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Основные обозначения

Xn ∈ RD×L – вектор, представляющий многомерную траекторию;

xn ∈ R1×L – вектор траектории в одномерном пространстве измерений;

{Xn, n = 1, N} – набор многомерных траекторий;

D – размерность пространства измерений (в случае 4D-траекторий (x,y,z,V));

d = 1, D – индекс фиксированного пространства измерений;

L – максимальная длина траекторий;

Ln – длина траектории Xn;

Xn[Ln] – конечная координата траектории на плоскости посадки;

Nk, k = 1, K0 – пучок многомерных траекторий;

K0 – число пучков;

Ck, k = 1, K0 – вектор, представляющий центроид пучка многомерных траекто-

рий;

C[Lk] – конечная координата центроида на плоскости посадки;

ε – параметр порога (порядка ширины ВПП);

εn – гауссов шум с нулевым средним;

βk – вектор коэффициентов полиномиальной регрессии;

Tn – матрица Вандермонта;

Υn – матрица, получаемая из Tn при преобразованиях масштабированяи и сдвига

во времени;

{Φn} = {an, bn, cn, ln} – параметры регрессионной модели;

an, bn – параметры масштабирования и сдвига во времени;

cn, ln – параметры масштабирования и сдвига в пространстве измерений;

N(µ,σ2) – гауссово распределение со средним µ и дисперсией σ2;

{Ck, k = 1, K} – выборки, полученные в результате разбиения исходного набора

траекторий;

rnk, n = 1, N, k = 1, K – бинарная индикаторная переменная принадлежности

траектории Xn выборке Ck (rnk ∈ {0, 1});
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J – целевая функция алгоритма K-means;

Nk – число траекторий в выборке;

a∗j , b
∗
j , c

∗
j , d

∗
j , j = 1, 2 – параметры модели ортогональной линейной регрессии;

θ – вектор параметров моделей ортогональной регрессии;

M – геометрическая асимптота;

Z = {Z[i], i = 1,M} – скрытая запись модели непрерывного скрытого профиля;

Z[i], i = 1,M – элементы скрытой записи Z;
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Введение
Актуальность темы. Усложнение технических средств, рост интенсивности их

использования и повышение требований эксплуатационной безопасности делают

задачу обработки больших массивов данных (мониторинга технических средств)

в режиме реального времени крайне актуальной. Одно из перспективных направ-

лений решения указанной задачи связано с разработкой методов и алгоритмов

обработки данных, учитывающих их характерные (специфические) особенности.

Данные мониторинга технических средств могут быть представлены в виде

многомерных временных рядов – последовательности векторов, компонентами

которых являются значения различных показателей реализуемого процесса, за-

фиксированных в один момент времени. Типичным примером подобного массива

данных являются посадочные траектории самолетов, фиксируемые радарами.

К числу характерных (специфических) особенностей посадочных траекторий

следует отнести:

– их кривизну и закрученность,

– возможность образования асимптотически сходящихся пучков,

– наличие в рамках пучка множественности пространственных пересечений.

Посадка (согласно статистике Росавиации и ИКАО) является наиболее критиче-

ским (с точки зрения безопасности) этапом полёта, в связи с чем в условиях по-

стоянного увеличения воздушного трафика и загруженности аэропортов особую

важность приобретают задачи оптимизации загруженности взлётно-посадочных

полос и совершенствования существующих систем управления воздушным дви-

жением, решение которых без анализа посадочных траекторий не может быть

корректно.

В настоящее время принят и реализуется ряд государственных и межгосу-

дарственных программ, направленных, в том числе, на поддержание высокого

уровня безопасности полетов в современных условиях загруженности. В первую

очередь, следует выделить следующие программы:
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– федеральную целевую программу «Модернизация Единой системы органи-

зации воздушного движения Российской Федерации (2009 - 2020 годы)»,

утвержденную Постановлением Правительства Российской Федерации от 1

сентября 2008 г. № 652;

– научно-исследовательскую программу Single European Sky Air Traffic Management

Research (SESAR) Program, инициированную Еврокомиссией в 2005 году;

– программу развития системы воздушного транспорта «Next Generation Air

Transport System», для реализации которой Конгресс США в 2003 году

учредил Joint Planning and Development Office.

В рамках указанных программ проводятся исследования, в которых методы

анализа данных (data mining) применяются при обработке данных посадочных

траекторий самолётов, регистрируемых радаром в зоне аэропорта, с целью:

– выделить при рассмотрении набора траекторий установившиеся потоки

движения – пучки посадочных траекторий;
– определить характерную (типичную) траекторию посадки на данную ВПП,

– определить в наборе успешных посадок на заданную ВПП нетипичную

траекторию.

(Следует отметить, что решение трех сформулированных задач крайне важно

в ситуациях, когда одна диспетчерская служба (радар) обслуживает несколько

независимых между собой аэропортов, например, как в районе залива Сан-

Франциско, где расположено более 25 различных аэропортов, при этом более

10 аэропортов не имеют собственных диспетчерских служб (см. https://en.

wikipedia.org/wiki/List_of_airports_in_the_San_Francisco_Bay_Area)).
Актуальность задачи выделения установившихся потоков движения обу-

словлена необходимостью разделения воздушного пространства на зоны ответ-

ственности между диспетчерскими службами и/или их сотрудниками. Также

важно заметить, что траектории посадки самолетов представляют собой данные

высокой размерности (high dimensional data), поэтому в связи со сложностью

задачи и размерностью данных анализ траекторий самолётов осуществляется в

 https://en.wikipedia.org/wiki/List_of_airports_in_the_San_Francisco_Bay_Area
 https://en.wikipedia.org/wiki/List_of_airports_in_the_San_Francisco_Bay_Area
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двумерном пространстве (проекции на плоскость посадки). Такое сокращение

размерности данных зачастую приводит к существенной потере информации и

искажению результата. Для решения задачи выделения воздушных потоков в

плоском случае в настоящее время используются методы, связанные с разби-

ением пространства на ячейки в стиле диаграмм Вороного и/или разбиением

набора векторов, представляющих траектории движения, с помощью различных

алгоритмов кластеризации (например, K-means или K-medoids). Данные подходы

имеют ряд недостатков, например, таких как:

– разбиение пространства на ячейки не связано с характером существующих

потоков движения,

– конечный результат в существенной мере зависит от параметров инициали-

зации используемых алгоритмов кластеризации, что на практике не может

обеспечить получение корректного результата.

Разработка алгоритмов выделения пучков траекторий, то есть групп траек-

торий движения в трёхмерном пространстве, имеющих сходные характеристики

и близких по конечным координатам (как, например, в случае посадок с одного

направления подлета на заданную взлетно-посадочную полосу), находится на

начальной стадии. В литературе при выделении пучков траекторий в плоском

случае активно применяются такие методы как: анализ главных компонент

(РСА), непараметрические Байесовские методы, спектральная кластеризация

и т.п. Однако, при использовании вероятностных методов возможно получение

неточного или нестабильного результата. Кроме того, существенным недостат-

ком большинства известных методов является использование евклидовой меры

расстояния в качестве меры близости траекторий движения, что не позволяет

правильно разделять пересекающиеся траектории различной геометрической

формы.

Особую актуальность решение задачи определения характерной (опорной)

траектории посадки, также как и предыдущей, приобретает при посадке на

взлетно-посадочные полосы без сопровождения диспетчерской службы и/или
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сложном рельефе местности. Определение характерной (опорной) траектории

посадки возможно только после предварительного решения задачи выделения

пучков траекторий. В условиях отсутствия такого решения делаются попытки

определить характерную (опорную) траекторию в двумерном случае: Существует

ряд алгоритмов (например, DBSCAN или методы спектральной кластеризации),

которые позволяют выделить центроиды (центр масс траекторий в кластере

или поточечное среднее) в определенных в плоском случае характерных потоках

движения. Однако, такие методы вычислительно затратны, а для рассмотрения

их результатов в качестве опорных траекторий нет никаких оснований.

Решение задач прогнозирования дальнейшего движения самолётов на осно-

вании данных об успешных реализациях в условиях постоянного увеличения

траффика также приобретает всё большее значение. При решении этой зада-

чи могут быть использованы различные методы машинного обучения, однако

для уменьшения ошибки прогнозирования необходимо, после выделения группы

траекторий потока, удалить из анализируемой выборки аутлаеры. В случае

траекторий самолётов появление аутлаеров может быть связано с неправильной

регистрацией данных радаром или с нетипичным поведением самолёта (Hrastovec

& Solina (2016)). Задача определения аутлаеров при анализе траекторных данных

достаточно сложна и активно разрабатывается в настоящее время. В литера-

туре для этих целей предлагается использование различных методов таких,

как TRAOD (A Partition-and-Detect Framework), анализа главных компонент

(functional PCA) и др. Однако, они не позволяют на реальных данных получить

устойчивые результаты.

При решении поставленных задач предварительное исследование посадочных

траекторий самолётов с помощью ряда методов data mining и их комбинаций

позволяет не только оценить применимость таких методов на практике, но

и дает возможность выявить тонкую структуру анализируемых данных и их

характерные особенности, что является важным для получения корректного

результата.
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В настоящее время активные исследования, связанные с разбиением воздуш-

ного пространства на сектора и определением характерных (опорных) траекторий

посадки, ведутся специалистами ряда организаций, в том числе, Филиал "НИИ

Аэронавигации"ФГУП ГосНИИ ГА, ИПУ РАН им. Трапезникова, ЦАГИ, NASA

Ames, Boeing и MITRE.

Подробное описание методов data mining, используемых в настоящее время,

можно найти в работах Sam Roweis, Zoubin Ghahramani, Andrew Ng, Kevin P.

Murphy, Padhraic Smyth, Shumway R., Stoffer D., Keinosuke Fukunaga и Marco

Zulliani.

Цель работы. Настоящая работа посвящена разработкеметодов анализа данных

(data mining), позволяющих при обработке набора многомерных временных

рядов, представленных четырехмерными траекториями движения объектов к

различным целям:

– автоматически выделять в трехмерном случае пучки многомерных времен-

ных рядов, асимптотически сходящиеся с заданным параметром порога,

что соответствует выделению установившихся потоков движения;

– смоделировать в трехмерном случае типичный для выделенного пучка

многомерный временной ряд – центроид;

– определять в выделенном пучке выброс (outlier) – многомерный временной

ряд, наиболее отклоняющийся от смоделированного центроида.

При рассмотрении набора траекторий самолётов решение поставленных задач

позволяет с учётом установившегося движения разбивать воздушное простран-

ство на зоны ответсвенности диспетчерских служб, и способствует обеспечению

безопасности полётов, в частности, при посадках:

– в аэропорту, находящемся в зоне сложного географического ландшафта (в

горах или на побережье);

– без сопровождения диспетчерских служб («малые» аэропорты и/или несанк-

ционированные приземления).
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Объект исследования: многомерные временные ряды (посадочные траектории

самолётов, регистрируемые радаром).

Предмет исследования: методы и алгоритмы анализа данных (посадочных

траекторий самолётов).

Положения, выносимые на защиту:

1. Способ устойчивого разбиения в трехмерном пространстве набо-

ра многомерных временных рядов, представленных четырехмер-

ными траекториями движения объектов к различным целям, на

пучки, асимптотически сходящиеся с заданным параметром по-

рога, с использованием меры косинуса в качестве меры близости

многомерных временных рядов .

Обоснованность результата подтверждается применением комплексного

анализа хорошо известных методов и алгоритмов анализа данных, в том

числе метода сокращения размерности анализируемых данных, алгоритма

RANSAC (Random Sample and Consensus) и процедуры перехода в про-

странство исходной размерности.

Новизна научного результата заключается в том, что предложен ори-

гинальный алгоритм разбиения набора многомерных временных рядов,

представленных посадочными траекториями самолётов, на пучки – посадки

на заданные ВПП, основанный на использовании меры косинуса в качестве

меры близости траекторий движения к выделенной в пространстве меньшей

размерности геометрической асимптоты, касательной пучку траекторий в

окрестности сходимости.

Полученный результат является вкладом в развитие методов анализа

многомерных данных, поскольку позволяет выделять в трёхмерном про-

странстве группы траекторий движения, имеющих общие цели, и данный

результат является устойчивым.
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Достоверность научного результата подтверждается примерами выде-

ления в трёхмерном пространстве пучков посадочных траекторий при

обработке данных радара TRACON над заливом Сан-Франциско с помо-

щью программной реализации алгоритма.

2. Способ моделирования в трёхмерном пространстве центроида

для выделенного пучка многомерных временных рядов, пред-

ставленных четырёхмерными траекториями движения объектов,

посредством решения оптимизационной задачи с ограничениями

и использовании меры косинуса в качестве меры близости мно-

гомерных временных рядов .

Обоснованность результата подтверждается комплексным анализом ре-

шения стандартной оптимизационной задачи с ограничениями по опре-

делению центроида – траектории, сумма квадратов расстояний от точек

которой до соответствующих точек всех траекторий в пучке минимальна по

выбранной мере близости, и которая удовлетворяет ограничению параметра

порога (при анализе посадочных траекторий самолётов – конечная точка

такой траектории должна находиться на взлётно-посадочной полосе).

Новизна научного результата заключается в том, что при решении опти-

мизационной задачи в качестве меры близости многомерных временных

рядов, представленных посадочными траекториями самолётов, использует-

ся мера косинуса, которая учитывает характерные особенности трехмерных

траекторий движения – кривизну, кручение и множественные пересечения.

Полученный результат является вкладом в развитие методов анализа

многомерных данных, поскольку позволяет при обработке четырёхмерных

данных траекторий движения объектов получить устойчивый результат.

Достоверность научного результата подтверждается примерами опре-

деления многомерного временного ряда, характерного для выделенной

группы, – центроида для выделенных пучков посадочных траекторий при
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обработке данных радара TRACON над заливом Сан-Франциско с помощью

программной реализации алгоритма.

3. Способ определения выброса (outlier) в выделенном пучке мно-

гомерных временных рядов, представленных четырёхмерными

траекториями движения объектов, основанный на оценке откло-

нения траекторий пучка от его центроида по мере косинуса.

Обоснованность результата подтверждается комплексным анализом ре-

шения стандартной оптимизационной задачи с ограничениями по определе-

нию аутлаера – траектории, сумма квадратов расстояний от точек которой

до соответствующих точек центроида максимальна по выбранной мере

близости

Новизна научного результата заключается в том, что при решении оптими-

зационной задачи в качестве меры близости многомерных временных рядов,

представленных посадочными траекториями самолётов, используется мера

косинуса, учитывающая все характерные особенности анализируемых дан-

ных.

Полученный результат является вкладом в развитие методов анализа

данных траекторий движения, поскольку позволяет получить точный и

устойчивый результат.

Достоверность научного результата подтверждается примерами опред-

ления аутлаеров в выделенных пучках траекторий при обработке данных

радара TRACON над заливом Сан-Франциско с помощью программной

реализации алгоритма.
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Апробация результатов: результаты работы докладывались и обсужда-

лись на:

– научном семинаре ИППИ РАН (Москва, 17 марта 2017 г.);

– Internation conference on Big Data and its application (Москва, Deworkacy,

16 сентября 2016 года);

– научном семинаре им. братьев Белоцерковских (Москва, 16 июня 2016 г.).

– заседании кафедры информатики и вычислительной математики МФТИ

(Долгопрудный, 16 июня 2015 г.);

– научном семинаре ВЦ РАН (Москва, 24 июня 2015 г.);

– 55-58 научных конференциях МФТИ (Долгопрудный, 2012-2015 г.);

Публикации: по теме диссертации опубликовано 21 работа, в том числе

12 в журналах, включенных в «Перечень российских рецензируемых научных

журналов, в которых должны быть опубликованы основные научные результаты

диссертаций на соискание ученых степеней доктора и кандидата наук» Высшей

аттестационной комиссии при Министерстве образования и науки Российской

Федерации. По материалам диссертационного исследования получено 2 патента

на изобретение №2616106 (RU), № 2616107 (RU) (выданы 12 апреля 2017 г.), а

также подготовлено и подано 2 заявки на патент RU №2017101343 от 16.01.2017

и US №15/258,736 от 07.09.2016 г.

Личный вклад автора: все представленные в работе результаты получены

лично автором.

Структура и объем диссертации: диссертационное исследование состоит

из введения, трех глав и заключения. Работа изложена на 130 страницах машино-

писного текста, содержит 36 рисунков и список литературы из 193 наименований.
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Глава 1. Анализ многомерных временных рядов,

представленных посадочными траекториями само-

лётов

1.1 Актуальность исследования и обзор литературы

Необходимость модернизации систем организации воздушного движения

(ОрВД) связана с существенным увеличением интенсивности полётов и задачей

поддержания высокого уровня безопасности воздушного движения. Для этого

необходима автоматизация процессов управления с целью оптимизации работы

диспетчерских служб [1]. Существующие системы ОрВД основаны на управле-

нии движением воздушного пространства разделённого на сектора (sectorized

airspace) и установленнии маршрутов. Увеличение объёма трафика, превыша-

ющее пропускную способность диспетчерских служб, приводит к задержкам и

изменению существующих маршрутов полётов. Если управление воздушным

движением выполняется для каждого сектора с помощью краткосрочного пред-

сказания маршрута, основанного на информации о текущем положении самолёта,

то становится сложно полностью оптимизировать маршруты полёта и его полное

время от взлёта до приземления. В связи с тем, что объём воздушного тра-

фика продолжает увеличиваться, число процедур контроля потоков и время

задержек увеличивается год от года так, что использование существующих ме-

тодов управления становится неэффективным. К тому же, поскольку гибкое

использование воздушного пространста и маршрутов полётов ограничивается

специфическими секторами, оно не может быть полностью использовано, что

не позволяет увеличивать пропускную способностью диспетчерских служб. Так

что, задачи разделения воздушного пространства аэропорта на сектора [2,3] и

проектирования воздушных коридоров [4–8] для полётов со сходными траекто-

риями приобретают всё большую актуальность. [9]
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В настоящее время в ряде страны приняты государственные программы,

например, такие как Федеральная целевая программа «Модернизация Единой

системы организации воздушного движения» в РФ, SESAR в Евросоюзе, NextGen

в США, SIRIUS в Бразилии, FIANS в Индии, CARATS в Японии, которые на-

правлены на повышение уровня безопасности полетов, эффективности и гибкости

использования воздушного пространства основе использования новых техниче-

ских средств и технологий в соответствии со стандартами и рекомендуемой

практикой Международной организации гражданской авиации (ИКАО). В рам-

ках данных программ проводится ряд исследований воздушного движения в

зоне аэропорта [10,11].

Воздушное пространство разделено на сектора, каждый из которых кон-

тролируется группой диспетчеров. Причём, сектора воздушного пространства

(с учётом изменений траффика) не должны быть перегружы в течении дня.

Необходимо разработать метод для автоматической секторизации воздушного

пространства, который бы подходил для создания операционно приемлемых

секторов. Ведь неэффективное проектирование воздушного пространства при-

водит к перегрузкам секторов и, как следствие, к задержкам и изменениям

существующих маршрутов. В работах [12,13] рассматриваются общие принципы

планирования воздушного движения (air traffic design), на основе которых разра-

батываются системы управления воздушным движением (СУВД). Кроме того,

анализируются различные подходы, методы и алгоритмы для решения задачи

разделения воздушного пространства на сектора и предлагаются оптимизацион-

ные процедуры, результаты применения которых демонстрируются на примере

CУВД г. Санкт-Петербурга.

В настоящее время задачу секторизации воздушного пространства в трёх-

мерном случае решают с помощью предварительного определения секторов в

двухмерном случае. При рассмотрении двумерного случая воздушное простран-

ство может разбиваться на ячейки «в стиле диаграмм Вороного» [4,14–17].

Как видно из Рис.1 разбиение воздушного пространства зоны аэропорта на
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сектора не отражает характер существующих потоков движения. В этом случае

также не учитывается разделение пространства по уровным высотности (airspace

classification).

Рис. 1: Разбиение воздушного пространства на сектора,
представленное в работе [17]

Также для автоматического выделения маршрутов движения со сходны-

ми траекториями активно применяются методы кластеризации. Например, в

работе [18] выполняется кластеризация траекторий, основанная на алгоритма

k-medoids. В работе [19] кластеризация траекторий выполняется с помощью алго-

ритма HDBSCAN. В работе [20] предлагается алгоритм динамического разбиения

на сектора, который объединяет вертикальное и горизонтальное разбиение на

сектора, основанное на K-means кластеризации. Этот алгоритм тестируется на

данных нескольких международных аэропортов. В работе [21] предлагаются

новые методы кластеризации траекторий и идентификации полётов по близким

маршрутам (Рис.2). Метод основан на анализе главных компонент (PCA) для

выборки траекторий.

Для кластеризации постоянно растущих данных о траекториях и необхо-

димости быстрого обновления кластеров был разработан подход непрерывной

кластеризации [22], состоящий из двух частей: поддержки микро-кластеров online

и создания макрокластеров в режиме off-line. В первой части каждая новая тра-
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Рис. 2: Кластеризация траекторий самолётов, представленная в работе [21]

ектория упрощённо представляется набором направленных сегментов, далее

сегменты всех траекторий разбиваются на кластеры. Такие микро-кластеры

используются для компактного хранения сходных сегментов траекторий. При

добавлении новых данных, микро-кластеры адаптируются в соответствии с теку-

щими изменениями. При запросе результатов кластеризации, процедура выпол-

няется в режиме off-line на множестве микро-кластеров. Оn-line-кластеризация

применяется в [23]. Кластеризации траекторий методами без обучения посвяще-

ны работы [24,25]. В работе [26] предлагается унифицированный вероятностный

алгоритм анализа траекторий, основанный на непараметрических Байессовских

методах, который может кластеризовать траектории методами без обучения (in

unsupervised way), не требующими предварительного знания числа кластеров

траекторий.

На основании предарительно выполненной кластеризации траекторий движе-

ния предлагается определение, так называемой, характерной (репрезентативной,

номинальной) траектории потока. В [27] в результате анализа траекторий само-

лётов в пространстве геометрических характеристик (geometric feature space),

в частности, кривизны, выделяются группы сходных траекторий. Так, в ра-
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боте [28] предлагается подход к определению типичных паттернов движения,

основанный на кластеризации сходных траекторий. В работе [29] методом спек-

тральной кластеризации решается задача определения номинальных траекторий

(nominal trajectories) в выделенных потоках движения на основании данных

о посадочных траекториях самолётов. В работе [30] была предложена мето-

дология выявления потоков, существующих в течение некоторого временного

интервала. В основе работы также лежит метод спектральной кластеризации.

Используемый алгоритм определяет дни, в которые наблюдаются нетипичные

картины трафика, и позволяет идентифицировать потоки, постоянные во време-

ни. В таких потоках выделяются типовые (номинальные) траектории (Рис.3).

В работе [31] анализируются посадочные траектории и для определения, так

называемых, репрезентативных траекторий потока при посадках на заданные

взлётно-посадочные полосы на одном из этапов используется кластеризация

траекторий.

Рис. 3: Характерные траектории, определяемые на основании кластеризации в работе [30]

Анализ посадочных траекторий самолётов является важной задачей, посколь-

ку согласно статистическим данным Международной Организации Гражданской

Авиации (ИКАО) заход на посадку и посадка на полосу аэродрома являются

достаточно критическими этапами полёта самолета [32]. Большинство авиацион-

ных происшествий с крупными воздушными судами происходит после выхода

воздушного судна на направление взлётно-посадочной полосы (ВПП) и в пре-
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делах 19 км от нее [33,34]. Данные анализа безопасности полётов гражданской

авиации РФ, проведённого Федеральным Агентством Воздушного Транспор-

та (управление инспекции по безопасности полётов) показывают, что случаи

невыдерживания безопасной траектории снижения на конечном этапе захода на

посадку, маневрирование на этапе посадки (повышенная скорость, отклонения

от глиссады) и выкатывание за пределы ВПП представляют наибольшую угрозу

для безопасности полётов.

В настоящее время активно разрабатываются подходы, методы и системы,

упрощающие пилотирование самолётов на конечном этапе посадки. Для этого

применяются как системы управления полётами (flight management system), так

и приборы автоматического выбора маршрута посадки [35]. На заключительном

этапе полёта экипаж может задать бортовой системе один из вариантов захо-

да на посадку, в этом случае координаты следования выбранной траектории

определяются автоматически. Кроме того, СУВД может рекомендовать особую

посадку, в частности, наиболее эффективную при данных метеорологических

условиях и текущей загруженности аэропорта. В работе [36] предлагается ме-

тодика расчёта само-наведения при посадке, использующая контроль времени

задержки (time delay control). Проектируемая система наведения тестировалась

на моделях общих схем посадки, включающих выпуск шасси и касание ВПП. При

моделировании используется метод моделей нелинейных динамических систем.

В работах [37, 38] рассматриваются особенности посадки самолёта на палубу

корабля. В [39] представлен способ оценки точности траектории при посадке в

условиях плохой видимости.

В настоящее время задача определения безопасной и/или оптимальной тра-

ектории посадки также решается с помощью различных методов, как на основе

анализа сходства текущей траектории с траекториями из базы данных,с помощью

кластеризации траекторий и математического моделирования. Работы [40–44]

посвящены определению оптимальных, безопасных и бесконфликтных траекто-

рий посадки с помощью математического моделирования с учётом различных
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параметров. В [45] предлагается метод посадки самолёта (method of inferring the

aircraft intent) на основании полученных ранее данных о посадочных траекто-

риях самолётов того же типа. Данные об успешных посадках анализируются

совместно с данными о метеорологических условиях. В результате выводится

траектория посадки, соответствующая минимальному значению функции сто-

имости вычисленной траектории в сравнении с наблюдаемой, и предлагается

несколько вариантов посадки.

Одной из актуальных задач обеспечения безопасности полётов и эффектив-

ной организации потоков движения становится разработка систем, выявляющих

потенциальные конфликты и моделирующих способы их разрешения (conflict

detection and resolution) [46–48]. Для выявления и предотвращения потенци-

альных конфликтов самолётов в зоне аэропорта необходимо как можно точнее

вывести (нацелить) самолёт на посадку (terminal-area aircraft intent inference).

Такая задача обусловлена постоянно возникающими нештатными ситуациями

воздушного трафика, в частности, внеплановыми маршрутами полётов и часты-

ми манёврами самолётов. В работе [49] предлагается система предупреждения

возможных конфликтных ситуаций на этапе предпосадочного маневрирования

и захода на посадку в условиях сложного рельефа местности. В работе [50]

моделируются бесконфликтные траектории синхронного движения самолётов

в сложных условиях рельефа местности. В работе [51] задача моделирования

траекторий наведения на цель решается с помощью кластеризации траекто-

рий. Предлагаемый подход тестировался на данных радара аэропорта Ченду

(Chengdu) в Китае. В системах безопасности, предотвращающих столкновения

между лёгкими спортивными самолётами и в частной авиации может использо-

ваться классификация траекторий [52,53].

Недостатком использования методов кластеризации при определении групп

сходных траекторий и некоторой усреднённой траектории является использо-

вание Евклидовой меры близости, которая плохо отражает сходство формы

траекторий в трёхмерном пространстве. Она велика для разнесённых в простран-
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стве сходных траекторий и не позволяет разделять пересекающиеся траектории

различной геометрической формы.

Рис. 4: Схема направлений посадки

Важно заметить, что особенность задачи управления воздушным движени-

ем состоит в том, что в связи с разделительными ограничениями (separation

constraints) различные по весу самолёты не могут следовать в караване к одной

ВПП. Так, В работе [54] предлагается способ планирования воздушного движе-

ния, включающий определение сети, состоящей из узловых точек и основных

направлений посадки (an arrival network of nodes and legs) (см. Рис. 4 [55]), кото-

рый применяется для оптимизации расписания прибывающих самолётов. Для

автоматической оптимизации распределения прилетающих рейсов по посадочным

полосам может применяться и генетический алгоритм [56].

1.2 Описание анализируемых данных

Для решения задачи секторизации при анализе набора данных многомерных

посадочных траекторий самолётов в диссертационной работе рассматриваются

различные подходы и методы анализа данных (data mining). При рассмотрении

набора данных в двумерном и трёхмерном случае необходимо выделить группы

траекторий со сходными характеристиками. В случае посадочных траекторий са-

молётов необходимо выделить посадки на заданные взлётно-посадочные полосы,
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которые образуют сходящиеся пучки многомерных траекторий, представленные-

на Рис. 5 и 6.

(а)

(б )

Рис. 5: Аэропорт Сан-Франциско (SFO), runway 1L&1R (см.Рис. 9).
а)-б) траектории посадки самолётов, формирующие пучки посадочных траекторий

В задачах обеспечения безопасности полётов важной задачей является опре-

деление в выделенных пучках траекторий центральные траектории (называемых
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Рис. 6: Аэропорт Сан-Франциско (SFO), runway 1L&1R (см.Рис. 9)

далеее центроиды пучков), которые представлены на Рис. 7.

(а) (б )

Рис. 7: Центроидоид (пунктирная линия) в пучке посадочных траекторий самолётов
а) исходное изображение, б) результат его компьютерной обработки

Определение траекторий, потенциально находящихся в зоне риска, также

является важной задачей. В выделенных пучках траекторий такие траектории

наиболее удалены от соответсвующих центроидов по выбранной мере близости.

В некоторых прикладных задачах термину центроид, введённому в диссертаци-

онной работе, соответствуют термины: номинальная, оптимальная, нормальная

или опорная траектория.
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Сложность решаемой задачи связана с особенностями геометрии самих мно-

гомерных траекторий (их пространственными пересечениями, кривизной и кру-

чением) и также с возможными пересечениями пучков траекторий (см. Рис. 8)

На Рис. 8 представлены фотографии пучков посадочных траекторий самолётов

и результаты их компьютерной обработки [57,58], демонстрирующие упомянутые

выше особенности геометрии пучков.

Фотографии на Рис. 6–8 находятся в свободном доступе на сайтах

www.flickr.com/photos/exxonvaldez/sets/72157606064555806/ (автор T. Chang),

www.airlines.net (автор Ó. Laborda-Sánchez),

www.itcolossal.com/light-traces-aircraft/ (автор K. Cooley).

Описание набора анализируемых данных

В работе используются мета-данные, зарегистрированные автоматической ра-

диолокационной системой TRACON (Terminal Radar Approach Control Facilities)

[59–62] над заливом Сан-Франциско (находятся в свободном доступе на сайте

https://c3.nasa.gov/dashlink/resources/132/). Использование систем тако-

го типа направлено на упрощение работы диспетчерских служб и обеспечение

безопасности в расширенной зоне вокруг аэропорта. Рассматриваемая область

воздушного пространства охватывает пять крупных аэропортов (см. Рис. 9, а),

в том числе международный аэропорт Сан-Франциско (SFO), особенностью

которого является сложное географическое положение, т.к. он располагается

непосредственно на заливе (см. Рис. 9, б). В этом случае отклонение от безопасной

траектории при посадке может приводить к нежелательным последствиям (см.

например, https://en.wikipedia.org/wiki/Asiana_Airlines_Flight_214).

Анализируемая область представляет собой цилиндр радиуса 80 км с центром

над аэропортом SFO и высотой 6 км. Данные, регистрируемые радаром, содержат

трехмерные координаты и абсолютные скорости воздушных судов через равные

промежутки времени (5 с), с момента обнаружения радаром и до самой нижней

регистрируемой радарами высоты. Помимо основной информации в записях

www.flickr.com/photos/exxonvaldez/sets/72157606064555806/
www.airlines.net
www.itcolossal.com/light-traces-aircraft/
 https://c3.nasa.gov/dashlink/resources/132/
http://media.flysfo.com.s3.amazonaws.com/pdf/about/brochures/sfowelcomebrochure.pdf
https://en.wikipedia.org/wiki/Asiana_Airlines_Flight_214
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(а) (б )

(в) (г)

Рис. 8: Пучки посадочных траекторий самолётов и их геометрическое представление
а) исходное изображение, б) сегментированное изображение,
в) карта яркости, г) выделенные посадочные траектории

указываются дополнительные сведения о типе совершаемой операции (прибытии

или отправлении), о пункте вылета и назначения и т.п. Подробное описание

анализиуемых данных радара представлено в работах [21,63,64].

В настоящей работе исследуется набор 116 траекторий первых самолетов,

приземлившихся в зоне действия радара 1 января 2006 года (см. Рис. 10), далее

называемый исходный набор траекторий посадки. Чтобы случайные маневры

до начала снижения не искажали общей тенденции движения, рассматриваются

только 160 точек каждой траектории. Разница между моментами времени по-

следовательной регистрации (≈ 5 с) определяется угловой скоростью вращения
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(а)
(б )

Рис. 9: Залив Сан-Франциско, а) область, охватываемая радаром (аэропорт SFO в центре),
б) схема взлёт но-посадочных полос аэропорта SFO

радара. Начало координат совпадает с положением радара.

Рис. 10: 3D представление анализируемого исходного набора посадочных траекторий
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1.3 Основные подходы к анализу многомерных времен-

ных рядов, представленных четырёхмерными посадоч-

ными траекториями самолётов

Геометрические особенности многомерных посадочных траекторий

Если исходный набор посадочных траекторий самолётов содержит несколько

групп траекторий, соответствующих посадкам на заданные ВПП, – пучков

траекторий, то их возможно выделить.

Для векторов {Xn ∈ R3×L, Xn ∈ Nk, n = 1, Nk}, (L � 1 – максимальная

длина траектории), представляющих пучок траекторий Nk, k = 1, K0 (K0 –

эмпирический параметр), выполняется условие (асимптотического) схождения

пучка
∀(Xn,Xm) ∈ Nk : ‖Xn[Ln]−Xm[Lm]‖2 < ε, (1.3.1)

где n,m = 1, Nk, n 6= m, иXn[Ln], Xm[Lm] – конечные координаты точек траекто-

рий, которые почти совпадают, ‖...‖2 – евклидова мера расстояния в пространстве

R3, ε – параметр порога (порядка ширины ВПП). Параметры Ln, Lm подлежат

определению.

Пучки траекторий похожи на пучки функций и пучки решений дифферен-

циальных уравнений (см. [65–67]). Также следует отметить, что траектории

в сходящихся пучках (в рассматриваемом случае с порогом ε (1.3.1)) имеют

типичный профиль и геометрическую асимптоту – линию в R3, удовлетворя-

ющую условию (1.3.1) и касательную в окрестности конечных точек Xn[Ln]

(Xn ∈ Nk, n = 1, Nk) всех траекторий пучка [68].

В выделенном пучке траекторий может быть определена центральная тра-

ектория – центроид. В таком случае, центроиды пучков {Ck ∈ R3×L, k = 1, K0}

также должны удовлетворять условию типа (1.3.1) в виде

∀k = 1, K0, ∀Xn ∈ Nk : ‖Ck[Lk]−Xn[Ln]‖2 < ε, (1.3.2)

где параметры Ln и Lk подлежат определению.
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Определение центроидов и пучков траекторий алгоритмом К-means

Для многомерных векторов {Xn ∈ R3×L, n = 1, N}, L � 1 с евклидовой

мерой расстояния алгоритм K-means решает задачу идентификации центроидов

{Ck ∈ R3×L, k = 1, K}, ассоциируемых с выборками (кластерами) {Ck, k = 1, K}.

Для набора центроидов сумма квадратов евклидовых расстояний до векторов в

соответствующих выборках {Ck, k = 1, K} является минимальной.

Введём назначения векторов выборкам посредством набора бинарных ин-

дикаторных переменных {rnk ∈ {0, 1}, n = 1, N, k = 1, K}, то есть, если век-

тор Xn назначен выборке k, то rnk = 1, и rnk = 0 в противном случае (т.е.

{Ck = {Xn | rnk = 1}}). Целевая функция алгоритма K-means имеет вид

J =
N∑
n=1

K∑
k=1

rnk (Xn − Ck) · (Xn − Ck) , (1.3.3)

где «·» обозначает скалярное произведение векторов в пространстве состояний

R3×L. Для определения выборок, представляющих пучки траекторий, минимиза-

ция целевой функции (1.3.3) должна производится с учётов условия типа (1.3.2)

в виде

∀k = 1, K, ∃n ∈ {m | rmk = 1} : ‖Ck[Lk]−Xn[Ln]‖2 < ε,

∀k, k′ = 1, K : ‖Ck[Lk]− Ck′[Lk′]‖2 � ε,
(1.3.4)

где ‖..‖2 – евклидова мера расстояния в трёхмерном пространстве R3. В алгорит-

ме K-means для инициализации {Ck, k = 1, K} используются {Xn, n = 1, N}.

Минимизация J (1.3.3) осуществляется последовательными итерациями, состо-

ящими из двух шагов: оценки {rnk, n = 1, N, k = 1, K} при фиксированных

{Ck, k = 1, K} в замкнутой форме

〈rnk〉 =


1, если k = argmin

m
((Xn − Cm) · (Xn − Cm)) ,

0, в противном случае
(1.3.5)
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и оценки {Ck, k = 1, K} при фиксированных {rnk, n = 1, N, k = 1, K}

{
〈Ck〉 , k = 1, K

}
= arg min
{Cm,m=1,K}

N∑
n=1

K∑
k=1

rnk ((Xn − Cm) · (Xn − Cm))

в замкнутой форме

〈Ck〉 =

N∑
n=1

rnkXn

N∑
n=1

rnk

(1.3.6)

до достижения сходимости. Поскольку каждый шаг уменьшает целевую функцию

J (1.3.3), сходимость алгоритма K-means гарантируется. Однако из-за неудачной

инициализации {Ck, k = 1, K} он может сходится к локальному, а не к глобально-

му минимуму J при условии (1.3.4), гарантирующем, что выборки Ck, k = 1, K

представляют пучки траекторий Nk, k = 1, K.

Непосредственная реализация алгоритма K-means относительно медленная,

поскольку на каждом шаге определения rnk, n = 1, N, k = 1, K (1.3.5) вычис-

ляется евклидово расстояние между каждым вектором Ck, k = 1, K и каждым

вектором Xn, n = 1, N . Ускорение алгоритма K-means обеспечивается предва-

рительным построением дерева, в котором ближайшие вектора {Xn, n = 1, N}

находятся в одном поддереве [69, 70]. Используя неравенство треугольников

для расстояний, также сокращают число вычислений расстояний [71, 72]. Ис-

пользование в исходном пространстве состояний R3×L евклидовой меры рас-

стояния и представление о геометрическом разбиении пространства векторов

{Xn ∈ R3×L, n = 1, N}, L� 1 на ячейки в стиле диаграмм Воронова не отража-

ет характер пучков траекторий (посадки самолётов). Кроме того, определение

центроидов оказывается неустойчивым к случайным отклонениям (outliers).

Первый способ адаптации условной задачи оптимизации (1.3.3, 1.3.4) к ана-

лизу пучков пространственных траекторий состоит в моделировании центроидов

{Ck, k = 1, K} с помощью модели полиномиальной регрессии, которая решает

задачу выравнивания координат точек траекторий пучка (∀Xn ∈ Nk), которые
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почти совпадают [64,73] (см. Главу 2). Второй – состоит в использовании пред-

ставлений векторов {Xn ∈ R3×L, n = 1, N}, L� 1 в пространствах абстрактных

характеристик {Yn ∈ RM , n = 1, N} с евклидовой мерой расстояния [74–77] (см.

Главу 4). Вектора, представляющие пучки траекторий, которые геометрически

неразделимы в исходном пространстве состояний R3×L, в пространствах абстракт-

ных характеристик становятся разделимыми, поэтому в этих пространствах

используется евклидова мера расстояния [78,79] (см. Главу 4). При отображении

в исходное пространство состояний мера расстояния становится неевклидовой.

Использование неевклидовой меры расстояния

Существуют примеры неевклидовой меры расстояния для векторов траекто-

рий в пространстве состояний. Например, мера косинуса

cos∠(Xn,Xm) = (Xn ·Xm)
/(√

(Xn ·Xn)
√

(Xm ·Xm)
)
, n,m = 1, N, (1.3.7)

наиболее адекватно отражает близость векторов {Xn ∈ R3×L, n = 1, N}, L� 1

в пространстве состояний, представляющих пучки траекторий определённого

профиля [79]. Поэтому, можно модифицировать задачу оптимизации (1.3.3, 1.3.4),

заменив в (1.3.3) скалярное произведение на общую меру расстояния. Далее для

меры косинуса используется следующее обозначение:

ρcosine(Xn,Xm) = cos∠(Xn,Xm).

Целевая функция (1.3.3) алгоритма K-means обобщается введением общей

меры расстояния ρ(Xn,Xm) между двумя векторами Xn, Xm ∈ R3×L и миними-

зацией целевой функции

J =
N∑
n=1

K∑
k=1

rnkρ
2 (Xn,Ck) , (1.3.8)

(K-medoids algorithm) [80]. При заданных центроидах {Ck, k = 1, K} шаг оценки

{rnk, n = 1, N, k = 1, K} (как в стандартном алгоритме K-means) включает

назначение каждого вектора Xn, n = 1, N выборке Ck, k = 1, K, для которого
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расстояние ρ (Xn,Ck) с соответствующим центроидом минимально

〈rnk〉 =


1, если k = arg min

m
ρ (Xn,Cm) ,

0, в противном случае
(1.3.9)

с оценкой вычислительной сложности O(K ·N). Однако, шаг оценки {Ck, k =

1, K} является потенциально более сложным. При стандартном ограничении

считается, что каждый центроид является одним из векторов, назначенных соот-

ветствующей выборке, поэтому условие (1.3.4) выполняется автоматически. Это

позволяет реализовать алгоритм для любого выбора меры расстояния ρ (Xn,Ck),

которая непосредственно вычисляется. Шаг определения {Ck, k = 1, K} включа-

ет дискретный поиск по всем Nk векторам, назначенным выборке Ck, k = 1, K,

и требует O
(
N 2
k

)
оценок меры расстояния ρ (Xn,Ck).

Отметим, что взаимосвязь центроидов и выборок

Ck ⇔ Ck, k = 1, K

навязана логикой алгоритма K-means и его обобщениями и, в принципе, центрои-

ды {Ck, k = 1, K} и выборки {Ck, k = 1, K}, представляющие пучки траекторий

Nk, k = 1, K, могут определяться независимо.

Оценки центроидов и определение пучков траекторий

В качестве независимых методов оценки центроидов {Ck, k = 1, K} исполь-

зуются скрытые компоненты линейных и нелинейных динамических моделей

(см. [81,82] ), и скрытые последовательности Марковских моделей (см. [83,84])

при условии (1.3.4) (см. Главу 2). После этого пучки траекторий определяются

по схеме Ck ⇒ Ck, k = 1, K.



32

1.4 Выводы по Главе 1

1. На основе комплексного анализа проблемы обеспечения безопасности полё-

тов в расширенной зоне аэропорта обоснованы:

– актуальность темы диссертационного исследования;

– выбор посадочных траекторий самолётов в качестве первичных данных

для решения поставленных задач.

2. Продемонстрировано, что методы анализа данных, применяемые в на-

стоящее время для решения проблем обеспечения безопасности полётов в

расширенной зоне аэропорта, не учитывают особенностей пространственной

геометрии многомерных посадочных траекторий самолётов в трёхмерном

пространстве и не могут быть использованы при решении поставленных

задач.



33

Глава 2. Применение методов анализа данных к

обработке многомерных временных рядов, пред-

ставленных посадочными траекториями самолётов

в двумерном случае

Различные подходы к анализу данных

Задачи анализа функциональных данных (functional data analysis) [85–88]

(например, траекторий движения объектов) и выделения в них характерных

паттернов (типов движения) становятся всё более актуальными. Анализируе-

мые данные представляют собой серии измерений в зависимости от некоторой

независимой переменной, например, времени. В более общем случае это могут

быть наборы многомерных измерений (векторов). При этом в каждый момент

времени могут фиксироваться как пространственные координаты x, y, z, так и

специфические характеристики объектов (скорость и др. параметры движения).

При обработке данных такого типа может выполняться выравнивание во времени

и разбиение исходного набора данных на достаточно однородные выборки [89].

Размерность анализируемых данных, как правило, велика. Уменьшение раз-

мерности данных с помощью их аппроксимации элементами пространства конеч-

ной размерности позволяет применять к данным различные алгоритмы такие,

как иерархическая кластеризация [90] или K-means [91].

Существуют вероятностные подходы для описания кластеров (выборок), на

которые разделяются исходные данные, посредством их плотности вероятно-

сти [92–94]. Оказалось, что при анализе набора траекторий модели вероятностных

смесей (probabilistic mixture models) дают хорошие результаты [89]. Например,

при моделировании смеси, основанной на регрессии (regression-based mixture

modeling) определяются две или более исходные (underlying) функции (например,

полиномы), рассматриваемые в качестве генеративных для анализируемых дан-

ных. Эта методика, известная как смеси регрессий (regression mixtures) [95–99],
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расширяет стандартный подход конечных смесей на случай, когда компоненты

моделей плотности замещаются моделями условной регрессионной плотности.

Исходный набор данных может быть разбит на достаточно однородные вы-

борки на основе различных моделей регрессионных смесей, например, полиноми-

альной регрессии на основе евклидовой меры расстояния [73, 100–103], регрес-

сии сплайнами [104–106] и кусочно-непрерывной регрессии (piecewise regression

model) [107]. Все эти подходы используют алгоритм ожидания и максимизации

правдоподобия (ЕМ-алгоритм (Expected-Maximization algorithm)) [108] для оценки

параметров модели.

Для оценки числа K достаточно однородных выборок [109–113], на которые

разбиваются исходные данные, могут применяться экспертные оценки, или та-

кие, хорошо известные критерии, как BIC (Bayesian Information Criterion), AIC

(Akaike’s Information Criterion), ICL (The Integrated Completed Likelihood), DIC

(Deviance Information Criterion) [114–116] и др. Также может выполняться срав-

нение значений максимального правдоподобия, вычисленного при различных K,

как это делается в [102]. Предварительное разбиение анализируемых данных на

достаточно однородные выборки позволяет значительно упростить дальнейший

анализ.

Подходы к анализу данных в пространстве состояний

Если характер данных (например, траекторий движения) сложен и не описы-

вается конечным числом параметров, применяются методы сокращения размер-

ности пространства состояний [117]. Моделирование в пространстве состояний

применяется в широком спектре задач анализа временных рядов. При этом пред-

полагается, что поведение наблюдаемой системы определяется ненаблюдаемыми

(скрытыми состояниями) [118]. Зависимость между вектором текущего состояния

и вектором предыдущего состояния определяется динамическими уравнениями

системы и шума модели [119]. При описании динамических систем вводятся

понятия «пространства состояний» (state space) и «векторов состояний» (state
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vectors).

Представление в пространстве состояний (state space form) позволяет при-

менить к исходной модели различные стандартные процедуры, включая оце-

нивание и прогнозирование [120,121], и обработать широкий спектр линейных

и нелинейный моделей временных рядов, включая регрессионные модели с из-

меняющимися коэффициентами, модели типа ARIMA (Autoregressive Integrated

Moving Average) [122] и модели с ненаблюдаемыми компонентами.

В случае линейных динамических систем с гаусовым шумом, апостериор-

ная вероятность переменной скрытого состояния s[i] в момент времени i при

заданных наблюдаемых данных x[i] вычисляется с помощью хорошо известного

фильтра Калмана [123–126]. К нелинейным системам может применяться расши-

ренный (нелинейный) фильтр Калмана [127,128], основанный на линеаризации

первого порядка. Динамические модели также описываются в терминах ради-

альных базисных функций [129]. В случае нелинейных систем с негауссовым

шумом один из подходов заключается в дискритезации переменных скрытого

состояния [130], что приводит к динамическим Байесовским сетям (Dynamic

Bayesian Networks) [131–133], среди которых наиболее изученными являются

скрытые марковские модели (HMM – the Hidden Markov Model) [134, 135]. По-

дробное описание различных методов моделирования в пространстве состояний

представлено в [117,118,136–139].

Анализ данных в абстрактных пространствах характеристик

Помимо привычного представления в 3D-пространстве координат, исходные

данные могут быть представлены различными измерениями характеризующих

их величин или характеристиками (которые могут быть бинарными, катего-

риальными, непрерывными и др.). В таком случае, вектор x = [x1, x2, ..., xq]

размерности q содержит такие характеристики (features) в качестве компонент.

При анализе данных (например, при выделении групп объектов со сходными

характеристиками) «сырые» данные преобразуются так, что в них выделяются

наиболее значимые характеристики, и/или группы моделируются непосредствен-
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но в абстрактных пространствах характеристик (feature space). В этом случае x′

– вектор преобразованых характеристик размерности q′ [140].

Вектора характеристик в группах (выборках, кластерах), выделяемых в

исходных данных, располагаются в пространстве характеристик близко друг

другу. Каждой группе объектов соответствует q-мерная функция плотности

вероятности, для которой определяется экстремум. Приписание объектов к той

или иной группе может выполняется как с обучением (supervised classification),

так и без обучения (unsupervised classification), в первом случае соответствующее

разбиение известно заранее, во втором – нет. [141].

Существуют различные методы преобразования исходных данных, при этом

размерность исходного пространства может не изменяться (например, в слу-

чае усиления сигнала, нормировки, усреднения), увеличиваться (например, при

нелинейном расширении (non-linear expansion), дискретизации характеристик

(feature discretization)) или уменьшаться (при извлечении локальных характери-

стик). Если размерность данных очень велика, то можно переводить данные в

пространство меньшей размерности, сохраняя основную информацию. Класси-

ческими примерами в этом случае являются анализ главных компонент (PCA

от англ. Principal Component Analysis) и многомерное шкалирование (MDS от

англ. Multidimentional Scaling) [140].

Методы сокращения размерности разделяются на проективные (к которым

относятся PCA, kernel PCA, probalistic PCA, дискриминантный анализ и др.), и

методы, которые моделируют многомерные пространства (manifold), в которых

лежат данные, например, MDS, landmark MDS, спектральное разбиение (spectral

clustering) и др. [142].

Далее рассматривается применение различных методов анализа данных к

набору многомерных посадочных траекторий самолётов в двумерном случае.

Представленные в настоящей главе результаты опубликованы в [64,75,77,81,82,

84,143,144].
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2.1 Метод полиномиальных регрессий

Модель одновременного выравнивания и разбиения одномерных вре-

менных рядов на выборки со сходными характеристиками

Рассмотрим выполняемые одновременно выравнивание и разбиение одно-

мерных временных рядов, т.е. векторов переменной длины, представляющих

координатные временные зависимости. Каждый вектор xn ∈ R1×L, n = 1, N ,

представляющий n-ю траекторию, состоит из последовательности измерений

координатной зависимости xn = xn(t) в моменты времени tn ∈ R1×L. В [100]

модели смеси регрессий эффективно используются для разбиения одномерных

векторов переменной длины на достаточно однородные выборки. Вектор xn

моделируется регрессионной моделью

xn = Tnβ + εn, (2.1.1)

где β – вектор коэффициентов регрессии размерности 1× (q + 1); εn – гауссов

шум с нулевым средним; Tn – регрессионная матрица, которая зависит от типа

используемой регрессионной модели. В случае полиномиальной регрессии Tn

имеет вид стандартной матрицы Вандермонта

Tn =



1 tn[1] (tn[1])2 · · · (tn[1])q

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

1 tn[Ln] (tn[Ln])
2 · · · (tn[Ln])

q


(2.1.2)

В основе модели одновременных выравнивания и разбиения лежит модель

смеси регрессий, в которую вводится четыре независимых параметра преобра-

зований выравнивания и масштабирования во времени и пространстве {Φn} =

{an, bn, cn, ln} (параметры an и bn описывают масштабирование и сдвиг во време-
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ни, а паметры cn и ln – масштабирование и смещение в пространстве измерений).

Полиномиальная регрессия для одномерного случая имеет вид

xn = cnΥnβk + ln + εn (2.1.3)

где матрица Υn получается из Tn (2.1.3) подстановкой tn → antn − bn; βk

определяет модель регрессии для k-ой выборки
(
k = 1, K

)
; εn – гауссов шум с

нулевым средним и дисперсией σ2
kI. Поэтому распределение плотности условной

вероятности имеет вид

pk = (xn | an, bn, cn, ln) = N
(
xn | cnΥnβk + ln, σ

2
kI
)
. (2.1.4)

Плотность вероятности для траектории xn однозначно задаётся соответству-

ющим множеством параметров {Φn}, которые подлежат определению. Задача

разбиения траекторий на выборки решается как стандартная задача оценки зна-

чений скрытых переменных. Каждый из параметров преобразования в формулах

(2.1.3) и (2.1.4) рассматривается как характерная для xn случайная переменная

с заранее известным распределением вероятности для определённой выборки.

Параметры преобразования и параметры модели оцениваются одновременно

посредством ЕМ-алгоритма.

Априорные распределения вероятностей для параметров преобразо-

вания

Априорные распределения вероятностей для параметров преобразования

выбираются таким образом, чтобы тождественное преобразование являлось

наиболее вероятным. С учётом этого эффективная априорная вероятность име-

ет Гауссово распределение N
(
µ,σ2

)
со средним µ и дисперсией σ2. Поэтому

априорные распределения вероятности для параметров преобразования времени

определяются как
an ∼ N

(
1, r2

k

)
, bn ∼ N

(
0, s2

k

)
, (2.1.5)

и априорные распределения вероятности для параметров преобразования коор-

динаты задаются как
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cn ∼ N
(
1, u2

k

)
, ln ∼ N

(
1, ν2

k

)
. (2.1.6)

В формуле (2.1.6) параметры дисперсии u2
k и ν2

k зависят от выборки. Однако,

любое подмножество этих параметров может быть выравнено ("сшито") меж-

ду выборками, если это требуется для конкретного приложения. Отметим, что

априорные распределения вероятности технически допускают отрицательное мас-

штабирование во времени и в пространстве измерений. Хотя, этот результат нети-

пичен, можно задать другие априорные распределения вероятности, например,

логарифмически нормальные, чтобы не допустить отрицательного масштабирова-

ния. Следует заметить, что дисперсии для параметров априорных вероятностей

выводятся на основе данных, полученных с помощью ЕМ-алгоритма. Ниже

модель (2.1.3)–(2.1.6) совместного выравнивания и разбиения траекторий на до-

статочно однородные выборки обобщается на случай многомерного пространства

измерений.

Одновременное выравнивание и разбиение набора многомерных тра-

екторий на выборки со сходными характеристиками

Рассмотрим выравнивание траекторий в многомерном пространстве. Ранее

предполагалось, что вектор xn ∈ R1×L состоит из последовательности измерений

одномерной координатной зависимости в моменты времени tn ∈ R1×L. Однако

во многих приложениях такие зависимости от времени являются многомерны-

ми. Таким образом, каждому моменту времени tn[i], i = 1, Ln, соответствует

многомерный вектор пространства размерности D. Обозначим многомерные

траектории Xn ∈ RD×L, полученные в результате измерений в моменты времени

tn ∈ R1×L. Тогда матрица Xn = {Xn[i; d], i = 1, Ln, d = 1, D} состоит из D

столбцов таких что каждый d-й столбец x
(d)
n = {Xn[i; d], i = 1, Ln}, d = 1, D

содержит последовательность измерений d-той одномерной координатной зависи-

мости для n-той рассматриваемой переменной. Т.е столбец x
(d)
n , соответствующий

одномерному вектору xn ∈ R1×L в формуле (2.1.1), оказывается вложенным в

матрицу многомерной траектории Xn ∈ RD×L.
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Выравнивание многомерных траекторий в пространстве

Для многомерной траектории Xn ∈ RD×L одномерный вектор измерений по

каждой координате описывается независимой регрессионной моделью

x(d)
n = Tnβkd + lnd + εn,

lnd ∝ N(0; ν2
kd); εn ∝ (01×Ln

;σ2
kdILn×Ln

)
(2.1.7)

где Tn – матрица Вандермонта (2.1.2). Матрица βkd задаёт коэффициенты

регрессии для d-го измерения (т.е. коэффициенты регрессии для d-го столбца

Xn ∈ RD×L); lnd задаёт смещение для d-го измерения; 01×Ln
– вектор с нулевыми

компонентами размерности 1× Ln и ILn×Ln
– единичная матрица размерности

Ln×Ln. Использование параметров ν2
kd и σ

2
kd позволяет рассматривать дисперсию

по каждому измерению независимо.

На основе модели (2.1.7) плотность вероятности многомерной кривой Xn ∈

RD×L с параметрами смещения {lnd, d = 1, D} определяется следующим образом:

p = (Xn, ln1, ..., lnD) =
D∏
d=1

N
(
x(d)
n |Tnβkd + lnd, σ

2
kdILn×Ln

)
N
(
lnd|0, ν2

kd

)
(2.1.8)

Плотность вероятности (2.1.8) учитывает два необходимых условия: во-первых,

все координаты пространства траекторий Xn ∈ RD×L и, во-вторых, предполагает-

ся, что для каждого измерения d существует собственное множество параметров

смещения {Φn}d. Далее предполагается, что эти два условия всегда выполняют-

ся.

Плотность безусловного распределения (компонент многомерной случайной

величины) p(Xn) представляется в виде произведения p(Xn) =
D∏
d=1

p(x
(d)
n ), поэто-

му логарифм правдоподобия для {Xn, n = 1, N} имеет вид

L =
N∑
n=1

log (p (Xn)) =
N∑
n=1

D∑
d=1

log

(∫
p
(
x(d)
n |lnd

)
p(lnd)dlnd

)
. (2.1.9)
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Интегрирование в формуле (2.1.9) выполняется аналитически, что приводит

к следующему виду логарифма правдоподобия:

L =
N∑
n=1

D∑
d=1

log
(
N
(
x(d)
n |Tnβkd, ILn×Ln

ν2
kd + ILn×Ln

σ2
kd

))
, (2.1.10)

где ILn×Ln
– единичная матрица размерности Ln × Ln.

Выравнивание многомерных траекторий во времени

Поскольку независимые координаты многомерного пространства смещаются и

масштабируются независимо, для выравнивания в пространстве рассматриваются

D отдельных параметров преобразования. Однако изменение во времени каждой

координаты траектории происходит в одном и том же временном масштабе,

следовательно, параметры преобразования времени должны быть распределены

одинаково по всем D измерениям. Поэтому каждому из векторов x
(d)
n ∈ R1×L со-

ответствует единственный параметр bn. Тогда условная вероятность для вектора

Xn ∈ RD×L определяется как

p (Xn|bn) =
D∏
d=1

p
(
x(d)
n |bn

)
=

D∏
d=1

N
(
x(d)
n |Υnβkd, σ

2
kdILn×Ln

)
, (2.1.11)

где используется только bn для всех d = 1, D и матрица Υn получается из Tn

(2.1.2) подстановкой tn → tn − bn. Условная вероятность разлагается на множи-

тели, а безусловная вероятность p (Xn|bn) не разлагается, поскольку различные

измерения в пространстве оказываются связанными через параметр смещения

времени bn. Следовательно, для логарифма правдоподобия набора траекторий

{Xn, n = 1, N} имеем

L =
N∑
n=1

log (p(Xn)) =
N∑
n=1

log

(∫
p(bn)

D∏
d=1

p
(
x(d)
n |bn

)
dbn

)
. (2.1.12)
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Под знаком интеграла в формуле (2.1.12) находится произведение вероятно-

стей по всем измерениям пространства, что приводит к сложным вычислениям.

Однако, с помощью методов Монте-Карло можно вычислить аппроксимацию

логарифма правдоподобия (2.1.12) следующим образом:

L ≈
N∑
n=1

log

(
M∑
m=1

D∏
d=1

p
(
x(d)
n |b(m)

n

))
−N log(M), (2.1.13)

где b(m)
n ∝ N(0, s2

k) (m = 1,M), взятое в соответствии с (2.1.5), и M – число

выборок bn(m) в испытаниях Монте-Карло.

ЕМ-алгоритм

Сложность ЕМ-алгоритма, обеспечивающего одновременное обучение пара-

метров модели и преобразования, является линейной функцией от полного числа

точек
N∑
n=1

Ln многомерных траекторий Xn [73]. Пусть πn – принадлежность Xn к

некоторой выборке. Параметры {Φn} и принадлежности к выборке πn рассматри-

ваются как скрытые переменные. В таком случае логарифм правдоподобия для

полного набора данных определяется как логарифм совместного правдоподобия

множества векторов {Xn, n = 1, N} и скрытых переменных Φ = {Φn, πn}, что в

соответствии с формулой (2.1.11) может быть записано в виде суммы (по всем

N траекториям) логарифма от произведения веса выборки απn и совместного

распределения вероятности (2.1.4), зависящего от выборки

Lc =
N∑
n=1

D∑
d=1

log
(
απnpπn

(
x(d)
n |Φn

)
pπn(Φn)

)
. (2.1.14)

На Е-шаге оценивается распределение вероятности p (Φn, πn|Φn) и затем ис-

пользуется в качестве следующего ожидаемого распределения в (2.1.14). На

следующей итерации это ожидаемое распределение используется на М-шаге для

оценки параметров модели в pπn
(
x

(d)
n |Φn

)
.
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Метод полиномиальных регрессий для решения задачи секторизации

Описанный в настоящей Главе метод полиномиальных регрессий позволяет

разделить набор анализируемых данных на выборки в соответствии со сходством

формы и скоростных режимов траектории самолётов на заданное число выборок.

Анализируемый набор траекторий разбивался на пять выборок в соответствии

с числом крупных аэропортов, расположенных в зоне действия радара. Полу-

ченное разбиение представлено на Рис. 11, а. Распределение траекторий по

выборкам следующее: выборка, выделенная розовым цветом, содержит 16 траек-

торий, зелёным цветом – 13, синим, чёрным и красным – 3, 37 и 38 траекторий

соответственно. При этом определяются траектории, не вошедшие ни в одну из

выборок, которые считаются посторонними (представлены на Рис. 11, б ).

(а) (б )

Рис. 11: a) Результаты разбиения исходного набора данных
по методу полиномиальных регрессий на пять выборок,

б) Выявленные посторонние траектории, не относящиеся ни к одной из выборок

С помощью данного методы одновременно оцениваются пучки траекторий

и их центроиды (линии тренда, выделенные жирными линиями на Рис. 12),

которые моделируются с помощью полинома 5-й степени. При рассмотрении

проекций траекторий выборки на оси координат, показанной на Рис. 12, видно,

что полученные выборки являются неоднородными. На Рис. 13–15 показаны

проекции трёх отдельных выборок на оси координат. При данном разбиении

исходного набора траекторий, каждая из полученных выборок является доста-
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точно неоднородной и содержит несколько пучков траекторий (соответствующих

«клювам»).

Рис. 12: Вид первичного разбиения исходного набора посадочных траекторий
в проекциях на оси координат x, y и z

Недостатки данного метода (например, нестабильность получаемого результа-

та распределения траекторий по выборкам) связаны с применением при данном

разбиении алгоритма K-means (использующего евклидову меру расстояния) и

особенностями геометрии анализируемых данных. Помимо этого метод полиноми-

альных регрессий требует предварительного задания числа выборок (кластеров),

на которые разбивается исходный набор траекторий. Хотя данный метод не

подходит для решения задачи секторизации пространства, но полученные ре-

зультаты (разбиение траекторий на выборки) могут быть проанализированы

другими методами.
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(а) (б )

Рис. 13: Проекции 16 траекторий выборки, выделенной розовым цветом на Рис. 11, а и
Рис. 12,

(a) – проекция на ось x, (б) – проекция на ось y

(а) (б )

Рис. 14: Проекции 38 траектории выборки, выделенной красным цветом на Рис. 11, а и
Рис. 12,

(a) – проекция на ось x, (б) – проекция на ось y

(а) (б )

Рис. 15: Проекции 37 траектории выборки, выделенной чёрным цветом на Рис. 11, а и Рис. 12,
(a) – проекция на ось x, (б) – проекция на ось y
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2.2 Представление многомерных траекторий в простран-

стве состояний

2.2.1 Модели линейных динамических систем (ЛДС)

В настоящей Главе при описании метода линейных динамических систем для

удобства вместо матрицы траектории (измерений)

Xn = [x[1], ...,x[D]]

с векторами-столбцами x[d], d = 1, D (2.1.1) и (2.1.3) используется транспониро-

ванная матрица, т.е.
X = XT

n ∈ RD×L.

Пусть S = S[1, q; 1, L] – многомерный временной ряд для вектора состояния,

имеющего размерность q × L, а X = X[1, D; 1, L] – многомерный наблюдаемый

временной ряд размерности D × L, причем в общем случае q < D (размерность

линейной динамической системы меньше размерности измерений (траекторий)).

Как шум состояния U = U[1, q, 1, L], так и шум измерений W = W[1, D; 1, L] –

многомерные временные ряды для Гауссовых случайных переменных с нулевым

средним и ковариационными матрицами Q и R, соответственно.

Линейные, инвариантные относительно времени динамические системы, на-

зываемые также линейными Гауссовыми моделями в пространстве состояний,

описываются двумя уравнениями для векторов-столбцов s[i] = S[1, q; i],x[i] =

X[1, D; i],u[i] = U[1, q; i] и w[i] = W[1, D; i] (индекс i представляет дискретное

время)
s[i+ 1] = Fs[i] + u[i], (2.2.1)

x[i] = Gs[i] + w[i], (2.2.2)

где F – матрица переходов, G – матрица наблюдений. В теории линейной филь-

трации временной ряд X вектора наблюдений рассматривается как зашумлённый

детерминированный временной ряд S вектора состояний. В теории Байесовской
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фильтрации отличающиеся одним временным шагом векторы-столбцы (значения

переменных состояния в последовательные дискретные моменты времени) на

основании уравнения (2.2.1) объединяются в Гауссову случайную переменную

со статистическими характеристиками шума состояния u [127]. Для Гауссовой

случайной переменной w аналогичная комбинация одновременных состояний си-

стемы и наблюдаемой переменной формируется на основе уравнения (2.2.2) [127].

В результате условные распределения вероятности для векторов наблюдения и

состояния линейной динамической системы имеют вид

P (s[i]|s[i− 1]) = (2π)−
q
2 |Q|−

1
2 exp

(
−1

2
(s[i]− Fs[i− 1])T Q−1 (s[i]− Fs[i− 1])

)
(2.2.3)

P (x[i]|s[i]) = (2π)−
D
2 |R|−

1
2 exp

(
−1

2
(x[i]−Gs[i])T R−1 (x[i]−Gs[i])

)
, (2.2.4)

где |...| обозначает определитель матрицы. Предполагается, что распределения

(2.2.3, 2.2.4), также как и исходное распределение вероятности состояний в момент

времени i = 1, являются Гауссовыми со средним µ[1] и вариацией V[1] = σ2[1]:

P (s[1]) = (2π)−
D
2 |V[1]|−

1
2 exp

(
−1

2
(s[1]− µ[1])T V[1]−1(s[1]− µ[1])

)
(2.2.5)

В уравнении (2.2.1) состояние системы (линейно) зависит только от предыдущего

состояния, отстоящего на один временной шаг (марковский процесс). Поэтому с

учётом свойства марковости условных вероятностей формула для совместной

вероятности P (S,X) имеет вид

P (S,X) = P (s[1])

(
L∏
i=2

P (s[i]|s[i− 1])

)(
L∏
i=1

P (x[i]|s[i])

)
(2.2.6)

Из выражений (2.2.3)–(2.2.5) следует, что логарифм P (S,X) (2.2.6) является

квадратичной формой (постоянный член опущен):
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log(P (S,X)) = −1

2

L∑
i=2

(s[i]− Fs[i− 1])T Q−1 (s[i]− Fs[i− 1])−L− 1

2
log(|Q|)−

− 1

2

L∑
i=2

(x[i]−Gs[i])T R−1 (x[i]−Gs[i])−

− L

2
log(|R|)− 1

2
(s[1]− µ[1])T V[1]−1 (x[1]− µ[1])− 1

2
log (|V[1]|) . (2.2.7)

ЕМ-алгоритм

В работах [138,139,145–147] описано использование ЕМ-алгоритма для оценки

параметров линейной динамической системы (2.2.1, 2.2.2) на основе многомерного

наблюдаемого временного ряда X. Е-шаг заключается в вычислении условного

среднего логарифма правдоподобия (2.2.7):

L = E[log(P (S,X))|X] (2.2.8)

Из выражения (2.2.7) следует, что выражение (2.2.8) зависит от тёх типов услов-

ных средних (ожиданий), для которых используются следующие обозначения:

< s[i] >= E [s[i]|x] (2.2.9)

P[i] = E
[
s[i]s[i]T |x

]
(2.2.10)

P[i; i− 1] = E
[
s[i]s[i− 1]T |x

]
(2.2.11)

В момент времени i оценка состояния < s[i] > (2.2.9) зависит от прошлых

x[1, i− 1] и будущих x[i+ 1, L] наблюдений [148]. Следовательно, она отличается

от оценки вычисленной посредством фильтра Калмана, который оценивает

состояние только на основе прошлых наблюдений [127]. Вычисление условных

средних (ожиданий) (2.2.9)–(2.2.11) на Е-шаге ЕМ-алгоритма приводится после

описания М-шага , т.е. оценки параметров линейной динамической системы (2.2.1,

2.2.2).
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М-шаг. Параметры линейной динамической системы (2.2.1) и (2.2.2) – это матри-

цы F и G, а также статистические характеристики Q и R распределения (2.2.3)

и (2.2.4), соответственно, и характеристики µ[1] и V распределения (2.2.5). На

основе оценок (2.2.9)–(2.2.11) и наблюдения x[1, L] каждый из параметров линей-

ной системы оценивается из условия равенства нулю соответствующей частной

производной условного среднего логарифма правдоподобия L (2.2.8). В резуль-

тате

F =

(
L∑
i=2

P[i; i− 1]

)(
L∑
i=2

P[i− 1]

)−1

(2.2.12)

Q =
1

L− 1

(
L∑
i=2

P[i]− F
L∑
i=2

P[i; i− 1]

)
(2.2.13)

G =

(
L∑
i=1

x[i] < s[i] >T

)(
L∑
i=1

P[i]

)−1

(2.2.14)

R =
1

L− 1

L∑
i=1

(
x[i]x[i]T −G < s[i] > x[i]T

)
(2.2.15)

µ[1] =< s[1] > (2.2.16)

V[1] = E
[
(s[1]− < s[1] >)(s[1]− < s[1] >)T |x

]
= P[1]− < s[1] >< x[1] >T .

(2.2.17)

E-шаг. Используются следующие обозначения:< s[i; j] >= E
[
s[i]|x[1, j]

]
(таким

образом, для условного среднего) (2.2.9) имеем < s[i] >≡< x[i;L] > и

V[i; j] = E
[
(s[i]− < s[i] >) (s[i]− < s[i] >)T |x[1, j]

]
Используя оценки (2.2.12)–(2.2.17), сначала приводятся рекурсии вперёд для

линейного фильтра Калмана

< s[i; i− 1] >= F < s[i− 1; i− 1] > (2.2.18)

V[i; i− 1] = FV[i− 1; i− 1]FT + Q (2.2.19)
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и вычисляются матрицы усиления Калмана

K[i] = V[i; i− 1]GT
(
GV[i; i− 1]GT + R

)−1 (2.2.20)

< s[i; i] >=< s[i; i− 1] > +K[i] (< x[i] > −G < s[i; i− 1] >) (2.2.21)

V[i; i] = V[i; i− 1]−K[i]GV[i; i− 1] (2.2.22)

где < s[1] >= µ[1] из (2.2.16) и V[1] (2.2.17).

Вывод рекурсии (2.2.18)–(2.2.22) основан на Байесовском подходе [149].

На основании работ [138,139,145–147] для вычисления оценки 〈s[i]〉 ≡ 〈s[i;L]〉

(2.2.9) и условного среднего P[i] ≡ V[i;L]+〈s[i;L]〉 〈s[i;L]〉T (2.2.10) выполняется

рекурсия назад (здесь J[i] – вспомогательная матрица):

J[i− 1] = V[i− 1; i− 1]FT (V[i; i− 1])−1 (2.2.23)

〈s[i− 1;L]〉 = 〈s[i− 1; i− 1]〉+ J[i− 1] (〈s[i;L]〉 − F 〈s[i− 1; i− 1]〉) (2.2.24)
V[i− 1;L] = V[i− 1; i− 1] + J[i− 1] (V[i;L]−V[i; i− 1]) J[i− 1]T . (2.2.25)

Условное среднее (2.2.11) имеет вид

P[i; i− 1] ≡ V[i; i− 1;L] + 〈s[i;L]〉 〈s[i− 1;L]〉T ,

где V[i; i−1;L] = E
[
(s[i]− 〈s[i]〉) (s[i− 1]− 〈s[i− 1]〉)T |x[1, L]

]
. Значения V[i; i−

1;L] также вычисляются рекурсией назад

V[i−1; i−2;L] = V[i−1; i−1]J[i−2]T+J[i−1] (V[i; i− 1;L]− FV[i− 1; i− 1]) J[i−2]T .

(2.2.26)
Итерации в виде последовательного чередования М- и Е-шагов с оценкой из-

менения ожидаемого условного логарифма правдоподобия L (2.2.8) обеспечивает

оценку
〈
s[1, L]

〉
(2.2.9) временного ряда состояния размерности q × L.

Анализ проекций траекторий выборок с помощью моделей ЛДС

Анализируемые посадочные траектории самолётов представляют собой дан-

ные большой размерности. В настоящей Главе рассматривается применение

метода линейных динамических систем (ЛДС) для решения задачи секторизации
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пространства в плоском случае. Метод ЛДС применяется для выделения пучков

траекторий в выборке траекторий, полученной в результате предварительного

разбиения набора траекторий по методу полиномиальных регрессий (см. Гла-

ву 2.1).

В результате применения метода ЛДС к анализируемым данным определяет-

ся вектор скрытых состояний системы. На Рис. 16–19 представлены проекции

траекторий на оси совместно с компонентами вектора состояний ЛДС размерно-

сти q = 2. Линия 1 соответствует первой компоненте вектора состояний, линия 2

– второй компоненте.

(а) (б )

Рис. 16: Проекции траекторий выборки, выделенной розовым цветом на Рис. 11, а и Рис. 12,
показаны совместно с компонентами вектора состояний ЛДС (линии 1 и 2):

а – проекции на ось x, б – на ось y

(а) (б )

Рис. 17: Проекции траекторий выборки, выделенной красным цветом на. Рис. 11, а и Рис. 12,
показаны совместно с компонентами вектора состояний ЛДС (линии 1 и 2)

а – проекции на ось x, б – проекции на ось y
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(а) (б )

Рис. 18: Проекции траекторий выборки, выделенной чёрным цветом на Рис. 11, а и Рис. 12,
показаны совместно с компонентами вектора состояний ЛДС (линии 1 и 2):

а – проекции на ось x, б – проекции на ось y

(а) (б )

Рис. 19: Проекции траекторий выборки, выделенной зелёным цветом на Рис. 11, а и Рис. 12,
показаны совместно с компонентами вектора состояний ЛДС (линии 1 и 2):

а – проекции на ось x, б – проекции на ось y

На Рис. 16–19 видно, что модели линейных динамических систем выявля-

ют тонкую структуру в анализируемых выборках, однако определяют пучки

траекторий не во всех случаях. Из Рис. 16 видно, что линия 1 определяет пу-

чок траекторий, однако линия 2 – нет. Аналогичная ситуация наблюдается и в

остальных выборках. А в случае выборки, представленной на Рис. 19, ни одна

из компонент вектора состояний не определяет пучок траекторий.

2.2.2 Модели нелинейных динамических систем (НЛДС)

Метод моделей нелинейных динамических систем [150] является более об-

щим по сравнению с методом моделей линейных динамических систем [81].
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Определение тонкой структуры рассматриваемой выборки траекторий требует

определения компонент, являющихся «скелетными» кривыми для подвыборок.

Определение компонент скрытого состояния заданной размерности и вывод

относительно линейности/нелинейности многомерных временных рядов могут

быть сделаны в результате анализа этих временных рядов с помощью адаптив-

ного нелинейного фильтра Калмана [127, 128]. Как и Главе 3.1 наблюдаемые

многомерные данные представлены матрицей X = X[1, D; 1, L] со столбцами

x[i] = X[1, D; i]. Многомерный временной ряд вектора состояний S состоит из

столбцов s[i] = S[1, q; i].

Адаптивный нелинейный фильтр Калмана

Для обучения нелинейного фильтра Калмана используется ЕМ-алгоритм [129,

150]. Нелинейная динамическая система в дискретном времени описывает эво-

люцию состояния s[i + 1] ← s[i] на одном временном шаге и текущую связь

состояния и входа s[i], u[i] с наблюдениями x[i], i = 1, L:s[i+ 1] = f (s[i],u[i]) + v[i],

x[i] = g (s[i],u[i]) + w[i]
(2.2.27)

где v[i], i = 1, L и w[i], i = 1, L – гауссовы шумы с нулевым средним [127,128].

Динамические системы непрерывного времени (в которых производные специ-

фицируются как функции текущего состояния и входа) могут быть преобразова-

ны в системы дискретного времени (2.2.27) посредством дискретизации (sampling)

их состояния и входа [151]. В частности, для линейной системы непрерывного

времени s(t) = Acs(t) + Bcu(t)

при дискретизации с интервалом времени τ

si+1 = Asi + Bui

динамическая матрица и матрица влияния имеют вид
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A =
∞∑
i=0

Ai
cτ
i

i!
= exp(Acτ)

и
B = A−1

c (A− I) Bc.

Вектор состояния s[i] эволюционирует в соответствии с нелинейной, но стацио-

нарной, марковской динамикой, производимой входом u[i], i = 1, L в присутствии

шума v[i], i = 1, L. Наблюдения x[i], i = 1, L, нелинейные с шумом, но стаци-

онарные, и являются функцией текущего состояния s[i] и текущего входа u[i].

Нелинейные вектор-функции считаются дифференцируемыми. Ниже на Е-шаге

ЕМ-алгоритма для оценки приблизительного распределения скрытых состояний

нелинейной системы (2.2.27) используется расширенный сглаживатель Рауха, а

на М-шаге для нелинейной регресии вектор-функций f(...) и g(...) – разложение

по радиальным базисным функциям (radial basis function – RBF) [129,150].

Два условные распределения вероятности

P (s[i] |u[1], ..., u[L], x[1], ...,x[L]) , i = 1, L,

P (s[i], s[i+ 1] |u[1], ..., u[L], x[1], ..., x[L]) , i = 1, L− 1,
(2.2.28)

используются на Е-шаге для определения последовательности скрытых состояний

нелинейной системы (2.2.27) на основе последовательности наблюдений {x[i], i =

1, L} и входов {u[i], i = 1, L}. Условные распределения (2.2.28) являются не

гауссовыми, поэтому уравнения вывода не могут быть представлены в замкнутой

форме. Более того, объём вычислений растёт экспоненциально с увеличением

длины временных рядов.

Расширенный сглаживатель Рауха аппроксимирует стационарную нелиней-

ную динамическую систему (2.2.27) нестационарной линейной системой [151].

Он применяет стандартный сглаживатель Рауха к локально линеаризованной

нелинейной системе. В каждой точке s в пространстве состояний s, производные
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вектор-функций f(...) и g(...) определяют матрицы

Fs =
∂f

∂s

∣∣∣
s=s

и Gs =
∂g

∂s

∣∣∣
s=s
,

соответственно. Уравнения (2.2.27) линеаризуются в окрестности s[i] средней

текущей отфильтрованной (а не сглаженной) оценки состояния s[i] (в момент

времени i) s[i+ 1] ≈ f (s[i], u[i]) + Fs[i] (s[i]− s[i]) + v[i],

x[i] ≈ g (s[i], u[i]) + Gs (s[i]− s[i] + w[i]) .
(2.2.29)

Поскольку распределение шума и априорные распределения состояния при

i = 1 – гауссовы, то в линеаризованной системе (2.2.29) условное распределение

вероятности состояния в произвольный момент времени при заданной после-

довательности входов и выходов также гауссово. Таким образом сглаживатель

Рауха может использоваться на линеаризованной системе (2.2.29) для вывода

этого условного распределения. В противоположность линейному сглаживателю

Рауха, в линеаризованном сглаживателе Рауха ошибка ковариации для оценки

состояния и матрицы усиления Калмана зависит не только от наблюдений с

текущим временным индексом.

Проблема, возникающая на М-шаге ЕМ-алгоритма состоит в том, что обуче-

ние вектор-функций f(...) и g(...) происходит с использованием неопределённых

оценок состояния посредством сглаживателя Рауха [129, 150]. Это затрудняет

применение стандартных методов регресии. Рассмотрим оценку f(..) с парамет-

рами s[i] и u[i] и результатом s[i+ 1]. Для каждого i условное распределение,

оцениваемое сглаживателем Рауха, является гауссовым с полной ковариацией в

пространстве {s[i], s[i+ 1]}. Ниже разложения нелинейных функций f(..) и g(..)

по набору гауссовых радиальных базисных функций (radial basis function - RBF)

адаптируются к этим гауссовым выборкам данных.
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Рассмотрим представляющее функцию f(..) нелинейное отображение векторов

состояния s и входа u на вектор состояния z:

z =
M∑
m=1

h[m]rm(s) + As + Bu + b + w (2.2.30)

где w – гауссов шум с нулевым средним и ковариацией R. Параметрами отоб-

ражения (2.2.30) являются коэффициенты h[m], m = 1,M , при скалярных ра-

диальных базисных функциях (RBF) rm(s), m = 1,M , матрицы A, B и вектор

смещения b. Гауссовы радиальные базисные функции в пространстве векторов s

с центром c[m] и ковариационной матрицей S[m] имеют вид

rm(s) = |2πS[m]|−1/2 exp

(
−1

2
(s− c[m])TS[m]−1(s− c[m])

)
(2.2.31)

где |S[m]| – детерминант матрицы S[m]. Отображение (2.2.30) используется

несколькими способами для представления систем (2.2.29), в зависимости от

того, какое из отображений f(..) или g(..) считается нелинейным. Приведём три

примера: 1) для f(..) используются подстановки s← s[i], u← u[i] и z← s[i+ 1];

для f(..) используются подстановки s ← (s[i], u[i]), u ← 0 и z ← s[i + 1]; 3)

для g(..) используются подстановки s ← s[i], u ← u[i] и z ← x[i]. Поскольку

набор данных для переменных s, z, u является выборкой из распределения в

виде смеси гауссовых распределений, это распределение аналитически определя-

ется посредством интегрирования, чтобы обеспечить соответствие RBF-модели

(2.2.30). Распределение данных имеет вид

P (s, z,u) =
1

J

∑
j

Pj(s, z)δ(u− u[j]), (2.2.32)

где Pj(s, z) ≡ N (s, z |µ[j], C[j]) – гауссово распределение со средним µ[j] =

{µs[j], µz[j]} и ковариационной матрицей

C[j] =

Css[j] Csz[j]

Czs[j] Czz[j]

 .
Определим вектор
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zΘ(s,u) =
M∑
m=1

h[m]rm(s) + Ax + Bu + b = ΘΦ,

где Θ = [h[1], ..., h[M ], A, B, b] – вектор параметров и Φ =
[
r1(s), ..., rM(s), ..., sT , uT , 1

]T
– вектор переменных отображений (2.2.30). Поскольку в (2.2.30) шум w – гауссов

с нулевым средним и ковариационной матрицей R, то, в рамках RBF-модели,

логарифм правдоподобия одного вектора z имеет вид

− 1

2
(z− zΘ(s))T R−1 (z− zΘ(s))− 1

2
log |R|+ c, (2.2.33)

где c – константа. Поскольку набор {s, z} – это гауссова выборка данных, макси-

мум ожидаемого логарифма правдоподобия RBF-модели (2.2.30) ищется мини-

мизацией проинтегрированной квадратичной формы (2.2.33) (со знаком минус)

min
Θ,R

{
x

s z

Pj(s, z) (z− zΘ(s))T R−1 (z− zΘ(s)) dsdz + J log |R|

}
(2.2.34)

Пусть угловные скобки 〈•〉j обозначают ожидание по гауссову распределе-

нию Pj (2.2.32). С учётом обозначений для вектора параметров Θ отображе-

ния (2.2.30) и вектора переменных Φ, и матричного тождества

(z−ΘΦ)TR−1(z−ΘΦ) = tr
(
R−1(z−ΘΦ)(z−ΘΦ)T

)
,

где tr(..) обозначает след матрицы, формула (2.2.34) принимает следующий вид:

min
Θ,R

{
tr

(
R−1

∑
j

〈
(z−ΘΦ)(z−ΘΦ)T

〉
j

)
+ J log |R|

}
. (2.2.35)

Вычисляя в формуле (2.2.35) частную производную по ΘT и приравнивая её к

нулю, получаем уравнение ∑
j

〈
(z−ΘΦ)ΦT

〉
j

= 0,

которое даёт оценку

Θ =

(∑
j

〈
zΦT

〉
j

)(∑
j

〈
ΦΦT

〉
j

)−1

. (2.2.36)

Аналогично, выражение для оценки ковариационной матрицы R имеет вид
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R =
1

J

(∑
j

〈
zzT
〉
j
−Θ

∑
j

〈
ΦzT

〉
j

)
. (2.2.37)

Ожидания, необходимые для оценки Θ и R по формулам (2.2.36, 2.2.37) следую-

щие: 〈s〉j , 〈z〉j ,
〈
ssT
〉
j
,
〈
zzT
〉
j
,
〈
szT
〉
j
, 〈rm(s)〉j , 〈srm(s)〉j , 〈zrm(s)〉j и 〈rn(s)rm(s)〉j,

полные их выражения приведены в работах [129,150]. Эти ожидания выражаются

через параметры гауссовых распределений Pj(s, z) ≡ N (s, z |µ[j], C[j]) (2.2.32).

Практический успех ЕМ-алгоритма зависит от его инициализации. Для нели-

нейных систем с линейной функцией выхода инициализация использует фак-

торный анализ по максимуму правдоподобия, обучаемый на наборе наблюдений

x[i], i = 1, L. Факторный анализ предполагает, что выходные переменные гене-

рируются небольшим числом независимых гауссовых скрытых состояний, и к

каждой выходной переменной добавляется независимый гауcсов шум [149,152,153].

Матрица весов (называемая матрицей нагрузок) обучается посредством фак-

торного анализа для инициализации матрицы наблюдений G динамической

системы (2.2.29). Это даёт оценки состояния в каждый момент времени. Эти

оценки используются в нелинейной регрессии на основе RBF-функций. Перед

инициализацией нелинейной регрессии проводится обучение линейной системы.

Эксперименты на многих временных рядах показывают возможности нелинейной

байесовской фильтрации при использовании нелинейных динамических моделей.

Определение пучков траекторий с помощью моделей НЛДС

Результаты, полученные с помощью применения метода нелинейных динами-

ческих систем (НЛДС) к анализируемой выборке, представлены на Рис. 20, а.

Компоненты вектора состояний выделены жирными линиями красного (линия

1) и синего (линия 2) цветов.

Как видно из рисунка Рис. 20, а, линия 1 определяет пучок траекторий, чего

нельзя сказать о линии 2. Приписание траекторий к каждой из полученных

подвыборок выполняется в соответствии с наименьшим значением меры косинуса

между компонентами скрытого состояния
[
sj[i], i = 1, L

]
, j = 1, q, и проекциями
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(а) (б )

Рис. 20: Проекции траекторий выборки, выделенной розовым цветом на Рис. 13, на ось x:
компоненты вектора состояний (1 и 2), выделенные
а – с помощью метода НЛДС, б – с помощью ЛДС

векторов-наблюдений (траекторий)
[
xd[i], i = 1, L

]
, d = 1, D на координатные

оси пространства измерений.

cos∠ (sj,xd) =

(
L∑
i=1

(sj[i])(xd[i])

)/√√√√ L∑
i=1

(sj[i])2

√√√√ L∑
i=1

(xd[i])2,

которая учитывает отличие в направлении векторов в пространстве (безотно-

сительно евклидова расстояния между ними). Т.е. неевклидова мера близости

(например, мера косинуса) может успешно применяться для разделения про-

екций траекторий анализируемой выборки на подвыборки, соответствующие

выделенным компонентам скрытого состояния системы.

Для сравнения на Рис. 20, б приведены результаты, полученные с помощью

моделей линейных динамических систем (ЛДС) для траекторий той же, что

и на Рис. 20, а, выборки. Как видно из Рис. 20, оба метода (НЛДС и ЛДС)

дают идентичный результат, но не позволяют однозначно определить пучки

многомерных траекторий при решении задачи секторизации пространства в

плоском случае.

2.2.3 Марковская модель непрерывного скрытого профиля (CPM)

Модель непрерывного скрытого профиля (Continuous Profile Model – СРМ) [83,

154], описываемая в настоящей Главе, позволяет моделировать центроиды пучков
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многомерных траекторий. Модели непрерывного профиля являются скрытыми

Марковскими моделями с внутренними состояниями времени и масштаба.

Определение центральной траектории в пучке позволяет, используя оценку

близости по мере косинуса, обнаружить выбросы – траектории, наиболее уда-

лённые от центральных. Выявление центральных траекторий пучка посадочных

траекторий самолётов позволяет определить, так называемые, «безопасные кори-

доры», что способствует снижению рисков, возникающих при посадке в условиях

сложного географического ландшафта (например, в горах, прибрежных районах

или при плохой видимости).

Модель непрерывного профиля
Модель непрерывного (скрытого) профиля (СРМ-модель) основана на скры-

той Марковской модели (Hidden Markov Model – HMM) [155, 156]. В случае

СРМ-модели предполагается, что каждый наблюдаемый временной ряд является

зашумлённой масштабированной выборкой из некоторого непрерывного скрыто-

го профиля, или скрытой записи (latent trace). Наблюдаемые временные ряды

генерируются при прохождении последовательности скрытых Марковских состо-

яний. CPM-модель обучается с помощью алгоритма ожидания-максимизации

правдоподобия (Expectation-Maximization algorithm – EM), который в контексте

скрытых Марковских моделей называется алгоритмом Баума-Уолша (Baum-

Welch algorithm) [155,156]. В результате последовательных итераций обучения

СРМ-модели определяется наиболее вероятная скрытая запись.

В СРМ-модели элементы каждого наблюдаемого временного ряда являются

результатом эмиссии, т.е. генерируются непрерывным профилем, или скры-

той записью при прохождении через последовательность скрытых состояний

с конкретными индексами, как это имеет место в скрытой Марковской моде-

ли [155,156]. Для учета изменения амплитуды в пределах конкретного временного

ряда и между наблюдаемыми временными рядами, к состояниям скрытого вре-

мени добавляются состояния скрытого масштаба относительно соответствующих

элементов скрытой записи.
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Скрытая Марковская модель
Пусть xn = x[n] = {x[n; i], i = 1, L}, n = 1, N наблюдаемые временные ряды

длиной L. Пусть набор возможных состояний HMM-модели S = {s[j], j = 1,M}

(M – число скрытых состояний HMM-модели). Для наблюдаемого временного

ряда x[n] = {x[n; i], i = 1, L} последовательность скрытых состояний времени

ϕ[n] = {ϕ[n; i] ∈ S, i = 1, L}. В Марковской модели вероятности переходов

между состояниями s[m] и s[j] – τs[m],s[j] ≡ p (ϕ[n; i] = s[j] |ϕ[n; i− 1] = s[m]) не

зависят от номера n временного ряда. При условии, что в скрытой последователь-

ности ϕ[n] в момент времени i имеется состояние s[j], вероятность эмиссии x[n; i]

равна An
i,s[j] ≡ p (x[n; i] |ϕ[n; i] = s[j]). В логарифме правдоподобия L наблюдае-

мых временных рядов учитывается, что поскольку состояния ϕ[n; i] скрытые,

вероятности переходов между состояниями τs[m],s[j] и вероятности эмиссии An
i,s[j]

следует суммировать по всем их возможным значениям

L = log

(
N∏
n=1

p
(
x[n] |

{
τs[m],s[j]

}
,
{

An
i,s[j]

}))
=

=
N∑
n=1

log

∑
ϕ[n]

τ0,ϕ[n;i]

(
L∏
i=1

An
i,ϕ[n;i]

)(
L∏
i=2

τϕ[n;i],ϕ[n;i−1]

) .

(2.2.38)

В (2.2.38) правдоподобие для каждого наблюдаемого временного ряда фак-

торизуется на три множителя, поскольку условные вероятности состояний в

HMM-модели зависят только от предыдущих состояний на одном временном

шаге [155, 156]. Первый член под логарифмом в (2.2.38) это вероятность начала

ряда в конкретном скрытом состоянии, второй вероятность эмиссии в каждом

состоянии и третий вероятность переходов между состояниями.

Поскольку рассматривается модель со скрытыми переменными, для оценки па-

раметров {τs[m],s[j]}, {An
i,s[j]} в (2.2.38) используется EM-алгоритм. Для этого необ-

ходимо вычислить предельные апостериорные вероятности каждого состояния

p(ϕ[n; i] |x[n]) и определить вероятности переходов. Кроме этого, необходимо вы-
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числить парные предельные апостериорные вероятности p(ϕ[n; i], ϕ[n; i+1] |x[n]).

Их вычисление в HMM-модели основано на алгоритме динамического програм-

мирования, в контексте этой модели называемого алгоритмом прямой и обратной

рекурсии.

Алгоритм прямой и обратной рекурсии

Для N наблюдаемых временных рядов длиной L и числе скрытых состояний

M , алгоритм прямой и обратной рекурсии (Forward-Backward algorithm) выполня-

ет вычисления с оценкой временной сложности O(NML) (если матрица переходов

разреженная, временная оценка сложности будет меньше). Введем обозначение

совместной вероятности α[n; i; j] ≡ p(x[n; 1], x[n; 2], ..., x[n; i], ϕ[n; i] = s[j]) . Для

всех n и j, после инициализации

α[n; 1; j] ≡ An
1,s[j]τ0,s[j]

выполняется прямая рекурсия для i = 1, L

α[n; i; j] ≡ An
i,s[j]

M∑
m=1

α[n; i− 1;m]τs[m],s[j]. (2.2.39)

Если рекурсия (2.2.39) завершена, то можно вычислить

p(x[n]) =
M∑
j=1

p(x[n; 1], x[n; 2], ..., x[n;L], ϕ[n;L] = s[j]) =
M∑
j=1

α[n;L; j], (2.2.40)

С учетом 2.2.40, логарифм правдоподобия L (2.2.38) определяется как

L =
N∑
n=1

log(p(x[n])) =
N∑
n=1

log

(
M∑
j=1

α[n;L; j]

)
. (2.2.41)

Для вычисления предельных апостериорных вероятностей используется фор-

мула Байеса для условной вероятности

p(ϕ[n; i] = s[j] |x[n]) =
p (x[n] |ϕ[n; i] = s[j]) p (ϕ[n; i] = s[j])

p(x[n])
=

≡ α[n; i; j]p (x[n; i+ 1], ..., x[n] |ϕ[n; i] = s[j])

p(x[n])

(2.2.42)

и
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p(ϕ[n; i− 1] = s[j], ϕ[n, i] = s[m] |x[n]) =

≡
α[n; i− 1; j]p (x[n; i], ..., x[n, L] |ϕ[n; i] = s[m]) τs[j],s[m]

p(x[n])
.

(2.2.43)

Вычисление совместных вероятностей β[n; i; j] ≡ p(x[n; i+1], x[n; i+2], ..., x[n;L], ϕ[n; i] =

s[j]) позволяет вычислить вероятности (2.2.42, 2.2.43). Для всех i и j, выполня-

ется инициализация
β[n; 1; j] = 1

и обратная рекурсия для i = L− 1, 1

β[n; i; j] ≡
M∑
m=1

τs[j],s[m]An
i+1,s[m]β[n; i+ 1;m] (2.2.44)

Если α[n; i; j] и β[n; i; j] определены в результате прямой (2.2.39) и обрат-

ной (2.2.44) рекурсии, то предельные апостериорные вероятности (2.2.42) и (2.2.43)

вычисляются по формулам

p(x[n]) =
M∑
j=1

α[n;L; j] ≡
M∑
j=1

α[n; i; j]β[n; i; j], (2.2.45)

p (ϕ[n; i] = s[j] |x[n]) =
α[n; i; j]β[n; i; j]

p(x[n])
, (2.2.46)

p (ϕ[n; i− 1] = s[j], ϕ[n, i] = s[m] |x[n]) =
α[n; i− 1; j]τs[j],s[m]An

i,s[m]β[n; i;m]

p(x[n])
.

(2.2.47)

Эффективное вычисление правдоподобия и предельных апостериорных веро-

ятностей (2.2.46, 2.2.47) необходимо для оценки параметров в (2.2.38) посредством

EM-алгоритма. Апостериорная вероятность p(ϕ[n] |x[n]) оценивает, что именно

эта последовательность скрытых состояний генерирует наблюдаемый временной

ряд. Для оценки наиболее вероятной последовательности скрытых состояний на

основе наблюдаемого временного ряда используется алгоритм Витерби [155, 156].
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Модель непрерывного профиля

При обучении CPM-модели определяются непрерывный профиль, т.е. скрытая

запись; вероятности переходов, управляющие Марковской эволюцией состояний

времени и масштаба; суммарный уровень шума наблюдаемого временного ряда

и его глобальный фактор масштаба. После обучения скрытая запись

Z = {Z[i], i = 1,M} (2.2.48)

имеет более высокое разрешение по сравнению с ее зашумленными масштабиро-

ванными копиями – наблюдаемыми временными рядами

x[n] = {x[n; i], i = 1, L}, n = 1, N.

В идеале M � L, тогда каждый элемент наблюдаемого временного ряда

x[n], n = 1, N в точности отображается в элемент скрытой записи Z (2.2.48).

Поскольку разрешение скрытой записи Z (2.2.48) выше, чем у наблюдаемого

временного ряда x[n], n = 1, N , его наблюдаемое время может эффективно

ускоряться или замедляться при продвижении вдоль скрытой записи.

Неоднородность выборки элементов скрытой записи (2.2.48) и применение

локального масштаба, используемые при генерации элементов наблюдаемого

временного ряда, определяются соответствующей ему последовательностью скры-

тых состояний CPM-модели. Каждое скрытое состояние представляет собой пару

состояние масштаба/состояние времени

φ[n; i] = {τ [n; i], χ[i]}, i = 1, L (2.2.49)

Состояния времени τ [n; i], i = 1, L принадлежат последовательности на-

туральных чисел 1,M , представляющих скрытое время, которое индексирует

скрытую запись (2.2.48). Состояния масштаба χ[i], i = 1, L принадлежат упоря-

доченному набору 1, R. Распределение вероятности эмиссии элементов наблюдае-

мого временного ряда x[n] = x[n; i], i = 1, L, производимых последовательностью

скрытых состояний φ[n; i], i = 1, L на основе скрытой записи Z = Z[i], i = 1,M ,

имеет вид
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p (x[n; i] |Z, φ[n; i], u[n], σ[n]) ≡ N
(
x[n; i] |u[n],Z [τ [n; i]]χ[i], (σ[n])2

)
, (2.2.50)

где N
(
x |Z, σ2

)
= 1√

2πσ2
exp

(
− (x−Z)2

2σ2

)
– Гауссово нормальное распределение;

(σ[n])2 – вариация шума в наблюдаемом временном ряду; u[n] – глобальный

параметр масштаба, уникальный для наблюдаемого временного ряда, который

корректирует (глобальную) разницу масштаба временного ряда x[n] и скрытой

записи Z (2.2.48).

Для полного описания CPM-модели, необходимо определить вероятности пе-

реходов между скрытыми состояниями. Поскольку вероятности переходов между

состояниями времени и вероятности переходов между состояниями масштаба

определяются отдельно, совместная вероятность переходов между скрытыми

состояниями факторизуется следующим образом

τnφ[n;i], φ[n;r] ≡ p (φ[n; i] |φ[n; r]) = (τ [n; i] | τ [n; r]) p (χ[i] |χ[r]) . (2.2.51)

Логарифм правдоподобия набора наблюдаемых временных рядов

Логарифм правдоподобия Lp наблюдаемых временных рядов xn = {x[n; i], i =

1, L}, n = 1, N имеет вид Lp = L+ P , где P – это член правдоподобия, про-

исходящий из HMM-модели и состоящий из вероятностей эмиссии (2.2.50) и

вероятностей переходов между скрытыми состояниями (2.2.51)

L =
N∑
n=1

log

∑
φ[n]

p(φ[n; 1])

(
L∏
i=1

N
(
x[n; i] |u[n]Z [τ [n; i]]χ[i], (σ[n])2

))( L∏
i=2

τnφ[n;i], φ[n;i−1]

) ,

(2.2.52)

где p(φ[n; 1]) – априорные вероятности начальных скрытых состояний, а P –

это логарифм априорной вероятности или штрафной член, обеспечивающий

регуляризацию CPM-модели [154,155]. Максимум Lp определяется с помощью

EM-алгоритма.

Оценка предельных апостериорных вероятностей (E-шаг)

На E-шаге (EM-алгоритма) предельные апостериорные вероятности p (φ[n; i] = s |x[n])

и p (φ[n; i− 1] = s, φ[n; i] = s′ |x[n]) CPM-модели вычисляются посредством ал-

горитма прямой и обратной рекурсии, как в HMM-модели (см. Главу 2.2.3).



66

Ввиду разреженности матрицы переходов между скрытыми состояниями (2.2.50),

вычислительная сложность этого алгоритма линейная по числу скрытых состоя-

ний (2.2.49) [154,155].

Оценка параметров CPM-модели (M-шаг)

Оценки параметров на M-шаге, которые максимизируют ожидаемый логарифм

правдоподобия 〈
Lpcomp

〉
≡ 〈P〉+

N∑
n=1

〈log (p(φ[n],x[n]))〉 (2.2.53)

представляются аналитическими формулами [154,155]. Для оценки элементов

скрытой записи (2.2.48) используется численная процедура [154, 155]. Производ-

ная
〈
Lpcomp

〉
(2.2.53) по Z[i] (элементу скрытой записи) имеет вид

∂
〈
Lpcomp

〉
∂ (Z[i′])

=

=
∂

∂ (Z[i′])

S∑
s=1

L∑
i=1

p (φ[n; i] = s |x[n]) log
(
N
(
x[n; i] |u[n]Z [τ [s]]χ[s], (σ[n])2

))
−

− λū ∂

∂(Z[i′])

M−1∑
i=1

(Z[i+ 1]− Z[i])2 =

−
∑

{s | τ [s]=i′}

L∑
i=1

p (φ[n; i] = s |x[n])u[n]χ[s]
(x[n; i]− u[n]Z [τ [s]]χ[s])

2(σ[n])2
−

− λū · (4Z[i′]− 2Z[i′ − 1]− 2Z[i′ + 1]) , (2.2.54)

где λ – коэффициент при штрафном члене, обеспечивающем гладкость скрытой

записи (2.2.48). Таким образом, при λ 6= 0 условие
∂〈Lp

comp〉
∂(Z[i′]) = 0, i = 1,M приводит

к три диагональной системе уравнений (2.2.54).

Определение центроидов и выбросов с помощью CPM-модели

В настоящей главе в подвыборках, полученных в результате применения

моделей нелинейных динамических систем (Рис. 20, а), с помощью CPM-моделей

выделяются скрытые записи Z(2.2.48), которые могут определять центроиды

выделенных пучков траекторий, после определения которых возможно выделе-

нить траектории, наиболее удалённые от центроиды по выбранной мере близости
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(выбросы).

На Рис. 21 показаны результаты применения CPM-модели к подвыборкам,

представленным на Рис. 20, а. Подвыборка, выделенная красным цветом (см.

Рис. 21, а), содержит 11 траекторий, другая – выделенная синим цветом (см.

Рис. 21, б ) – 5 траекторий. В каждой из подвыборок с помощью СРМ-модели

определяется (согласующаяся с большинством [157]) обобщённая форма проекций

траекторий (обозначена пунктиром).

(а) (б )

Рис. 21: Проекция на ось x траекторий выборки, представленной на Рис. 20, а
1 – компонента вектора состояний, 2 – скрытая запись СРМ-модели

Линия 1 на Рис. 21 (а, б) соответствует компонентам вектора состояний

НЛДС, согласно которым происходит разделение на подвыборки (см. Рис. 20, а).

Пунктирная линия 2 показывает определяемые в подвыборках скрытые профили

(скрытые записи соответствующих СРМ-моделей непрерывных профилей).

Полученная скрытая запись достаточно хорошо отражает форму проекций

траекторий в подвыборках6 скрытая запись 2 отражает ход проекций семи тра-

екторий из одиннадцати (см. Рис. 21, а) и ход проекций четырёх траекторий

из пяти (см. Рис. 21, б ). Траектории подвыборок, наиболее удалённые от со-

ответствующих скрытых записей по мере косинуса, показаны зелёным цветом

на Рис. 21, а и голубым цветом на Рис. 21, б . Такие траектории считаются

выбросами и могут соответствовать движению в зоне риска.
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2.3 Представление многомерных траекторий в абстракт-

ных пространствах характеристик

Существуют различные методы сокращения размерности анализируемые

данных. В настоящей Главе применительно к анализу посадочных траекторий

самолётов рассматривается ряд известных методов таких как:

– многомерный дискриминантный анализ (определяются наиболее информатив-

ные (с точки зрения сохранности структуры разбиения на выборки) компоненты –

проекции 3D-траекторий на оси координат);

– отображение в абстрактные пространства характеристик (задача секторизации

пространства (выделение пучков траекторий) рассматривается в двумерном

случае);

– спектральный метод с использованием полярной кривизны (задача секторизации

пространства решается в двумерном случае).

2.3.1 Покомпонентный многомерный дискриминантный анализ

В трёхмерном пространстве траектории объектов представляются в виде

Xn = {(xn[i], yn[i], zn[i]) , i = 1, Ln}, n = 1, N,

где декартовы координаты (xn[i], yn[i], zn[i]) соответствуют оцениваемому поло-

жению n-го объекта. В настоящей Главе исследуется значимость различных про-

екций пространственных траекторий на оси координат. Траектории Xn, n = 1, N

описываются последовательностями значений координат Xn = {xn[i], i = 1, Ln},

Yn = {yn[i], i = 1, Ln} и Zn = {zn[i], i = 1, Ln}, называемых компонентами.

Различные компоненты неодинаково отражают информацию о принадлежности

рассматриваемых траекторий к имеющимся выборкам.

Информативность компонент, т.е. степень сохранности информации о принад-

лежности пространственных траекторий к соответствующим выборкам, анализи-

руется отдельно для каждой компоненты (используются результаты совместного

разбиения посадочных траекторий самолётов, полученные с помощью метода
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полиномиальных регрессий [64]). Далее это разбиение называется совместным

априорным разбиением и используется для оценки эффективности выполненного

анализа.

Для каждой из компонент траектории разделяются на две равные части.

Та часть, для которой распределение траекторий по выборкам оказывается

более неоднородным, используется в качестве обучающей группы при построе-

нии модели структуры выборок. Вторая часть является тестируемой группой.

В результате применения многомерного дискриминантного анализа [76, 158]

к обучающей группе вычисляются параметры модели гауссовой смеси. Такие

параметризованные модели, полученные для каждой компоненты траекторий,

используются для предсказания распределения траекторий по исходным выбор-

кам в тестируемой группе.

Информативность разбиения на выборки по каждой компоненте траекто-

рий оценивается следующим образом. Распределение по выборкам траекторий

из тестируемой группы сравнивается с распределением этих же траекторий

по выборкам в совместном априорном разбиении исходных данных. Доля тра-

екторий, отнесённых к одной и той же выборке, рассматривается как индекс

относительной информативности компоненты. Таким образом, покомпонентный

анализ позволяет выделить наиболее информативную компоненту для описания

структуры разбиения на выборки в исходном трехмерном пространстве.

Многомерный дискриминантный анализ
Разбиение траекторий обучающей группы выполняется в рамках вероятност-

ной модели, при этом каждой полученной выборке соответствует своё распре-

деление вероятности. Поэтому траектории обучающей группы, для которых

выборки являются скрытыми, описываются конечной моделью смеси распреде-

лений. Подробное описание таких моделей содержится в [76]. Однако методы

разбиения на выборки на основе модели смеси распределений, в пространствах

большой размерности, представляющих траектории, оказываются высоко пара-

метризованными. Поэтому на практике, предварительно уменьшают размерность
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данных [159] с помощью метода главных компонент (PCA) [160] или методов

отбора характеристик [161]. Однако уменьшение размерности траекторий перед

разбиением приводит к суб-оптимальному представлению данных, поскольку

частичная потеря информации может влиять на точность определения выборок.

Сохранение информативности при снижении размерности обеспечивается регуля-

ризацией или ограничением параметров модели, либо разработкой парсимонных

(экономных) моделей. В настоящей работе для разбиения траекторий исполь-

зуется метод ограничения параметров модели гауссовой смеси, уменьшающий

размерность внутренних пространств выборок и налагающий ограничения на

матрицы ковариации. Этот метод относится к методам обучения с учителем

(supervised learning) [162] и называется многомерным дискриминантным анали-

зом [76,158]. Методы разбиения на выборки на основе модели гауссовой смеси

ведут себя неоднозначно, если объем данных мал по сравнению с числом оце-

ниваемых параметров [94]. Необходим компромисс между числом оцениваемых

параметров и общностью модели. Решение этой проблемы в многомерном дис-

криминантном анализе состоит в повторной параметризации – рассмотрении

подпространства локальных групп анализируемых объектов [76,158].

Пусть xn, n = 1, N является набором векторов размерности q , представляю-

щих траектории Xn, n = 1, N в пространстве характеристик. Дискриминантный

анализ является методом обучения с учителем, целью которой является назна-

чение вектора x одной из K выборок, известных на основе обучающей части.

Согласно модели гауссовой смеси выборка векторов x описывается распределе-

нием

p(x,θ) =
K∑
k=1

πkN (x,µk,Σk) (2.3.1)

πk – доля k-й выборки, N(..) – гауссово распределение плотности вероятности со

средним µk и матрицей ковариации Σk

N (x,µk,Σk) =
1

(2π)p/2|Σ1/2|
exp−1

2
(x− µk)TΣ−1

k (x− µk), (2.3.2)
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Модель (2.3.1, 2.3.2) соответствует методу квадратичного дискриминантного

анализа, который требует оценки числа параметров ∼ q2 , поэтому его приме-

нение затруднено в многомерном пространстве. Благодаря феномену пустого

пространства [163] можно предположить, что многомерные данные локализу-

ются в подпространствах размерности, гораздо меньшей, чем q. С учётом этого

предположения в [164] предлагается параметризация модели гауссовой смеси,

которая уменьшает число оцениваемых параметров (гауссова модель [akjbkQkdk]

и её подмодели).

Пусть Qk – ортогональная матрица со столбцами собственных векторов

ковариационной матрицы Σk и ∆k– диагональная матрица ее собственных чисел,

т.е.

∆k = QT
kΣkQk. (2.3.3)

Следовательно, матрица ∆k – ковариационная матрица в пространстве её

собственных векторов. Предполагается, что ∆k разделяется на два блока

∆k = diag (ak,1, ..., ak,dk, bk,1, ..., bk,q−dk) ,

где первые dk (dk < q) значений ak,1, ..., ak,dk параметризуют дисперсию в подпро-

странстве, содержащем k-ю выборку, а остальные q−dk компонент bk,1, ..., bk,q−dk
моделируют дисперсию шума. Модели с такой параметризацией являются парси-

монными и предполагают, что каждая выборка k является изотропной. Размер-

ность dk рассматривается как внутренняя размерность скрытого подпространства

k-ой группы.

Фиксируя некоторые параметры как общие внутри выборки или между

выборками, можно получить частные модели, соответствующие различным регу-

ляризациям. Например, если зафиксировать первые dk собственных значений

как общие для каждой выборки, получается более ограниченная модель вида

[akbkQkdk] [164]. Применение этой модели даёт хорошие результаты, т.е. предпо-
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ложение, что каждая матрица ∆k содержит только два различных собственных

значения ak и bk является эффективным способом регуляризации оценки ∆k .

Это объясняется тем, что дисперсия при оценке ak, которая является средним

по значениям ak,1, ..., akdk , на самом деле меньше, чем дисперсия для каждой

отдельной оценки ak,1, ..., ak,dk . Часто, для сокращения внутренней размерности

dk скрытого подпространства k-той группы, выбираются первые наибольшие

собственные значения ak,1, ..., ak,dk .

Другим способом регуляризации является фиксирование параметров bk,1, ..., bk,q−dk
как общих между выборками. Это приводит к моделям вида [akjbQkdk] и [akbQkdk],

которые предполагают, что дисперсия одинакова вне специфических подпро-

странств кластеров. В этих моделях шум вне скрытых подпространств выборок

моделируется с помощью только одного параметра b, что оправдано, когда ана-

лизируемые данные получены одинаковым способом.

В настоящей работе при выполнения многомерного дискриминантного анали-

за исходного набора посадочных траекторий испытываются различные парсимон-

ные модели, среди которых модель [akbQkdk] оказывается наиболее эффективной.

Результаты применения данной модели приведены далее в Главе 2.3.1.

Определение наиболее информативных направлений в пространстве

при описании структуры разбиения многомерных траекторий на вы-

борки

Каждой траектории Xn, n = 1, 116 соответствуют последовательности коор-

динат Xn = {xn[i], i = 1, 160}, Yn = {yn[i], i = 1, 160}, и Zn = {zn[i], i = 1, 160},

(эти компоненты используются в многомерном дискриминантном анализе). В

разделе 2.1 на Рис. 11, а представлены результаты разбиения исходного набора

траекторий по методу полиномиальных регрессий [64]. В настоящей главе это

разбиение называется совместным априорным разбиением. При дискриминантом

анализе исходный набор траекторий разделяется на две равночисленные группы

по 58 траекторий. Одна из групп, демонстрирующая большую неоднородность
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в распределении траекторий по выборкам, используется для обучения (оцен-

ки параметров) вероятностных моделей, как это описано выше в разделе 2.3.1.

Для каждой компоненты траекторий в трехмерном пространстве создаётся своя

модель. Та группа траекторий, которая используется для оценки (настройки

параметров) модели при многомерном дискриминантном анализе [76, 158], назы-

вается обучающей группой, вторая группа – тестируемой.

На Рис. 22 показаны результаты покомпонентного дискриминантного анализа

для компонент X (Рис. 22, а) и Y (Рис. 22, б ), соответственно (n – номер тра-

ектории в тестируемой группе, k – номер выборки). Нулевому номеру выборки

соответствуют посторонние траектории. Символом «#» обозначается принад-

лежность траектории к выборке в априорном разбиении. Символом «+» – при-

надлежность траектории к выборке, прогнозируемая согласно покомпонентному

дискриминантному анализу. Обозначение «⊕» используется, если принадлеж-

ность траектории к определённой выборке при априорном разбиении и в случае

прогноза совпадают.

(а) (б )

Рис. 22: Покомпонентный дискриминантный анализ результатов совместного априорного
разбиения для тестируемой группы траекторий.

а) Х-проекция траекторий, б) Y-проекция траекторий, в) Z-проекция траекторий

В результате вычисления параметров используемой модели [akbQkdk], раз-

мерности исходных данных для пяти анализируемых выборок сокращаются от

q = 159 до соответствующих значений: dx = {2, 1, 1, 1, 1}, dy = {2, 1, 2, 2, 1},
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dz = {3, 1, 2, 1, 1} для каждой из компонент X, Y, Z. Результаты покомпонент-

ного многомерного дискриминантного анализа для тестируемой группы (см.

Рис. 22) демонстрируют степень совпадения априорного разбиения с разбиением,

прогнозируемым согласно модели: 0.3750, 0.7143 и 0.357143 для компонент X, Y и

Z соответственно. Таким образом, компоненты X и Y выделяются как наиболее

полно отражающие структуру выборки траекторий в трехмерном пространстве.

Полученные численные оценки совпадения распределения траекторий по вы-

боркам можно рассматривать в качестве индекса относительной информативно-

сти компонент для существующей структуры разбиения на выборки. Кроме того,

отметим, что число посторонних траекторий, которое выявляется покомпонент-

ным дискриминантным анализом, совпадает с количеством таких траекторий,

выявляемых в работах [64,75].

2.3.2 Отображение в абстрактные пространства характеристик

В настоящей главе задача секторизации пространства решается при рас-

сматрении проекций анализируемого набора траекторий на плоскость (x, y). К

анализируемому набору посадочных траекторий в двумерном случае применяет-

ся итеративный подход, позволяющий разделять траектории при их отображении

в абстрактные пространства характеристик [74]. Особенность рассматриваемого

метода заключается в том, что одновремено используются несколько абстрактных

пространств характеристик траекторий.

Представление траекторий в пространствах характеристик

В каждом пространстве характеристик используется эмпирическое распре-

деление вероятности векторов, представляющих траектории, для которого с

помощью алгоритма сдвига среднего (mean shift) [165, 166] определяются мо-

ды – локальные максимумы этого распределения. Представляющие траектории

вектора, которые относятся к конкретным модам, образуют выборки. Далее

результаты разбиения в пространствах характеристик анализируются совмест-

но для окончательного определения выборок. Полученные на первой итерации
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выборки с малым числом элементов и вектора, соответствующие траекториям,

которые находятся далеко от центра выборки, считаются посторонними. Затем

для множества всех посторонних траекторий процедура разбиения повторяется

до достижения стационарного результата (до тех пор, пока последующие итера-

ции не меняют число посторонних траекторий).

При разбиении траекторий на выборки применяются как методы обучения с

учителем (supervised learning), так и без учителя (unsupervised learning). Пер-

вые – чувствительны к начальному выбору параметров, что может привести к

ненадежному разбиению на выборки. Во втором случае не требуется ни знание

числа выборок, на которые нужно разбить данные, ни обучающая выборка.

Данные анализируемых траекторий представляются в различных абстрактных

пространствах характеристик, в каждом из которых выполняется непараметри-

ческое разбиение. Анализ множества траекторий с помощью алгоритма сдвига

среднего [165,166] выявляет моды и соответствующие им выборки. Окончатель-

ные выборки формируются в результате сравнительного анализа результатов

разбиения по всем используемым пространствам характеристик. Не вошедшие в

выборки траектории считаются посторонними.

В трехмерном пространстве траектории объектов представляются в виде

векторов
Xn = {(xn[i], yn[i], zn[i]) , i = 1, Ln}, n = 1, N,

где декартовы координаты (xj[i], yj[i], zj[i]) соответствуют оцениваемому поло-

жению n-го объекта, Ln– число точек траектории (траектории объектов могут

иметь различные длины). Пусть функции Φm(..), m = 1,M переводят тра-

екторию Xn в dm-мерные пространства характеристик {Ψdm
m , m = 1,M}, т.е.

Φm(..) : Xn → Ψdm
m , m = 1,M , где M – число пространств характеристик, dm –

размерность m-го пространства. Пространства характеристик {Ψdm
m , m = 1,M}

считаются независимыми, во-первых, чтобы избежать нормирования, необхо-

димого при совместном анализе характеристик, и, во-вторых, чтобы упростить

совместный анализ неортогональных пространств характеристик с различными
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областями определения (пространственными и угловыми). Кроме того, этот

подход допускает параллельное разбиение с использованием различных харак-

теристик и дальнейшую интеграцию результатов, полученных в различных

пространствах характеристик.

Выбор характеристик траектории определяется решаемой задачей, и каждое

пространство характеристик способствует выделению выборок из множества

анализируемых траекторий. В качестве характеристик траектории рассматри-

ваются пространственные и угловые представления траектории n-го объекта:

средняя скорость объекта (average velocity) 〈vn〉; вектор перемещения объекта

(directional distance) dn; среднее траектории объекта (mean) mn; модель формы

траектории объекта в виде полиномиальной регрессии (shape); представление

траектории объекта с помощью анализа главных компонент (Principal Component

Analysis – PCA) [160,167] и гистограмма изгибов траектории объекта (directional

histogram) [168].

Средняя скорость 〈vn〉 описывает изменение положения n-го объекта

〈vn〉 =
1

Ln − 1

Ln−1∑
i=1

(xn[i+ 1]− xn[i], yn[i+ 1]− yn[i], zn[i+ 1]− zn[i]) . (2.3.4)

Средняя скорость помогает разделению траекторий объектов, движущихся с

переменным шагом. Вектор перемещения dn n-го объекта представляет длину

проекций траекторий на оси координат и описывает направление движения

dn = (xn[Ln]− xn[1], yn[Ln]− yn[1], zn[Ln]− zn[1]) . (2.3.5)

Эта характеристика помогает разделить длинные и короткие траектории,

а также противоположно направленные траектории. Другая характеристика –

пространственные координаты среднего положения mn n-ой траектории

mn =
1

Ln

Ln∑
i=1

(xn[i], yn[i], zn[i]) . (2.3.6)

Эта характеристика хорошо разделяет траектории, относящиеся к различным

областям в трехмерном пространстве. Для моделирования формы траектории Xn
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независимо от её длины и набора точек используется полиномиальная регрессия
x∗n =

(
1 zn (zn)

2 ... (zn)
p
)
×
(
β

(1)
0 β

(1)
1 ...β

(1)
p

)T
+ ε(1),

y∗n =
(
1 xn (xn)

2 ... (xn)
p
)
×
(
β

(2)
0 β

(2)
1 ...β

(2)
p

)T
+ ε(2),

z∗n =
(
1 yn (yn)

2 ... (yn)
p
)
×
(
β

(3)
0 β

(3)
1 ...β

(3)
p

)T
+ ε(3),

(2.3.7)

где первые множители в правой части уравнений – стандартные матрицы Ван-

дермонта размерности Ln × (p + 1) с компонентами zn = {zn[i], i = 1, Ln},

xn = {xn[i], i = 1, Ln} и yn = {yn[i], i = 1, Ln}, соответственно. Второй мно-

житель в (2.3.7) – вектор размерности (p+ 1)× 1, и последний компонент это

вектор размерности Ln × 1. Наилучшая модель определяется нахождением оп-

тимальных значений коэффициентов
(
β

(j)
0 ,β

(j)
1 ,β

(j)
2

)
, j = 1, 2, 3 в (2.3.7), для

которых ε(1) = |x∗ − x|, ε(2) = |y∗ − y| , ε(3) = |z∗ − z| минимальны. Этот

поиск требует некоторого компромисса между точностью и эффективностью.

С увеличением степени полинома точность приближения растёт, но только до

некоторой величины. В настоящей работе фиксируется p = 2, т.к. рост значения

p не влияет на общую точность. Коэффициенты
(
β

(j)
0 ,β

(j)
1 ,β

(j)
2

)
, j = 1, 2, 3

определяют начальное положение, скорость и ускорение объекта.

Анализ главных компонент (PCA) используется для уменьшения размер-

ности данных перед их разбиением на выборки с минимальными потерями

информативности [51,160]. PCA-анализ хорошо работает для данных с единым

гауссовым распределением. Этот метод требует точной оценки ковариационной

матрицы шума на основе исходных данных. Пусть rn[i] = (xn[i], yn[i], zn[i])
T ,

тогда траектория Xn может быть представлена в виде набора этих векторов

Xn = {rn[i], i = 1, Ln}. Затем из каждой точки траектории Xn вычитаются

координаты среднего положения mn этой траектории

X̃n = {rn[i]−mn, i = 1, Ln}. (2.3.8)

Матрица ковариации имеет вид
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Ξn =
1

Ln
X̃nX̃

T
n . (2.3.9)

Разложение собственных чисел Ξj (2.3.9) даёт собственные значенияα = {αi, i =

1, Ln} и соответствующие собственные вектра φ = {ϕi, i = 1, Ln}. Упорядочив

αi, i = 1, Ln по убыванию, рассматривают первые два собственных вектора

ϕk,ϕl ∈ ϕ, соответствующие двум наибольшим собственным значениям αj,αl ∈

α, поскольку наибольшее изменение приходится как раз на эти две собственных

компоненты [51,160].

Для оценки резкости поворотов траектории Xn, вычисляется гистограмма на-

правленности (trajectory directional histogram) в каждой координатной плоскости.

Эта характеристика описывает статистически направленное распределение тра-

екторий. Гистограмма направленности вычисляется по методу, предложенному

в [168]
hn = H (θn[i]) , (2.3.10)

где H (θn[i]) гистограмма углов направлений

θn[i] = arctg ((yn[i+ 1]− yn[i])/(xn[i+ 1]− xn[i])). Аналогичные гистограммы

вводятся для плоскостей (x, z) и (z, y). Однако, гистограмма направленности

сама по себе не достаточна, т.к. не содержит пространственную информацию.

Поэтому две траектории, которые разнесены в пространстве, попадут в одну

выборку, если их гистограммы направленности подобны. Индексы трёх самых

больших значений hn соответствуют доминирующим углам в траектории.

Таким образом, исходный набор траекторий преобразуется в вектора про-

странства характеристик. Затем в этих пространствах выполняется поиск вы-

борок. Поскольку нет никаких предварительных знаний о типе анализируемых

траекторий, все их характеристики считаются равнозначными и при разбиении

на выборки имеют равные веса. В следующем разделе описывается процедура

разбиения.

Абстрактные пространства. Разбиение на выборки.
В настоящей работе пространства характеристик считаются независимыми,

что упрощает совместный анализ неортогональных пространств характеристик
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с различными областями определения. Каждому пространству характеристик

ставится в соответствие эмпирическое распределение вероятности векторов,

представляющих траектории в этом пространстве [165]. Метод сдвига среднего

поднимается по градиенту распределения вероятности (2.3.11), достигая бли-

жайший пик распределения, т.е. доминантную моду [165,166,169]. После этого

каждый вектор представляющий траекторию приписывается к ближайшей моде,

т.е. к соответствующей выборке.

Пусть xn ∈ Ψdm
m , n = 1, N является набором векторов представляющих

траектории Xn, n = 1, N в m-том пространстве характеристик. Эмпирическое

распределение вероятности векторов имеет вид

p
(
x, hdmm

)
=

1

Nhdmm

N∑
n=1

K

(
x− xn

hdmm

)
(2.3.11)

где hdmm – ширина полосы ядра K(..). Правильный выбор ширины полосы hdmm

важен при разбиении траекторий на выборки методом сдвига среднего. Для

этого используется итеративная процедура. Первоначальная ширина полосы

составляет 10% от каждой размерности m-того пространства характеристик и

итеративно возрастает до 80%. Нижняя граница отсекает выборки из одного

вектора (для единственной траектории), а верхняя граница исключает выборку,

объединяющую вектора xn ∈ Ψdm
m , n = 1, N для всех траекторий. Малая вели-

чина hdmm снижает отклонение оценки распределения (2.3.11), но увеличивает

дисперсию. В [170] показано, что оптимальным ядром в (2.3.11), обеспечивающим

минимум средней интегральной квадратичной ошибки m (mean integrated square

error), является радиально-симметричное ядро Епанечникова [171]

K(x) =


1

2V dm
m

(dm + 2)
(
1− ||x||2

)
, ||x|| < 1,

0, ||x|| ≥ 1,
(2.3.12)

где V dm
m представляет объём dm- мерной единичной сферы. Градиент эмпириче-
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ского распределения (2.3.11) имеет вид

Op(x) =
dm + 2

hdmm V dm
m

 1

NS

∑
xn∈S(x)

(x− xn)

 , (2.3.13)

где S(x) – гиперсфера радиуса hdmm с объёмом hdmm V dm
m и центром в точке x,

содержащая NS векторов [166]. В результате вектор сдвига среднего

Mh(x) =
1

NS

∑
xn∈S(x)

(x− xn)

имеет вид
Mh(x) =

hdmm V dm
m

dm + 2
· Op(x). (2.3.14)

Результатом выполнения процедуры сдвига среднего является множество век-

торов, связанных с конкретной модой [169]. После выбора начального вектора,

представляющего некоторую траекторию, процедура сдвига среднего сходится к

локальной моде, и все вектора, ограниченные шириной полосы hdmm ядра K(..)

в (2.3.11), приписываются к этой моде. Малая ширина полосы способствует росту

числа мод и большой дисперсии, которая означает неустойчивость оценки локаль-

ного распределения (2.3.11). Этот недостаток устраняется путем объединения

близко расположенных мод [172]. В настоящей работе смежные выборки объеди-

няются, если соответствующие им моды распределения находятся на расстоянии

меньше, чем hdmm + 0, 1%
(
hdmm
)
.

Окончательное разбиение на выборки траекторий движения

После объединения смежных выборок в каждом пространстве характеристик,

окончательное разбиение исходных траекторий обеспечивается совместным ана-

лизом выборок во всех пространствах характеристик. Это разбиение проходит в

три этапа: сначала оценивается среднее число выборок, затем устанавливается

соответствие между выборками в различных пространствах характеристик и в

результате каждая траектория приписывается к конкретной выборке.
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Пусть множество {Nm, m = 1,M} содержит число выборок для каждого

из пространства характеристик {Ψdm
m }. Окончательное число выборок K =

1
M

∑M
m=1Nm. После определения числа выборок K, оптимизируется их структу-

ра. Оптимизация разбиения начинается с выбора пространства характеристик

Ψdl
l ∈ {Ψdm

m , m = 1,M}, для которого Nl = K. Исходными выборками счита-

ются выборки {Cl
k, k = 1, K} ⊂ Ψdl

l . Затем ищется соответствие этих выборок

выборкам во всех остальных пространствах Ψdn
n ∈ {Ψdm

m , m = 1,M}, n 6= l. Если

выборка Cn
j ⊂ Ψdn

n имеет максимальное число перекрывающихся элементов с

выборкой Cl
k ⊂ Ψdl

l , т.е.

j = argmax
r
|Cl

k ∩ Cn
r |, (2.3.15)

то выборка Cl
k корректируется согласно Cl

k = Cl
k ∩ Cn

j . Такая корректировка

выполняется для всех выборок {Cl
k, k = 1, K} ⊂ Ψdl

l и в результате формируется

K согласованных выборок траекторий {Cfinal
k , k = 1, K}. После этого к выборкам

{Cfinal
k , k = 1, K} присоединяется множество траекторий {X′ ⊆ {Xj, j = 1, J}},

которые не вошли в выборки. Каждая выборка моделируется собственным распре-

делением Гаусса с шириной полосы, определяемой дисперсией выборки. Условная

вероятность того, что траектория X0 ∈ {X′} генерируется в соответствии с окон-

чательной моделью разбиения, имеет вид

p
(
X0|Cfinal

k

)
=

1√
2πσfinal

k

exp

(
−
(

mx0
− µfinal

k

σfinal
k

)2
)
, (2.3.16)

где mX0
– среднее положение траектории X0, µfinal

k = 1
Nk

Nk∑
j=1

mj (со средними

положениями траекторий (2.3.6)) – среднее положение траекторий для выборки

Cfinal
k и σfinal

k = 1
Nk

Nk∑
j=1

Ξj (с матрицами ковариации траекторий (2.3.9)) – стан-

дартная дисперсия для выборки Cfinal
k [166], где Nk – число траекторий в этой

выборке. Траектория X0 приписывается к выборке Cfinal
k , если вероятность

p
(
X0|Cfinal

k

)
> p

(
X0|Cfinal

l

)
, l = 1, K, l 6= k. (2.3.17)
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Описанный подход к разбиению траекторий на выборки, использующий выде-

ление выборок в пространствах характеристик, позволяет группировать даже

траектории, удалённые в декартовом трехмерном пространстве, и выявляет

выборки траекторий, представляющих характерные паттерны движения.

Выявление траекторий, не вошедших в выборки

Существует два типа посторонних траекторий. Посторонние траектории

первого типа располагаются в областях с высокой плотностью траекторий, но

демонстрируют поведение, отличное от общего паттерна движения. Если тра-

ектория Xj ∈ Cfinal
k со средним mXj

лежит далеко от центра µfinal
k выборки, к

которой она принадлежит, она считается посторонней при условии

mXj
− µfinal

k

σfinal
k

> τ , (2.3.18)

где τ = 0, 95. Второй тип посторонних траекторий располагается в районах с

низкой плотностью траекторий. Если выборка содержит небольшое число траек-

торий и не может быть объединена с ближайшей выборкой, то считается, что она

состоит из посторонних траекторий. Пороговое значение для выделения выборки

посторонних траекторий составляет 10% от среднего количества элементов по

всем выборкам.

Определение пучков многомерных посадочных траекторий в абстракт-

ных пространствах характеристик

Наиболее информативные оси координат (x и y) определены в Главе 2.3.1,

поэтому в настоящей главе рассматривается проекция исходного набора посадоч-

ных траекторий на плоскость (x, y), представленная на Рис. 23. В результате

итеративного подхода к разбиению траекторий рассматриваемой проекции на

выборки возможно выделение пучков траекторий, соответствующих посадкам

на заданные взлётно-посадочные полосы.

На первом этапе в анализируемых траекториях выделяется две выборки
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Рис. 23: Проекция исходного набора траекторий
на плоскость (x, y)

(показаны зеленым и розовым цветом на Рис. 24, а) и посторонние траектории –

не вошедшие ни в одну из выборок (показаны черным цветом). Из Рис. 24, а

видно, что траектории в каждой из полученных выборок траектории несмотря

на различное положение в пространстве схожи по форме.

На следующей итерации к траекториям, отнесённым на первом этапе к

посторонним, применяется описанный выше метод разбиения на выборки в

пространствах характеристик, в результате чего в них выделяются ещё две

выборки (показаны красным и синим цветом на Рис. 24, б ). Помимо этого,

определяются настоящие посторонние траектории (показаны черным цветом на

Рис. 24, б ) – не отнесённые ни к одной из полученных выборок.

В работе [21] выборки, полученные при разбиении аналогичных данных,

содержат только пространственно близкие траектории. Объединение в выбор-

ки траекторий сходной формы, представленное в настоящей главе, возможно

благодаря тому, что в двух из рассматриваемых пространств характеристик

(полиномиальная регрессия и гистограмма направленности) моделируется форма

траектории.

В результате применения итеративного подхода к разбиению многомерных
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(а)

(б )

Рис. 24: а) Выборки траекторий, полученные после первой итерации.
б) Итоговый результат итеративного разбиения траекторий на выборки

траекторий на выборки на основе их представления в пространствах характери-

стик выделяются характерные посадочные паттерны (см. Рис. 24, б ). Однако
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пучки траекторий, соответствующие посадкам на заданную взлётно-посадочную

полосу видны только в одной из полученных выборок – выделенной синим цветом

на Рис. 24, б .

Видно, что получение точного решения задачи секторизации пространства в

двумерном случае с помощью описанного выше метода невозможно. Это связано

с особенностью рассматриваемых траекторий – их кривизной и кручением, кото-

рые не позволяют точно разделить траектории со сходными характеристиками

в абстрактных пространствах. Для точного выделения пучков траекторий в

двумерном случае необходимы методы, учитывающие кривизну траекторий.

2.3.3 Спектральный метод с использованием полярной кривизны
В настоящей главе пучки траекторий выделяются на примере x-проекций

траекторий. Для этого применяется спектральный метод разбиения с исполь-

зованием полярной кривизны. В этом методе используется модель разбиения

набора траекторий на выборки в виде объединения аффинных подпространств.

Сходство векторов выборки оценивается многомерным тензором близости, кото-

рый разворачивается в матрицу близости (подобия) векторов и анализируется

спектральным методом. В пучках траекторий, полученных таким методом, опре-

деляются центроиды. Траектория в пучке, наиболее удалённая от соответствую-

щего центроида по мере косинуса, считается выбросом.

При анализе наборов (существенно) многомерных векторов не могут исполь-

зоваться методы визуализации, обеспечивающие оценку числа выборок. Поэтому,

все алгоритмы разбиения имеют ту же проблему, что и алгоритм K-means. При-

мером является разбиение в пространстве многомерных векторов RD (где D � 1

) на основе генеративных моделей, в которых алгоритм ожидания-максимизации

правдоподобия – Expectation-Maximization (EM) используется для обучения

смеси распределений. Во-первых, чтобы оценить это параметрическое распреде-

ление, необходимо сделать предположение о Гауссовом распределении в каждой

определяемой выборке. Во-вторых, логарифм правдоподобия может иметь много
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локальных минимумов, и, следовательно, требуются многочисленные запуски,

чтобы получить приемлемое решение. Поэтому алгоритм K-means был обобщен,

чтобы определять K d-мерных аффинных подпространств наилучшим образом

аппроксимирующих набор векторов в RD. Таким образом, прототипом для вы-

борки векторов становится аппроксимирующее аффинное подпространство, а не

центроид, как в алгоритме K-means.

Альтернативой алгоритму K-means являются спектральные методы разбие-

ния, в которых используются главные собственные вектора матрицы близости

(подобия), основанной на евклидовом расстоянии между многомерными вектора-

ми. Спектральные методы успешно применяются к задачам сегментирования

изображений (размерность пространства характеристик для пикселей изображе-

ния ≤ 7), но их применимость ограничена парными мерами близости (подобия)

при формировании матрицы близости (подобия). Однако геометрические зада-

чи часто связаны с анализом выборки более двух многомерных векторов, где

требуется оценить их меру подобия. При решении таких задач определяется веро-

ятность принадлежности к одной и той же выборке целого набора векторов (а не

пары), что приводит к многомерному тензору близости (подобия). Ниже показа-

но, что спектральный метод разбиения с использованием многомерного тензора

близости (подобия) векторов обеспечивает точное разбиение для (существенно)

многомерных данных, представляющих траектории движения самолетов при

посадке в аэропорту.

Спектральное разбиение с тензором близости на основе полярной кри-

визны
Задача гибридного линейного моделирования (hybrid linear modeling) предпо-

лагает, что набор данных (многомерных векторов) достаточно хорошо аппрокси-

мируется объединением аффинных подпространств (flats). При этом необходимо

одновременно оценить параметры каждого из аффинных пространств и ассоци-

ацию анализируемых многомерных векторов с аффинными подпространства-

ми [173]. Любое d-мерное аффинное подпространство является подмножеством
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пространства векторов RD и характеризуется решением линейной системы урав-

нений F = {x|x ∈ RD, FTx = γ}, где F ∈ RD×(D−d), γ ∈ R1×(D−d) (например,

0-мерное аффинное подпространство (0-flat) – точка; 1-мерное (1-flat) – плоскость;

(D − 1)-мерное ((D − 1)-flat) – гиперплоскость). В настоящей главе рассмат-

ривается специальный случай гибридного линейного моделирования, когда все

аффинные подпространства имеют одинаковую размерность d ≥ 0 [78]. Для

набора векторов используется определенный в [174] многомерный тензор аффин-

ности (близости) (affinity tensor) и алгоритм спектрального разбиения [175,176].

Каждым (d + 2)-векторам из набора данных назначается аффинная мера, в

результате чего формируется (многомерный) тензор аффинности (близости)

порядка (d + 2). Разворачивание этого тензора близости в матрицу близости

(подобия) обеспечивает применение спектрального разбиения [175,176].

Пусть d и D – целые числа, такие, что 0 ≤ d ≤ D. Для каждых (d + 2)

различных векторов-столбцов x1, ...,xd+2 ∈ RD, Vd+1 (x1, ...,xd+2) обозначает

объем выпуклой оболочки образованной (d+ 1) вектором – (d+ 1)-симплекса

((d+ 1)-мерного обобщения треугольника или (d+ 1)-мерного тетраэдра) [177].

В каждой вершине xm полярный синус определяется как

p sinxm
(x1, ...,xd+2) =

(d+ 1)!Vd+1 (x1, ...,xd+2)∏
j=1,d+2,j 6=m

‖xj − xm‖
, m = 1, d+ 2. (2.3.19)

Пусть diam(X) обозначает диаметр набора векторов X = {x1, ...,xd+2}. Полярная

кривизна (polar curvature) набора (d+ 2)-векторов определяется в [78,178,179]

как

cp (x1, ...,xd+2) = diam ({x1, ...,xd+2})

(
d+2∑
m=1

(
p sinxm

(x1, ...,xd+2)
)2

)1/2

,

(2.3.20)
При d = 0 полярная кривизна совпадает с евклидовым расстоянием. Введем

обозначения для набора индексов M = {1, ..., d + 2} и матрицы из векторов-

столбцов XM = [x1...xd+2]. С учетом (2.3.19), cp (2.3.20) принимает вид
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cp(x1, ...,xd+2) = max
j,m∈M

‖xj − xm‖

 1

d+ 2

∑
j∈M

det(XTMXM + 1)∏
j∈M, j 6=m

‖xj − xm‖2


1/2

.

Числитель det(XTMXM + 1) является, с точностью до множителя, квадратом

объема (d + 1)-симплекса, сформированного (d + 2) векторами {x1, ...,xd+2}.

Следовательно, полярная кривизна может рассматриваться, как объем (d+ 1)-

симплекса, нормированного в каждой вершине, усредненного по вершинам и

затем масштабированного диаметром (d+1)-симплекса. Если (d + 2) вектора

выбираются из одного и того же аффинного подпространства, то ожидается, что

полярная кривизна cp ≈ 0 и, следовательно, аффинность (близость)≈ 1. С другой

стороны, когда вектора выбираются из объединения аффинных подпространств,

то ожидается, что полярная кривизна велика и аффинность (близость) ≈ 0.

АлгоритмK аффинных подпространств разделяет набор данныхX = {x1, ...,xN} ⊂

RD на K выборок C1, ...,Ck, каждая из которых наиболее хорошо аппроксими-

руется его d-мерным аффинным подпространством Fk, k = 1, K. При заданных

K и d, этот алгоритм минимизирует целевую функцию

e =
K∑
k=1

min
Fk, k=1,K

∑
xj∈Ck

‖xj − PFk
xj‖2,

где PFk
xj – проекция вектора xj на d-мерное аффинное подпространство Fk, k =

1, K. На практике, минимизация целевой функции выполняется итеративно,

как в алгоритме K-means [180]. То есть, после инициализации K d-мерных

аффинных подпространств (например, они могут быть выбраны случайным

образом), повторяются два шага до достижения сходимости: 1) назначаются

выборки в соответствии с минимальным расстоянием до аффинных подпро-

странств, определенных на предыдущей итерации: 2) для этих вновь полученных

выборок посредством анализа главных компонент – Principal Component Analysis

(PCA [160]) вычисляются d-мерные аффинные подпространства с минимальной

среднеквадратичной ошибкой. Эта процедура очень быстрая и гарантированно

сходится, по крайней мере, к локальному минимуму. Однако, на практике, ло-
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кальный минимум, к которому сходится алгоритм K аффинных подпространств,

гораздо хуже глобального минимума целевой функции. В результате, этот ал-

горитм не такой точный, как более ранние алгоритмы гибридного линейного

моделирования, и даже при моделировании поверх линейных подпространств (в

противоположность общим аффинным подпространствам) он часто дает сбой,

когда, или d достаточно велико (например, d ≥ 10 ), или имеется значительная

составляющая посторонних векторов [181,182].

Ниже предполагается, что набор векторов X = {x1, ...,xN} ⊂ RD выбран из

объединения K d-мерных аффинных подпространств Fk, k = 1, K (возможно с

шумом и посторонними векторами), где K > 1 и N велико. Используя полярную

кривизну cp (2.3.20) с фиксированной константой моделирования σ > 0, констру-

ируется тензор аффинности (близости) A порядка (d+ 2) для различных (d+ 2)

векторов xi1, ...,xid+2
∈ X с компонентами

A (i1, ..., id+2) = exp
(
−
(
cp
(
xi1, ...,xid+2

))2
/(σ2)

)
. (2.3.21)

Выбор оптимального значения параметра σ обсуждается в [78]. В (2.3.21) тензор

близости (подобия) A порядка (d+ 2) имеет размерность N ×N × ...×N︸ ︷︷ ︸
d+2

. Од-

нако в настоящей главе используется только матричное представление тензора

A (2.3.21) , которое обозначается посредством A и называется матрицей близо-

сти (подобия). Размерность матрицы A равна N ×Nd+1. Для каждого i = 1, N ,

строка i матрицы A (т.е., A(i, :) ) разворачивается из слоя i тензора A (2.3.21)

(т.е., A(i, :, ..., :)) следуя некоторому произвольному, но фиксированному поряд-

ку, например лексикографическому порядку последних (d+ 1) индексов [183].

Это упорядочение несущественно для настоящего рассмотрения, поскольку как

показано в [175,176], в спектральной кластеризации используется произведение

W = AAT , (2.3.22)

которое не зависит от порядка индексов. Определение матрицы A и умножение

этой матрицы большой размерности на результат ее транспонирования (чтобы
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произвести W (2.3.22)) вычислительно сложно. Возможное решение состоит

в однородной выборке, т.е. в случайной выборке и вычислении небольшого

поднабора столбцов A, чтобы произвести оценку W (2.3.22) [174,184]. Обозначив

столбец j матрицы A как A(:, j) , записываем W (2.3.22) в следующем виде

W =
Nd+1∑
j=1

A(:, j)A(:, j)T (2.3.23)

Следовательно, W – сумма Nd+1 матриц ранга 1. Пусть j1, ..., jc – c целых чисел,

случайно выбранных из интервала [1, Nd+1]. Как показано в [184], матрица

W (2.3.23) аппроксимируется следующим образом

W ≈
c∑
t=1

A(:, jt)A(; , jt)
T . (2.3.24)

В [78] алгоритм спектрального разбиенияи с матрицей близости на основе поляр-

ной кривизны (2.3.20) – Spectral Curvature Clustering (SCC) формирует матрицу

парных весов W (2.3.24) из аппроксимированной матрицы близости (подобия)

W = AcA
T
c ,

и применяет спектральное разбиение [175] для определения K выборок C1, ...,CK .

Для того, чтобы улучшить эти выборки, SCC-алгоритм затем повторно выбирает

вектора из выборок Ck, k = 1, K в пределах небольшой полосы вокруг каждого

из их аппроксимирующих d–мерных аффинных подпространств Fk, k = 1, K. Эта

процедура повторяется до достижения сходимости и называется итеративной вы-

боркой (iterative sampling) [78]. Сходимость измеряется ошибкой ортогональных

наименьших квадратов – orthogonal least squares (OLS) для d–мерных аффинных

подпространств Fk, k = 1, K аппроксимирующих выборок C1, ...,CK в виде

eOLS =
K∑
k=1

∑
xj∈Ck

‖xj − PFk
xj‖2, (2.3.25)

где PFk
xj – проекция вектора xj на d-мерное аффинное подпространство Fk
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(может быть получена анализом главных компонент (PCA) [180]). SCC-алгоритм

спектрального разбиения с матрицей близости (подобия) на основе полярной

кривизны представлен на Рис. 25 [78].

Алгоритм Spectral Curvature Clustering (SCC)

Вход: Набор векторов X, внутренняя размерность (intrinsic dimention) d, чис-
ло K d-мерных аффинных подпространств, число выбираемых столбцов c (по
умолчанию = 100K).

Выход: K непересекающихся выборок C1, ...,CK и ошибка eOLS.

Шаги:

1. Случайным образом выбираются c поднаборов из X, каждый из которых
содержит в точности (d+ 1) различных векторов.

2. Вычисляется полярная кривизна (2.3.20) для каждого поднабора и каждого
из оставшихся (N−d−1) векторов в X, эти (N−d−1) c значений полярной
кривизны сортируются по возрастанию и формируют вектор cp.

3. for q = 1 : (d+ 1) do

• Используется (2.3.21) с σ = cp ·(N ·c/Kq) для вычисления c выбранных
столбцов A. Используя эти c столбцов формируется матрица Ac ∈
RN×c (2.3.24).

• Вычисляется матрица D = diag
(
Ac

(
AT
c 1
))
, где 1 – вектор из единиц.

Эта матрица используется для нормировки матрицы Ac: Ã = D−1/2Ac.

• Формируется матрица U, столбцы которой – K старших левых сингу-
лярных векторов Ãc.

• Эти (найденные) выборки используются для группировки векторов
набора X в K поднаборов, и вычисляется соответствующая ошибка
eOLS (2.3.25).

end for. Регистрируются K поднаборов C1, ...,CK набора Z, которые соот-
ветствуют наименьшей ошибке eOLS (2.3.25) в приведённом выше цикле.

4. Из каждого найденного Ck, k = 1, K выбираются вектора в пределах
небольшой полосы вокруг каждой из их OLS-аппроксимирующих d-мерных
аффинных подпространств Fk, k = 1, K, и выполняются шаги 2 и 3, чтобы
найти K новые выборки. Итерации повторяются до достижения сходимости.

Рис. 25: Алгоритм спектрального разбиения
с матрицей близости (подобия) на основе полярной кривизны
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В следующей главе траектории одной из выборок, полученной в результате

первичного разбиения исходного набора траекторий по методу полиномиальных

регрессий [64], разбиваются на подвыборки описанным выше методом с помо-

щью алгоритма спектральной кластеризации (см. Рис. 25) с тензором близости

(подобия) на основе полярной кривизны (2.3.20). Полученные подвыборки соот-

ветствуют пучкам траекторий, приземлившихся на заданные взлётно-посадочные

полосы.

Восстановление двух первых столбцов исходных данных после разложения

сингулярных чисел (svd-разложения) и сокращение числа сингулярных чисел до

двух показано на Рис. 26 (в коде Matlab исходные данные – переменная X).

Рис. 26: Восстановленных исходных данных после разложения сингулярных чисел
и сокращение их числа до двух

Выделение пучков траекторий спектральным методом

В результате применения описанного выше метода к набору x-проекций

посадочных траекторий самолётов точно выделяются пучки траекторий, со-

ответствующие посадкам на заданные взлётно-посадочные полосы. На Рис. 27

показано разбиение x-компонент траекторий выборки (представленной на Рис. 14)

на подвыборки, выполненное алгоритмами SCC [78]. Заданная внутренняя раз-

мерность аффинных подпространств для алгоритма SCC d = 5. На Рис. 27 (а)

разбиение анализируемой выборки алгоритмом SCC показано в координатах двух

первых столбцов восстановленных данных (см. Рис. 26). В результате разбиения

выделяются пучки траекторий, представленные на Рис. 27 (б) красным, синим

и зелёным цветом. В выделенных пучках траекторий с помощью марковской

модели непрерывного скрытого профиля определяются центроиды и выбросы

– траектории пучка, наиболее удалённые от выделенного центроида по мере

косинуса.
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(а)

(б )

Рис. 27: Выделение пучков траекторий спектральным методом с помощью алгоритма SCC
на примере x-проекций траекторий выборки, представленной на Рис. 14

При разбиении анализирумая выборка траекторий (многомерных векторов)

моделируется объединением d-мерных аффинных (линейных) подпространств.

При этом учитывается не бинарное, а d-арное подобие, и принадлежность рас-

сматриваемых траекторий (многомерных векторов) к подвыборке оценивается

(многомерным) тензором близости порядка (d+ 2), который разворачивается в
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матрицу близости (подобия) векторов, обеспечивая эффективное использование

спектрального метода.

Стоить заметить, что алгоритм SCC ошибочно относит розовую траекто-

рию к красному пучку, и в этой подвыборке по мере косинуса она оказывается

кандидатом на выброс. В результате нормальная траектория зеленого пучка

идентифицируется, как посторонняя (показана желтым цветом). В синем пучке

голубым цветом показан выброс. Полученные результаты могут быть улучшены-

при использовании линейной модификации спектрального метода – алгоритма

LSCC (Linear Spectral Curvature Clustering).

Анализируемые в настоящей работе посадочные траектории самолётов имеют

ряд особенностей, таких как кривизна, множественные пересечения и наличие

почти линейных участков, которые необходимо учитывать при выделении пучков

траекторий. В линейном спектральном методе разбиения ( LSCC) предполагает-

ся, что все рассматриваемые подпространста линейные. При этом, спектральная

кривизна вычисляется при рассмотрении любых d + 1 точек. Это упрощает

SCC-алгоритм, описанный в Главе 2.3.3, поскольку вычисляемый тензор бли-

зости имеет порядок d + 1. Более того, результаты разбиения, полученные с

помощью алгоритма SCC, могут быть улучшены, поскольку, новая матрицы A

имеет меньше столбцов, и d+ 1 точек могут принадлежать одному линейному

подпространству. Это исключает неблагоприятную маленькую кривизну для

d+ 2 точек в афинном подпространстве (в случае SCC-алгоритма).

Разбиение, полученное с помощью LSCC-алгоритма, показано на Рис. 28 (а) в

координатах двух первых столбцов данных, восстановленных после разложения

сингулярных чисел (svd-разложения) для исходных данных и редуцирования

числа сингулярных чисел до двух. На Рис. 28 (б) представлены результаты

секторизации в двумерном случае, полученные с помощью алгоритма LSCC.

При сравнении результатов, представленных на Рис. 27 и 28 видно, что

оба алгоритма (SCC и LSCC) дают практически идентичный результат, за

исключением одной траектории, которая в первом случае относится к красному
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(а)

(б )

Рис. 28: Выделение пучков траекторий спектральным методом с помощью алгоритма LSCC
на примере x-проекций траекторий выборки, представленной на Рис. 14

пучку, а во втором – к зелёному. Как видно на Рис. 27 (б) в красном пучке эта

траектория оказывается выбросом и показана розовым цветом на Рис. 28 (б). В

следствие этой ошибки нормальная траектория зелёного пучка идентифицируется

как посторонняя (выделена жёлтым цветом на Рис. 27 (б)). LSCC-алгоритм

правильно относит эту траекторию к зеленому пучку, в котором она является

выбросом (показана жёлтым цветом на Рис. 28 (г)).
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Сектора, выделяемые с помощью алгоритма LSCC, соответсвуют траекториям

посадки на заданные взлётно-посадочные полосы. Данный метод может быть

использован при решении задачи секторизации в двумерном случае, если число

пучков, содержащихся в выборке, известно заранее.

2.4 Алгоритм разбиения воздушного пространства зоны

аэропорта на сектора (секторизация воздушного про-

странства в двумерном случае)
Результаты разбиения x-проекций траекторий выборки показывают, что в

двумерном случае возможно точное решение задачи секторизации воздушного

пространства. Если априори известно число пучков, содержащихся в рассмат-

риваемой выборке, то в двумерном случае данная задача решается с помощью

алгоритма, представленного на Рис. 29, который состоит из четырёх шагов.

Сокращение размерности рассматриваемых данных:
рассмотрение проекций траекторий выборки на выбранную ось координат

(например, x-проекций траекторий выборки)

Выделение пучков траекторий с помощью алгоритма LSCC
(при заданном числе пучков)

Определение центральных траекторий в выделенных пучках
(например, с помощью алгоритма СPM)

Определение траекторий, наиболее удалённых
от выделенного центроида по мере косинуса

Рис. 29: Алгоритм секторизации пространства в двумерном случае

1 шаг. На первом шаге происходит существенное сокращение данных за счёт

рассмотрения одной из проекций траекторий на оси координат.

2 шаг. На втором шаге алгоритм линейной спектральной кластеризации

используется для выделения пучков траекторий в плоском случае. При ис-



97

пользовании этого алгоритма требуется задание числа пучков, содержащихся в

рассматриваемой выборке траекторий.

3 шаг На третьем шаге в выделенных пучках траекторий возможно опреде-

ление центральных траекторий. Например, как это делается в примере, рассмат-

риваемом в главе 2.3, с помощью Марковской модели непрерывного скрытого

профиля (алгоритма CPM, описанного в главе 2.2.3).

4 шаг На четвёртом шаге определяется траектория, потенциально нахо-

дящаяся в зоне риска. Эта траектория наиболее удалена по мере косинуса от

выделенного на Шаге 3 центроида.

Данный алгоритм позволяет решить задачу секторизации в двумерном случае,

однако он требует предварительного знания числа пучков.

Выводы по Главе 2

1. На основе комплексного анализа широко известных методов data mining

предложен способ разбиения воздушного пространстве зоны аэропорта на

сектора (секторизации воздушного пространства) в плоском случае, новиз-

на которого состоит в применении спектрального метода с использованием

полярной кривизны для разбиения набора посадочных траекторий самолё-

тов на сектора и использовании меры косинуса для определения граничных

траекторий сектора. Результаты применения способа демонстрируются на

примере обработки данных посадочных траекторий, зарегистрированных

радиолокационной системой TRACON (terminal radar approach control)

1 января 2006 г. над заливом Сан-Франциско и находящихся в свободном

доступе.
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Глава 3. Разработка основанных на применении

меры косинуса алгоритмов анализа многомерных

временных рядов, представленных четырёхмерны-

ми посадочными траекториями самолётов, в трёх-

мерном случае

В настоящей главе рассматривается метод, позволяющий получать устойчивое

разбиение анализируемых наборов посадочных траекторий на асимптотически

сходящиеся пучки. Пучки траекторий выделяются на основании близости по

мере косинуса траекторий рассматриваемой выборки к выделенным асимптотам

траекторий. Оценка асимптот траекторий происходит при сокращении размер-

ности данных – рассмотрении двумерной ортогональной проекции рассеянных

данных. Оценка асимптот траекторий происходит при определении наиболее

правдоподобной ортогональной линейной регресии «рассеянных» данных алго-

ритмом RANSAC. Результаты, представленные в настоящей главе, опубликованы

в [185,186]. Предлагаемой авторский алгоритм запатентован [187–190].

3.1 Определение характерной геометрической асимптоты

многомерных траекторий движения с заданным пара-

метром порога

Особенностью рассматриваемых пучков траекторий является то, что все они

имеют характерную геометрическую асимптоту в области сходимости траекто-

рий (1.3.1) [68]. Поскольку дискретные точки траекторий пучка плотно лежат

в окрестности асимптоты, основа предлагаемого метода для оценки асимптот

пучков траекторий состоит в том, что набор векторов выборки многомерных

траекторий {Xn ∈ R3×L, n = 1, Nk} рассеивается во множество точек этих

траекторий
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{Xn ∈ R3×L, n = 1, Nk} ⇒ {(xn[i], yn[i], zn[i]) ∈ R3, i = 1, L, n = 1, Nk}.

(3.1.1)

Множество точек (3.1.1) должно быть упорядочено по значениям одной из коор-

динат (в направлении возрастания – ascend или убывания – descend). При этом

происходит упорядочение по остальным координатам всех точек, представляю-

щих сходящийся пучок траекторий движения по определённому профилю. После

этого для «рассеянных» в результате такого упорядочения трёхмерных данных

{Zj = (xj, yj, zj), j = 1, L ·Nk} (3.1.1) с помощью алгоритма RANSAC (Random

Sample and Consensus – случайная выборка и консенсус) [191,192] анализируются

модели ортогональной линейной регрессии

M(θ) =
{

(x, y, z) ∈ R3
∣∣∣(a∗1x+ b∗1y + c∗1z = d∗1) ∧ (a∗2x+ b∗2y + c∗2z = d∗2)

}
,

(3.1.2)

∧ – конъюнкция, θ = {a∗1, b∗1, c∗1, d∗1, a∗2, b∗2, c∗2, d∗2} – вектор параметров этих моделей

при заданном пороге евклидового расстояния ρ⊥ (Zj, M(θ)), вычисляемого по

ортогональной проекции точки Zj = (xj, yj, zj) из (3.1.1) на линию M(θ). Таким

образом модель (3.1.2) симметрична относительно координат x, y, z. Для выдви-

жения гипотезы относительно модели ортогональной линейной регрессии (3.1.2)

достаточно любой пары точек из (3.1.1). Окончательная модель (3.1.2) подтвер-

ждается наибольшим относительным количеством (процентом) «рассеянных»

данных {Zj = (xj, yj, zj), j = 1, L ·Nk} (3.1.1). В настоящей работе использу-

ется алгоритм MLESAC (Maximum Likelyhood Estimation Sample Consensus –

консенсус выборок с оценкой по максимуму правдоподобия) [193,194] – вероят-

ностная версия алгоритма RANSAC. Этот алгоритм оценивает правдоподобие

модели (3.1.2), представляя распределение расстояния «рассеянных» данных

Z = {Zj = (xj, yj, zj), j = 1, L ·Nk} от модели M(θ) (3.1.2), как смесь распреде-

ления данных, подтверждающих модель (3.1.2) (inliers), и распределения данных,

отклоняющих эту модель (outliers). Считая, что «рассеянные» данные Z (3.1.1)

независимые, получаем выражение для логарифма правдоподобия в виде
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L
(
ρ⊥ (Z, M(θ))

∣∣∣θ) =

=

L·Nk∑
j=1

log
(
γp
(
ρ⊥ (Zj, M(θ))

∣∣∣Zj is inlier)+ (1− γ)p
(
ρ⊥ (Zj, M(θ))

∣∣∣Zj is outlier)) ,
(3.1.3)

где γ – параметр смешивания. Распределение расстояний до данных, подтвер-

ждающих модель (3.1.2), представляется гауссовым распределением

p
(
ρ⊥ (Zj, M(θ))

∣∣∣Zj is inlier) ∝ exp

(
−(ρ⊥ (Zj, M(θ)))2

2σ2

)
, (3.1.4)

где σ – стандартное отклонение. Распределение расстояния до данных, отклоня-

ющих модель (3.1.2), описывается равномерным распределением

p
(
ρ⊥ (Zj, M(θ))

∣∣∣Zj is outlier) =

(2ρmax)
−1 , ρ⊥ (Zj, M(θ)) < ρmax,

0, ρ⊥ (Zj, M(θ)) ≥ ρmax,
(3.1.5)

где ρmax – наибольшее расстояние до данных (определяется контекстом). Мини-

мизация логарифма правдоподобия (3.1.3) позволяет оценить вектор параметров

θ и параметр смешивания γ. Это обеспечивается итерациями ЕМ-алгоритма [108].

Определённая таким образом наиболее правдоподобная линейная регрессия

«рассеянных» данных выборки траекторий определяет геометрическую асимптоту

M(θ)k, k = 1, K (3.1.2) одного из пучков при условии (1.3.1).

Для структуры trajs размерности size(trajs,1) × size(trajs,2) × size(trajs,3), пред-

ставляющей набор трёхмерных траекторий рассматриваемой выборки, «рассеян-

ные» данные (3.1.1) Data являются результатом кода на Matlab (см. Рис. 30).

На Рис. 31 (a) показаны «рассеянные» данные (3.1.1) Data(:,1:2) двумерных

проекций trajs(:,:,1:2) траекторий рассматриваемой выборки и результат их ли-

нейной регрессии с использованием алгоритма MLESAC (Рис. 31), определяющий

асимптоту первого пучка (голубая линия) (см. Рис. 31).

После выделения асимптоты касательный ей пучок траекторий определяется
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Рис. 30: Пример кода на Matlab для получения «рассеянных» данных траекторий

(а) (б )

(в)

Рис. 31: Иллюстрация этапов определения геометрической асимптоты пучка траекторий,
которая определяется наиболее правдоподобной линейной регрессией данных

на основе однократного применения формулы (1.3.9) с мерой косинуса (1.3.7) (см.

раздел 1.3). После удаления из «рассеянных» данных (3.1.1) тех точек, которые
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представляют траектории выделенного пучка, повторяется процедура опреде-

ления геометрической асимптоты и выделяется следующий пучок траекторий.

Поскольку определение модели (3.1.2) должно быть симметричным относительно

координат x, y, z, при формировании «рассеянных» данных оставшихся траекто-

рий в (3.1.1) производится сортировка по очередной пространственной координате

отличной от использованной в (3.1.1) при определении предыдущей асимпто-

ты (3.1.2). Возможная зависимость результата (3.1.2) от направления координат

устраняется изменением направления сортировки в (3.1.1) с возрастания на убы-

вание или наоборот. Анализ траекторий выборки завершается определением всех

пучков в выборке.

Множественные пересечения и наличие почти линейных участков в хвостах

пучков траекторий вдали от фокуса может препятствовать непосредственному

определению асимптот сходящихся пучков по методу, описанному выше. В таком

случае при анализе траекторий рассматриваемой выборки используются «рассе-

янные» данные сокращённых траекторий с частью точек quatum ≈ 0.4, считая

от фокусов пучков.

Так, например, на Рис. 32, а показаны «рассеянные» данные (3.1.1) Data(:,1:2)

двумерных проекций trajs(:,:,1:2) полных траекторий выборки и результат их ли-

нейной регрессии с использованием алгоритма MLESAC, определяющего асимпто-

ту первого пучка (голубая линия). В этом случае результаты линейной регрессии

«рассеянных» данных сокращённых и полных траекторий совпадают.

Траектории первого пучка удаляются из рассматриваемой выборки на основе

близости траекторий к голубой асимптоте (см. Рис. 32, б ) по мере косинуса (1.3.7).

Затем поиск асимптоты повторяется, и определяется новый пучок. В результате

последовательных итераций выделяется все пучки траекторий в выборке (см.

Рис. 35, а) в трехмерном случае.



103

(а)

(б )

(в)

Рис. 32: Траектории выборки, представленной на Рис. 13.
а,б – «рассеянные» данные траекторий и их линейные регрессии;

в – три выделенных пучка траекторий

(а)

(б )

(в)

Рис. 33: Траектории выборки, представленной на Рис. 14.
а,б – «рассеянные» данные траекторий и их линейные регрессии;

в – три выделенных пучка траекторий
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3.2 Алгоритм устойчивого разбиения набора траекторий

на пучки траекторий, асимптотически сходящиеся с

заданным параметром порога (секторизация воздуш-

ного пространства в трёхмерном случае)

Представленные результаты показывают, что поставленная задача сектори-

зации воздушного пространства в трёхмерном случае на основании анализа

посадочных траекторий самолётов, может быть решена с помощью алгоритма,

состоящего из семи шагов (см. Рис. 34).

Сокращение размерности рассматриваемых данных:
«рассеивание» набора траекторий во множество точек траекторий

Формирование
двумерной ортогональной проекции набора «рассеянных» данных

Сортировка точек сформированной проекции
по значениям одной из координат

Построение моделей
ортогональной линейной регрессии точек сформированной проекции

и определение наиболее правдоподобной
ортогональной линейной регрессии данных

Определение геометрической асимптоты пучка
(при выполнении условия асимптотического схождения пучка)

Возвращение в исходное пространство данных:
выделение пучка многомерных траекторий,

касательного выделенной геометрической асимптоте
на основании близости траекторий к определённой
асимптоте по мере косинуса в трёхмерном случае

Удаление из выборки траекторий выделенного пучка

Рис. 34: Алгоритм устойчивого разбиения выборки посадочных траекторий на пучки
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Шаг 1. На первом шаге выполняется сокращение размерности рассматрива-

емых данных. Для этого исходный набор траекторий рассматриваемой выборки

рассеивается во множество точек, представлявших траектории выборки.

Шаг 2. На втором шаге формируется двумерная ортогональная проекция

набора рассеянных точек, наобходимая для последующей оценки асимптот пучков

траекторий.

Шаг 3. На третьем шаге происходит упорядочение (сортировка) точек сфор-

мированной проекции по значениям одной из координат (в направлении воз-

растания или убывания). При этом автоматически происходит упорядочение по

остальным координатам всех точек.

Шаг 4. На четвёртом шаге с помощью алгоритма RANSAC анализируются

модели ортогональной линейной регрессии « рассеянных данных» и с помощью

алгоритма MLESAC выполняется оценка правдоподобия получаемых моделей.

Наиболее правдоподобная ортогональная линейная регрессия данных, определя-

емая на данном шаге, подтверждается наибольшим относительным количеством

(процентом) «рассеянных данных».

Шаг 5. На пятом шаге происходит определение геометрической асимптоты

выделяемого пучка траекторий. Геометрическая асимптота первого пучка траек-

торий совпадает с определённой на предыдущем шаге наиболее правдоподобной

моделью ортонональной линейной регрессии данных. Полученная на данном

шаге асимптота удовлетворяет условию асимптотического схождения пучка, за-

даваемому параметром порога (параметр порога в рассматриваемой задаче не

превышает ширины взлётно-посадочной полосы).

Шаг 6. На шестом шаге происходит возвращение в исходное пространство

данных, и в исходном трёхмерном пространстве выделяется пучок траекторий.

Выделение пучка траекторий происходит по мере близости траекторий выборки

к выделенной геометрической асимптоте. В качестве меры близости используется

мера косинуса. Таким образом выделяется пучок многомерных посадочных траек-

торий самолётов, касательный выделенной на шаге 5 геометрической асимптоте.
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Шаг 7. На седьмом шаге выделенный пучок траекторий удаляется из рас-

сматриваемой выборки, и происходит возвращение к шагу три. Далее все пучки

траекторий, содержащиеся в выборке, выделяются последовательнольно.

Данный алгоритм позволяет последовательно выделить в рассматриваемой

выборке все асимптотически сходящиеся с параметром порога пучки многомер-

ных траекторий, соответствующие посадкам на заданные взлётно-посадочные

полосы (ВПП). Параметр порога определяется шириной ВПП. Получаемое раз-

биение является устойчивым и не требует никакого предварительного знания о

числе пучков, содержащихся в выборке.

3.3 Оптимизационная задача с ограничениями по опреде-

лению центроида для выделенного пучка многомер-

ных траекторий движения

После того, как точно выделены пучки траекторий Ck, их центроиды {Ck, k =

1, K} определяются по схеме Ck ⇒ Ck, k = 1, K на основе однократного приме-

нения формулы

{〈Ck〉 , k = 1, K} = arg min
{Ck, k=1,K}

N∑
n=1

K∑
k=1

rnkρ
2
cosine (Xn,Ck) (3.3.1)

при условии (1.3.4) с использованием квадрата меры косинуса (1.3.7).

Оценка (3.3.1) эффективна при представлении векторов {Xn, n = 1, N} и

{Ck, k = 1, K} в исходном пространстве состояний.

На Рис. 35 красными жирными линиями отмечены центроиды, определённые

для выделенных пучков траекторий выборок, представленных на Рис. 13 и 14.

Траектория, определённая таким образом может рассматриваться в качестве

характерной (опорной) траектории пучка.
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(а)

(б )

Рис. 35: Центроиды выделенных пучков траекторий анализируемых выборок
(выделены красным)
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3.4 Алгоритм определения характерной (опорной) траек-

тории посадки – центроида для выделенного пучка

многомерных траекторий движения

Представленные результаты показывают, что поставленная задача определе-

ния характерной (опорной) траектории посадки при анализе посадочных траек-

торий самолётов, может быть решена с помощью алгоритма, состоящего из трёх

шагов (см. Рис. 36).

Выделение асимптотически сходящегося с параметром порога
пучка многомерных посадочных траекторий в трёхмерном случае

Оценка и определения по мере косинуса центроида
для выделенного пучка траекторий в трёхмерном случае

Определение по мере косинуса траектории пучка,
наиболее удалённой от выделенного центроида

Рис. 36: Алгоритм определения центроида – характерной траектории посадки

Шаг 1. На первом шаге выделяется пучок траекторий, соответствующий

посадкам самолётов на выделенную взлётно-посадочную полосу, траектории в

котором асимптотически сходятся с параметром порога.

Шаг 2. На втором шаге в выделенном пучке траекторий при решении оп-

тимизационной задачи определяется центральная траектория, называемая в

контексте работы центроидом. В трёхмерном случае данная траектория может

рассматриваться как характерная (опорная) траектория посадки. Суммарное

среднеквадратичное расстояние от выделенной траектории до всех траекто-

рий в пучке – минимально. Получение данного результата возможно благодаря

использованию в качестве меры близости меры косинуса, которая учитывает осо-
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бенности геометрии многомерных посадочных траекторий самолётов – кривизну,

кручение и множественные пересечения.

Шаг 3. На третьем шаге по мере косинуса определяется траектория пучка,

наиболее удалённая от выделенного центроида по мере косинуса. При решении

задач безопасности можно говорить, что выделенная траектория представляет

движение в зоне риска.

Выводы по Главе 3

1. Предложен оригинальный способ устойчивого разбиения набора много-

мерных посадочных траекторий самолётов на пучки траекторий, соответ-

ствующих посадкам на заданные взлётно-посадочные полосы (ВПП), в

трёхмерном случае. Рассматриваемые пучки траекторий являются асимп-

тотически сходящимися с заданным параметром порога, который опреде-

ляется шириной ВПП. Точный результат разбиения достигается благодаря

использованию алгоритма RANSAC при сокращении размерности данных

и использовании меры косинуса в качестве меры близости траекторий

при переходе в пространство исходной размерности. Предлагаемый способ

позволяет точно решать задачу секторизации воздушного пространства

расширенной зоны аэропорта в трёхмерном случае. Результаты демонстри-

руются на примере выделения пучков траекторий в выборке траекторий,

зарегистрированных радаром TRACON.

2. Предложен способ определения характерной (опорной) траектории посадки

самолёта – центроида для выделенного пучка многомерных пространствен-

ных траекторий. Результат, полученный при решении оптимизационной

задачи с ограничениями, является устойчивым благодаря использованию

в качестве меры близости пространственных траекторий меры косинуса,

которая учитывает особенности пространственной геометрии многомерных

траекторий движения – кривизны, кручения и множественных пересечений.

Полученный результат демонстрируется на примере анализа реальных

данных и может быть использован при решении практических задач.
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Заключение

В результате проделанной работы:

1. Предложен способ разбиения воздушного пространства зоны аэропорта на

сектора (секторизация пространства) в плоском случае.

2. Предложен способ устойчивого разбиения набора траекторий на пучки

траекторий, асимптотически сходящиеся с заданным параметром порога, в

трёхмерном случае.

3. Предложен способ определения характерной (опорной) траектории посадки

– центроида для выделенного пучка многомерных траекторий движения в

трёхмерном случае.

Полученные результаты позволяют решать задачу секторизации воздушного

пространства расширенной зоны аэропорта на реальных данных. То есть можно

констатировать, что заявленная научная задача решена.
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