� 

помеченных кактусов с � вершинами при � → ∞ верна асимптотическая 

формула 

�a�~v��h &⁄ a��!, 
где v = 0.1201498132, a = 4.188654598.  

В § 5.1. для числа ��� кактусов без треугольников c � вершинами при � → ∞ верна асимптотическая формула  

���~v���h &⁄ a���!, где  с� ≈ 0.3989422804,      a� ≈ 3.73649191148.  
Тогда 

lim�→D
����a� = lim�→D

v���h &⁄ a��v��h &⁄ a� = lim�→D
v�v �a�a �� = 0, 

то есть асимптотически почти все помеченные кактусы содержат треугольники. 

5.2. Эйлеровы кактусы 

Теорема 29.  Для числа o� помеченных эйлеровых кактусов с � 

вершинами при � →  ∞ верна асимптотическая формула 

o�~v��h &⁄ a��!, 
где v ≈ 0.1079436709,   a ≈ 2.5424753735. 

Доказательство. Используем теорему Флажоле-Седжвика. В работе [2] 

была  получена формула 

o� = (� − 1)!� NV��OPJQ G �V&2(1 − V)H V��, 
где NV��O ‒ оператор формального вычета [26]. 
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 Тогда формула для o� может быть представлена в виде  

o� = (� − 1)!� NV�O ÕV GPJQ G V&2(1 − V)H�HÖ = (� − 1)!� �(�, �), 
где � = �, × = 1, a(V) = V, g(V) = PJQ � �2

&(���)�. 
Так как ряд для I�(V) сходится при |V| < 1, оператор формального вычета 

является контурным интегралом. Очевидно, функции a(V) и g(V) 

аналитические в точке V = 0 и g(0) = 1. Функция g(V) имеет положительные 

коэффициенты, так как g(V) = exp (I�(V)) и I�(V) ‒ производящая функция для 

числа помеченных блоков частного вида. Поскольку g& > 0, g$ > 0, имеем 

НОДÆ�Øg� > 0È = 1. Так как  V = 1 ‒ ближайшая к началу координат особая 

точка g(V), радиус сходимости R функции g(V) равен 1. Очевидно, a(V) имеет 

бесконечный радиус сходимости. Таким образом, условия 1-3 теоремы 

Флажоле-Седжвика выполнены. 

Найдем � = limK→��) K Ï(K) (K) = limK→��) K(&K�K2)&(��K)2 = +∞,    0 < × < �. В 

нашем случае уравнение }  Ï(~) (~) = × имеет вид } &~�~2
&(��~)2 = 1. Решая это 

уравнение с помощью Wolfram Mathematica, видим, что его единственным 

действительным корнем является число } ≈ 0.5391888728. Вычисляя 

величину, 

Ù = Gg′(})g(}) HM + ×}& = G(2} − }&)2(1 − })&HM + 1}& = 2 − 2}2(1 − })& + 2} − }&(1 − })$ + 1}& 

Получим Ù ≈ 13.6592157423. Также с помощью Wolfram Mathematica 

вычислим  

v = a(})}√2[Ù = 1√2[Ù ≈ 0.1079436709, a = g(})} ≈ 2.5424753735. 
Окончательно при � → ∞ имеем асимптотику 

�a� = (� − 1)!� �(�, �)~ (� − 1)!� 1√2[Ù ��� &⁄ �g(})} �� ~�! v��h &⁄ a� . 
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5.3. Полноблочно-кактусные графы 

Теорема 30. Для числа �� помеченных полноблочно-кактусных графов с � вершинами при � → ∞ верна асимптотическая формула 

��~v���h &⁄ a���!, 
где с� ≈ 0.1178070871,   a� ≈ 4.261224133.  

Доказательство. Используем теорему Флажоле-Седжвика.  В нашем 

случае в силу формулы (5) имеем 

�� = (� − 1)!� NV�O ÕV GPJQ GP� − 1 + V$2(1 − V)H�HÖ = (� − 1)!� �(�, �), 
где � = �, × = 1, a(V) = V, g(V) = PJQ �P� − 1 + �e

&(���)�. 
Так как ряд для I�(V) сходится при |V| < 1, оператор формального вычета 

является контурным интегралом. Очевидно, функции a(V) и g(V) 

аналитические в точке V = 0 и g(0) = P��. Функция g(V) имеет положительные 

коэффициенты, так как g(V) = exp (I�(V)) и I�(V) ‒ производящая функция для 

числа помеченных блоков частного вида. Поскольку g& > 0, g$ > 0, имеем НОДÆ�Øg� > 0È = 1. Так как  V = 1 ‒ ближайшая к началу координат особая 

точка g(V), радиус сходимости R функции g(V) равен 1. Очевидно, a(V) имеет 

бесконечный радиус сходимости. Таким образом, условия 1-3 теоремы 

Флажоле-Седжвика выполнены. 

Найдем � = limK→��) K Ï(K) (K) = limK→��) �P� − 1 + �e
&(���)� = +∞,    0 < × <

�. В нашем случае уравнение }  Ï(~) (~) = × имеет вид } �P~ + $~2�&~e
&(��~)2 � = 1. Решая 

это уравнение с помощью Wolfram Mathematica, находим его единственный 

действительный корень  } ≈ 0.4457376225. Вычисляя величину, 

Ù = Gg′(})g(}) HM + ×}& = GP~ + 3}& − 2}$2(1 − })& HM + 1}& = P~ + }$ − 3}& + 3}(1 − })$ + 1}& 

Получим Ù ≈ 11.46772568. Также с помощью Wolfram Mathematica вычислим  

v� = a(})}√2[Ù = 1√2[Ù ≈ 0.1178070871, a� = g(})} ≈ 4.261224133 
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Окончательно при � → ∞ имеем асимптотику 

�� = (� − 1)!� �(�, �)~ (� − 1)!� 1√2[Ù ��� &⁄ �g(})} �� ~�! v���h &⁄ a�� . 
Теорема доказана. 

Следствие 5. Почти все полноблочно-кактусные графы не являются 

кактусами. 

Доказательство. В [4, теорема 2] была получена асимптотическая 

формула для числа  �a� помеченных кактусов с � вершинами: 

�a�~v��h &⁄ a��!,              (11)    

где v = 0.1201498132, a = 4.188654598.  
Для числа �� полноблочно-кактусных графов c � вершинами при � → ∞ 

верна асимптотическая формула  

��~v���h &⁄ a���! ,  
где v� = 0.1178070871,   a� = 4.261224133. Тогда 

lim�→D
�a��� = lim�→D

v��h &⁄ a�v���h &⁄ a�� = lim�→D
vv� � aa��� = 0, 

то есть асимптотически почти все помеченные полноблочно-кактусные графы 

не являются кактусами. 

5.4. Планарные полноблочно-кактусные графы 

Теорема 31. Для числа t�� помеченных планарных полноблочно-

кактусных графов с � вершинами при � → ∞ верна асимптотическая формула 

t��~с��h &⁄ a��!, 
где v ≈ 0.1183273421,   a ≈ 4.2534965791.  

Доказательство. Используем теорему Флажоле-Седжвика.  В § 4.1. была 

получена формула для числа помеченных планарных полноблочно-кактусных 

графов. Тогда  

t�� = (� − 1)!� NV�O ÕV GPJQ GV + V&2 + V$6 + V$2(1 − V)H�HÖ = (� − 1)!� �(�, �), 
где � = �, × = 1, a(V) = V, g(V) = PJQ �V + �2

& + �e
u + �e

&(���)�. 
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Так как ряд для I�(V) сходится при |V| < 1, оператор формального вычета 

является контурным интегралом. Очевидно, функции a(V) и g(V) 

аналитические в точке V = 0 и g(0) = 1. Функция g(V) имеет положительные 

коэффициенты, так как g(V) = exp (I�(V)) и I�(V) ‒ производящая функция для 

числа помеченных блоков частного вида. Поскольку g& > 0, g$ > 0, имеем НОДÆ�Øg� > 0È = 1. Так как  V = 1 ‒ ближайшая к началу координат особая 

точка g(V), радиус сходимости R функции g(V) равен 1. Очевидно, a(V) имеет 

бесконечный радиус сходимости. Таким образом, условия 1-3 теоремы 

Флажоле-Седжвика выполнены. 

Найдем � = limK→��) K Ï(K) (K) = limK→��) �J + J& + Ke
& + $Ke

&(��K) + K¬
&(��K)2� =

+∞,    0 < × < �. В нашем случае уравнение }  Ï(~) (~) = × имеет вид } + }& + ~e
& +

$~e
&(��~) + ~¬

&(��~)2 = 1. Решая это уравнение с помощью Wolfram Mathematica, 

находим его единственный действительный корень  } ≈ 0.4471957138. 
Вычисляя величину, 

Ù = Gg′(})g(}) HM + ×}& = 1 + } + 3}1 − } + 3}&(1 − })& + }$(1 − })$ + 1}&. 
Получим Ù ≈ 11.3671060792. Также с помощью Wolfram Mathematica 

вычислим  

v = a(})}√2[Ù = 1√2[Ù ≈ 0.1183273421, a = g(})} ≈ 4.2534965791 

Окончательно при � → ∞ имеем асимптотику 

t�� = (� − 1)!� �(�, �)~ (� − 1)!� 1√2[Ù ��� &⁄ �g(})} �� ~�! v��h &⁄ a� . 
Теорема доказана. 

Следствие 6. Почти все помеченные полноблочно-кактусные графы не 

являются планарными. 

Доказательство. В § 5.3. было получено асимптотическое равенство для 

числа t��  полноблочно-кактусных графов: 



69 
 t��~v��h &⁄ a��! , 

где v = 0.1178070871,   a = 4.261224133. Следовательно, в силу теоремы 31 

имеем 

lim�→D
t���� = lim�→D

v��h &⁄ a�v���h &⁄ a�� = lim�→D
vv� � aa��� = 0, 

то есть асимптотически почти все помеченные полноблочно-кактусные графы 

не являются планарными. 

5.5. Эйлеровы пентациклические блоки 

Теорема 32. Для числа �� помеченных эйлеровых пентациклических 

блоков с � вершинами при � → ∞ верна асимптотическая формула 

��~ 53�s�!5806080. 
Доказательство. Граф является эйлеровым только тогда, когда его 

гомеоморфный тип ‒ эйлеров граф. Из 118 гомеоморфных пентациклических 

блоков только 5 являются эйлеровыми блоками [61]. Эти графы представлены 

на рис. 6. 

 

Рис. 6. 

Пусть � ‒ гомеоморфный тип с � вершинами, g ребрами, g) петлями и 

порядком вершинно-реберной группы автоморфизмов �(�), причем � является 

связным гладким графом, отличным от изолированной вершины или петли. 

Тогда для числа помеченных графов ��(�) с � вершинами и гомеоморфным 

типом � при � → ∞ верно асимптотическое равенство [43, лемма 4]: 
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��(�)~ �! � ��2 ¡ �(�)(g − 1)!. 
Заметим, что для блоков g) = 0 и основной вклад в асимптотику в нашем 

случае дают графы с 8 ребрами. Пусть �^,� ‒ число графов с `-м гомеоморфным 

типом и � вершинами, тогда при � → ∞ имеем 

3) �(�) = 144, �$,�~ �! �s7! 144 ;   4) �(�) = 128, �r,�~ �! �s7! 128 ;  
 5) �(�) = 32, �h,�~ �! �s7! 32.  

Теперь получим при � → ∞ 

��~�$,� + �r,� + �h,� = �! �s7! � 1144 + 1128 + 132� = 53�s�!5806080. 
Доказательство закончено. 

5.6. Внешнепланарные бициклические и трициклические графы 

В § 4.2 были получены явные формулы для числа помеченных 

внешнепланарных бициклических и трициклических графов: 

OP(n, 2) = (n − 1)!16 � k&(k − 3)(n − k)! n·�à,·
à r  

#t(�, 3) = (� − 1)!5760 � �(� − 3)(� − 4)(4�$ + 23�& + 103� − 150)(� − �)! ����.�
� h  

 Соответствующая асимптотика для числа таких графов равна: 

Теорема 33. При � → ∞ верны асимптотические равенства 

#t(�, 2)~ ����8 ,    #t(�, 3)~ √2[192 ���h &⁄ . 
Доказательство. Из формул Рида [75]: y(V) = �(VP��), �(V) = y(�(V)) 

имеем �(V) = y'�(V)(, где  

�� = #t(�, 2), y(V) = � �(� − 3)16 V� = Vr(2 − V)8(1 − V)$ .D
� r  

Здесь суммирование степенного ряда выполнено с помощью известных 

степенных рядов [40].  
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Раскладывая y(V) в ряд Лорана по степеням 1 − V, получим  

�(V) = 18(1 − �(V))$ + 38(1 − �(V))& + 14(1 − �(V)) 

+ 14 − 3'1 − �(V)(8 + '1 − �(V)(&
8 . 

Пусть  

1(1 − �(V))á = � ��(â) V��! ,D
� )  

где ��(â) ‒ древесный полином степени �. Тогда  

#t(�, 2) = 18 ��(3) + 38 ��(2) + 14 ��(1) + 14 ��(0) − 38 ��(−1) + 18 ��(−2). 
В [65] при � → ∞ и â > −1 выведено асимптотическое равенство 

��(â) = √2[���� &�á &⁄⁄
2á &⁄ Г(â 2⁄ ) + #'�����á &⁄ (. 

Очевидно, что ��(0) = 0 и ��(−1) = −���� при � > 0. Райт доказал [85], что 

2'�(V) − ���(V)( = �&(V),  где ���(V) = ∑ �A02
�! V�.D� �   Следовательно, 

(1 − �(V))& = 1 − 2���(V) и ��(−2) = −2���& при � > 0, поэтому  

#t(�, 2)~ 18 ��(3)~ 18 √2[����
2$ &⁄ Г G3 2
 H = ����8 . 

Аналогично для трициклических графов имеем 

y(V) = 15760 �(� − 3)(� − 4)(4�$ + 23�& + 103� − 150)V� =D
� r  

= − Vh(3V$ − 19V& + 36V − 24)48(1 − V)u . 
Здесь суммирование степенного ряда выполнено с помощью пакета программ 

Maple. Раскладывая числитель дроби в ряд Тейлора по степеням 1 − V с 

помощью Maple, найдем  

y(V) = 148 � 4(1 − V)u − 13(1 − V)h + 15(1 − V)r − 17(1 − V)$ + 
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 + 35(1 − V)& − 391 − V + 13 + 5(1 − V) − 3(1 − V)&�. 
Следовательно, 

#t(�, 3) = 148 (4��(6) − 13��(5) + 15��(4) − 17��(3) + 35��(2) − 

−39��(1) + 13��(0) + 5��(−1) − 3��(−2))~ 148 4��(6)~ √2[192 ���h &⁄ . 
Теорема доказана.  

Следствие 5. Почти все помеченные внешнепланарные бициклические 

графы являются кактусами. 

Доказательство. В [5, теорема 4] было получено асимптотическое 

равенство для числа помеченных  k-циклических кактусов: 

�a(�, �)~ √*&e- 2⁄ �!Г�-¿12 � ���e-2 �&.          (12) 

Под бициклическим графом понимается связный граф с цикломатическим 

числом равным 2, тогда  

�a(�, 2)~ √[
16Г �32� ���� = ����8 , 

где Г �$&� = √*& . 
В § 5.6 была получена асимптотика для числа помеченных внешнепланарных 

бициклических графов: 

#t(�, 2)~ ����8 . 
Тогда  

lim�→D
#t(�, 2)�a(�, 2) = 1, 

т.е. асимптотически почти все помеченные внешнепланарные бициклические 

графы являются кактусами. Следствие доказано. 

Следствие 6. Почти все помеченные внешнепланарные трициклические 

графы являются кактусами. 
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Доказательство. Под трициклическими графом понимается связный 

граф с цикломатическим числом равным 3, тогда формула (12) запишется в 

виде: 

�a(�, 3)~ √[96√2Г(2) ���h& = √[96√2 ���h&, 
где Г(2) = 1. 
Используя из § 5.6 асимптотическое равенство для числа помеченных 

внешнепланарных трициклических графов   #t(�, 3)~ √&*��& ���h &⁄ , получим  

lim�→D
#t(�, 3)�a(�, 3) = lim�→D

√2[���h &⁄ 192⁄√[96√2 ���h& = 1, 
т.е. асимптотически почти все помеченные внешнепланарные трициклические 

графы являются кактусами.  
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Заключение 

В диссертации получены следующие основные результаты по 

перечислению помеченных связных графов с заданными свойствами блоков:  

1. Перечислены полноблочно-кактусные графы и найдена соответствующая 

асимптотика для этих графов. Получены явные формулы для числа  

кактусов: кактусов с заданным числом вершин, кактусов без 

треугольников, гладких кактусов, двудольных кактусов. Также были 

получены явные формулы для числа  k-циклических полноблочно-

кактусных графов и  блочно-колесных графов. Найдена асимптотика для 

числа кактусов без треугольников.  

2. Перечислены эйлеровы графы: эйлеровы полноблочные графы, эйлеровы 

двудольные кактусы, эйлеровы полноблочно-кактусные графы. Получены 

явные формулы для числа эйлеровых тетрациклических блоков и графов. 

Была получена явная формула для числа графов розы, которые являются 

кактусами, а также k-циклическими эйлеровыми графами. Найдена 

асимптотика для числа  эйлеровых кактусов и эйлеровых 

пентациклических блоков. 

3. Получены явные формулы для числа геодезических графов: 

геодезических эйлеровых кактусов, геодезических полноблочно-

кактусных графов, геодезических k-циклических графов. 

4. Перечислены внешнепланарные бициклические и трициклические графы 

и получена соответствующая асимптотика для числа таких графов. Были 

получены явные формулы для числа планарных полноблочно-кактусных 

графов и найдена соответствующая асимптотика для числа таких графов.  

5. В работе доказывается ряд следствий из перечислительных теорем о 

свойствах рассматриваемых графов: 

• почти все кактусы содержат треугольники, 

• почти все полноблочно-кактусные графы не являются кактусами и 

планарными графами, 
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• почти все внешнепланарные бициклические и трициклические 

графы являются кактусами, 

• при равномерном распределении вероятностей, вероятность того, 

что помеченный связный эйлеров тетрациклический граф является 

блоком, равна 
&��. 
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