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Введение

Разреженные матрицы появляются при постановке задач из многих научных

и инженерных областей. Эффективные методы хранения и обработки таких

матриц в современных вычислительных системах вызывают интерес у широко-

го круга исследователей. Одним из актуальных приложений разреженных мат-

риц является решение соответствующих задач дискретной оптимизации (ДО).

ДО является эффективным инструментом для моделирования многих практи-

ческих задач. Это касается таких известных постановок: размещение объектов,

планирование ресурсов, покрытие поверхностей, сетевая оптимизация, маршру-

тизация, логистика, теория расписаний, искусственный интеллект, анализ дан-

ных, робототехника и т. п. Выделение специальных структур в разреженных

матрицах позволяют существенно сократить время решения.

Большинство интересных задач являются NPҫтрудными [1, 2]. Многие за-

дачи ДО, возникающие на практике, содержат огромное число неизвестных и

ограничений, поэтому они трудно решаемы.

С другой стороны модели ДО для больших практических задач часто пред-

ставляют собой системы, подсистемы которых слабо связанны между собой, и

таких подсистем достаточно много. Поэтому естественным подходом для реше-

ния таких задач представляется разбиение на подзадачи. В связи с этим особую

актуальность приобретают декомпозиционные подходы — способы разбиения

больших задач на подзадачи [3ҫ40].

Развитие информационных технологий [41, 42], появление многопроцессор-

ных комплексов, суперкомпьютеров создало условия для разработки алгорит-

мов ДО с распараллеливанием вычислений [43ҫ71]. Поэтому разработка в за-

дачах ДО декомпозиционных алгоритмов и исследование возможности их реа-

лизации чрезвычайно важно.

Эффективными алгоритмами для решения разреженных задач ДО явля-

ются локальные элиминационные алгоритмы (ЛЭА) [72]. ЛЭА объединяют

локальные алгоритмы декомпозиции [73], алгоритмы несериального динами-
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ческого программирования [74, 75], а также алгоритмы сегментной элимина-

ции [76]. Распараллеливание вычислительного процесса локального элиминаци-

онного алгоритма [77] может существенно ускорить решение задач ДО большой

размерности.

Базовыми в работе является квазиблочная структура разреженной матрицы

и её обработка. С развитием вычислительной техники более актуальным ста-

новится вопрос сокращения вычислений. Для решения разреженных задач ДО

естественным образом выбирается алгоритм, использующий локальные обла-

сти соответствующей матрицы. В [78] приводятся первые результаты вычисли-

тельного эксперимента, где с помощью ЛЭА решались различные задачи ДО.

В [79] содержатся результаты исследования эффективности локального алго-

ритма для решения особого класса задач ДО — квазиблочных задач. Также

в [79] продемонстрировано, что асимптотическая средняя оценка эффективно-

сти локального алгоритма слабо зависит от алгоритма ДО, решающего под-

задачи. Такая зависимость объясняется следующим образом: средняя оценка

эффективности была исследована на множестве всех квазиблочных структур,

но, как было замечено в [80], локальные алгоритмы являются эффективными

для задач с ограниченной связностью блоков [81]. Эффективность локального

алгоритма теоретически и экспериментально исследована недостаточно полно,

поэтому остаётся актуальным поиск удачных модификаций ЛЭА и его сочета-

ний с различными точными и приближенными решателями ДО [72].

Автор принимал участие в разработке локальноҫэлиминационного алгорит-

ма, который квалифицирован как новые и актуальные направления в информа-

тике. Основной целью данного исследования является повышение эффектив-

ности данного подхода, выделение класса задач, для которых применим метод,

его ускорение, возможности решения задач большой размерности путём распа-

раллеливания. Фактически речь идёт о выявлении закономерностей в больших

массивах данных, в качестве которых выступают разреженные матрицы. Ис-

следование их свойств и нахождение правил оперирования с такими матрицами

также является целью диссертации.

Основные положения, выносимые на защиту.

1. Получены системы неравенств для блочноҫлестничной и блочноҫ

древовидных структур в общем виде, а также относительно нескольких

классов разреженных матриц, которые устанавливают зависимость меж-
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ду степенью квазиблочной структуры и числа её блоков в зависимости от

размерности матрицы и числа ненулевых элементов в ней.

2. Разработаны алгоритмы выделения квазиблочной структуры для разре-

женных матриц.

3. В рамках теории локальных элиминационных алгоритмов введены новые

понятия, а также обоснована зависимость между графовыми структурами

в связи с проблемой оптимального порядка элиминации.

4. Разработаны модифицикации локального элиминационного алгоритма.

5. Осуществлено распараллеливание больших задач ДО с матрицей квазиб-

лочной структуры на системе GRID.

Научная новизна. В данной работе впервые сформулированы и доказа-

ны теоремы, устанавливающие связь между параметрами матрицы и соответ-

ствующей квазиблочной структуры. Также впервые исследованы и реализо-

ваны методы выделения квазиблочной структуры для разреженных матриц.

Они используют алгоритм [82] для поиска квазиблочных структур в разрежен-

ных матрицах, который практически не использовался и автору неизвестны

попытки его программной реализации. Введены понятия и доказаны свойства

графовых структур, соответствующих порядку элиминации. Соответствующие

теоремы дают основу доказательства важных свойств в проблеме нахождения

оптимального исключения переменных. Протестировано влияние порядка эли-

минации на скорость ЛЭА. Впервые предложен и реализован ряд модификаций

ЛЭА для разреженных задач ДО с квазиблочной структурой. Реализовано рас-

параллеливание задач с квазиблочной стрктурой на GRID.

Научная и практическая значимость. В данной работе разработана

техника понижения размерности больших разреженных матриц и соответству-

ющих задач ДО. Исследование окрестностей переменных, определение деком-

позиции задач с квазиблочной структурой, модификации локального элимина-

ционного алгоритма и его распараллеливание продолжают ряд исследований

Ю.И. Журавлёва, Ю.Ю. Финкельштейна, В.И. Цуркова, О.А. Щербины.

Разработанные методы позволяют получить решение задачи ДО большой

размерности при невозможности получить её решение за приемлемое время.



6

Теоретические результаты диссертационной работы вошли в состав курса

«Дискретная оптимизация», читаемого студентам 4ҫго курса на кафедре «Ин-

теллектуальные системы» ФУПМ МФТИ.

Связь с плановыми научными исследованиями. Работа выполнена

в рамках грантов Российского фонда фундаментальных исследований № 16ҫ

51ҫ53093 «Разработка эффективных алгоритмов решения специальных задач

оптимизации и приложений» и № 16ҫ51ҫ55019 «Метод обобщенной разреженной

оптимизации для распознавания сложных ригидных объектов на изображениях

и в видеопотоке».

Степень достоверности полученных результатов подтверждается прора-

боткой литературных источников по теме диссертации, реализованной поста-

новкой необходимого количества численных расчётов, а также современной ме-

тодикой исследования, которые соответствуют поставленным в работе целям

и задачам. Научные положения, выводы и рекомендации, сформулированные

в диссертации, подкреплены убедительными фактическими данными, наглядно

представленными в приведенных таблицах и рисунках. Подготовка полученных

результатов проведена с использованием современных программных средств.

Апробация работы. Основные результаты работы докладывались на кон-

ференциях:

∙ X Международная конференция "Интеллектуальные системы и компью-

терные науки"(Москва, 5ҫ10 декабря 2011 г.).

∙ V Международная конференция "Танаевские чтения"(Минск, 28ҫ29 мар-

та 2012 г.).

∙ XVIII Международная конференция "Ломоносов 2012"(Москва, 9ҫ13 ап-

реля 2012 г.).

∙ IV Международная конференция "Problems of Cybernetics and Informatics

(PCI)"(Баку, 12ҫ14 сентября 2012 г.)

∙ V Всероссийская конференция "Проблемы оптимизации и экономические

приложения"(Омск, 02ҫ06 июля 2012 г.).

∙ VI Международная конференция "Distributed Computing and Gridҫ

technologies in Science and Education"(Europe/Moscow, 30 июня ҫ 5 июля

2014);



7

∙ 17—ая Всероссийская конференция (Светлогорск, 19ҫ23 сентября, 2015)

∙ 18—ая Всероссийская конференция (Таганрог, 9ҫ13 октября, 2017)

Также результаты были изложены на семинарах: в Сколково, на мехмате МГУ,

в ФИЦ ИУ РАН, ИППИ РАН и др.

Личный вклад. Автор составил обзор по разреженным матрицам, иссле-

довал их особенности и сформулировал ряд теорем, устанавливающих связь

между матрицей и соответствующей квазиблочной структурой. Были исследо-

ваны алгоритм выделения квазиблочной структуры, предложил и реализовал

его модификации. Автор составил обзор по декомпозиционным методам, а так-

же сформулировал ряд понятий и доказал свойства графовых структур, соот-

ветствующих порядку элиминации и протестировано его влияние на скорость

локального элиминационного алгоритма. Автором были разработаны модифи-

кации локального элиминационного алгоритма, осуществлена параллельная мо-

дификация ЛЭА была выполнена на GRID.

Публикации. Основные результаты по теме диссертации изложены в 20

печатных изданиях [77, 83ҫ101], 9 из которых изданы в журналах, рекомендо-

ванных ВАК [77,90,93,95,97ҫ100], 11 — в тезисах докладов [83ҫ87,89,91,92,94,

96,101].

Объем и структура работы. Диссертация состоит из введения, трёх

глав, заключения и одного приложения. Полный объем диссертации состав-

ляет 180 страниц с 33 рисунками и 6 таблицами. Список литературы содержит

264 наименования.



Глава 1

Квазиблочная структура в разреженных матрицах и

связь её параметров

В данной главе рассматриваются разреженные матрицы, для которых вы-

деляются квазиблочные структуры, а именно — блочноҫдревовидные и блочноҫ

лестничные. Формулируется ряд теорем, в которых устанавливается связь меж-

ду компонентами квазиблочной структуры в зависимости от размерности мат-

рицы и числа ненулевых элементов в ней. Приводятся алгоритмы для выделе-

ния квазиблочных структур.

1.1 Разреженные матрицы большой размерности

Разреженные матрицы встречаются в таких областях, как математическое

моделирование, теория управления, структурный анализ и др. Матрица � явля-

ется разреженной, если содержит преимущественно нулевые элементы. Интерес

к разреженности заключается в экономии на вычислениях. Здесь естественным

образом возникает проблема хранения разреженных матриц. Для хранения ис-

пользуются разные, например, ленточные. Способы представления делятся сле-

дующим образом. Выделяют полные и неполные схемы в зависимости от того,

представлена вся матрица или только её часть. Также выделяют упорядоченные

и неупорядоченные схемы в зависимости от того, произволен порядок хранения

элементов или упорядочен. Далее рассмотрим наиболее распространенные спо-

собы представления разреженных матриц [102]. Достаточно известным являет-

ся координатный формат, в котором хранятся ненулевые элементы матрицы,

номера их строк и столбцов. Данный метод применим к произвольной матри-

це, которая хранится в массиве ненулевых элементов, массиве номеров строк

и массиве номеров столбцов матрицы. Такое представление является полным,

8



9

потому что представлена матрица целиком, и неупорядоченным, потому что

порядок хранения элементов произволен. Ещё один широко используемый ме-

тод хранения — разреженный строчный формат, состоящий из массива нену-

левых элементов, массива номеров столбцов и массива указателей позиций �:

с них начинается описание следующей строки. Массив ненулевых элементов

упорядочен: элементы перечислены по строкам, начиная с первой. В массивах

ненулевых элементов и номеров столбцов хранится описание kҫй строки в по-

зициях с �[�]ҫй по (�[� + 1]− 1)ҫю. Причём �ҫя строка пустая в случае, когда

�[�] = �[� + 1]. Для матрицы, состоящей из � строк, длина массива указателей

позиций — � + 1. Аналогичным способом строится разреженный столбцовый

формат относительно столбцов. Эти два формата удобны для реализации ос-

новных операций, таких как: перестановка строк и столбцов, сложение и умно-

жение матриц, нахождение обратной матрицы, транспонирование и т. п. Кроме

того, данные способы представления являются полными и упорядоченными, по-

скольку элементы каждой строки (столбца) хранятся в соответствии с возраста-

нием индексов столбцов (строк). Симметричную разреженную матрицу можно

хранить в качестве треугольной подматрицы. Если большая часть элементов,

располагающихся по диагонали — ненулевые, для их хранения достаточно от-

дельного массива.

Для базовых операций с разреженными матрицами, а именно — умноже-

ние матрицы на вектор, транспонирование матрицы, умножение матрицы на

матрицу, — существуют специальные алгоритмы. Также для многих алгорит-

мов необходимо определять матрицы перестановки. Ряд алгоритмов направлен

на упорядочивание элементов в разреженных матрицах. Локальные стратегии

обработки разреженных матриц (например, алгоритм минимальной степени)

заключаются в упорядочивании разреженной матрицы. Также используется

упорядочивание матриц для получения специальных форм (например, метод

рекурсивного разбиения).

Основой для всех алгоритмов, которые предназначены для решения систем

уравнений с квадратной матрицей, является метод последовательного исклю-

чения неизвестных (гауссово исключение, метод Гаусса). Рассмотрим основные

модификации метода Гаусса [102]. Метод LUҫразложения заключается в пред-

ставлении матрицы в виде произведения в виде двух матриц � и � , где �

— нижняя треугольная матрица, диагональные элементы которой равны еди-
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нице, а � — верхняя треугольная матрица, диагональные элементы которой

— нули. Метод Холецкого используется для решения систем уравнений, соот-

ветствующая матрица которых действительна, симметрична и положительно

определена. Он основан на представлении исходной матрицы в произведение �

и �T , где � — нижняя треугольная матрица, элементы на главной диагонали

которой положительны. Метод прогонки (алгоритм Томаса) предназначен для

ленточных матриц, то есть матриц, все ненулевые элементы которых находят-

ся вблизи главной диагонали. Рассмотрим подход на примере трёхдиагональ-

ной матрицы. Метод прогонки основывается на предположении, что искомые

неизвестные связаны рекуррентным соотношением: �i = �i+1�i+1 + �i+1, где

� = � − 1, � − 2, . . . , 1. С помощью этого соотношения можно выразить пере-

менные �i−1, �i и �i+1 и подставить в исходное уравнение �i�i−1+�i�i+�i�i+1.

Отсюда можно выразить прогоночные коэффициенты �i и �i и получить реше-

ние системы. Метод редукции применим для матриц размера, равного степе-

ни двойки. Его идея заключается в последовательном исключении из системы

�i�i−1+ �i�i+ �i�i+1 = �i, 1 ≤ � ≤ �− 1, где �0 = 0, �n = 0, неизвестных сначала

с нечетными номерами, затем с номерами, кратными 2 (но не кратными 4), и

т.д., и восстановлении значений нечетных переменных на основании известных

значений переменных с четными номерами.

Отметим также алгоритм Кроута, алгоритм Дулитла и QRҫразложение,

описанные в [103ҫ108]. Они связаны с различными прямыми методами реше-

ния алгебраических систем линейных уравнений, представленных разреженны-

ми матрицами. Все эти методы алгебраически эквивалентны с незначительным

различием в последовательности вычислений.

В случае больших разреженных систем линейных уравнений предпочтение

отдаётся итерационным методам, поскольку они не приводят к появлению на

итерациях новых ненулевых элементов и оказываются более эффективными по

затратам машинного времени [109, 110]. Наиболее известные из итерационных

методов — методы простой итерации, Якоби, ГауссаҫЗейделя, последователь-

ной верхней релаксации, симметричной последовательной верхней релаксации.

Например, метод Якоби эффективен для ленточных матриц. В случае пятидиа-

гональной матрицы матрица представляется в виде пяти векторов. Для вычис-

ления компоненты вектора решения необходимо выполнить четыре операции

умножения и сложения и одну операцию деления. Метод сопряженных гради-
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ентов применим для решения систем линейных уравнений, соответствующая

разреженная матрица которых симметрична и положительно определена. Дан-

ный подход является одним из методов Крылова [109], строящих ортогональ-

ный базис подпространства ����{�0, ��0, �
2�0, . . . , �

i�0} для некоторого стар-

тового вектора �0 . Решение исходной системы ищется на этом подпростран-

стве путем минимизации невязки. Эффективность итерационных методов для

решения систем линейных уравнений с разреженными матрицами показана в

работах [111,112].

Далее рассмотрим численные алгоритмы для выделения треугольной фор-

мы. Эта форма позволяет рассматривать набор линейных уравнений как после-

довательность подзадач. Здесь можно выделить два основных подхода: поиск

поперечных перестановок, заключающийся в перестановках элементов на диа-

гонали (например, алгоритм поиска в глубину [109]), использование симметрич-

ных перестановок (например, алгоритм Тарьяна [113] и алгоритм Сарджентаҫ

Уэстерберга [114]).

С. Писсанецки [115] рассматривает технику применения разреженных мат-

риц для различных алгебраических задач. В [116] изучается задача управления

линейной динамической системой, в которой связи между подсистемами явля-

ются слабыми. Это характеризуется разреженными матрицами перекрестных

взаимодействий. В указанных матрицах лишь незначительное число коэффи-

циентов отличны от нуля. Предлагаемый метод сначала приводит задачу к ка-

ноническому виду, затем идентифицирует переменные в подсистемах, которые

сильно взаимодействуют друг с другом. Это осуществляется с помощью вве-

дения так называемой матрицы порогового уровня. Ее коэффициенты форми-

руются из собственных значений матриц подсистем и из матриц, входящих в

функционал исходной задачи. Строится субоптимальное управление, которое

учитывает сильные и игнорирует слабые связи между подсистемами.

В книге А. Джорджа и Дж. Лю [110] описаны основные методы решения раз-

реженных положительно определенных линейных систем, а также излагаются

алгоритмы параллельных и вложенных сечений, предназначенные для систем

метода конечных элементов. Вычисления с разреженными матрицами стали ос-

новой построения и исследования хордальных графов [117ҫ119]. В [120] рассмат-

ривается уровень дробления разреженных задач для их эффективного решения

с помощью параллельных схем. Для работы с разреженными матрицами необ-
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ходимо использовать специальные алгоритмы и структуры данных, которые

учитывают структуру матрицы. Основные программные библиотеки, создан-

ные для работы с разреженными матрицами, это SparseLib++ 1 и uBLAS 2 для

C++, SPARSPAK 3 для Фортрана, CSparse 4 для Cи, а также Модуль Sparse

из библиотеки SciPy (Python)5. Среди новейших исследований относительно

разреженных матриц представляются интересными следующие работы.

Во многих задачах обработки изображения и компьютерного зрения дан-

ные имеют форму матриц. Традиционные методы часто вытягивают матрицу в

вектор (столбец) и используют подходы для векторов. Эти методы игнорируют

положение элементов матрицы, а преобразованный вектор часто имеет очень

большую размерность. Вопрос о том, как напрямую выбирать признаки для

двумерной матрицы непосредственно, до сих пор является важной открытой

задачей. В статье [121] предлагается алгоритм регрессии разреженных матриц

(sparse matrix regression, SMR) для прямого выбора признаков в матричных

данных. В этом алгоритме используется модель регрессии матриц, которая при-

нимает на вход матрицу и отображает каждую матрицу на её метку. Используя

внутренние свойств коэффициентов регрессии, авторы разделяют разреженные

ограничения на коэффициенты, чтобы сформировать вектор признаков. Пред-

ложен эффективный метод оптимизации с доказанным свойством сходимости.

Показано, что число векторов регрессии можно рассматривать в качестве па-

раметра баланса между способностью к обучению и обобщающей способно-

стью. Чтобы показать эффективность алгоритма SMR, авторы сравнили его

с несколькими алгоритмами на основе вытягивания в столбец на нескольких

наборах тестовых данных. Кроме того, авторы оценили качество работы SMR

в задаче классификации сцен.

Умножение разреженных матриц обычно производится в оперативной памя-

ти, а масштабирование на случаи больших размерностей осуществляется при

помощи использования распределенной памяти на множестве узлов. В отли-

чие от традиционного подхода в статье [122] умножение разреженных матриц

масштабируется за пределы емкости памяти в случае умножения разреженной

матрицы на плотную (sparse matrix dense matrix multiplication, SpMM) при по-

1http://faculty.cse.tamu.edu/davis/welcome.html
2http://www.boost.org/doc/libs/1_50_0/libs/numeric/ublas/doc/index.htm
3http://www.netlib.org/sparspak/
4https://github.com/wo80/CSparse.NET
5https://sourceforge.net/projects/scipy/ҥles/scipy/
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мощи подхода с частично внешней памятью (semi-external memory, SEM), т.е.

когда разреженная матрица помещается на типовые твердотельные накопители

(SSD), а плотная матрица — в оперативной памяти. Данный подход умножения

SEM-SpMM включает оптимизации в работе с памятью для больших графов

со степенным распределением степеней вершин. Он превосходит такие подходы

с использованием оперативной памяти, как Trilinos или Intel MKL, и хорошо

распространяется на графы с миллиардами узлов, что намного больше разме-

ров оперативной памяти. Более того, на одиночной машине с параллельными

вычислениями, этот метод работает настолько же быстро как распределенные

вычисления при помощи Trilinos, использовавшие в пять раз больше вычисли-

тельной мощности. Также авторами исследована реализация метода для случая

оперативной памяти (IM-SpMM) для того, чтобы оценить издержки в случае

хранения данных на твердотельных накопителях. Метод SEM-SpMM дости-

гает почти 100% производительности метода только с оперативной памятью

IM-SpMM для графов, когда в разреженной матрице более четырех столбцов.

В общем случае метод с частично внешней памятью, SEM-SpMM, достигает

65% производительности IM-SpMM, для матриц общего вида. Авторы приме-

нили подход SpMM к трем важнейшим задачам анализа данных — PageRank,

собственным разложениям и неотрицательным матричным разложениям, и по-

казали, что подход с частично внешней памятью SEM существенно повысил

достижимую производительность в решении данного класса задач.

Системы автоматической рекомендации представляют собой подкласс си-

стем фильтрации информации, которые предсказывают различные предпочте-

ния пользователя или предпочтение, которое пользователи отдают некоторому

товару. Одна из наиболее частых проблем в таких системах — это отсутствие

данных. Такая ситуация порождает сильно разреженную матрицу, что снижает

точность предсказания. Особенно это критично в случае холодного старта, ко-

гда в системе появляется новый пользователь или новый товар. В [123] сделана

попытка ослабить проблемы «холодного пользователя» или «холодного товара»

уменьшая степень разреженности матрицы при помощи локального итератив-

ного метода наименьших квадратов и комбинации алгоритма распределения

тепла с алгоритмом распределения вероятности.

Перекрестные данные собираются из нескольких источников или образуют-

ся изҫза возникновения нескольких точек зрения на одни и те же предметы.
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Поскольку такая информация часто взаимодополняется или консолидируется,

перекрестный анализ может дать существенное улучшение для процесса приня-

тия решений. Особенной трудностью перекрестного анализа является вопрос о

том, как эффективно исследовать сильно коррелированные многомерные дан-

ные. Методы понижения размерности предлагают эффективное решение дан-

ной задачи, однако, вопросы выбора правильной модели и параметров для по-

нижения размерности остаются открытыми. В работе [124] предлагается эф-

фективный алгоритм обучения на разреженных данных для понижения раз-

мерности в случае перекрестных данных. Отличительным свойством данного

алгоритма является то, что он непараметрический и автоматический. В част-

ности, авторы представляют корреляцию перекрестных данных при помощи

матрицы ковариации. Затем они раскладывают эту матрицу в виде последо-

вательности матриц меньшего ранга при помощи решения оптимизационной

задачи по аналогии с методом чередующихся наименьших квадратов. Наиболее

важным элементом подхода является разработанная новая непараметрическая

функция, поощряющая повышение разреженности, которая позволила постро-

ить экономную модель расчетов. Проведены обширные вычислительные экспе-

рименты на реальных данных, показывающие эффективность предложенного

алгоритма. Результаты экспериментов показывают, что предложенный метод

успешно конкурирует с современными алгоритмами обучения для разрежен-

ных данных.

Неотрицательные матричные разложения (NMF, НМР) являются классиче-

скими методами понижения размерности. В последнее время возник интерес к

НМР в следствие обнаруженной способности решать сложные задачи извлече-

ния данных и машинного обучения, особенно в приложении к задаче генети-

ческого анализа. Обзорная статья [125] нацелена на исследование приложений

НМР в поиске дифференциально выраженных генов и кластеризации образ-

цов. Рассматриваются основные НМР модели, их свойства, принципы и алго-

ритмы и их различные обобщения, расширения и модификации. Эксперимен-

тальные результаты показывают уровень производительности различных алго-

ритмов НМР в задачах идентификации дифференциально выраженных генов

и кластеризации образцов.

Задача разбиения сетки в параллельном методе конечных элементов яв-

ляется NP-трудной. За несколько последних десятилетий были предложены
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несколько эвристических подходов для решения этой задачи. Разработан ряд

эффективных методов решения уравнений, которые используют специфические

свойства больших матриц (например, симметричность и положительную опре-

деленность). В [126] обсуждается производительность распределенных методов

конечных элементов, использующих различные методы определения структуры

сетки (выбор разбиения) и решатели уравнений. В данной работе классифици-

руются методы определения разбиения сетки, исследуются различные вариа-

ции методов решения линейных и нелинейных уравнений, а также изучается

влияние разбиения сетки и решателя уравнений на производительность рас-

пределенных методов конечных элементов.

В следствие высокой вычислительной сложности матричных вычислений

важным становится эффективное выполнение в распределенной среде. В рабо-

те [127] предлагается подход для распределения матричных арифметических

операций с разреженными матрицами по вычислительным кластерам с целью

ускорения обработки матриц большой размерности. Данный подход направлен

на разбиение матричных операций на независимые подзадачи с использованием

существенных характеристик каждого типа арифметических операций, а также

конкретных видов матриц. Подход применялся к наиболее часто используемым

матричным операциям. Производительность предложенного подхода оценива-

лась для задачи выбора признаков большой размерности из текста, и двух на-

боров данных из практических задач. Экспериментальные сравнения показыва-

ют, что предложенный подход позволяет существенно уменьшить время опера-

ций над матрицами большой размерности по сравнению с последовательными

и многопоточными реализациями, а также алгоритмами из рассматриваемых

библиотек линейной алгебры.

В работе [128] предлагается оптимизация вычислений для широко известно-

го алгоритма умножения разреженных матриц и векторов SpMV для процессо-

ров Intel Xeon Phi. Архитектурные отличия этих процессоров от традиционных

многоядерных процессоров обнажают существенные неотъемлемые структур-

ные слабости операций с разреженными матрицами, увеличивая критическое

влияние на производительность других факторов помимо традиционно извест-

ного ограничения по полосе пропускания памяти. В статье показано, что для

таких процессоров существенно важной является адаптивность матриц. Для

этого предлагается подход, который сначала определяет узкие места в мат-
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ричных алгоритмах, используя или профилирование расчетов или структуру

матриц, а затем выбирается конкретная оптимизация, позволяющая использо-

вать их и преодолеть неэффективность. Набор оптимизационных алгоритмов

использует широко применяемый формат хранения матриц при помощи сжатых

разреженных строк (Compressed Sparse Row, CSR) и имеет низкие накладные

расходы для вычислений, что делает данный подход практически применимым

даже для итеративных решателей, которые сходятся за небольшое число итера-

ций. Данный алгоритм оценен на сопроцессоре Intel Knights Corner и показано,

что возможно обнаружить и соответствующим образом оптимизировать SpMV

для большинства матриц на различных типах тестов, что дает существенный

выигрыш производительности по сравнению с соответствующими реализация-

ми CSR в свежих версиях библиотеки Intel MKL.

Численное моделирование физических явлений для городов является зада-

чей высокой вычислительной сложности. В [129] рассматривается задача симу-

лирования обмена излучением в масштабе города для разных типов городов. На

основе того, что матричное представление видимости между зданиями являет-

ся сильно разреженным, предлагается новая вычислительная модель расчета

излучения. Матрица плотности потока излучаемой энергии, характеризующая

модели размерностью до 140 тыс. поверхностей, может храниться в оператив-

ной памяти. Предлагаемый метод оценки обратной матрицы потока излучения

ускоряет расчет обмена излучением. За счёт этого учитываются характеристи-

ки окружения при проектировании зданий в оценке нормативов строительства

в городских условиях.

В [130] представлена система Sympiler, которая представляет собой

предметноҫориентированный генератор кода, оптимизирующий вычисления с

разреженными матрицами за счет разделения фазы символьного анализа и фа-

зы численных операций с разреженными данными. Характерные схемы в вы-

числительных алгоритмах для разреженных матриц определяются структурой

разреженных входов и самим алгоритмом обработки разреженных данных. Во

многих реальных симуляциях структура разреженных входных данных меняет-

ся незначительно или не меняется вовсе. Sympiler использует это свойство чтобы

аналитически проанализировать разреженные алгоритмы на этапе компиляции

и применить полученные на этапе анализа преобразования, что позволит приме-

нить низкоуровневые преобразования к алгоритмам с разреженными данными.
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В результате код, генерируемый системой Sympiler, превосходит глубоко опти-

мизированные алгоритмы матричного разложения из известных специальных

библиотек, что дает выигрыш по сравнению с Eigen и CHOLMOD в 3.8 и 1.5

раза соответственно.

Операция умножения разреженной матрицы на плотный вектор (matrix by a

dense vector, SpMV) является центральным элементом многих научных вычис-

лений: она используется в итеративных методах решения линейных систем и

задачах на собственные значения для разреженных матриц. Появление графи-

ческих процессоров с вычислениями общего назначения (General Purpose GPU)

придало новый импульс этому направлению и появилось много новых статей

посвященной данной задаче. Например, в [131] приводится обзор возможных

методов реализации библиотеки операций SpMV на GPGPU, которые появи-

лись за последние несколько лет. Обсуждаются проблемы и компромиссы, с

которыми столкнулись многие исследователи, и приводится список возможных

решений, собранный по категориям на основе общих признаков. Также при-

водится сравнение производительности при использовании различных моделей

GPGPU для ряда тестовых матриц из различных предметных областей.

Исследования в области человекоҫмашинного взаимодействия связаны с за-

дачами сегментации, выделения целевого объекта и отслеживания. Значитель-

ный уровень интереса к данной области связан с пониманием, что многие при-

ложения, такие как наблюдение, человеко-машинное взаимодействие, получат

большой импульс развития при наличии мощных и эффективных результатов.

В [132] предлагается архитектура для задачи отслеживания объекта с использо-

ванием разреженным матриц и классификатора Adaboost. Этот подход состоит

из трех шагов: сначала извлекаются признаки из изображения, затем признаки

представляются как разреженная матрица, а после этого используется класси-

фикатор Adaboost для корректной классификации значений из разреженной

матрицы, что позволяет получить решение задачи отслеживания. Приводятся

результаты экспериментов, которые показывают, что данная архитектура дает

улучшение производительности по сравнению с другими подходами к задаче

отслеживания объектов.

Модели на основе выделения представлений малого ранга имеют большой

потенциал для задачи определения выделяющихся, броских объектов, в кото-

рых матрица разлагается в матрицу малого ранга, представляющую фон и раз-
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реженную матрицу, представляющую броские, заметные объекты. Тем не ме-

нее, существуют два недостатка такого подхода. Первый заключается в том,

что обычно предполагается, что элементы в разреженной матрице являются

взаимно независимыми, игнорируются пространственные отношения между об-

ластями изображения или наличие устойчивых шаблонов. Второй недостаток

заключается в том, что когда матрица малого ранга и разреженная матрица

относительно когерентны, т.е. когда имеется сходство между заметными объ-

ектами и фоном, или когда фон имеет сложную структуру, то для известных

моделей сложно их разделить. В [133] предлагается модель структурной деком-

позиции матриц с двумя регуляризациями структуры:

1. Регуляризация на основе древовидных моделей, повышающая разрежен-

ность, что позволяет зафиксировать структуру изображения и усиливает

степень сходства фрагментов одного и того же объекта, придавая им оди-

наковые значения заметности.

2. Регуляризация Лапласа, которая увеличивает зазор между броскими объ-

ектами и фоном в пространстве признаков.

Затем добавляются априорные значения высокого уровня, чтобы направлять

декомпозицию матриц и ещё больше усилить выделение объектов. Модель для

выделения заметных объектов оценивается на пяти сложных наборах данных,

включающих изображения с одним объектом, несколькими объектами и слож-

ные сцены. Представлены результаты в сравнении с 24 современными методами

по семи различным метрикам.

Умножение матрицы на матрицу является базовой операцией линейной ал-

гебры и существенным элементом большого количества алгоритмов в различ-

ных областях науки. Теория и реализации хорошо известны для случая плот-

ных, квадратных матриц. Если же матрицы разреженные, с характерными для

своих приложений шаблонами разреженности, то оптимальная реализация опе-

рации умножения остается открытым вопросом. В [134] исследуется влияние

коммуникации (обмен информацией между агентами) на производительность

2.5D алгоритмов и влияние односторонней MPI коммуникации в контексте тео-

рии линейных масштабируемых структур электронов. В частности, авторы рас-

ширили библиотеку работы с разреженными матрицами DBSCR, которая яв-

ляется основным элементом для теории линейных масштабируемых структур
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электронов, и слабо масштабируемых коррелированных методов. Эта библио-

тека специально создана для эффективного выполнения умножений матрицы

на матрицу, для блочноҫразреженных матриц, имеющих достаточно большое

наполнение. Также сравнивается производительность исходной версии на ал-

горитме Кэннона при коммуникации через MPI в топологии точкаҫточка и

алгоритма с односторонними MPI коммуникациями с удаленным доступом к

памяти (RMA), как в случае 2D подхода, так и в случае 2.5D. Подход 2.5D

увеличивает потребление памяти и объем дополнительных вычислений, но сни-

жает объемы коммуникации, что может привести к повышению производитель-

ности, если коммуникации являются узким местом. Кроме того, алгоритм 2.5D

легче реализовать в случае односторонних коммуникаций. Приведено подроб-

ное описание реализации алгоритмов, а также описание случая неидеальных

топологий процессоров, поскольку это может быть важно для практических

приложений. Вследствие важности знания точной структуры разреженности,

и даже для фактических матричных данных, когда эффективное заполнение

решается при умножении, все тесты проводятся в пакете CP2K с тестами типов

приложений. Результаты показывают существенное увеличение производитель-

ности 2.5D алгоритма с удаленным доступом к памяти, до 1.8 раза, и обнару-

жено, что преимущество увеличивается с ростом числа процессов, занятых в

распараллеливании.

В [135] рассматривается задача декомпозиции матрицы на матрицу мало-

го ранга и плотную матрицу в области больших данных. Обычные алгоритмы

для разложении матриц используют все данные из матрицы, чтобы получить

матрицу малого ранга и плотную матрицу, и основаны на оптимизационных за-

дачах, сложность которых возрастает с повышением размерности данных, что

ограничивает их масштабируемость. Более того, известные рандомизированные

подходы основываются на использовании равномерного распределения, что ока-

зывается крайне неэффективным для многих матриц из практических задач, в

которых есть дополнительная структура (например, кластеры). В данной рабо-

те рассматривается масштабируемый подход поиска подпространств (subspaceҫ

pursuit), который преобразует задачу разложения в задачу обучаемого поиска

подпространств. Декомпозиция проводится с использованием небольшого фраг-

мента данных, образованного из выбранных столбцов и/или строк матрицы.

Показано, что даже если фрагмент выбирать случайно равномерным образом,
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достаточное число столбцов/строк приблизительно O(r�), где � является па-

раметром когерентности, а r — ранг малоразмерной компоненты. Кроме того,

для решения проблемы выбора столбцов/строк из структурированных данных,

предложены адаптивные алгоритмы выбора. Приводится анализ предложенно-

го метода, где показано, что он делает число выбираемых столбцов/строк ин-

вариантным по отношению к распределению входных данных. Предложенный

алгоритм может быть модифицирован для итеративной реализации, предложе-

на онлайн-схема.

Ручная сегментация повреждений от ишемического инсульта в МРТ изоб-

ражениях отнимает много времени и подвержена вариациям в зависимости от

оценивающего. Имеется высокий интерес к надежной автоматической сегмен-

тации при клинических испытаниях и исследованиях. Однако, актуальные про-

блемы сегментации показывают, что даже самые современные подходы имеют

недостаточную точность, и проблема сегментации повреждений является очень

сложной. Использование матричной декомпозиции на матрицу малого ранга и

плотную матрицу даёт ценную априорную информацию для сегментации в этой

области. В статье [136] изучается применимость RPCA или подходов выделе-

ния на основе RPCA для сегментации ишемических инсультов в наборах данных

МРТ изображений FLAIR. На основе наиболее перспективного метода сегмен-

тации оценивается производительность метода, использующего информацию из

разреженной компоненты RPCA изображения как признак для алгоритма «слу-

чайный лес» (random forest), известного в области машинного обучения. Исчер-

пывающее сравнение по каждому из признаков для производительности сегмен-

тации показывают потенциальный выигрыш от использования разложения на

матрицы малого ранга и разреженную матрицу в задачах выделения признаков

ишемического инсульта.

При решении линейных систем при помощи итеративных методов возника-

ет дилемма между выбором простых, но малоэффективных итераций по раз-

реженным направлениям поиска (такими, как координатный спуск) или за-

тратными итерациями в правильно выбранном направлении (такими, как ме-

тод сопряженных градиентов). В [137] предлагается среднее решение, а также

показывается, что можно выполнять простые итерации по плотным направ-

лениям поиска, при условии, что эти направления можно выделить на основе

нового вида разреженного разложения. Например, если направление поиска —
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это столбцы иерархической матрицы, тогда стоимость каждой операции име-

ет логарифмическую зависимость от числа переменных. Используя некоторые

результаты теории графов по остовным деревьям (low-stretch spanning tree),

авторы получают в частном случае имеющий почти линейную сложность по

времени приближенный алгоритм нахождения решения с минимальной нормой

для линейной системы �� = �, где � это матрица инцидентности графа.

Разделение фона и переднего плана является начальным шагом при опре-

делении движения объектов в системах видеонаблюдения. Недавние исследо-

вания показывают, что удобной архитектурой для решения задачи отделе-

ния фона и движущихся объектов являются подходы на основе декомпози-

ции на матрицу меньшего ранга и разреженную матрицу. Наиболее характер-

ным примером таких задач является устойчивый метод главных компонент

(Robust Principal Component Analysis, RPCA) решаемый при помощи Principal

Component Pursuit (PCP). Однако, аналогичные устойчивые явные или неяв-

ные разложения встречаются в следующих постановках задач: Robust Non-

negative Matrix Factorization (RNMF), Robust Matrix Completion (RMC), Robust

Subspace Recovery (RSR), Robust Subspace Tracking (RST) и Robust Low-Rank

Minimization (RLRM). Основная цель этих схожих задач заключается в полу-

чении явного или неявного разложения на матрицу малого ранга и аддитивные

матрицы. Эти формулировки отличаются явной или неявной декомпозицией,

функцией штрафа, оптимизационной задачей и алгоритмами её решения. За-

дача в исходном виде может оказаться NPҫтрудной, при этом она может быть

выпуклой или невыпуклой в зависимости от ограничений или функции потерь.

В задаче выделения переднего плана от фона при формализации задачи следует

принимать во внимание ограничения, характерные для фона и переднего пла-

на, а также пространственные и временные особенности. На практике последо-

вательность изображений фона моделируется как подпространство небольшой

размерности, которое может постепенно изменяться во времени, а движущиеся

объекты на переднем плане представляют собой коррелированные разреженные

отклонения. На сегодняшний день не найдены такие методы, которые бы одно-

временно решали все проблемы, сопровождающие реальные видеопотоки, так

как отсутствует четкая количественная процедура оценки на синтетических и

реальных наборах данных, где имелась бы точная проверочная информация и

при этом воспроизводился бы весь диапазон основных трудностей, присутству-
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ющих в реальности. В статье [138] приводится обзор для аналогичной пробле-

мы в постановках устойчивого обучения, которые основаны на декомпозиции

на матрицу малого ранга и аддитивную матрицу, для сравнения существую-

щих алгоритмов разделения переднего плана и фона. Также приводится обзор

новых достижений в различных постановках задач, приведенных выше, кото-

рый позволяет сформировать универсальный подход, названный разложени-

ем на матрицы малого ранга и аддитивные (Decomposition into Low-rank plus

Additive Matrices, DLAM). После этого авторы анализируют каждый метод в

каждой постановке устойчивого обучения, а также декомпозицию, функцию

потерь, оптимизационную задачу и методы решения, которые применяются в

этой постановке. Затем изучается возможность получения итеративного вари-

анта алгоритма или варианта для работы в режиме реального времени для

задачи разделения переднего плана и фона. В конце статьи приводятся резуль-

таты сравнения 32 устойчивых алгоритмов обучения на тестовом наборе данных

большой размерности.

В ближайшем будущем ожидается, что распространение технологий высо-

коскростной оптической широкоугольной записи приведет к появлению ново-

го направления в астрономии — киноҫастрономии (movie astronomy). Объемы

данных от подобных наблюдений будут колоссальными, поэтому незаменимыми

станут методы эффективного сжатия данных. В [139] предлагается решение на

основе аппроксимации матрицами малого ранга, в которой используется разло-

жение разреженных матриц, которое позволяет эффективно понизить размер

данных при сохранении информации достаточного качества. Авторы примени-

ли один из подобных методов к видео данным полученным с прототипа Tomoe

Gozen, установленного на телескопе схемы Шмидта размером 1 м в обсервато-

рии Кисо (Япония). Полноценная сессия наблюдения с использованием Tomoe

Gozen за одну ночь даёт около 30 терабайт данных. В статье показано, что

данные можно сжать примерно в 10 раз без потери быстрых событий, таких

как точечные вспышки и метеоры. Интенсивность точечных источников может

быть восстановлена из сжатых данных. Обработка имеет достаточно высокую

скорость по сравнению с ожидаемой скоростью записи в реальных сессиях за-

писи.

Перейдём к определению разреженности. Пусть матрица �N×M = {�ij} —

данная матрица, � — число столбцов, � — число строк, z — число значащих
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элементов в матрице, то есть элементов, которые не являются нулями. Форма-

лизуем определение разреженности в общем смысле.

Определение 1.1. Матрица �, множество индексов которой Ψ = � × � ,

а подмножество индексов нулевых элементов — Ψ0 ⊂ Ψ: |Ψ ∖ Ψ0| << Ψ0,

называется разреженной.

Замечание. Данное определение носит условный характер и не используется.

Далее приведём альтернативное определение разреженности, используемое на

практике. Для практических задач разреженность определяется в процентном

соотношении. В самом общем случае разреженной называют задачу, в матрице

которой большая часть элементов — нули, то есть, больше 50%.

Перейдём к альтернативному определению разреженной матрицы, в которой

большая часть элементов — нули.

Определение 1.2.

Матрица �, множество индексов которой Ψ = �×� , подмножество индек-

сов нулевых элементов Ψ0 ⊂ Ψ: 0.5|Ψ| ≤ |Ψ0|, называется разреженной.

Принимая во внимание, что |Ψ| — число всех элементов матрицы, выразим

данную величину через число столбцов матрицы � и число сток �: |Ψ| = ��.

Обозначим z — число ненулевых элементов. Тогда определение 1.2 примет сле-

дующий вид.

Определение 1.3.

Матрица �, у которой � столбцов, � строк и z ненулевых элементов, таких

что выполняется 0.5�� > z, называется разреженной.

Классифицируем разреженные матрицы для дальнейшей работы. Заметим,

что матрицы многих классов задач можно отнести к одной из вышеназван-

ных групп матриц. Существенно реже встречаются задачи, матрицы которых

можно отнести к двум и более группам. Поэтому важно изучить структуру

матриц таких задач в зависимости от каждой группы матриц. Многие задачи

имеют особенности в матричной структуре. Эти особенности позволяют рас-

сматривать большие матрицы как последовательность матриц меньшего ранга,

связанных некоторым образом между собой. То есть, многие подзадачи, соот-

ветствующие таким матрицам, могут быть решены независимо друг от друга,
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Таблица 1.1: Классификация разреженных матриц

Вид матрицы Пояснение Декларация

Очень широкая
Число столбцов превышает

число строк в два раза и более
� ≥ 2�

Широкая
Число столбцов превышает

число строк менее чем в два раза
0.5(�+ 1) < � < �

Квадратная
Число столбцов равно

числу строк
� = �

Узкая
Число строк превышает

число столбцов
� < �

что существенно экономит вычислительное время. В частности, такой структу-

рой является блочноҫдревовидная структура (БДҫструктура). Далее рассмот-

рим блочные структуры, вершины в которых упорядочены таким образом, что

структура является связной и иерархической, то есть является древовидной.

Сформулируем необходимые понятия для определения БДҫструктуры в

матрице. Для начала введём определения связывающего столбца в матрице и

взаимосвязи столбцов.

Определение 1.4. Столбец � матрицы , в котором существует хотя бы пара

ненулевых элементов �ij и �i′ ̸=i,j в строках � и �′, будем называть связывающим.

Взаимосвязью двух столбцов �1 и �2 в матрице называется единовременное

вхождение ненулевых элементов этих столбцов в строку �.

Перейдём к определению графа взаимосвязей.

Определение 1.5. Графом взаимосвязей �(�,�) матрицы � называется

граф, вершины которого соответствуют номерам ненулевых элементов матри-

цы, а для элементов матрицы, которые находятся в одной строке, между соот-

ветствующими вершинами есть ребро.

Замечание. Подразумевается, что индексы вершин графа взаимосвязей и но-

мера столбцов матрицы � эквивалентны.

Замечание. Ребро (�, �) графа взаимосвязей �(�,�) соответствует двум нену-

левым значениям в столбцах � и � матрицы ограничений �N×M , которые нахо-

дятся в одной строке.

Определим понятие «путь в графе» [140].
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Рисунок 1.1: Пример графа взаимосвязей

Определение 1.6. Последовательность вершин, в которой каждая текущая

вершина взаимосвязана со следующей, называется путь в графе.

Перейдём к определению цикла в графе [140].

Определение 1.7. Путь, для которого начальная и конечная вершины совпа-

дают, называется циклом.

Рассмотрим определение связного графа [140].

Определение 1.8. Граф, для которого существует путь из каждой вершины

в каждую, называется связным.

Очевидно, что исходя из размерности матрицы �N×M и числа ненулевых

элементов z нельзя сделать однозначный вывод о связности соответствующего

графа взаимосвязей. Но при этом можно сформулировать условие, при котором

граф всегда будет несвязным. Сформулируем необходимый признак связности

в графе взаимосвязей.

Теорема 1.1. Для того, чтобы граф взаимосвязей �(�,�) был связным необ-

ходимо, чтобы для каждой строки � соответствующей матрицы �N×M суще-

ствовал хотя бы один связывающий столбец.

Доказательство. Пусть дан связный граф взаимосвязей �(�,�) и матрица

�N×M , для которой для каждой строки существует хотя бы один связывающий

столбец. Для доказательства воспользуемся методом от противного. Предполо-

жим, связному графу �(�,�) не обязательно соответствует матрица с задан-

ными условиями. Значит, согласно определению 1.4, в соответствующей графу

матрице �′
N×M существует строка, для которой нет ни одного связывающего

столбца. Рассмотрим компоненту графа, соответствующую данной строке. Дан-

ная компонента не содержит рёбер, которые связывают её с другими частями
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графа, что нарушает связность графа по определению 1.8. Значит предположе-

ние неверно и матрица �′
N×M не может являться матрицей, соответствующей

связному графу. Таким образом, матрицей, соответствующей графу �(�,�)

является матрица �N×M . Теорема доказана.

Далее перейдём к теореме, которая является достаточным условием для

того, чтобы граф взаимосвязей не был связным.

Теорема 1.2. �+�− 1 > z ⇒ �(�,�) не связный.

Доказательство. Даны граф взаимосвязей и соответствующая ему матрица

�N×M , содержащая z ненулевых элементов. Каждый столбец должен содер-

жать хотя бы один элемент, поскольку матрица не содержит пустых столбцов.

Общее число столбцов — �, поэтому если каждый столбец содержит по одному

элементу, число ненулевых элементов z = �, при этом каждый из этих столбцов

не будет связывающим. Согласно теореме 1.1, каждая строка матрицы �N×M

должна содержать связывающий столбец 1.4. Число связывающих столбцов в

матрице, как минимум, � − 1, поскольку связывающий столбец соответствует

хотя бы двум строкам в матрице, а всего матрица содержит � − 1 пар строк.

Таким образом, минимальное число ненулевых элементов в матрице �N×M , при

котором граф может быть связным, равно � + � − 1. Значит, для того, что-

бы граф взаимосвязей не был связным, достаточно, чтобы число ненулевых

элементов подчинялось неравенству z < �+�− 1. Теорема доказана.

Перейдём к определению дерева [140].

Определение 1.9. Деревом называется связный граф без циклов.

Рассмотрим критерий существования дерева [141].

Теорема 1.3. Граф является деревом тогда и только тогда, когда число его

рёбер равно �− 1.

Введём понятие окрестности для столбца матрицы � в графовом представ-

лении [81].

Определение 1.10. Множество вершин, то есть связанных ребром с верши-

ной � в графе взаимосвязей �(�,�), обозначается ��(�) и называется окрест-

ностью вершины �.
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Замечание. Для практических задач понятие окрестности достаточно тонкий

вопрос, поскольку по факту вершины с близкими окрестностями объединяют в

большие окрестности относительно групп вершин. Под близкими окрестностя-

ми подразумевается, что пересечение соответствующих множеств значитель-

но больше их разности. Укрупнение происходит в зависимости от размерности

матрицы �, числа ненулевых элементов в ней, а также возможностей вычис-

лительной системы. Подробнее этот аспект будет рассматриваться во второй

главе при непосредственном выделении структуры разреженной матрицы.

Определим граф пересечения окрестностей [81]. Представим граф �(�,�)

в виде системы окрестностей Ω1 = (�1, �1), Ω2 = (�2, �2), . . . , Ωk = (�k, �k)

вершин �j1, . . . , �jk , где �r и �r — множества номеров столбцов и строк соответ-

ствующей матрицы относительно �ҫй окрестности, � = 1, . . . , �.

Определение 1.11. Графом пересечений окрестностей �Ω называется граф,

вершины которого �ri — окрестности Ωri = (�ri, �ri), при этом вершины графа

�r1 и �r2, соединяются ребром (�1, �2), если �r1

︀

�r2 ̸= ∅.

Пусть для системы окрестностей графа �(�,�) выполняются следующие

свойства:

— объединение множеств номеров строк для каждой окрестности соответ-

ствует множеству номеров строк всей матрицы

k︁

r=1

�r = � = {1, . . . ,�}; (1.1)

— объединение множеств номеров столбцов для каждой окрестности соот-

ветствует множеству номеров столбцов всей матрицы

k︁

r=1

�r = � = {1, . . . , �}; (1.2)

— множества номеров столбцов, соответствующие любым двум окрестно-

стям из заданной системы окрестностей не пересекаются

�r1

︁

�r2 = ∅, �1 ̸= �2; (1.3)
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— множества номеров строк, соответствующие любым трём окрестностям из

заданной системы окрестностей не пересекаются одновременно

�r1

︁

�r2

︁

�r3 = ∅ (1.4)

для любых �1, �2, �3. Перейдём к определению блочноҫдревовидной структуры

матрицы � (БДҫструктуры) [81].

Определение 1.12. Граф �Ω, для которого выполняются свойства 1.1ҫ1.4,

и при этом он является деревом, называется блочноҫдревовидной структурой

(БДҫструктурой).

Матрицу, соответствующую БДҫструктуре будем называть блочноҫ

древовидной. Выделенную вершину �r будем называть корнем � . БДҫ

структура определяется соотношением «предок — потомок». При этом, если

(�r, �1), . . . , (�p−1, �p) — путь от корня �r в вершину �p,то �p−1 называют пред-

ком вершины �p, а �p — потомком вершины �p−1.

Определение 1.13. Граф �Ω, для которого выполняются свойства 1.1ҫ1.4, и

при этом он является цепью, называется блочноҫлестничной структурой (БЛҫ

структурой).

Матрицу, соответствующую БЛҫструктуре будем называть блочноҫ

лестничной.

Ωrp

Ωr1

Ωr3

Ωr6
Ωr5

Ωrp-1

Ωr2

Ωr4

Ωrp-2
Ωrp-3

Vr1

Vr3
Vr2

Vr5
Vr4

Vr6

Vrp-1
Vrp

Vrp-3
Vrp-2

Рисунок 1.2: БДҫструктура

Определим компоненты БДҫструктуры. Введём определение блока.

Определение 1.14. Вершины �ri, соответствующие каждой �ҫй окрестности,

будем называть блоками БДҫструктуры, количество блоков обозначим k.

Введём определение степени БДҫструктуры [81].
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Ωr2

Vrp

Vr2

Vr1

Рисунок 1.3: БЛҫструктура

Определение 1.15. Степенью БДҫструктуры будем называть � =

max{�1, . . . , �k}, где �1, . . . , �k — степени каждого блока в БДҫструктуре.

Введём определение сепаратора [81].

Определение 1.16. Для данного связного графа �(�,�) и множества индек-

сов вершин � ⊂ � , таких что подграф �[� ∖ �] графа �(�,�) несвязен, �

называется сепаратором, если .

Введём метрику для БДҫструктуры. Определим расстояние между блоками.

Определение 1.17. Расстоянием между двумя вершинами БДҫструктуры бу-

дем называть минимальное число рёбер пути, соединяющего эти вершины.

Введём понятие слоя БДҫструктуры.

Определение 1.18. Множество вершин, которые находятся на одном рассто-

янии от корня, будем называть слоем БДҫструктуры.

Каждый блок содержит сепараторы, которые входят ещё в какойҫнибудь

блок, и неҫсепараторы, то есть множества индексов вершин, принадлежащие

только данному блоку. Обратим внимание, что граф �Ω может быть несвязным.

Тогда БДҫструктура распадается на независимые блоки. Для задач большой

размерности структуры таких блоков имеет смысл рассматривать отдельно,

так как каждый такой независимый блок может оказаться БДҫструктурой с

достаточно большим числом вершин. Исходя из размерности матрицы и числа

её ненулевых элементов можно сформулировать необходимое условие связности

БДҫструктуры.

Теорема 1.4. Для того, чтобы БДҫструктура, соответствующая графу окрест-

ностей �Ω, была связной, необходимо, чтобы �+�− 1 ≤ z.
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Доказательство. Согласно теореме 1.2 граф взаимосвязей �(�,�) несвязен

при � + � − 1 > z. Значит существует как минимум одна вершина �j, для

которой нет соседних вершин. Значит данная вершина не входит ни в одну

окрестность. По определению, вершины �ri графа пересечения окрестностей

�Ω соответствуют каждой �ҫй окрестности, причем две вершины графа �r1 и

�r2, соединяются ребром (�1, �2), если �r1

︀

�r2 ̸= ∅. �j может быть вершиной

�xj
, но не может соединяться ребром с какой-либо другой вершиной графа �Ω,

поскольку �xj

︀

�x̄j
= ∅. Существование хотя бы одной вершины, не связанной

с другими вершинами графа �Ω по определению 1.8 делает граф �Ω несвязным.

Значит и соответствующий ему БДҫструктура — несвязная. Значит, чтобы БДҫ

была связна, необходимо, чтобы условие �+�+1 > z нарушалось: �+�−1 ≤ z.

Теорема доказана.

Не зная структуры графа, нельзя предположить, является он деревом или

нет, но можно определить соотношение между степенью графа и количеством

блоков. Сформулируем теорему о связи компонент БДҫструктуры k и �.

Теорема 1.5. Степень БДҫструктуры всегда меньше числа её блоков.

Доказательство. Пусть �Ω — данная БДҫструктура. По определению 1.12,

она является деревом. Согласно критерию определения дерева 1.3, число рёбер

БДҫструктуры должно быть меньше числа блоков на единицу. Наиболее раз-

ветвлённая БДҫструктура, состоящая из k блоков, имеет вид корня, с которым

связаны все остальные k − 1 вершин. Степень корня при этом является мак-

симально возможной степенью относительно других блоков и равна k − 1. По

определению 1.15, это число является степенью предложенной БДҫструктуры.

Менее разветвлённые БДҫструктуры будут иметь ещё меньшую степень. Зна-

чит, � ≤ k− 1. Теорема доказана.

Заметим, что число нулевых элементов в БДҫструктуре подчиняется неко-

торому соотношению с размерностью матрицы и характеристиками БДҫ

структуры, такими как степень БДҫструктуры и число блоков, из которых

БДҫструктура состоит. Это соотношение задано в явном виде согласно необ-

ходимому условию выделяемости БДҫструктуры О.А. Щербины [81].

Теорема 1.6. Если � — матрица � ×� с z0 нулевыми элементами, то для того,

чтобы она имела БДҫструктуру с k блоками, необходимо, чтобы � ≥ 2k − 1,
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� ≥ k и

z0 ≥ (k− 2)(2�− �− 2k+ �+ 2)−�(�− 2)− 3k+ 2�+ 4, k ≥ 2

Замечание. Случай k = 2 не представляет интерес для матриц большой раз-

мерности, так как декомпозиция всего на два блока не даёт существенный вы-

игрыш по времени для решения соответствующей задачи. Будем рассматривать

случай k > 2.

Исследуем подробнее соотношение z ≥ (k− 2)(2�− �− 2k+ �+2)−�(�−

2)−3k+2�+4. Легко заметить, что для ненулевых элементов в матрице данное

соотношение будет иметь вид

�+ (�− k+ 2)(�− 2k+ �+ 1) + 2(k− 1− �) ≤ z

Преобразуем данное неравенство так, чтобы выразить в явном виде компо-

ненты БДҫструктуры.

� ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k)

Далее сформулируем модифицированное необходимое условие выделяемо-

сти БДҫструктуры, включающее видоизменённое неравенство.

Теорема 1.7. Если � — матрица � ×� с z ненулевыми элементами, то

для того, чтобы она имела БДҫструктуру с k блоками, необходимо, чтобы

� ≥ 2k− 1, � ≥ k и

� ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k)

Доказательство.

�+ (�− k+ 2)(�− 2k+ �+ 1) + 2(k− 1− �) ≤ z

�+��−2�k+��+�−k�+2k2−k�−k+2�−4k+2�−2�+2k+2−2−z ≤ 0

��− k� ≤ −2k2 + (2�+ �+ 3)k− 2�− 2�−��+ z
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� ≤ 1/�− k(−2k2 + (2�+ �− 3)k− 2�− 2�−��+ z)

Теорема доказана.

1.2 Зависимость параметров в БДҫ и БЛҫструктурах

Далее вводятся и доказываются теоремы, в которых устанавливается связь

между числом блоков и степенью БДҫ и БЛҫструктур в зависимости от количе-

ства ненулевых элементов в матрице и её размерности. Рассмотрим соотноше-

ние из теоремы 1.7 для каждой из типов матриц согласно классификации (1.1).

Сформулируем лемму об определении аналитической формы области опреде-

ления БДҫструктуры.

Лемма 1.1. Область определения БДҫструктуры разреженной матрицы зада-

ётся следующими нелинейными неравенствами:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

� ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k),

2 ≤ � ≤ k− 1,

3 ≤ k < min(�, 0.5(�+ 1)),

где параметры подчиняются соотношениям � + � − 1 ≤ z < 0.5��, � > 3,

� > 3.

Доказательство. Пусть дана разреженная матрица. По определению разре-

женности 1.3 z < 0.5��. Исходя из того, что из данной матрицы можно

извлечь БДҫструктуру, должно выполняться модифицированное необходимое

условие 1.7 � ≤ (−2k2 + (� + 2� + 3)k + z − 2� − 2� − ��)/(� − k) при

3 ≤ k < min(�, 0.5(� + 1)). По определению 1.12, БДҫструктура должна быть

связной и не иметь циклов. Из необходимого условия связности 1.4 следует, что

�+�− 1 ≤ z. Согласно теореме 1.5, компоненты БДҫструктуры должны быть

связаны следующим образом: � ≤ k− 1. Теорема доказана.

Далее приведём ряд теорем об аналитической форме области определения

компонент БДҫструктуры. Вначале сформулируем теорему для случая очень

широкой матрицы.
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Теорема 1.8. Область определения компонент БДҫструктуры для очень ши-

рокой матрицы задаётся следующими нелинейными неравенствами:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

� ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k),

2 ≤ � ≤ k− 1,

3 ≤ k < �,

где параметры подчиняются соотношениям � + � − 1 ≤ z < 0.5��, 3 < � <

0.5(�+ 1).

Доказательство. Пусть дана разреженная матрица с очень широкой матрицей

�M×N . Согласно классификации 1.1 это означает, что её параметры определя-

ются соотношением � < 0.5(� + 1). Значит k < �. Остальные неравенства

определяются согласно лемме 1.1. Теорема доказана.

Аналогичным образом доказываются теоремы 1.9, 1.10, 1.11, где формули-

руется аналитическая форма области определения компонент БДҫструктуры

для случаев широкой, квадратной и узкой матрицы соответственно. Далее рас-

Рисунок 1.4: Область определения для очень широкой матрицы
� = 200,� = 50, z = 4000

смотрим аналитическую форму области определения компонент БДҫструктуры

для широкой матрицы, сформулированную в следующей теореме.
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Теорема 1.9. Область определения компонент БДҫструктуры для широкой

матрицы задаётся нелинейными неравенствами:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

� ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k),

2 ≤ � ≤ k− 1,

3 ≤ k < 0.5(�+ 1),

где параметры подчиняются соотношениям �+�−1 ≤ z < 0.5��, 0.5(�+1) ≤

� < �, � ≥ 3.

Рисунок 1.5: Область определения для широкой матрицы
� = 200,� = 150, z = 13000

Затем сформулируем теорему для случая квадратной матрицы.

Теорема 1.10. Область определения компонент БДҫструктуры для квадрат-

ной матрицы задаётся нелинейными неравенствами:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

� ≤ (−2k2 + (3�+ 3)k+ z− 4�− �2)/(�− k),

2 ≤ � ≤ k− 1,

3 ≤ k < 0.5(�+ 1),

где параметры подчиняются соотношению 2�− 1 < z < 0.5�2.

Наконец сформулируем теорему для случая узкой матрицы.

Теорема 1.11.
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Рисунок 1.6: Область определения для квадратной матрицы
� = � = 200, z = 15000

Область определения компонент БДҫструктуры для узкой матрицы задаёт-

ся следующими соотношениями:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

� ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k),

2 ≤ � ≤ k− 1,

3 ≤ k < 0.5(�+ 1),

где параметры подчиняются соотношениям �+�− 1 ≤ z < 0.5��, 3 ≤ � < �.

Рисунок 1.7: Область определения для узкой матрицы
� = 100,� = 150, z = 9000
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Полученные области позволяют определить возможные компоненты БДҫ

структуры для заданного графа, если мы знаем, что она существует. То есть,

если БДҫструктуру можно выделить, данные теоремы помогают сделать оцен-

ку для числа блоков k и степени БДҫструктуры � относительно размерности

матрицы и числа её значимых элементов z. Рассмотрим частный случай БДҫ

структуры — БЛҫструктуру. Определим, в каких границах находится число

блоков БЛҫструктуры. Для этого сформулируем утверждение о числе блоков

в БЛҫструктуре в общем случае.

Лемма 1.2. Число блоков БЛҫструктуры ограничивается

1. В случае � ≥ 0.5(�+ 1)

— 3 ≤ k < 0.5(�+ 1) при � > 2, � > 5, z ≥ 0.5(2��− 6�− 3�+ 14)

— 0.25(�+ 2�+ 3−
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < 0.5(�+ 1)

при � > 2, � ≥ 2� + 1, 0.125(12� − 16 − (� − 2� + 3)2) < z ≤

0.5(2��− 6�− 3�+ 14)

2. В случае � < 0.5(�+ 1)

— 3 ≤ k < � при � > 3, � > 2�− 1, z > 0.5(2��− 6�− 3�+ 14)

— 0.25(� + 2� + 3 −
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < � при

� > 3, � > 2�−1, 0.125(12�+6�−25− (�−2�)2) ≤ z ≤ 0.5(2��−

6�− 3�+ 14)

— 0.25(� + 2� + 3 −
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < � при

� > 3, 5 < � ≤ 2�−1, 0.5(4�+�−6) < z ≤ 0.5(2��−6�−3�+14)

При этом значимые элементы матрицы z и размерность матрицы �,� соотно-

сятся следующим образом: �+�− 1 ≤ z < 0.5��, � > 3, � > 3.

Доказательство. Согласно лемме 1.1, область определения БДҫструктуры в

общем виде задаётся следующими нелинейными неравенствами:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

� ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k),

2 ≤ � ≤ k− 1,

3 ≤ k < min(�, 0.5(�+ 1)),
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где параметры подчиняются соотношениям � + � − 1 ≤ z < 0.5��, � > 3,

� > 3. Для БЛҫструктуры � = 2. Значит соотношение примет вид:

⎧

⎨

⎩

2 ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k),

3 ≤ k < min(�, 0.5(�+ 1)),

где параметры подчиняются соотношениям � + � − 1 ≤ z < 0.5��, � > 3,

� > 3. Исследуем первое неравенство системы.

2 ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k),

−2k2 + (�+ 2�+ 5)k+ z− 4�− 2�−�� ≥ 0

Решением данного неравенства будет:

k ∈ [0.25(�+ 2�+ 3−
︀

(�− 2�+ 3)2 + 8z− 12�+ 16); 0.25(�+ 2�+ 3 +
︀

(�− 2�+ 3)2 + 8z− 12�+ 16)]

Таким образом, получим систему:

⎧

⎨

⎩

0.25(�+ 2�+ 3−
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k ≤ 0.25(�+ 2�+ 3 +
︀

(�

3 ≤ k < min(�, 0.5(�+ 1)).

Верхняя граница всегда k < min(�, 0.5(� + 1)) < 0.25(� + 2� + 3 +
︀

(�− 2�+ 3)2 + 8z− 12�+ 16). Исследуем нижнюю границу.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0.25(�+ 2�+ 3−
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k,

3 ≤ k < min(�, 0.5(�+ 1)),

� > 3.

Решениями данной системы будут:

1. В случае � ≥ 0.5(�+ 1)

— 3 ≤ k < 0.5(�+ 1) при � > 2, � > 5, z ≥ 0.5(2��− 6�− 3�+ 14)

— 0.25(�+ 2�+ 3−
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < 0.5(�+ 1)

при � > 2, � ≥ 2� + 1, 0.125(12� − 16 − (� − 2� + 3)2) < z ≤

0.5(2��− 6�− 3�+ 14)

2. В случае � < 0.5(�+ 1)

— 3 ≤ k < � при � > 3, � > 2�− 1, z > 0.5(2��− 6�− 3�+ 14)
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— 0.25(� + 2� + 3 −
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < � при

� > 3, � > 2�−1, 0.125(12�+6�−25− (�−2�)2) ≤ z ≤ 0.5(2��−

6�− 3�+ 14)

— 0.25(� + 2� + 3 −
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < � при

� > 3, 5 < � ≤ 2�−1, 0.5(4�+�−6) < z ≤ 0.5(2��−6�−3�+14)

Теорема доказана.

Далее сформулируем теорему, основанную на лемме 1.2, о числе блоков в

БЛҫструктуре для очень широкой матрицы.

Теорема 1.12. Число блоков БЛҫструктуры для очень широкой матрицы огра-

ничивается 0.25(� + 2� + 3 −
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < �, где

значимые элементы матрицы z и размерность матрицы �,� соотносятся следу-

ющим образом:

— � ≥ 4, � > 2�+ 2, 0.5(3�− 4) < z < 0.5��

— � ≥ 4, 2� ≤ � ≤ 2�+ 2, �+ �− 1 ≤ z < 0.5��

Доказательство. Согласно классификации матриц 1.1, для очень широких

матриц имеет место соотношение 3 < � < n+1
2 . Значит 3 ≤ k < � и для

числа блоков согласно лемме 1.2 имеют место следующие соотношения:

— 3 ≤ k < � при � > 3, � > 2�− 1, z > 1
2(2��− 6�− 3�+ 14)

— 1
4(� + 2� + 3 −

︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < � при � > 3,

� > 2�− 1, 1
2(3�− 4) < z ≤ 1

2(2��− 6�− 3�+ 14)

При этом значимые элементы матрицы z и размерность матрицы �,� соотно-

сятся следующим образом: �+�−1 ≤ z < mn
2 согласно лемме 1.1, 3 < � < n+1

2 ,

� > 3 согласно классификации матриц 1.1. Добавим ограничения по z:

—
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z > 1
2(2��− 6�− 3�+ 14),

�+�− 1 ≤ z < mn
2 ,

3 < � < n+1
2 ,

� > 3.

Решение данной системы � = 4, � = 9, � = 18
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—
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
2(3�− 4) < z ≤ 1

2(2��− 6�− 3�+ 14),

�+�− 1 ≤ z < mn
2 ,

3 < � < n+1
2 ,

� > 3.

Решения данной системы:

— � ≥ 4, � > 2�+ 2, 1
2(3�− 4) < � < ��/2

— � ≥ 4, 2� ≤ � ≤ 2�+ 2, �+ �− 1 ≤ � < ��/2

Таким образом, решения примут вид:

— k = 3 при � = 4, � = 9, z = 18

— 1
4(� + 2� + 3 −

︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < � при � ≥ 4,

� > 2�+ 2, 1
2(3�− 4) < � < ��/2

— 1
4(� + 2� + 3 −

︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < � при � ≥ 4,

2� ≤ � ≤ 2�+ 2, �+ �− 1 ≤ � < ��/2

Заметим, что первое решение поглощается, значит окончательное множество

решений примет вид:

— 1
4(� + 2� + 3 −

︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < � при � ≥ 4,

� > 2�+ 2, 1
2(3�− 4) < � < mn

2

— 1
4(� + 2� + 3 −

︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < � при � ≥ 4,

2� ≤ � ≤ 2�+ 2, �+ �− 1 ≤ � < mn
2

Аналогичным образом доказывается следующая лемма 1.3 о числе блоков в

БЛҫструктуре для классов матриц, не относящихся к очень широким.

Лемма 1.3. Число блоков БЛҫструктуры для матрицы, не относящейся к

классу очень широких матриц, ограничивается:

— 3 ≤ k < 0.5(�+ 1) при:
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1) � = 4, � ∈ {6; 7}, 2.5(�− 2) ≤ z ≤ 2�− 1;

2) � ≥ 5, 6 ≤ � < 2(3� − 7)/(� − 3), 0.5(2�� − 6� − 3� + 14) ≤ z ≤

0.5��.

— 0.25(�+ 2�+ 3−
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < 0.5(�+ 1) при:

1) 4 ≤ � ≤ 5, � = 11−�, �+ 6 ≤ z ≤ �+ 8

2) � = 5, 7 ≤ � ≤ 9, �+ 4 ≤ z ≤ 3�−�

3) � = 7, � = 7, 15 ≤ z ≤ 24

4) � ≥ 6, 2�− 3 ≤ � ≤ 2�− 1, �+ �− 1 ≤ z < 0.5��

5) � ≥ 6, 2(3�−7)/(�−3) ≤ � ≤ 2�−4, 0.5(4�+�−6) < z < 0.5��

6) � ≥ 6, 6 ≤ � < 2(3�− 7)/(�− 3), 0.5(4�+ �− 6) < z ≤ 0.5(2��−

6�− 3�+ 14)

На основе леммы 1.3 сформулируем теорему о числе блоков в БЛҫструктуре

для широкой матрицы.

Теорема 1.13. Число блоков БЛҫструктуры для широкой матрицы ограничи-

вается:

1. 3 ≤ k < 0.5(�+ 1), если параметры матрицы имеют вид:

1) � = 4, 6 ≤ � ≤ 7, 2.5(�− 2) ≤ z ≤ 2�− 1

2) � = 5, 6 ≤ � ≤ 7, 0.5(7�− 16) ≤ z ≤ 2.5�

3) � = 6, � = 7, z = 21

2. 0.25(�+2�+3−
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < 0.5(�+1), если

параметры матрицы имеют вид:

1) 4 ≤ � ≤ 5, � = 11−�, �+ 6 ≤ z ≤ �+ 8

2) � = 5, 7 ≤ � ≤ 9, �+ 4 ≤ z ≤ 3�− 5

3) � = 6, 7 ≤ � ≤ 8, �+ 6 ≤ z ≤ 3�− 1

4) � ≥ 6, 2�− 3 ≤ � ≤ 2�− 1, �+ �− 1 ≤ z < 0.5��

5) � ≥ 7, � < � ≤ 2�− 4, 0.5(4�+ �− 6) < z < 0.5��
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Доказательство. Согласно классификации матриц 1.1, для широких матриц

имеют место соотношения 0.5(�+1) ≤ � < �, � ≥ 3. Данный класс матриц не

относится к классу очень широких матриц, значит, согласно лемме 1.3 значение

числа блоков принимает значения:

— 3 ≤ k < 0.5(�+ 1) при:

1) � = 4, � ∈ {6; 7}, 2.5(�− 2) ≤ z ≤ 2�− 1;

2) � ≥ 5, 6 ≤ � < 2(3� − 7)/(� − 3), 0.5(2�� − 6� − 3� + 14) ≤ z ≤

0.5��.

— 0.25(�+ 2�+ 3−
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < � при:

1) 4 ≤ � ≤ 5, � = 11−�, �+ 6 ≤ z ≤ �+ 8

2) � = 5, 7 ≤ � ≤ 9, �+ 4 ≤ z ≤ 3�−�

3) � = 7, � = 7, 15 ≤ z ≤ 24

4) � ≥ 6, 2�− 3 ≤ � ≤ 2�− 1, �+ �− 1 ≤ z < 0.5��

5) � ≥ 6, 2(3�−7)/(�−3) ≤ � ≤ 2�−4, 0.5(4�+�−6) < z < 0.5��

6) � ≥ 6, 6 ≤ � < 2(3�− 7)/(�− 3), 0.5(4�+ �− 6) < z ≤ 0.5(2��−

6�− 3�+ 14)

Решим системы неравенств для каждого из этих случаев. Первый случай 3 ≤

k < 0.5(�+ 1), параметры примут вид

1)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2.5(�− 2) ≤ z ≤ 2�− 1,

0.5(�+ 1) ≤ � < �,

6 ≤ � ≤ 7,

� = 4.

Решением данной системы будет: � = 4, � ∈ {6; 7}, 2.5(�−2) ≤ z ≤ 2�−1
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2)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0.5(2��− 6�− 3�+ 14) ≤ z ≤ 0.5��,

0.5(�+ 1) ≤ � < �,

6 ≤ � < 2(3�− 7)/(�− 3),

� ≥ 5.

Решениями данной системы будут:

— � = 5, 6 ≤ � ≤ 7, 0.5(7�− 16) ≤ z ≤ 2.5�

— � = 6, � = 7, z = 21

Второй случай 0.25(� + 2� + 3 −
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < �,

параметры примут вид

1)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�+ 6 ≤ z ≤ �+ 8,

0.5(�+ 1) ≤ � < �,

� = 11−�,

4 ≤ � ≤ 5.

Решение данной системы: 4 ≤ � ≤ 5, � = 11−�, �+ 6 ≤ z ≤ �+ 8

2)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�+ 4 ≤ z ≤ 3�−�,

0.5(�+ 1) ≤ � < �,

7 ≤ � ≤ 9,

� = 5.

Решение данной системы: � = 5, 7 ≤ � ≤ 9, �+ 4 ≤ z ≤ 3�−�

3)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

15 ≤ z ≤ 24,

0.5(�+ 1) ≤ � < �,

� = 7,

� = 7.

Данная система не имеет решений



43

4)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�+ �− 1 ≤ z < 0.5��,

0.5(�+ 1) ≤ � < �,

2�− 3 ≤ � ≤ 2�− 1,

� ≥ 6.

Решение данной системы: � ≥ 6, 2�− 3 ≤ � ≤ 2�− 1, �+ �− 1 ≤ z <

0.5��

5)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0.5(4�+ �− 6) < z < 0.5��,

0.5(�+ 1) ≤ � < �,

2(3�− 7)/(�− 3) ≤ � ≤ 2�− 4,

� ≥ 6.

Решения данной системы:

— � = 6, � = 8, 0.5�+ 9 < z < 3�

— � ≥ 7, � < � ≤ 2�− 4, 0.5(4�+ �− 6) < z < 0.5��

6)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0.5(4�+ �− 6) < z ≤ 0.5(2��− 6�− 3�+ 14),

0.5(�+ 1) ≤ � < �,

6 ≤ � < 2(3�− 7)/(�− 3),

� ≥ 6.

� = 6, � = 7, 13 ≤ z ≤ 20

Таким образом, число блоков в БЛҫструктуре для широкой матрицы ограни-

чивается:

1. 3 ≤ k < 0.5(�+ 1), если параметры матрицы имеют вид:

1) � = 4, 6 ≤ � ≤ 7, 2.5(�− 2) ≤ z ≤ 2�− 1

2) � = 5, 6 ≤ � ≤ 7, 0.5(7�− 16) ≤ z ≤ 2.5�

3) � = 6, � = 7, z = 21
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2. 0.25(� + 2� + 3 −
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < �, если пара-

метры матрицы имеют вид:

1) 4 ≤ � ≤ 5, � = 11−�, �+ 6 ≤ z ≤ �+ 8

2) � = 5, 7 ≤ � ≤ 9, �+ 4 ≤ z ≤ 3�− 5

3) � = 6, 7 ≤ � ≤ 8, �+ 6 ≤ z ≤ 3�− 1

4) � ≥ 6, 2�− 3 ≤ � ≤ 2�− 1, �+ �− 1 ≤ z < 0.5��

5) � ≥ 7, � < � ≤ 2�− 4, 0.5(4�+ �− 6) < z < 0.5��

Теорема доказана.

Аналогично доказываются теоремы 1.14, 1.15 о числе блоков в БЛҫ

структуре для квадратной и узкой матриц. Вначале рассмотрим теорему для

случая квадратной матрицы.

Теорема 1.14. Число блоков БЛҫструктуры для квадратной матрицы ограни-

чивается 0.25(� + 2� + 3−
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < 0.5(� + 1),

если параметры матрицы имеют вид:

1. 3 ≤ k < 0.5(� + 1), если параметры матрицы имеют вид: � = � = 6,

16 ≤ z ≤ 18.

2. 0.25(�+2�+3−
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < 0.5(�+1), если

параметры матрицы имеют вид:

1) � = � = 6, 13 ≤ z ≤ 16

2) � = � ≥ 7, 0.5(5�− 6) < z < 0.5�2

Далее сформулируем теорему в случае узкой матрицы.

Теорема 1.15. Число блоков БЛҫструктуры для узкой матрицы ограничива-

ется:

1. 3 ≤ k < 0.5(�+ 1), если параметры матрицы имеют вид:

1) � = 7, � = 6, 19 ≤ z ≤ 20

2) � ≥ 8, 6 ≤ � < 2(3� − 7)/(� − 3), 0.5(2�� − 6� − 3� + 14) ≤ z <

0.5��
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2. 0.25(�+2�+3−
︀

(�− 2�+ 3)2 + 8z− 12�+ 16) ≤ k < 0.5(�+1), если

параметры матрицы имеют вид:

1) � = 7, � = 6, 15 ≤ z ≤ 19

2) � ≥ 8, 6 ≤ � < 2(3�− 7)/(�− 3), 0.5(4�+ �− 6) < z ≤ 0.5(2��−

6�− 3�+ 14)

Сформулируем лемму для определения границ аналитической области для

матриц с БДҫструктурой.

Лемма 1.4. Аналитическая область для БДҫструктуры относительно чис-

ла блоков k определяется следующими соотношениями. Верхняя граница k <

min(�, 0.5(�+ 1)). Нижняя граница выводится из соотношений:

Если (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k) = k− 1

1) 3 ≤ 0.5(�+�+ 2−
︀

4(z− �+ 1) + (�−�)2) < min(�, 0.5(�+ 1))

2) 0.5(�+�+ 2−
︀

4(z− �+ 1) + (�−�)2) ≥ min(�, 0.5(�+ 1))

Если (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k) = 2

1) 3 ≤ 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2)

2) 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) < 3

При этом параметры матрицы подчиняются следующим соотношениям:

— � ≥ 5, � ≥ 4, �+�− 1 ≤ z < 0.5��

— � = 4, � ≥ 4, �+ 3 ≤ z < 2�

Доказательство. Согласно лемме 1.1, аналитическая форма области определе-

ния БДҫструктуры для матрицы общего вида выглядит следующим образом:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

� ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k),

2 ≤ � ≤ k− 1,

3 ≤ k < min(�, 0.5(�+ 1)),

где параметры подчиняются соотношениям � + � − 1 ≤ z < 0.5��, � > 3,

� > 3. Найдём точки пересечения кривых, определяющих данную область:
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— Найдём пересечение (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k)

и k− 1

(−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k) = k− 1

−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−�� = (k− 1)(�− k)

−k
2 + (�+�+ 2)k+ z−�− 2�−�� = 0

Решениями данного уравнения будут: 0.5(� + � + 2 −
︀

4(z− �+ 1) + (�−�)2) и 0.5(�+�+ 2 +
︀

4(z− �+ 1) + (�−�)2).

Рассмотрим фрагмент k ∈ [0.5(� + � + 2 −
︀

4(z− �+ 1) + (�−�)2); 0.5(� + � + 2 +
︀

4(z− �+ 1) + (�−�)2)]

относительно промежутка области определения k ∈ [3;min(�, 0.5(�+1)))

Поскольку 0.5(� + � + 2 +
︀

4(z− �+ 1) + (�−�)2) >

min�, 0.5(�+ 1) ⇒ данное значение выходит из области допусти-

мых значений. Значит верхняя граница k < min�, 0.5(�+ 1).

Исследуем нижнюю границу для k. Для второго значения существует два

варианта:

1) 3 ≤ 0.5(�+�+ 2−
︀

4(z− �+ 1) + (�−�)2) < min(�, 0.5(�+ 1))

2) 0.5(�+�+ 2−
︀

4(z− �+ 1) + (�−�)2) ≥ min(�, 0.5(�+ 1))

Подкоренное выражение 4(z− �+ 1) + (�−�)2 ≥ 0 выполняется при:

— � ≥ 5, � ≥ 4, �+�− 1 ≤ z < 0.5��

— � = 4, � ≥ 4, �+ 3 ≤ z < 2�

— Найдём пересечение (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k)

и 2.

(−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k) = 2.

−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−�� = 2�− 2k

−2k2 + (�+ 2�+ 5)k+ z− 4�− 2�−�� = 0

Решениями данного уравнения будут:0.25(� + 2� + 5 +
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) и 0.25(� + 2� + 5 −
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2).
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Рассмотрим фрагмент k ∈ [0.25(� + 2� + 5 −
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2); 0.25(� + 2� + 5 +
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2)] относительно промежутка области

определения k ∈ [3;min(�, 0.5(�+ 1)))

Поскольку 0.25(� + 2� + 5 +
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) >

min�, 0.5(�+ 1) ⇒ данное значение выходит из области допустимых зна-

чений. Значит верхняя граница k < min�, 0.5(�+ 1)

Исследуем нижнюю границу для k. Для второго значения существует два

варианта:

1) 3 ≤ 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2)

2) 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) < 3

Подкоренное выражение 4(2z− 3�+ 4) + (�− 2�+ 3)2 ≥ 0 выполняется

при:

— � ≥ 5, � ≥ 4, �+�− 1 ≤ z < 0.5��

— � = 4, � ≥ 4, �+ 3 ≤ z < 2�

Значит пересечения кривых определяются следующим образом. Верхняя гра-

ница k < min�, 0.5(�+ 1). Нижняя граница выводится из соотношений:

Если (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k) = k− 1

1) 3 ≤ 0.5(�+�+ 2−
︀

4(z− �+ 1) + (�−�)2) < min(�, 0.5(�+ 1))

2) 0.5(�+�+ 2−
︀

4(z− �+ 1) + (�−�)2) ≥ min(�, 0.5(�+ 1))

Если (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k) = 2

1) 3 ≤ 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2)

2) 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) < 3

При параметрах матрицы

— � ≥ 5, � ≥ 4, �+�− 1 ≤ z < 0.5��

— � = 4, � ≥ 4, �+ 3 ≤ z < 2�

Теорема доказана.
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Перейдём к более общему виду структуры матрицы — БДҫструктуре. Сфор-

мулируем необходимое условие выделяемости БДҫструктуры.

Лемма 1.5. Для того, чтобы в матрице общего вида можно было выделить

БДҫструктуру, её параметры должны удовлетворять соотношениям � ≥ 4, � ≥

4, �+�− 1 ≤ z < 0.5��. При этом число блоков БДҫструктуры определяется

следующим образом:

1) 3 ≤ 0.25(�+2�+5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ ���(�, 0.5(�+

1))

2) 0.25(�+2�+5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ 3 ≤ ���(�, 0.5(�+

1))

Доказательство. Согласно лемме 1.4, аналитическая область для БДҫ

структуры относительно числа блоков k определяется следующими соотноше-

ниями. Верхняя граница k < min�, 0.5(�+ 1). Нижняя граница выводится из

соотношений:

Если (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k) = k− 1

1) 3 ≤ 0.5(�+�+ 2−
︀

4(z− �+ 1) + (�−�)2) < 3

2) 0.5(�+�+ 2−
︀

4(z− �+ 1) + (�−�)2) ≥ 3

Если (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k) = 2

1) 3 ≤ 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2)

2) 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) < 3

При этом параметры матрицы подчиняются следующим соотношениям: � ≥ 4,

� ≥ 4, �+�−1 ≤ z < 0.5��. Исследуем полученные нижние границы. Первая

нижняя граница 0.5(�+�+2−
︀

4(z− �+ 1) + (�−�)2) всегда больше второй

нижней границы 0.25(� + 2� + 5 −
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2), значит

для нижней границы k возможны только два варианта:

1) 3 ≤ 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2)

2) 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ 3
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Исследуем полученные значения относительно верхней границы. Для того, что-

бы существовали решения, необходимо, чтобы верхняя граница не была меньше,

чем нижняя. Значит БДҫструктура существует только в том случае, когда:

1) 3 ≤ 0.25(�+2�+5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ ���(�, 0.5(�+

1))

2) 0.25(�+2�+5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ 3 ≤ ���(�, 0.5(�+

1))

Таким образом, для того, чтобы в матрице общего вида можно было выделить

БДҫструктуру, её параметры должны удовлетворять соотношению � ≥ 4, � ≥

4, �+�− 1 ≤ z < 0.5��. При этом число блоков БДҫструктуры определяется

следующим образом:

1) 3 ≤ 0.25(�+2�+5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ ���(�, 0.5(�+

1))

2) 0.25(�+2�+5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ 3 ≤ ���(�, 0.5(�+

1))

Теорема доказана.

Теперь сформулируем необходимое условие выделяемости БДҫструктуры

для очень широкой матрицы.

Теорема 1.16. Для того, чтобы БДҫструктуру можно было выделить для

очень широкой матрицы, необходимо, чтобы параметры матрицы удовлетворя-

ли соотношениям: 4 ≤ � ≤ 0.5�, � ≥ 8, 2�−�+1 ≤ z < 0.5��. При этом число

блоков ограничивается 0.25(� + 2� + 5 −
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤

k < �.

Доказательство. Согласно классификации матриц 1.1, для очень широких

матриц имеет место соотношение 3 < � < 0.5(� + 1). Значит согласно лем-

ме 1.5 число блоков БДҫструктуры определяется следующим образом:

1) 3 ≤ 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ �

2) 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ 3 ≤ �
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С учётом особенностей классификации параметры матрицы удовлетворяют

условиям: � ≥ 4, � ≥ 2�, � + � − 1 ≤ z < 0.5��. Уточним условия для

параметров матрицы. Решим систему неравенств для каждого из случаев:

1)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3 ≤ 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) < �,

�+�− 1 ≤ z < 0.5��,

� ≥ 4,

� ≥ 2�.

Решения данной системы:

— � = 4, � = 8, 13 ≤ z ≤ 15

— 4 ≤ � ≤ 0.5�, � ≥ 9, 2�−�+ 1 ≤ z < 0.5��

2)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3 ≥ 0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2),

0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ �,

�+�− 1 ≤ z < 0.5��,

� ≥ 4,

� ≥ 2�.

Данная система не имеет решений

Таким образом, чтобы для очень широкой матрицы выделить БДҫструктуру,

её параметры должны удовлетворять соотношениям:

— � = 4, � = 8, 13 ≤ z ≤ 15

— 4 ≤ � ≤ 0.5�, � ≥ 9, 2�−�+ 1 ≤ z < 0.5��

При этом число блоков ограничивается 0.25(� + 2� + 5 −
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ k < �. Теорема доказана.

Аналогично доказывается лемма 1.6 о числе блоков в БДҫструктуре для для

классов матриц, не относящихся к очень широким.
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Лемма 1.6. Чтобы для матрицы, не относящейся к классу очень широких,

выделить БДҫструктуру, её параметры должны удовлетворять соотношениям

— � ≥ 5, � = 4, �+ 3 ≤ z ≤ 2�− 2

— � ≥ 4, 5 ≤ � ≤ 2�− 1, �+�− 1 ≤ z < 0.5��

— � ≥ 4, � = 4, z = 2�− 1

При этом число блоков ограничивается 0.25(� + 2� + 5 −
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ k < 0.5(�+ 1).

Далее сформулируем необходимое условие выделяемости БДҫструктуры

для широкой матрицы.

Теорема 1.17. Для того, чтобы БДҫструктуру можно было выделить для ши-

рокой матрицы, необходимо, чтобы параметры матрицы удовлетворяли соотно-

шениям: � ≥ 4, � < � ≤ 2�− 1, �+�− 1 ≤ z < 0.5��.

Доказательство. Согласно классификации матриц 1.1, для широких матриц

имеют место соотношения 0.5(� + 1) ≤ � < �, � > 3, � > 3. Значит согласно

лемме 1.6 число блоков в БДҫструктуре для широкой матрицы будет следу-

ющим: 0.25(� + 2� + 5 −
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ k < 0.5(� + 1),

если

— � ≥ 5, � = 4, �+ 3 ≤ z ≤ 2�− 2

— � ≥ 4, 5 ≤ � ≤ 2�− 1, �+�− 1 ≤ z < 0.5��

k = 3, если � ≥ 4, � = 4, z = 2�− 1.

Для условий 0.5(� + 1) ≤ � < �, � > 3, � > 3 подходит только условие

� ≥ 4, 5 ≤ � ≤ 2� − 1, � + � − 1 ≤ z < 0.5��. Решим соответствующую

систему неравенств с условиями для широких матриц

⎧
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⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�+�− 1 ≤ z < 0.5��,

5 ≤ � ≤ 2�− 1,

� ≥ 4,

0.5(�+ 1) ≤ � < �.

Решение данной системы: � ≥ 4, � < � ≤ 2�− 1, �+�− 1 ≤ z < 0.5��
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Таким образом, для того, чтобы можно было выделить БДҫструктуру в

широкой матрице, её параметры должны быть: � ≥ 4, � < � ≤ 2� − 1,

�+�− 1 ≤ z < 0.5��

При этом число блоков ограничивается следующим образом: 0.25(�+ 2�+

5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ k < 0.5(�+ 1). Теорема доказана.

Аналогично доказываются теоремы 1.18, 1.19, в которых формулируется

необходимые условия выделяемости БДҫструктуры для квадратной и узкой

матрицы. Вначале рассмотрим случай квадратной матрицы.

Теорема 1.18. Для того, чтобы БДҫструктуру можно было выделить для

квадратной матрицы, необходимо, чтобы параметры матрицы: � = � ≥ 4,

2�− 1 ≤ z < 0.5�2.

Теперь рассмотрим случай узкой матрицы.

Теорема 1.19. Для того, чтобы БДҫструктуру можно было выделить для уз-

кой матрицы, необходимо, чтобы параметры матрицы удовлетворяли соотно-

шениям:

— � = 4, � ≥ 5 �+ 3 ≤ z ≤ 2�− 1

— � ≥ 6, 5 ≤ � < �, �+ �− 1 ≤ z < 0.5��

Исследуем степень БДҫструктуры относительно заданных параметров. Сле-

дующая лемма определяет вспомогательные соотношения для определения сте-

пени в БДҫструктуре.

Лемма 1.7. Степень БДҫструктуры определяется следующим образом:

1) � ≤ k− 1, если выполняется z ≥ k
2 − (�+�+ 2)k+�+ 2�+��

2) � ≤ (−2k2+(�+2�+3)k+ z− 2�− 2�−��)/(�−k), если выполняется

z < k
2 − (�+�+ 2)k+�+ 2�+��

Доказательство. В соответствии с теоремой 1.1 получим следующую систему

неравенств:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

� ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k),

2 ≤ � ≤ k− 1,

3 ≤ k < min(�, 0.5(�+ 1)).
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В данной системе верхняя граница � определяется двумя способами: � ≤

(−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k) и � ≤ k− 1. Значит имеют

место два случая:

— 2 ≤ � ≤ k− 1 ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k)

— 2 ≤ � ≤ (−2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k) ≤ k− 1

Рассмотрим первый случай. Для этого решим неравенство k− 1 ≤ (−2k2 +

(�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k).

Так как (�− k) всегда положительно согласно k < �, имеет место

(k− 1)(�− k) ≤ −2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��

z ≥ k
2 − (�+�+ 2)k+�+ 2�+��

Рассмотрим второй случай. Для этого решим неравенство k − 1 > (−2k2 +

(�+ 2�+ 3)k+ z− 2�− 2�−��)/(�− k).

Так как (�− k) всегда положительно согласно 3 ≤ k < �, имеет место

(k− 1)(�− k) > −2k2 + (�+ 2�+ 3)k+ z− 2�− 2�−��

z < k
2 − (�+�+ 2)k+�+ 2�+�� Теорема доказана.

Рассмотрим каждое из полученных соотношений в лемме 1.7. Для этого

сформулируем следующую лемму.

Лемма 1.8. Для того, чтобы верхняя граница степени БДҫструктуры была

� ≤ k− 1 необходимо, чтобы 0.5(�+ �+ 2−
︀

(�−�)2 + 4(z− �+ 1)) ≤ k <

min(�, 0.5(� + 1)). Для того, чтобы верхняя граница степени БДҫструктуры

была � ≤ (−2k2 + (� + 2� + 3)k + z − 2� − 2� − ��)/(� − k) необходимо,

чтобы 0.25(� + 2� + 5 −
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ k < 0.5(� + � +

2−
︀

(�−�)2 + 4(z− �+ 1))). При этом параметры матрицы:

1) 4 ≤ � ≤ 7,� ≥ 4,�+ �− 1 ≤ z < ��/2

2) � ≥ 8,4 ≤ � < 0.5(�+ 1), 2�−� ≤ z < 0.5��

3) � ≥ 8,� ≥ 0.5(�+ 1), �+�− 1 ≤ z < 0.5��

Доказательство. Согласно лемме 1.5 верхняя граница k всегда

min(�, 0.5(� + 1)). Нижняя граница для k — 0.25(� + 2� + 5 −
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ 0.5(�+�+2−
︀

(�−�)2 + 4(z− �+ 1)).

Рассмотрим как 0.25(� + 2� + 5 −
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤
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0.5(� + � + 2 −
︀

(�−�)2 + 4(z− �+ 1)) влияет на параметры исходной

матрицы. Решим систему:

⎧

⎪

⎪
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⎪

⎪

⎨
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⎪
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�+�− 1 ≤ z < 0.5��,

� > 3,

� > 3,

0.25(�+ 2�+ 5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ 0.5(�+ �+ 2−
︀

(�−�)

Решения:

1) 4 ≤ � ≤ 7,� ≥ 4,�+ �− 1 ≤ z < ��/2

2) � ≥ 8,4 ≤ � < 0.5(�+ 1), 2�−� ≤ z < 0.5��

3) � ≥ 8,� ≥ 0.5(�+ 1), �+�− 1 ≤ z < 0.5��

Рассмотрим первый случай. Согласно лемме 1.7, при � ≤ k − 1 выполняется

z ≥ k
2 − (�+�+ 2)k+�+ 2�+��. Решим данное неравенство относительно

k. Решениями данного неравенства являются:

— k = 0.5(� + � + 2) при z = 0.25(2�� −�2 − (� − 2)2) Данное равенство

не имеет решений

— 0.5(� + � + 2 −
︀

(�−�)2 + 4(z− �+ 1)) ≤ k ≤ 0.5(� + � + 2 +
︀

(�−�)2 + 4(z− �+ 1)) при z > 0.25(2��−�2 − (�− 2)2)

Таким образом выполняется 0.5(� + � + 2 −
︀

(�−�)2 + 4(z− �+ 1)) <

min(�, 0.5(� + 1)) и 0.5(� + � + 2 +
︀

(�−�)2 + 4(z− �+ 1)) >

min(�, 0.5(� + 1)). Нижняя граница для k — 0.25(� + 2� + 5 −
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ 0.5(�+�+2−
︀

(�−�)2 + 4(z− �+ 1)).

Поскольку k ≥ 0.5(� + � + 2 −
︀

(�−�)2 + 4(z− �+ 1)), верхняя грани-

ца степени БДҫструктуры � ≤ k − 1 на промежутке k ∈ [0.5(� + � + 2 −
︀

(�−�)2 + 4(z− �+ 1));min(�, 0.5(�+ 1))]. При этом параметры матрицы:

1) 4 ≤ � ≤ 7,� ≥ 4,�+ �− 1 ≤ z < ��/2

2) � ≥ 8,4 ≤ � < 0.5(�+ 1), 2�−� ≤ z < 0.5��

3) � ≥ 8,� ≥ 0.5(�+ 1), �+�− 1 ≤ z < 0.5��



55

Рассмотрим второй случай. Согласно лемме 1.7, при � ≤ (−2k2+(�+2�+3)k+

z−2�−2�−��)/(�−k) выполняется z < k
2−(�+�+2)k+�+2�+��. Решим

данное неравенство относительно k. Решениями данного неравенства являются:

— k < 0.5(�+ �+ 2) при z = 0.25(2��−�2 − (�− 2)2)

— k > 0.5(�+ �+ 2) при z = 0.25(2��−�2 − (�− 2)2) Нет решений

— k > 0.5(� + � + 2 +
︀

(�−�)2 + 4(z− �+ 1)) при z > 0.25(2��−�2 −

(�− 2)2) Нет решений

— k < 0.5(� + � + 2−
︀

(�−�)2 + 4(z− �+ 1)) при z > 0.25(2��−�2 −

(�− 2)2)

Таким образом, итоговое решение: k < 0.5(�+�+2−
︀

(�−�)2 + 4(z− �+ 1))

при z ≥ 0.25(2�� − �2 − (� − 2)2). Поскольку k < 0.5(� + � +

2 −
︀

(�−�)2 + 4(z− �+ 1)), верхняя граница степени БДҫструктуры � ≤

(−2k2+(�+2�+3)k+z−2�−2�−��)/(�−k) на промежутке k ∈ [0.25(�+2�+

5−
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2); 0.5(�+�+2−
︀

(�−�)2 + 4(z− �+ 1))].

Теорема доказана.

Рассмотрим, как меняются условия леммы 1.8 относительно различных мат-

риц. Вначале сформулируем лемму для матриц, относящихся к классу очень

широких.

Лемма 1.9. Параметры матрицы, относящейся к классу очень широких: � ≥

4, � ≥ 2�, 2�−�+ 1 ≤ z < 0.5��.

Доказательство. Согласно лемме 1.8 параметры матрицы:

1) 4 ≤ � ≤ 7,� ≥ 4,�+ �− 1 ≤ z < ��/2

2) � ≥ 8,4 ≤ � < 0.5(�+ 1), 2�−� ≤ z < 0.5��

3) � ≥ 8,� ≥ 0.5(�+ 1), �+�− 1 ≤ z < 0.5��

Согласно теореме 1.16, для очень широкой матрицы подходят только 2 условие,

поскольку параметры очень широкой матрицы: 4 ≤ � ≤ 0.5�, � ≥ 8, 2�−�+
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1 ≤ z < 0.5��.
⎧
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2�−� ≤ z < 0.5��,

2�−�+ 1 ≤ z < 0.5��,

� ≥ 8,

4 ≤ � ≤ 0.5�,

4 ≤ � < 0.5(�+ 1).

Решение данной системы: � ≥ 4, � ≥ 2�, 2� − � + 1 ≤ z < 0.5��. Таким

образом, для очень широкой матрицы параметры: � ≥ 4, � ≥ 2�, 2�−�+1 ≤

z < 0.5��. Теорема доказана.

Лемма 1.10 доказывается аналогично и формулируется относительно мат-

риц, не относящихся к классу очень широких.

Лемма 1.10. Параметры матрицы, не относящейся к классу очень широких:

� ≥ 4, 4 ≤ � ≤ 7, � + � − 1 ≤ z < 0.5�� или � ≥ 5, 8 ≤ � ≤ 2� − 1,

�+ �− 1 ≤ z < 0.5��.

Далее сформулируем лемму относительно широких матриц.

Лемма 1.11. Параметры широкой матрицы:

— 4 ≤ � ≤ 6, �+ 1 ≤ � ≤ 7, �+�− 1 ≤ z < 0.5��

— 5 ≤ � ≤ 7, 8 ≤ � ≤ 2�− 1, �+�− 1 ≤ z < 0.5��

— � ≥ 8, �+ 1 ≤ � ≤ 2�− 1, �+�− 1 ≤ z < 0.5��

Доказательство. Согласно лемме 1.10 параметры матрицы � ≥ 4, 4 ≤ � ≤ 7,

� + � − 1 ≤ z < 0.5�� или � ≥ 5, 8 ≤ � ≤ 2� − 1, � + � − 1 ≤ z < 0.5��.

Согласно теореме 1.17 необходимо, чтобы параметры матрицы удовлетворяли

соотношениям: � ≥ 4, � < � ≤ 2�−1, �+�−1 ≤ z < 0.5��. Решим системы

относительно данных условий.

1
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�+ �− 1 ≤ z < 0.5��,

4 ≤ � ≤ 7,

� < � ≤ 2�− 1,

� ≥ 4.
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Решение данной системы: 4 ≤ � ≤ 6, �+1 ≤ � ≤ 7, �+�−1 ≤ z < 0.5��

2
⎧

⎪

⎪

⎪

⎪
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⎪

⎨
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⎩

�+�− 1 ≤ z < 0.5��,

8 ≤ � ≤ 2�− 1,

� < � ≤ 2�− 1,

� ≥ 5.

Решения данной системы:

— 5 ≤ � ≤ 7, 8 ≤ � ≤ 2�− 1, �+�− 1 ≤ z < 0.5��

— � ≥ 8, �+ 1 ≤ � ≤ 2�− 1, �+�− 1 ≤ z < 0.5��

Таким образом параметры широкой матрицы:

— 4 ≤ � ≤ 6, �+ 1 ≤ � ≤ 7, �+�− 1 ≤ z < 0.5��

— 5 ≤ � ≤ 7, 8 ≤ � ≤ 2�− 1, �+�− 1 ≤ z < 0.5��

— � ≥ 8, �+ 1 ≤ � ≤ 2�− 1, �+�− 1 ≤ z < 0.5��

Теорема доказана.

Леммы 1.12, 1.13 доказывается аналогично и формулируются относительно

квадратных и узких матриц. Вначале рассмотрим случай квадратной матрицы.

Лемма 1.12. Параметры квадратной матрицы: � = �, � ≥ 4, 2� − 1 ≤ z <

0.5�2

Теперь рассмотрим случай узкой матрицы.

Лемма 1.13. Параметры узкой матрицы:

— 6 ≤ � ≤ 7, 5 ≤ � ≤ �− 1 �+ �− 1 ≤ z < 0.5��

— � ≥ 8, 5 ≤ � ≤ 7, �+ �− 1 ≤ z < 0.5��

— � ≥ 9, 8 ≤ � ≤ �− 1, �+ �− 1 ≤ z < 0.5��

На основе доказанных лемм сформулируем финальную теорему о составе

БДҫструктуры.
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Теорема 1.20. Степень БДҫструктуры подчиняется соотношению 2 ≤ � ≤

k − 1 , если число блоков 0.5(� + � + 2 −
︀

(�−�)2 + 4(z− �+ 1)) ≤ k <

min(�, 0.5(�+ 1)).

Степень БДҫструктуры подчиняется соотношению 2 ≤ � ≤ (−2k2 +

(� + 2� + 3)k + z − 2� − 2� − ��)/(� − k), если число блоков 0.25(� +

2� + 5 −
︀

4(2z− 3�+ 4) + (�− 2�+ 3)2) ≤ k < 0.5(� + � + 2 −
︀

(�−�)2 + 4(z− �+ 1))).

При этом параметры �,�, z:

1. Для очень широких матриц � ≥ 4, � ≥ 2�, 2�−�+ 1 ≤ z < 0.5��

2. Для широких матриц

— 4 ≤ � ≤ 6, �+ 1 ≤ � ≤ 7, �+�− 1 ≤ z < 0.5��

— 5 ≤ � ≤ 7, 8 ≤ � ≤ 2�− 1, �+�− 1 ≤ z < 0.5��

— � ≥ 8, �+ 1 ≤ � ≤ 2�− 1, �+�− 1 ≤ z < 0.5��

3. Для квадратных матриц � = �, � ≥ 4, 2�− 1 ≤ z < 0.5�2

4. Для узких матриц

— 6 ≤ � ≤ 7, 5 ≤ � ≤ �− 1 �+ �− 1 ≤ z < 0.5��

— � ≥ 8, 5 ≤ � ≤ 7, �+ �− 1 ≤ z < 0.5��

— � ≥ 9, 8 ≤ � ≤ �− 1, �+ �− 1 ≤ z < 0.5��

1.3 Выделение квазиблочной структуры

Далее исследуются алгоритмы выделения БЛҫ и БДҫструктур. Принцип

объединения вершин в блоки был предложен Ю.Ю. Финкельштейном [82] для

выделения БЛҫструктуры в разреженной матрице. Представлен модифициро-

ванный алгоритм, также предложена модификация алгоритма, направленная

на уменьшение количества блоков и сепараторов. Показано как с помощью дан-

ного подхода осуществляется выделение БДҫструктуры матриц.

Разреженные матрицы будут описываться с помощью структурных гра-

фов. Вершины структурного графа определяются его видом: если структурный



59

граф является графом взаимосвязей, то его вершины соответствуют отдельным

столбцам, а если структурный граф — граф взаимосвязей блоков, то его вер-

шины соответствуют подмножествам столбцов (рис. 2.1).

Более адекватным является представление матрицы в виде гиперграфа:

множество вершин гиперграфа � соответствует множеству вершин � графа

взаимосвязей матрицы, а гиперребра гиперграфа образуют подмножества вза-

имосвязанных вершин. То есть это такое обобщение графа взаимосвязей, в ко-

тором каждым ребром могут соединяться любые подмножества вершин. На

рисунке 1.8 изображён гиперграф, множеством вершин которого является мно-

жество веершин графа взаимосвязей {�1, . . . , �7}, а множество гиперрёбер —

{�1, �2, �3, �4} соответствует строкам матрицы.

Рисунок 1.8: Гиперграф

Также используется двойственный граф для представления структуры мат-

рицы, то есть граф, вершины которого соответствуют гиперребрам гиперграфа.

Пара таких вершин связаны ребром, если соответствующие гиперрёбра смежны

относительно � (см. рис. 1.9).

Рисунок 1.9: Двойственный граф

Алгоритм [82] позволяет выделять из двойственного графа БЛҫструктуру.

Он строится следующим образом. Пусть �m×n ҫ разреженная матрица, � ҫ ин-
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декс вершины �p, � ∈ {1, 2, . . . , �}. Далее необходимо выделить окрестности

вершины �p последовательно возрастающих порядков, т.е.

�
′

0(�p) = {�}, �
′

r+1 = �(�
′

r(�p)),� ≥ 0; (1.5)

�
′

r+1 = �(�
′

r(�p)),� ≥ 1 (1.6)

Выделение окрестностей заканчивается, когда при � = � выполняется условие

�
′

k+1(�p) = �
′

k(�p). После этого строится разбиение множества индексов строк,

входящих в блоки, по следующему принципу:

�r =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�
′

1(�p), � = 1,

�
′

r(�p)∖�
′

r−1(�p), 1 < � < �,

�
′

k(�p)
︀

�
′

k+1(�p)∖�
′

k−1(�p), � = �.

Затем находятся следующие множества индексов столбцов:

�r,r+1 = �(�r(�p))
︁

�(�r+1(�p)),

�r =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

� (�1 (�p)) ∖�12, � = 1,

� (�r (�p)) ∖ (�r−1,r ∪ �r,r+1) , 1 < � < �,

� (�k (�p)) ∖�k−1,k, � = �.

Описанный алгоритм находит БЛҫструктуру для разреженной матрицы. За-

метим, что БЛҫструктуры могут отличаться друг от друга, если первым будет

выбран другой столбец в матрице. Рассмотрим пример. Пусть дана система

неравенств следующего вида:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2�3 + �5 + 2�12 + 4�13 ≤ 6

2�1 + 3�2 + 3�5 + 2�11 ≤ 4

�6 + 4�7 + 8�12 + 3�14 ≤ 8

3�4 + 3�10 + �14 ≤ 4

�6 + 2�8 + 2�9 ≤ 2

�j ∈ {0, 1}, � = 1, 2, . . . , 14.

(1.7)

Матрица ограничений предложенной задачи:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 2 0 0 0 2 0 4 1 0 0 0

2 0 3 0 2 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 8 0 0 0 1 3 4

0 3 0 0 0 0 3 0 0 0 0 0 1 0

0 0 0 0 0 2 0 0 2 0 0 1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Зафиксируем, например, вершину �1. Рассмотрим возрастающие окрестно-

сти этой вершины. Очевидно, что окрестностью нулевого порядка будет индекс

выбранной вершины �
′

0 = {1}. Множество индексов строк �
′

1 = �(�
′

0(�1)). По-

скольку данная переменная находится во втором ограничении, �
′

1 = �(1) =

{2}. Второе ограничение — это 2�1+3�2+3�5+2�11 ≤ 4, значит окрестностью

первого порядка будет множество индексов переменных �
′

1 = {2; 5; 11}. При

этом множество индексов ограничений �
′

2 = �(�
′

1(�2; �5; �11)). Это соответству-

ет первому ограничению, поскольку переменные {�2; �11} являются свободны-

ми переменными, а {�5} содержится в неравенстве 2�3 + �5 + 2�12 + 4�13 ≤ 6.

Значит �
′

2 = �(2; 5; 11) = {1}. Таким образом, окрестностью второго поряд-

ка для �1 будет множество �
′

2 = {3; 12; 13}. Построим множество индексов

ограничений третьего порядка �
′

3 = �(�
′

2(�3; �12; �13)). Рассмотрим каждую

переменную множества �
′

2: {�3; �13} — свободные переменные, а а {�12} содер-

жится в неравенстве �6+4�7+8�12+3�14 ≤ 8. Это третье неравенство. Значит

�
′

3 = �(3; 12; 13) = {3}, а окрестностью третьего порядка будет �
′

3 = {6; 7; 14}.

Построим �
′

4 = �(�
′

3(�6; �7; �14)). Две переменные, соответствующие данному

множеству индексов, а именно — �6 и �14, входят в ограничения �6+2�8+2�9 ≤ 2

и 3�4+3�10+�14 ≤ 4 соответственно. Значит �
′

4 = �(6; 7; 14) = {4; 5}, а окрест-
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ности четвёртого порядка будет соответствовать множество �
′

4: {4; 8; 9; 10}. Пе-

ременные с этими индексами не связаны больше ни с какими другими не рас-

смотренными переменными, поэтому выполняется условие �
′

k+1(�p) = �
′

k(�p).

Затем строится разбиение множества индексов ограничений, входящих в блоки,

следующим образом:

�r =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�
′

1(�1) = {2}, � = 1,

�
′

2(�1)∖�
′

1(�1) = {1}, � = 2,

�
′

3(�1)∖�
′

2(�1) = {3}, � = 3,

�
′

4(�1)
︀

�
′

5(�1)∖�
′

3(�1) = {4; 5}, � = 4,

Затем находятся следующие множества, которые содержат индексы сепара-

торов БЛҫструктуры:

�12 = �(�1(�1))
︁

�(�2(�1)) = {5},

�23 = �(�2(�1))
︁

�(�3(�1)) = {12},

�34 = �(�3(�1))
︁

�(�4(�1)) = {6; 14},

Далее находятся множества, содержащие индексы свободных переменных:

�r =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

� (�1 (�1)) ∖�12 = {2; 11}, � = 1,

� (�2 (�1)) ∖ (�23 ∪ �34) = {3; 13}, � = 2,

� (�3 (�1)) ∖�34 = {4; 8; 9; 10}, � = 3.

Таким образом, номера окрестностей соответствуют номерам блоков, то есть

первый блок соответствует второму ограничению, поскольку �
′

1(�1) = {2}. В

нём содержатся свободные переменные с индексами �0 = {1} и �1 = {2; 11},

сепаратор с индексом �12 = {5}. Второй блок будет соответствует первому огра-

ничению и содержит переменные из множеств �12, �2, �23. Третий блок соответ-

ствует третьему ограничению и содержит переменные из множеств �23, �3, �34.

Четвёртый блок соответствует четвёртому и пятому ограничениям и содержит

переменные из множеств �34, �4.

Изменённая матрица ограничений имеет вид:
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⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 3 2 3 0 0 0 0 0 0 0 0 0 0

0 0 0 1 2 4 2 0 0 0 0 0 0 0

0 0 0 0 0 0 8 4 1 3 0 0 0 0

0 0 0 0 0 0 0 0 0 1 3 3 0 0

0 0 0 0 0 0 0 0 0 1 0 0 2 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Заметим, что данный алгоритм содержит следующий недостаток. Сепара-

торы могут оказаться очень большими, то есть состоять из большого числа

переменных. Это крайне усложняет работу с матрицей (например, используя

локальный блочноҫэлиминационный алгоритм, который будет подробно опи-

сан в четвёртой главе). Поэтому есть смысл добавлять ограничение на размер

сепаратора и, если он превышает допустимый, выполнять процедуру слияния

блоков. То есть, если сепаратор между между блоками �a,b такой, что его мощ-

ность |�a,b| < �max, где �max — допустимая величина сепаратора, то новый блок

�new будет соответствовать �a

︀

�b. Сепараторами этого блока будут множе-

ства �a−1,a и �b,b+1, а свободными переменными — �new = �a

︀

�b.

Далее рассматривается численный эксперимент сравнения основного и мо-

дифицированного алгоритма. Целью данного эксперимента является тестиро-

вание алгоритма выделения БЛҫструктур для разреженных матриц реальной

размерности. Опишем, как именно был модифицирован основной алгоритм.

Производился поиск вырожденных блоков, то есть таких, для которых �r = ∅.

При нахождении вырожденных блоков происходило их склеивание, т.е. пустой

блок сливался со следующим за ним. Также была добавлена возможность уста-

навливать пороговую величину сепаратора. Если размер сепаратора превышал

заданный порог, то блоки также объединялись.

Алгоритм [82] был реализован на языке программирования C++ и встроен

как часть библиотеки LES. Матрицы для эксперимента брались из библиотеки

CSP 6. Выбранные матрицы разбивались на пять групп согласно структуре гра-

фа взаимосвязей (рис. 1.10): ’dubois’, ’bridge’, ’adder’, ’pret’ и ’grid’ , при этом

для каждой матрицы строилась БЛҫструктура с помощью основного и моди-

фицированного алгоритмов. Результаты численного эксперимента приведены в

таблице 1.3.

6http://www.dbai.tuwien.ac.at/proj/hypertree



64

а) б)

в) г)

д)

Рисунок 1.10: Примеры тестовых задач из соответствующих групп: а) ’dubois’,
б) ’bridge’, в) ’adder’, г) ’pret’ и д) ’grid’

Следует отметить, что в качестве первого столбца, используемого алгорит-

мом, для которого находилась окрестность, брался столбец с номером � = {0}.

Рассмотрим подробнее работу основного алгоритма на примере системы

ограничений с матрицей ’grid2d_10’. Данная матрица состоит из 50ҫти столб-

цов и 50ҫти строк. Выделим БЛҫструктуру из двойственного графа следую-

щим образом. Зафиксируем столбец с номером 0. �0 = {0, 10, 36} — множе-

ство индексов ограничений, в которые входит переменная �0. Это ограничения

�0, �10, �36:

�0 : �0 + �1 + �2 <= 1

�10 : �0 + �25 + �26 <= 1

�36 : �0 + �1 + �26 + �45 <= 1
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Множеством индексов ограничений следующего порядка �1 =

{15, 18, 20, 21, 38, 46} является множество индексов ограничений, в кото-

рые входят переменные окрестности �0, но не входит сама переменная

�0:

�15 : �21 + �22 + �25 <= 1

�18 : �22 + �25 + �26 + �37 <= 1

�20 : �1 + �2 + �43 <= 1

�21 : �1 + �43 + �44 + �45 <= 1

�38 : �26 + �37 + �40 + �45 <= 1

�46 : �39 + �40 + �44 + �45 <= 1

У множеств �0 и �1 есть общие элементы. Это переменные окрестности �0

без переменной �0: �0 = {1, 2, 25, 26, 45}.

Аналогичным образом строим множества � более высоких порядков. Таким

образом рёбрами гиперграфа будут следующие множества:

�0 = {0, 10, 36}

�1 = {15, 18, 20, 21, 38, 46}

�2 = {6, 7, 16, 19, 31, 39, 40, 41}

�3 = {3, 4, 5, 8, 11, 26, 27, 32, 33, 49}

�4 = {2, 14, 23, 28, 30, 35, 37, 43, 44, 47}

�5 = {1, 9, 12, 22, 24, 34, 45}

�6 = {17, 25, 29, 42}

�7 = {13, 48}

Для двойственного графа множества � будут являться гипервершинами, а

гиперрёбрами будут множества индексов возрастающих окрестностей �:

�0 = {1, 2, 25, 26, 45}
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�1 = {21, 22, 37, 39, 40, 43, 44}

�2 = {11, 12, 14, 15, 17, 19, 20, 24, 38}

�3 = {7, 10, 13, 16, 18, 23, 27, 28, 35, 36}

�4 = {4, 5, 8, 9, 30, 31, 46, 47, 48}

�5 = {3, 6, 29, 41, 49}

�6 = {32, 34, 42}

Рисунок 1.11: БЛҫструктура матрицы

Теперь покажем преимущество модифицированной версии алгоритма над

основной на примере системы ограничений для матрицы ’bridge_15’. В данной

матрице 137 столбцов и 137 строк. В случае основного и модифицированного
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алгоритмов для соответствующей системы ограничений получены следующие

множества индексов ограничений 1.2.

Рассмотрим результаты работы программы. Модифицированный алгоритм

осуществил слияние блоков таким образом, что множества индексов ограниче-

ний:

�new
0 = � old

0

︁

� old
1

�new
1 = � old

2

︁

� old
3

�new
2 = � old

4

︁

� old
5

�new
3 = � old

6

︁

� old
7

�new
4 = � old

8

︁

� old
9

�new
5 = � old

10

︁

� old
11

�new
6 = � old

12

︁

� old
13

︁

� old
14

�new
7 = � old

15

︁

� old
16

�new
8 = � old

17

︁

� old
18

�new
9 = � old

19

�new
10 = � old

20

Здесь �new
j — множества индексов ограничений, полученные с помощью мо-

дифицированной версии алгоритма, а � old
j — основным алгоритмом. При этом

множества индексов сепараторов следующие:

�new
0,1 = �old

1,2

�new
1,2 = �old

3,4

�new
2,3 = �old

5,6

�new
3,4 = �old

7,8

�new
4,5 = �old

9,10

�new
5,6 = �old

11,12
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Таблица 1.2: Множества индексов ограничений для задачи ’bridge_15’,
полученные с помощью основного и модифицированного алгоритмов

Множество Основной алгоритм Модифицированный алгоритм
�0 0, 36, 55, 87 0, 36, 55, 57, 74, 87, 103
�1 57, 74, 103 9, 21, 42, 51, 61, 95, 127, 135

�2 9, 61, 95, 135
2, 10, 12, 13, 14, 17, 25, 46, 62,

68, 72, 79, 99, 123, 128, 133

�3 21, 42, 51, 127
4, 33, 34, 37, 43, 45, 48, 59, 65,

78, 82, 93, 98, 102, 111, 112, 113, 121

�4
13, 14, 17, 25, 46, 62,

68, 72, 79, 123, 128, 133
5, 7, 26, 35, 52, 53, 67, 73, 80, 81,

100, 101, 104, 108, 114, 117, 134, 136

�5 2, 10, 12, 99
8, 18, 19, 22, 28, 29, 31, 32, 44,

54, 66, 84, 85, 105, 107, 116, 130, 131

�6
4, 34, 37, 43, 48, 59, 65,

82, 98, 111, 112, 113

3, 6, 11, 15, 16, 27, 30, 39, 56,
60, 64, 69, 71, 75, 77, 88, 94, 96,

109, 115, 118, 124, 125, 129
�7 33, 45, 78, 93, 102, 121 1, 38, 40, 41, 63, 70, 89, 92, 120

�8
7, 35, 52, 53, 67, 73, 81,
108, 114, 117, 134, 136

20, 23, 24, 76, 83, 97, 119, 122, 132

�9 5, 26, 80, 100, 101, 104 47, 50, 106

�10
18, 19, 22, 29, 31, 32, 44,

54, 105, 107, 116, 130
49, 58, 86, 90, 110, 126

�11 8, 28, 66, 84, 85, 131

�12
3, 11, 15, 27, 30, 39, 77,

88, 94, 96, 109, 118
�13 16, 56, 60, 71, 124, 129
�14 6, 64, 69, 75, 115, 125
�15 40, 63, 92
�16 1, 38, 41, 70, 89, 120
�17 20, 76, 83
�18 23, 24, 97, 119, 122, 132
�19 47, 50, 106
�20 49, 58, 86, 90, 110, 126
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�new
6,7 = �old

14,15

�new
7,8 = �old

16,17

�new
8,9 = �old

18,19

�new
9,10 = �old

19,20

Здесь �new
ij — множества индексов сепараторов, полученные с помо-

щью модифицированной версии алгоритма, а �old
ij — основным алго-

ритмом. Рассмотрим соотношение множеств индексов свободных пере-

менных. Множества, полученные основным алгоритмом: �old
0 = {0},

�old
4 = {37, 43, 58, 113}, �old

13 = {104}, �old
20 = {96, 97, 108, 124}. Осталь-

ные 16 множеств пусты. При этом множества,полученные модифициро-

ванным алгоритмом: �new
0 = {0, 1, 2, 6, 27, 28, 34, 51, 77, 89, 103, 111, 128},

�new
1 = {17, 23, 59, 75, 76, 102, 118, 119, 129, 131},

�new
2 = {24, 44, 45, 47, 63, 64, 66, 68, 122, 133}, �new

3 =

{3, 10, 18, 31, 33, 39, 41, 42, 50, 54, 55, 61, 81, 82, 87, 104, 110, 114, 115, 120, 121, 135, 136}

�new
4 = {96, 97, 108, 124}. Больше множеств нет. Таким образом, модифициро-

ванный алгоритм позволяет решать на 16 подзадач меньше, чем основной.

Анализируя результаты полученные в таблице 1.3, нетрудно заметить эф-

фективность работы модифицированного алгоритма. Так во многих матрицах

было существенно уменьшено количество блоков и размер сепараторов, что на-

прямую влияет на количество решаемых подзадач.

Исследуем подробнее результаты, полученные для некоторых тестовых мат-

риц. Обратим внимание на матрицу ’dubois100’. Для неё число блоков сильно

уменьшилось, а размер максимального сепаратора сократился на 2. Для матриц

’pret150_25’ и ’pret150_75’ сильно сократилось число блоков.

Основным результатом данного эксперимента является тестирование моди-

фицированного алгоритма для выделения БЛҫструктур в разреженных мат-

рицах. Произведен сравнительный эксперимент для основной и модифициро-

ванной версий алгоритма, показавший существенное уменьшение количества

решаемых подзадач для модифицированного алгоритма.

Как показано в [142], переход от БДҫструктуры к БЛҫ путем объединения

«слоев» дерева нецелесообразен. В связи с этим представляет интерес выделе-

ние БДҫструктуры в разреженном графе с помощью модификации описанного

выше алгоритма.
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Таблица 1.3: Результаты декомпозиции задач ДО с помощью основного и
модифицированного алгоритма

Задача Основной алгоритм Модифицированный алгоритм
Кол-во блоков Максимальный

сепаратор
Кол-во блоков Максимальный

сепаратор
adder_15 31 4 16 4
adder_50 61 6 51 6
adder_99 121 6 101 6
dubois23 23 2 23 2
dubois30 30 2 30 2
dubois50 50 2 50 2
dubois100 98 6 2 4
pret60_25 8 10 7 10
pret60_60 8 10 7 10
pret150_25 15 12 11 10
pret150_75 15 12 11 10
grid2d_10 8 10 2 3
grid10 16 10 3 9
grid3d_4 5 12 2 6
bridge_15 21 10 4 10
bridge_50 56 10 5 8
bridge_75 78 9 4 9
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В статье [88] для преобразования БЛҫструктуры в БДҫ предложен алгоритм

выделения компонент связности. Ниже предложена другая идея модификации

основного алгоритма для выделения БДҫструктуры — МДФ(БД).

Предлагаемая МДФ(БД) состоит из следующих этапов:

Алгоритм 1 Модификация основного алгоритма

Шаг 1. Выделение окрестностей возрастающих порядков.

Шаг 2. Разбиение множества индексов ограничений.

Шаг 3. Нахождение блоков.

Шаг 4. Выделение подблоков.

Первые три шага фактически являются шагами алгоритма [82], рассмот-

ренного выше. Остановимся на четвёртом шаге — выделение подблоков. По-

лученная с помощью основного алгоритма БЛҫструктура {�1, . . . , �k} задачи

ДО на двойственном графе � имеет вид цепи. Необходимо узнать, возмож-

но ли расщепить блоки на подблоки таким образом, чтобы образовалась БДҫ

структура. Для этого воспользуемся теоремой о составе БДҫструктуры из пара-

графа 1.1. Далее, если существует степень БДҫструктуры, большая двух (для

БЛҫструктуры), значит БДҫструктуру указанной степени можно выделить. Пе-

рейдём к алгоритму выделения подблоков:

Алгоритм 2 Процедура выделения подблоков в БЛҫструктуре

Шаг 1. Исследование сепаратора относительно текущего блока.

Шаг 2. Расщепление сепаратора, если существуют несвязанные ограничения в
блокеҫпотомке.

Шаг 3. Расщепление блокаҫпотомка на подблоки.
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Проиллюстрируем этапы МДФ(БД) на примере ограничений задачи ДО сле-

дующего вида:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�4 + 2�5 + 4�6 + 2�7 ≤ 6

3�1 + 2�2 + 2�3 + 3�4 ≤ 4

8�7 + 4�8 + 3�9 + �10 ≤ 8

�9 + 3�11 + 3�12 ≤ 4

�10 + 2�13 + 2�14 ≤ 2

�j ∈ {0, 1}, � = 1, 2, . . . , 14.

(1.8)

Введём графовое представление для этой задачи. Построим граф ограни-

чении задачи ДО (1.12) из примера (1.8). Переменные задачи соответствуют

вершинам графа, а неравенства определяют наличие рёбер между вершинами.

Если вершины находятся в одном неравенстве, они все соединяются рёбрами

между собой. То есть, множество вершин — � , а множество рёбер состоит из

24ҫх элементов. Некоторые из ограничений — (�1, �2); (�1, �3); (�2, �3); (�4, �5).

Построим гиперграф для задачи ДО 1.13 из примера (1.8). Вершинами гипер-

Рисунок 1.12: Графовое представление задачи ДО: граф ограничений

графа будет множество переменных, а гиперрёбра образуют подмножества вза-

имосвязанных переменных. Таким образом, множество вершин — � , а множе-

ство гиперрёбер — �1, �2, �3, �4, �5.
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Рисунок 1.13: Графовое представление задачи ДО: гиперграф

Построим двойственный граф для задачи ДО 1.14 из примера (1.8).

Множеством вершин двойственного графа 1.14 для задачи будет множе-

ство гиперрёбер гиперграфа, причем пара таких вершин соединяется реб-

ром в двойственном графе, если они имеют общие вершины из � . В дан-

ном случае множество вершин — �1, �2, �3, �4, �5, а множество рёбер —

(�1, �2); (�1, �3); (�3, �4); (�4, �5).

Рисунок 1.14: Графовое представление задачи ДО: двойственный граф

Теперь выделим БЛҫструктуру с помощью основного алгоритма. Зафик-

сируем переменную �5 и изучим её окрестности возрастающих порядков. Это

�0 = {5}, � ′
1 = {4; 6; 7}, � ′

2 = {1; 2; 3; 8; 9; 10} и � ′
3 = {11; 12; 13; 14}. При этом

множества индексов ограничений принимают вид: � ′
1 = {1}, � ′

2 = {2; 3} и

� ′
3 = {4; 5}. Определим следующие множества:

�r =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�
′

1(�5) = {1}, � = 1,

�
′

2(�5)∖�
′

1(�5) = {2; 3}, � = 2,

�
′

3(�5)∖�
′

2(�5) = {4; 5}, � = 3.

Найдём множества, которые содержат сепараторы БЛҫструктуры:

�12 = �(�1(�5))
︁

�(�2(�5)) = {4; 7},

�23 = �(�2(�5))
︁

�(�3(�5)) = {9; 10}.
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Далее найдём множества, содержащие индексы столбцов, которые не явля-

ются связывающими:

�r =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

� (�1 (�5)) ∖�12 = {5; 6; }, � = 1,

� (�2 (�5)) ∖ (�23 ∪ �34) = {1; 2; 3; 8}, � = 2,

� (�3 (�5)) ∖�34 = {11; 12; 13; 14}, � = 3.

Таким образом, БЛҫструктура состоит из трёх блоков {�1, �2, �3}, которые

выглядят следующим образом: (рис. 1.15).

Рисунок 1.15: Выделение БЛҫструктуры {�1, �2, �3} с помощью основного
алгоритма

Далее с помощью процедуры выделения подблоков найдём подблоки в по-

лученной структуре. (рис. 1.16). Рассмотрим сепаратор �12 = {4; 7}. Вершины

�4 и �7 соответствуют элементам, которые находятся в различных строках, и не

существует такой строки, для которой бы существовал связывающий столбец

относительно данных элементов. Значит блок �2 можно расщепить на подбло-

ки соответственно сепаратору �12. Вместо блока �2 получим подблоки �1 и �2,

где �1 = {2}, �C1
= {1; 2; 3} и �2 = {3}, �C2

= {8}, �C2,3 = {9; 10}. Рассмотрим

сепаратор �C2,3. Переменные �9 и �10 находятся в различных ограничениях,

и не существует такого ограничения, которое содержало бы обе эти перемен-

ные. Значит блок �2 можно расщепить на подблоки соответственно сепаратору

�C2,3. Вместо блока �2 получим подблоки � ′
1 и � ′

2, где � ′
1 = {5}, �C ′

1
= {13; 14}

и �2 = {4}, �C2
= {11; 12}.
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а) б)

Рисунок 1.16: Выделение подблоков: а)�1 и �2 б)�1‘ и �2‘

Таким образом, в результате работы процедуры выделения подблоков по-

лучим новую БДҫструктуру степени � = 3, которая состоит из пяти блоков

{� ′
1 = �1, �

′
2 = �1, �

′
3 = �2, �

′
4 = � ′

1, �
′
5 = � ′

2}, которые выглядят следующим

образом:
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Рисунок 1.17: БДҫструктура {�1‘, �2‘, �3‘, �4‘, �5‘}

Заметим, что в данной задаче отсутствовали ограничения, которые не со-

держали сепараторов между блоками. В случае достаточно больших задач ДО

имеет смысл рассматривать «промежуточные» сепараторы внутри блоков для

выделения дополнительных элементов БДҫструктуры.



Глава 2

Порядок исключения переменных в локальном

элиминационном алгоритме

Локальный элиминационный алгоритм представляет из себя декомпозици-

онный итерационный метод, где на каждом шаге фиксируется (исключается,

элиминируется) переменная или группа переменных. Они принимают фикси-

рованные значения 0 или 1, если речь идёт о булевых постановках. При этом

оказывается, что правила выбора элиминации влияет на скорость работы алго-

ритма. Правила исключения формулируются в терминах понятия теории гра-

фов. В данной главе устанавливаются элиминационные правила, а также вво-

дятся понятия и доказываются свойства графовых структур, соответствующих

порядку элиминации. Это в частности позволяет утверждать, что задача об

оптимальном выборе порядка является NPҫполной.

2.1 Методы декомпозиции в целочисленном программи-

ровании

Ниже рассматриваются разреженные задачи ДО. Рассмотрим определение

из [143].

Определение 2.1. Задачей дискретной оптимизации называется задача сле-

дующего вида:

� = ����x∈��(�), (2.1)

где � — конечное или счётное множество допустимых решений, а ���� — экс-

тремум функции, то есть её минимум или максимум. При этом � называется

вектором решений, а �(�) — целевой функцией задачи.
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Зададим множество � системой ограничений: �i(�) T 0, � ∈ � , где �i(�) —

функция для ограничения �, множество индексов ограничений � = {1, . . . ,�},

множество индексов переменных задачи — � = {1, . . . , �}. Если соответству-

ющая задача ДО имеет целочисленные компоненты вектора решений � =

(�1, . . . , �n) : �j ∈ Z, � ∈ � ′ ⊂ � , то такую задачу будем называть задачей

частичноҫцелочисленного программирования. Если � ′ = � , будем называть

такую задачу задачей целочисленного программирования. Рассмотрим опреде-

ление задачи целочисленного программирования из [81].

Определение 2.2. Задачей целочисленного линейного программирования

(ЦЛП) называется задача, которая формулируется следующим образом:

����{�� | �� T �, все компоненты � — целочисленные}. (2.2)

Здесь � — вектор целевой функции, � — матрица ограничений, а � — вектор

ограничений.

Замечание. Соответственно, задача частичноҫцелочисленного линейного про-

граммирования (ЧЦЛП) будет формулироваться так:

����{�� | �� T �, существуют целочисленные компоненты �}. (2.3)

Далее будем рассматривать целочисленную задачу линейного программиро-

вания с булевыми переменными:

����{�� | �� T �, �j ∈ {0, 1}, � ∈ �}. (2.4)

Модели задач с булевыми переменными, т.е. переменными, принимающи-

ми только два значения «1», или «0», представляют важнейший класс задач

ДО. С помощью булевых переменных можно моделировать и решать задачи,

в которых надо выбирать решение из имеющихся различных вариантов. Такие

задачи встречаются в различных прикладных областях: задача о назначении,

темпоральная задача о ранце, задача коммивояжёра, задача выбора вариантов,

задача размещения и т.д.

Рассмотрим задачу целочисленного линейного программирования с булевы-

ми переменными (2.4) на максимум в общем виде:
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�(�) =
m︁

j=1

�j�j → max (2.5)

с ограничениями

m︁

j=1

�ij�j ≤ �i, � = 1, 2, . . . , �; (2.6)

�j ∈ {0; 1}, � = 1, 2, . . . ,�; (2.7)

где � = (�1, �2, . . . , �m) ∈ � — множество переменных.

Под разреженной задачей ЦЛП будем понимать такую задачу, матрица огра-

ничений которой является разреженной. Построим пример задачи ЦЛП. (2.5)ҫ

(2.7).

�1 + �2 + 4�3 + 3�4 + 2�5 + 5�6 + 2�7 → max (2.8)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�2 + 2�3 + 4�4 ≤ 6

3�1 + 2�2 + 2�3 ≤ 4

8�2 + 4�5 ≤ 8

�3 + 3�6 + 3�7 ≤ 4

�j ∈ {0, 1}, � = 1, 2, . . . , 7.

(2.9)

Подразумевается, что вершины графа взаимосвязей матрицы � и вершины

графа ограничений соответствующей задачи ЦЛП эквивалентны.

x1 x3 x6

x5

x7x4x2

Рисунок 2.1: Граф ограничений, описывающий ограничения задачи ДО из
примера (2.8)
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В [144] рассматриваются задачи частичноҫцелочисленного линейного про-

граммирования (ЧЦЛП) с блочной структурой. Здесь под блочной структурой

понимается задача вида (2.10ҫ2.12). Целевая функция задачи задаётся следую-

щим образом:
p

︁

i=1

(�i�i + � ′
i�i) + � ′′� → min; (2.10)

Ограничения задач ЧЦЛП с блочной структурой делятся на два типа: связы-

вающие и блочные. Связывающие ограничения задачи имеют вид:

p
︁

i=1

(�ij�i + �′
ij�i) + �′′� = �0j, � ∈ [1 : �0]. (2.11)

Блочные ограничения задачи имеют вид:

�i�i,+�′
i�i +�′′� = �i, � ∈ [1 : �]. (2.12)

Рассмотрим компоненты целевой функции и ограничений. В задаче вида

(2.10ҫ2.12) участвуют два вектора решений задачи — дискретный вектор реше-

ний �i ∈ Zni

+ и непрерывный вектор решений �i ∈ Rn′

i

+ , где � ∈ [1 : �], а также

связывающая переменная � ∈ Rn′′

+ , которая может быть непрерывной или це-

лочисленной в зависимости от конкретной модели задачи. В общем случае мы

будем понимать под связывающей переменной � вектор связывающих перемен-

ных zk, где z — блок переменных типа �. Дискретному вектору решений �i

соответствуют вектор целевой функции �i размерности �i, матрица ограниче-

ний задачи �ij и �ij — матрицы размерностей �0×�i и �i×�i соответственно,

� ∈ [1 : �], � ∈ [1 : �0]. Непрерывному вектору решений �i соответствуют вектор

целевой функции � ′
i размерности �′

i, матрица ограничений задачи �′
ij и �′

ij —

матрицы размерностей �0×�′
i и �i×� ′

i соответственно, � ∈ [1 : �], � ∈ [1 : �0].

Переменной � соответствуют компонента целевой функции � ′′, вектор ограни-

чений задачи �′′
j размерности �0 и �′′

ij — матрица размерности �i × � ′′,

� ∈ [1 : �], � ∈ [1 : �0]. При этом �0j, � ∈ [1 : �0] — компоненты вектора ограни-

чений, соответствующие связывающим ограничениям, а �i, � ∈ [1 : �] — векторы

размерности �i, соответствующие блочным ограничениям.

Обратим внимание, что в данной работе будут рассматриваться связываю-

щие ограничения вида
︀p

i=1�ij�i+�′′
ij�j = �0j, � ∈ [1 : �0], где �i — свободные
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переменные, которые входят только в ограничения своего блока, а �j — цело-

численные связывающие переменные, которые входят в ограничения несколь-

ких блоков. �ij, �
′′
ij и �0j — соответствующие коэффициенты при переменных,

, � ∈ [1 : �], � ∈ [1 : �0]. В дальнейшем мы будем разделять �i и �j согласно

множествам их индексов.

Далее в [144] приводится классификация блочных задач ЧЦЛП. По типу

связей между подсистемами блочные задачи ЧЦЛП делятся следующим обра-

зом:

— если �′′ = 0, то задача не содержит связывающих переменных, иначе —

содержит;

— если �0 = 0, то задача не содержит связывающих ограничений, иначе —

содержит.

Заметим, что в данной работе рассматриваются задачи дискретной оптими-

зации, которые содержат связывающие переменные, но не содержат связываю-

щих ограничений.

Далее рассмотрим блочные задачи ЧЦЛП по наличию непрерывных пере-

менных в блоках:

— если �′′ = 0, �′
i = 0, � ∈ [1 : �], то задача является задачей ЦЛП;

— в противном случае задача является задачей ЧЦЛП.

Рассмотрим классификацию по типу связывающих ограничений: связываю-

щие ограничения (2.11) могут содержать ненулевые коэффициенты только при

целочисленных или непрерывных переменных, либо содержать коэффициен-

ты только одного знака, либо обладать какойҫлибо спецификой, которая будет

использована при построении алгоритма для решения задачи ДО. Классифи-

кация по типу подсистем подразумевает, что структура блочных ограничений

существенно влияет на эффективность применения итерационных методов де-

композиции. В данной работе связывающие ограничения не используются.

В [144] рассматриваются частные случаи блочных задач ЧЦЛП: задача о

рюкзаке, задача транспортного типа и её модификации, задачи о разбиении и

покрытии, а также распределительная задача с булевыми переменными. Так-

же рассматриваются блочные модели отраслевого планирования, в системах

обработки данных и некоторые другие блочные целочисленные задачи ДО.
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Так как блочные задачи встречаются на практике достаточно часто, раз-

работано множество алгоритмов решения оптимизационных задач с блочной

структурой, которые называются алгоритмами блочного программирования.

Алгоритмы обработки разреженных задач направлены на извлечение опреде-

лённых структур, то есть получение нулей на нужных позициях матрицы. При

этом возникают новые ненулевые элементы в ещё необработанной части матри-

цы. Р. Тьюарсон в [145] решает задачу минимизации этого процесса, поскольку

весь процесс решения можно промоделировать заранее и выбрать оптимальный

порядок шагов алгоритма. Эта же идея лежит в основе выделения блочных

структур в задачах ДО. В статье [146] анализируется возможность использова-

ния программного пакета FBDK (Function Block Development Kit) в качестве

инструмента для разработки и реализации задач оптимизации управления тех-

нологическими процессами. Оценка инструмента осуществляется с точки зре-

ния начинающего пользователя путем разработки алгоритма Particle Swarm

Optimization (PSO), который используется изҫза его легкого внедрения и на-

дежности. В статье [147] блочное программирование используется для разра-

ботки и оценки трансмиссии трактора. В [148] рассматривается робастная схема

выделения блочных структур и исследуется эффективность такого алгоритма.

В [149] исследуется выделение блочной структуры с помощью программного па-

кета SCOTCH, причём рассматриваются задачи с линейными ограничениями,

при этом целевая функция является квадратичной.

Перейдём к выделению блочной структуры задач, описанных выше, в кон-

тексте индексов переменных. Из множества индексов вектора решений � вы-

делим подмножества �1, . . . , �m, которые соответствуют ограничениям �i(�).

Объединим подмножества �1, . . . , �m в группу множеств �̃1, . . . , �̃m̃, � ≥ �̃

таким образом, чтобы каждое �i входило в одно и только в одно множество �̃r,

� ∈ {1, . . . , �̃}. Рассмотрим полученную блочную структуру �1, . . . , �m̃, где �r

— блок, то есть подмножество переменных �j ∈ �r, номера которых � ∈ �̃r.

Если множества �1, . . . , �r можно упорядочить таким образом, что у каждого

блока будут общие элементы с предыдущим и последующим множеством и не

будет общих элементов ни с каким другим множеством, будем называть такую

задачу ЦЛП задачей с БЛҫструктурой.

Класс БЛҫзадач линейного программирования — задач для динамического

планирования, был среди первых классов разреженных задач линейного про-
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граммирования большой размерности (см. Dantzig [150]). James Ho и Etienne

Loute опубликовали следующие примеры БЛҫзадач ЛП: задачи составления

назначений, задачи для многоэтапного планирования, задачи расписаний и за-

дачи многоэтапного структурного проектирования [151]. Темпоральные зада-

чи о ранце [152], которые достаточно недавно начали применяться для реше-

ния задач предварительного резервирования вычислительных ресурсов в Grid

Computing, некоторые задачи управления трудовыми ресурсами [153], а также

управления в иерархических (как правило, в древовидных) структурах, задачи

линейного динамического программирования [154], динамические модели эко-

номики, которые учитывают фактор времени в явном виде [155], задачи мно-

гоэтапного стохастического программирования, сетевые задачи также имеют

БЛҫструктуру. Под структурной декомпозицией задачи будем понимать выде-

ление и упорядочивание её блочной структуры для дальнейшего использования.

Ниже приведём краткий обзор современных методов декомпозиции задач ЦЛП

и ЧЦЛП.

В [3] изучаются методы декомпозиции для блочных задач целочисленного

программирования. Там представлен обзор по данной проблематике до середи-

ны восьмидесятых годов прошлого столетия. Ниже предлагается краткий обзор

последующего периода. Разумеется, он не претендует на полноту, далее пред-

ставлены некоторые оригинальные подходы.

В [156] рассматривается использование модели задачи смешанного целочис-

ленного программирования для решения задач управления планированием ис-

пользования рабочей силы и её возможной транспортировки. В этой задаче

множество исполнителей назначается на выполнение заданий, места выполне-

ния которых распределены географически. Такая постановка возникает в сце-

нариях планирования работы социальных работников в Великобритании. Авто-

ры представляют задачу смешанного целочисленного программирования, кото-

рая отражает важнейшие особенности практической задачи, такие как наличие

определенных географических районов и приспособляемость исполнителей (их

доступность и различную мобильность). В статье показано, что на качество

итогового решения влияет порядок, в котором решаются подзадачи. Поэтому

авторы исследуют различные способы упорядочивания подзадач, и показывают,

что весьма перспективным является подход на основе декомпозиции, который
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предоставит решения высокого качества за разумное время и используя точный

метод оптимизации.

В статье [157] было обнаружено, что в задачах назначения и планирования,

ПО для решения задач на основе смешанного целочисленного программиро-

вания стало конкурировать или превосходить подходы, основанные на методе

Бендерса (использующего логическую декомпозицию задачи). Приведенные в

той статье реализации метода декомпозиции Бендерса, тем не менее, отличают-

ся от описанных в цитированной авторами литературе. Это приводит к тому,

что производительность решения оказывается существенно ниже, чем указан-

но в источниках. В [158] обнаружили, что для задач большей размерности, при

корректной реализации метода Бендерса, он остаётся на 2ҫ3 порядка быстрее,

чем самые новейшие коммерческие системы решения задач на основе подходов

смешанного целочисленного программирования, что полностью делает проти-

воположными выводы предыдущей статьи.

В работе [159] предлагается архитектура для решения задач построения оп-

тимальных траекторий, декомпозиция в которой устроена следующим образом:

глобальная задача обхода препятствий разбивается на простые подзадачи, со-

ответствующие гомотопиям различных путей. В классических подходах к пла-

нированию траекторий на основе гомотопий, планирование траектории и иден-

тификация гомотопий проводятся одновременно, что приводит к большой вы-

числительной сложности. В данной статье предлагается метод, позволяющий

перечислять и явно выражать различные классы гомотопий до шага планиро-

вания траектории или оптимизации, что позволяет расщепить задачу на более

простые независимые подзадачи. В статье изложено два интересных результата.

Первый результат - это описание метода, который использует известные методы

н ячеевидной декомпозиции (cell decomposition), чтобы перечислить и описать

все созданные локальные задачи, которые могут быть решены эффективно и

независимо. Кроме того, проанализировано отношение между предложенны-

ми представлениями ячейка-последовательность (cell-sequence representation),

и классами гомотопий. Второй результат представляет собой новый, вычисли-

тельно эффективный метод решения задачи оптимизации траекторий в виде

последовательности ячеек, основанный на смешанном целочисленном квадра-

тичном программировании. При помощи симуляции показаны вычислительная

эффективность и большое множество решений. Предложенная формулировка
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задачи смешанного целочисленного квадратичного программирования хорошо

вписывается в класс подходов на основе предсказаний для линейных моделей с

невыпуклыми ограничениями на отсутствие столкновений.

В [160] авторы рассматривают класс двухэтапных задач стохастического це-

лочисленного программирования, где на первом этапе переменные являются

бинарными, а на втором - целочисленными общего вида. Разработан алгоритм

декомпозиции, аналогичный методам L-разбиения и Бендерса, где при помощи

сечения Гомори, итеративно получаются всё более и более точные приближения

решений целочисленных задач второго этапа. Авторы показывают, что предло-

женная методология является гибкой, допуская различные способы реализа-

ции, каждый из которых даст алгоритм, сходящийся за конечное число шагов.

Авторы описывают свои алгоритмы, используя примеры из литературы. Так-

же в статье приводятся вычислительные результаты для нескольких случаев

стохастической задачи местонахождения сервера (server location problem), кото-

рые показывают что указанный алгоритм, основанный на декомпозиции, лучше

масштабируется по количеству сценариев, чем другой известный современный

алгоритм решения/решатель, использованный для решения эквивалентной де-

терминированной задачи.

В работе [161] предложен новый метод отсекающих плосткостей для двух-

этапных задач стохастического смешанного целочисленного программирования,

названный декомпозицией Фенхеля (Fenchel decomposition, FD). FD (декомпо-

зиция Фенхеля) использует класс выполняющихся неравенств, называемый от-

сечения Фенхеля, которые получаются при помощи отсекающих плоскоскостей

Фенхеля в задачах целочисленного программирования. В начале, авторы по-

лучают отсечения Фенхеля, использующие переменные как первого, так и вто-

рого этапов, формулируют алгоритм на основе отсечений Фенхеля для задач

стохастического смешанного целочисленного программирования и показывают

сходимость за конечное время для случая бинарного первого этапа. Также в

статье получены отсечения Фенхеля, содержащие только переменные второго

этапа, и использованы идеи из дизъюктивного программирования (disjunctive

programming) для расширения отсечений в пространстве большей размерности,

включающее в себя переменные первого этапа. После этого приводится альтер-

нативный алгоритм (FD-L), основанный на расширенных отсечениях. В завер-

шение приводятся результаты вычислительных экспериментов для нескольких
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тестовых задачах, известных из литературы, имеющих специальную структу-

ру задачи о рюкзаке с неотрицательными коэффициентами в левой части. Ре-

зультаты выглядят перспективно, оба алгоритма в случае больших размерно-

стей превосходят прямой алгоритм решения, и прямой алгоритм дизъюктивно-

го программирования (disjunctive decomposition). Более того, алгоритм FDҫL в

целом показывает лучшие результаты, чем алгоритм FD. Поскольку отсечения

Фенхеля в общем случае могут быть вычислительно сложными и лучше всего

приспособлены для задач со специальной структурой, оба алгоритма существен-

но используют специальную структуру тестовых задач, уменьшая размерность

задач генерации отсечений, основываясь на количестве ненулевых компонент в

нецелочисленном решении, которые необходимо отсечь.

В [162] говорится, что объединение задач планирования выпуска продук-

ции и динамической оптимизации может увеличить общую производительность

многопродуктовых реакторов непрерывного действия с механическим переме-

шиванием. Однако, такое объединение приводит к появлению смешанной цело-

численной задачи динамической оптимизации большой размерности, которая

может оказаться очень сложной в решении. Авторы предлагают два эффектив-

ных метода решения на основе обобщенного подхода декомпозиции Бендерса,

который использует специальную структуру объединенной задачи. Первый ме-

тод использует подход с разделением по времени согласно парадигме ҡMasterҫ

workersә. После декомпозиции главная задача представляет собой набор отде-

лившихся задач динамической оптимизации (worker problems) и координиру-

ющую задачу (master problem), которая является задачей смешанного цело-

численного нелинейного дробного программирования. Затем координирующая

задача решается до нахождения глобально оптимального решения методами

дробного программирования, что гарантирует допустимость отсечений Бендер-

са. Второй метод декомпозиции применяется к задаче вычисления оптималь-

ной последовательности производства. Аналогично первому методу, во втором

используется алгоритм дробного программирования для решения координиру-

ющей задачи. По сравнению с одновременным методом, в задаче оптимизации

производственного процесса в многопродуктовых реакторах непрерывного дей-

ствия с механическим перемешиванием, предложенные алгоритмы декомпози-

ции могут уменьшить время вычисления на два и более порядка.
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В работе [163] рассматриваются диффузионные процессы в производстве по-

лупроводников, представляющие собой последовательность процессов от очист-

ки пластины до процесса отжига. Большинство печей производит обработку по-

ступающих пластин крупными партиями за одну процедуру, и этот процесс ха-

рактеризуется сравнительно большими затратами по сравнению с другими тех-

нологическими процессами полупроводниковых производств. Строгое ограни-

чение по времени связывает между собой процесс очистки пластины и процессы

отжига для дальнейшего контроля качества. Эти производственные ограниче-

ния на диффузионные процессы делают задачи составления расписаний очень

сложными. В статье предлагается улучшенный подход к задачам составления

расписаний на основе понятия скользящего горизонта планирования. В силу

комбинаторной природы задачи планирования сложность задачи экспоненци-

ально растет при увеличении количества заданий и инструментов. Однако, в

практических случаях время вычислений должно быть ограничено, поскольку

в большинстве полупроводниковых производств требуется, чтобы расписание

обновлялось за короткий интервал времени. Авторы предлагают модель опти-

мизации диффузионных процессов на основе задачи смешанного целочислен-

ного линейного программирования, а также эффективный метод декомпозиции

этой сложной задачи. Предлагаемый метод декомпозиции, повторяет процесс

составления расписания по мере того, как он постепенно увеличивает количе-

ство запусков, что позволяет алгоритму планирования создавать расписания,

близкие к оптимальным на ограниченных интервалах времени. Алгоритм пла-

нирования может существенно увеличить ключевые показатели производитель-

ности, такие как частоты нарушений ограничений по времени, размеры партий,

пропускную способность. В статье также рассматривается программная архи-

тектура для реализации алгоритма планирования.

В [164] авторы предлагают новый подход для точного решения задач ма-

тематического программирования с вероятностными ограничениями (chance-

constrained mathematical programs), которые имеют дискретные распределения

с конечным носителем и случайными ограничениями типа многогранника. Та-

кие задачи известны своей чрезвычайной сложностью за счёт невыпуклости

области допустимых решений. Большинство известных методов способны всего

лишь найти доказуемо хорошие решения в некоторых весьма узких частных

случаях. Предлагаемый подход использует декомпозицию для получения под-



88

задач,каждая из которых соответствует одному возможному исходу, и методы

целочисленного программирования для объединения результатов решения под-

задач, а затем получения детерминированных сильных выполняющихся нера-

венств. Вычислительные эксперименты для задачи математического програм-

мирования с вероятностными ограничениями относительно задачи планирова-

ния ресурсов в задаче оптимизации персонала контактного центра показыва-

ют, что предложенный подход работает существенно лучше, чем существую-

щие постановки на основе смешанного целочисленного программирования, а

также чем простой декомпозиционный метод, который не использует детерми-

нированных неравенств. Авторы также показывают, как данный подход может

применяться для эффективного нахождения последовательности уровней риска

в приложении к задаче нахождения эффективной зависимости между риском

и стоимостью.

В [165] предлагается метод объединения алгоритмов прогрессивного хеджи-

рования (Progressive Hedging, PH) и двойственной декомпозиции (Dual

Decomposition, DD, Каро и Шульц) для задач стохастического смешанного

целочисленного программирования. Используя соответствие между нижними

оценками, полученными в алгоритмах PH и DD, найден метод преобразования

весов из PH в множители Лагранжа. Быстрый прогресс на начальных итера-

циях алгоритма PH ускоряет сходимость алгоритма DD к точному решению.

В статье приводятся результаты вычислительных экспериментов для задач о

положении сервера или единичных обязательствах (unit commitment)

В [166] описывается алгоритм декомпозиции, который сочетает декомпози-

цию Бендерса и основанную на сценарии лагранжеву декомпозицию, в при-

менении к двухэтапной задаче стохастического программирования о планиро-

вании инвестиции с полным регрессом. Переменные первого этапа являются

смешанноҫцелочисленными, а второго — непрерывными. Алгоритм основан на

схеме кроссҫдекомпозиции (перекрестной декомпозиции), и полностью совмест-

но использует информацию из прямой и двойственной задач, в части добав-

ленных прямодвойственных мультиҫотсечений (разрезов) в координирующие

лагранжеву задачу и задачу Бендерса, для всех сценариев. Преимущества схе-

мы перекрестной декомпозиции показаны на наглядном примере задачи о рас-

положении производства в условиях риска сбоев.
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В работе [167] представлен гибридный метод решения задачи планирования

развития радиальных сетей распространения с распределенными генератора-

ми. Этот метод сочетает в себе подход на основе метода отжига и задачу сме-

шанного линейного целочисленного программирования. Задача планирования

расширения сначала рассматривается как оптимизационная задача смешанного

линейного целочисленного программирования с целевой функцией, минимизи-

рующей стоимость инвестиций, величины потерь, стоимость прерывания обслу-

живания потребителей по причинам сбоев в производственных подразделениях

или в распределенных генераторах, и стоимость потерянных распределенных

генераторов, связанную со сбоями в производственных подразделениях. Что-

бы уменьшить сложность задач планирования, предлагается декомпозиция за-

дачи на семейства последовательностей подзадач (локальных сетей), которые

решаются с использованием модели смешанного линейного целочисленного про-

граммирования. Указанная декомпозиция и сам процесс поиска оптимального

решения находятся под управлением и итеративным уточнением от предложен-

ного алгоритма отжига, который использует соответствующий механизм интен-

сификации и диверсификации для получения минимальной полной стоимости

решения.

В работе [168] предлагается новый метод помогающий оперативно управлять

действиями по планированию в реальных трубопроводах, перекачивающих тя-

желые нефтепродукты, которые имеют меньшую суммарную стоимость, такие

как, например, мазут или судовое топливо. Эти нефтепродукты обладают осо-

быми характеристиками, которые существенно влияют на процесс их транспор-

тировки, по причине невозможности перекачки при комнатных температурах,

большой вязкости или использования общих резервуаров для нескольких видов

продуктов. Таким образом, во время транспортировки нефтепродуктов такого

типа вся цепочка трубопроводов и резервуары должны поддерживаться в на-

гретом состоянии на протяжении всего процесса перекачки. Такие требования

приводят к необходимости разработки специальной модели, ориентированной

на такой класс задач. Предложенный в работе метод решения основан на про-

цедуре декомпозиции, которая использует последовательность задач матема-

тического программирования, с применением некоторых эвристик. Приведен-

ный подход проверен на реальном сценарии с сетью трубопроводов древовидной

структуры.
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В [169] авторы исследуют задачу планирования сети перевозок морскими су-

дами. Эта задача заключается в том, чтобы для заданного флота грузовых ко-

раблей, которые в совокупности перевозят различные типы товаров, получить

множество циклических маршрутов, не являющихся простыми циклами. Цель

оптимизационной задачи состоит в максимизации прибыли грузового транспор-

та при минимизации операционных затрат. Существенный потенциал методов

исследования операция для проектирования морских сетей транспортировки,

эффективных по стоимости и энергозатратам, остается нераскрытым в лите-

ратуре. Известны эффективные средства планирования логистики перевозок

для авиалиний, железнодорожного транспорта, для компаний других различ-

ных видов перевозок, но в области морской транспортировки использование

методов исследования операций для оптимизации логистики имеет малый мас-

штаб применения. Возможно, отсутствие знания предметной области и малое

количество реальных данных являются барьером для исследователей, препят-

ствующим разработке эффективных сетей морских перевозок. В данной статье

разработан набор тестовых задач, что помогает облегчить доступ специалистов

по исследованию операций к данным из рассматриваемой предметной обла-

сти морских перевозок. Описывается и приводится анализ предметной области

морских перевозок в контексте задачи проектирования оптимальной сети пе-

ревозок. Также приводится разносторонняя модель целочисленного линейного

программирования на основе сервисов, создающих фиксированные маршруты

для морской транспортной компании. Доказывается, что задача разработки оп-

тимальной сети морских перевозок является сильно NPҫтрудной. Приводится

набор тестовых задач, основанных на данных, отражающих реальную струк-

туру международной транспортной сети. Принципы разработки этого набора

данных рассматриваются в связке с промышленными стандартами, деловыми

обычаями и моделями математического программирования. В основе набора

данных лежат реальные данные от крупнейшей международной морской транс-

портной компании MaerskLine, дополненные другой информацией от некоторых

бизнесменов в данной области. Приведены результаты расчетов, демонстриру-

ющие наилучшие на данный момент решения для шести из семи задач набора,

используя эвристические комбинации метода поиска с запретами и эвристиче-

ский метод генерации столбцов.
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В работе [170] предложен эффективный подход на основе метода Бендерса,

для решения задачи о вводе в эксплуатацию источников переменного электри-

ческого тока с ограничениями на уровне сети, в условиях неопределенности.

Единственным источником неопределенности в этой работе принимается про-

изводство электроэнергии ветряными электростанциями, что моделируется при

помощи соответствующего набора сценариев. Предложенная модель имеет вид

двухэтапной задачи стохастического программирования, где первый этап отно-

сится к рынку электроэнергии с расчетами «завтра», а второй этап представ-

ляет производство в реальном масштабе времени. При помощи метода Бендер-

са предлагается декомпозиция исходной в общем случае трудно разрешимой

задачи, относящейся к классу смешанного целочисленного нелинейного про-

граммирования, на комбинацию из главной задачи типа смешанного линейного

целочисленного программирования и набора нелинейных, но непрерывных за-

дач, по одной на каждый сценарий. Кроме того, чтобы провести декомпозицию

задачи о вводе в эксплуатацию источников переменного тока, предложен эв-

ристический подход с релаксацией ограничений по времени для генерирующих

источников. Полезность предлагаемого подхода показана на примере числен-

ного решения типовой задачи IEEE о системе тестирования надежности для

одной области.

В статье [171] рассматривается задача частичной ориентированной взвешен-

ной неполной раскраски (Partial Directed Weigthed Improper Coloring Problem,

(�, �)ҫPDWICP) для заданного вещественного � и целого �, которая заключает-

ся в вычислении размера наибольшего подграфа �′ в �, такого что �′ допускает

�ҫнеполную �ҫраскраску. Задача (�, �)ҫPDWICP является естественной моде-

лью при решении задачи присвоения каналов с целью максимизации количества

одновременно обслуживаемых мобильных терминалов в беспроводной сети. В

работе авторы сравнивают подходы на основе целочисленного программирова-

ния для точного решения этой NPҫтрудной задачи. Применяется метод ветвей

и границ с использованием полиномиально вычислимой оценки сверху, полу-

чаемой по аналогии с �(�) функцией Ловаса, и использованием ограничений

из задач о рюкзаке и упаковке. Приведено сравнение с методом ветвлений и

оценок.

В статье [172] приводится модификация метода Бендерса LBBD, которая

задаёт новый уровень качества решения различных задач планирования и со-
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ставления расписаний, в том числе благодаря взаимодополняющему сочетанию

сильных сторон методов программирования в ограничениях и смешанного цело-

численного программирования. Приводится вычислительный анализ конкрет-

ных факторов, которые обуславливают успех LBBD, выработаны рекомендации

для будущих реализаций. Изучается класс задач, в котором задания распреде-

ляются по многим ресурсам и ставится общая задача планирования на каждом

из ресурсов. Авторы показывают, что для больших задач метод LBDD как ми-

нимум в 1000 раз быстрее, чем самые современные подходы на основе смешан-

ного целочисленного программирования, несмотря на недавние успехи в этой

области. Более того, установлено, что метод LBDD наиболее эффективен, когда

аспекты задачи связанные с планированием и составлением расписания пример-

но сбалансированы по сложности. Наиболее эффективный прием, позволяющий

улучшить метод LBDD — это включение релаксации подзадач в главную задачу.

Также оказалось, что важную роль играет усиление отсечений Бендерса, когда

сложности главной задачи и подзадач являются сбалансированными. Эти ре-

зультаты дают почву для направления дальнейших исследований.

В работе [173] изучается задачи планирования нагрузки на серверы, в си-

стемах с несколькими классами обслуживания, при неопределенности в коли-

честве прибывающих пользователей. В таких системах обычно сначала опре-

деляют величину исполнительных ресурсов, а затем определяют расписания

загрузки исполнителей, которые покрывают имеющиеся ресурсы. Предлагает-

ся новая модель на основе стохастического целочисленного программирования,

которая объединяет эти два шага, что может дать меньшие затраты за счет

возможного использования альтернативных конфигураций серверов, которые

могли бы давать сравнимый уровень обслуживания. Авторы показывают, что

метод ветвей и границ, основанный на декомпозиции Бендерса может не до-

ставлять правильного решения при слабых оценках границы релаксации. Они

предлагают новый подход, основанный на применении округления в смешанноҫ

целочисленном случае, чтобы улучшить отсечения Бендерса используемые в

рассматриваемом алгоритме. Такой подход применим к любым задачам стоха-

стического целочисленного программирования с целочисленными переменными

первого этапа. Численные эксперименты показывают вычислительную эффек-

тивность предложенного подхода и потенциальную преимущества при решении
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интегрированных моделей, по сравнению с отдельным рассмотрением задач об

оснащении и о составлении расписания.

Разработка и эксплуатация энергетических систем являются ключевыми

факторами для согласования спроса и предложения энергетических ресурсов.

В работе [174] представлена систематическая процедура, включающая процесс

разработки, методы накопления энергии для задач определения размера и опти-

мизации производства мультиҫгенерирующих технологий. Элементом новизны

является агрегация ресурсов биомассы, а также одновременная многокрите-

риальная и многопериодная оптимизация. Одновременное рассмотрение всех

вышеперечисленных аспектов делает задачу трудно решаемой. Для решения

такой сложной задачи предлагается подход на основе декомпозиции. В этой ста-

тье также предлагаются варианты агрегирования биомассы в энергетическую

систему, такие как паровые турбины с противодавлением, циклы Ренкина для

биомассы, газовые двигатели и газотурбинные установки с газификацией от

биомассы, производство синтетического природного газа, и комбинированные

циклы газификации биомассы. Целью задачи является одновременная мини-

мизация стоимости, а также уровня выбросов угарного газа в атмосферу, для

чего используются постановка с многокритериальными эволюционными алго-

ритмами, и задачи смешанного линейного целочисленного программирования.

Предложенная модель продемонстрирована на практическом примере. Резуль-

таты показывают, что одновременного производство электрической и тепловой

энергии из биомассы и природного газа является устойчивым при заданных

предположениях. Более того, в случае постепенного увеличения использования

возобновляемых источников энергии с уменьшением использования природного

газа, достигается высокая экономия энергии и уменьшение выбросов угарного

газа, до 40%. С другой стороны, большая экономическая эффективность 52%,

достигается для технологий на основе природного газа.

В различных областях производства имеются законодательные ограниче-

ния, приводящие к тому, что принятие решений должно сопровождаться учетом

экологических факторов. Автомобильная промышленность во многих странах

учитывает экологические факторы, особенно, в странахҫчленах ЕС, где имеется

порядок утилизации старых автомобилей. В Турции, процесс утилизации авто-

мобилей подчиняется директиве об управлении утилизацией старой автотехни-

ки, которая официально принята Министерством окружающей среды и леса
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Турции в 2009 году. Производители автомобилей обязаны обеспечить бесплат-

ные для потребителя сбор, переработку и утилизацию списанной автотехники.

В статье [175] рассматривается задача оптимальной переработки списанных ав-

томобилей, предлагается подход на основе смешанного линейного целочислен-

ного программирования для проектирования сети переработки, включающей

различных участников, принимающих участие в этом процессе. Предложенная

схема проверяется на реальном примере города Анкара, столицы Турции, вто-

рого по величине города в стране. Также предложена модель прогнозирования

уровня автомобилизации и числа списываемых автомобилей на основе усреднен-

ных долгосрочных трендов в числе списываемых автомобилей. Предложенный

пример применения метода и прогноз по численности позволяет лучше понять,

как будет работать логистическая сеть с течением времени. Полученные ре-

зультаты свидетельствуют от том, что число предприятий по переработке и

стоимость системы будет увеличиваться, как и число утилизируемых автомо-

билей.

В работе [176] предлагается алгоритм точного решения двухуровневой зада-

чи смешанного линейного целочисленного программирования при наличии трех

упрощающих предположений. Хотя история изучения указанного типа задач

продолжается уже несколько десятилетий, и они широко применятся к прак-

тическим различным задачам из реальной жизни, известно лишь небольшое

число методов их решения. По сравнению с существующими методами, предло-

женный алгоритм требует более слабых предположений и меньшего их числа,

а также неявно рассматривает ограниченные оптимальные, недопустимые, и

неограниченные случаи и решает задачу корректно за конечное время. При-

водятся результаты вычислительных экспериментов на небольшой коллекции

задач двухуровневого смешанного линейного целочисленного программирова-

ния, которые были созданы авторами, и свободно доступны в сети Интернет.

В работе [177] рассматривается расширение задачи об укладке контейнеров

различного типа по различным отсекам морского контейнеровоза, известной

как задача генерального плана отсека (masterbay plan problem, MBPP), в слу-

чае большого числа портов, когда в различных портах требуется погрузить или

выгрузить различные контейнеры. Последовательность чередующихся опера-

ций разгрузкиҫпогрузки определяет эффективность плана укладки. В работе

рассматриваются две точные модели смешанного целочисленного программи-
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рования, для многопортовой задачи, ориентированные на практические и опе-

рационные аспекты реальной задачи. Также рассматриваются вычислительно

эффективные постановки для задач смешанного целочисленного программиро-

вания с релаксацией, приводятся результаты вычислительных экспериментов

из практических приложений. Результаты показывают эффективность предло-

женных методов и моделей.

Существенная доля грузов в мировой торговле перевозится морским спосо-

бом в контейнерах. Количество перевозок растет из года в года, и имеет место

тенденция к увеличению размера вновь создаваемых кораблей. По этой при-

чине, всё более и более важное значение получает задача об укладке контей-

неров, которая является фундаментальной задачей при оптимизации морских

перевозок, включает в себя вопрос об оптимальном расположении транспорт-

ных контейнеров различных типов по отсекам контейнеровоза, в каждом из

портов маршрута судна, чтобы максимизировать эффективность процедур раз-

грузки и погрузки, а также минимизировать стоимость доставки. Несмотря на

такую актуальность, до сих пор задача решается специфическими методами,

основанными на имеющемся опыте. В работе [178] предлагается многоэтапная

эвристическая процедура декомпозиции, которая учитывает многие сложные

аспекты этого класса задач в реальном мире. Предложенный подход имеет хо-

рошую производительность на задачах из реальной практики, и в настоящее

время готовится ко внедрению в сектор коммерческого программного обеспече-

ния.

Задача управления потоком транспорта в реальном времени уже более 50

лет остается предметом активных исследований. В последние годы, однако, сов-

местное использование повсеместных датчиков и бесшовных технологий взаи-

модействия устройств породило запрос на разработку более эффективных мето-

дов управления, способных работать в реальной обстановке в режиме реального

времени. В статье [179] предлагается быстрый метод декомпозиции для задач

сетевой оптимизации с приложением к задаче управления потоком в реальном

времени. Данный подход основан на постановке задачи управления сетью в

виде задачи нелинейного программирования. Он заключается в использовании

метода чередующихся направлений с использованием прямую численную симу-

ляцию в одной из оптимизационных подзадач. Метод хорошо масштабируется

до размерностей, соответствующих реальному потоку транспорта в больших
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городах. В работе демонстрируется хорошая производительность подхода на

синтетических и реальных данных о транспортной сети.

В статье [180] предлагается метод для вычисления оценок снизу в алгоритме

прогрессивного хеджирования (PHA) для задач двухуровневого и многоуровне-

вого стохастического смешанного целочисленного программирования. Вычисле-

ние таких оценок снизу позволяет оценивать качество решения для указанного

алгоритма по мере процесса решения. Оценки снизу можно вычислять на лю-

бой итерации алгоритма при помощи двойственных цен, которые получаются

во время выполнения стандартной версии алгоритма PHA. Приводятся резуль-

таты вычислительных экспериментов для стохастической задачи ввода узла в

эксплуатацию и стохастической задачи оптимального расположения сервера,

исследуется связь между ключевыми параметрами алгоритма PHA и качеством

получаемых оценок снизу.

В [181] для задач стохастического смешанного целочисленного программи-

рования авторы анализируют алгоритм двойственной декомпозиции Каро и

Шульца с точки зрения возможностей параллельного решения. Предлагается

формулировка задачи, которая позволяет устранить существенное препятствие

для эффективного распараллеливания главной задачи, для чего используются

решатели, основанные на методах внутренней точки, учитывающие структу-

ру задачи. Результаты статьи демонстрируют высокий потенциал для ускоре-

ния с помощью распараллеливания и важность регуляризации (стабилизации)

для задач двойственной оптимизации. Неравномерность распределения нагруз-

ки остается единственным препятствием для оптимальной масштабируемости

подзадач.

В статье [182] рассматривается класс двухэтапных задач стохастического

целочисленного программирования с общими целочисленными переменными в

обоих этапах и конечным числом реализаций неопределенных параметров. Ос-

новываясь на методе Бендерса, авторы предлагают алгоритм декомпозиции,

который использует отсечения Гомори в обоих этапах. Отсечения Гомори для

подзадач второго этапа параметризованы переменными из первого этапа, то

есть они подходят для любых допустимых решений задач первого этапа. Кро-

ме того, предлагается альтернативная реализация, которая использует метод

Бендерса в методе ветвей и границ на первом этапе. Показана сходимость тако-

го метода за конечное время. Также приводятся предварительные результаты
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численных экспериментов с упрощенной реализацией данных алгоритмов, по-

казывающие эффективность предложенных подходов.

В статье [183] изучается класс двухэтапных задач стохастической оптимиза-

ции с вероятностными ограничениями, где допустимое корректирующее реше-

ние второго этапа порождает дополнительную стоимость. Кроме того, авторы

предлагают новую модель, где есть восстанавливающие решения, превраща-

ющие недопустимые решения в допустимые при помощи релаксации задачи

второго этапа. Для решения задач этого класса разработаны алгоритмы деком-

позиции со специальными отсечениями по оптимальности и допустимости. Вы-

числительные эксперименты для задачи планирования ресурсов с вероятност-

ными ограничениями показывают, что предложенные алгоритмы предлагают

высоко эффективные решения, по сравнению с подходом на основе смешанного

целочисленного программирования и наивной декомпозиции.

Задачи распределения большой размерности обычно технически характери-

зуются как NP-трудные, что означает, что существующими методами невозмож-

но найти оптимальное решение за полиномиальное время. Для решения задач

смешанного целочисленного программирования большой размерности обычно

рекомендуется использовать метод Бендерса. В работе [184] авторы используют

метод декомпозиции Бендерса для решения задачи доставки бетона с заводов

(Ready Mixed Concrete Dispatching Problem, RMCDP). Метод Бендерса вклю-

чает в себя разделение исходной задачи доставки бетона на главную задачу (с

оценкой снизу) и подзадачи (с оценками сверху). Главная задача использует

целочисленные переменные, а подзадачи обычно являются задачами линейного

программирования. Отсечения оптимальности Бендерса и отсечения допусти-

мости Бендерса добавляются в главную задачу после каждой итерации решения

подзадач. Предложенный метод проверен на примере реальной задачи, пред-

ставлены результаты исследования.

В работе [185] описывается алгоритм кросс-декомпозиции, который сочетает

метод Бендерса и сценарноҫзависимую Лагранжеву декомпозицию для реше-

ния двухэтапной постановки стохастического программирования в задаче пла-

нирования инвестиций с полной компенсацией, где переменные первого этапа

являются смешанными целочисленными, а переменные второго этапа — непре-

рывными. Алгоритм относится к новому классу кроссҫдекомпозиционных схем,

полностью объединяет прямую и двойственную информацию через прямодвой-
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ственные мультиҫотсечения добавленные к алгоритму Бендерса и Лагранже-

вым координирующим задачам для каждого сценария. Потенциальные пре-

имущества этой схемы кроссҫдекомпозиции показаны при помощи численных

экспериментов для ряда экземпляров задачи оптимального местоположения в

присутствии сбоев. В исходной постановке, где нижележащая релаксация ли-

нейного программирования является слабой, предложенный метод превосходит

метод Бендерса с мультиҫотсечениями. Если постановку задачи усилить допол-

нительными, более сильными ограничениями, эффективность обоих методов

увеличивается, но метод кроссҫдекомпозиции однозначно остается лучшим для

задач большой размерности.

Динамическое ценообразование уже стало типичной формой тарифа на

электрическую энергию, где цена электрической энергии зависит в реальном

времени от сложившихся отношений между спросом и предложением. Таким

образом, для максимизации выгоды от динамического ценообразования, требу-

ется оптимизация производственных процессов, учитывающая периоды низкой

цены. В случае сетей водоснабжения, стоимость энергии расходуемой насосами

вносит существенный вклад в конечные расходы, и важной задачей является

оптимизация расписания работы насосных станций, чтобы согласовать распи-

сание с изменяющейся ценой электроэнергии, при условии сохранения непре-

рывности подачи воды. В работе [186] рассматривается постановка задачи сме-

шанного целочисленного нелинейного программирования для оптимизации рас-

писания работы насосных станций. По причине нелинейности, большого ти-

пичного размера сетей водоснабжения и дискретности горизонта планирования

проблема не может быть решена за разумное время при помощи стандартно-

го программного обеспечения для задач оптимизации. В данной работе пред-

лагается подход на основе лагранжевой декомпозиции, который существенно

использует структуру задачи , что приводит к меньшему размеру подзадач,

которые решаются независимо. Лагранжева декомпозиция сочетается с алго-

ритмом поиска, основанным на симуляции, с улучшенной дискриминирующей

способностью, который способен находит допустимые решения высокого каче-

ства. Предложенный подход обнаруживает решения с гарантированными верх-

ними и нижними оценками. Эти решения сравниваются с решениями задачи

смешанного линейного целочисленного программирования, который использу-

ет кусочно-линейную аппроксимацию нелинейных ограничений и находит гло-
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бальное оптимальное решение релаксированной задачи. Численные эксперимен-

ты для двух случаев реальных сетей водоснабжения показывают существенные

снижение затрат при оптимизации расписания работы насосных станций.

2.2 Графовая интерпретация правил исключения

В теории локальных алгоритмов Журавлёва выделены две основные теоре-

мы — теорема единственности и теорема мажорантности [187].

В теореме единственности утверждается, что результат вычисления основ-

ных предикатов локального алгоритма с монотонными функциями (которые

не возрастают/ не убывают на заданном множестве) не зависит от порядка

рассмотрения элементов множества. То есть, каком бы порядке мы не элими-

нировали переменные или подмножества переменных в задаче, оптимальное

решение будет получено. В теореме мажорантности доказывается существова-

ние для всякого класса локально равных алгоритмов с одинаковой памятью

наилучшего (мажорантного) локального алгоритма, т.е. алгоритма, который по

заданной фиксированной системе окрестностей вычисляет заданные основные

предикаты при фиксированных вспомогательных предикатах всегда, когда это

делает любой другой алгоритм из рассматриваемого класса. То есть от того,

в каком порядке мы элиминируем переменные или подмножества переменных

зависит скорость нахождения оптимального решения. О.А. Щербина показал,

что доказательство этой теоремы имеет неконструктивный характер [81], т.е. не

позволяет осуществить прямое построение эффективного наилучшего алгорит-

ма. В его диссертационной работе [81] сформулирован критерий существования

оптимального порядка элиминации, который заключается в следующем.

Теорема 2.1. Для графа взаимосвязей существует оптимальный порядок эли-

минации тогда и только тогда, когда существует дерево декомпозиции, каждая

вершина которого является кликой в соответствующем графе ограничений.

Порядок элиминации � — это выбор порядка решения подзадач. Теорема 2.1

определяет, в каком случае существует такой порядок решения подзадач, при

котором работа локального элиминационного алгоритма будет оптимальной.

Понятие дерева декомпозиции (ДД) введено Robertson и Seymour [188] для оцен-

ки подобия графа дереву. Выделение БДҫструктуры, которое рассматривалось

в главе 1, является частным случаем древовидной декомпозиции [81]. Введём
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необходимые понятия для дальнейшего изложения. Рассмотрим определение

полного графа из [141].

Определение 2.3. Полным графом называется граф, каждая вершина кото-

рого связана с любой другой вершиной.

Введём понятие клики, определённое в [141].

Определение 2.4. Клика графа — это подмножество вершин � ′ графа �,

в котором любые две вершины смежны, т.е. порожденный им подграф � | � ′

является полным.

Далее рассмотрим определение симплициальной вершины из [141]

Определение 2.5. Симплициальной вершиной графа называется вершина, ко-

торая образует клику с соседними вершинами.

Наконец, исследуем понятие дерева клик, введённое в [81].

Определение 2.6. Деревом клик графа � будем называть дерево, для ко-

торого вершинами � ∈ � являются максимальные клики графа �, такие что

для каждой пары �′, �′′ максимальных клик в � клика �′ ∩ �′′ содержится в

каждой максимальной клике из (однозначно определенного) �′ҫ�”ҫпути в �.

Сформулируем альтернативное определение для дерева клик.

Определение 2.7. Деревом клик графа � называется пара ({Ki|� ∈ �}),

� = (�, � )), где {Ki|� ∈ �} — максимальные клики графа � и � — дерево с

множеством вершин � и множеством ребер � ⊆ � × � такими, что:

1)
︀

i∈I Ki = �, где � — множество максимальных клик графа �;

2) для всех ребер (�, �) ∈ � существует � ∈ � такое, что � ∈ Ki, и � ∈ Ki;

3) для всех пар � ′, � ′′ максимальных клик в � клика � ′∩� ′′ содержится в

каждой максимальной клике из (однозначно определенного) � ′ҫ�”ҫпути

в �.

Если построить дерево клик для графа ограничений некоторой задачи ДО,

то каждая вершина этого дерева будет кликой для соответствующего графа
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Рисунок 2.2: Дерево клик для задачи ДО из примера (2.8)

ограничений. Согласно теореме 2.1 необходимо, чтобы дерево клик также яв-

лялось и деревом декомпозиции задачи ДО.

Древовидная декомпозиция — это метод сжатия подмножеств переменных

в суперҫпеременные таким образом, что полученная суперҫзадача ДО имеет

ациклическую форму в представлении в виде двойственного графа. Получен-

ный граф имеет структуру дерева и называется деревом декомпозиции. Перей-

дём к определению дерева декомпозиции из [81].

Определение 2.8. Деревом декомпозиции (ДД) для заданного графа �(�,�)

называется пара ({Xi|� ∈ �}), � = (�, � )), где {Xi|� ∈ �} — семейство подмно-

жеств � ∈ � и � — дерево с множеством вершин � и множеством ребер � ⊆ �×�

такими, что:

1)
︀

i∈I Xi = � ;

2) для всех ребер (�, �) ∈ � существует � ∈ � такое, что � ∈ Xi, и � ∈ Xi;

3) для всех �, �, � ∈ � таких, что � лежит на пути � из � в �, справедливо

включение Xi ∩Xk ⊆ Xj.

Далее рассмотрим свойства ДД [81]:

— Каждая переменная из первоначальной задачи появляется по меньшей

мере в одной из подзадач.

— Если две переменные первоначальной задачи связаны ограничением, то

должны появиться вместе (наряду с этим ограничением) по меньшей мере

в одной из подзадач.
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— Если какаяҫто переменная появляется в двух подзадачах в дереве, то

должна появляться в каждой подзадаче вдоль пути, соединяющего эти

подзадачи.

Построим ДД для задачи ДО из примера (2.8). Согласно определению ДД,

{Xi|� ∈ �} — семейство подмножеств � = {x1,,x2,x3,x4} (см. рис. 2.3б), а

� — дерево с множеством вершин � = {1; 2; 3; 4} и множеством ребер � =

{(1, 2); (2, 4); (3, 4)}. При этом выполняются следующие условия:

1) x1 ∪ x2 ∪ x3 ∪ x4 = � ,

2) для всех ребер � = {(�1, �2); (�1, �3); (�2, �3); (�2, �4); (�2, �5); (�3, �4); (�3, �6); (�

существует � ∈ � такое, что � ∈ Xi, и � ∈ Xi

3) для � = 1,� = 2,а � = 4 таких, что � = 2 лежит на пути � из � = 1

в � = 4, справедливо включение x1 ∩ x4 = {�2} ⊆ x2 = {�1, �2, �4}; в

данном дереве три вершины встречаются только для x1, x2 и x4.

Полученная ДД для задачи ДО из примера (2.8) соответствует поиску сим-

плициальных вершин и соответствующих максимальных клик, то есть дереву

клик (рис. 2.2). Далее установим, каким образом могут быть связаны дерево

декомпозиции и дерево клик, чтобы понять, в каких условиях выполняются

условия теоремы 2.1. Дерево клик является частным случаем дерева декомпо-

зиции. Таким образом, для того, чтобы выполнялось условия теоремы 2.1, необ-

ходимо, чтобы каждая вершина дерева декомпозиции была кликой. Таким об-

разом, ДД можно выделить с помощью алгоритма поиска максимальных клик

в графе. Для этого существует целый класс ПО, в частности, с открытым ко-

дом. Например, NetworkX даёт приближённое решение этой задачи (процедура

max_clique), в maxClique заложены точные алгоритмы, а с помощью OpenOpt

можно получить точные и приближённые решения, при этом можно управлять

процессом: есть возможность указать рёбра, которые должны быть включены.

В данной работе алгоритм поиска максимальных клик MCS [189] используется

для построения порядка элиминации. Но сама задача о клике является NPҫ

трудной задачей. Рассмотрим теорему о взаимосвязи стягивающего дерева и

дерева клик из [142].

Теорема 2.2. Дерево клик — максимальное стягивающее дерево для двойствен-

ного графа.



103

Таким образом, дерево клик также возможно построить с помощью стяги-

вающего дерева для двойственного графа задачи ДО. Стягивающее дерево для

данного неориентированного графа — суграф (т.е. часть графа, имеющая то же

множество вершин, что и сам граф [140]) в виде дерева.

На рисунке 2.3 для задачи ДО из примера (2.8) продемонстрирован двой-

ственный граф и соответствующее ему максимальное стягивающее дерево.

Можно видеть, что для того, чтобы получить максимальное стягивающее де-

рево, из двойственного графа пришлось удалить ребра из �1 в �3 и из �2 в

�4. Максимальным стягивающим деревом для двойственного графа является

а) б)

Рисунок 2.3: Иллюстрация теоремы о взаимосвязи стягивающего дерева и
дерева клик для задачи ДО из примера (2.8): а) двойственный граф, б)

максимальное стягивающее дерево

элиминационное дерево [81], рассматриваемое далее.

Термин «элиминационная игра» впервые введён Партером [118] в 1961 году

как интерпретация метода исключения Гаусса на графах. Рассмотрим опреде-

ление элиминационного графа из [81]

Определение 2.9. Граф, полученный из графа взаимосвязей переменных с

помощью удаления некоторой вершины �k и всех ребер, исходящих из нее, а

затем соединения ребрами всех ранее не соседних вершин в окрестности �k,

называется �k — элиминационным графом �k. Описанная операция называется

элиминацией вершины �k. Последовательность всех элиминированных вершин

называется порядок элиминации �.

Замечание. Под понятием «элиминационная игра» будем иметь ввиду процесс

последовательной элиминации вершин �1, . . . , �n, которая порождает последо-

вательность графов � = �0, �1, �2, . . . , �n.
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Порядок элиминации для конкретной задачи ДО неоднозначен. Для зада-

чи ДО из примера (2.8) предлагается следующий порядок элиминации: � =

{�1, �5, {�2, �4}, {�6, �7}, �3}. Для задачи ДО из примера (2.8) «элиминацион-

ная игра» может выглядеть следующим образом (рис. 2.4). Первым в данной

последовательности будет граф ограничений задачи ДО �0 = �. Смотрим на

порядок элиминации � = {�1, �5, {�2, �4}, {�6, �7}, �3} и видим, что первой вер-

шиной по порядку является вершина �1. Исключим �1 из графа �0 и получим

граф �1. Снова смотрим на порядок элиминации и исключаем �5. Получим сле-

дующий в последовательности граф — �2. Далее согласно порядку элиминации

исключим блок переменных {�2, �4} и получим граф �3. Аналогичным обра-

зом исключим блок {�6, �7} и получим последний граф последовательности �5,

состоящий из одной вершины �3. На заключительном шаге исключим оставшу-

юся переменную �3. «Элиминационная игра» закончена. Обозначим процеду-

x1 x3 x6

x5

x7x4x2

а)

x3 x6

x5

x7x4x2

б)

x3 x6

x7x4x2 в)

x3 x6

x7 г)
x3

д)

Рисунок 2.4: «Элиминационная игра» для задачи ДО из примера (2.8): а)�0;
б)�1; в)�2; г)�3; д)�4

ру элиминации �′ = ����{�i}. Это означает, что из графа �′ удалена вер-

шина �i, а все элементы её окрестности, которые не были соединены ребром

теперь являются соседями. Для того, чтобы последовательно элиминировать

все вершины графа �(�,�) воспользуемся алгоритмом элиминационной

игры. Введём понятие монотонной окрестности для контекста «элиминацион-

ной игры» [81]. Для данного порядка элиминации � вершин графа � в виде

�1, . . . , �n через �i обозначим множество вершин с индексами из �, большими

�− 1: �i = {�i, �i+1, . . . , �n}.
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Алгоритм 3 Алгоритм элиминационной игры

[81]

Шаг 1. Выбираем первую по порядку элиминации вершину.

Шаг 2. Добавляем, если нужно, необходимые ребра так, чтобы данная вершина
и все её соседние вершины образовывали клику.

Шаг 3. Удаляем вершину из измененного графа.

Шаг 4. Продолжаем, пока не пройдём все вершины.

Шаг 5. Добавляем в исходном графе все добавленные на каждом шаге ребра.

Определение 2.10. Монотонной окрестностью вершины �i будем называть

множество вершин, соседних с �i, с индексами, большими, чем � (согласно по-

рядку �): ��
α

G(�i) = {�j ∈ ��G(�i)|� > �} = ��G ∩ �.

Введём определение пополненного графа из [81]

Определение 2.11. Пополненным графом �+
α называется граф, который по-

лучается из графа ограничений в результате работы алгоритма элиминацион-

ной игры 3.

Замечание. Отметим, что �+
α может быть построен следующим образом.

Пусть �′ будет порядком элиминации �′, полученным из � при удалении �1.

Возьмём граф �′, полученный при элиминации �1. Построим рекурсивно �′+
α′,

добавляя в него на каждом шаге рекурсии � вершину �i и ее инцидентные рёбра.

Рассмотрим определение элиминационного дерево, введённое в [81].

Определение 2.12. Элиминационным деревом (ЭД) графа �(�,�) для упо-

рядочения вершин � называется ориентированное дерево �⃗α, имеющее то же

множество вершин � , что и исходный граф �, а множество ребер ЭД определя-

ется с помощью отношения «предок — потомок» следующим образом: предком

вершины � является первая (согласно упорядочению �) вершина из монотонной

окрестности ��
α

G+
α
(�) вершины � в пополненном графе �+

α .

Введём понятие обобщённого ЭД.

Определение 2.13. Обобщённое дерево элиминаций (ОЭД) — такое ЭД, каж-

дой вершиной которого является суперҫвершина исходного графа.
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Рисунок 2.5: Элиминационное дерево, описывающее задачу ДО из примера
(2.8)

Замечание. Очевидно, что обобщённое ЭД можно получить путём объедине-

ния поддеревьев данного ЭД.

С учётом алгоритма элиминационной игры сформулируем алгоритм для вы-

деления обобщённого ЭД. Поясним алгоритм 4. Пока в графе остаётся хотя

Алгоритм 4 Алгоритм выделения обобщённого ЭД

УТВЕРЖДЕНИЕ �′(� ′, � ′) := �(�,�), � := ∅; ПРОЦЕДУРА ��(�(�,�)):

Шаг 1. ЕСЛИ �′(� ′, � ′) = ∅ ТО КОНЕЦ ПРОЦЕДУРЫ

Шаг 2. ЕСЛИ ��(�i1) ∩ . . . ∩��(�ik) = ∅ ТО �′(� ′, � ′) = ����({�i1, . . . , �ik})

Шаг 3. ЕСЛИ �i ∈ ��(�j) ТО � = � ∪ (�i, �j), где �j — суперҫвершина, элими-
нированная на предыдущей итерации шаге, а �i — суперҫвершина, эли-
минированная на текущей итерации.

Шаг 4. ��(�′(� ′, � ′))

бы одна суперҫвершина, процедура будет работать. На каждой итерации бу-

дут элиминированы все суперҫвершины, окрестности которых не пересекают-

ся. Рёбрами данного дерева будут все рёбра, связывающие элиминированные

суперҫвершины на текущей и предыдущей итерации процедуры если на преды-

дущей итерации они были соседями в графе �′. Полученное дерево является

ОЭД по определению. Перейдём к теореме о соответствии дерева декомпозиции

и дерева элиминации [81].

Теорема 2.3. Обобщённое элиминационное дерево задачи ДО соответствует

дереву её декомпозиции.
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Сформулируем и докажем альтернативную теорему для более точного по-

нятия взаимосвязи для данных структур.

Теорема 2.4. Пусть � = (�,�) — заданный граф, � — порядок элиминации

элементов графа �, �+
α — пополненный граф относительно �. Для данных �

и порядка элиминации � алгоритм 4 строит древовидную декомпозицию.

Доказательство. Пусть для определённости � = {�1, . . . , �n}, и для всех

�i ∈ � �(�i) = �. Рассмотрим алгоритм 4. Для графа, состоящего из одной

вершины решение тривиально. В противном случае, докажем каждый пункт из

определения дерева декомпозиции.

1) Поскольку все вершины дерева элиминации — это вершины, полученные

при элиминации графа �(�,�), их объединение совпадает с множеством

вершин исходного графа, то есть
︀

i∈I Xi = � ;

2) Каждое из рёбер исходного графа (�, �) ∈ � соединяет вершину � ис-

ходного графа и переменную из её окрестности {�} ∈ ��(�). Поскольку

ребро в дереве элиминации на каждой итерации алгоритма 4 соединяет

каждую элиминируемую вершину � и её окрестность ��(�), то для всех

ребер (�, �) ∈ � существует � ∈ � такое, что � ∈ Xi, и � ∈ Xi, где

Xi = ��(�) ∪ {�};

3) Пусть среди множества итераций процедуры в алгоритма 4 существу-

ют итерации с номерами �, �, �, которые совершаются алгоритмом в за-

данной последовательности. Тогда ребро в дереве элиминации соединяет

каждую элиминируемую вершину �i и {�j} ∈ ��(�i) на �ҫтой итерации

алгоритма, а затем каждую элиминируемую вершину �j и {�k} ∈ ��(�j)

на �ҫтой итерации. Предположим, что утверждение Xi ∩ Xk ⊆ Xj, где

Xi = {�i−1} ∈ ��(�i), Xj = {�j−1} ∈ ��(�j), Xk = {�k−1} ∈ ��(�k), не

справедливо. Значит имеет место Xi ∩Xk ( Xj и в пересечении Xi ∩Xk

существует некоторый элемент �s /∈ Xj. Значит �s ∈ Xi и �s ∈ Xk. По-

скольку элемент �s находится в Xk, значит он не был элиминирован на

более ранних итерациях, в том числе и на итерации Xj. Значит �s ∈ Xj

и мы пришли к противоречию. Таким образом для всех �, �, � ∈ � таких,

что � лежит на пути � из � в �, справедливо включение Xi∩Xk ⊆ Xj, где

Xi = {�i−1} ∈ ��(�i).
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Теорема доказана.

На основе теоремы 2.4 получены окончательные результаты в работе О.А.

Щербины [142], которые позволяют установить взаимосвязь между ДД задачи

ДО и ОЭД, которое является бесконтурным орграфом вычислительной проце-

дуры локального элиминационного алгоритма (ЛЭА) (см. [81]). Особенностью

ЛЭА является использование локальной информации об окрестностях так на-

зываемых связывающих переменных, то есть переменных, принадлежащих од-

новременно нескольким окрестностям. Поэтому ЛЭА позволяет получать гло-

бальное решение задачи с помощью локальных вычислений, которые обычно

являются решениями соответствующих подзадач. ЛЭА в общем виде представ-

ляется как последовательное исключение переменных с сохранением информа-

ции о них. Подробнее ЛЭА рассматривается в следующей главе.

Блоки являются частным случаем разбиений, они не пересекаются и образу-

ют разбиение графа. Если задача ДО разбита на блоки, соответствующие под-

множествам переменных (называемых суперҫпеременными), полученная блоч-

ная структура может описываться с помощью структурного конденсированно-

го графа, суперҫвершины которого соответствуют подмножествам переменных

(или блокам) исходного графа, а суперҫребра соответствуют соседним блокам.

Использование метода сжатия подмножеств переменных в суперҫпеременные

позволяет получить конденсированные или суперҫзадачи ДО, имеющие более

простую структуру, которые могут быть решены более эффективно, например,

древовидную. Таким образом, схема блочной элиминации является элимина-

ционной процедурой, в которой вершины каждого блока элиминируются од-

новременно, кластером [190].

Из теоремы 2.4 следует, что для определения ДД достаточно найти ОЭД,

соответствующее графу ограничений задачи ДО. Таким образом, методы, ис-

пользуемые для нахождения порядка элиминации помогают разбить исходную

задачу на подзадачи, где каждая подзадача соответствует элиминируемой пере-

менной или группе переменных. Далее рассмотрим эвристики для определения

порядка элиминации в задачах ДО, а также сравним их между собой.
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2.3 Численные тесты выбора порядка исключения пере-

менных

Задача поиска оптимального упорядочения является NPҫполной [191], по-

этому на практике для нахождения элиминационной последовательности пере-

менных используются всевозможные эвристики. Для задач ДО со специальной

структурой использование эвристик как алгоритмов упорядочивания суперҫ

переменных для последующей элиминации представляет существенный инте-

рес. Рассмотрим подробнее наиболее известные эвристики.

Алгоритм упорядочивания минимальной степени MD (Minimum Degree) яв-

ляется одной из наиболее широко используемых эвристик, т.к. он дает хорошие

результаты с относительно небольшим пополнением для разреженных графов.

В алгоритме MD выбирается вершина � графа � с минимальной степенью.

Далее строится граф �′, получаемый путем создания клики из вершины � и

ее соседей с последующим удалением � и инцидентных ей ребер. Рекурсивно

из �′ с помощью эвристики создается хордальный суперграф � ′. И, наконец,

строится связный суперграф � из �, путем добавления � и инцидентных ей

ребер из � к � ′. Будучи алгоритмом локальной минимизации, алгоритм MD

не всегда дает упорядочение с минимальным пополнением для графа в целом.

Существуют модификации алгоритма минимальной степени ҫ алгоритмы MMD

(Multiple Minimum Degree [192]) и AMD (Approximate Minimum Degree) [193].

Алгоритм рекурсивного разбиения ND (Nested Dissection) [194] — глобаль-

ный эвристический рекуррентный алгоритм, находящий сепаратор, т.е. множе-

ство вершин �, разделяющее граф на две части � и �, помещая его в упорядо-

чении последним. Алгоритм применяется рекуррентно к частям графа � и �,

пока их размеры не станут меньше, чем некоторое пороговое значение.

Существуют также гибридные схемы методов рекурсивного разбиения ND

и минимальной степени MD [148], [195], [149].

В [189] был предложен алгоритм MCS (Maximum Cardinality Search — поиск

по максимальной степени). Алгоритм MCS на некотором графе � производит

за время �(� +�) полное упорядочение множества вершин следующим обра-

зом. Из произвольной вершины выбирается любая, еще не пронумерованная

вершина, смежная максимальному числу уже пронумерованных вершин.
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Эвристика минимального пополнения MIN-FILL (Minimum Fill-in) [196] ра-

ботает практически так же, как и описанная выше эвристика минимальной сте-

пени MD, с той лишь разницей, что здесь на каждом шаге выбирается такая

вершина, чтобы число добавляемых к ней ребер, необходимых для получения

клики, было минимальным.

В работе [197] предложен алгоритм, вычисляющий хорошую элиминацион-

ную последовательность за линейное время, который был назван лексикогра-

фический поиск в ширину LEXҫBFS (Lexicographic BreadthҫFirst Search). Суть

данного метода заключается в следующем. Вершины нумеруются от � до 1 (ну-

мерация фиксирует позиции переменных) в упорядочении. Далее, для каждой

вершины создается метка, содержащая множество чисел, записанных по убы-

ванию. Таким образом вершины могут быть лексикографически упорядочены

согласно их меткам.

Эффективность вышеназванных эвристик определим с помощью вычисли-

тельного эксперимента для исследования влияния эвристик на время решения

задач ДО. Целью данного эксперимента является исследование влияния каж-

дого из пяти алгоритмов упорядочивания переменных на работу локального

элиминационного алгоритма. Для данного эксперимента использовались сле-

дующие эвристики, описанные выше:

— Алгоритм минимальной степени MD

— Алгоритм рекурсивного разбиения ND

— Алгоритм поиска по максимальной степени MCS

— Алгоритм минимального пополнения MINҫFILL

— Алгоритм лексикографического поиска в ширину LEXҫBFS

Тестовые задачи ДО генерировались на основе уже существующих матриц

из библиотеки CSP 1. Указанная библиотека содержит различные классы мат-

риц для задач удовлетворения ограничений, среди которых были реальные за-

дачи для приложений в промышленности (DaimlerChrysler, NASA, ISCAS) и

искусственно созданные примеры задач.

1http://faculty.cse.tamu.edu/davis/welcome.html
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Тестовые задачи ДО строились следующим образом. Структура ограниче-

ний линейной задачи ДО с бинарными переменными задавались с помощью ги-

перграфов из библиотеки CSP. Для построения ограничения � бралось очеред-

ное гиперребро гиперграфа, содержащее множество переменных �Si
, входящих

в строящееся ограничение. Далее с помощью процедуры, использующей датчик

случайных чисел, строились коэффициенты �Si
при соответствующих перемен-

ных, тогда левая часть �-го ограничения имела вид �Si
�Si

. Правая часть �-го

ограничения имеет вид �
︀

�Si
, где � ҫ случайное число из интервала (0, 1).

Целевая функция линейна, содержит все переменные ҫ вершины гиперграфа,

причем коэффициенты �j целевой функции
︀n

j=1 �j�j → max строились с по-

мощью процедуры, использующей датчик случайных чисел.

Далее для каждого графа взаимосвязей применялись алгоритмы упорядо-

чивания вершин в графе взаимосвязей, а именно MD, ND, MCS, MIN-FILL и

LEX-BFS. В данном эксперименте был выбран пакет MATLAB 2, так как вер-

сии вышеназванных алгоритмов реализованы в этой среде в виде стандартных

функций. Затем пример задачи и полученный порядок элиминации подгружал-

ся в AMPL, где итоговая задача решалась с помощью ЛЭА.

В данном эксперименте всего было взято 150 примеров случайно выбранных

задач. Время решения одних и тех же задач с разными эвристиками сравни-

валось и выбиралась лучшая из них. Таким образом, для алгоритма ND мини-

мальное время работы алгоритма не было достигнуто, для MD ҫ 7 раз, LEX-BFS

ҫ 11 раз, MCS ҫ 39 раз и MIN-FILL ҫ 93 раза (рис. 2.6).

Основным результатом данного эксперимента является исследование влия-

ния пяти алгоритмов упорядочивания вершин на время решения разреженных

задач ДО с помощью локального элиминационного алгоритма. В результате

проведенного вычислительного эксперимента было выявлено, что порядок пере-

менных оказывает значительное влияние на время решения задачи. Кроме того,

полученный порядок элиминации используется в декомпозиции для построения

БДҫструктуры задачи ДО. Локальный элиминационный алгоритм для одних

БДҫструктур получает оптимальное решение быстрее, а для других — медлен-

нее. Скорость работы локального элиминационного алгоритма связана с тем,

каким образом получена из графа взаимосвязей та или иная структура задачи

ДО. При этом полученные БДҫструктуры различались порядком элиминации

2http://matlab.ru
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Эвристика

MD ND MCS MIN-FILL LEX-BFS

Рисунок 2.6: Сравнение эвристик по минимальному времени работы
локального элиминационного алгоритма с полученным порядком элиминации

переменных в графе: лучшие результаты получились с эвристикой MINҫFILL,

а худшие — с эвристикой ND.



Глава 3

Тестирование и распараллеливание задач квазиблочной

структуры

В данной главе рассматриваются локальные элиминационные алгоритмы

О.А. Щербины [81] в применении к задачам с квазиблочной структурой — ло-

кальные блочноҫэлиминационные алгоритмы (ЛБЭА). Рассматриваются моди-

фикации ЛБЭА, которые позволяют существенно его ускорить. Это эвристи-

ческий алгоритм (ЭЛБЭА), а также ЛБЭА, использующие предобработку, па-

раметрическую оптимизацию и релаксации. Также осуществляется распаралле-

ливание задач с квазиблочной структурой. Для этого используется независимое

решение промежуточных блочных задач на отдельных процессорах. Приводит-

ся обзор распараллеливания задач ЦЛП.

3.1 Локальный блочноҫэлиминационный алгоритм

Принцип работы локальных алгоритмов заключается в следующем. Вна-

чале вычисляется информация о локальных элементах структуры задачи, ко-

торая записывается в виде новых зависимостей, добавляемых к задаче. Затем

просмотренные элементы и использованные зависимости исключаются из про-

цесса вычисления [74, 142].Когда все возможные элементы исключены, восста-

навливается глобальное решение исходя из зафиксированной ранее локальной

информации на каждом шаге алгоритма. Рассмотрим подробнее эти процессы.

Основная идея ЛЭА состоит в последовательном исключении переменных с

сохранением информации об этих переменных. Процедура ЛЭА разбивается на

две части:

— элиминация элементов, вычисление и запоминание информации в виде

локальных решений и получение в конце значения критерия;

113
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— нахождение глобального решения всей задачи по найденным в первой ча-

сти таблицам с локальными решениями, обеспечивающего в первой части

достижение критерия.

Первая часть ЛЭА состоит из нескольких этапов:

Шаг 1. Определение порядка исключения переменных согласно некоторой эври-

стике.

Шаг 2. Запись локальной информации об этих переменных в виде новых зависи-

мостей, добавляемых к задаче.

Шаг 3. Исключение просмотренных элементов и использованных зависимостей

согласно порядку исключения переменных.

Алгоритмическая схема ЛЭА представляет собой бесконтурный орграф,

вершины которого соответствуют локальным подзадачам, а ребра — выражают

информационную (или концептуальную) зависимость подзадач друг от друга.

Проиллюстрируем работу частного случая ЛЭА, а именно его использование

для задач с БДҫструктурой — ЛБЭА.

Изложим ЛБЭА для решения задач с БДҫструктурой (2.5)ҫ(2.7). Введём

�rr′ — множество индексов переменных, принадлежащих одновременно блокам

�r и �r′. Если множество индексов переменных � = {�1, . . . , �q}, то вектор

переменных будет таким: �S = (�j1, . . . , �jq). �Sr
— вектор переменных, при-

надлежащих блоку �r, �Srr′
— вектор переменных, общих для блоков �r и �r′.

Обозначим через �Dr
следующую задачу: для каждого вектора �Sprr

найти �Sr

и �Srr′
, такие, чтобы

�Dr
(�Sprr

) = max{�Sr
�Sr

+
︁

r′∈Jr

[�Dr′
(�Srr′

) + �Srr′
�Srr′

]}

при ограничениях

�Sr
�Sr

≤ �r −
︁

r′∈Jr

�Srr′
�Srr′

− �Sprr
�Sprr

.

Здесь �Dr′
(�Srr′

) — значение целевой функции задачи �Dr
, соответствующей

дереву �r. Решение задачи �Dr
для вершины � дерева � при фиксированном
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векторе �Sprr
обозначим таким образом:

�Dr
(�Sprr

) =
︁

r′∈Jr

[�Dr′
(�Srr′

)
︁

�Srr′
]
︁

�Sr
.

Понятно, что �Dr′
(�Srr′

) = �Dr′
�Dr′

. Нетрудно заметить, что если зафикси-

ровать вектор �Sprr
, то задача (2.5)ҫ(2.7) распадается на две задачи: первая

соответствует дереву �r; а вторая — � ∖�r. На этом свойстве и основано при-

менение ЛЭА для решения задач ДО с БДҫструктурой. Алгоритм вычисляет

информацию, поднимаясь от «листьев дерева к корневой вершине». Примене-

ние ЛБЭА к задаче ДО, характеризующейся деревом � инцидентности блоков

с � вершинами, состоящим из � слоев, выглядит так. Пусть в �ҫм слое имеется

�ν вершин �ν = {�
(ν)
1 , . . . , �

(ν)
lν
}. �r — множества индексов переменных, которые

являются общими для данного блока � = �
(ν)
lν

и блока �′ = �
(ν+1)
lν+1

, если мно-

жество �rr′ не пусто. Другими словами �pr = �prr. Рассмотрим шаги ЛБЭА.

Алгоритм 5 ЛБЭА для решения задач с БДҫструктурой

Шаг 1. Положить � = �, �r = ∅ для всех � ∈ �L.

Шаг 2. Для каждой вершины � = �
(ν)
l , � = 1, . . . , �ν слоя � дерева � решить

задачу �Dr
. Если эта задача не имеет решения ни для одной вершины

данного слоя — перейти к шагу 5, в противном случае — к шагу 3.

Шаг 3. Если � ≥ 2, то перейти на слой выше, т.е. положить � := � − 1 и перейти
к шагу 2, иначе — к шагу 4.

Шаг 4. Конец вычислений. Решение задачи �Dr
на уровне � = 1 является реше-

нием исходной задачи: �max = �D1
.

Шаг 5. Конец вычислений. Задача не имеет допустимых решений.

Поясним более подробно работу ЛБЭА. Пусть первоначально исходная за-

дача является блочноҫлестничной и содержит � блоков. Порядок исключения

блоков — {�1, �2, . . . , �R}. Все блоки, кроме первого и последнего, будут содер-

жать три вида переменных: блочная, сепаратор и наследственная. Наследствен-

ные переменные — это переменные, принадлежащие одновременно текущему

блоку и предыдущему. Сепараторы для данной структуры задачи — это пере-
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менные, принадлежащие одновременно текущему блоку и следующему. Рас-

смотрим переменные, соответствующие первому исключаемому блоку �1: он

содержит �1 свободных переменных и �1 сепараторов — переменных: которые

принадлежат текущему блоку и следующему. Создадим подзадачу �1(�
s
1) и за-

фиксируем сепараторы первого блока �s
1 = {0, 0, . . . , 0, 0}. Решим полученную

подзадачу и занесём решение (�s
1 , �

t
1, �1) в таблицу ЛБЭА, где �s

1 — зафикси-

рованное значение сепаратора, � t
1 — значение вектора свободных переменных

и �s
1 — экстремальное значение целевой функции. По аналогии решим осталь-

ные подзадачи для каждого значения сепаратора от �s
1 = {0, 0, . . . , 0, 1} до

�s
1 = {1, 1, . . . , 1, 1}, всего получится 2s1 подзадач для данного блока. Отме-

тим, что если для блока решена подзадача, и он связан со следующим блоком,

то он будет являться потомком этого блока. В частности, первый блок будет

являться потомком по отношению ко второму блоку.

Рассмотрим второй блок: он содержит �2 сепараторов, �2 свободных пере-

менных и �2 наследственных. Так как у первого и второго блока есть общие

переменные, то �2 = �1. Создадим подзадачу �2(�
s
2) и зафиксируем сепарато-

ры второго блока �s
2 = {0, 0, . . . , 0, 0}. Наследственные переменные для задачи

�2(�
s
2) представлены в виде табличной функции, соответствующей подзадаче

�1(�
s
1): согласно значениям этих переменных �s

1 из таблицы выбирается соот-

ветствующее значение целевой функции �1 и прибавляется к значению целевой

функции �2 + �1. Таким образом задача �2(�
s
2) решается относительно пере-

менных �2 и �2 с функционалом �2 + �1. Решения задачи для всех значений

сепаратора заносятся в соответствующую таблицу. Всего таких подзадач для

первых двух блоков 2s1 · 2s2.

По аналогии решим задачи, соответствующие всем остальным блокам кро-

ме последнего. У последнего блока будет единственное решение (����,�R, �R),

так как у него нет сепараторов. Переходим к восстановлению глобального ре-

шения задачи. Ищем значение вектора решений �R в таблице блока �− 1 сре-

ди значений сепараторов. Соответствующие строки будут содержать решения

� t
R−1. Если в одном блоке имеется несколько решений, выбираем оптимальное

и расширяем вектор �R за счёт полученных значений. Полученные вектора

решений ищем в следующей таблице и так далее, пока блоки не закончатся.

Вектор, достроенный в последнем блоке будет глобальным вектором решения

исходной задачи.
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Рассмотрим особенности БДҫструктуры. Пусть для задачи с БДҫ

структурой определён порядок решения подзадач, соответствующих блокам.

Тогда если у блоков нет потомков, подзадачи решаются аналогично подзадачам

для БЛҫструктуры. Если потомки есть, то его подзадача строится следующим

образом. Рассмотрим блок �, он содержит �r сепараторов, �r свободных пере-

менных и �r наследственных. Пусть у него � потомков, тогда множество наслед-

ственных переменных разбивается на � подмножеств: �r = �1 + �2 + . . . + �k.

Значит создадим подзадачу �r(�
s
r ) и зафиксируем сепараторы �ҫтого блока

�s
r = {0, 0, . . . , 0, 0}. Наследственные переменные для задачи �r(�

s
r ) представ-

лены в виде � табличных функций: согласно значениям этих переменных �s
r−1

из каждой �ҫтой таблицы выбирается соответствующее значение целевой функ-

ции � i
r−1 и прибавляется к значению целевой функции �r = �r +

︀

�i, где

� = 1, . . . , �. Решения задачи для всех значений сепаратора заносятся в соот-

ветствующую таблицу. Всего таких подзадач для первых двух блоков 2s1 · 2sr−1.

Подзадача, соответствующая последнему блоку � решается аналогично за

исключением того, что имеет единственное решение (����, �R, �R). Для вос-

становления глобального решения на каждом шаге необходимо искать значение

вектора решений �R в таблицах блоковҫпотомков блока � среди значений сепа-

раторов. Соответствующие строки таблиц будут содержать решения подзадач,

причём если в одном блоке имеется несколько решений, выбираем оптималь-

ное из них и расширяем вектор �R за счёт полученных значений. Полученные

вектора решений ищем в следующей группе таблиц и так далее, пока блоки не

закончатся. Вектор, достроенный в последнем блоке будет глобальным векто-

ром решения исходной задачи.

Одним из принципиальных вопросов при исследовании эффективности ЛБ-

ЭА является следующий: «В каких случаях применение ЛБЭА в сочетании с

некоторым алгоритмом для решения задач ДО в блоках эффективнее исполь-

зования только лишь упомянутого алгоритма?».

В [81] приведён теоретический анализ оценок эффективности. Ниже описан

проведённый сравнительный вычислительный эксперимент, который позволяет

оценить эффективность ЛБЭА относительно одного из решателей. Очевидно,

что проведение вычислительного эксперимента для ЛБЭА в сочетании со всеми

существующими решателями ДО или хотя бы с самыми известными является

очень трудоемким процессом. Такого типа эксперименты представлены в [81].



118

В данной работе для сравнительного эксперимента используются алгоритмы

ДО, встроенные в SYMPHONY. SYMPHONY является частью проекта COINҫ

OR 1 и используется для решения задач частичноҫцелочисленного линейного

программирования (ЧЦЛП). Этот решатель выбран изҫза открытого исходно-

го кода, переносимости, а также наличия технологии «теплого» старта (ТС),

реализующей постоптимальный анализ (ПА) задач ЦЛП [198].

В [199] ПА используется для решения многокритериального дискретного

варианта задачи управления инвестициями Марковица с критериями эффек-

тивности портфеля и упущенной выгоды. В [200] ПА — для решения задачи о

рюкзаке с булевыми переменными. Также ПА широко используется в задачах

полубесконечной оптимизации [201] и квадратичных задачах ДО [202].

ПА — это процесс, который реализуется после того, как получено опти-

мальное решение. Благодаря ПА проявляется чувствительность оптимального

решения к определенным изменениям исходной модели. То есть, с помощью

ПА анализируется влияние возможных изменений исходных условий на полу-

ченное ранее оптимальное решение. Также ПА позволяет подобрать значения

параметров в задаче ЦЛП в случае, когда часть параметров задачи не известна

и приходится использовать приближенные значения параметров. Кроме того,

полученное решение может устареть еще до своей реализации, если не удаётся

установить влияние возможных изменений параметров модели на оптимальное

решение. Существует графический и аналитический метод ПА.

В ПА исследуются зависимости от следующих параметров:

1. Компоненты вектора ограничений �t. После нахождения оптимального ре-

шения часто необходимо выяснить, как изменение вектора ограничений

влияет на оптимальное решение. В качестве примера неравенства моде-

ли типа "≤"можно интерпретировать, как ограничения на использование

некоторого конечного ресурса, а ограничения типа "≥— как некоторые

требования к реализуемому процессу.

2. Коэффициенты ЦФ �j. Определяются пределы допустимых изменений

коэффициентов целевой функции следующим образом:

— каков диапазон увеличения или уменьшения некоторого коэффици-

ента целевой функции, при оптимальное решение не меняется,

1www.coin-or.org
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— насколько следует изменить некоторый коэффициент целевой функ-

ции, чтобы сделать недефицитный ресурс дефицитным и наоборот.

3. Эффект от изменения коэффициентов ЦФ может рассматриваться со сле-

дующих позиций:

1) необходимо исследовать равновесные компоненты целевой функции

(ЦФ);

2) необходимо исследовать диапазон изменения коэффициента ЦФ, в

пределах которого оптимум слабо меняется.

ПА применим для ЛБЭА, поскольку он позволяет:

— использовать при решении задач информацию, полученную при решении

уже решенных задач того же пакета;

— эффективно пересчитывать задачу ЦЛП при изменениях параметров за-

дачи.

ТС для реализации ПА используется CBC, Gurobi, SCIP, SYMPHONY и дру-

гими решателями. Рассмотрим ТС в SYMPHONY в качестве инструмента для

уменьшения перебора при решении подзадач, которые создаются и решаются

ЛБЭА. ТС реализован на основе компактного описания дерева поиска в мо-

мент приостановки вычислений. Используя данное описание можно сохранять

промежуточные вычисления, а затем применять их после перезапуска процесса

вычислений в следствие изменения данных задачи.

Далее будут представлены результаты численных расчётов, которые харак-

теризуют эффективность ЛБЭА, то есть время работы этого алгоритма суще-

ственно меньше, чем если задача решается напрямую с помощью стандартного

метода целочисленного линейного программирования. Целью данного экспери-

мента является сравнение времени работы трёх алгоритмов для тестовых задач

ЦЛП с бинарными переменными, которые имеют БДҫструктуру, сгенерирован-

ную искусственным образом.

Тестовые задачи ЦЛП генерировались исходя из заданного общего коли-

чества переменных, связывающих переменных между блоками, а также числа

ограничений. Размеры и число блоков вычислялись согласно числу перемен-

ных и ограничений исходной задачи. С помощью генератора случайных чи-
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Таблица 3.1: Результаты сравнения Symphony без ЛБЭА, Symphony с ЛБЭА и
Symphony с ЛБЭА с применением технологии постоптимального анализа

m n k s Symphony Symphony + LEA Symphony + LEA + PA
1 50 150 25 2 1,5722 0,0301 0,0316
2 100 300 50 4 3,3821 0,1588 0,1579
3 150 500 75 6 — 0,0765 0,0774
4 200 800 100 8 — 0,0367 0,0395
5 250 1000 125 10 — 0,5681 0,5772

сел задавались остальные компоненты задачи: коэффициенты целевой функ-

ции, коэффициенты матрицы ограничений и правых частей для каждого бло-

ка. Каждая тестовая задача решалась с использованием следующих алгорит-

мов. Первый алгоритм — это базовый решатель SYMPHONY для задач частич-

но—целочисленного линейного программирования (ЧЦЛП). Второй алгоритм —

ЛБЭА, который использовал с решатель SYMPHONY для решения подзадач,

соответствующих блокам. Третий алгоритм — вариация второго алгоритма, где

решатель SYMPHONY использовался с поддержкой технологии тёплого старта

(ТС).

В таблице 3.1 находятся результаты вышеописанного эксперимента. � —

число ограничений, � — число переменных задачи, � — число блоков соответ-

ствующей структуры, � — максимальный сепаратор, Symphony — время, за

которое решается данная задача с помощью Symphony без ЛБЭА, Symphony

+ LEA — время, за которое решается данная задача с помощью Symphony и

ЛБЭА, Symphony + LEA + PA — время, за которое решается данная задача

с помощью Symphony и ЛБЭА с использованием постоптимального анализа.

Прочерк ставился, если время решения задачи составляет более двух часов.

B результате было установлено явное преимущество второго и третьего ал-

горитмов над первым. В частности, эксперимент показал, что второй алгоритм

становился менее эффективным изҫза увеличения объема перебора при реше-

нии подзадач в блоках, если увеличивать количество связывающих перемен-

ных в задачах с одинаковым числом переменных и размером блоков. В этом

случае разумно использовать третий алгоритм, а именно ЛБЭА в сочетании с

решателем SYMPHONY, когда используются принципы параметрической оп-

тимизации (технологию ТС). Дело в том, что соответствующие одному и тому

же блоку задачи ЦЛП отличаются одна от другой только правыми частями
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для разных значений связывающих переменных. Алгоритм получает информа-

цию о решении и использует её для анализа последующих задач, что позволяет

решать каждую задачу не полностью, а частично при переборе значений связы-

вающих переменных. Значит с помощью параметрического программирования

можно существенно увеличить производительность ЛБЭА. Однако результат

эксперимента оказался неоднозначным. Время решения большинства задач с

использованием второго и третьего алгоритмов практически сопоставимо. Для

некоторых тестовых задач параметрическое программирование оказалась неэф-

фективным. Было замечено также, что что при малых размерностях эффектив-

ность ЛБЭА отсутствует.

ЛБЭА достаточно эффективен для разреженных задач согласно [81] и при-

ведённому выше эксперименту, но для достаточно больших размерностей су-

ществует серьёзная проблема большого числа вычислений. Далее рассмотрим

некоторые модификации, направленные на решение этой проблемы.

3.2 Приближенные методы решений

Приближённые методы широко применяются при решении задач ЦЛП ви-

да (2.1), определённых в первой главе, так как нахождение точного реше-

ния может потребовать значительных вычислительных ресурсов. Современные

приближенные методы обычно являются комбинированными, т.е. содержат в

себе элементы различных методов. Решение задачи приближенными методами

обычно происходит в два этапа: построение и улучшение начального решения.

При этом на первом этапе широко используются эвристические алгоритмы —

алгоритмы, которые не основаны на строго обоснованных предположениях от-

носительно свойств оптимального решения задачи. Примером эвристического

алгоритма может быть алгоритм решения задачи коммивояжера, в котором на

каждом шаге реализуется переход в ближайшую из оставшихся точку. Алго-

ритмы такого типа носят название "greedy"(«жадные»алгоритмы).

Эти алгоритмы на каждом шаге решают «локальную» задачу оптимизации;

полученное решение может быть далеким от оптимума. Алгоритмы локальной

оптимизации, связанные с введенным понятием окрестности, используются на

втором этапе; при этом можно использовать несколько алгоритмов этого типа,

изменяя правила выбора окрестности.
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Локальный элиминационный алгоритм допускает понижение перебора с по-

мощью организации приближенного решения. Мощное направление в развитии

приближенных подходов естественным образом возникло внутри точных мето-

дов (в основном методов ветвей и границ). При этом неоднократно отмечалось,

что для значительного большинства прикладных задач совершенно достаточ-

но вместо точного получить хорошее приближенное решение. Принципиальные

вычислительные трудности, возникающие при применении точных методов, и

в то же время достаточность хорошего приближенного решения для многих

прикладных задач — вот основные источники повышенного интереса к прибли-

женным методам [203].

Трудности с решением достаточно больших подзадач ЛБЭА обусловливают

необходимость использования релаксаций. Они позволяют находить и отсеивать

решения, которые наверняка не станут оптимальными. Любая задача ЦЛП с

ограничениями может быть релаксирована с помощью ослабления ее ограниче-

ний. В [204, 205] описывается метод ветвей и границ (МВГ), представляющий

собой поиск на дереве с движением от корня дерева поиска к его листьям с

использованием оценок для ослабленных задачҫрелаксаций. В [206] рассмат-

риваются бинарные решающие диаграмм, которые играют роль классических

линейных релаксаций для МВГ. В [207] авторы демонстрируют линейную ре-

лаксацию для решения квадратичных задач дискретного программирования.

Перейдём к понятию релаксации [205]. Пусть � — данная задача ЦЛП на

максимум. Обозначим через � множество допустимых решений задачи ЦЛП

�. При этом верхней границей �R(�) ≥ �(�) будем называть такое решение,

для которого не выполняются некоторые ограничение, и при этом оптимальное

решение меньше. Под релаксацией (�R) исходной задачи (�) будем понимать

задачу, для которой выполняются следующие условия:

— � ⊂ �R;

— для � ∈ � верхняя граница �(�) ≤ �R(�);

— для �1, �2 ∈ � из неравенства �R(�1) ≤ �R(�2) следует �(�1) ≤ �(�2).

Линейная релаксация получается из задачи ЦЛП с помощью отбрасывания

условий целочисленности переменных. Релаксация этого вида широко исполь-

зуется и представляет интерес, поскольку полученная задача ЛП может быть
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решена с помощью стандартных алгоритмов, например, симплексҫметода ли-

бо метода внутренней точки. При реализации линейной релаксация условия

�j = {0; 1} заменяются неравенствами 0 ≤ � ≤ 1 и в результате получается

задача линейного программирования

Ранцевая релаксация состоит в построении из множества ограничений за-

дачи � = ���{�� : �� ≥ �, � ∈ � ⊂ �n, целое} одного суррогатного огра-

ничения, которое является неотрицательной линейной комбинацией исходных

ограничений. При реализации ранцевой релаксации вместо исходной системы

ограничений используется так называемое суррогатное ограничение — линей-

ная комбинация исходных ограничений. Таким образом, ранцевая релаксация

имеет вид:

�R(�, �) = ���{�� : ��� ≥ ��, � ∈ �R ⊂ �n, целое}, � ≥ 0

Релаксированные задачи могут использоваться для зондирования задач

ЦЛП. Под прозондированной задачей будем понимать задачу, для которой вы-

полняется одно из следующих условий:

— анализ релаксированной задачи �R показал, что � недопустима. Так, из

того, что �R — пустое множество, следует, что � также является пустым

множеством;

— анализ релаксированной задачи �R показал, что � не имеет допустимых

решений, лучших, чем текущий рекорд. Если �(R) ≤ �1 то � ≤ �(R) ≤ �1;

— анализ релаксированной задачи �R позволил найти оптимальное решение

�. Например, если �optR — оптимальное решение �R, которое допустимо в

�, то �optR — оптимальное решение �.

Основным недостатком ЛБЭА является полный перебор по множествам �rr′

сепараторов, что обусловливает возможность большого объема перебора при

больших значениях �rr′ = |�rr′|. Преодолеть этот недостаток и способствовать

успешному решению практически важных задач ЦЛП специальной структуры

с большими �rr′ может введение процедуры, позволяющей «предсказать» ис-

комые оптимальные (или близкие к оптимальным) значения перемычек �*Srr′
.

Зная значения перемычек �*Srr′
, задачи ЦЛП, соответствующие блокам, можно

решать отдельно, независимо друг от друга. Очевидно, что возможность узнать
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какимҫто образом оптимальные значения �*Srr′
представляется сомнительной.

Тем не менее можно найти значения перемычек �Srr′
, близкие к оптимальным,

с помощью замены соответствующих блокам задач ЦЛП на их релаксации, а

затем решить построенные задачи ЦЛП с помощью ЛБЭА. Таким образом все

возможные наборы �Srr′
перебираются полностью, однако трудоемкость выпол-

нения каждого шага существенно снижена за счет решения не исходных, а ре-

лаксированных и поэтому более легко решаемых подзадач. То есть зная близ-

кие к оптимальным значения перемычек �Srr′
, можно перебрать некоторую их

окрестность с радиусом Хемминга � 2, таким образом, объем перебора составит:

�rr′ =
R︁

i=0

� i
nrr′

Понятно, что �rr′ = 2nrr′ , радиус � определяется экспериментально, с учетом

величины выделяемого для решения задачи времени. Если все же и с релакси-

рованными подзадачами рассматриваемая задача ЦЛП не поддается точному

решению, можно использовать случайный выбор значений перемычек �Srr′
. В

данном случае � — число случайным образом порождаемых значений перемы-

чек �Srr′
. Кроме того, можно использовать неполный перебор перемычек.

Рассмотрим тестирование приближённых модификаций ЛБЭА, которые

позволяют существенно ускорить данный алгоритм. Целью вычислительного

эксперимента является провести оценку эффективности использования эври-

стического локального блочноҫэлиминационного алгоритма (ЭЛБЭА) и ЛБЭА

с препроцессингом (ЛБЭАпр), а также сравнить вышеперечисленные прибли-

женные алгоритмы с точным алгоритмом. Все задачи для вычислительного экс-

перимента являются задачами ЦЛП с булевыми переменными, которые имеют

БЛҫструктуру. Блоки в каждой задаче имеют одинаковое количество перемен-

ных и ограничений, а также одинаковое число переменных в сепараторах между

блоками. Длина сепаратора меняется для одних и тех же параметров задачи,

поскольку позволяет оценить эффективность каждого из приближенных алго-

ритмов в зависимости от числа связывающих переменных.

Тестовые задачи генерировались по заданному числу переменных, числу

ограничений и размеру сепараторов между блоками. Исходя из количества пе-

2Здесь под радиусом Хемминга будем понимать количество компонент, которые отличаются в двух век-
торах решений.
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ременных и ограничений вычислялись размеры блоков и их количество. Далее

с помощью датчика случайных чисел генерировались коэффициенты целевой

функции, коэффициенты матрицы ограничений и правых частей для каждого

из блоков. Библиотека LES (Local Elimination Solver) версии v0.1.1 3 использо-

валась для вычисления задач бинарного целочисленного линейного программи-

рования (BILP problem). Матрица ограничений исходной задачи изображена на

рисунке 3.1. Здесь � — количество блоков; �p — количество строк в �ҫтом бло-

Рисунок 3.1: Матрица исходной задачи ЦЛП

ке, � = 1, . . . , �; � и � — номера строки и столбца соответственно, � = 1, . . . , �,

� = 1, . . . ,�; �p и �p — левая и правая граница блоков, �p < �p+1 ≤ �p < �p+1;

причем �k = �, �1 = 1 и �k = �. Далее исследуем работу каждого из алгоритмов.

Рассмотрим принцип работы ЭЛБЭА. После того, как построен декомпози-

ционный граф данной задачи, на его основе строится новый граф, в вершинах

которого находятся релаксированные подзадачи. В каждой полученной под-

задаче содержится только одно ограничение, определяемое вектором, каждый

элемент которого — это сумма элементов первоначальной матрицы ограниче-

ний по строкам. Матрица ограничений релаксационной задачи представлена на

рисунке 3.2. Значения общих переменных, полученные в результате решения

задачи с модифицированным деревом, являются компонентами вектора реше-

ний исходной задачи. Затем исходная задача упрощается следующим образом.

3https://github.com/robionica/les



126

Рисунок 3.2: Матрица релаксированной задачи

Значения общих переменных подставляются в задачу так, что изменяются пра-

вые части ограничений, а из целевой функции исключаются общие переменные.

То есть, в результате данного преобразования получается � не зависящих друг

от друга задач, как показано на рисунке 3.3. Здесь �*j — значения переменных,

Рисунок 3.3: Матрица упрощенной задачи ЦЛП

полученных после решения релаксированной задачи. Таким образом, вместо

исходной задачи решаются релаксированные подзадачи, что позволило суще-

ственно сокращает время работы алгоритма.

Результаты вычислительного эксперимента представлены в таблице 3.2. Для

проверки эффективности приближенных алгоритмов в качестве тестовых задач

были взяты пакеты задач, задачи в которых отличаются только размерами
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Таблица 3.2: Результаты работы алгоритма ЭЛБЭА относительно точного
алгоритма

m n k s Точность Ускорение Кҫво ошибок
1 100 300 10 6 99,31 12,12 3
2 100 300 10 10 98,40 12,52 11
3 100 300 10 14 99,02 4,50 11
4 100 600 10 6 99,85 11,34 1
5 100 600 10 10 99,51 64,26 4
6 100 600 10 14 99,59 3,55 4
7 200 500 10 6 99,49 557,13 4
8 200 500 10 10 99,34 71,37 8
9 200 500 10 14 98,72 3,82 12

сепараторов между блоками. Это позволяет узнать, каким образом увеличение

размера сепараторов влияет на точность приближенных алгоритмов.

В таблице 3.2 находятся результаты вышеописанного эксперимента. � —

число ограничений, � — число переменных задачи, � — число блоков соот-

ветствующей структуры, � — максимальный сепаратор, точность — точность

приближенных алгоритмов относительно точного ЛБЭА, ускорение — во сколь-

ко раз приближенный алгоритм работает быстрее, чем ЛБЭА, кҫво ошибок —

сколько переменных из сепараторов было определено неверно.

Рассмотрим тестирование ЛБЭА с препроцессингом (ЛБЭАпр). ЛБЭАпр

уменьшает размерность исходной задачи путем исключения переменных и огра-

ничений. Вначале проводится декомпозиция задачи согласно рисунку 3.1. Обо-

значим блоки задачи — Ωt, где � = 1, 2, . . . , � — количество блоков. Зададим вес

для Ωt: определим вес блока как сумму коэффициентов целевой функции при

переменных �j, которые входят в данный блок.

�t =
︁

j:xj∈Ωt

�j

Разобьем исходную задачу на 3�− 2 следующим образом. Первый и послед-

ний блоки разбиваются на две подзадачи, а все остальные — на три: одна из них

полностью состоит из локальных переменных данной подзадачи, а две другие

— из общих переменных. Правые части ограничений разбиваются в соответ-

ствии с весами каждого блока. Рассмотрим произвольный внутренний блок Ωt,

� = 2, . . . , �− 1. Пусть �t — множество локальных переменных, �tl и �tr — мно-
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жества общих переменных таких, что �tl ∈ Ωt−1

︀

Ωt и �tr ∈ Ωt

︀

Ωt+1. Тогда

после разбиения на подзадачи блок Ωt будет выглядеть следующим образом

(рис. 3.4):

Рисунок 3.4: Разбиение блока на подзадачи

Где �b = �t−1 + 1 и �e = �t, �ij = bi
︀

j=0,1,2 bij
. Объединим все подзадачи, кото-

рые имеют одинаковые множества переменных. После решения этих подзадач

исключим из первоначальной задачи все переменные, которые приняли значе-

ние 1. Затем соответствующим образом изменим правые части ограничений.

Полученное значение целевой функции является искомым.

Так как упрощенная задача может иметь избыточные ограничения, а так-

же переменные, не удовлетворяющие ограничениям, необходимо использовать

правила предварительного анализа исходной задачи — препроцессинг. Препро-

цессинг — фаза между формулированием модели и ее решением, которая при-

меняет простые логические правила (тесты) для переформулировки задачи и

сжатия линейной релаксации. При этом препроцессинг может также уменьшить

размер задачи в результате фиксирования некоторых переменных и исключе-

ния ряда ограничений, а также выявить недопустимость задачи. Простейшее

логическое тестирование основано на границах переменных и правых частей

ограничений. Пусть �i — любая нижняя граница, а �i — любая верхняя грани-

ца значения �ҫй строки �i� при ограничении � ≤ � ≤ �. Ограничение �i� ≤ �i

избыточно, если �i ≤ �i и недопустимо, если �i > �i. Граница переменной может

быть уточнена на основе информации о том, что ограничение становится недо-

пустимым при присвоении переменной значения этой границы. Препроцессинг

состоит из трех этапов: исключение переменных, не удовлетворяющих хотя бы

одному из ограничений, исключение избыточных ограничений (при этом в век-

тор решений добавляются переменные, которые в любом случае будут прини-

мать значение единицы) и исключение переменных, которые не входят в новые

ограничения задачи. Затем решается упрощенная задача с помощью решате-

ля SCIP. Полученные значения переменных записываются в вектор решений, а

решение упрощенной задачи добавляется к значению целевой функции.
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Таблица 3.3: Результаты, полученные с помощью решателя SCIP и ЛБЭАпр

№ n m k s Точность Ускорение
1 40 160 10 3 100,00 0,41
2 40 160 10 5 98,03 0,85
3 40 160 10 7 96,61 1,84
4 80 200 10 3 99,56 0,62
5 80 200 10 5 98,92 0,94
6 80 200 10 7 96,82 3,41
7 120 300 15 3 99,36 1,22
8 120 300 15 5 98,24 1,61
9 120 300 15 7 98,12 6,46
10 100 300 10 3 99,75 2,02
11 100 300 10 5 98,69 2,08
12 100 300 10 7 98,06 1,81
13 150 625 25 3 99,77 0,38
14 150 625 25 5 98,86 4,37
15 150 625 25 7 98,41 76,28
16 100 600 10 3 99,96 1,68
17 100 600 10 5 99,11 3,12
18 100 600 10 7 98,87 7,11
19 200 500 10 3 99,87 4,97
20 200 500 10 5 99,91 37,76
21 200 500 10 7 99,12 157,83



130

В таблице 3.3 находятся результаты вышеописанного эксперимента. � —

число ограничений, � — число переменных задачи, � — число блоков соответ-

ствующей структуры, � — максимальный сепаратор, точность — точность при-

ближенного алгоритма относительно точного ЛБЭА, ускорение — во сколько

раз приближенный алгоритм работает быстрее, чем ЛБЭА.

Анализ полученных результатов показал, что при достаточно больших се-

параторах между блоками квазиблочной задачи ЦЛП приближенные ЛБЭА

в сочетании с современными решателями позволяют решать задачи быстрее,

чем используемые точные алгоритмы сами по себе при решении всей задачи.

Кроме того, с увеличением размерности задач ускорение жадного и эвристи-

ческого алгоритма становится более сопоставимым. При этом эвристический

алгоритм намного чаще «угадывает» значения сепараторов, нежели жадный

алгоритм, что позволяет точно решить соответствующую подзадачу. Значит

можно предположить, что для задач с многократно большими размерностями

более эффективным для использования представляется эвристический локаль-

ный элиминационный алгоритм.

3.3 Распараллеливание задач с квазиблочной структурой

В последние годы были представлены результаты работы системы UMPIRE,

изложенные у Дж. Форреста и Дж. Томлина [208]. Система UMPIRE предна-

значена для решения задач ЦЛП различными модификациями метода ветвей

и границ. Причем исследовались не только обычные параметры счета (машин-

ное время, число итераций), но и динамика вычислительного процесса (картина

построения дерева ветвления). Оказалось, что решавшиеся прикладные задачи

принадлежали в основном к одному из двух классов:

I. Задачи, содержащие сравнительно немного (около 100) целочисленных пе-

ременных (обычно булевых) и много непрерывных переменных и линей-

ных ограничений сложной структуры (до нескольких тысяч ограничений).

II. Задачи, содержащие значительно больше (до нескольких сотен) целочис-

ленных переменных (в том числе булевых), входящих в ограничения спе-

циального вида (такие ограничения возникают обычно из сложных логи-

ческих условий). «Чисто линейная» часть задачи значительно меньше (до

500 — 1000 ограничений) и проще, чем в I классе задач.
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Авторы [208] делают вывод, что задачи промежуточного типа (много цело-

численных переменных и сложная и большая «линейная часть» задачи) сравни-

тельно редко встречаются на практике. Представляется, однако, что они долж-

ны быть существенно сложнее.

Разработка параллельного программного обеспечения для научных целей

— отдельная задача. Выбор целевой вычислительной платформы для реализа-

ции ЛБЭАП может существенно влиять на используемый способ распаралле-

ливания, алгоритмические примитивы, используемые для распараллеливания и

методы, используемые для отладки параллельного программного обеспечения.

Таким образом, развитие параллельного программного обеспечения часто тре-

бует большей привязанности к времени и энергии, чем разработки итеративных

аналогов. На рисунке 3.5 приведены три типа канонических параллельных вы-

числительных платформ (ПВП). В [209] показано, как разрабатывать научное

параллельное программное обеспечение для каждого из этих трех типов.

Три типа канонических вычислительных платформ

ПВП с распределённой памятью

имеют наибольшую возможность моделировать масштабные физические системы

решают задачи ограниченного размера, которые требуют непредсказуемый
доступ к общим, нерегулярным структурам данных

чётко определённые  вычислительные ресурсы, пользователи обучаются минимально

ПВП с разделяемой памятью

ПВП с общей памятью

Рисунок 3.5: Три типа канонических вычислительных платформ.

В источниках [210, 211] рассматривается парадигма MasterҫWorker (MW)

или, как в русскоязычной литературе, «Мастерҫрабочий» для параллельного

метода ветвей и границ (МВГ). Схема MW представляет собой совокупность

параллельно работающих процессов, взаимодействующих с помощью сообще-

ний. Управляющий Masterҫпроцесс создает первые узлы, а затем распределяет

работу между остальными (рабочими) Workerҫпроцессами. Эти рабочие про-

цессы в свою очередь тоже могут состоять из главного и нескольких рабочих

процессов. Распределение вычислений управляется пороговыми значениями, с

помощью которых задается число ветвлений, которое требуется произвести до
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начала обмена данными. Обработка результатов вычислений выполняется в

обратном порядке. Преимущества MW: более высокая производительность и

понижение загрузки процессора, используя графический процессор (GPU). В

статье [212] рассматривается МВГ с поиском в глубину, для параллельной реа-

лизации которого выбрана MW парадигма. В [210] спроектирована библиотека

BNBҫSolver, с помощью которой можно реализовать любой подход, соответ-

ствующий схеме MW. В [71] предлагается использование «высокопропускной»

вычислительной платформы — кластеры Беовулфа. Такая архитектура одно-

родна (все узлы идентичны), имеет связи «всеҫвоҫвсе», в которой любые два

узла могут общаться напрямую, все коммуникации и синхронизация деятельно-

сти осуществляются в рамках явного принятия сообщения между процессорами

с помощью передачи сообщений протокола MPI.

Для ЛБЭАП могут использоваться системы с распределенной памятью: их

параллельное программное обеспечение использует декомпозицию решаемой за-

дачи на подзадачи и назначение их процессорам, а также быструю коммуника-

ционную сеть, обеспечивающую синхронный обмен данными между процессора-

ми. Программирование такой системы может осуществляться с помощью стан-

дартного языка высокого уровня типа C++ или Fortran с явной передачей сооб-

щений. Также может быть использована параллельная система ПО для реше-

ния задач смешанного целочисленного линейного программирования (CЦЛП)

— SYMPHONY, подобная COIN/BCP 4. COIN/BCP и SYMPHONY объеди-

нены в новом решателе ALPS [213]. В [65] исследуется параллельный реша-

тель SYMPHONY для BCP. Существует целый ряд программных пакетов (рис.

3.6), реализующих параллельные вычисления [71]. В [214] рассматриваются раз-

личные параллельные решатели (PUBB, BOB++, PPBBҫLib, PICO, FATCOP,

MallBa, ZRAM, BCP, ALPS/BiCePS, MW Framework, Symphony). Кроме того,

вопросы ПО для распараллеливания комбинаторных алгоритмов рассматрива-

ются в работах [59,215ҫ217] 5 6. Также на рис. 3.6 показаны решатели, исполь-

зуемые для метода ветвей и границ.

Для решаемых в работе задач выбран язык моделирования AMPL 7. С по-

мощью AMPLа можно решать линейные и нелинейные задачи оптимизации с

4http://www.coin-or.org
5http://www.branchandcut.org/
6http://www2.cs.uni-paderborn.de/cs/ag-monien/SOFTWARE/PPBB/documentation.html
7www.ampl.com
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пользователь имеет полный доступ и контроль над
большинством аспектов реализации алгоритма

коммерческие:
SYMPHONY CBCи

(для архитектур с разделяемой памятью),
COIN BCP/

(для архитектур с распределённой памятью);

некоммерческие:
PUBB  BOB  PPBB Lib  PEBBL  OOBB, , - , ,

frameworksblack box-

пользователь формирует команды на входе и
анализирует обратную связь на выходе

коммерческие:
CPLEX ILOG ParaLEX  XPRESS, расширение , ,

Gurobi MILP (для совместных платформ памяти);

некоммерческие:
PARINO  FATCOP  PICO, ,

(для распределённых вычислительных сред)

Различные решатели, используемые для реализации МВГ

Рисунок 3.6: Различные решатели, используемые для реализации МВГ.

дискретными или непрерывными переменными. При этом AMPL легко встраи-

вается в системы, написанные на других языках программирования и позволяет

распараллеливать возникающие подзадачи [218ҫ225].

Ранее при разработке параллельных алгоритмов использовались обычно

суперкомпьютеры и кластеры рабочих станций. Рассмотрим подробнее но-

вые возможности применения современных параллельных вычислительных ар-

хитектур для ускорения работы ЛБЭАП, такие как графические процессоры

(GPU) и GRID.

В последнее десятилетие наблюдается повышенный интерес к GRIDҫ

вычислениям [226]. Как указывалось выше, GRIDҫвычисления используют со-

вокупность слабосвязанных разнородных вычислительных ресурсов как еди-

ный вычислительный ресурс. Существенное преимущество этой среды заклю-

чается в том, что она предоставляет огромное количество вычислительных ре-

сурсов и позволяет ими пользоваться большому числу пользователей. Создание

вычислительных сетей позволяет пользователям использовать простое объеди-

нение сотен тысяч подключенных компьютеров и обеспечить необходимую вы-

числительную мощность. Вычисления GRID представляют собой совокупность

распределённых гетерогенных ресурсов, которые могут использоваться в каче-

стве группы выполняемых крупномасштабных приложений. GRIDҫвычисления

используют совокупность слабосвязанных разнородных вычислительных ресур-

сов как единый объект.
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Работа [227] посвящена теоретическому исследованию эффективности ре-

шения задачи о ранце в распределённой вычислительной среде и рассмотрен

пример реализации МВГ для задач о ранце на GRID системах. Здесь для ор-

ганизации вычислений на GRID выбрана парадигма ҡMasterҫworkersә. В [228]

проведён теоретический анализ и сравнение параллельных МВГ на схемах MW

без перераспределения заданий и с перераспределением заданий на примере

задачи о рюкзаке. В [229] реализована модель МВГ в системе BNBҫGRID и

проведён эксперимент на примере задачи нахождения расположения атомов в

молекуле с минимальной потенциальной энергией. В [230, 231] демонстрирует-

ся, как эффективно решаются задачи комбинаторной оптимизации на GRID.

В статье [232] проводилось исследование дерева поиска с помощью распарал-

леленного МВГ на GRID. Авторы предложили GRID — ориентированный под-

ход, основанный на специальных кодировках исследуемого дерева и рабочих

единиц (коллекции узлов). Каждому узлу исследуемого дерева присваивает-

ся номер узла. Работа блока ограничена двумя листьями изучаемого дерева,

то есть представлена интервалом, начало и конец которого — числа, связан-

ные с двумя листьями. Такой подход позволяет оптимизировать вызванную ба-

лансировкой нагрузки взаимосвязь контрольных точек на основе отказоустой-

чивости и глобальных операций обмена информацией. Обнаружение останова

обеспечивает механизм балансировки нагрузки и не требуется никакой допол-

нительной связи. Другие стратегии балансировки нагрузки рассматриваются

в [233ҫ235]. В статье [236] рассмотрена работа МВГ с механизмами отказоустой-

чивости (МВГО) на GRID. Классические GRID содержат кластеры нескольких

физически близких процессоров, подключённых через высокоскоростные сети.

МВГО предполагает статическое назначение процессов процессорам так, что

ровно один процесс назначается на один физический процессор, поэтому рабо-

тает быстрее и эффективнее, чем классическая реализация. МВГО полностью

распределён и состоит из следующих процедур: начального распределения, ба-

лансировки нагрузки, обнаружения завершения, связанного вещания и отказо-

устойчивости. МВГО считает естественную иерархическую структуру кластера

GRID в своих основных процедурах, включая баланс нагрузки и отказоустой-

чивости, чтобы уменьшить связь в низкоскоростных звеньях. Процессоры и

связи довольно часто отказывают, поэтому необходимо работать над высокой

степенью отказоустойчивости, иначе расчёты будут ненадёжны. Отказоустой-
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чивость позволяет алгоритму восстанавливаться после отдельных неудач про-

цессоров/связей или от неисправности всего кластера процессоров. В МВГО

каждый процессор сохраняет таблицы, содержащие информацию о завершён-

ных поддеревьях, и через сообщения распространяются данные этих таблиц.

Восстановление после сбоя происходит тогда, когда главный процессор выби-

рает из своей таблицы незавершённое поддерево и решает его. Одним из ме-

тодов обнаружения неисправностей является метод, основанный на механизме

сердечных сокращений. Этот метод используется, когда из строя выходит це-

лый кластер на GRID. Отказоустойчивость — наиболее важная характеристика

МВГО, так как позволяет алгоритму продолжить своё выполнение несмотря на

наличие неисправностей. В целях обеспечения надёжности выбирают один из

следующих подходов: встроенные механизмы отказоустойчивости в пределах

блока программного обеспечения или механизмы отказоустойчивости в преде-

лах алгоритма. Первый подход является более общим, второй приводит к более

простым и эффективным процедурам, повышает общую производительность.

Ввод/вывод часто является слабым местом параллельных вычислений [209].

Для последовательного ПО процедуру ввода/вывода часто приходится содер-

жать скрытой. При параллельном использовании генераторов псевдослучайных

чисел необходимо обеспечить случайные потоки через различные процессоры,

так как они являются статистически независимыми, а не коррелируют. Это

особенно важно для параллельных вычислений, чьи показатели корректности

зависят от независимых случайных величин. Другие приложения, использую-

щие рандомизированные методы моделирования или выборки, включают в себя

сортировку и отбор.

В течение последних нескольких лет все более популярной в научном сооб-

ществе становится GPU. Технология использования графического процессора

GPU, который обычно используется для компьютерной графики с целью вы-

полнения расчётов в приложениях для общих вычислений, которые обычно

проводит центральный процессор CPU [237]. Среди программных продуктов,

которые позволяют программировать для GPU независимо от платформы,

можно упомянуть следующие: CUDA, DirectCompute от Microsoft, OpenGL

Shading Language (GLSL). Khronos Group выпустила специализированный язык

OpenCL, который является основой для написания программ, выполняемых на

разных платформах, состоящих из CPU и GPU. OpenCL является открытым
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стандартом, который может быть использован для программирования CPU,

GPU и других устройств различных производителей, в то время как CUDA

специализирована для NVIDIA GPU. OpenCL обеспечивает переносимость раз-

личных аппаратных GPU, ОС, программного обеспечения, а также поддержи-

вается многоядерными процессорами. Поэтому представляется перспективным

использование именно OpenCL для реализации алгоритмов структурной де-

композиции разреженных задач ДО.

Существенное ускорение параллельных вычислений можно получить с помо-

щью программируемых графических процессоров (GPU), которые, благодаря

своей структуре, могут обрабатывать тысячи потоков данных. Среди публика-

ций, посвященных параллельным алгоритмам ДО на базе GPU, отметим следу-

ющие работы. Обзор [238] параллельного алгоритма муравьиных колоний АМК

содержит анализ 106 научных публикаций. Можно отметить, что для парал-

лельной реализации АМК часто используется парадигма «Мастерҫрабочий» в

основном из-за концептуальной простоты и легкости в применении. В [239,240]

рассмотрены аспекты для параллельной реализации алгоритмов локального по-

иска и эволюционные алгоритмы на базе GPU. Boyer и соавторы [241] предло-

жили параллельную реализацию метода динамического программирования для

задачи о ранце с помощью CUDA для системы из нескольких GPU . Fujimoto и

Tsutsui [242] разработали параллельный решатель для задачи о коммивояжере

для вычислительной платформы GPU. Gulati и Khatri [243] внедрили новый

подход упорядочивания переменных в процедуре решения задачи выполнимо-

сти на GPU. Beckers и соавторы 8 предлагают параллельный решатель SAT,

реализованный на языке OpenCL на GPU.

Отметим также работы [244] и [245], [246], посвященные вопросам разра-

ботки параллельных версий алгоритмов структурной декомпозиции для дис-

кретных задач.

Одним из наиболее популярных алгоритмов для решения задач ДО боль-

шой размерности является метод ветвей и границ (МВГ). Для МВГ опреде-

лены следующие методы распараллеливания [232]: (1) параллельная мультиҫ

параметрическая модель, (2) параллельное исследование дерева, (3) параллель-

ная оценка по времени, и (4) параллельная оценка одного шага (рис. 3.7).

8http://hgpu.org/?p=5769



137

Методы распараллеливания МВГ

одновременный запуск нескольких процессов
запуск одного процесса,

ограничивающее правило распараллеливается

процессы отличаются одним или
многими операторами или имеют
одинаковые операторы с разными
параметрами; деревья для этих
процессов могут быть различны

в с е п р о ц е с с ы
схожи и исследуют
о д н о в р е м е н н о
одно и то же дерево

каждый процесс
вычисляет границы
д л я отд е л ь н о го
набора вершин

совокупность процессов
параллельно вычисляет
о ц е н к и г р а н и ц
одной вершины

Рисунок 3.7: Методы распараллеливания МВГ [232].

В статье [247] рассматривается реализация фронтального МВГ для парал-

лельных и распределённых систем и исследуется его алгоритмическая слож-

ность. Суть метода заключается в последовательном разбиении конечного мно-

жества допустимых точек на подмножества, не содержащие оптимальных реше-

ний. Исключение подмножества из дальнейшего рассмотрения производится на

основании правила отбора. Каждое подмножество, получаемое в процессе ре-

шения, определяет подзадачу оптимизации. Графически процесс работы МВГ

можно представить в виде дерева, называемого деревом ветвления. Вершины

дерева соответствуют подзадачам, получаемым в результате ветвления, а дуги

соединяют данную подзадачу с подзадачами, полученными из неё в результа-

те ветвления. Такой алгоритм называется фронтальным параллельным МВГ.

В [248] рассматриваются основные принципы построения параллельных алго-

ритмов, а также параллельные алгоритмы МВГ для решения задач комбина-

торной и целочисленной оптимизации и параллельные алгоритмы BC. В ста-

тье [66] рассматривается параллельная реализация BCP. В [249] предлагается

увеличить число альтернативных деревьев поиска (лес поиска), чтобы быстро

найти лучшее решение. Авторы назвали этот способ multiple heuristic search

(MHS) — мультиҫэвристическим поиском. В этом случае лучшее целое решение

транслируется в процессе исследования дерева с помощью MHS. В [250] выде-

лены несколько типов распараллеливания МВГ: parallelizing of operations (PО)

— распараллеливание операций, parallelizing of decomposition (PD) — распарал-

леливание декомпозиции, parallelizing of algorithm copies (PAC) — распаралле-

ливание копий алгоритма ( рис. 3.8).

В статье [251] предлагается использовать вышеперечисленные методы рас-

параллеливания для задачи определения местоположения депо и управления
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PO

PD

PAC

последовательность групп операций; операции одной группы независимы, могут
выполняться одновременно на процессорах доступных в системе, а каждая операция
любой группы зависит от входных данных или от результатов выполнения операций
с предыдущими группами

исходная задача разделена на несколько подзадач меньшей размерности, каждая из
которых может быть решена на отдельном процессоре, а затем полученные решения
подзадач используются для получения приближенного решения задачи в целом

вместо выполнения операций каждый раз с помощью алгоритма распараллеливаются
копии — итерации стохастического алгоритма, где случайное поведение определяется
генератором псевдослучайных чисел; для разных начальных значений реализован
поиск решений, отличающихся друг от друга

Типы распараллеливания МВГ

Рисунок 3.8: Типы распараллеливания МВГ [250].

контейнерного парка. Представленные подходы распараллеливания использу-

ются для МВГ, где параллелизм получается путём деления дерева поиска на

нескольких подзадач одновременно между процессорами и выполнением опера-

ций. Авторы заметили, что эффективность последовательного и параллельного

МВГ для небольших деревьев одинакова, но её характеристики начинают ухуд-

шаться, если размер дерева растет и стратегии, реализующие коллегиальный

контроль списка подзадач, работают лучше. Так же в статье описываются ре-

зультаты работы гибридной схемы сразу нескольких подходов.

В [252] описывается распараллеливание МВГ. Последовательный МВГ за-

ключается в неявном переборе подмножеств допустимых решений. Перебор ре-

шений задачи состоит в создании дерева поиска МВГ, вершины которого яв-

ляются множествами решений рассматриваемой задачи. Размер дерева, то есть

количество создаваемых вершин, непосредственно связан с методом, использу-

емым для его построения. В настоящее время известны две основные стратегии

распараллеливания для МВГ:

1. Вершинные стратегии, цель которых — ускорить конкретную операцию на

уровне вершины: параллельное вычисление нижней или верхней границы,

параллельная оценка вершинҫпотомков, и т.д.

2. Древовидные стратегии, цель которых — параллельное построение и ис-

следование дерева поиска ветвей и границ.

Вычислительная сложность решения задачи с помощью МВГ определяется

как число выполненных шагов метода. Определённая сложность совпадает с
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числом подвергнутых ветвлений или подзадач, исключённых из рассмотрения

по правилам отсева. В статье [253] рассматривается параллельная реализация

МВГ для решения задачи о ранце и оценивается его вычислительная сложность.

В статье [71] рассмотрены проблемы (рис. 3.9), которые возникают при распа-

раллеливании МВГ для решения задач смешанного целочисленного линейного

программирования (MILPs) и спроектировано программное обеспечение для ре-

шения этих проблем.

1

2

3

Проблемы распараллеливания МВГ

разбиение исходного пространства решений на подмножества,

чтобы количество затрат, необходимых для решения каждой из
полученных подзадач, было сбалансировано

ограничения по памяти и вычислительной мощности

объем работы, связанной с решением подзадач на нескольких
процессах, может намного превышать объем работ на одном.

Рисунок 3.9: Проблемы распараллеливания МВГ

При распараллеливании МВГ можно отметить следующие сложности:

cтруктура дерева и граф зависимостей между задачами заранее неизвестны,

задачи для процессоров создаются динамически в процессе работы алгорит-

ма. Для того, чтобы избежать дополнительных временных затрат, необходимо

принимать во внимание такие алгоритмические аспекты, как балансировка на-

грузки и передача сообщений между процессорами.

Как показано в работе [83], для достаточно разветвлённого ЭД имеет смысл

применять технологию распараллеливания, так как подзадачи, находящиеся

на одной высоте дерева, являются независимыми. Такой вид распараллелива-

ния будем называть древовидным распараллеливанием. Рассмотрим подзадачу,

соответствующую вершине ЭД. Она имеет блочную структуру, так как первич-

ная задача была разреженной. Блоки такой подзадачи слабо связные, поэтому

имеет смысл разбивать такие блоки, перебирая переменные, которые являют-

ся сепараторами этих блоков. Такой вид распараллеливания будем называть

блочным. ЛБЭА дважды проходит по ЭД. Прямой ход ЛБЭА решает подзада-

чи и сохраняет промежуточные решения, а обратный ход ЛБЭА анализирует и

собирает решения подзадач.
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Далее рассмотрим эксперимент, реализующий распараллеливание БЛҫ и

БДҫзадач на GRID. Целью данного эксперимента является реализация решение

задач с квазиблочной структурой с помощью параллельной модификации ЛБ-

ЭА — ЛБЭАП. Для параллельной реализации ЛБЭА использовалась облачная

платформа Everest, поддерживающая публикацию, выполнение и композицию

вычислительных приложений в распределенной среде [254, 255]. Одной из от-

личительных черт платформы является возможность запуска приложений на

произвольных комбинациях внешних вычислительных ресурсов, подключенных

пользователями.

Программирование ЛБЭА для платформы Everest осуществлялось с помо-

щью языка алгебраического программирования AMPL. Так как AMPL не ре-

шает задачи непосредственно, в качестве соответствующего внешнего «реша-

теля» использовался пакет SCIP — широко используемая система с открытым

кодом 9. При этом транслятор AMPL использовался не только для формули-

ровки основной задачи и всех вспомогательных подзадач, но и для управления

сценарием расчетов в распределенной среде солверов, подключенных к Everest,

с помощью подсистемы AMPLX [256], доступной в исходных кодах 10.

Для исследования ЛБЭА были сгенерированы разреженные задачи ЦЛП, в

которых можно выделить БДҫструктуру. Задачи с БДҫструктурой содержали

50 000 переменных и 100 ограничений и решались в среднем за 17 минут (рис

А.1). Задачи разбивались на 15 подзадач с глубиной дерева — 5. При этом

подзадачи могли содержать максимально 10 000 переменных 20 ограничений,

размер сепаратора — 4, а число вершин потомков — 12.

Рассмотрим пошагово решение задачи с БДҫструктурой согласно ЛБЭА.

На рисунке 3.10 изображена структура задачи, внутри блоков указано число

независимых переменных в каждом блоке. Слева указан номер блока, справа —

число ограничений в данном блоке. Над связью между блоками указано число

переменных, которые одновременно присутствуют в этих блоках.

Рассмотрим работу ЛБЭА на примере большой задачи предложенной БДҫ

структурой. С помощью модифицированного алгоритма Финкельштейна был

определён порядок решения подзадач: ({15, 14, 13, 12}; {11, 10, 9}; {8, 7, 6, 5};

{4, 3, 2}; {1}), где в фигурных скобках выделены блоки, которые могут быть

решены параллельно.

9http://scip.zib.de/
10https://gitlab.com/ssmir/amplx
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Рисунок 3.10: Задача с БДҫструктурой

На первой итерации решаем параллельно подзадачи, соответствующие

блокам ({15, 14, 13, 12}. У этих блоков нет потомков, поэтому они содер-

жат только два типа переменных: блочные переменные — {35005, . . . , 38000};

{39005, . . . , 40000}; {40001, . . . , 42000}; {42001, . . . , 43000} и сепараторы —

{37001, . . . , 37004}; {39003, 39004}; {39002}; {39001}. Создадим подзадачи, со-

ответствующие данным блокам: �15({37001, . . . , 37004}), �14({39003, 39004}),

�13({39002}), �12({39001}) и зафиксируем сепараторы каждого из этих бло-

ков �s
15 = �s

14 = �s
13 = �s

12 = {0, 0, . . . , 0, 0}. Решим 4 полученные подзадачи

и занесём решения (�s
15, �

t
15, �15); (�

s
14, �

t
14, �14); (�

s
13, �

t
13, �13); (�

s
12, �

t
12,

�12) в таблицы ЛБЭА, где �s
15, �

s
14, �

s
13, �

s
12 — зафиксированное значение се-

параторов, � t
15, �

t
14, �

t
13, �

t
12 — значение векторов свободных переменных и

�s
15, �

s
14, �

s
13, �

s
12 — экстремальные значения целевых функций. По аналогии

решим остальные подзадачи для каждого значения сепаратора от �s
15 = �s

14 =

�s
13 = �s

12 = {0, 0, . . . , 0, 1} до �s
15 = �s

14 = �s
13 = �s

12 = {1, 1, . . . , 1, 1}, всего

получится 2sr подзадач для каждого �ҫтого блока, где � = 12, . . . , 15.

Далее рассмотрим следующую группу блоков {11, 10, 9}, соответствующие

подзадачи которых также решаются параллельно. У 11 и 10 блоков есть по-

томки, а у 9ҫго потомков нет. Сначала рассмотрим блок 9: у этого блока нет

потомков, поэтому он содержат только два типа переменных: блочные перемен-

ные — {15005, . . . , 20000} и сепараторы — {15001, . . . , 15004}. Создадим подза-

дачу �9({15001, . . . , 15004}) и зафиксируем сепараторы �s
9 = {0, 0, . . . , 0, 0}.
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Решим полученную подзадачу и занесём решение (�s
9 , �

t
9, �9) в таблицу ЛБ-

ЭА, где �s
9 — зафиксированное значение сепараторов, � t

9 — значение векто-

ра свободных переменных и �s
9 — экстремальное значение целевой функции.

По аналогии решим остальные подзадачи для каждого значения сепаратора от

�s
9 = {0, 0, . . . , 0, 1} до �s

9 = {1, 1, . . . , 1, 1}, всего получится 2s9 подзадач.

Далее рассмотрим блоки 11 и 10: у этих блоков есть потомки, поэто-

му соответствующие подзадачи строятся следующим образом. Блоки 11 и 10

содержат три типа переменных: блочные переменные — {35005, . . . , 37000};

{38001, . . . , 39000}, сепараторы — {35002, . . . , 35004}; {35001} и наследствен-

ные переменные — {37001, . . . , 37004}; {39001, . . . , 39004}. Множество на-

следственных переменных {37001, . . . , 37004; 39001, . . . , 39004} разбиваются на

четыре подмножества: {37001, . . . , 37004}; {39003, 39004}; {39001}; {39002},

так как у блоков 10 и 11 число потомков равно 4. Создадим подзадачи

�11(�
s
11) и �10(�

s
10) и зафиксируем сепараторы этих блоков �s

11 = �s
10 =

{0, 0, . . . , 0, 0}. Наследственные переменные для соответствующих подзадач

представлены в виде четырёх табличных функций, соответствующих блокамҫ

потомкам {15; 14; 13; 12}: согласно значениям переменных блоковҫпотомков из

каждой соответствующей таблицы выбираются значения целевой функции �15,

�14, �13, �12 и прибавляется к значению соответствующей целевой функции.

Таким образом целевая функция для 11 блока — �11 + �15, а для 10 блока

— �10 + �12 + �13 + �14. Решения задачи для всех значений сепаратора зано-

сятся в соответствующие таблицы. Всего таких подзадач для блоков 10 и 11

2s11 ·2s15 +2s10 ·2s14+s13+s12. То есть на этом этапе распараллеливания получается

2s11 · 2s15 + 2s10 · 2s14+s13+s12 + 2s9 подзадач.

Далее рассмотрим следующую группу блоков {8; 7; 6; 5}, соответствующие

подзадачи которых также решаются параллельно. У 7 и 5 блоков есть по-

томки, а у блоков 8 и 6 потомков нет. Сначала рассмотрим блоки 8 и 6: у

этих блоков нет потомков, поэтому они содержат только два типа перемен-

ных: блочные переменные — {45005, . . . , 50000}; {5005, . . . , 8000} и сепарато-

ры — {45001, . . . , 45004}; {5004}. Создадим подзадачи �8({45001, . . . , 45004})

и �6({5004}) и зафиксируем сепараторы каждого из этих блоков �s
8 = �s

6 =

{0, 0, . . . , 0, 0}. Решим полученные подзадачи и занесём решения (�s
8 , �

t
8, �8) и

(�s
6 , �

t
6, �6) в таблицы ЛБЭА, где �s

8 и �s
6 — зафиксированное значение се-

параторов, � t
8 и � t

6 — значение векторов свободных переменных и �s
8 и �s

6
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— экстремальные значения целевых функций. По аналогии решим остальные

подзадачи для каждого значения сепараторов от �s
8 = �s

6 = {0, 0, . . . , 0, 1} до

�s
8 = �s

6 = {1, 1, . . . , 1, 1}, всего получится 2s8 + 2s6 подзадач.

Далее рассмотрим блоки 7 и 5: у этих блоков есть потомки, поэтому соответ-

ствующие подзадачи строятся следующим образом. Блоки 7 и 5 содержат три

типа переменных: блочные переменные — {30005, . . . , 35000}; {8001, . . . , 15000},

сепараторы — {30001, . . . , 30004}; {5001, . . . , 5003} и наследственные перемен-

ные — {35001, . . . , 35004}; {15001, . . . , 15004}. Так как у блоков 7 и 5 число

потомков равно 3, множество наследственных переменных {35001, . . . , 35004;

15001, . . . , 15004} разбиваются на 3 подмножества: {15001, . . . , 15004}; {35001};

{35002, . . . , 35004}. Создадим подзадачи �7(�
s
7) и �5(�

s
5) и зафиксируем сепа-

раторы этих блоков �s
7 = �s

5 = {0, 0, . . . , 0, 0}. Наследственные переменные для

соответствующих подзадач представлены в виде четырёх табличных функций,

соответствующих блокамҫпотомкам {11; 10; 9}: согласно значениям переменных

блоковҫпотомков из каждой соответствующей таблицы выбираются значения

целевой функции �11, �10, �9 и прибавляется к значению соответствующей це-

левой функции. Таким образом целевая функция для 7 блока — �7+�10+�11,

а для 5 блока — �5 + �9. Решения задачи для всех значений сепаратора за-

носятся в соответствующие таблицы. Всего таких подзадач для блоков 7 и 5

— 2s7 · 2s11+s10 + 2s5 · 2s9. То есть на этом этапе распараллеливания получается

2s7 · 2s11+s10 + 2s5 · 2s9 + 2s8 + 2s6 подзадач.

Далее рассмотрим следующую группу блоков {4, 3, 2}, соответствую-

щие подзадачи которых также решаются параллельно. У всех этих бло-

ков есть потомки, поэтому соответствующие подзадачи строятся следую-

щим образом. Блоки 4, 3 и 2 содержат три типа переменных: блоч-

ные переменные — {43001, . . . , 45000}; {20001, . . . , 30000}; {3005, . . . , 5000},

сепараторы — {3004}; {3003}; {3001, 3002} и наследственные переменные

— {45001, . . . , 45004}; {30001, . . . , 30004}; {5001, . . . , 5004}. Так как число

блоковҫпотомков равно четырём, множество наследственных переменных

{45001, . . . , 45004; 30001, . . . , 30004; 5001, . . . , 5004} разбиваются на четыре под-

множества: {5001, . . . , 5003}; {5004}; {30001, . . . , 30004}; {45001, . . . , 45004}.

Создадим подзадачи �4(�
s
4), �3(�

s
3) и �2(�

s
2) и зафиксируем сепараторы этих

блоков �s
4 = �s

3 = �s
2 = {0, 0, . . . , 0, 0}. Наследственные переменные для соот-

ветствующих подзадач представлены в виде четырёх табличных функций, со-
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ответствующих блокамҫпотомкам {8; 7; 6; 5}: согласно значениям переменных

блоковҫпотомков из каждой соответствующей таблицы выбираются значения

целевой функции �8, �7, �6, �5 и прибавляется к значению соответствующей

целевой функции. Таким образом целевая функция для 4 блока — �4+�8, для

3 блока — �3+�7, а для 2 блока — �2+�6+�5. Решения задачи для всех зна-

чений сепаратора заносятся в соответствующие таблицы. Всего таких подзадач

для блоков 4, 3 и 2 — 2s4 · 2s8 + 2s3 · 2s7 + 2s2 · 2s6+s5.

Рассмотрим последний блок, у него есть потомки, но нет сепараторов, так

что он содержит два типа переменных: блочные переменные — {1, . . . , 3000}

и наследственные переменные — {3001, . . . , 3004}. Так как число блоковҫ

потомков равно 3, множество наследственных переменных {3001, . . . , 3004} раз-

биваются на 3 подмножества: {3001, 3002}; {3003}; {3004}. Создадим подзадачу

�1 и найдём её решение. Наследственные переменные для последней подзада-

чи представлены в виде трёх табличных функций, соответствующих блокамҫ

потомкам {4; 3; 2}: согласно значениям переменных блоковҫпотомков из каждой

соответствующей таблицы выбираются значения целевой функции �4, �3, �2 и

прибавляется к значению соответствующей целевой функции. Таким образом

целевая функция для последнего блока — �1 +�2 +�3 +�4. Решение текущей

подзадачи является глобальным решением задачи. На этом шаге параллельно

решаются 20 · 2s4+s3+s2 подзадач.

Теперь необходимо восстановить глобальное решение. Для восстановления

глобального решения на каждом шаге необходимо искать значение векторов

решений в таблицах блоковҫпотомков 4, 3 и 2 последнего блока среди значе-

ний сепараторов {3001, 3002}; {3003}; {3004}. Соответствующие строки таб-

лиц будут содержать решения подзадач, причём если в одном блоке имеется

несколько решений, выбираем оптимальное из них и расширяем вектор ре-

шений {1, . . . , 3004} за счёт полученных значений. Теперь нам известны зна-

чения переменных {1, . . . , 5000; 20001, . . . , 30000; 43001, . . . , 45000}. Получен-

ные вектора решений ищем в следующей группе таблиц, соответствующих бло-

кам 5, . . . , 8 среди значений сепараторов {5001, . . . , 5004}; {30001, . . . , 30004};

{45001, . . . , 45004}. На этом шаге нам известны значения следующих групп пе-

ременных: {1, . . . , 15000; 20001, . . . , 35000; 43001, . . . , 50000}. Рассмотрим сле-

дующий ряд таблиц, соответствующую блокам 9, 10 и 11. Среди значе-

ний сепараторов {15001, . . . , 15004}; {35001}; {35002, . . . , 35004} ищем зна-
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чения блочных переменных. Теперь известны {1, . . . , 37000; 38001, . . . , 39000;

43001, . . . , 50000}. Наконец рассмотрим последнюю группу таблиц, соответ-

ствующую блокам 12, . . . , 15. Ищем строки согласно значениям сепараторов

{39001}; {39002}; {39003, 39004}; {37001, . . . , 37004}. Достроенный вектор яв-

ляется глобальным вектором решения исходной задачи.

Задачи с БЛҫструктурой содержали 100 000 переменных и 100 ограничений

и решались в среднем за 6 часов (рис А.2). Задачи разбивались на 5 подзадач

с глубиной дерева — 5. При этом подзадачи могли содержать максимально 20

000 переменных 20 ограничений, размер сепаратора и число вершин потомков

— 4.

Предложенные задачи с БДҫструктурой и БЛҫструктурой не могут быть

решены точно только с помощью «решателя» SCIP без ЛБЭА.

На рисунках А.1 и А.2 (приложение A) изображёны профили (интервалы

времени выполнения подзадач на подключенных ресурсах, всего — 16) вычис-

лительных процессов для задач, имеющих БДҫ и БЛҫструктуру. На рисунке

А.1 виден хороший баланс подзадач, решение исходной задачи происходит за

17 минут. На рисунке А.2 виден плохой баланс подзадач, решение исходной

задачи происходит за 335 минут. Здесь большое число подзадач обрабатывает-

ся очень быстро. Причина в том, что большое число подзадач несовместны. К

сожалению, препроцессинг AMPLа не позволяет регулярным образом «пропу-

стить» заведомо несовместную подзадачу. Поэтому препроцессинг приходится

отключать и «поручать» проверку несовместности решателям.

Основным результатом данного эксперимента является реализация ЛБЭАП

для решения задач ЦЛП со специальной структурой с помощью GRID. В ре-

зультате проведенного вычислительного эксперимента было отмечено, что для

задач с БДҫ и БЛҫструктурой ЛБЭАП гораздо эффективнее, чем решатель без

ЛБЭАП.



Заключение

Основные результаты работы заключаются в следующем. Разработана тех-

ника понижения размерности разреженных матриц и соответствующих задач

ДО большой размерности за счёт выделения квазиблочных структур и после-

дующей их обработки.

В данной работе удалось сформировать метод выделения квазиблочных

структур для разреженных матриц, разработать и реализовать алгоритмы вы-

деления таких структур и последующего решения соответствующих задач ДО.

Осуществлено распараллеливание задач ДО на GRID. Это позволило получить

решение для задач, которые в силу размерности не могут быть решены с помо-

щью обычных компьютеров.

Поставлен ряд новых задач в рассматриваемой области, в частности, оценка

количества вычислений при распараллеливании, выделение классов задач с по-

линомиальной сложностью при выборе порядка исключений в локальном алго-

ритме, применение теорем о составе квазиблочной структуры для оптимального

выбора количества процессоров при распараллеливании, а также оценка коли-

чества вычислений для алгоритмов выделения блочноҫлестничной и блочноҫ

древовидной структуры.
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Приложение A

Профили работы ЛБЭАП для задач с квазиблочной

структурой

Рис. А. Профили работы ЛБЭАП для задачи с БД и БЛ структурами.
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