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Общая характеристика работы

Актуальность темы.

При проектировании цифровых микросхем всё чаще во главу угла ста-
вится требование компактности микросхемы и её низкого энергопотребле-
ния. При разработке мобильных систем ограниченное энергопотребление
становится уже критически важным.

Известно, что необратимость вычислений приводит к выделению теп-
ловой энергии. Сформулированный Р. Ландауэром в 1961 году фундамен-
тальный физический принцип гласит: в любой вычислительной системе,
независимо от её физической реализации, при потере 1 бита информации
выделяется минимум kT ln 2 Дж тепла, где k — постоянная Больцмана, T —
абсолютная температура, при которой происходят вычисления1. В 2012 го-
ду был проведён эксперимент с коллоидной частицей, подтвердивший дан-
ный принцип2.

Некоторые разрабатываемые технологии теоретически могут позволить
достичь плотности размещения логических устройств в 1017 элементов на
кубический сантиметр3. Согласно принципу Р. Ландауэра, если все про-
изводимые вычисления будут необратимы, такое количество вычислитель-
ных устройств при комнатной температуре во время работы на частоте в
10 ГГц должно выделять более 3 · 106 Вт. Отвод такого количества тепло-
вой энергии представляет собой неразрешимую технологическую проблему.
Ч. Беннет показал4, что нулевой уровень тепловых потерь возможен толь-
ко тогда (необходимое, но не достаточное условие), когда все логические
устройства схемы являются обратимыми, другими словами, когда они реа-
лизуют биективное отображение.

С другой стороны, обратимые схемы являются неотъемлемой частью
квантовых вычислений, позволяющих решать некоторые экспоненциально
сложные проблемы за полиномиальное время5,6. Также обратимые логи-
ческие устройства могут быть получены при помощи КМОП технологий
(адиабатической и термодинамической), оптических технологий, нанотех-
нологий и технологий с использованием молекул ДНК.

1 Landauer R. «Irreversibility and Heat Generation in the Computing Process» // IBM Journal of
Research and Development, 1961.Vol. 5(3). Pp. 183-191.

2 Bérut A., Arakelyan A., Petrosyan A., Ciliberto S., Dillenschneider R., Lutz E. «Experimental
Verification of Landauer’s Principle Linking Information and Thermodynamics» // Nature, 2012. Vol. 483.
Pp. -187-189.

3 Merkle R. C., Drexler K. E. «Helical Logic» // Nanotechnology, 1996. Vol. 7. Pp. 325–339.
4 Bennett C. H. «Logical reversibility of computation» // IBM Journal of Research and Development,

1973. Vol. 17(6). Pp. 525–532.
5 Shor P. W. «Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a

Quantum Computer» // SIAM Journal on Computing, 1997. Vol. 26(5). Pp. 1484–1509.
6 Hallgren S. «Polynomial-Time Quantum Algorithms for Pell’s Equation and the Principal Ideal

Problem» // Journal of the ACM, 2007. Vol. 54(1). Pp. 4:1–4:19.
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С математической точки зрения только биективные отображения не
приводят к потере информации. Большинство функциональных элементов
не являются обратимыми (к примеру, конъюнктор и дизъюнктор). В то же
время обратимыми являются такие функциональные элементы, как инвер-
тор (NOT); элемент Фейнмана, именуемый также контролируемой инверси-
ей (Controlled NOT, CNOT); элемент Тоффоли, именуемый также контро-
лируемой контролируемой инверсией (Controlled Controlled NOT, CCNOT
или 2-CNOT); элемент Фредкина и ряд других.

Было доказано7, что с помощью элементов NOT, CNOT и 2-CNOT мож-
но реализовать любую чётную подстановку на множестве Z

n
2 в обратимой

схеме ровно с n входами, а если при этом использовать один дополнитель-
ный вход, то можно реализовать любую подстановку на множестве Z

n
2 . Та-

ким образом, в качестве меры сложности подстановки на множестве Z
n
2

можно рассматривать сложность реализующей её обратимой схемы. Зада-
ча же синтеза обратимой схемы может свестись к поиску минимального
представления элемента (подстановки) в системе образующих (множество
подстановок, задаваемых обратимыми функциональными элементами) со-
ответствующей группы подстановок.

В последнее время было предложено множество различных алгоритмов
синтеза обратимых схем, состоящих из функциональных элементов NOT,
CNOT и 2-CNOT. Часть из них является переборными алгоритмами, дру-
гие используют для синтеза либо теорию групп подстановок, либо измене-
ние таблицы истинности для входного булева преобразования. Однако для
случая, когда заданная чётная подстановка на множестве Z

n
2 имеет малое

количество подвижных точек, не было предложено эффективных методов
синтеза реализующей её обратимой схемы.

Открытым вопросом на текущий момент также является поиск эффек-
тивных алгоритмов снижения сложности обратимой схемы. В большинстве
случаев существующие алгоритмы используют заранее построенные табли-
цы эквивалентных замен композиций функциональных элементов. Данные
таблицы обычно строятся для фиксированного значения числа входов об-
ратимой схемы и могут требовать значительного объёма памяти для своего
хранения.

Ещё одним открытым вопросом является изучение зависимости слож-
ности синтезируемой обратимой схемы от количества используемых допол-
нительных входов в общем случае. Исторически сложилось, что почти все
существующие работы по синтезу обратимых схем ставят перед собой цель
получить обратимую схему без дополнительных входов. Однако известен

7 Shende V. V., Prasad A. K., Markov I. L. and Hayes J. P. «Synthesis of Reversible Logic Circuits» //
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003. Vol. 22(6). Pp. 710–
722.
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эффект снижения сложности и глубины обратимых схем за счет использо-
вания дополнительных входов8,9.

Теория схемной сложности берёт своё начало с работы К. Шеннона10,
в которой он предложил в качестве меры сложности булевой функции
рассматривать сложность минимальной контактной схемы, реализующей
эту функцию. Асимптотически оптимальный метод синтеза схем в базисе
функциональных элементов, соответствующих всем двуместным булевым
функциям, был разработан О. Б. Лупановым11. Им также была установ-
лена асимптотика функции Шеннона для сложности реализации булевых
функций во всех основных классах схем, в том числе и для схем с ограни-
чением на количество соединений для одного функционального элемента.

Вопрос о вычислениях с ограниченной памятью (ограниченным чис-
лом ячеек памяти) рассматривался Н. А. Карповой12. Ею было доказано,
что в базисе классических функциональных элементов, реализующих все
p-местные булевы функции, асимптотическая оценка функции Шеннона
сложности схемы с тремя и более регистрами памяти зависит от значения
p, но не изменяется при увеличении количества используемых регистров
памяти.

О. Б. Лупановым также были рассмотрены схемы из функциональных
элементов с задержками13. Вопрос асимптотической глубины в различных
управляющих системах был рассмотрен С. А. Ложкиным14.

Авторами перечисленных работах было показано, что асимптотическая
сложность и глубина/задержка схем из классических функциональных эле-
ментов не изменяется в общем случае при асимптотическом росте количе-
ства используемой памяти.

Важным параметром является нижняя асимптотическая оценка слож-
ности обратимой схемы, состоящей из функциональных элементов NOT,
CNOT и 2-CNOT и не имеющей дополнительных входов7. Был предложен

8 Miller D. M., Wille R., Drechsler R. «Reducing Reversible Circuit Cost by Adding Lines» // Proceedings
of the 40th IEEE International Symposium on Multiple-Valued Logic (ISMVL’10), Spain, May 2010. Pp. 217–
222.

9 Abdessaied N., Wille R., Soeken M., Drechsler R. «Reducing the Depth of Quantum Circuits Using
Additional Circuit Lines» // Proceedings of the 5th International Conference on Reversible Computation
(RC’13), Victoria, BC, Canada, July 2013. Pp. 221–233.

10 Shannon C. E. «The synthesis of two-terminal switching circuits» // Bell System Technical Journal,
1949. Vol. 28(8). Pp. 59–98.

11 Лупанов О. Б. «Об одном методе синтеза схем» // Известия вузов, Радиофизика, 1958. Т. 1, №1.
С. 120–140.

12 Карпова Н. А. «О вычислениях с ограниченной памятью» // Математические вопросы киберне-
тики, вып. 2. — M.: Наука, 1989. С. 131–144.

13 Лупанов О. Б. «О схемах из функциональных элементов с задержками» // Проблемы киберне-
тики, вып. 23. — М.: Наука, 1970. С. 43–81.

14 Ложкин С. А. «О синтезе формул, сложность и глубина которых не превосходят асимптоти-
чески наилучшие оценки высокой степени точности» // Вестник Московского университета. Сер. 1.
Математика. Механика. — 2007. — №3. — С. 19–25.
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алгоритм синтеза15, позволяющий получить обратимую схему с наилучшей
известной на сегодняшний день асимптотической сложностью, состоящую
из функциональных элементов NOT, CNOT и 2-CNOT и не имеющую до-
полнительных входов. Однако верхняя оценка сложности данной схемы не
эквивалентна с точностью до порядка известной нижней оценке сложности
таких схем. При этом не было найдено никаких опубликованных результа-
тов по оценке сложности и глубины обратимых схем, состоящих из функци-
ональных элементов NOT, CNOT и 2-CNOT и имеющих дополнительные
входы.

Ещё одним многообещающим направлением исследований является изу-
чение однонаправленности (one-wayness) преобразований через построение
реализующих их схем16. В обратимой схеме при использовании дополни-
тельных входов возможно появление так называемого «вычислительного
мусора» на выходах: ненулевых значений, не являющихся частью резуль-
тата. Было показано, что любое биективное отображение можно реализо-
вать обратимой схемой без порождения вычислительного мусора17. Впо-
следствии был предложен подход по изучению асимметричных преобразо-
ваний через построение реализующих их обратимых схем18 и было сделано
предположение, что сложность прямого и обратного преобразований опре-
деляется сложностью подсхем по уборке вычислительного мусора для этих
преобразований19.

Цель диссертации.

Основными целями диссертации являются изучение обратимых схем из
функциональных элементов NOT, CNOT и 2-CNOT, разработка новых ме-
тодов синтеза таких схем и изучение зависимости их сложности и глубины
от количества используемых дополнительных входов схемы.

Научная новизна.

Все полученные в диссертации результаты являются новыми. В насто-
ящей работе впервые систематически изучается вопрос синтеза схем из
обратимых функциональных элементов при различном количестве исполь-
зуемых в схеме дополнительных входов (дополнительной памяти). Разра-

15 Maslov D. A., Dueck G. W., Miller D. M. «Techniques for the Synthesis of Reversible Toffoli Networks» //
ACM Transactions on Design Automation of Electronic Systems (TODAES), 2007. Vol. 12(4).

16 Interlando J. C. «Toward a Theory of One-way Functions via Gate Complexity of Boolean Functions» //
Ph. D. Thesis, University of Notre Dame, Indiana, USA, 2006. 100 pp.

17 Китаев А., Шень А., Вялый М. «Классические и квантовые вычисления». — М.: МЦНМО, ЧеРо,
1999. — 192 с.

18 Жуков А. Е. «Схемы из обратимых логических элементов: один подход к изучению однонаправ-
ленности» // III Международная конференция «Информационные системы и технологии» (IST’06):
труды, Минск, 2006.

19 Жуков А. Е. «Математические модели криптографии» // Защита информации. INSIDE. — 2011.
№5. — С. 78–83. — №6. — С. 40–46.
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ботан новый быстрый алгоритм синтеза обратимой схемы, реализующей
заданную чётную подстановку с малым числом подвижных точек. Пред-
ложены и систематизированы различные способы снижения сложности об-
ратимых схем, состоящих из обобщённых элементов Тоффоли. Получены
асимптотические оценки сложности, глубины и квантового веса обратимых
схем и показано, что данные оценки существенно зависят от количества
используемых дополнительных входов схемы. Разработан асимптотически
оптимальный метод синтеза обратимых схем без дополнительных входов.
Предложены различные способы синтеза обратимых схем, реализующих
алгоритм дискретного логарифмирования в конечном поле характеристи-
ки 2.

Теоретическая ценность и практическая значимость.

Работа носит не только теоретический, но и практический характер.
Предложенные методы синтеза и способы снижения сложности обратимых
схем были реализованы в программном обеспечении20 по синтезу обрати-
мых схем без дополнительных входов. Данное программное обеспечение, по
мнению автора, может быть применено в будущем при решении задач син-
теза квантовых схем малой сложности. С другой стороны, разработанные
методы снижения сложности обратимых схем позволяют изучать структу-
ру подстановок на множестве двоичных векторов при помощи изучения
структуры реализующих их обратимых схем.

Методы исследования.

В работе используются методы теории синтеза управляющих систем,
методы теории групп подстановок, мощностные методы установления ниж-
них оценок.

Публикации и апробирование.

Основные результаты диссертации опубликованы автором в работах
[1–12], из которых статьи [1–5] — в рецензируемых научных изданиях
из перечня ВАК. Результаты диссертации докладывались и обсуждались
на спецсеминаре кафедры математической кибернетики факультета ВМК
МГУ, на семинаре отдела «Интеллектуальных систем» ФИЦ ИУ РАН и на
следующих конференциях:

1. ХX Всероссийская научно-практическая конференция «Проблемы
информационной безопасности в системе высшей школы» (Москва,
МИФИ, февраль 2013).

2. V Международная конференция «Безопасные информационные тех-
нологии - 2014» (Москва, МГТУ им. Баумана, ноябрь 2014).

20 Программное обеспечение ReversibleLogicGenerator //
URL: https://github.com/dmitry-zakablukov/ReversibleLogicGenerator
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3. 9-я Международная конференция «Дискретные модели в теории
управляющих систем» (Москва и Подмосковье, МГУ, май 2015).

4. 8th Conference on Reversible Computation (RC 2016) (Италия, Болонья,
июль 2016).

Структура и объём диссертации.

Диссертация состоит из введения, 5 глав, заключения и списка литера-
туры. Текст диссертации изложен на 151 странице, содержит 32 иллюстра-
ции и 9 таблиц. Список литературы включает 105 наименований.

Краткое содержание работы

Во введении рассматривается история вопроса с обзором литерату-
ры по теме. Описываются цели диссертационной работы, научная новизна,
методы исследования и приводится список выступлений и публикаций по
теме. Также даётся краткое описание глав диссертации.

В первой главе даются базовые определения обратимых функциональ-
ных элементов NOT, CNOT и 2-CNOT, а также обобщённого элемента
k-CNOT.

Определение 1.4. Nn
j — инвертор NOT с n входами, инвертирующий

свой j-й вход:

Nn
j (〈x1, . . . , xj, . . . , xn〉) = 〈x1, . . . , xj ⊕ 1, . . . xn〉 .

Определение 1.5. Cn
i1,i2,...,ik;j

— обобщённый элемент Тоффоли
k-CNOT с n входами, инвертирующий свой j-й вход тогда и только
тогда, когда значение на всех контролирующих входах i1, . . . , ik равно 1,
j 6= i1, . . . , ik:

Cn
i1,i2,...,ik;j

(〈x1, . . . , xj, . . . , xn〉) = 〈x1, . . . , xj ⊕ xi1 ∧ . . . ∧ xik, . . . , xn〉 .

Определение 1.6. CI;J ;t — функциональный элемент, задающий бу-
лево преобразование Z

n
2 → Z

n
2 вида

CI;J ;t (〈x1, . . . , xt, . . . , xn〉) =

〈

x1, . . . , xt ⊕

(

∧
i∈I
xi

)

∧

(

∧
j∈J

x̄j

)

, . . . , xn

〉

,

где I — множество прямых контролирующих входов, J — множество
инвертированных контролирующих входов, t /∈ I ∪ J ; I ∩ J = ∅.

Вводится унифицированное обозначение обратимого элементаE(t, I, J),
где t, I и J — контролируемый выход, множество прямых контролирующих
и множество инвертированных контролирующих входов соответственно.
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Даётся определение обратимых схем, состоящих из обратимых элемен-
тов NOT, CNOT и 2-CNOT. Показывается связь модели обратимых схем
с моделью Н. А. Карповой функциональных схем с ограниченной памятью.
Вводится множество Ω2

n, состоящее из всех элементов NOT, CNOT и 2-
CNOT с n входами, и множество подстановок SΩ2

n
∈ S(Zn

2), задаваемых
всеми элементами множества Ω2

n. В разделах 1.4–1.5 при помощи теории
групп подстановок доказываются следующие леммы:

Лемма 1.19. Множество подстановок SΩ2
n

при n < 4 порождает
симметрическую группу S(Zn

2).
Лемма 1.25. Множество подстановок SΩ2

n
при n > 4 порождает

знакопеременную группу A(Zn
2).

Формулировка этих лемм и их доказательства (отличные от приведён-
ных в данной диссертации) были известны ранее. Здесь же приведены до-
казательства с целью пояснения полученных в следующих главах верхних
оценок сложности обратимых схем.

В разделе 1.6 вводится понятие обратимой схемы, реализующей за-
данное булево отображение с использованием и без использования до-
полнительной памяти (дополнительных входов) при помощи расширя-
ющего отображения φn,n+k : Z

n
2 → Z

n+k
2 вида φn,n+k(〈x1, . . . , xn〉) =

〈x1, . . . , xn, 0, . . . , 0〉 и редуцирующее отображения ψπ
n+k,n : Z

n+k
2 → Z

n
2 вида

ψπ
n+k,n(〈x1, . . . , xn+k〉) = 〈xπ(1), . . . , xπ(n)〉, где π — некоторая подстановка на

множестве Zn+k.
Определение 1.26. Обратимая схема Sg с (n + q) > m входами,

задающая булево преобразование g : Zn+q
2 → Z

n+q
2 , реализует отображе-

ние f : Zn
2 → Z

m
2 c использованием q > 0 дополнительных входов (допол-

нительной памяти), если существует такая подстановка π ∈ S(Zn+q),
что

ψπ
n+q,m(g(φn,n+q(x))) = f(x) ,

где x ∈ Z
n
2 , f(x) ∈ Z

m
2 .

Вводится понятие значимых входов и выходов обратимой схемы, а так-
же понятие вычислительного мусора на незначимых выходах. Устанавли-
вается связь между схемной сложностью реализации прямого и обратно-
го отображения через сложность обратимой схемы, реализующей прямое
отображение.

Доказывается следующее утверждение:
Утверждение 1.31. Для любой нечётной подстановки h ∈ S(Zn

2),
n > 4, существует реализующая ее обратимая схема с одним дополни-
тельным входом, состоящая из элементов множества Ω2

n.

Оценивается количество дополнительных входов, необходимых для реа-
лизации некоторого заданного сюръективного отображения. Доказывается,
что для реализации любого отображения Z

n
2 → Z

m
2 , m 6 n, требуется не

более n дополнительных входов.
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Во второй главе рассматриваются существующие алгоритмы синтеза
обратимых схем: переборные алгоритмы, непереборные быстрые алгорит-
мы и алгоритмы снижения сложности обратимой схемы. Приводится срав-
нение данных алгоритмов по основным параметрам: время синтеза, количе-
ство требуемой для синтеза памяти, сложность синтезированной обратимой
схемы. На основании данного сравнения делается вывод, что до текущего
момента не было разработано быстрых и эффективных алгоритмов синте-
за обратимой схемы, реализующей заданную подстановку с малым числом
подвижных точек. Показывается, что существующие алгоритмы синтеза
в данном случае либо требуют значительного времени для своей работы,
либо синтезируемая схема имеет избыточную сложность.

Даётся описание двух новых быстрых алгоритмов синтеза A4.1 и A4.2,
использующих теорию групп подстановок. Принцип работы этих алгорит-
мов основывается на доказательстве Леммы 1.25 из первой главы о том, что
множество подстановок, задаваемых всеми функциональными элементами
множества Ω2

n, при n > 4 генерирует знакопеременную группу подстановок
A(Zn

2). Доказывается, что наилучший из предложенных алгоритмов синте-
за A4.2 позволяет получить обратимую схему S сложности L(S) . 7n2m

для любой чётной подстановки из A(Zn
2), у которой не более 2m подвижных

точек, m 6 n.
В конце второй главы сравниваются существующие и предложенные

быстрые алгоритмы синтеза, использующие теорию групп подстановок. На
основании этого сравнения делается вывод об эффективности новых ал-
горитмов с точки зрения их быстродействия и сложности синтезируемых
обратимых схем.

В третьей главе рассматриваются различные способы снижения слож-
ности обратимых схем. В разделе 3.2 доказывается необходимое и достаточ-
ное условие коммутируемости двух обратимых функциональных элемен-
тов.

Лемма 3.2. Элементы E(t1, I1, J1) и E(t2, I2, J2) являются коммути-
рующими тогда и только тогда, когда выполняется хотя бы одно из усло-
вий:

1. t1 /∈ I2 ∪ J2 и t2 /∈ I1 ∪ J1 (в частности, t1 = t2);

2. I1 ∩ J2 6= ∅ или I2 ∩ J1 6= ∅.

В разделе 3.3 предлагаются различные эквивалентные замены компози-
ций обратимых функциональных элементов с доказательством корректно-
сти таких замен.

Замена 3.1. Композиция элементов E(t, I, J)∗E(t, I, J) может быть
исключена из схемы.
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Замена 3.2. Если I1 = I2 ∪ { k }, J2 = J1 ∪ { k }, k /∈ I2 ∪ J1, то ком-
позиция элементов E(t, I1, J1) ∗E(t, I2, J2) может быть заменена одним
элементом E(t, I2, J1).

Замена 3.3. Если существуют такие индексы p и q, что p ∈ I1 ∩ J2,
q ∈ J1 ∩ I2, I2 = I1 \ { p } ∪ { q }, J2 = J1 \ { q } ∪ { p }, то композиция
элементов E(t, I1, J1) ∗ E(t, I2, J2) может быть заменена композицией
E(t, I1, J3) ∗ E(t, I2, J3), где J3 = J1 \ { q } = J2 \ { p }.

Замена 3.4. Если t1 ∈ I2 ∪ J2, t2 /∈ I1 ∪ J1, то композиция неком-
мутирующих элементов E(t1, I1, J1) ∗E(t2, I2, J2) может быть заменена
композицией E(t2, I1 ∪ I2 \ { t1 }, J1 ∪ J2 \ { t1 }) ∗E(t2, I2, J2) ∗E(t1, I1, J1).

Замена 3.5. Если в условии замены 3.4 I1 ⊆ I2 и J1 ⊆ J2, то компози-
ция некоммутирующих элементов E(t1, I1, J1)∗E(t2, I2, J2) может быть
заменена композицией E(t2, I2∪{ t1 }, J2 \ { t1 }) ∗E(t1, I1, J1), если t1 ∈ J2,
и композицией E(t2, I2 \ { t1 }, J2 ∪ { t1 }) ∗ E(t1, I1, J1), если t1 ∈ I2.

Замена 3.6. Если t2 ∈ I1 ∪ J1, t1 /∈ I2 ∪ J2, то композиция неком-
мутирующих элементов E(t1, I1, J1) ∗E(t2, I2, J2) может быть заменена
композицией E(t2, I2, J2) ∗E(t1, I1, J1) ∗E(t1, I1 ∪ I2 \ { t2 }, J1 ∪ J2 \ { t2 }).

Замена 3.7. Если в условии замены 3.6 I2 ⊆ I1 и J2 ⊆ J1, то компози-
ция некоммутирующих элементов E(t1, I1, J1)∗E(t2, I2, J2) может быть
заменена композицией E(t2, I2, J2) ∗E(t1, I1∪{ t2 }, J1 \ { t2 }), если t2 ∈ J1,
и композицией E(t2, I2, J2) ∗ E(t1, I1 \ { t2 }, J1 ∪ { t2 }), если t2 ∈ I1.

Замена 3.8. Элемент E(t, I, J) можно заменить на композицию

функциональных элементов вида

(

∗
t∈J

E(t)

)

∗ E(t, I ∪ J) ∗

(

∗
t∈J

E(t)

)

.

Замена 3.9. Если k ∈ J , то элемент E(t, I, J) можно заменить на
композицию элементов E(t, I ∪ { k }, J \ { k }) ∗ E(t, I, J \ { k }).

Замена 3.10. Если I1 = I2 ∪ { k }, то композиция элемен-
тов E(t, I1, J) ∗ E(t, I2, J) может быть заменена одним элементом
E(t, I2, J ∪ { k }).

Замена 3.11. Если J1 = J2 ∪ { k }, то композиция элемен-
тов E(t, I, J1) ∗ E(t, I, J2) может быть заменена одним элементом
E(t, I ∪ { k }, J2).

В разделе 3.4 описывается алгоритм снижения сложности обратимых
схем, состоящих из элементов E(t, I, J), использующий предложенные эк-
вивалентные замены композиций функциональных элементов. Даётся оцен-
ка снизу временно́й сложности данного алгоритма.

В разделе 3.5 рассматриваются различные способы снижения сложно-
сти обратимой схемы на этапе её синтеза. Первый способ (параграф 3.5.1):
поиск грани булева куба B

n, такой что для найденной грани размерности k
в синтезируемой схеме можно заменить композицию порядка 2n−k−2 подряд
идущих функциональных элементов на композицию не более n элементов
E(t, I, J). Второй способ (параграф 3.5.2): эффективное разбиение циклов
в представлении исходной подстановки в виде произведения независимых
циклов для увеличения размерности грани булева куба в первом способе.
Описывается алгоритм быстрого поиска такого разбиения. Третий способ
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(параграф 3.5.3): рассмотрение произведения справа и слева в представле-
нии исходной подстановки в виде произведения транспозиций для увеличе-
ния размерности грани булева куба в первом способе.

В разделе 3.6 показывается эффективность предложенных способов сни-
жения сложности обратимой схемы на практике. Описываются результаты
экспериментов синтеза обратимых схем при помощи разработанного про-
граммного обеспечения19. Приводятся характеристики более 40 получен-
ных обратимых схем, у которых либо меньшее количество входов, либо
меньшая сложность, либо меньший квантовый вес по сравнению с извест-
ными результатами.

В четвёртой главе рассматривается вопрос асимптотической сложно-
сти и глубины обратимых схем, состоящих из функциональных элементов
множества Ω2

n и реализующих некоторое отображение Z
n
2 → Z

n
2 . В разделе

4.1 вводится множество F (n, q) всех отображений Z
n
2 → Z

n
2 , которые могут

быть реализованы такими обратимыми схемами с (n + q) входами. Рас-
сматриваются обратимые схемы, реализующие отображение f ∈ F (n, q) с
использованием q дополнительных входов (дополнительной памяти). Вво-
дятся функции Шеннона сложности L(n, q), глубины D(n, q) и квантового
веса W (n, q) обратимой схемы как функции от n и количества дополни-
тельных входов схемы q:

L(n, q) = max
f∈F (n,q)

L(f, q) ,

D(n, q) = max
f∈F (n,q)

D(f, q) ,

W (n, q) = max
f∈F (n,q)

W (f, q) .

Здесь L(f, q), D(f, q) и W (f, q) — минимальная сложность, глубина и
квантовый вес соответственно обратимой схемы, реализующей отображе-
ние f ∈ F (n, q).

В разделе 4.2 при помощи мощностного метода Риордана–Шеннона до-
казываются общие нижние оценки для функций L(n, q), D(n, q) и W (n, q).

Теорема 4.1.

L(n, q) >
2n(n− 2)

3 log2(n+ q)
−
n

3
.

Теорема 4.2.

D(n, q) >
2n(n− 2)

3(n+ q) log2(n+ q)
−

n

3(n+ q)
.

12



Теорема 4.3.

W (n, q) > min
(

W (C),W (T)
)

·

(

2n(n− 2)

3 log2(n+ q)
−
n

3

)

.

Здесь W (C) и W (T) — квантовый вес функциональных элементов
NOT/CNOT и 2-CNOT соответственно.

В разделе 4.3 предлагается обобщение алгоритма синтеза A4.2, описан-
ного во второй главе: исходная подстановка из A(Zn

2) представляется в виде
произведения не пар независимых транспозиций, а групп по K независи-
мых транспозиций в каждой группе. Доказывается, что любая такая груп-
па может быть задана композицией одного обобщённого элемента Тоффоли
с большим количеством контролирующих входов и множества элементов
CNOT и 2-CNOT. Доказываются верхние оценки для характеристик обра-
тимых схем без дополнительной памяти:

Теорема 4.5.

L(n, 0) 6
3n2n+4

log2 n− log2 log2 n− log2 φ(n)
(1 + ε(n)) ,

где φ(n) — любая сколь угодно медленно растущая функция такая, что
φ(n) < n/ log2 n,

ε(n) =
1

6φ(n)
+

(

8

3
− o(1)

)

log2 n · log2 log2 n

n
.

Теорема 4.6.

L(n, 0) ≍
n2n

log2 n
.

Теорема 4.7.

D(n, 0) 6
n2n+5

log2 n− log2 log2 n− log2 φ(n)
(1 + ε(n)) ,

где φ(n) — любая сколь угодно медленно растущая функция такая, что
φ(n) < n/ log2 n,

ε(n) =
1

4φ(n)
+ (4 + o(1))

log2 n · log2 log2 n

n
.

Теорема 4.8.

W (n, 0) 6
n2n+4

(

W (C)(1 + εC(n)) + 2W (T)(1 + εT (n))
)

log2 n− log2 log2 n− log2 φ(n)
,
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где φ(n) — любая сколь угодно медленно растущая функция такая, что
φ(n) < n/ log2 n,

εC(n) =
1

2φ(n)
−

(

1

2
− o(1)

)

·
log2 log2 n

n
,

εT (n) = (4− o(1))
log2 n · log2 log2 n

n
.

В разделе 4.4 описывается асимптотически оптимальный метод синтеза
обратимых схем с дополнительной памятью, аналогичный методу Лупано-
ва для классических схем. При описании данного метода подсчитывается
количество используемых дополнительных входов обратимой схемы (до-
полнительной памяти) при достижении минимальной сложности и мини-
мальной глубины схемы. Доказываются верхние оценки для характеристик
обратимых схем с дополнительной памятью.

Теорема 4.10. L(n, q0) . 2n при q0 ∼ n2n−⌈n /φ(n)⌉, где φ(n) и ψ(n) —
любые сколь угодно медленно растущие функции такие, что φ(n) 6
n /(log2 n+ log2 ψ(n)).

Теорема 4.11. L(n, q0) ≍ 2n при q0 ∼ n2n−⌈n /φ(n)⌉, где φ(n) и ψ(n) —
любые сколь угодно медленно растущие функции такие, что φ(n) 6
n /(log2 n+ log2 ψ(n)).

Теорема 4.12. W (n, q0) . W (C) · 2n + W (T) · n2n−⌈n /φ(n)⌉ при
q0 ∼ n2n−⌈n /φ(n)⌉, где φ(n) и ψ(n) — любые сколь угодно медленно расту-
щие функции такие, что φ(n) 6 n /(log2 n+ log2 ψ(n)).

Теорема 4.13. Любое булево отображение f : Zn
2 → Z

m
2 мож-

но реализовать с помощью обратимой схемы S, имеющей сложность
L(S) . m2n / n, при использовании q ∼ (m + 1)2n−⌈n /φ(n)⌉ дополнитель-
ных входов, где φ(n) и ψ(n) — любые сколь угодно медленно растущие
функции такие, что φ(n) 6 n /(log2 n+ log2 ψ(n)).

Теорема 4.15. D(n, q1) . 3n при q1 ∼ 2n. Обратимая схема S, ре-
ализующая отображение f ∈ F (n, q1) с глубиной D(S) ∼ 3n, имеет
сложность L(S) ∼ 2n+1 и квантовый вес W (S) ∼ W (C) · 2n+1 + W (T)·
·n2n−⌈n /φ(n)⌉, где φ(n) и ψ(n) — любые сколь угодно медленно растущие
функции такие, что φ(n) 6 n /(log2 n+ log2 ψ(n)).

Теорема 4.16. D(n, q2) . 2n при q2 ∼ φ(n)2n, где φ(n) — любая сколь
угодно медленно растущая функция такая, что φ(n) = o(n). Обратимая
схема S, реализующая отображение f ∈ F (n, q2) с глубиной D(S) ∼ 2n,
имеет сложность L(S) ∼ φ(n)2n+1 и квантовый вес W (S) ∼ W (C) ·
φ(n)2n+1 +W (T)· ·2n−⌈n /φ(n)⌉.

Получены общие верхние оценки сложности, глубины и квантового веса
обратимых схем.

Теорема 4.18. Для любого значения q такого, что 8n < q .
n2n−⌈n /φ(n)⌉, где φ(n) и ψ(n) — любые сколь угодно медленно растущие
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функции такие, что φ(n) 6 n /(log2 n+ log2 ψ(n)), верно соотношение

L(n, q) . 2n +
8n2n

log2(q − 4n)− log2 n− 2
.

Следствие 4.19. Для любого значения q такого, что 8n < q .
n2n−⌈n /φ(n)⌉, где φ(n) и ψ(n) — любые сколь угодно медленно растущие
функции такие, что φ(n) 6 n /(log2 n+ log2 ψ(n)), верны соотношения

W (n, q) .W (T) ·

(

2n +
8 · 2n

log2(q − 4n)− log2 n− 2

)

+

+
32W (C)n2n

log2(q − 4n)− log2 n− 2
,

W (n, q) .W (T) ·

(

2n +
8n2n

log2(q − 4n)− log2 n− 2

)

+

+
32W (C)2n

log2(q − 4n)− log2 n− 2
.

Теорема 4.20. Для любого значения q такого, что n2 . q .
2n−⌈n /φ(n)⌉+1, где φ(n) и ψ(n) — любые сколь угодно медленно растущие
функции такие, что φ(n) 6 n /(log2 n+ log2 ψ(n)), верно соотношение

L(n, q) ≍
n2n

log2 q
.

Теорема 4.21. Для любого значения q такого, что 0 6 q .
2n−⌈n /φ(n)⌉+1, где φ(n) и ψ(n) — любые сколь угодно медленно растущие
функции такие, что φ(n) 6 n /(log2 n+ log2 ψ(n)), верно соотношение

LA(n, q) ≍
n2n

log2(n+ q)
.

Здесь LA(n, q) — функция Шеннона сложности обратимых схем, реализу-
ющих отображения Z

n
2 → Z

n
2 только из знакопеременной группы A(Zn

2).
Теорема 4.23. Для любого значения q такого, что 8n < q .

n2n−⌈n /φ(n)⌉, где φ(n) и ψ(n) — любые сколь угодно медленно растущие
функции такие, что φ(n) 6 n /(log2 n+ log2 ψ(n)), верно соотношение

D(n, q) . 2n+1(2, 5 + log2 n− log2(log2(q − 4n)− log2 n− 2)) .

На основании полученных асимптотических оценок делается вывод о
зависимости значений характеристик обратимой схемы от количества до-
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полнительных входов в ней.
Утверждение 4.24. Использование дополнительной памяти в обра-

тимых схемах, состоящих из элементов NOT, CNOT и 2-CNOT, почти
всегда позволяет существенно снизить сложность, глубину и кванто-
вый вес таких схем.

В пятой главе показывается применение обратимых схем для решения
задачи схемной реализации некоторых вычислительно асимметричных пре-
образований. В разделе 5.1 подробно рассматривается алгоритм дискрет-
ного логарифмирования по основанию примитивного элемента в конечном
поле характеристики 2 на примере фактор-кольца F2[x] / f(x), где f(x) —
неприводимый многочлен степени n, и его реализация обратимой схемой.

В разделе 5.2 приводятся результаты экспериментов синтеза обратимых
схем без дополнительной памяти и с дополнительной памятью, реализую-
щих алгоритм дискретного логарифмирования, при помощи разработанно-
го программного обеспечения19. Показывается, что уже при использовании
n дополнительных входов сложность таких схем существенно снижается.

В параграфе 5.2.3 доказывается верхняя асимптотическая оценка слож-
ности обратимой схемы S, реализующей алгоритм дискретного лога-
рифмирования в фактор-кольце F2[x] / f(x), описываемый отображением
flog : Z

n
2 → Z

n
2 :

Теорема 5.4. Существует обратимая схема Slog, состоящая из
функциональных элементов множества Ω2

n+q и реализующая отображе-

ние flog со сложностью L(Slog) . (2n+1 · log2 n) / n при использовании
q ∼ 2n−⌈n /φ(n)⌉+2 · log2 n дополнительных входов, где φ(n) и ψ(n) — любые
сколь угодно медленно растущие функции такие, что φ(n) 6 n /(log2 n+
log2 ψ(n)).

Данная оценка асимптотически ниже, чем для произвольного булева
преобразования, и достигается при асимптотически меньшем количестве
дополнительных входов.

В разделе 5.3 рассматривается вопрос схемной сложности реализации
алгоритма, обратного к заданному, и делается попытка объяснить разницу
в схемной сложности для прямого и обратного алгоритмов через необрати-
мость и потерю части информации во время работы прямого алгоритма:

Гипотеза 5.5. Обратимая схема, реализующая алгоритм, обратный
к заданному, имеет сложность с бо́льшей на порядок степенью роста по
отношению к сложности обратимой схемы, реализующей прямой алго-
ритм, если при переходе от прямого алгоритма к обратному теряется
какая-то часть информации.

В подтверждение Гипотезы 5.5 приводятся примеры обратимых схем,
реализующие такие вычислительно асимметричные преобразования, как
сложение в кольце многочленов, умножение и возведение в степень в ко-
нечном поле характеристики 2.
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Заключение содержит список основных результатов, полученных в
работе, список открытых вопросов и предложений по дальнейшим исследо-
ваниям.

Основные результаты диссертации

1. Разработан новый быстрый алгоритм синтеза обратимой схемы, со-
стоящей из функциональных элементов NOT, CNOT и 2-CNOT и ре-
ализующей заданную чётную подстановку с малым числом подвиж-
ных точек.

2. Предложены и систематизированы различные способы снижения
сложности обратимых схем, состоящих из обобщённых элементов
Тоффоли с прямыми и инвертированными контролирующими входа-
ми.

3. Получены нижние и верхние асимптотические оценки сложности, глу-
бины и квантового веса обратимых схем, состоящих из функциональ-
ных элементов NOT, CNOT и 2-CNOT. Показано, что данные оценки
существенно зависят от количества используемых дополнительных
входов схемы.

4. Разработан быстрый, асимптотически оптимальный метод синтеза об-
ратимых схем без дополнительных входов, состоящих из функцио-
нальных элементов NOT, CNOT и 2-CNOT.

5. Предложены различные способы синтеза обратимых схем, состоящих
из функциональных элементов NOT, CNOT и 2-CNOT и реализую-
щих алгоритм дискретного логарифмирования в конечном поле ха-
рактеристики 2.
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