




ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность данной работы.

Разреженные матрицы появляются при постановке задач из многих

научных и инженерных областей. Эффективные методы хранения и обра­

ботки таких матриц в современных вычислительных системах вызывают

интерес у широкого круга исследователей. Одним из актуальных прило­

жений разреженных матриц является решение соответствующих задач

дискретной оптимизации (ДО). ДО является эффективным инструмен­

том для моделирования многих практических задач. Это касается таких

известных постановок: размещение объектов, планирование ресурсов, по­

крытие поверхностей, сетевая оптимизация, маршрутизация, логистика,

теория расписаний, искусственный интеллект, анализ данных, робототех­

ника и т. п. Выделение специальных структур в разреженных матрицах

позволяют существенно сократить время решения.

Большинство интересных задач являются NP–трудными. Многие за­

дачи ДО, возникающие на практике, содержат огромное число неизвест­

ных и ограничений, поэтому они трудно решаемы. С другой стороны

модели ДО для больших практических задач часто представляют собой

системы, подсистемы которых слабо связанны между собой, и таких под­

систем достаточно много. Поэтому естественным подходом для решения

таких задач представляется разбиение на подзадачи. В связи с этим осо­

бую актуальность приобретают декомпозиционные подходы — способы

разбиения больших задач на подзадачи.

Развитие информационных технологий, появление многопроцессор­

ных комплексов, суперкомпьютеров создало условия для разработки ал­

горитмов ДО с распараллеливанием вычислений. Поэтому разработка в

задачах ДО декомпозиционных алгоритмов и исследование возможности

их реализации чрезвычайно важно.

Эффективными алгоритмами для решения разреженных задач ДО
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являются локальные элиминационные алгоритмы (ЛЭА). ЛЭА объеди­

няют локальные алгоритмы декомпозиции, алгоритмы несериального ди­

намического программирования, а также алгоритмы сегментной элими­

нации. Распараллеливание вычислительного процесса локального элими­

национного алгоритма может существенно ускорить решение задач ДО

большой размерности.

Базовыми в работе является квазиблочная структура разреженной

матрицы и её обработка. С развитием вычислительной техники более

актуальным становится вопрос сокращения вычислений. Для решения

разреженных задач ДО естественным образом выбирается алгоритм, ис­

пользующий локальные области соответствующей матрицы. Приводятся

первые результаты вычислительного эксперимента, где с помощью ЛЭА

решались различные задачи ДО. Содержатся результаты исследования

эффективности локального алгоритма для решения особого класса за­

дач ДО — квазиблочных задач. Также продемонстрировано, что асимп­

тотическая средняя оценка эффективности локального алгоритма слабо

зависит от алгоритма ДО, решающего подзадачи. Такая зависимость объ­

ясняется следующим образом: средняя оценка эффективности была ис­

следована на множестве всех квазиблочных структур, но, локальные ал­

горитмы являются эффективными для задач с ограниченной связностью

блоков. Эффективность локального алгоритма теоретически и экспери­

ментально исследована недостаточно полно, поэтому остаётся актуаль­

ным поиск удачных модификаций ЛЭА и его сочетаний с различными

точными и приближенными решателями ДО.

Основной целью исследования является выявление закономерно­

стей в больших данных, в качестве которых выступают разреженные

матрицы. При этом повышается эффективность алгоритма для решения

задач, соответствующих матрицам; выделение класса задач, для кото­

рых применим метод, его ускорение, а также возможности решения за­
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дач большой размерности путём распараллеливания.

Научная новизна. В данной работе впервые сформулированы и

доказаны теоремы, устанавливающие связь между параметрами матри­

цы и соответствующей квазиблочной структуры. Также впервые иссле­

дованы и реализованы методы выделения квазиблочной структуры для

разреженных матриц. Использован алгоритм перемешивания строк и

столбцов в матрице для поиска квазиблочных структур в разреженных

матрицах, который практически не применялся ранее и автору неизвест­

ны попытки его программной реализации. Введены понятия и доказаны

свойства графовых структур, соответствующих порядку элиминации. Со­

ответствующие теоремы дают основу доказательства важных свойств в

проблеме нахождения оптимального исключения переменных. Протести­

ровано влияние порядка элиминации на скорость ЛЭА. Впервые предло­

жен и реализован ряд модификаций ЛЭА для разреженных задач ДО с

квазиблочной структурой. Реализовано распараллеливание задач с ква­

зиблочной структурой на GRID.

Научная и практическая значимость. В данной работе разра­

ботана техника понижения размерности больших разреженных матриц

и соответствующих задач ДО. Исследование окрестностей переменных,

определение декомпозиции задач с квазиблочной структурой, модифи­

кации локального элиминационного алгоритма и его распараллеливание

продолжают ряд исследований Ю.И.Журавлёва, Ю.Ю.Финкельштейна,

В.И.Цуркова, О.А.Щербины. Разработанные методы позволяют получить

решение задачи ДО большой размерности за приемлемое время.

Методология и методы исследования. В работе использованы

основные понятия теории графов, методы дискретной оптимизации и па­

раллельных вычислений.

Основные положения, выносимые на защиту:

1. Получены системы неравенств для блочно–лестничной и блочно–дре­
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вовидных структур в общем виде, а также относительно нескольких

классов разреженных матриц, которые устанавливают зависимость

между степенью квазиблочной структуры и числом её блоков в за­

висимости от размерности матрицы и числа ненулевых элементов

в ней.

2. Разработаны алгоритмы выделения квазиблочной структуры для

разреженных матриц.

3. В рамках теории локальных элиминационных алгоритмов введены

новые понятия, а также обоснована зависимость между графовыми

структурами в связи с проблемой оптимального порядка элимина­

ции.

4. Разработаны модифицикации локального элиминационного алго­

ритма (ЛЭА).

5. Осуществлено распараллеливание больших задач ДО с матрицей

квазиблочной структуры на системе GRID.

Степень достоверности полученных результатов подтверждается

проработкой литературных источников по теме диссертации, реализаци­

ей необходимого количества численных расчётов, а также современной

методикой исследования, которые соответствуют поставленным в работе

целям и задачам. Научные положения, выводы и рекомендации, сформу­

лированные в диссертации, подкреплены убедительными фактическими

данными, наглядно представленными в приведенных таблицах и рисун­

ках. Подготовка полученных результатов проведена с использованием

современных программных средств.

Апробация работы. Основные результаты работы докладывались

на 8 конференциях. Также результаты были изложены на семинарах: в

Сколтехе, на мехмате МГУ, в ФИЦ ИУ РАН, ИППИ РАН и др.
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Связь с плановыми научными исследованиями. Работа вы­

полнена в рамках грантов Российского фонда фундаментальных иссле­

дований:

∙ № 16–51–53093 Разработка эффективных алгоритмов решения спе­

циальных задач оптимизации и приложений,

∙ № 12-01-91162-ГФЕН_а Изучение новых оптимизационных задач

большой размерности,

∙ № 15-01-07833 Сингулярные решения в моделях математической

физики,

∙ № 16-51-55019 Метод обобщенной разреженной оптимизации для

распознавания сложных ригидных объектов на изображениях и в

видеопотоке,

Материалы диссертации опубликованы автором достаточ­

но полно в 20 печатных изданиях, 8 из которых изданы в журналах,

рекомендованных ВАК РФ.

Личный вклад. Автор составил обзор по разреженным матрицам,

исследовал их особенности и сформулировал ряд теорем, устанавливаю­

щих связь между матрицей и соответствующей квазиблочной структу­

рой. Были исследованы алгоритм выделения квазиблочной структуры,

предложил и реализовал его модификации. Автор составил обзор по де­

композиционным методам, а также сформулировал ряд понятий и дока­

зал свойства графовых структур, соответствующих порядку элиминации

и протестировано его влияние на скорость локального элиминационного

алгоритма. Автором были разработаны модификации локального элими­

национного алгоритма, осуществлена параллельная модификация ЛЭА

была выполнена на GRID.

Структура и объем диссертации. Диссертация состоит из вве­

дения, трёх глав, заключения и одного приложения. Полный объем дис­
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сертации составляет 180 страниц с 33 рисунками и 6 таблицами. Список

литературы содержит 264 наименования.

Диссертация представляется по специальности 05.13.17 «Теоретиче­

ская информатика» и соответствует пункту 5.«Разработка и исследова­

ние моделей и алгоритмов анализа данных, обнаружения закономерно­

стей в данных и их извлечениях разработка и исследование методов и

алгоритмов анализа текста, устной речи и изображений.».
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ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во Введении обоснована актуальность диссертационной работы,

сформулирована цель и аргументирована научная новизна исследований,

показана практическая значимость полученных результатов, представле­

ны выносимые на защиту научные положения.

В первой главе рассматриваются разреженные матрицы, для ко­

торых выделяются квазиблочные структуры, а именно — блочно–дре­

вовидные и блочно–лестничные. Формулируется ряд теорем, в которых

устанавливается связь между компонентами квазиблочной структуры в

зависимости от размерности матрицы и числа ненулевых элементов в

ней. Приводятся алгоритмы для выделения квазиблочных структур.

Также проведён обзор литературы по теме "Разреженные матри­

цы на основе которого были сформулирован следующие выводы:

1. Для хранения матриц, как правило, используются координатный

формат, разреженные строчный и столбцовый форматы, симмет­

ричный формат.

2. Для базовых операций с разреженными матрицами, а именно —

умножение матрицы на вектор, транспонирование матрицы, умно­

жение матрицы на матрицу, — существуют специальные алгорит­

мы: модификации метода Гаусса (метод LU–разложения, метод Хо­

лецкого, алгоритм Томаса, алгоритм Кроута, алгоритм Дулитла,

QR–разложение и др.), итерационные методы (методы простой ите­

рации, Якоби, Гаусса–Зейделя, последовательной верхней релакса­

ции, симметричной последовательной верхней релаксации, методы

Крылова), численные алгоритмы для выделения треугольной фор­

мы (алгоритм поиска в глубину, алгоритм Тарьяна, алгоритм Сар­

джента–Уэстерберга).

3. Локальные стратегии обработки разреженных матриц используют­
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ся для упорядочивании разреженной матрицы (алгоритм упорядо­

чивания минимальной степени, алгоритм рекурсивного разбиения,

поиск по максимальной степени, эвристика минимального пополне­

ния, лексикографический поиск в ширину и др.).

4. В последнее время обработка разреженных матриц широко исполь­

зуется для решения задач
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Введём формальное определения для разреженной матрицы.

Определение 1. Матрица 𝐴 с 𝑚 строками, 𝑛 столбцами и числом

ненулевых элементов z, для которой выполняется соотношение 0.5𝑚𝑛 >

z, называется разреженной.

Выделим четыре класса разреженных матриц.

Вид матрицы Декларация

Очень широкая 𝑛 ≥ 2𝑚

Широкая 0.5(𝑛 + 1) < 𝑚 < 𝑛

Квадратная 𝑛 = 𝑚

Узкая 𝑛 < 𝑚

Для графового представления разреженной матрицы введём понятие

структурного графа.

Определение 2. Граф взаимосвязей — граф, вершины которого

соответствуют номерам всех столбцов матрицы; вершины смежны, если

ненулевые элементы столбцов находятся в одной строке.

Далее перейдём к понятию блочно–древовидной структуры (БД–струк­

туры) разреженной матрицы. Для этого сформулируем понятие окрест­

ности вершины структурного графа.

Определение 3. Окрестность вершины — множество смежных вер­

шин.

Представим матрицу Ω1 = (𝑆1, 𝑈1), Ω2 = (𝑆2, 𝑈2), . . . , Ω𝑘 = (𝑆𝑘, 𝑈𝑘)

𝑆𝑟 и 𝑈𝑟 — множества индексов столбцов и строк для 𝑟–й окрестности⋃︀𝑘
𝑟=1 𝑈𝑟 = 𝑀 = {1, . . . ,𝑚}; (1)⋃︀𝑘

𝑟=1 𝑆𝑟 = 𝑁 = {1, . . . , 𝑛}; (2)

𝑈𝑟1

⋂︀
𝑈𝑟2 = ∅, 𝑟1 ̸= 𝑟2; (3)

𝑆𝑟1

⋂︀
𝑆𝑟2

⋂︀
𝑆𝑟3 = ∅; (4)

Определение 4. Граф без циклов 𝐺Ω с вершинами 𝜈𝑟𝑖 , 𝜈𝑟1 и 𝜈𝑟2

смежны, если 𝑆𝑟1

⋂︀
𝑆𝑟2 ̸= ∅; для которого выполняются свойства (1-4),

называется блочно–древовидной структурой (БД структурой).
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Определение 5. Вершины 𝜈𝑟𝑖 , соответствующие каждой 𝑟–й окрест­

ности, будем называть блоками БД структуры, количество блоков обо­

значим k.

Определение 6. Степенью БД структуры будем называть 𝜌 =

max{𝜌1, . . . , 𝜌k}, где 𝜌1, . . . , 𝜌k — степени каждого блока в БД структу­

ре.

Перейдём к теоремам о взаимосвязи параметров квазиблочной струк­

туры. Олег Александрович Щербина сформулировал необходимое усло­

вие выделяемости БД–структуры:

Теорема 1. Если 𝐴 — матрица 𝑁 ×𝑀 с z0 нулевыми элементами,

то для того, чтобы она имела БД структуру степени 𝜌 с k блоками, необ­

ходимо, чтобы: 𝑛 ≥ 2k− 1, 𝑚 ≥ k ≥ 2,

z0 ≥ (k− 2)(2𝑚− 𝑛− 2k + 𝜌 + 2) −𝑚(𝜌− 2) − 3k + 2𝜌 + 4.

Данная теорема была изменена с помощью дополнительных условий

и приняла следующий вид:

Лемма 1. Область определения БД структуры для разреженной

матрицы задаётся следующими неравенствами:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜌 ≤ 𝜌*1,

2 ≤ 𝜌 ≤ 𝜌*2,

3 ≤ k < min(𝑚, 0.5(𝑛 + 1)),

где параметры подчиняются соотношениям 𝑛 + 𝑚 − 1 ≤ z < 0.5𝑚𝑛,

𝑚 > 3, 𝑛 > 3, а верхние границы определяются как 𝜌*1 = (−2k2 + (𝑛 +

2𝑚 + 3)k + z− 2𝑚− 2𝑛−𝑚𝑛)/(𝑚− k), а 𝜌*2 = k− 1.

Данная лемма сформулирована для четырёх видов разреженных

матриц. Для очень широкой матрицы она имеет вид:

Лемма 2. Область определения БД структуры задачи для очень
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широкой матрицы (𝑛 ≥ 2𝑚) задаётся следующими неравенствами:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜌 ≤ 𝜌*1,

2 ≤ 𝜌 ≤ 𝜌*2,

3 ≤ k < 𝑚,

где параметры подчиняются

соотношениям

𝑛 + 𝑚− 1 ≤ z < 0.5𝑚𝑛,

3 < 𝑚 < 0.5(𝑛 + 1),

Сформулирована лемма о числе блоков в БЛ–структуре.

Лемма 3.

1. Число блоков БЛ структуры для очень широкой матри­

цы:

∙ 3 ≤ k < 0.5(𝑛+ 1) при 𝑚 > 2, 𝑛 > 5, z ≥ 0.5(2𝑚𝑛− 6𝑚− 3𝑛+ 14)

∙ 0.25(𝑛 + 2𝑚 + 3 − 𝜉1) ≤ k < 0.5(𝑛 + 1) при 𝑚 > 2, 𝑛 ≥ 2𝑚 + 1,

0.125(12𝑛− 16 − (𝑛− 2𝑚 + 3)2) < z ≤ 0.5(2𝑚𝑛− 6𝑚− 3𝑛 + 14)

2. Число блоков БЛ структуры для остальных матриц:

∙ 3 ≤ k < 𝑚 при 𝑚 > 3, 𝑛 > 2𝑚− 1, z > 0.5(2𝑚𝑛− 6𝑚− 3𝑛 + 14)

∙ 0.25(𝑛+2𝑚+3−𝜉1) ≤ k < 𝑚 при 𝑚 > 3, 𝑛 > 2𝑚−1, 0.125(12𝑚+

6𝑛− 25 − (𝑛− 2𝑚)2) ≤ z ≤ 0.5(2𝑚𝑛− 6𝑚− 3𝑛 + 14)

∙ 0.25(𝑛 + 2𝑚 + 3 − 𝜉1) ≤ k < 𝑚 при 𝑚 > 3, 5 < 𝑛 ≤ 2𝑚 − 1,

0.5(4𝑚 + 𝑛− 6) < z ≤ 0.5(2𝑚𝑛− 6𝑚− 3𝑛 + 14).

При этом параметры матрицы соотносятся: 𝑛 + 𝑚− 1 ≤ z < 0.5𝑚𝑛,

𝑚 > 3, 𝑛 > 3.

Для очень широкой матрицы данная лемма имеет вид:

Лемма 5. Число блоков БЛ структуры для очень широкой матрицы

ограничивается 0.25(𝑛 + 2𝑚 + 3 − 𝜉1) ≤ k < 𝑚, где параметры матрицы

z соотносятся:

∙ 𝑚 ≥ 4, 𝑛 > 2𝑚 + 2, 0.5(3𝑛− 4) < z < 0.5𝑚𝑛

∙ 𝑚 ≥ 4, 2𝑚 ≤ 𝑛 ≤ 2𝑚 + 2, 𝑚 + 𝑛− 1 ≤ z < 0.5𝑚𝑛
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где 𝜉1 =
√︀

(𝑛− 2𝑚 + 3)2 + 8z− 12𝑛 + 16

Сформулированы леммы о степени БД–структуры.

Лемма 6. Степень БД структуры определяется следующим обра­

зом:

∙ 𝜌 ≤ 𝜌*2, если выполняется z ≥ k2 − (𝑛 + 𝑚 + 2)k + 𝑚 + 2𝑛 + 𝑚𝑛,

∙ 𝜌 ≤ 𝜌*1, если выполняется z < k2 − (𝑛 + 𝑚 + 2)k + 𝑚 + 2𝑛 + 𝑚𝑛,

Лемма 7. Число блоков БД структуры ограничивается сверху k <

min(𝑚, 0.5(𝑛 + 1)). Нижняя граница выводится из соотношений:

если 𝜌*1 = 𝜌*2, то

1) 3 ≤ 0.5(𝑛 + 𝑚 + 2 − 𝜉2) < min(𝑚, 0.5(𝑛 + 1));

2) 0.5(𝑛 + 𝑚 + 2 − 𝜉2) ≥ min(𝑚, 0.5(𝑛 + 1));

если 𝜌*1 = 2, то

1) 3 ≤ 0.25(𝑛 + 2𝑚 + 5 − 𝜉1);

2) 0.25(𝑛 + 2𝑚 + 5 − 𝜉1) < 3;

где 𝜉1 =
√︀

(𝑛− 2𝑚 + 3)2 + 8z− 12𝑛 + 16, а 𝜉2 =
√︀

(𝑛−𝑚)2 + 4z− 4𝑛 + 4).

Параметры матрицы подчиняются следующим соотношениям:

∙ 𝑚 ≥ 5, 𝑛 ≥ 4, 𝑛 + 𝑚− 1 ≤ z < 0.5𝑚𝑛;

∙ 𝑚 = 4, 𝑛 ≥ 4, 𝑛 + 3 ≤ z < 2𝑛.

где 𝜌*1 = (−2k2+(𝑛+2𝑚+3)k+z−2𝑚−2𝑛−𝑚𝑛)/(𝑚−k), а 𝜌*2 = k−1.

Рассмотрим лемму о нахождении БД структуры.

Лемма 8. Для того, чтобы в матрице общего вида можно было выде­

лить БД структуру, её параметры должны удовлетворять соотношениям

𝑚 ≥ 4, 𝑛 ≥ 4, 𝑛 + 𝑚− 1 ≤ z < 0.5𝑚𝑛. При этом имеет место:

∙ 3 ≤ 0.25(𝑛 + 2𝑚 + 5 − 𝜉1) ≤ 𝑚𝑖𝑛(𝑚, 0.5(𝑛 + 1))

∙ 0.25(𝑛 + 2𝑚 + 5 − 𝜉1) ≤ 3 ≤ 𝑚𝑖𝑛(𝑚, 0.5(𝑛 + 1))

Полученные результаты обобщаются в заключительной теореме о

связи параметров БД–структуры и соответствующей ей разреженной

матрицы.
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Теорема 2. Степень БД структуры подчиняется соотношению 2 ≤

𝜌 ≤ 𝜌*2 , если число блоков 0.5(𝑚 + 𝑛 + 2 − 𝜉2) ≤ k < min(𝑚, 0.5(𝑛 + 1));

степень БД структуры подчиняется соотношению 2 ≤ 𝜌 ≤ 𝜌*1, если

число блоков 0.25(𝑛 + 2𝑚 + 5 − 𝜉1) ≤ k < 0.5(𝑚 + 𝑛 + 2 − 𝜉2)), где 𝜉1 =√︀
(𝑛− 2𝑚 + 3)2 + 8z− 12𝑛 + 16, а 𝜉2 =

√︀
(𝑛−𝑚)2 + 4z− 4𝑛 + 4),

а верхние границы определяются как 𝜌*1 = (−2k2 + (𝑛 + 2𝑚 + 3)k +

z− 2𝑚− 2𝑛−𝑚𝑛)/(𝑚− k), а 𝜌*2 = k− 1.

Параметры 𝑛,𝑚, z:

1. Для очень широких матриц 𝑚 ≥ 4, 𝑛 ≥ 2𝑚, 2𝑛−𝑚+1 ≤ z < 0.5𝑚𝑛

2. Для широких матриц 𝑛 + 𝑚− 1 ≤ z < 0.5𝑚𝑛, где

∙ 4 ≤ 𝑚 ≤ 6, 𝑚 + 1 ≤ 𝑛 ≤ 7,

∙ 5 ≤ 𝑚 ≤ 7, 8 ≤ 𝑛 ≤ 2𝑚− 1,

∙ 𝑚 ≥ 8, 𝑚 + 1 ≤ 𝑛 ≤ 2𝑚− 1,

3. Для квадратных матриц 𝑚 = 𝑛, 𝑛 ≥ 4, 2𝑛− 1 ≤ z < 0.5𝑛2

4. Для узких матриц 𝑚 + 𝑛− 1 ≤ z < 0.5𝑚𝑛, где

∙ 6 ≤ 𝑚 ≤ 7, 5 ≤ 𝑛 ≤ 𝑚− 1

∙ 𝑚 ≥ 8, 5 ≤ 𝑛 ≤ 7,

∙ 𝑚 ≥ 9, 8 ≤ 𝑛 ≤ 𝑚− 1.

Юлий Юльевич Финкельштейн сформулироал алгоритм выделения

БЛ–структуры, основанный на перемешивании строк и столбцов. Дан­

ный алгоритм был модифицирован, сравнение алгоритмов выглядит сле­

дующим образом:
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Задача Основной Модифицированный

p 𝑠𝑚𝑎𝑥 p 𝑠𝑚𝑎𝑥

adder_15 31 4 16 4

adder_50 61 6 51 6

adder_99 121 6 101 6

dubois23 23 2 23 2

dubois30 30 2 30 2

dubois50 50 2 50 2

dubois100 98 6 2 4

pret60_25 8 10 7 10

pret60_60 8 10 7 10

pret150_25 15 12 11 10

pret150_75 15 12 11 10

grid2d_10 8 10 2 3

grid10 16 10 3 9

grid3d_4 5 12 2 6

bridge_15 21 10 4 10

bridge_50 56 10 5 8

bridge_75 78 9 4 9

Предложена модификация основного алгоритма для БД–структур, осно­

ванная на процедуре выделения подблоков.

Результаты первой главы опубликованы в работах [2, 7, 20].

Во второй главе устанавливаются элиминационные правила, а так­

же вводятся понятия и доказываются свойства графовых структур, со­

ответствующих порядку элиминации для локального элиминационного

алгоритма (ЛЭА). ЛЭА представляет из себя декомпозиционный итера­

ционный метод, где на каждом шаге фиксируется (исключается, элими­

нируется) переменная или группа переменных. Они принимают фикси­

рованные значения 0 или 1, если речь идёт о булевых постановках. При
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этом оказывается, что правила выбора элиминации влияет на скорость

работы алгоритма. Правила исключения формулируются в терминах по­

нятия теории графов. Результаты второй главы, в частности, позволя­

ют утверждать, что задача об оптимальном выборе порядка является

NP–полной.

Также проведён обзор литературы по теме "Декомпозиционные ме­

тоды основной вывод из которого заключается в том, что в последнее

время декомпозиционные методы широко используются для решения за­

дач анализа данных большой размерности, матрицы которых являются

разреженными, а также многие задачи являются оптимизационными.

Под задачей дискретной оптимизации (ДО) будем понимать задачу

следующего вида: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐1𝑥1 + 𝑐2𝑥2 + . . . + 𝑐𝑛𝑥𝑛 → min,

𝑎11𝑥1 + . . . + 𝑎1𝑛𝑥𝑛 ≥ 𝑏1,

. . .

𝑎𝑚1𝑥1 + . . . + 𝑎𝑚𝑛𝑥𝑛 ≥ 𝑏𝑚,

{𝑥1; . . . ;𝑥𝑛} ∈ 𝑍.

ЛЭА состоит из двух частей, основная идея которых заключается в

следующем:

∙ элиминация переменных, вычисление и запоминание информации

в виде локальных решений и получение в конце значения критерия;

∙ нахождение глобального решения всей задачи по найденным в пря­

мой части таблицам с локальными решениями, обеспечивающего

достижение критерия в прямой части.

Перейдём к теоремам о локальных алгоритмах, сформулированных

Юрием Ивановичем Журавлёвым.

Теорема 3. Результат вычисления основных предикатов локально­

го алгоритма с монотонными функциями не зависит от порядка рассмот­

рения элементов множества.
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Теорема 4. Для всякого класса локально равных алгоритмов с

одинаковой памятью существует наилучший локальный алгоритм.

Олег Александрович Щербина сформулировал критерий для опре­

деления оптимального порядка элиминации:

Теорема 5. Для графа взаимосвязей существует оптимальный по­

рядок элиминации тогда и только тогда, когда существует дерево деком­

позиции, каждая вершина которого является кликой (полным подгра­

фом) в этом графе.

Сформулируем основные определения. Введём понятие дерева де­

композиции.

Определение 7. Дерево декомпозиции (ДД) для заданного графа

𝐺(𝑋,𝐸) — ({Xi|𝑖 ∈ 𝐼}), 𝑇 = (𝐼, 𝐹 )), где {Xi|𝑖 ∈ 𝐼} — семейство подмно­

жеств 𝑣 ∈ 𝑋 и 𝑇 — дерево с множеством вершин 𝑖 и множеством ребер

𝐹 ⊆ 𝐼 × 𝐼 такими, что:

1)
⋃︀

𝑖∈𝐼 Xi = 𝑋;

2) для всех (𝑣, 𝑤) ∈ 𝐸 существует 𝑖 ∈ 𝐼 такое, что 𝑣 ∈ Xi, и 𝑤 ∈ Xi;

3) для всех 𝑖, 𝑗, 𝑘 ∈ 𝐼 таких, что 𝑗 лежит на пути 𝑇 из 𝑖 в 𝑘, справед­

ливо включение Xi ∩Xk ⊆ Xj.

Перейдём к понятиям, связанным с элиминацией. Введём определе­

ние элиминации вершины.

Определение 8. Элиминация вершины — удаление некоторой вер­

шины и всех ребер, исходящих из нее, а затем соединение ребрами всех

ранее не соседних вершин из её окрестности. Порядок элиминации 𝛼 —

последовательность всех элиминированных вершин. Обозначим процеду­

ру элиминации 𝐺′ = 𝑒𝑙𝑖𝑚{𝑥𝑖}.

Введём понятие процесса элиминационной игры.

Определение 9. Элиминационная игра — последовательная элими­

нация вершин 𝑥1, . . . , 𝑥𝑛 порождает последовательность графов.

Введём понятие пополненного графа.
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Определение 10. Пополненный граф 𝐺+
𝛼 — граф, который полу­

чается из графа ограничений в результате работы алгоритма элимина­

ционной игры.

Перейдём к определению монотонной окрестности.

Определение 11. Для порядка элиминации 𝛼 вершин 𝑥1, . . . , 𝑥𝑛 че­

рез 𝛼𝑖 обозначим множество вершин с индексами из 𝛼, большими 𝑖 − 1:

𝛼𝑖 = {𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛}. Тогда монотонной окрестностью вершины 𝑥𝑖 на­

зывается множество соседей 𝑥𝑖, с индексами, большими, чем 𝑖: 𝑁𝑏
𝛼
𝐺(𝑥𝑖) =

{𝑥𝑗 ∈ 𝑁𝑏𝐺(𝑥𝑖)|𝑗 > 𝑖} = 𝑁𝑏𝐺 ∩ 𝛼.

Сформулируем определения элиминационного и обобщённого эли­

минационного деревьев.

Определение 12. Элиминационным деревом (ЭД) графа 𝐺(𝑋,𝐸)

для упорядочения 𝛼 называется ориентированное дерево 𝑇𝛼, множество

вершин 𝑋 совпадает с вершинами граф 𝐺, а множество ребер опреде­

ляется с помощью отношения «предок — потомок»: предком вершины

𝑥 является первая (согласно упорядочению 𝛼) вершина из монотонной

окрестности 𝑁𝑏
𝛼

𝐺+
𝛼

(𝑥) вершины 𝑥 в пополненном графе 𝐺+
𝛼 . Обобщённое

дерево элиминаций (ОЭД — ЭД, каждой вершиной которого является

связный подграф исходного графа.

Сформулируем алгоритм выделения ОЭД:

УТВЕРЖДЕНИЕ 𝐺′(𝑋 ′, 𝐸′) := 𝐺(𝑋,𝐸), 𝐹 := ∅;

ПРОЦЕДУРА 𝐸(𝐺(𝑋,𝐸)):

Шаг 1. ЕСЛИ 𝐺′(𝑋 ′, 𝐸′) = ∅ ТО КОНЕЦ ПРОЦЕДУРЫ

Шаг 2. ЕСЛИ 𝑁𝑏(𝑥𝑖1)∩. . .∩𝑁𝑏(𝑥𝑖𝑘 ) = ∅ ТО 𝐺′(𝑋 ′, 𝐸′) = 𝑒𝑙𝑖𝑚({𝑥𝑖1 , . . . , 𝑥𝑖𝑘})

Шаг 3. ЕСЛИ 𝑥𝑖 ∈ 𝑁𝑏(𝑥𝑗) ТО 𝐹 = 𝐹 ∪ (𝑥𝑖, 𝑥𝑗), где 𝑥𝑗 — верши­

на, элиминированная на предыдущей итерации шаге, а 𝑥𝑖 — вершина,

элиминированная на текущей итерации.

Шаг 4. 𝐸𝐷(𝐺′(𝑋 ′, 𝐸′))

Перейдём к заключительной теореме взаимосвязи элиминационного
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дерева для ЛЭА и дерева декомпозиции задачи ДО.

Теорема 6. Пусть 𝐺 = (𝑋,𝐸) — заданный граф и 𝛼 — порядок

элиминации элементов графа 𝐺. Пусть 𝐺+
𝛼 — пополненный граф отно­

сительно 𝐺. Пусть 𝑋 = {𝑥1, . . . , 𝑥𝑛}, и для всех 𝑥𝑖 ∈ 𝑋 𝛼(𝑥𝑖) = 𝑖. Для

данных 𝐺 и порядка элиминации 𝛼 алгоритм выделения ОЭД строит

древовидную декомпозицию.

Результаты, представленные во второй главе опубликованы следую­

щих работах: [5, 16].

В третьей главе рассматриваются локальные элиминационные ал­

горитмы О.А. Щербины в применении к задачам с квазиблочной струк­

турой — локальные блочно–элиминационные алгоритмы (ЛБЭА). Рас­

сматриваются модификации ЛБЭА, которые позволяют существенно его

ускорить. Это эвристический алгоритм (ЭЛБЭА), а также ЛБЭА, ис­

пользующие предобработку, параметрическую оптимизацию и релакса­

ции. Также осуществляется распараллеливание задач с квазиблочной

структурой. Для этого используется независимое решение промежуточ­

ных блочных задач на отдельных процессорах.

Также проведён обзор литературы по теме "Распараллеливание за­

дач ЦЛП основной вывод из которого заключается в том, что в последнее

время методы распараллеливания широко используются для решения за­

дач ЦЛП большой размерности, матрицы которых являются разрежен­

ными.

Далее будем рассматривать частный случай ЛЭА — локальный блочно–эли­

минационный алгоритм (ЛБЭА), который формулируется следующим

образом:

Шаг 1. Положить 𝜈 = 𝐿, 𝐽𝑟 = ∅ для всех 𝑟 ∈ 𝑅𝐿.

Шаг 2. Для каждой вершины 𝑟 = 𝑟
(𝜈)
𝑙 , 𝑙 = 1, . . . , 𝑙𝜈 слоя 𝜈 дерева 𝐷 решить

задачу 𝑧𝐷𝑟 . Если эта задача не имеет решения ни для одной вер­

шины данного слоя — перейти к шагу 5, в противном случае — к
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шагу 3.

Шаг 3. Если 𝜈 ≥ 2, то перейти на слой выше, т.е. положить 𝜈 := 𝜈 − 1 и

перейти к шагу 2, иначе — к шагу 4.

Шаг 4. Конец вычислений. Решение задачи 𝑧𝐷𝑟 на уровне 𝜈 = 1 является

решением исходной задачи: 𝑧𝑚𝑎𝑥 = 𝑓𝐷1 .

Шаг 5. Конец вычислений. Задача не имеет допустимых решений.

Был проведён эксперимент, подтверждающий эффективность ЛБ­

ЭА для задач ЦЛП большой размерности. Тестовые задачи ЦЛП генери­

ровались исходя из заданного общего количества переменных, связываю­

щих переменных между блоками, а также числа ограничений. Размеры

и число блоков вычислялись согласно числу переменных и ограничений

исходной задачи. С помощью генератора случайных чисел задавались

остальные компоненты задачи: коэффициенты целевой функции, коэф­

фициенты матрицы ограничений и правых частей для каждого блока.

Каждая тестовая задача решалась с использованием следующих алгорит­

мов. Первый алгоритм — это базовый решатель SYMPHONY для задач

частично–целочисленного линейного программирования (ЧЦЛП). Вто­

рой алгоритм — ЛБЭА, который использовал с решатель SYMPHONY

для решения подзадач, соответствующих блокам. Третий алгоритм — ва­

риация второго алгоритма, где решатель SYMPHONY использовался с

поддержкой технологии тёплого старта (ТС).

m n k s Symph Symph+LEA Symph+LEA+PA

1 50 150 25 2 1,5722 0,0301 0,0316

2 100 300 50 4 3,3821 0,1588 0,1579

3 150 500 75 6 — 0,0765 0,0774

4 200 800 100 8 — 0,0367 0,0395

5 250 1000 125 10 — 0,5681 0,5772
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В таблице находятся результаты вышеописанного эксперимента. 𝑚 —

число ограничений, 𝑛 — число переменных задачи, 𝑘 — число блоков

соответствующей структуры, 𝑠 — максимальный сепаратор, Symphony

— время, за которое решается данная задача с помощью Symphony без

ЛБЭА, Symphony + LEA — время, за которое решается данная задача с

помощью Symphony и ЛБЭА, Symphony + LEA + PA — время, за которое

решается данная задача с помощью Symphony и ЛБЭА с использовани­

ем постоптимального анализа. Прочерк ставился, если время решения

задачи составляет более двух часов.

B результате было установлено явное преимущество второго и тре­

тьего алгоритмов над первым. В частности, эксперимент показал, что

второй алгоритм становился менее эффективным из–за увеличения объ­

ема перебора при решении подзадач в блоках, если увеличивать коли­

чество связывающих переменных в задачах с одинаковым числом пере­

менных и размером блоков. В этом случае разумно использовать третий

алгоритм, а именно ЛБЭА в сочетании с решателем SYMPHONY, ко­

гда используются принципы параметрической оптимизации (технологию

ТС). Дело в том, что соответствующие одному и тому же блоку задачи

ЦЛП отличаются одна от другой только правыми частями для разных

значений связывающих переменных. Алгоритм получает информацию о

решении и использует её для анализа последующих задач, что позволя­

ет решать каждую задачу не полностью, а частично при переборе зна­

чений связывающих переменных. Значит с помощью параметрического

программирования можно существенно увеличить производительность

ЛБЭА. Однако результат эксперимента оказался неоднозначным. Время

решения большинства задач с использованием второго и третьего ал­

горитмов практически сопоставимо. Для некоторых тестовых задач па­

раметрическое программирование оказалась неэффективным. Было за­

мечено также, что что при малых размерностях эффективность ЛБЭА
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отсутствует.

Локальный элиминационный алгоритм допускает понижение перебо­

ра с помощью организации приближенного решения. Мощное направле­

ние в развитии приближенных подходов естественным образом возникло

внутри точных методов (в основном методов ветвей и границ). При этом

неоднократно отмечалось, что для значительного большинства приклад­

ных задач совершенно достаточно вместо точного получить хорошее при­

ближенное решение. Принципиальные вычислительные трудности, воз­

никающие при применении точных методов, и в то же время достаточ­

ность хорошего приближенного решения для многих прикладных задач

— вот основные источники повышенного интереса к приближенным ме­

тодам.

Приближенные модификации ЛБЭА:

— ЛБЭА с релаксациями (построением оценочных задач)

1) линейная релаксация: условия 𝑥𝑗 = {0; 1} заменяются неравен­

ствами 0 ≤ 𝑥𝑗 ≤ 1;

2) ранцевая релаксация: условия 𝑍 = 𝑚𝑖𝑛{𝑐𝑥 : 𝐴𝑥 ≥ 𝑏, 𝑥 ∈ 𝒢 ⊂

𝑅𝑛, целое} заменяется неотрицательной линейной комбинацией исходных

ограничений

𝑍𝑅(𝑥, 𝑢) = 𝑚𝑖𝑛{𝑐𝑥 : 𝑢𝐴𝑥 ≥ 𝑢𝑏, 𝑥 ∈ 𝒢𝑅 ⊂ 𝑅𝑛, целое}, 𝑢 ≥ 0

— эвристический ЛБЭА (ЭЛБЭА) уменьшает число переборов за

счёт процедуры, позволяющей «предсказать» искомые оптимальные зна­

чения перемычек 𝑥*
𝑆𝑟𝑟′

; зная близкие к оптимальным значения перемы­

чек 𝑥𝑆𝑟𝑟′ , можно перебрать некоторую их окрестность

— ЛБЭА с препроцессингом (ЛБЭАпр) уменьшает размерность ис­

ходной задачи путем исключения переменных и ограничений

—ЛБЭА с жадными алгоритмами

В качестве примера приведём одну из типичных приближенных мо­

дификаций ЛБЭА. Применим к исходной задаче ранцевую релаксацию
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таким образом, что в каждой подзадаче одно ограничение — вектор,

каждый элемент которого — сумма элементов первоначальной матрицы

ограничений по строкам. Решим полученные релаксированные подзада­

чи, значения переменных, полученных после решения релаксированной

задачи, подставим в исходную задачу. Результаты вычислительного экс­

перимента представлены в таблице. Для проверки эффективности при­

ближенных алгоритмов в качестве тестовых задач были взяты пакеты

задач, задачи в которых отличаются только размерами сепараторов меж­

ду блоками. Это позволяет узнать, каким образом увеличение размера

сепараторов влияет на точность приближенных алгоритмов.

m n k s Точность Ускорение К–во ошибок

1 100 300 10 6 99,31 12,12 3

2 100 300 10 10 98,40 12,52 11

3 100 300 10 14 99,02 4,50 11

4 100 600 10 6 99,85 11,34 1

5 100 600 10 10 99,51 64,26 4

6 100 600 10 14 99,59 3,55 4

7 200 500 10 6 99,49 557,13 4

8 200 500 10 10 99,34 71,37 8

9 200 500 10 14 98,72 3,82 12

В данной таблице введены следующие обозначения: 𝑚 — число огра­

ничений, 𝑛 — число переменных задачи, 𝑘 — число блоков соответству­

ющей структуры, 𝑠 — максимальный сепаратор, точность — точность

приближенных алгоритмов относительно точного ЛБЭА, ускорение — во

сколько раз приближенный алгоритм работает быстрее, чем ЛБЭА, к–во

ошибок — сколько переменных из сепараторов было определено неверно.

Основным выводом из данной эксперимента является то, что время, за­

траченное на решение оценочных релаксированных задач, приводит к

увеличению общего времени счета даже в случае отсева с помощью ре­
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лаксации большого числа задач.

Перейдём к параллельным методам решения задач ЦЛП большой

размерности. Существуют две основные стратегии распараллеливания:

вершинные(ускоряют конкретную операцию на уровне вершины), древо­

видные (параллельное решение независимых вершин).

Для исследования ЛБЭА были сгенерированы разреженные задачи

ЦЛП, в которых можно выделить БД–структуру. Задачи с БД–структу­

рой содержали 50 000 переменных и 100 ограничений и решались в сред­

нем за 17 минут. Задачи разбивались на 15 подзадач с глубиной дерева —

5. При этом подзадачи могли содержать максимально 10 000 переменных

20 ограничений, размер сепаратора — 4, а число вершин потомков — 12.

Задачи с БЛ–структурой содержали 100 000 переменных и 100 огра­

ничений и решались в среднем за 6 часов. Задачи разбивались на 5 под­

задач с глубиной дерева — 5. При этом подзадачи могли содержать мак­

симально 20 000 переменных 20 ограничений, размер сепаратора и число

вершин потомков — 4.

Предложенные задачи с БД–структурой и БЛ–структурой не могут

быть решены точно только с помощью «решателя» SCIP без ЛБЭА.

Для задачи с БД–структурой получен хороший баланс подзадач, ре­

шение исходной задачи происходит за 17 минут. Для задачи с БЛ струк­

турой получен плохой баланс подзадач, решение исходной задачи про­

исходит за 335 минут. Здесь большое число подзадач обрабатывается

очень быстро. Причина в том, что большое число подзадач несовместны.

К сожалению, препроцессинг AMPLа не позволяет регулярным образом

«пропустить» заведомо несовместную подзадачу. Поэтому препроцессинг

приходится отключать и «поручать» проверку несовместности решате­

лям.

Основным результатом данного эксперимента является реализация

ЛБЭАП для решения задач ЦЛП со специальной структурой с помощью

23



GRID. В результате проведенного вычислительного эксперимента было

отмечено, что для задач с БД– и БЛ–структурой ЛБЭАП гораздо эф­

фективнее, чем решатель без ЛБЭАП.

Результаты третьей главы опубликованы в работах [1, 3, 4, 6, 8–15,

17–19].

В заключении сформулированные основные результаты, получен­

ные в ходе работы над диссертацией. азработана техника понижения раз­

мерности разреженных матриц и соответствующих задач ДО большой

размерности за счёт выделения квазиблочных структур и последующей

их обработки.

В данной работе удалось сформировать метод выделения квазиб­

лочных структур для разреженных матриц, разработать и реализовать

алгоритмы выделения таких структур и последующего решения соот­

ветствующих задач ДО. Осуществлено распараллеливание задач ДО на

GRID. Это позволило получить решение для задач, которые в силу раз­

мерности не могут быть решены с помощью обычных компьютеров.

Поставлен ряд новых задач в рассматриваемой области, в частности,

оценка количества вычислений при распараллеливании, выделение клас­

сов задач с полиномиальной сложностью при выборе порядка исключе­

ний в локальном алгоритме, применение теорем о составе квазиблочной

структуры для оптимального выбора количества процессоров при распа­

раллеливании, а также оценка количества вычислений для алгоритмов

выделения блочно–лестничной и блочно–древовидной структуры.
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