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Обозначения

Ф.Э. — функциональный элемент

NOT — инвертор

Nn
t — инвертор c n входами, t — контролируемый выход

Nt — инвертор, t — контролируемый выход

CNOT — управляемый инвертор

Cn
i;t — управляемый инвертор с n входами, t — контролируемый выход,

i — контролирующий вход

Ci;t — управляемый инвертор, t — контролируемый выход,

i — контролирующий вход

2-CNOT — элемент Тоффоли

Cn
i1,i2;t — элемент Тоффоли с n входами, t — контролируемый выход,

i1, i2 — контролирующие входы

Ci1,i2;t — элемент Тоффоли, t — контролируемый выход,

i1, i2 — контролирующие входы

k-CNOT — обобщённый элемент Тоффоли с k контролирующими входами

Cn
I;t — обобщённый элемент Тоффоли с n входами, t — контролируемый

выход, I — множество контролирующих входов

CI;t — обобщённый элемент Тоффоли, t — контролируемый выход,

I — множество контролирующих входов

E(t) — инвертор, t — контролируемый выход

E(t, I) — обобщённый элемент Тоффоли, t — контролируемый выход,

I — множество прямых контролирующих входов

E(t, I, J) — обобщённый элемент Тоффоли, t — контролируемый выход,

I — множество прямых контролирующих входов,

J — множество инвертированных контролирующих входов

Ω2
n — множество всех элементов NOT, CNOT и 2-CNOT с n входами

Ωn — множество всех элементов NOT и k-CNOT с n входами

Ω2
∗ — множество всех элементов NOT, CNOT и 2-CNOT

Z
n
2 — множество двоичных векторов длины n

S(M) — симметрическая группа подстановок на множестве M

A(M) — знакопеременная группа подстановок на множестве M

S — обратимая схема

L(S) — сложность обратимой схемы S

L(C)(S) — количество элементов NOT и CNOT в обратимой схеме S

L(T )(S) — количество элементов 2-CNOT в обратимой схеме S

D(S) — глубина обратимой схемы S

W (E) — квантовый вес функционального элемента E
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W (C) — квантовый вес элемента NOT/CNOT

W (T ) — квантовый вес элемента 2-CNOT

W (S) — квантовый вес обратимой схемы S

Q(S) — количество дополнительных входов схемы S

P2(n, n) — множество всех булевых отображений Z
n
2 → Z

n
2

L(f, q) — минимальная сложность обратимой схемы, реализующей булево

отображение f с q дополнительными входами

L(n, q) — функция сложности по Шеннону обратимой схемы

с q дополнительными входами

D(f, q) — минимальная глубина обратимой схемы, реализующей булево

отображение f с q дополнительными входами

D(n, q) — функция глубины по Шеннону обратимой схемы

с q дополнительными входами

W (f, q) — минимальный квантовый вес обратимой схемы, реализующей

булево отображение f с q дополнительными входами

W (n, q) — функция квантового веса по Шеннону обратимой схемы

с q дополнительными входами
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Введение

История вопроса

При проектировании цифровых микросхем всё чаще во главу угла ставится требова-

ние компактности микросхемы и её низкого энергопотребления. Если тепловые потери во

время вычислительного процесса будут относительно высокими, производители не смогут

выпускать новые масштабируемые решения для рынка, имеющие достаточно низкую рабо-

чую температуру, а пользователи будут вынуждены искать подходящий источник питания

для вычислительного устройства. При разработке мобильных систем ограниченное энерго-

потребление становится уже критически важным.

С одной стороны, проблема тепловых потерь во время вычислительного процесса свя-

зана с несовершенством современных технологий производства цифровых микросхем и ис-

пользуемых для этого материалов. Однако с течением времени все эти недостатки постепенно

устраняются. Возникает вопрос: если полностью устранить все технологические недостатки,

то можно ли добиться нулевого уровня тепловых потерь во время вычислительного процес-

са? Ответ на этот вопрос даёт фундаментальный физический принцип, предсказанный Дж.

фон Нейманом в 1949 году [3] и сформулированный Р. Ландауэром в 1961 году [65]: в лю-

бой вычислительной системе, независимо от её физической реализации, при потере 1 бита

информации выделяется минимум kT ln 2 Дж тепла, где k — постоянная Больцмана, T —

абсолютная температура, при которой происходят вычисления.

Продолжительное время данный принцип оставался всего лишь чистой теорией, не

подкреплённой результатами экспериментов. Это было связано с трудностями измерения

малых объёмов выделяемой энергии. Однако в 2012 году учёным удалось провести экспе-

римент с коллоидной частицей, впервые подтвердивший принцип Р. Ландауэра [40]. В 2014

был проведён ещё один эксперимент, показавший, что при уменьшении возможных макро-

скопических состояний системы в 2 раза выделяется минимум kT ln 2 Дж тепла [62]. Это

также подтверждает принцип Р. Ландауэра, поскольку потерю 1 бита информации можно

рассматривать как уменьшение возможных состояний системы в 2 раза. В других теорети-

ческих работах также было показано [89], что стирание 1 бита информации невозможно без

увеличения общей энтропии системы.

С математической точки зрения, уменьшение состояний системы в 2 раза можно рас-

сматривать как результат работы сюръективной функции: если для двух различных наборов

входных значений X1 6= X2 значение функции совпадает, f(X1) = f(X2) = Y , то можно счи-

тать, что произошла потеря 1 бита информации о входном значении функции f . Если к

значению Y добавить один бит и считать, что он равен 0, если на вход функции f был подан

набор X1, и равен 1, если на вход функции f был подан набор X2, то потери информации не

происходит. Таким образом, вычисление значения булевой функции от n переменных, рав-

ной константе, приводит к потере n бит информации. Мы тем самым пришли к тепловым
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потерям, как результату необратимости вычислений: только биективная функция является

обратимой на всём множестве входных значений.

Однако насколько величина в kT ln 2 Дж является существенной? Несложно посчи-

тать, что при комнатной температуре она будет равна 2, 8 · 10−21 Дж, что само по себе

крайне мало. Тем не менее, в современных вычислительных устройствах одновременно ра-

ботают миллионы транзисторов. Если предположить, что на каждом такте работы каждый

из этих транзисторов, реализуя необратимое вычисление, теряет 1 бит информации и выде-

ляет указанное количество энергии, то общая величина тепловых потерь уже не будет столь

незначительной. К примеру, процессор Intel Core i7 содержит более 700 млн. транзисторов и

работает на частоте выше 2 ГГц. При пиковой нагрузке температура этого процессора может

доходить до 80℃. Если все вычисления в этом процессоре будут необратимы, мы получим

примерно 4, 7 мВт выделяемой энергии. На фоне общего энергопотребления данная величина

продолжает выглядеть незначительной.

Современные технологии развиваются очень быстро. Эмпирический закон Мура [74],

сформулированный им ещё в 1965 году, гласит, что примерно каждые 2 года количество

транзисторов на единицу площади удваивается. В последнее время скорость роста плотно-

сти транзисторов несколько снизилась, но всё ещё остаётся экспоненциальной [44]. Таким

образом, уже примерно к 2030 году размеры транзисторов при соблюдении закона Мура

достигнут атомарного уровня. Некоторые разрабатываемые технологии теоретически могут

позволить достичь плотности размещения логических устройств в 1017 на кубический сан-

тиметр [68]. Согласно принципу Р. Ландауэра, если все производимые вычисления будут

необратимы, такое количество вычислительных устройств при комнатной температуре во

время работы на частоте в 10 ГГц должно выделять более 3 · 106 Вт. В то же время, ком-

пьютер, содержащий в 1000 раз больше логических устройств с такой плотностью, должен

будет выделять 3 · 109 Вт из-за необратимости вычислений, имея при этом всё ещё допусти-

мые физические размеры (10 см3). Отвод такого количества тепловой энергии представляет

собой неразрешимую технологическую проблему.

Если потеря информации во время вычислительного процесса приводит к тепловым

потерям, то логично предположить, что полностью обратимый процесс без потери инфор-

мации должен снижать общий уровень выделяемой энергии. Ч. Беннет показал [38], что

нулевой уровень тепловых потерь возможен только тогда, когда все логические устройства

схемы являются обратимыми, другими словами, когда они реализуют биективное отобра-

жение. Отметим, что обратимость вычислений является необходимым, но не достаточным

условием нулевого уровня выделяемой энергии во время вычислительного процесса. Краткая

история обратимых вычислений может быть найдена в работе [39].

Однако обратимость важна не только для снижения энергопотребления вычислитель-

ных устройств. В некоторых случаях вычисления должны быть обратимыми в силу проис-

ходящих физических процессов. Примером могут служить квантовые вычисления [75, 76],

представляющие особый интерес в связи с тем, что с их помощью некоторые экспоненциаль-
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но сложные проблемы могут быть решены за полиномиальное время [41, 48, 53, 63, 75, 84–

86]. К примеру, для дискретного логарифмирования и факторизации чисел известен поли-

номиальный квантовый алгоритм Шора [85]. В 2013 году появился первый коммерческий

512-кубитный квантовый компьютер [87]. Такие успехи современных технологий позволяют

надеяться, что квантовые алгоритмы найдут широкое применение в ближайшем будущем.

Схемы же из обратимых функциональных элементов являются строгой математической мо-

делью физических процессов, происходящих во время квантовых вычислений.

Существуют и другие способы создания обратимых логических устройств и элементов

цифровых схем, помимо квантовых технологий. Среди них можно выделить КМОП техно-

логии [90] (в частности, адиабатическая [54] и термодинамическая [14] обратимая логика),

оптические технологии [47], нанотехнологии [52] и технологии с использованием молекул

ДНК [49]. Таким образом, обратимые схемы являются не только математической абстракци-

ей, но и реальными вычислительными устройствами.

Большинство функциональных элементов, рассматриваемых в отечественной литера-

туре по синтезу управляющих систем, не являются обратимыми. К примеру, конъюнктор

и дизъюнктор реализуют необратимые отображения. Если быть совсем точным, ни один

функциональный элемент, реализующий булеву функцию более чем одной переменной, не

является обратимым. Это следует из того, что обратимые функциональные элементы долж-

ны реализовывать биективное булево отображение. Единственным обратимым классическим

функциональным элементом является инвертор (в англоязычной литературе обозначаемый

как NOT). За последние десятелетия было предложено несколько новых обратимых функ-

циональных элементов, среди которых: элемент Фейнмана [45], именуемый также контроли-

руемой инверсией (Controlled NOT, CNOT); элемент Тоффоли [88], именуемый также кон-

тролируемой контролируемой инверсией (Controlled Controlled NOT, CCNOT или 2-CNOT);

элемент Фредкина [46] и ряд других.

Интерес к функциональным элементам CNOT и 2-CNOT был обусловлен развитием

теории квантовых вычислений. В работе [37] было показано, что каждому элементу NOT со-

ответствует однокубитный квантовый вентиль, элементу CNOT — двухкубитный квантовый

вентиль, а элемент Тоффоли может быть реализован в виде композиции 5 двухкубитных

квантовых вентилей. В дальнейшем такие квантовые реализации стали определять кван-

товый вес обратимых функциональных элементов: количество одно- и двухкубитных кван-

товых вентилей, необходимых для их реализации. Появилась потребность в эффективных

алгоритмах синтеза обратимых схем с минимальным квантовым весом. В той же работе [37]

было доказано, что элемент 2-CNOT является универсальным в том плане, что с его по-

мощью можно реализовать любую булеву функцию от n переменных. Однако полученная

схема в некоторых случаях будет содержать больше, чем n входов. Дальнейшие исследова-

ния показали [83, 97], что с помощью элементов NOT, CNOT и 2-CNOT можно реализовать

любую чётную подстановку на множестве Zn
2 в обратимой схеме ровно с n входами, а если при

этом использовать один дополнительный вход, то можно реализовать любую подстановку на
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множестве Z
n
2 .

Таким образом, как и в случае схемной сложности булевой функции, в качестве меры

сложности подстановки на множестве Z
n
2 можно рассматривать сложность реализующей её

обратимой схемы. Задача же синтеза обратимой схемы может свестись к поиску минималь-

ного представления элемента (подстановки) в системе образующих (множество подстановок,

задаваемых обратимыми функциональными элементами) соответствующей группы подста-

новок. В работах [58, 64, 67, 69–71, 80, 83, 91, 92] были предложены различные алгоритмы

синтеза обратимых схем, состоящих из функциональных элементов NOT, CNOT и 2-CNOT.

Более подробно эти алгоритмы будут рассмотрены во второй главе. Часть из них является

переборными алгоритмами, другие используют для синтеза либо теорию групп подстановок,

либо изменение таблицы истинности для входного булева преобразования. Однако стоит от-

метить, что для случая, когда заданная чётная подстановка на множестве Z
n
2 имеет малое

количество подвижных точек, не было предложено эффективных методов синтеза реализую-

щей её обратимой схемы. В этом случае существующие алгоритмы либо требуют значитель-

ного времени для синтеза, либо сложность полученной обратимой схемы является слишком

высокой по сравнению со схемами, синтезированными другими алгоритмами.

Открытым вопросом на текущий момент также является поиск эффективных алгорит-

мов снижения сложности обратимой схемы. Практически во всех существующих алгоритмах

синтеза описывается этап снижения сложности синтезируемой схемы [58, 71, 80, 83]. Во всех

рассмотренных автором работах для этой цели используются заранее построенные таблицы

эквивалентных замен композиций функциональных элементов. Такие таблицы строятся либо

по некоторому набору правил [58, 71, 80], либо поиском минимальных схем короткой длины

полным перебором [83]. Преимущество такого подхода заключается в экономии времени при

снижении сложности обратимой схемы. Однако, по мнению автора, один недостаток данного

подхода не позволяет эффективно его использовать на практике: таблицы эквивалентных

замен обычно строятся для фиксированного значения числа входов обратимой схемы и при

росте этого значения начинают требовать значительного объёма памяти для своего хранения.

Ещё одним открытым вопросом является изучение зависимости сложности синтези-

руемой обратимой схемы от количества используемых дополнительных входов в общем слу-

чае. Исторически сложилось, что почти все существующие работы по синтезу обратимых

схем ставят перед собой цель получить обратимую схему без дополнительных входов, а в

остальных работах упор делается на снижение количества дополнительных входов [66]. Это

связано с тем, что в квантовых вычислениях, в отличие от классических, технологически

сложно и дорого добавлять дополнительные входы в схему. С другой стороны, эффект сни-

жения сложности и глубины обратимых схем за счёт использования дополнительных входов

уже известен [31, 72]: к примеру, обобщённый элемент Тоффоли [88] с k контролирующими

входами может быть представлен в виде композиции либо 8(k − 3) элементов 2-CNOT без

использования дополнительных входов, либо (k−1) элементов 2-CNOT, но с использованием

(k − 2) дополнительных входов [37]. Таким образом, для произвольной чётной подстановки
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на множестве Z
n
2 связь «сложность-память» для реализующей её обратимой схемы до сих

пор установлена не была.

Теория схемной сложности берёт своё начало с работы К. Шеннона [82], в которой

он предложил в качестве меры сложности булевой функции рассматривать сложность ми-

нимальной контактной схемы, реализующей эту функцию. Им же было показано, что почти

все булевы функции от n переменных реализуются со сложностью порядка 2n / n в базисе

функциональных элементов, соответствующих всем двуместным булевым функциям. Асимп-

тотически оптимальный метод синтеза схем в этом базисе функциональных элементов был

разработан О.Б. Лупановым [19, 30]. Им также была установлена асимптотика функции

Шеннона для сложности реализации булевых функций во всех основных классах схем: класс

формул [17], класс контактных [15] и релейно-контактных [16] схем. Во всех этих работах не

рассматривался вопрос связи «сложность-память» для синтезируемых схем.

В классических необратимых схемах не запрещено ветвление входов и выходов функ-

циональных элементов. Однако в случае обратимых схем такие ветвления запрещены. В

работах [9, 20, 28] был рассмотрен вопрос синтеза схем с ограничением на количество со-

единений для одного функционального элемента. Однако, как и в предыдущем случае, по-

лученные оценки не учитывали количество использованных дополнительных входов схемы

(дополнительной памяти).

Вопрос о вычислениях с ограниченной памятью (ограниченным числом «реги-

стров»/ячеек памяти) рассматривался Н.А. Карповой в работе [6]. Ею было доказано, что в

базисе классических функциональных элементов, реализующих все p-местные булевы функ-

ции, асимптотическая оценка функции Шеннона сложности схемы с тремя и более регистра-

ми памяти зависит от значения p, но не изменяется при увеличении количества используемых

регистров памяти. Также было показано, что существует булева функция, которая не может

быть реализована в маломестных базисах с использованием менее, чем двух регистров па-

мяти. В случае же базиса из всех элементов NOT, CNOT и 2-CNOT уже конъюнкция трёх

переменных не может быть реализована с использованием менее, чем 5-ти регистров памяти:

3 регистра для хранения значения входных переменных, 1 регистр для промежуточного и 1

для итогового результата. В работе [8] было показано, что для некоторого класса булевых

функций ослабление ограничения на ширину схемы с 2 до 3 позволяет снизить асимптотиче-

скую сложность схемы. В работе [21] было показано, что для некоторых классов конвейерных

схем увеличение количества допустимой памяти приводит к асимптотическому снижению

сложности схемы.

О.Б. Лупановым также были рассмотрены схемы из функциональных элементов с

задержками [18]. Было доказано, что в регулярном базисе функциональных элементов лю-

бая булева функция может быть реализована схемой, имеющей задержку T (n) ∼ τn, где

τ — минимум приведённых задержек всех элементов базиса, при сохранении асимптотически

наилучшей сложности. Однако не рассматривался вопрос зависимости T (n) от количества

используемых регистров памяти. В работах [25, 27] было доказано, что если различать за-
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держку и глубину схемы, то даже в минимальной схеме задержка может быть почти в 2

раза меньше глубины (при одинаковых единицах измерения). В работе [26] было доказано,

что в некоторых случаях эти величины могут различаться на порядок. Вопрос асимптотиче-

ской глубины в различных управляющих системах был рассмотрен в работах [11, 13]. Тем не

менее, связь «глубина-память» или «задержка-память» в данных работах также не рассмат-

ривалась. В работах [11, 18] было показано, что в некоторых классах управляющих систем

удаётся построить схему, сложность и задержка/глубина которой не превосходят асимптоти-

чески наилучшие оценки. В случае обратимых схем такого результата добиться, по-видимому,

не удастся, т. к. в обратимых схемах запрещено ветвление входов и выходов функциональ-

ных элементов. Но никаких конкретных доказательств данного утверждения до настоящего

времени получено не было.

В настоящее время одним из основных направлений научных работ в отечественной ли-

тературе, связанных со сложностью управляющих систем из некоторых классов, является по-

лучение асимптотических оценок функции Шеннона высокой степени точности [10, 12, 28, 29].

В работе [66] были получены асимптотические верхние и нижние оценки сложности обрати-

мых схем, состоящих из обобщённых элементов Тоффоли с прямыми и инвертированными

контролирующими входами, а также был предложен асимптотически оптимальный метод

синтеза обратимых схем из элементов mEXOR (терминология автора работы [66]). Тем не

менее, в данной работе не рассматривался вопрос асимптотической глубины, а также не бы-

ло выявлено связей «сложность-память» и «глубина-память» для обратимых схем, в том

числе, состоящих из функциональных элементов NOT, CNOT и 2-CNOT. В работе [1] была

доказана нижняя оценка сложности обратимых схем, состоящих из обобщённых элеметов

Тоффоли и не имеющей дополнительных входов. В работе [83] была доказана нижняя асимп-

тотическая оценка сложности обратимой схемы, состоящей из функциональных элементов

NOT, CNOT и 2-CNOT и не имеющей дополнительных входов. В работе [67] была доказа-

на наилучшая известная на сегодняшний день верхняя асимптотическая оценка сложности

обратимой схемы, состоящей из функциональных элементов NOT, CNOT и 2-CNOT и не

имеющей дополнительных входов.

Ещё одним многообещающим направлением исследований является изучение однона-

правленности (one-wayness) преобразований через построение реализующих их схем [4, 57]. В

обратимой схеме при использовании дополнительных входов возможно появление так назы-

ваемого «вычислительного мусора» на выходах: ненулевых значений, не являющихся частью

результата. В работе [7] было показано, что любое биективное отображение можно реализо-

вать обратимой схемой без порождения вычислительного мусора. Впоследствии был предло-

жен подход по изучению асимметричных преобразований через построение реализующих их

обратимых схем [5] и было сделано предположение, что сложность прямого и обратного пре-

образований определяется сложностью подсхем по уборке вычислительного мусора для этих

преобразований [4]. Если построить подсхему по уборке вычислительного мусора (обнулить

значения на соответствующих выходах), можно получить обратимую схему, в которой прояв-
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ляется структура как прямого, так и обратного преобразования: если зеркально отобразить

данную схему, получится схема, реализующая обратное преобразование.

На сегодняшний день были получены обратимые схемы для следующих асимметрич-

ных преобразований:

1. Линейные преобразования и нелинейные подстановки из работ [42, 55]: обратимые схе-

мы, реализующие эти преобразования без порождения вычислительного мусора на вы-

ходах, описаны в работах [4, 93]. Асимптотическая сложность этих схем согласуется с

полученными теоретическими данными о сложности соответствующих преобразований.

2. Двоичное сложение и вычитание. Обратимая схема, реализующая двоичный сумматор

без порождения вычислительного мусора на выходах, описана в работе [93]. Асимпто-

тическая сложность этой схемы согласуется с полученными теоретическими данными

о сложности соответствующих преобразований, полученных в работе [24].

3. Умножение и деление в кольце многочленов и конечном поле характеристики 2. Обрати-

мые схемы, реализующие эти преобразования, описаны в работе [93]. В данном случае

асимптотическая сложность этих схем оказалась выше, чем полученные теоретические

данные о сложности этих преобразований [23].

Таким образом, остаётся открытым вопрос об эффективной реализации асимметричных пре-

образований обратимыми схемами без порождения вычислительного мусора. Следующим

таким асимметричным преобразованием, представляющим наибольший интерес, по мнению

автора, является алгоритм дискретного логарифмирования (неквантовый), для которого

не удалось найти какие-либо опубликованные результаты по его реализации в обратимых

схемах. Однако стоит отметить, что на сегодняшний день известны квантовые алгоритмы

дискретного логарифмирования (к примеру, алгоритм Шора) с полиномиальной временно́й

сложностью [85]. Данные алгоритмы могут быть естественным образом реализованы обрати-

мой схемой.
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Цели и задачи работы

Целью работы является изучение обратимых схем из функциональных элементов

NOT, CNOT и 2-CNOT, разработка новых методов синтеза таких схем и изучение зависи-

мости их сложности и глубины от количества используемых дополнительных входов схемы.

В работе используются методы теории синтеза управляющих систем, методы теории групп

подстановок, мощностные методы установления нижних оценок.

Работа носит не только теоретический, но и практический характер. Предложенные

методы синтеза и способы снижения сложности обратимых схем были реализованы в про-

граммном обеспечении [103] по синтезу обратимых схем без дополнительных входов. Данное

программное обеспечение, по мнению автора, может быть применено в будущем при решении

задач синтеза квантовых схем малой сложности. С другой стороны, разработанные методы

снижения сложности обратимых схем позволяют изучать структуру подстановок на множе-

стве двоичных векторов при помощи изучения структуры реализующих их обратимых схем.

Все полученные в диссертации результаты являются новыми. В настоящей работе

впервые систематически изучается вопрос синтеза схем из обратимых функциональных эле-

ментов при различном количестве используемых в схеме дополнительных входов (дополни-

тельной памяти). Разработан новый быстрый алгоритм синтеза обратимой схемы, реали-

зующей заданную чётную подстановку с малым числом подвижных точек. Предложены и

систематизированы различные способы снижения сложности обратимых схем, состоящих из

обобщённых элементов Тоффоли. Получены асимптотические оценки сложности, глубины

и квантового веса обратимых схем и показано, что данные оценки существенно зависят от

количества используемых дополнительных входов схемы. Разработан асимптотически опти-

мальный метод синтеза обратимых схем без дополнительных входов. Предложены различные

способы синтеза обратимых схем, реализующих алгоритм дискретного логарифмирования в

конечном поле характеристики 2.

Основные результаты диссертации опубликованы автором в работах [93–105], из ко-

торых статьи [95, 96, 98, 99, 102] — в рецензируемых научных изданиях из перечня ВАК.

Результаты диссертации докладывались и обсуждались на спецсеминаре кафедры математи-

ческой кибернетики факультета ВМК МГУ, на семинаре отдела «Интеллектуальных систем»

ФИЦ ИУ РАН и на следующих конференциях:

1. ХX Всероссийская научно-практическая конференция «Проблемы информационной

безопасности в системе высшей школы» (Москва, МИФИ, февраль 2013).

2. V Международная конференция «Безопасные информационные технологии - 2014»
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Краткое содержание работы

Диссертация состоит из введения, 5 глав, заключения и списка литературы. Текст дис-

сертации изложен на 151 странице, содержит 32 иллюстрации и 9 таблиц. Список литературы

включает 105 наименований.

В первой главе даются базовые определения обратимых функциональных элементов

NOT, CNOT и 2-CNOT, обобщённого элемента k-CNOT, а также обратимых схем, состоя-

щих из этих элементов. Вводится множество Ω2
n, состоящее из всех элементов NOT, CNOT и

2-CNOT с n входами. Доказывается, что, во-первых, каждый Ф.Э. из множества Ω2
n задаёт

некоторую подстановку на множестве Z
n
2 , а во-вторых, что множество подстановок, задавае-

мых всеми Ф.Э. из множества Ω2
n, при n < 4 генерирует симметрическую группу подстановок

S(Zn
2 ), а при n > 4 — знакопеременную группу подстановок A(Zn

2 ). Также в первой главе вво-

дится понятие обратимой схемы, реализующей заданное булево отображение с использова-

нием и без использования дополнительной памяти (дополнительных входов). Доказывается,

что для реализации нечётной подстановки из S(Zn
2 ) при n > 4 в обратимой схеме, состоя-

щей из Ф.Э. множества Ω2
n, требуется как минимум один дополнительный вход. Вводится

понятие значимых входов и выходов обратимой схемы, а также понятие вычислительного

мусора на незначимых выходах. Показывается связь между схемной сложностью реализации

прямого и обратного отображения через сложность обратимой схемы, реализующей прямое

отображение.

Во второй главе рассматриваются различные существующие алгоритмы синтеза обра-

тимых схем: переборные алгоритмы, непереборные быстрые алгоритмы и алгоритмы сниже-

ния сложности обратимой схемы. Приводится сравнение данных алгоритмов по основным

параметрам: время синтеза, количество требуемой для синтеза памяти, сложность синтези-

рованной обратимой схемы. На основании данного сравнения делается вывод, что до теку-

щего момента не было разработано быстрых и эффективных алгоритмов синтеза обратимой

схемы, реализующей подстановку с малым числом подвижных точек. Существующие же

алгоритмы синтеза в этом случае либо требуют значительного времени для своей работы,

либо синтезируемая схема имеет избыточную сложность. Даётся описание двух новых быст-

рых алгоритмов синтеза, использующих теорию групп подстановок. Принцип работы этих

алгоритмов основывается на доказательстве леммы из первой главы о том, что множество

подстановок, задаваемых всеми Ф.Э. из множества Ω2
n, при n > 4 генерирует знакоперемен-

ную группу подстановок A(Zn
2 ). Доказывается, что наилучший из разработанных алгоритмов

синтеза позволяет получить обратимую схему со сложностью, асимптотически не превышаю-

щей 7n2m для любой чётной подстановки из A(Zn
2 ), у которой не более 2m подвижных точек.

В конце второй главы сравниваются существующие и предлагаемые быстрые алгоритмы

синтеза, использующие теорию групп подстановок. На основании этого сравнения делается

вывод об эффективности новых алгоритмов с точки зрения их быстродействия и сложности

синтезируемых обратимых схем.
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В третьей главе рассматриваются различные способы снижения сложности обратимых

схем. Доказывается необходимое и достаточное условие коммутируемости двух обратимых

элементов E(t1, I1, J1) и E(t2, I2, J2): либо t1 /∈ I2∪J2 и t2 /∈ I1∪J1, либо (I1∩J2)∪(I2∩J1) 6= ∅.

Предлагаются также различные эквивалентные замены композиций обратимых Ф.Э. с дока-

зательством корректности таких замен при помощи операций на множествах. Часть замен

позволяет снизить сложность обратимой схемы, состоящей из элементов E(t, I, J), оставши-

еся же замены позволяют получить композицию новых Ф.Э. Описывается алгоритм сниже-

ния сложности обратимых схем, состоящих из элементов E(t, I, J), использующий описанные

эквивалентные замены композиций Ф.Э. Даётся оценка снизу временно́й сложности данно-

го алгоритма. Далее рассматриваются различные способы снижения сложности обратимой

схемы на этапе её синтеза. Первый способ: поиск грани булева куба B
n, такой что для най-

денной грани размерности k в синтезируемой схеме можно заменить композицию порядка

2n−k−2 подряд идущих Ф.Э. на композицию не более n элементов E(t, I, J). Второй способ:

эффективное разбиение циклов в представлении исходной подстановки в виде произведения

независимых циклов. Описывается алгоритм быстрого поиска такого разбиения. Последний

способ: рассмотрение произведения справа и слева в представлении исходной подстановки в

виде произведения транспозиций. Показывается эффективность предложенных способов сни-

жения сложности обратимой схемы на практике при помощи разработанного программного

обеспечения.

В четвёртой главе рассматривается вопрос асимптотической сложности и глубины об-

ратимых схем, состоящих из Ф.Э. множества Ω2
n и реализующих некоторое отображение

Z
n
2 → Z

n
2 . Вводится множество F (n, q) всех отображений Z

n
2 → Z

n
2 , которые могут быть

реализованы такими обратимыми схемами с (n + q) входами. Рассматриваются обратимые

схемы, реализующие отображение f ∈ F (n, q) с использованием q дополнительных входов

(дополнительной памяти). Вводятся функции Шеннона сложности L(n, q), глубины D(n, q)

и квантового веса W (n, q) обратимой схемы как функции от n и количества дополнитель-

ных входов схемы q. При помощи мощностного метода Риордана–Шеннона доказываются

следующие нижние оценки:

L(n, q) >
2n(n− 2)

3 log2(n + q)
− n

3
,

D(n, q) >
2n(n− 2)

3(n+ q) log2(n + q)
− n

3(n+ q)
,

W (n, q) > min
(
W (C),W (T )

)
·
(

2n(n− 2)

3 log2(n+ q)
− n

3

)

.

Предлагается обобщение алгоритма синтеза обратимых схем, описанного во второй главе:

исходная подстановка из A(Zn
2 ) представляется в виде произведения не пар независимых

транспозиций, а групп по K независимых транспозиций в каждой группе. Доказывается, что

любая такая группа может быть задана композицией одного обобщённого элемента Тоффоли

с большим количеством контролирующих входов и множества элементов CNOT и 2-CNOT.
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Оценивается сложность и глубина обратимой схемы, синтезируемой данным алгоритмом,

откуда получаются следующие верхние оценки для обратимых схем без дополнительной па-

мяти:

L(n, 0) 6
3n2n+4

ψ(n)
(1 + εL(n)) ,

D(n, 0) 6
n2n+5

ψ(n)
(1 + εD(n)) ,

W (n, 0) 6
n2n+4

(
W (C)(1 + εC(n)) + 2W (T )(1 + εT (n))

)

ψ(n)
,

где ψ(n) = log2 n − log2 log2 n − log2 φ(n), φ(n) — любая сколь угодно медленно растущая

функция такая, что φ(n) < n/ log2 n,

εL(n) =
1

6φ(n)
+

(
8

3
− o(1)

)
log2 n · log2 log2 n

n
,

εD(n) =
1

4φ(n)
+ (4 + o(1))

log2 n · log2 log2 n
n

,

εC(n) =
1

2φ(n)
−
(
1

2
− o(1)

)

· log2 log2 n
n

,

εT (n) = (4− o(1))
log2 n · log2 log2 n

n
.

Далее описывается асимптотически оптимальный метод синтеза обратимых схем с

дополнительной памятью, аналогичный методу Лупанова для классических схем. При опи-

сании данного метода подсчитывается количество используемых дополнительных входов об-

ратимой схемы (дополнительной памяти) при достижении минимальной сложности и мини-

мальной глубины схемы. Для данного метода удалось получить верхнюю оценку сложности

обратимых схем с дополнительной памятью

L(n, q0) . 2n при q0 ∼ n2n−⌈n /φ(n)⌉ ,

где φ(n) и ψ(n) — любые сколь угодно медленно растущие функции такие, что φ(n) 6

n /(log2 n + log2 ψ(n)).

Получены верхние оценки глубины обратимых схем с дополнительной памятью.

D(n, q1) . 3n при q1 ∼ 2n ,

при этом показано, что обратимая схема S, реализующая отображение f ∈ F (n, q1) с глуби-

ной D(S) ∼ 3n, имеет сложность L(S) ∼ 2n+1 и квантовый вес W (S) ∼ W (C) · 2n+1 +W (T ) ·
n2n−⌈n/φ(n)⌉, где φ(n) и ψ(n) — любые сколь угодно медленно растущие функции такие, что

φ(n) 6 n /(log2 n+ log2 ψ(n)).

D(n, q2) . 2n при q2 ∼ φ(n)2n ,

где φ(n) — любая сколь угодно медленно растущая функция такая, что φ(n) = o(n); при

этом показано, что обратимая схема S, реализующая отображение f ∈ F (n, q2) с глубиной
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D(S) ∼ 2n, имеет сложность L(S) ∼ φ(n)2n+1 и квантовый вес W (S) ∼ W (C) · φ(n)2n+1 +

W (T ) · 2n−⌈n/ φ(n)⌉.

Получена верхняя оценка квантового веса обратимых схем с дополнительной памятью

W (n, q0) . W (C) · 2n +W (T ) · n2n−⌈n/φ(n)⌉, при q0 ∼ n2n−⌈n/φ(n)⌉ ,

где φ(n) и ψ(n) — любые сколь угодно медленно растущие функции такие, что φ(n) 6

n /(log2 n + log2 ψ(n)).

При сопоставлении верхних и нижних оценок для сложности обратимых схем получа-

ются следующие соотношения:

L(n, 0) ≍ n2n / log2 n ,

L(n, q0) ≍ 2n при q0 ∼ n2n−⌈n /φ(n)⌉ ,

где φ(n) и ψ(n) — любые сколь угодно медленно растущие функции такие, что φ(n) 6

n /(log2 n + log2 ψ(n)).

Получены общие верхние оценки сложности, глубины и квантового веса обратимых

схем. Для любого значения q такого, что 8n < q . n2n−⌈n /φ(n)⌉, где φ(n) и ψ(n) — любые

сколь угодно медленно растущие функции такие, что φ(n) 6 n /(log2 n + log2 ψ(n)), верны

соотношения

L(n, q) . 2n +
8n2n

log2(q − 4n)− log2 n− 2
,

D(n, q) . 2n+1(2, 5 + log2 n− log2(log2(q − 4n)− log2 n− 2)) ,

W (n, q) .W (T ) ·
(

2n +
8 · 2n

log2(q − 4n)− log2 n− 2

)

+
32W (C)n2n

log2(q − 4n)− log2 n− 2
,

W (n, q) .W (T ) ·
(

2n +
8n2n

log2(q − 4n)− log2 n− 2

)

+
32W (C)2n

log2(q − 4n)− log2 n− 2
.

Получена оценка порядка роста функции L(n, q). Для любого значения q такого, что

n2 . q . 2n−⌈n/φ(n)⌉+1, где φ(n) и ψ(n) — любые сколь угодно медленно растущие функции

такие, что φ(n) 6 n /(log2 n + log2 ψ(n)), верно соотношение

L(n, q) ≍ n2n

log2 q
.

Также получена оценка порядка роста функции Шеннона LA(n, q) сложности обрати-

мых схем, реализующих отображения Z
n
2 → Z

n
2 только из знакопеременной группы A(Zn

2 ).

Для любого значения q такого, что 0 6 q . 2n−⌈n /φ(n)⌉+1, где φ(n) и ψ(n) — любые сколь

угодно медленно растущие функции такие, что φ(n) 6 n /(log2 n + log2 ψ(n)), верно соотно-

шение

LA(n, q) ≍
n2n

log2(n+ q)
.

На основании полученных асимптотических оценок делается вывод, что использова-

ние дополнительной памяти в обратимых схемах, состоящих из Ф.Э. множества Ω2
n, почти
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всегда позволяет существенно снизить сложность, глубину и квантовый вес таких схем, в

отличие от классических схем, состоящих из необратимых Ф.Э.

В пятой главе показывается применение обратимых схем для решения задачи схемной

реализации некоторых вычислительно асимметричных преобразований. Подробно рассмат-

ривается алгоритм дискретного логарифмирования по основанию примитивного элемента в

конечном поле характеристики 2 на примере фактор-кольца F2[x] / f(x), где f(x) — неприво-

димый многочлен степени n, и его реализация обратимой схемой. При помощи разработан-

ного программного обеспечения строятся обратимые схемы без дополнительной памяти и с

дополнительной памятью, реализующие алгоритм дискретного логарифмирования. Показы-

вается, что уже при использовании n дополнительных входов сложность схемы существенно

снижается. Доказывается верхняя асимптотическая оценка сложности обратимой схемы S,

реализующей алгоритм дискретного логарифмирования,

L(Slog) .
2n+1 · log2 n

n

при использовании q ∼ 2n−⌈n/φ(n)⌉+2 · log2 n дополнительных входов, где φ(n) и ψ(n) — любые

сколь угодно медленно растущие функции такие, что φ(n) 6 n /(log2 n + log2 ψ(n)). Данная

оценка асимптотически ниже, чем для произвольного булева преобразования, и достигается

при асимптотически меньшем количестве дополнительных входов.

В конце пятой главы рассматривается вопрос схемной сложности реализации алгорит-

ма, обратного к заданному, и делается попытка объяснить разницу в схемной сложности для

прямого и обратного алгоритмов через необратимость и потерю части информации во вре-

мя работы прямого алгоритма. В подтверждение гипотезы приводятся примеры обратимых

схем, реализующие такие вычислительно асимметричные преобразования, как сложение в

кольце многочленов, умножение и возведение в степень в конечном поле характеристики 2.

В заключении рассматриваются открытые вопросы и предлагаются различные направ-

ления дальнейших исследований:

• улучшение нижней оценки для глубины обратимой схемы D(n, q) при помощи более

точного подсчёта количества схем заданной глубины;

• улучшение константы 3 · 24 в верхней оценке L(n, 0);

• разработка нового алгоритма синтеза обратимых схем без дополнительной памяти с

лучшей верхней асимптотической оценкой глубины схемы;

• разработка нового алгоритма синтеза обратимых схем с дополнительной памятью с

лучшей верхней асимптотической оценкой глубины схемы;

• изучение вопроса асимметричности преобразований через построение реализующих их

обратимых схем.

Автор хотел бы выразить благодарность научному руководителю А.Е. Жукову за

постановку задач и всестороннюю помощь, а также родным за помощь и поддержку.
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1 Основы теории обратимой логики

В данной главе будут даны основные определения из теории обратимой логики. Будет

показана связь подстановок с двоичной обратимой логикой. Будет приведено доказательство

того, что любая чётная подстановка из A(Zn
2 ) при n > 4 и любая подстановка из S(Zn

2 ) при

n < 4, может быть реализована с помощью обратимых функциональных элементов NOT,

CNOT и 2-CNOT.

1.1 Определение обратимого функционального элемента и схемы

Здесь и далее будем рассматривать только схемы, состоящие из функциональных эле-

ментов.

Определение 1.1. Функциональный элемент (Ф.Э.) n ×m — идеальная модель вычисли-

тельного устройства с n входами и m выходами, задающего на выходах результат неко-

торого булевого отображения Z
n
2 → Z

m
2 над входами.

Примером Ф.Э. может служить инвертор NOT, задающий булево преобразование f : Z1
2 → Z

1
2

вида f(〈x〉) = 〈x⊕ 1〉.
Базовое определение обратимых Ф.Э. было введено в работах [45, 88]. Будем исполь-

зовать следующее формальное определение:

Определение 1.2. Обратимый Ф.Э. n× n (далее просто обратимый Ф.Э.) — Ф.Э. n× n,

для которого задаваемое им булево отображение биективно.

Очевидно, что инвертор NOT является обратимым Ф.Э. Другим примером обрати-

мого Ф.Э. является обобщённый элемент Тоффоли с k контролирующими входами. В ли-

тературе для этого элемента принято стандартное обозначение k-CNOT [83]. Определение

обратимых Ф.Э. NOT и k-CNOT, а также обратимых схем, состоящих из этих элементов,

было дано в нескольких работах, к примеру, в работах [66, 83]. Будем использовать следую-

щее формальное определение элемента k-CNOT:

Определение 1.3. Обобщённый элемент Тоффоли с k контролирующими входами — обра-

тимый Ф.Э. (k + 1)× (k + 1), задающий булево преобразование f : Zk+1
2 → Z

k+1
2 следующего

вида:

f(〈x1, . . . , xk, xk+1〉) = 〈x1, . . . , xk, xk+1 ⊕ x1 ∧ . . . ∧ xk〉 .

Частными случаями элемента k-CNOT являются управляемый инвертор CNOT

(1-CNOT), предложенный Р. Фейнманом [45], и элемент Тоффоли (2-CNOT) [88]. Графи-

ческое обозначение этих элементов дано на рис. 1.1. Графическое обозначение элемента

k-CNOT схоже с обозначением элемента Тоффоли: контролирующие входы обозначаются

символом •, контролируемый выход — символом ⊕.
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x x⊕ 1

x x

y y ⊕ x

x
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z
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z ⊕ x ∧ y

а)

б)

в)

Рис. 1.1 Графическое обозначение обратимых Ф.Э.: а) NOT (инвертор);

б) 1-СNOT (управляемый инвертор); в) 2-CNOT (элемент Тоффоли).

Можно расширить определение элементов NOT и k-CNOT таким образом, чтобы все

Ф.Э. имели ровно n входов и выходов. Для описания таких Ф.Э. примем обозначение, пред-

ложенное в работе [92]:

Определение 1.4. Nn
j — инвертор NOT с n входами, инвертирующий свой j-й вход:

Nn
j (〈x1, . . . , xj, . . . , xn〉) = 〈x1, . . . , xj ⊕ 1, . . . xn〉 .

Определение 1.5. Cn
i1,i2,...,ik;j

— обобщённый элемент Тоффоли k-CNOT с n входами, инвер-

тирующий свой j-й вход тогда и только тогда, когда значение на всех контролирующих

входах i1, . . . , ik равно 1, j 6= i1, . . . , ik:

Cn
i1,i2,...,ik;j

(〈x1, . . . , xj, . . . , xn〉) = 〈x1, . . . , xj ⊕ xi1 ∧ . . . ∧ xik , . . . , xn〉 .

В случае, если значение n понятно из контекста, верхний индекс в обозначении этих элемен-

тов будем опускать: Nj и Ci1,i2,...,ik;j.

В работе [35] было предложено обобщить представление элемента k-CNOT для слу-

чая нулевого значения на некоторых контролирующих входах. Будем обозначать такой Ф.Э.

через CI;J ;t.

Определение 1.6. CI;J ;t — Ф.Э., задающий булево преобразование Z
n
2 → Z

n
2 вида

CI;J ;t (〈x1, . . . , xt, . . . , xn〉) =
〈

x1, . . . , xt ⊕
(

∧
i∈I
xi

)

∧
(

∧
j∈J

x̄j

)

, . . . , xn

〉

,

где I — множество прямых контролирующих входов, J — множество инвертированных

контролирующих входов, t /∈ I ∪ J ; I ∩ J = ∅.

Элементы CI;J ;t будут подробнее рассмотрены в главе 3.

Для удобства примем следующие обозначения: E(t) — элемент Nt; E(t, I) — эле-

мент CI;t; E(t, I, J) — элемент CI;J ;t. Тогда можно считать, что E(t, I) = E(t, I,∅), E(t) =

E(t,∅,∅).

Схема из Ф.Э. классически определяется как ориентированный граф без циклов с

помеченными рёбрами и вершинами. В обратимых схемах, состоящих из элементов NOT и k-

CNOT, запрещено ветвление и произвольное подключение входов и выходов Ф.Э. Мы будем

использовать следующее формальное определение обратимой схемы.
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Определение 1.7. Правильно сформированная обратимая схема S — ациклическая ком-

бинационная логическая схема, в которой все Ф.Э. обратимы и соединены друг с другом

последовательно без ветвлений.

Мы будем рассматривать только те обратимые схемы, в которых все Ф.Э. имеют одинаковое

количество входов и выходов n. В ориентированном графе, описывающем такую обратимую

схему, все вершины, соответствующие Ф.Э., имеют ровно n занумерованных входов и выхо-

дов. Эти вершины нумеруются от 1 до l, при этом i-й выход m-й вершины, m < l, соединяется

только с i-м входом (m+ 1)-й вершины. Входами обратимой схемы являются входы первой

вершины, а выходами — выходы l-й вершины. Соединение Ф.Э. друг с другом будем также

называть композицией элементов и обозначать ∗. К примеру, запись N4 ∗ C1;2 ∗ C1,2,4;3 ∗ C3;4

при n = 5 соответствует схеме, показанной на рис. 1.2.

x1

x2

x3

x4

x5

y1
y2
y3
y4
y5

N4 C1;2 C1,2,4;3 C3;4

Рис. 1.2 Cхема S = N4 ∗ C1;2 ∗ C1,2,4;3 ∗ C3;4 с n = 5 входами.

Стоит отметить, что любую обратимую схему, состоящую из двух и более Ф.Э., можно рас-

сматривать как композицию её подсхем. К примеру, схему S = C1;2 ∗ C1,2,4;3 ∗ C3;4 можно

рассматривать как композицию схем S1 = C1;2 и S2 = C1,2,4;3 ∗ C3;4.

Н.А. Карповой в работе [6] были рассмотрены схемы с ограниченной памятью, состо-

ящие из классических Ф.Э. Каждому входу и выходу вершины графа, описывающего такую

схему, приписывается некоторый символ из множества R = { r1, . . . , rn }. Символ ri можно

интерпретировать как имя регистра памяти (номер ячейки памяти), значение из которого

поступает на вход Ф.Э. или в который записывается значение с выхода Ф.Э. Данная мо-

дель функциональных схем с ограниченной памятью (M1) и модель обратимых схем (M2),

описанная нами выше, весьма похожи. Регистрам памяти модели M1 соответствуют линии

обратимой схемы модели M2, поскольку и те, и другие хранят результат вычислений на

каждом шаге работы схемы. Однако между данными моделями есть существенное отличие.

В модели M1 символ ri, приписанный выходу некоторого Ф.Э., может совпадать с

символом, приписанным одному из входов этого же Ф.Э. Другими словами, модель M1 поз-

воляет перезаписывать значения в регистрах памяти.

В модели M2 контролируемому выходу Ф.Э. приписывается номер линии, значение

на которой будет инвертировано, если значение булевой функции от значений на контроли-

рующих входах элемента будет равно 1, причём номер такой линии не может совпадать ни с

одним из номеров линий, приписанных контролирующим входам элемента. Другими слова-
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ми, модель M2 не позволяет перезаписывать значения на линиях обратимой схемы, а лишь

инвертировать их в некоторых случаях.

Среди всех характеристик обратимой схемы для нас представляют интерес сложность,

глубина и квантовый вес схемы. Пусть обратимая схема S с n входами представляет собой

композицию l элементов S =
l∗

k=1
Ek(tk, Ik, Jk).

Определение 1.8. Сложность L(S) обратимой схемы S — количество Ф.Э. в схеме.

Классически глубина схемы из Ф.Э. определяется как длина максимального пути на

графе, описывающем данную схему, между какими-либо входными и выходными вершинами.

В рассматриваемой модели обратимой схемы граф, описывающий такую схему, представля-

ет собой просто одну цепочку последовательно соединённых вершин. Поэтому, если исполь-

зовать классическое определение глубины схемы, получится, что в нашем случае глубина

обратимой схемы равна её сложности.

Для того чтобы не менять модель обратимой схемы, введём следующее определение

глубины обратимой схемы. Будем считать, что обратимая схема S имеет глубину D(S) = 1,

если для любых двух её элементов E1(t1, I1, J1) и E2(t2, I2, J2) выполняется равенство

({ t1 } ∪ I1 ∪ J1) ∩ ({ t2 } ∪ I2 ∪ J2) = ∅ .

Также будем считать, что обратимая схема S имеет глубину D(S) 6 d, если её можно

разбить на d непересекающихся подсхем, каждая из которых имеет глубину 1:

S =

d⊔

i=1

S
′
i, D(S′

i) = 1 . (1.1)

Тогда можно ввести следующее определение глубины обратимой схемы.

Определение 1.9. Глубина D(S) обратимой схемы S — минимально возможное количе-

ство d непересекающихся подсхем глубины 1 в разбиении схемы S по формуле (1.1).

Используя это определение, можно вывести простое соотношение, связывающее слож-

ность и глубину обратимой схемы S, имеющей n входов:

L(S)

n
6 D(S) 6 L(S) . (1.2)

На рис. 1.3 показан пример обратимой схемы S = C1;2∗C3;1∗N2∗N4∗C1,4;2∗N3, имеющей

сложность L(S) = 6 и глубину D(S) = 3, поскольку мы можем представить данную схему

композицией трёх непересекающихся подсхем глубины 1: S = (C1;2)∗(C3;1∗N2∗N4)∗(C1,4;2∗N3),

и не можем представить в виде композиции двух непересекающихся подсхем глубины 1.

В рассматриваемой модели обратимой схемы все Ф.Э. соединяются последовательно,

поэтому максимальное время, через которое на выходах схемы появится результат, опреде-

ляется только её сложностью. Однако если схему представлять в виде композиции подсхем,
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y1

y2

y3

y4

x1
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Рис. 1.3 Обратимая схема S = C1;2 ∗ C3;1 ∗N2 ∗N4 ∗ C1,4;2 ∗N3 сложности L(S) = 6 и глубины

D(S) = 3.

то время работы схемы может быть меньше за счёт параллельной работы некоторых под-

схем. В примере выше (см. рис. 1.3) такими подсхемами могут быть S1 = C3;1, S2 = N2 и

S3 = N4. Именно поэтому глубина схемы рассматривается в настоящей работе наравне с её

сложностью.

Если рассматривать обратимые Ф.Э. безотносительно к технологии, при помощи кото-

рых они могут быть получены в реальной жизни, то можно считать, что все они имеют вес 1.

Однако как показывает практика, в квантовых технологиях, к примеру, реализовать элемент

2-CNOT намного сложнее, чем CNOT [37]. Поэтому будем считать, что обратимый элемент

E имеет вес W (E), значение которого зависит от технологии производства обратимых Ф.Э.

Наибольший интерес, по мнению автора, представляют квантовые вычисления, по-

этому будем называть величину W (E) для обратимого элемента E квантовым весом этого

элемента, равным количеству квантовых вентилей, необходимых для его реализаци. Тогда

можно ввести понятие квантового веса обратимой схемы.

Определение 1.10. Квантовый вес W (S) обратимой схемы S — сумма квантовых весов

всех её Ф.Э.

Согласно работе [37], элементы NOT и CNOT имеют квантовый вес 1, а элемент 2-CNOT —

квантовый вес 5. Следовательно, чем меньше в обратимой схеме элементов k-CNOT с k > 1,

тем проще её реализовать при помощи квантовых технологий.

В настоящей работе не рассматривается вопрос реализации обратимой схемы при по-

мощи различных квантовых вентилей и возможного снижения количества этих вентилей в

схеме: здесь и далее будем считать, что квантовый вес W (E) элемента E фиксирован, задан

заранее и не зависит от расположения данного элемента в схеме. В этом случае, задавая

различные значения W (E), по значению величины W (S) можно будет делать выводы о ко-

личестве различных обратимых элементов в схеме S.

Используя определение квантового веса обратимой схемы, можно вывести простое

соотношение, связывающее сложность и квантовый вес обратимой схемы S:

W (S) >

(

min
E∈S

W (E)

)

· L(S) . (1.3)

1.2 Связь обратимых схем с подстановками

Несложно показать, что обратимые схемы непосредственно связаны с подстановками

из симметрической группы S(Zn
2 ).
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Определение 1.11. Пусть S(A) является симметрической группой над множеством A =

{a1, a2, . . . , am}. Тогда (ai1 , ai2, . . . , aik) называется циклом длины k, где k 6 m, aij ∈ A,

aij 6= ail.

Цикл длины 2 также называется транспозицией.

Любую подстановку можно представить в виде произведения независимых циклов.

Каждый цикл в свою очередь можно представить в виде произведения транспозиций.

Определение 1.12. Подстановка является чётной, если она представима в виде произве-

дения чётного числа транспозиций, и нечётной в противном случае.

Операцию умножения (композиции) подстановок будем обозначать символом ◦.
Как было сказано выше, любой Ф.Э. NOT, CNOT и 2-CNOT задаёт биективное булево

отображение f : Zn
2 → Z

n
2 . Рассмотрев все возможные вектора входных значений Ф.Э. и соот-

ветствующие им вектора выходных значений, можно говорить о задаваемой этим элементом

подстановке h из симметрической группы S(Zn
2 ).

Композиция Ф.Э. также задаёт подстановку, равную произведению подстановок, за-

даваемых этими элементами. Рассмотрим схему Sf =
m∗
i=1

Efi , где элемент Efi задаёт булево

преобразование fi и соответствующую ему подстановку hi ∈ S(Zn
2 ). Обозначим через f зада-

ваемое схемой Sf булево отображение, через h — задаваемую ей (если существует) подста-

новку. Пусть fi : Z
n
2 → Z

n
2 , 1 6 i 6 m, тогда

f(x) = fm(fm−1(. . . f2(f1(x)) . . .)),x ∈ Z
n
2 , (1.4)

h = h1 ◦ h2 ◦ . . . ◦ hm−1 ◦ hm . (1.5)

(Здесь и далее используется соглашение, согласно которому произведение подстановок дей-

ствует слева направо, т. е. (h ◦ g)(x) = g(h(x)).)

Следовательно, любая обратимая схема с n входами задаёт подстановку из S(Zn
2 ), и

наоборот, любая подстановка из S(Zn
2 ) задаёт семейство обратимых схем с n входами. Обрати-

мую схему с n входами в других работах также называют n-битовым обратимым логическим

вентилем [92]. Всего существует (2n)! таких схем.

Утверждение 1.13. Пусть обратимая схема Sf =
m∗
i=1

Efi задаёт булево преобразование f ,

тогда композиция элементов
1∗

i=m
Ef−1

i
задаёт булево преобразование f−1.

Доказательство. Согласно формуле (1.4) f(x) = fm(fm−1(. . . (f1(x) . . .)) = y .

g(y) = f−1
1 (f−1

2 (. . . f−1
m (y) . . .)) = f−1

1 (f−1
2 (. . . f−1

m (fm(fm−1(. . . (f1(x) . . .))) . . .)) = x .

g(f(x)) = x для всех x ∈ Z
n
2 ⇒ g(x) = f−1(x).

Из определений 1.4 и 1.5 видно, что для элементов NOT и k-CNOT задаваемые ими

булевы преобразования обратны сами к себе: fi = f−1
i .
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Утверждение 1.14. Если схема Sf состоит из элементов NOT и k-CNOT, то схему

Sf−1 можно получить, соединив все элементы схемы Sf в обратном порядке (зеркально

отобразить).

К примеру, схема, реализующая обратное преобразование к преобразованию, задаваемому

схемой, показанной на рис. 1.2, задаётся композицией элементов C3;4 ∗ C1,2,4;3 ∗ C1;2 ∗N4.

1.3 Чётность подстановок для NOT и k-CNOT

Возникает вопрос, какие подстановки задаются элементами Nn
j и Cn

i1,i2,...,ik;j
, а также

какие подстановки из S(Zn
2 ) могут быть реализованы при помощи схем, состоящих из этих

Ф.Э.?

Утверждение 1.15. Элемент Nn
j задаёт нечётную подстановку при n = 1 и чётную при

n > 1.

Доказательство. Элемент Nn
j задаёт подстановку hNOT вида

hNOT = (x(1),y(1)) ◦ (x(2),y(2)) ◦ . . . ◦ (x(m),y(m)), x(i),y(i) ∈ Z
n
2 ,

x(i) = 〈x(i)1 , . . . , x
(i)
j , . . . , x

(i)
n 〉, y(i) = 〈x(i)1 , . . . , x

(i)
j ⊕ 1, . . . , x(i)n 〉, x

(i)
k ∈ Z2 .

Таким образом, количество различных транспозиций (x(i),y(i)), x(i) 6= y(i), равно количеству

различных векторов 〈x(i)1 , . . . , x
(i)
j−1, x

(i)
j+1, . . . , x

(i)
n 〉, т. е. m = 2n−1, откуда следует нечётность

подстановки hNOT при n = 1 и чётность при n > 1.

Утверждение 1.16. Элемент Cn
i1,i2,...,ik;j

задаёт нечётную подстановку при k = n − 1 и

чётную при k < n− 1.

Доказательство. Элемент Ck+1
i1,i2,...,ik;j

задаёт подстановку hk-CNOT вида

hk-CNOT = (x(1),y(1)) ◦ (x(2),y(2)) ◦ . . . ◦ (x(m),y(m)), x(i),y(i) ∈ Z
n
2 ,

x(i) = 〈x(i)1 , . . . , x
(i)
j , . . . , x

(i)
n 〉, y(i) = 〈x(i)1 , . . . , x

(i)
j ⊕ x

(i)
i1

∧ . . . ∧ x(i)ik
, . . . , x(i)n 〉, x

(i)
k ∈ Z2 .

Таким образом, количество различных транспозиций (x(i),y(i)), x(i) 6= y(i), равно количеству

различных векторов 〈x(i)1 , . . . , x
(i)
j−1, x

(i)
j+1, . . . , x

(i)
n 〉, для которых x

(i)
t = 1 при t ∈ {i1, . . . , ik}, т. е.

m = 2n−(k+1), откуда следует нечётность подстановки hk-CNOT при k = n − 1 и чётность при

k < n− 1.

Следствие 1.17. Обратимая схема с n входами, состоящая из элементов NOT, CNOT и

2-CNOT, при n < 4 задаёт некоторую подстановку из симметрической группы S(Zn
2 ), а

при n > 4 — некоторую чётную подстановку из знакопеременной группы A(Zn
2 ).

Доказательство. Следует из утверждений 1.15, 1.16 и формулы (1.5).
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Другими словами, при помощи обратимой схемы с n > 4 входами, состоящей из элементов

NOT, CNOT и 2-CNOT, нельзя реализовать нечётную подстановку.

Следствие 1.18. Обратимое линейное преобразование над координатами векторов линей-

ного векторного пространства Z
n
2 задаёт чётную подстановку при n > 2.

Доказательство. Линейное преобразование над координатами векторов линейного векторно-

го пространства Z
n
2 можно задать при помощи матрицы An×n = (aij), aij ∈ Z2, 0 6 i, j 6 n−1.

По условию линейное преобразование обратимо, следовательно, элементарными преоб-

разованиями столбцов (сложение и перестановка) матрицуAn×n можно привести к единичной

матрице En×n.

Схема с n входами и выходами, не содержащая ни одного элемента, задаёт линейное

преобразование с матрицей En×n. Прибавление i-го столбца матрицы к j-му столбцу матрицы

задаётся элементом Cn
i;j. Перестановка i-го и j-го столбцов матрицы задаётся композицией

элементов Cn
i;j ∗ Cn

j;i ∗ Cn
i;j. Таким образом, ставя в соответствие каждому из элементарных

преобразований столбцов, которые приводят матрицу An×n к матрице En×n, композицию

элементов CNOT, можно построить схему, реализующую заданное обратимое линейное пре-

образование.

Построенная таким способом обратимая схема будет содержать только элементы

CNOT. Из утверждения 1.16 и формулы (1.5) следует, что такая схема задаёт чётную под-

становку при n > 2.

1.4 Множество обратимых Ф.Э., порождающее S(Zn
2)

Обозначим через Ω2
n множество всех элементов Nn

j , Cn
i;j и Cn

i1,i2;j при фиксированном

значении n, а через SΩ2
n

— множество подстановок, задаваемых этими Ф.Э. Мощности этих

множеств равны следующей величине:

|Ω2
n| = |SΩ2

n
| = n +

(
n

1

)

· (n− 1) +

(
n

2

)

· (n− 2) = O(n3) .

В работе [83] было доказано, что множество SΩ2
n

порождает симметрическую группу S(Zn
2 )

при n < 4 и знакопеременную группу A(Zn
2 ) при n > 4. Здесь будет приведено другое доказа-

тельство, на основе которого разработан новый быстрый алгоритм синтеза обратимых схем

с использованием теории групп подстановок (см. раздел 2.5). Частично это доказательство

было опубликовано в работе [97].

Лемма 1.19. Множество подстановок SΩ2
n

при n < 4 порождает симметрическую группу

S(Zn
2 ).

Прежде чем перейти непосредственно к доказательству Леммы 1.19, отметим, что для

множества A = { a1, a2, . . . , am } множество подстановок { (a1, a2), (a1, a2, . . . , am) } порождает

симметрическую группу S(A).
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Подстановку (a1, a2, . . . , am) можно представить в виде следующего произведения

транспозиций:

(a1, a2, . . . , am) = (a1, a2) ◦ (a1, a3) ◦ . . . ◦ (a1, am−1) ◦ (a1, am) .

В доказательстве ниже будут построены все транспозиции вида (0,x), x ∈ Z
n
2 \ { 0 }, 0 =

〈0, . . . , 0〉, при помощи подстановок из множества SΩ2
n
.

Действие сопряжением подстановкой g на подстановку h обозначим через hg:

hg = g−1 ◦ h ◦ g .

Известно, что действие сопряжением сохраняет цикловую структуру подстановки.

Доказательство Леммы 1.19. Для всех значений n < 4 получим базовую транспозицию

h = (0,x1), где x1 = 〈0, . . . , 0, 1〉.
При n = 1 искомая транспозиция h = (〈0〉, 〈1〉) задаётся элементом N1.

При n = 2 элемент C2;1 задаёт подстановку h1 = (〈1, 0〉, 〈1, 1〉). Элемент N2 задаёт

подстановку h2 = (〈0, 0〉, 〈1, 0〉) ◦ (〈0, 1〉, 〈1, 1〉). Искомая транспозиция h = (〈0, 0〉, 〈0, 1〉) = hh2
1

задаётся композицией элементов N2 ∗ C2;1 ∗N2.

При n = 3 элемент C2,3;1 задаёт подстановку g1 = (〈1, 1, 0〉, 〈1, 1, 1〉). Элемент N2 задаёт

подстановку g2 вида

g2 = (〈0, 0, 0〉, 〈0, 1, 0〉) ◦ (〈0, 0, 1〉, 〈0, 1, 1〉) ◦ (〈1, 0, 0〉, 〈1, 1, 0〉) ◦ (〈1, 0, 1〉, 〈1, 1, 1〉) .

Элемент N3 задаёт подстановку g3 вида

g3 = (〈0, 0, 0〉, 〈1, 0, 0〉) ◦ (〈0, 0, 1〉, 〈1, 0, 1〉) ◦ (〈0, 1, 0〉, 〈1, 1, 0〉) ◦ (〈0, 1, 1〉, 〈1, 1, 1〉) .

Искомая транспозиция h = (〈0, 0, 0〉, 〈0, 0, 1〉) = gg2◦g31 задаётся композицией элементов N3 ∗
N2 ∗ C2,3;1 ∗N2 ∗N3.

Для того, чтобы получить произвольную транспозицию g = (0,x), x ∈ Z
n
2 \ { 0,x1 },

будем действовать сопряжением на базовую транспозицию h = (0,x1).

Для всех xi = 1 вектора x = 〈x1, . . . , xn〉, i 6= 1, действуем сопряжением на h подста-

новкой, задаваемой элементом C1;i, получим h′. Если x1 = 1, то h′ = g. В противном случае

существует xj = 1, j 6= 1; действуем сопряжением на h′ подстановкой, задаваемой элементом

Cj;1, получим h′′ = g.

Таким образом, для всех значений n < 4 были получены все транспозиции вида (0,x),

x ∈ Z
n
2 \ { 0 }, при помощи подстановок из множества SΩ2

n
. Следовательно, SΩ2

n
порождает

симметрическую группу S(Zn
2 ) при n < 4.

К примеру, транспозиция (〈0, 0, 0〉, 〈1, 1, 0〉) при n = 3 задаётся следующей композици-

ей Ф.Э.:

C2;1 ∗ (C1;3 ∗ C1;2) ∗ (N3 ∗N2 ∗ C2,3;1 ∗N2 ∗N3) ∗ (C1;2 ∗ C1;3) ∗ C2;1 .
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1.5 Множество обратимых Ф.Э., порождающее A(Zn
2)

Прежде чем перейти к случаю n > 4, докажем ещё несколько утверждений.

Утверждение 1.20. Подстановка h ∈ S(Zn
2 ) вида

h = (〈0, 0, 1, 1, . . . , 1〉, 〈1, 0, 1, 1, . . . , 1〉) ◦ (〈0, 1, 1, 1, . . . , 1〉, 〈1, 1, 1, 1, . . . , 1〉)

при n > 4 задаётся композицией элементов C2,3;1 ∗ Cn,...,4;2 ∗ C2,3;1 ∗ Cn,...,4;2.

Доказательство.

Элемент C2,3;1 задаёт подстановку h1 = ◦
x,y∈Zn

2

(x,y), где x = 〈0, 1, 1, x4, . . . , xn〉, y =

〈1, 1, 1, x4, . . . , xn〉.
Элемент Cn,...,4;2 задаёт подстановку g = ◦

x,y∈Zn
2

(x,y), где x = 〈x1, 0, x3, 1, . . . , 1〉, y =

〈x1, 1, x3, 1, . . . , 1〉.
Подстановка h = h1 ◦ hg1, откуда следует истинность доказываемого утверждения.

Следствие 1.21. Подстановка h ∈ S(Zn
2 ) вида

h = (〈0, 0, 1, 1, . . . , 1〉, 〈1, 0, 1, 1, . . . , 1〉) ◦ (〈0, 1, 1, 1, . . . , 1〉, 〈1, 1, 1, 1, . . . , 1〉)

при n > 4 также задаётся композицией элементов Cn,...,4;2 ∗ C2,3;1 ∗ Cn,...,4;2 ∗ C2,3;1.

Доказательство. Подстановка h представляет собой произведение независимых транспози-

ций, следовательно h = h−1. Используя обозначения из доказательства утверждения 1.20,

можно записать, что h = h1 ◦ hg1 ⇒ h−1 = (h1 ◦ g−1 ◦ h1 ◦ g)−1.

h = h−1 = g−1 ◦h−1
1 ◦g ◦h−1

1 = g−1 ◦h1 ◦g ◦h1 = hg1 ◦h1, откуда следует, что подстановка

h задаётся композицией элементов Cn,...,4;2 ∗ C2,3;1 ∗ Cn,...,4;2 ∗ C2,3;1.

Следствие 1.22. В общем случае при n > 4 элемент Cn
i1,...,ik;j

, k 6 n− 2, можно заменить

без изменения результирующего булевого преобразования на композицию элементов

Cik,l;j ∗ Ci1,...,ik−1;l ∗ Cik,l;j ∗ Ci1,...,ik−1;l , (1.6)

или на композицию элементов

Ci1,...,ik−1;l ∗ Cik,l;j ∗ Ci1,...,ik−1;l ∗ Cik,l;j , (1.7)

где l 6= i1, . . . , ik, j.

Доказательство. Построив биективное отображение

〈i1, i2, . . . , ik, l, j〉 → 〈n, n− 1, . . . , 3, 2, 1〉 ,

можно перейти к случаю k = n− 2, доказанному в утверждении 1.20 и следствии 1.21. При

k < n− 2 суть доказательства остаётся той же.
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Эквивалентные замены (1.6) и (1.7) элемента Cn
i1,...,ik;j

также были доказаны в рабо-

те [92] через явное вычисление значений на выходах этого элемента.

Утверждение 1.23 ([37, Следствие 7.4]). Элемент Cn
i1,...,ik;j

при n > 4 и k 6 n − 2 можно

заменить без изменения результирующего булевого преобразования на композицию не более

чем 8(k − 3) элементов CNOT и 2-CNOT.

Отметим, что данная замена возможна за счёт одного из входов элемента, не являю-

щегося ни контролирующим, ни контролируемым (условие k 6 n− 2).

Рассмотрим теперь произведение двух зависимых транспозиций.

Утверждение 1.24. Подстановка h ∈ S(Zn
2 ) вида

h = (〈0, 1, 1, 1, . . . , 1〉, 〈1, 0, 1, 1, . . . , 1〉) ◦ (〈0, 1, 1, 1, . . . , 1〉, 〈1, 1, 1, 1, . . . , 1〉)

при n > 4 задаётся композицией элементов Cn,...,5,4,1;2∗C2,3;1∗Cn,...,5,4,1;2∗C2,3;1 и композицией

C1,3;2 ∗ Cn,...,5,4,2;1 ∗ C1,3;2 ∗ Cn,...,5,4,2;1.

Доказательство.

Элемент C2,3;1 задаёт подстановку h1 = ◦
x,y∈Zn

2

(x,y), где x = 〈0, 1, 1, x4, . . . , xn〉, y =

〈1, 1, 1, x4, . . . , xn〉.
Элемент Cn,...,5,4,1;2 задаёт подстановку g1 = ◦

x,y∈Zn
2

(x,y), где x = 〈1, 0, x3, 1, . . . , 1〉,
y = 〈1, 1, x3, 1, . . . , 1〉.

Подстановка h = hg11 ◦ h1, откуда следует истинность первой части доказываемого

утверждения.

С другой стороны, элемент C1,3;2 задаёт подстановку h2 = ◦
x,y∈Zn

2

(x,y), где x =

〈1, 0, 1, x4, . . . , xn〉, y = 〈1, 1, 1, x4, . . . , xn〉.
Элемент Cn,...,5,4,2;1 задаёт подстановку g2 = ◦

x,y∈Zn
2

(x,y), где x = 〈0, 1, x3, 1, . . . , 1〉,
y = 〈1, 1, x3, 1, . . . , 1〉.

Подстановка h = gh2
2 ◦ g2, откуда следует истинность второй части доказываемого

утверждения.

Теперь можно перейти ко второй лемме данной главы.

Лемма 1.25. Множество подстановок SΩ2
n

при n > 4 порождает знакопеременную группу

A(Zn
2 ).

Доказательство. Рассмотрим произвольную чётную подстановку h ∈ A(Zn
2 ). По определе-

нию подстановка h представляется в виде произведения чётного числа транспозиций, следо-

вательно, эти транспозиции можно разбить на пары:

h = ◦
xi,yi∈Zn

2

((x1,y1) ◦ (x2,y2)) . (1.8)

Рассмотрим по отдельности каждую такую пару транспозиций p = (x1,y1) ◦ (x2,y2).
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Пусть p является произведением двух независимых транспозиций: p = (x,y) ◦ (z,w).

Для простоты доказательства приведём p действием сопряжения к виду

g = (〈0, 0, 1, 1, . . . , 1〉, 〈1, 0, 1, 1, . . . , 1〉) ◦ (〈0, 1, 1, 1, . . . , 1〉, 〈1, 1, 1, 1, . . . , 1〉) .

Сперва применим к p действие сопряжением подстановкой h1, задаваемой композици-

ей элементов S1 = ∗
xj=1

Nj :

p(1) = ph1 = (〈0, . . . , 0〉,y(1)) ◦ (z(1),w(1)) .

y(1) 6= 〈0, . . . , 0〉 ⇒ существует y
(1)
i = 1. Применяем к p(1) действие сопряжением под-

становкой h2, задаваемой композицией элементов S2 = ∗
y
(1)
j =1,j 6=1

C1;j , если y
(1)
1 = 1, или ком-

позицией элементов

S2 = Ci;1 ∗
(

∗
y
(1)
j =1,j 6=1

C1;j

)

∗ Ci;1 ,

если y
(1)
1 = 0. Получим новую подстановку

p(2) =
(
p(1)
)h2

= (x(2),y(2)) ◦ (z(2),w(2)) ,

x(2) = 〈0, . . . , 0〉,y(2) = 〈1, 0, . . . , 0〉 .

z(2) 6= x(2),y(2) ⇒ существует z
(2)
i = 1, i 6= 1. Применяем к p(2) действие сопряжением

подстановкой h3, задаваемой композицией элементов S3 = ∗
z
(2)
j =1,j 6=2

C2;j , если z
(2)
2 = 1, или

композицией элементов

S3 = Ci;2 ∗
(

∗
z
(2)
j =1,j 6=2

C2;j

)

∗ Ci;2 ,

если z
(2)
2 = 0. Получим новую подстановку

p(3) =
(
p(2)
)h3

= (x(3),y(3)) ◦ (z(3),w(3)) ,

x(3) = 〈0, . . . , 0〉,y(3) = 〈1, 0, . . . , 0〉, z(3) = 〈0, 1, 0, . . . , 0〉 .

Т. к. w(3) 6= x(3),y(3), z(3), то возможны 2 варианта:

1. w
(3)
1 = w

(3)
2 = 1 ⇒ применяем к p(3) действие сопряжением подстановкой h4, задаваемой

композицией элементов S4 = ∗
w

(3)
j =1,j 6=1,2

C1,2;j.

2. Либо w
(3)
1 = 0, либо w

(3)
2 = 0, но тогда существует w

(3)
i = 1, i 6= 1, 2.

Применяем к p(3) действие сопряжением подстановкой h4, задаваемой композицией эле-

ментов

S4 = Ci;1 ∗
(

∗
w

(3)
j =1,j 6=1,2

C1,2;j

)

∗ Ci;1 ,
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если w
(3)
1 = 0, w

(3)
2 = 1; композицией элементов

S4 = Ci;2 ∗
(

∗
w

(3)
j =1,j 6=1,2

C1,2;j

)

∗ Ci;2 ,

если w
(3)
1 = 1, w

(3)
2 = 0; и композицией элементов

S4 = Ci;1 ∗ Ci;2 ∗
(

∗
w

(3)
j =1,j 6=1,2

C1,2;j

)

∗ Ci;2 ∗ Ci;1 ,

если w
(3)
1 = 0, w

(3)
2 = 0.

В итоге получим новую подстановку

p(4) =
(
p(3)
)h4

= (x(4),y(4)) ◦ (z(4),w(4)) ,

x(4) = 〈0, 0, 0 . . . , 0〉,y(4) = 〈1, 0, 0, . . . , 0〉 ,
z(4) = 〈0, 1, 0, . . . , 0〉,w(4) = 〈1, 1, 0, . . . , 0〉 .

На последнем шаге применяем к p(4) действие сопряжением подстановкой h5, задава-

емой композицией элементов S5 = ∗
36j6n

Nj :

g =
(
p(4)
)h5

= (〈0, 0, 1, . . . , 1〉, 〈1, 0, 1, . . . , 1〉) ◦ (〈0, 1, 1, . . . , 1〉, 〈1, 1, 1, . . . , 1〉) .

Таким образом, верны следующие равенства:

g = ph1◦h2◦h3◦h4◦h5 ,

p = gh
−1
5 ◦h−1

4 ◦h−1
3 ◦h−1

2 ◦h−1
1 ,

p = gh5◦h4◦h3◦h2◦h1 .

Согласно утверждению 1.20, подстановка g задаётся композицией элементов C2,3;1 ∗
Cn,...,4;2 ∗ C2,3;1 ∗ Cn,...,4;2. Следовательно, пара независимых транспозиций p = (x,y) ◦ (z,w)

задаётся следующей композицией элементов:

(
5∗

i=1
Si

)

∗ C2,3;1 ∗ Cn,...,4;2 ∗ C2,3;1 ∗ Cn,...,4;2 ∗
(

1∗
i=5

Si

)

,

где композиция элементов
(

5∗
i=1

Si

)

задаёт подстановку h1 ◦ h2 ◦ h3 ◦ h4 ◦ h5, а композиция

элементов
(

1∗
i=5

Si

)

— подстановку h5 ◦ h4 ◦ h3 ◦ h2 ◦ h1.
Согласно утверждению 1.23, элемент Cn,...,4;2 может быть выражен через композицию

элементов CNOT и 2-CNOT.

В случае, когда p является произведением зависимых транспозиций, мы можем выра-

зить p через произведение двух пар независимых транспозиций:

p = (x,y) ◦ (x, z) = ((x,y) ◦ (a,b)) ◦ ((a,b) ◦ (x, z)) .
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Каждую из пар независимых транспозиций можно выразить через композицию элементов

множества Ω2
n описанным выше способом.

Таким образом, любая пара транспозиций p = (x1,y1)◦(x2,y2) (из представления (1.8)

произвольной чётной подстановки h ∈ A(Zn
2 ) в виде произведения пар транспозиций) зада-

ётся композицией элементов из множества Ω2
n. Следовательно, множество подстановок SΩ2

n

порождает знакопеременную группу A(Zn
2 ) при n > 4.

1.6 Схемы с дополнительной памятью

Как было показано в предыдущих разделах, обратимая схема с n > 4 входами, со-

стоящая из элементов NOT и k-CNOT, k < n − 1, всегда реализует чётную подстановку на

множестве Z
n
2 . Возникает вопрос: возможно ли реализовать при помощи такой схемы произ-

вольное булево отображение f : Zn
2 → Z

m
2 , в общем случае не биективное?

Введём следующие отображения:

1. Расширяющее отображение φn,n+k : Z
n
2 → Z

n+k
2 вида

φn,n+k(〈x1, . . . , xn〉) = 〈x1, . . . , xn, 0, . . . , 0〉 .

2. Редуцирующее отображение ψπ
n+k,n : Z

n+k
2 → Z

n
2 вида

ψπ
n+k,n(〈x1, . . . , xn+k〉) = 〈xπ(1), . . . , xπ(n)〉 ,

где π — некоторая подстановка на множестве Zn+k.

Рассмотрим произвольное булево отображение f : Zn
2 → Z

m
2 .

Определение 1.26. Обратимая схема Sg с (n+ q) > m входами, задающая булево преобра-

зование g : Zn+q
2 → Z

n+q
2 , реализует отображение f c использованием q > 0 дополнительных

входов (дополнительной памяти), если существует такая подстановка π ∈ S(Zn+q), что

ψπ
n+q,m(g(φn,n+q(x))) = f(x) ,

где x ∈ Z
n
2 , f(x) ∈ Z

m
2 (см. рис. 1.4).

Если в определении 1.26 количество дополнительных входов q = 0, то будем говорить, что

схема реализует отображение f без дополнительной памяти.

Отметим, что в данной терминологии выражения «реализует отображение» и «задаёт

отображение» имеют разные значения: если обратимая схема Sg задаёт отображение f , то

g(x) = f(x) для всех входных значений x. Также из определения выше следует, что при m >

n не существует обратимой схемы без дополнительной памяти, реализующей отображение

f : Zn
2 → Z

m
2 .

Будем называть подстановку π из определения 1.26 перестановкой выходов обратимой

схемы.
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Рис. 1.4 Обратимая схема S, реализующая булево отображение f : Zn
2 → Z

m
2 с q дополнительными

входами. Для всех x ∈ Z
n
2 верно равенство f(x) = y, где y ∈ Z

m
2 .

Определение 1.27. Обратимая схема S строго реализует заданное отображение, если её

перестановка выходов является тождественной, и нестрого в противном случае.

На рис. 1.5 показаны обратимые схемы, реализующие нестрого (а) и строго (б) преобразова-

ние f(x) = y, где x,y ∈ Z
2
2, y1 = x2, y2 = x1.

x1

x2

y2

y1

x1

x2

y1

y2

а) б)

Рис. 1.5 Обратимые схемы, реализующие нестрого (а) и строго (б) преобразование

f(〈x1, x2〉) = 〈x2, x1〉.

Из рис. 1.5 следует, что из обратимой схемы S
∗, нестрого реализующей заданное отоб-

ражение f , можно получить обратимую схему S, строго реализующую это же отображение,

присоединив к выходам схемы S
∗ композицию из элементов CNOT в количестве не более

3m штук. Следовательно, верно следующее соотношение:

L(S) 6 L(S∗) + 3m .

Далее до конца этой главы все определения и утверждения будут формулироваться

только для схем, строго реализующих заданное отображение. Аналогичные определения и

утверждения для схем, нестрого реализующих заданное отображение, можно получить, пере-

нумеровав выходы схемы в соответствии с перестановкой выходов. Подстановку π в верхнем

индексе редуцирующего отображения ψπ
n,m будем опускать, т. к. для обратимой схемы, строго

реализующей заданное отображение, эта подстановка является тождественной.

Определение 1.28. Значимые входы схемы — входы, не являющиеся дополнительными.

Значимые выходы схемы — выходы, значения на которых нужны для дальнейших вычисле-

ний.

К примеру, на рис. 1.4 незначимые входы помечены символом 0, а незначимые выходы —

символом ∗.
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Будем считать, что обратимая схема из определения 1.26 порождает вычислительный

мусор на незначимых выходах, если для некоторого x ∈ Z
n
2 и y = g(φn,n+q(x)), y ∈ Z

n+q
2 ,

выполняется неравенство

φn,n+q(ψn+q,n(y)) 6= y . (1.9)

Другими словами, вычислительный мусор — ненулевое значение на каком-либо незначимом

выходе обратимой схемы, когда значения на всех дополнительных входах этой схемы равны

0.

Если отображение f инъективно, то существует такое булево отображение f ′ : Zm
2 →

Z
n
2 , что f ′(f(x)) = x, x ∈ Z

n
2 . Пусть обратимая схема Sg =

s∗
i=1

Efi реализует отображение

f без дополнительной памяти (с дополнительной памятью без порождения вычислительно-

го мусора). Тогда из определения обратимой схемы и определения 1.26 следует, что схема

S
′
g′ =

1∗
i=s

Efi реализует отображение f ′ без дополнительной памяти (с дополнительной памя-

тью без порождения вычислительного мусора). Однако если схема Sg реализует отображение

f с дополнительной памятью и порождает вычислительный мусор, то в общем случае невер-

но утверждение, что схема S
′
g′ реализует отображение f ′. Поясним сказанное при помощи

введённых отображений φ и ψ. Пусть для некоторого x ∈ Z
n
2 и y = g(φn,n+q(x)) выполняется

неравенство (1.9). В этом случае верно равенство ψn+q,n(g
′(y)) = x. Однако в общем случае

ψn+q,n(g
′(φn,n+q(ψn+q,n(y)))) 6= x ,

а это равносильно утверждению, что схема S
′
g′ в общем случае не реализует отображение

f ′. Таким образом, условие отсутствия вычислительного мусора на незначимых выходах схе-

мы Sg =
s∗

i=1
Efi является достаточным (но не необходимым), чтобы композиция элементов

1∗
i=s

Efi задавала отображение f ′. Из этого утверждения можно сделать два важных вывода.

Утверждение 1.29. Для заданного биективного булевого отображения f : Zn
2 → Z

n
2 мини-

мальная сложность обратимой схемы, реализующей преобразование f−1 и состоящей из

элементов множества Ω2
n, равна сложности обратимой схемы S, реализующей преобразо-

вание f и состоящей из элементов множества Ω2
n, если (достаточное условие):

1. Схема S реализует преобразование f без дополнительной памяти или с дополнитель-

ной памятью без порождения вычислительного мусора.

2. Схема S имеет минимальную сложность среди всех обратимых схем, состоящих из

элементов множества Ω2
n и реализующих преобразование f .

Другими словами, построение обратимой схемы, реализующую прямое преобразование без

дополнительной памяти или с дополнительной памятью без порождения вычислительного

мусора, позволяет дать оценку сложности обратимой схемы, реализующей обратное преоб-

разование.
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Утверждение 1.30. Для заданного биективного булевого преобразования f : Zn
2 → Z

n
2 слож-

ность обратимой схемы, реализующей преобразование f−1 и состоящей из элементов мно-

жества Ω2
n, может отличаться от сложности обратимой схемы S, реализующей преоб-

разование f и состоящей из элементов множества Ω2
n, только тогда, когда (необходимое

условие):

1. Схема S реализует преобразование f с порождением вычислительного мусора.

2. Схема S имеет минимальную сложность среди всех обратимых схем, состоящих из

элементов множества Ω2
n и реализующих преобразование f .

Используя понятие дополнительной памяти, можно переформулировать основные лем-

мы этой главы:

1. Для любой подстановки h ∈ S(Zn
2 ) при n < 4 существует задающая её обратимая схема

без дополнительной памяти, состоящая из элементов множества Ω2
n (Лемма 1.19).

2. Для любой чётной подстановки h ∈ A(Zn
2 ) при n > 4 существует задающая её обратимая

схема без дополнительной памяти, состоящая из элементов множества Ω2
n (Лемма 1.25).

3. Для любой нечётной подстановки h ∈ S(Zn
2 ) при n > 4 не существует реализующей её

обратимой схемы без дополнительной памяти, состоящей из элементов множества Ω2
n

(следствие 1.17).

Утверждение 1.31. Для любой нечётной подстановки h ∈ S(Zn
2 ), n > 4, существует реа-

лизующая её обратимая схема с одним дополнительным входом, состоящая из элементов

множества Ω2
n.

Доказательство. Подстановке h соответствует некоторое преобразование fh : Z
n
2 → Z

n
2 . Вве-

дём два множества: Z(0) = {x ∈ Z
n+1
2 | xn+1 = 0 } и Z

(1) = {x ∈ Z
n+1
2 | xn+1 = 1 }. Очевидно,

что Z
n+1
2 = Z

(0) ∪ Z
(1), Z(0) ∩ Z

(1) = ∅.

Зададим отображение φ : Zn
2 × Z2 → Z

n+1
2 следующим образом:

φ(〈x1, . . . , xn〉, y) = 〈x1, . . . , xn, y〉 ,

где xi, y ∈ Z2.

Зададим преобразование gi : Z
(i) → Z

(i) следующим образом:

gi(φ(x, i)) = φ(fh(x), i) ,

где x ∈ Z
n
2 , i = 0 или 1. Подстановка hgi , задаваемая преобразованием gi, принадлежит

симметрической группе S(Z(i)). Очевидно, что при таком построении верно равенство

hgi(φ(x, i)) = φ(h(x), i) ,
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где x ∈ Z
n
2 . Следовательно, подстановки hg0 , hg1 и h имеют одинаковую цикловую структуру,

а значит, и одинаковую чётность.

Зададим преобразование g : Zn+1
2 → Z

n+1
2 следующим образом:

g(〈x1, . . . , xn+1〉) = x̄n+1 ∧ g0(〈x1, . . . , xn, 0〉)⊕ xn+1 ∧ g1(〈x1, . . . , xn, 1〉) .

Очевидно, что подстановка hg, задаваемая преобразованием g, равна hg = hg0 ◦ hg1 ⇒ она

является чётной.

Согласно Лемме 1.25, для подстановки hg ∈ A(Zn+1
2 ) существует задающая её обрати-

мая схема с (n + 1) входами, состоящая из элементов множества Ω2
n. А по определению 1.26

эта же схема будет реализовывать преобразование fh, соответствующее нечётной подстанов-

ке h. Вход схемы с номером (n + 1) и будет тем самым одним дополнительным входом из

условия.

В этом доказательстве показан лишь один из способов построить обратимую схему Sg,

реализующую преобразование, соответствующее нечётной подстановке h ∈ S(Zn
2 ), с исполь-

зованием одного дополнительного входа. Сложность схемы Sg будет зависеть в том числе и

от того, как задано преобразование g. В последующих главах будет изучаться вопрос зави-

симости сложности и глубины обратимой схемы от вида преобразования g и от количества

используемых дополнительных входов.

В заключение данной главы рассмотрим вопрос реализации сюръективного отображе-

ния f : Zn
2 → Z

m
2 , m < n. Введём множество Ay = {x ∈ Z

n
2 | f(x) = y ∈ Z

m
2 }. Обозначим

d = max
y

|Ay|.

Утверждение 1.32. Не существует обратимой схемы, состоящей из элементов множе-

ства Ω2
n, реализующей сюръективное отображение f с q < ⌈log2 d⌉ дополнительными вхо-

дами.

Доказательство. Докажем от противного. Пусть существует обратимая схема Sg, состоя-

щая из элементов множества Ω2
n и реализующая сюръективное отображение f с q < ⌈log2 d⌉

дополнительными входами.

Существует множество Ay, мощность которого равна d: |Ay| = d, y ∈ Z
m
2 . Определим

множество A ⊆ Z
m+q
2 следующим образом:

A = {x = 〈x1, . . . , xn, 0, . . . , 0〉 ∈ Z
m+q
2 | 〈x1, . . . , xn〉 ∈ Ay } .

Рассмотрим булево преобразование g : Zm+q
2 → Z

m+q
2 , задаваемое схемой Sg. Для всех

x ∈ A верно следующее равенство:

g(x) = 〈y1, . . . , ym, z1, . . . , zq〉 ,
y = 〈y1, . . . , ym〉, zi ∈ Z2 .
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Отсюда следует, что мощность множества значений преобразования g на множестве A

|g[A]| 6 2q .

При этом |A| = |Ay| = d > 2q ⇒ на множестве A преобразование g сюръективно ⇒ g не

биективно, а значит схема Sg не существует.

Пришли к противоречию, следовательно, доказываемое утверждение верно.



38

2 Cинтез обратимых схем

В данной главе будут рассмотрены основные переборные и непереборные алгоритмы

синтеза обратимых схем, состоящих из элементов NOT и k-CNOT; по возможности будет

приведено их краткое описание и основные характеристики. Далее будет приведена сравни-

тельная таблица алгоритмов синтеза по таким основным характеристикам, как временна́я

сложность алгоритма, требуемое для работы алгоритма количество памяти, количество до-

полнительных входов синтезированной схемы и её сложность. В конце главы будет пред-

ставлен новый, основанный на использовании теории групп подстановок алгоритм синте-

за обратимой схемы, состоящей из элементов NOT, CNOT и 2-CNOT, реализующей задан-

ную чётную подстановку h ∈ A(Zn
2 ) при n > 3 со сложностью O(n2m), где m = ⌈log2 |M |⌉,

M = {x | h(x) 6= x } — множество подвижных точек преобразования h.

В настоящей работе не будут рассматриваться алгоритмы синтеза обратимых схем,

реализующих частично заданные булевы функции (например, алгоритм, описанный в ра-

боте [73]), и алгоритмы синтеза, использующие отличные от NOT и k-CNOT обратимые

элементы (к примеру, Ф.Э. Kerntopf в работе [77]). Последнее ограничение связано с тем,

что задаваемая любым обратимым Ф.Э. подстановка на множестве Z
n
2 может быть пред-

ставлена в виде произведения транспозиций, задаваемых элементами NOT и k-CNOT (см.

доказательство Лемм 1.19 и 1.25).

Сперва рассмотрим алгоритмы, главной задачей которых является снижение слож-

ности обратимых схем. Несмотря на то, что алгоритмы такого типа не предназначены для

синтеза схем, они нередко являются составной частью более сложных алгоритмов синтеза и

применяются на последнем этапе для снижения сложности синтезированной схемы.

2.1 Алгоритмы снижения сложности схем

В работе [58] было описано множество простых, но нетривиальных правил замен ком-

позиций обратимых Ф.Э. определённого вида на эквивалентные им композиции Ф.Э. в обра-

тимых схемах, состоящих из элементов NOT и k-CNOT. Также авторами было показано, что

приведённое множество замен является полным, т. е. для любых двух эквивалентных схем

S1 и S2, задающих одно и то же булево преобразование, существует последовательность из

предложенных замен, которая приводит S1 к S2. Там же был предложен алгоритм A1.1

снижения сложности обратимых схем с применением данного множества замен.

Алгоритм A1.1 работает только с обратимыми схемами Sf , задающими преобразова-

ние f : Zn
2 → Z

n
2 следующего вида:

f(〈x1, . . . , xn〉) = 〈x1, . . . , xn−1, xn ⊕ φ(〈x1, . . . , xn−1〉)〉, где φ : Zn−1
2 → Z2 . (2.1)

Из формулы (2.1) следует, что алгоритм A1.1 не применим к обратимым схемам, зада-

ющим преобразование произвольного вида. Тем не менее, при разработке данного алгоритма

авторами был рассмотрен вопрос эквивалентной замены композиций Ф.Э. В большинстве
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случаев такая замена требуется, когда необходимо поменять два обратимых Ф.Э. местами.

Все эти замены или часть из них в том или ином виде используются во многих алгоритмах

синтеза и оптимизации схем из логических элементов NOT и k-CNOT, рассматриваемых

далее.

Приведём здесь предложенные авторами правила эквивалентной замены композиций

обратимых Ф.Э. Композиция элементов E(t1, I1) ∗ E(t2, I2) может быть:

O1 ) исключена из схемы без изменения результирующего преобразования, если I1 = I2,

t1 = t2 (случай двух одинаковых Ф.Э.);

O2 ) заменена на E(t2, I2) ∗ E(t1, I1), если t1 /∈ I2, t2 /∈ I1;

O3 ) заменена на E(t2, I2) ∗ E(t1, I1) ∗ E(t1, I1 ∪ I2 \ { t2 }), если t1 /∈ I2, t2 ∈ I1;

O4 ) заменена на E(t2, I1 ∪ I2 \ { t1 }) ∗ E(t2, I2) ∗ E(t1, I1), если t1 ∈ I2, t2 /∈ I1;

O5 ) заменена на E(t1, I1) ∗ E(t2, { t1 } ∪ { I2 \ I1 }), если t1 /∈ I2, t2 /∈ I1, I1 ⊆ I2 и xt1 ≡ 0

(значение на t1-м входе элемента E(t1, I1)) для всех возможных значений на входах

схемы;

Ещё одно правило эквивалентной замены O6 : элемент E(j, I) можно исключить из

схемы без изменения результирующего преобразования, если существует такое значение i ∈ I,

что xi ≡ 0 (значение на i-м входе данного элемента) для всех входных значений схемы.

В главе 3 эти правила эквивалентных замен будут расширены для случая инвертиро-

ванных контролирующих входов (для элементов E(t, I, J)).

2.2 Алгоритмы полного перебора

В работе [64] был представлен переборный алгоритм A2.1 синтеза обратимой схемы,

дающей на одном из выходов результат заданной булевой функции над входами. Булево

преобразование, задаваемое такой схемой, с точностью до перенумерации входов описано в

разделе алгоритма A1.1 на с. 38. Основной задачей данного алгоритма является уменьшение

количества дополнительных входов синтезированной схемы.

Алгоритм A2.1 основан на «весовых функциях» из теории информации (терминоло-

гия авторов) и предсказании наилучшего решения на один шаг вперёд. Рабочей единицей

алгоритма является каскад из N обратимых Ф.Э. (N — параметр алгоритма, задаётся вруч-

ную). Авторами вводится понятие наилучшего элемента — Ф.Э., дающего максимальное

количество совпадений минимальных конъюктивных форм (минтерм) полученной булевой

фунцкции и заданной функции. Вкратце принцип работы алгоритма можно описать следу-

ющим образом:

1. Получить каскад из N наилучших элементов (текущий каскад).
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2. Для каждого из Ф.Э. текущего каскада ищутся N наилучших элементов (следующий

каскад). Среди всех Ф.Э. из следующих каскадов ищется наилучший.

3. Ф.Э. из текущего каскада, соответствующий найденному на предыдущем шаге наи-

лучшему элементу из следующих каскадов, включается в схему; следующий каскад

включённого Ф.Э. становится текущим.

4. Шаги 1–3 повторяются, пока синтезированная обратимая схема не реализует заданную

функцию.

Авторами алгоритма не оговаривается, как выбрать параметр N , как зависит время

синтеза от величины N и всегда ли алгоритм способен синтезировать схему для любой за-

данной функции. Также остаётся неясным, какова сложность синтезированной схемы. Пред-

положительно, алгоритму A2.1 для синтеза схемы требуется объём памяти, намного пре-

восходящий N2 (хранение всех возможных пар каскадов), а временна́я сложность намного

превосходит (N2)l, где l — сложность синтезированной схемы.

В работе [83] рассматривается вопрос синтеза обратимых схем, состоящих из элемен-

тов NOT и k-CNOT и задающих какую-либо чётную подстановку. Авторами данной работы

конструктивно доказывается, что любая чётная подстановка может быть задана обратимой

схемой без дополнительной памяти, состоящей из элементов NOT, CNOT и 2-CNOT, а лю-

бая нечётная — обратимой схемой с одним дополнительным входом, состоящей из элементов

NOT, CNOT и 2-CNOT.

Также авторами данной работы предложен алгоритм A2.2 синтеза обратимых схем с

минимальной сложностью, состоящих из элементов NOT, CNOT и 2-CNOT. Данный алго-

ритм основан на поиске в глубину с итеративным углублением. Для его работы необходимо

построить библиотеку минимальных обратимых схем сложности L 6 m и задаваемых ими

преобразований. Синтез схемы, задающей требуемое булево преобразование, осуществляется

следующим образом:

• проверяется наличие заданного преобразования в библиотеке минимальных схем; в слу-

чае его присутствия, из библиотеки извлекается соответствующая ему минимальная

схема;

• в случае отсутствия схемы в библиотеке, начинается поиск в глубину с шагом k по

количеству Ф.Э. в схеме, 1 6 k 6 m:

– из библиотеки извлекается очередная минимальная схема сложности k;

– к выходам этой схемы подключаются всеми возможными способами элементы

NOT, CNOT и 2-CNOT;
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– сверяется требуемое преобразование с преобразованием, задаваемым полученной

схемой; в случае совпадения этих преобразований все подсхемы полученной схемы

заменяются на минимальные из библиотеки (если существуют).

Так же алгоритмом предусмотрена принудительная остановка поиска в глубину, если слож-

ность синтезированной схемы начинает превышать заранее заданную величину.

Таким образом, алгоритм A2.2, благодаря библиотеке минимальных схем, является

более быстрым по сравнению с алгоритмом полного перебора. Однако данный алгоритм не

применим на практике для синтеза сложных схем, т. к. с ростом количества входов схемы и

сложности синтезируемой схемы экспоненциально растёт размер библиотеки минимальных

схем и время синтеза. Вторым существенным ограничением данного алгоритма является

то, что для некоторых заданных преобразований он не сможет синтезировать схему из-за

принудительной остановки поиска в глубину, описанного выше.

Временна́я сложность алгоритма A2.2 намного превышает величину N l, где l — слож-

ность синтезированной схемы, N — количество схем в библиотеке минимальных схем; тре-

буемый для синтеза объём памяти составляет порядка O(mN) (хранение библиотеки мини-

мальных схем), где m — максимальная сложность обратимой схемы из библиотеки.

В работе [91] был представлен быстрый алгоритм A2.3 синтеза обратимых схем с

минимальной сложностью, состоящих из Ф.Э. заранее сформированной библиотеки элемен-

тов. Данный алгоритм использует математическое программное обеспечение GAP (Groups,

Algorithms, Programming), представляющее собой пакет программ для вычислительной дис-

кретной алгебры. Авторами показывается, что задачу синтеза обратимой схемы можно све-

сти к некоторой задаче из теории групп подстановок, которую и решает GAP.

Алгоритм A2.3, также как и алгоритм A2.2, является переборным, однако примене-

ние теории групп подстановок и специализированного ПО позволяет решать задачу синтеза

обратимых схем, имеющих минимальную сложность, за приемлемое время при количестве

входов схемы n = 3. К сожалению, при бо́льшем значении n данный алгоритм не применим

из-за чрезмерно продолжительного времени синтеза. Также не даётся никаких оценок на

требуемый алгоритмом объём памяти для синтеза схемы.

2.3 Непереборные алгоритмы

В работах [70] и [69] был представлен непереборный алгоритм A3.1 синтеза обратимых

схем с близкой к минимальной сложностью, использующий спектральный метод Радемахера-

Уолша.

Для заданной функции f(x1, . . . , xn) спектр Радемахера-Уолша R = Tnf̄ , где f̄ —
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столбец значений функции f , Tn — матрица Адамара:

T0 =
[

1
]

,

Tn =

[

Tn−1 Tn−1

Tn−1 −Tn−1

]

.

В качестве базовой меры сложности C(f) функции f авторами используется количе-

ство смежных нулей и смежных единиц на карте Карно. Как было показано в работе [56],

значение C(f) равно

C(f) =
1

2

(

n2n − 1

2n−2

2n−1∑

v=0

w(v)r2v

)

,

где w(v) — вес двоичного вектора v, rv — v-я координата спектра R.

В качестве основной меры сложности функции f авторы используют величину D(f) =

n2nNZ(R) + C(f), где NZ(R) — количество нулевых коэффициентов в спектре R.

Сам алгоритм синтеза A3.1 работает следующим образом. Для заданного преобра-

зования f : Zn
2 → Z

n
2 строится система выходных функций fi(x1, . . . , xn) и их спектров Ri,

1 6 i 6 n. Для каждого спектра Ri запускается алгоритм поиска следующего Ф.Э.:

1. Для каждого из
(
n
1

)
(n − 1) всех возможных элементов Ci1;j рассмотреть изменение

значения D(fi) и выбрать тот Ф.Э., для которого это изменение будет максимальным

положительным.

2. Если на предыдущем шаге не был выбран Ф.Э., для каждого из
(
n
2

)
(n − 2) всех воз-

можных элементов Ci1,i2;j рассмотреть изменение значения D(fi) и выбрать тот Ф.Э.,

для которого это изменение будет максимальным положительным.

3. Если на предыдущем шаге не был выбран Ф.Э., для каждого из
(
n
3

)
(n − 3) всех воз-

можных элементов Ci1,i2,i3;j рассмотреть изменение значения D(fi) и выбрать тот Ф.Э.,

для которого это изменение будет максимальным положительным.

4. Если ни один Ф.Э. не выбран на предыдущих шагах, алгоритм заканчивается с ошиб-

кой. Иначе R′
j = Rj, j 6= i, где xi — переменная, изменяемая выбранным Ф.Э. Новое

значение R′
i вычисляется на основе выбранного Ф.Э.

Из данного описания не ясно, почему алгоритм может завершиться с ошибкой на по-

следнем шаге. Если ошибки можно избежать, рассматривая элементы k-CNOT с бо́льшим

количеством контролирующих входов, то время синтеза схемы будет расти экспоненциаль-

но и в случае рассмотрения всех возможных элементов k-CNOT составит O(2nl), где l —

сложность синтезированной схемы. Для обратимых схем с l ∼ n время синтеза уже будет по-

рядка O
(

2n
2
)

. Требуемый для синтеза объём памяти составляет порядка O(n2n) (хранение

спектров n функций).
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В работе [67] был описан похожий алгоритм синтеза A3.2, использующий спектр Рида-

Маллера (вектор коэффициентов многочлена Жигалкина).

Для заданной функции f(x1, . . . , xn) спектр Рида-Маллера Rm(f) = Mnf̄ , где f̄ —

столбец значений функции f , Mn — матрица следующего вида:

M0 =
[

1
]

,

Mn =

[

Mn−1 0

Mn−1 Mn−1

]

.

В качестве базовой меры сложности C(f) функции f авторами используется количе-

ство различных коэффициентов в спектре Rm(f) и в спектре Рида-Маллера тождественной

функции. Сам алгоритм синтеза можно описать следующим образом: имея таблицу истин-

ности для заданного булева преобразования F : Zn
2 → Z

n
2 , модифицировать каждую строку

этой таблицы, начиная с первой, таким образом, чтобы она соответствовала строке в таблице

истинности тождественного булева преобразования. При этом каждой такой модификации

строк ставится в соответствие некоторая композиция обратимых Ф.Э. из множества Ω2
n.

Авторами доказывается, что алгоритм A3.2 всегда синтезирует обратимую схему для

любого заданного булева преобразования. Временна́я сложность алгоритма равна O(n2n)

(просмотр всей таблицы истинности), сложность синтезированной схемы S равна L(S) .

5n2n, требуемый для синтеза объём памяти составляет порядка O(n2n) (хранение таблицы

истинности).

В работе [71] был представлен непереборный алгоритм A3.3 синтеза обратимых схем,

состоящих из элементов NOT и k-CNOT. В качестве входа алгоритм принимает таблицу ис-

тинности для заданного обратимого преобразования f : Zn
2 → Z

n
2 . Его работу можно описать

следующим образом (0 = 〈0, . . . , 0〉 — нулевой вектор):

1. Если f(0) = y 6= 0, то для каждого yj = 1 добавить в схему элемент Nj и инвертировать

в таблице истинности j-й выходной столбец.

2. Для каждого ненулевого вектора x 6= 0 такого, что f(x) = y, y 6= x:

• построить множество индексов Ix = { i | xi = 1 };

• построить множество индексов Iy = { i | yi = 1 };

• построить множество индексов Jp = { i | xi = 1, yi = 0 };

• построить множество индексов Jq = { i | xi = 0, yi = 1 };

• для каждого индекса p ∈ Jp добавить в схему элемент CIy;p и инвертировать соот-

ветствующие значения в таблице истинности;

• для каждого индекса q ∈ Jq добавить в схему элемент CIx;q и инвертировать соот-

ветствующие значения в таблице истинности;
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В итоге для каждого значения вектора x получаем на каждом шаге функцию f такую,

что f(x′) = x′ для всех векторов x′, удовлетворяющих условию

n∑

k=1

x′k2
k−1 6

n∑

k=1

xk2
k−1 .

В конце работы алгоритма f представляет собой тождественное преобразование. Рас-

положив Ф.Э. синтезированной схемы в обратном порядке, можно получить обратимую схе-

му, задающую преобразование f .

Время работы алгоритма составляет порядка O(n2n), результат синтеза гарантирован.

Сложность синтезированной схемы, по словам авторов, не превосходит (n − 1)2n + 1, для

любого значения n можно построить таблицу истинности таким образом, что сложность

синтезированной схемы будет равна (n − 1)2n + 1. Требуемый для синтеза объём памяти

составляет порядка O(n2n) (хранение таблицы истинности).

Для снижения сложности синтезированной схемы авторы предлагают четыре способа

оптимизации алгоритма:

• использование перестановки выходов схемы для минимизации суммы расстояний Хем-

минга для всех пар вход/выход (в этом случае, правда, синтезированная схема уже не

задаёт искомое преобразование, а реализует его; см. определение на с. 32);

• уменьшение количества контролирующих входов получаемых элементов k-CNOT на

каждом шаге алгоритма; критерием выбора этого количества является минимизация

суммы расстояний Хемминга для всех пар вход/выход;

• проход не только от начала таблицы истинности преобразования к её концу, но и от

её конца к началу на каждом шаге алгоритма; критерий выбора наилучшего прохода

определяется также, как и в предыдущем пункте;

• использование таблицы эквивалентных замен композиций Ф. Э.

По заверениям авторов, алгоритм A3.3 с учётом всех способов его оптимизации синте-

зирует схему со сложностью, близкой к минимальной, если количество входов схемы равно

трём; при большем количестве входов схемы алгоритм даёт очень хороший результат син-

теза. Тем не менее многие из перечисленных способов оптимизации алгоритма имеют суще-

ственный недостаток. Так, к примеру, использование перестановки выходов (первый способ)

влечёт за собой необходимость рассмотрения n! подстановок, что для очень больших значе-

ний n потребует колоссальных временны́х трудозатрат. Во-вторых, уменьшение количества

контролирующих входов элементов k-CNOT на каждом шаге алгоритма (второй способ) вле-

чёт за собой необходимость рассмотрения порядка O(2n) Ф.Э., что в сумме на весь алгоритм

может дать порядка O(22n) операций. И наконец, последний способ оптимизации требует как

большое количество памяти для хранения таблицы эквивалентных замен композиций Ф.Э.,
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так и большое время поиска этих композиций в синтезированной схеме. В итоге, уже для

схемы с 7-ю входами, содержащей 12 Ф.Э., суммарное время синтеза составляет порядка

двух секунд [71].

Ещё одним существенным недостатком алгоритма A3.3 является необходимость рас-

сматривать таблицу из 2n значений, даже если эта таблица задаёт всего одну транспозицию.

Из-за этого при больших значениях n данный алгоритм уже может быть не применим на

практике. В работе [34] было предложено усовершенствование данного алгоритма для боль-

ших значений n, которое заключается в переупорядочивании строк в таблице. Это позволяет

избавиться от хранения таблицы, но не от её рассмотрения.

Похожий алгоритм A3.4 синтеза обратимых схем был представлен в работе [80]. Как

и в предыдущем случае, алгоритм принимает на вход таблицу истинности для заданного

обратимого преобразования f : Zn
2 → Z

n
2 . Однако синтез схемы происходит упорядочиванием

в таблице истинности не минтерм целиком (минимальных конъюктивных форм), а их разря-

дов. Псевдокод алгоритма следующий:

Вход: таблица истинности для обратимого преобразования f(〈x1, . . . , xn〉) = 〈y1, . . . , yn〉.
Выход: обратимая схема из элементов k-CNOT, задающая преобразование f .

Обозначения: i-я входная (выходная) переменная j-й минтермы обозначается xi,mj (yi,mj);

i-я минтерма j-й входной (выходной) переменной обозначается mi,xj (mi,yj).

i = 1

повторить:

пометить все 2n минтерм как непосещённые

для каждой минтермы mj, j = 1, . . . , 2n делать:

если минтерма mj не помечена, как посещённая, тогда:

если yi,mj 6= xi,mj, тогда:

начало блока

пометить минтерму mj,yi, как посещённую

найти минтерму mk,yi, отличающуюся от mj,yi в i-й переменной

если mk,yi находится ниже mj,yi, тогда:

поменять местами mj,yi и mk,yi (получим yi,mj = xi,mj)

пометить минтерму mk,yi, как посещённую

иначе (mk,yi находится выше mj,yi):

если yp,mk 6= yp,mk, p = 1, . . . , n хотя бы для одного p, тогда:

поменять местами mj,yi и mk,yi (получим yi,mj = xi,mj)

пометить минтерму mk,yi, как посещённую

конец блока

получить элементы k-CNOT для произведённых перестановок минтерм

i = i+ 1 mod n
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пока не достигнуто условие yi = xi для всех i ∈ (1, . . . , n)

Как видно из этого описания, алгоритм A3.4 также, как и алгоритм A3.3, оперирует

таблицей истинности, содержащей 2n строк. Следовательно, при больших значениях n дан-

ный алгоритм также может быть не применим на практике. Сложность l синтезированной

алгоритмом A3.4 схемы, по заверениям авторов, близка к минимальной; временна́я слож-

ность алгоритма равна O(l2n). Требуемый для синтеза объём памяти составляет порядка

O(n2n) (хранение таблицы истинности).

В работе [92] авторами конструктивно доказывается, что любая чётная подстановка

h ∈ A(Zn
2 ) при n > 3 может быть задана обратимой схемой, состоящей из элементов NOT и 2-

CNOT, без использования дополнительных входов. На основе этого доказательства авторами

также был разработан алгоритм A3.5 синтеза обратимой схемы с n > 3 входами, задающей

какую-либо чётную подстановку h ∈ A(Zn
2 ). Данный алгоритм основан на теории групп

подстановок. Суть алгоритма следующая:

1. Подстановка h ∈ A(Zn
2 ) представляется в виде произведения циклов длины 3:

h = ◦
i
(u, s, t)i .

2. Каждый цикл (u, s, t)i представляется в виде произведения циклов длины 3 специаль-

ного вида, называемых соседними (терминология авторов):

(u, s, t) = ◦
j
(a1, a2, a3)j .

3. Каждый соседний цикл (a1, a2, a3)j задаётся предвычисленной композицией элементов

NOT (до n−2 штук) и либо элементов 2-CNOT (3 ·2n−4−2 штук), либо одного элемента

(n− 2)-CNOT.

Как видно из данного описания, алгоритм A3.5 принимает на вход не таблицу истин-

ности, а подстановку. Следовательно, в случае если подстановка короткая, отпадает необхо-

димость просматривать и/или хранить всю таблицу истинности из 2n значений. И только

если в подстановке участвуют все 2n двоичных векторов длины n, то временны́е затраты

и затраты на память становятся такими же, как и для алгоритмов, работающих с табли-

цей истинности (A3.3 и A3.4). По словам авторов, временна́я сложность алгоритма A3.5

в худшем случае равна 10
3
n22n, верхняя оценка сложности синтезированной схемы равна

(
n + ⌊n

3
⌋
)
(3 · 22n−3 − 2n+2) и n

(
n + ⌊n

3
⌋
)
2n+2 для 2-CNOT и NOT соответственно; требуемый

для синтеза объём памяти зависит от вида входной подстановки, но не превышает по по-

рядку O(n2n) (хранение всех элементов подстановки). Отметим, что авторы данной работы

рассматривали разложение элемента (n − 2)-CNOT в композицию (3 · 2n−4 − 2) элементов

2-CNOT по формуле 1.6. Однако если воспользоваться утверждением 1.23, то тогда верхняя

оценка количества обратимых элементов 2-CNOT снизится до (n− 5)
(
n+ ⌊n

3
⌋
)
2n+4.
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Достоинством алгоритма A3.5 является существенно меньшее время синтеза схемы

по сравнению с алгоритмами A2.1–A2.3 и меньшее количество требуемой для этого памя-

ти по сравнению с алгоритмами A3.1–A3.4. Однако синтезированная схема имеет бо́льшую

сложность по сравнению со схемами, синтезированными при помощи алгоритмов A3.1–A3.4.

2.4 Сравнение алгоритмов синтеза

Рассмотрим обратимое преобразование f : Zn
2 → Z

n
2 и множество подвижных точек

этого преобразования M = {x | f(x) 6= x }. Обозначим через m величину ⌈log2 |M |⌉. Очевид-

но, что m 6 n.

Преобразование f задаёт какую-либо подстановку hf ∈ S(Zn
2 ), которую можно пред-

ставить в виде произведения транспозиций в количестве не более чем 2m (см. с. 49). Это

свойство будет использоваться при сравнении основных характеристик алгоритмов синтеза.

Цель сравнения — показать их различие при m = o(n).

Будем рассматривать только те преобразования f , для которых задаваемая ими под-

становка hf является чётной. В таблице 2.1 приведено сравнение по основным характери-

стикам описанных в предыдущих разделах алгоритмов синтеза обратимых схем, состоящих

из элементов NOT и k-CNOT и задающих/реализующих преобразование f . Обозначения:

T(A) — временна́я сложность алгоритма синтеза; M(A) — требуемый для синтеза объём па-

мяти; l = L(Sf) — сложность синтезированной схемы; Ω2
n — множество всех элементов NOT,

CNOT и 2-CNOT с n входами; Ωn — множество всех элементов NOT и k-CNOT с n входами

(Ω2
n ⊂ Ωn).

Из таблицы 2.1 видно, что только алгоритмы A3.2 — A3.5 гарантированно дают резуль-

тат синтеза схемы за приемлемое время. При этом лишь алгоритм A3.4 позволяет получить

схему с близкой к минимальной сложностью.

Тем не менее, для рассматриваемого частного случая m = o(n), ни один из алгоритмов

синтеза, кроме алгоритма A3.5, не позволяет получить результат синтеза за время порядка

o(n2n). Это замечание верно и для объёма памяти, требуемого алгоритмами синтеза.

Ещё одним важным свойством алгоритма A3.5 является использование в синтезиро-

ванной схеме Ф.Э. только из множества Ω2
n, но не из расширенного множества Ωn. В случае,

когда в обратимой схеме невозможно использовать Ф.Э. из Ωn, только этот алгоритм и алго-

ритм A3.2 позволят гарантированно синтезировать схему, т. к. не всегда возможно привести

без использования дополнительных входов схему, состоящую из Ф.Э. множества Ωn, к схеме,

состоящей из Ф.Э. множества Ω2
n.

Однако существенным недостатком алгоритма A3.5 является избыточная сложность

синтезированной схемы по сравнению с другими алгоритмами, которая зависит только от m

и никак не зависит от вида подстановки h.

Далее будет представлен новый быстрый алгоритм синтеза обратимых схем, дающий

результат синтеза за время порядка o(n2n) при m = o(n) и позволяющий получить схему
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Алго-

ритм
Результат T (A) M(A) l = L(Sf ) Примечание

A2.1
не гаран-

тирован
≫
(
N2
)l

N2

близкая к

минималь-

ной

переборный, не универсальный;

Ф.Э. из Ωn; N — размер каскада

Ф.Э., задаётся вручную

A2.2
не гаран-

тирован
≫ N l O(kN)

минималь-

ная

переборный; Ф.Э. из Ω2
n или Ωn;

N — размер библиотеки

минимальных схем со сложностью

< k

A2.3
гаранти-

рован
неизвестно неизвестно

минималь-

ная

переборный; Ф.Э. из Ωn;

использует ПО GAP

A3.1
не гаран-

тирован
O(2nl) O(n2n)

близкая к

минималь-

ной

непереборный; Ф.Э. из Ωn;

использует спектральный метод

Радемахера-Уолша

A3.2
гаранти-

рован
O(n2n) O(n2n) O(n2n)

непереборный; Ф.Э. из Ω2
n;

использует спектр Рида-Маллера

A3.3
гаранти-

рован
O(n2n) O(n2n) O(n2n)

непереборный; Ф.Э. из Ωn;

использует таблицу истинности

A3.4
гаранти-

рован
O(l2n) O(n2n)

близкая к

минималь-

ной

непереборный; Ф.Э. из Ωn;

использует таблицу истинности

A3.5
гаранти-

рован
O(n22m) O(n2m) O(n22m)

непереборный; Ф.Э. из Ω2
n;

использует теорию групп

подстановок

Таблица 2.1 Сравнение алгоритмов синтеза обратимых схем.

с меньшей сложностью по сравнению с алгоритмом A3.5. Описание этого алгоритма было

опубликовано автором в работе [95].

2.5 Новый быстрый алгоритм синтеза

Рассмотрим произвольную подстановку h ∈ S(Zn
2 ), n > 3, и множество подвижных

точек этой подстановки M = {x | x ∈ Z
n
2 , h(x) 6= x }. Обозначим m = ⌈log2 |M |⌉.

Самый простой способ синтеза (алгоритм A4.1) обратимой схемы, задающей подста-

новку h, можно описать следующим образом:

1. Найти представление заданной подстановки h ∈ S(Zn
2 ) в виде произведения транспози-

ций.

2. Каждую транспозицию t = (x,y) путём сопряжения привести к виду t′ = (x′,y′) таким

образом, чтобы нашлось такое значение j, что x′j = y′j ⊕ 1 и x′i = y′i = 1 при i 6= j;

x,y,x′,y′ ∈ Z
n
2 .
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3. Найти композиции обратимых Ф.Э. из множества Ωn, задающих транспозицию t′ и

действие сопряжением на транспозицию t.

Подсчитаем максимальное количество транспозиций в представлении подстановки h

на шаге 1. В случае, когда подстановка h представляет собой один длинный цикл, её можно

представить в виде произведения не более чем 2m − 1 транспозиций:

(i1, i2, i3, . . . , i2m) = (i1, i2) ◦ (i1, i3) ◦ . . . ◦ (i1, i2m) . (2.2)

В случае, когда h представляет собой произведение нескольких циклов, каждый цикл можно

представить в виде произведения транспозиций по формуле (2.2), что при фиксированном

значении m даёт максимальное количество транспозиций в этом произведении не более 2m−1.

Подсчитаем количество обратимых элементов, необходимых на шаге 2 и 3.

Действие сопряжением подстановкой g на подстановку h мы обозначили через hg =

g−1◦h◦g. На с. 25 было показано, что задаваемые элементами NOT и k-CNOT подстановки яв-

ляются обратными к самим себе. Поэтому действие сопряжением подстановкой g, задаваемой

таким Ф.Э., выражается, как hg = g ◦h◦ g, что требует ровно 2 Ф.Э. Действие сопряжением

не меняет цикловой структуры подстановки, поэтому транспозиция t в результате действия

сопряжением всегда будет оставаться одной транспозицией.

Для рассматриваемой транспозиции t = (x,y) введём 4 множества: B00, B01, B10 и B11,

где BXY = { i | xi = X, yi = Y }, Мощности этих множеств обозначим через b00, b01, b10, b11

соответственно. Очевидно, что b00 + b01 + b10 + b11 = n.

x 6= y ⇒ либо b01 6= 0, либо b10 6= 0. Рассмотрим 2 случая:

1. b01 6= 0, b10 6= 0.

В этом случае существуют индексы j ∈ B10, k ∈ B01. Для каждого i ∈ B10, i 6= j

будем действовать сопряжением на t подстановкой, задаваемой элементом Ck;i. Затем

для каждого i ∈ B01 будем действовать сопряжением на полученную транспозицию

подстановкой, задаваемой элементом Cj;i. На последнем шаге для каждого i ∈ B00 бу-

дем действовать сопряжением на полученную транспозицию подстановкой, задаваемой

элементом Ni. В результате получим искомую транспозицию t′ = (x′,y′).

Для сопряжения требуется 2(b10−1) элементов Ck;i, 2b01 элементов Cj;i и 2b00 элементов

Ni. В сумме всего требуется 2(b10 + b01 + b00 − 1) элементов NOT и CNOT. В худшем

случае b11 = 0 ⇒ b10 + b01+ b00 = n. Следовательно, для получения транспозиции t′ при

b01 6= 0, b10 6= 0 требуется не более 2(n− 1) элементов NOT и CNOT.

Транспозиция t задаётся следующей композицией Ф.Э.:

St =



 ∗
i∈B10
i 6=k

Ck;i



∗
(

∗
i∈B01

Cj;i

)

∗
(

∗
i∈B00

Ni

)

∗St′ ∗
(

∗
i∈B00

Ni

)

∗
(

∗
i∈B01

Cj;i

)

∗



 ∗
i∈B10
j 6=k

Ck;i



 ,

где схема St′ задаёт подстановку t′.
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2. b01 = 0 или b10 = 0.

Без ограничения общности рассмотрим только случай b01 = 0, b10 6= 0. В этом случае

существует индекс j ∈ B10. Сначала действуем сопряжением на t подстановкой, задава-

емой элементом Nj . Затем для каждого i ∈ B10, i 6= j будем действовать сопряжением

на полученную транспозицию подстановкой, задаваемой элементом Cj;i. После этого

вновь будем действовать сопряжением на полученную транспозицию подстановкой, за-

даваемой элементом Nj. На последнем шаге для каждого i ∈ B00 будем действовать

сопряжением на полученную транспозицию подстановкой, задаваемой элементом Ni. В

результате получим искомую транспозицию t′ = (x′,y′).

Для сопряжения требуется 2(b10 − 1) элементов Cj;i, 4 элемента Nj и 2b00 элементов

Ni. В сумме всего требуется 2(b10 + b00 + 1) элементов NOT и CNOT. В худшем случае

b11 = 0 ⇒ b10 + b00 = n. Следовательно, для получения транспозиции t′ при b01 = 0 или

b10 = 0 требуется не более 2(n+ 1) элементов NOT и CNOT.

Транспозиция t задаётся следующей композицией Ф.Э.:

St = Nj ∗



 ∗
i∈B10
i 6=j

Cj;i



 ∗Nj ∗
(

∗
i∈B00

Ni

)

∗St′ ∗
(

∗
i∈B00

Ni

)

∗Nj ∗



 ∗
i∈B10
i 6=j

Cj;i



 ∗Nj ,

где схема St′ задаёт подстановку t′.

Сама транспозиция t′ задаётся элементом CI;j с (n− 1) контролирующими входами:

I = { i | 1 6 i 6 n, i 6= j }, |I| = n− 1, j — индекс, для которого верно равенство x′j = y′j ⊕ 1.

Следовательно, для 2-го и 3-го шага алгоритма A4.1 требуется не более (2n + 3) Ф.Э. из

множества Ωn.

Таким образом, умножая максимально возможное количество транспозиций на слож-

ность реализации одной транспозиции, получаем, что сложность схемы, синтезированной

алгоритмом A4.1, L 6 (2m − 1)(2(n + 1) + 1) . n2m+1. Временна́я сложность алгоритма

T . n2m+1: для каждой транспозиции сначала необходимо построить множества B00, B01,

B10 и B11, а затем уже приступить к синтезу этой транспозиции. При этом объём памяти,

необходимый для синтеза обратимой схемы, равен O(2m) (хранение всех элементов подста-

новки).

По сравнению с алгоритмом A3.5, алгоритм A4.1 имеет на порядок меньшее время

работы (O(n2m) против O(n22m)) и на порядок меньшую сложность синтезированной схемы

(O(n2m) против O(n22m)), сохраняя при этом такой же объём памяти, требуемый для син-

теза (O(n2m)). Тем не менее, главным недостатком алгоритма A4.1 является использование

обратимых элементов (n − 1)-CNOT, а не только Ф.Э. из множества Ω2
n. В некоторых слу-

чаях это является недопустимым, т. к. такой Ф.Э. нельзя заменить на композицию Ф.Э. из

множества Ω2
n без использования дополнительных входов схемы [83]. Чтобы избавиться от

этого недостатка, необходимо использовать иной подход к синтезу.
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Усовершенствованный итоговый алгоритм A4.2 синтеза обратимых схем, состоящих

из Ф.Э. множества Ω2
n, предлагаемый в данной главе, основан на доказательстве Леммы 1.25,

согласно которой множество подстановок, задаваемых Ф.Э. множества Ω2
n, генерирует зна-

копеременную группу A(Zn
2 ) при n > 3.

Алгоритм A4.2 позволяет получить для любой чётной подстановки h ∈ A(Zn
2 ) зада-

ющую её обратимую схему, состоящую из элементов множества Ω2
n. Если задана нечётная

подстановка g ∈ S(Zn
2 ), то можно найти такую чётную подстановку h ∈ A(Zn+1

2 ), для кото-

рой синтезированная алгоритмом A4.2 обратимая схема будет реализовывать подстановку g.

Получить подстановку h из g можно, к примеру, способом, описанным в утверждении 1.31.

Синтезированная схема в этом случае будет иметь один дополнительный вход.

Произведение двух независимых циклов можно представить следующим образом:

(i1, i2, . . . , ik1) ◦ (j1, j2, . . . , jk2) = (i1, i2) ◦ (j1, j2) ◦ (i1, i3, . . . , ik1) ◦ (j1, j3, . . . , jk2) . (2.3)

Цикл длины k > 5 можно представить следующим образом:

(i1, i2, . . . , ik) = (i1, i2) ◦ (i3, i4) ◦ (i1, i3, i5, i6, . . . , ik) . (2.4)

Следовательно, имея исходное представление чётной подстановки h в виде произведения

независимых циклов и используя формулы (2.3) и (2.4), эту подстановку можно представить

в виде произведения пар транспозиций, из которых только одна будет парой зависимых

транспозиций, остальные — независимых транспозиций:

h = ◦
xi,yi∈Zn

2

((x1,y1) ◦ (x2,y2)) .

Как уже было сказано на с. 49, любую подстановку h ∈ Z
n
2 можно представить в виде произ-

ведения не более чем 2m − 1 транспозиций ⇒ количество пар независимых транспозиций не

превосходит 2m−1.

Введём функцию φ : Zn
2 → Z2n следующим образом:

φ(x) =

n∑

i=1

xi2
i−1 ,

где x ∈ Z
n
2 , φ(x) ∈ Z2n .

Рассмотрим пару независимых транспозиций p = (x,y)◦(z,w). Действие сопряжением

не меняет цикловой структуры подстановки, поэтому p в результате действия сопряжением

всегда будет оставаться парой независимых транспозиций. Применяя такие же рассуждения,

как и для транспозиции t = (x,y) (см. с. 49) , приведём пару p действием сопряжения к

виду p(1) = (x(1),y(1)) ◦ (z(1),w(1)), где φ(x(1)) = 2n − 1, φ(y(1)) = 2n − 1 − 2i1−1, i1 — индекс

разряда, в котором различаются вектора x(1) и y(1), y
(1)
i1

= 0, (z(1),w(1)) — новая транспозиция,

получившаяся в результате действия сопряжением. Для этого шага потребуется не более

2(n+ 1) Ф.Э. из множества Ω2
n.
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Затем, применяя такой же подход для векторов x(1) и z(1) из пары p(1), получаем в

результате действия сопряжением новую пару p(2) = (x(2),y(2))◦(z(2),w(2)), где φ(x(2)) = 2n−1,

φ(y(2)) = 2n − 1− 2i1−1, φ(z(2)) = 2n − 1− 2i2−1, i2 — индекс разряда, в котором различаются

вектора x(2) и z(2), z
(2)
i2

= 0, w(2) — новый вектор второй транспозиции в паре, получившийся

в результате действия сопряжением. Для этого шага также потребуется не более 2(n + 1)

Ф.Э. из множества Ω2
n.

Покажем, как можно действием сопряжения привести пару p(2) к виду q = (x(3),y(3))◦
(z(3),w(3)), где φ(x(3)) = 2n − 1, φ(y(3)) = 2n − 1 − 2i1−1, φ(z(3)) = 2n − 1 − 2i2−1, φ(w(3)) =

2n − 1− 2i1−1 − 2i2−1. Рассмотрим два случая:

1. w
(2)
i1

= w
(2)
i2

= 0.

В этом случае сначала действуем сопряжением на p(2) подстановками, задаваемыми

элементами Ni1 и Ni2 . Затем для каждого i : w
(2)
i 6= 1, i 6= i1, i2 действуем сопряжением

на полученную пару транспозиций подстановкой, задаваемой элементом Ci1,i2;i. После

этого вновь действуем сопряжением на полученную пару транспозиций подстановками,

задаваемыми элементами Ni1 и Ni2.

Для сопряжения требуется не более 2(n − 2) элементов Ci1,i2;i, 4 элемента Ni1 и 4 эле-

мента Ni2 . Следовательно, для получения пары транспозиций q при w
(2)
i1

= w
(2)
i2

= 0

требуется не более 2(n+ 2) элементов NOT и 2-CNOT.

2. w
(2)
i1

= 1 или w
(2)
i2

= 1 (в том числе и одновременно).

w(2) не равно ни одному из остальных векторов пары транспозиций p(2), следователь-

но, существует такой индекс i3 : w
(2)
i3

= 0. Действуем сопряжением на p(2) подстановкой,

задаваемой элементом Ni3 . Затем действуем сопряжением на полученную пару транс-

позиций подстановкой, задаваемой элементом Ci3;i1, если w
(2)
i1

= 1, и подстановкой, за-

даваемой элементом Ci3;i2, если w
(2)
i2

= 1. После этого вновь действуем сопряжением на

полученную пару транспозиций подстановкой, задаваемой элементом Ni3 , и приходим

к случаю 1, описанному выше.

Для сопряжения требуется не более четырёх элементов 2-CNOT (Ci3;i1 и Ci3;i2), 4 эле-

мента Ni3 и не более 2(n + 2) элементов NOT и 2-CNOT (при переходе к случаю 1).

Следовательно, для получения пары транспозиций q при w
(2)
i1

= 1 или w
(2)
i2

= 1 требует-

ся не более 2(n+ 6) элементов NOT и 2-CNOT.

Если действовать сопряжением на подстановку q теми же подстановками, что и на p, но в

обратном порядке, то получится исходная подстановка p.

Пара независимых транспозиций q задаётся обратимым элементом CI;j, где I = { i |
1 6 i 6 n, i 6= i1, i2 }. Согласно утверждению 1.23, элемент k-CNOT при k < n − 1 и n > 3

можно представить в виде композиции 8(k − 3) элементов 2-CNOT. Т. к. |I| = n − 2 ⇒
элемент CI;j можно заменить на композицию не более чем 8(n − 5) элементов 2-CNOT без

использования дополнительных входов схемы.
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Таким образом, суммарную сложность реализации пары независимых транспозиций

можно оценить как

LΩ2
n
(pindep) 6 4(n + 1) + 2(n + 6) + 8(n− 5) = 14n+O(1) (2.5)

при использовании Ф.Э. множества Ω2
n. Если же допускается использовать Ф.Э. множества

Ωn, то суммарная сложность реализации пары независимых транспозиций ограничена сверху

как LΩn
(pindep) 6 6n+O(1).

Рассмотрим пару зависимых транспозиций p = (x,y)◦ (x, z). Такую пару можно пред-

ставить в виде произведения двух пар независимых транспозиций

(x,y) ◦ (x, z) = ((x,y) ◦ (a,b)) ◦ ((a,b) ◦ (x, z)) .

Следовательно, суммарную сложность реализации пары зависимых транспозиций можно

оценить как

LΩ2
n
(pdep) 6 2LΩ2

n
(pindep) 6 28n+O(1)

при использовании Ф.Э. множества Ω2
n. В случае же, если допускается использовать

Ф.Э. множества Ωn, то суммарная сложность реализации пары зависимых транспозиций

LΩn
(pdep) 6 12n+O(1). Однако пару зависимых транспозиций можно реализовывать другим

способом, позволяющим получить лучшие оценки для LΩ2
n
(pdep) и LΩn

(pdep).

Применяя такие же рассуждения, как и для пары независимых транспозиций (см.

с. 51), приведём пару p действием сопряжения к виду p(1) = (x(1),y(1))◦(x(1), z(1)), где φ(x(1)) =

2n − 1, φ(y(1)) = 2n − 1 − 2i1−1, i1 — индекс разряда, в котором различаются вектора x(1) и

y(1), y
(1)
i1

= 0, φ(z(1)) = 2n − 1 − 2i2−1, i2 — индекс разряда, в котором различаются вектора

x(1) и z(1), z
(1)
i2

= 0. Для этого шага потребуется не более 4(n+ 1) Ф.Э. из множества Ω2
n.

Введём отображение ψ : Zn
2 → Z

2
2 следующим образом:

ψ(x) = 〈xi1 , xi2〉 .

На данном этапе ψ(x(1)) = 〈1, 1〉, ψ(y(1)) = 〈0, 1〉, ψ(z(1)) = 〈1, 0〉.
Действуем сопряжением на p(1) подстановкой, задаваемой элементом Ni1, получаем

пару p(2) = (x(2),y(2)) ◦ (x(2), z(2)), где ψ(x(2)) = 〈0, 1〉, ψ(y(2)) = 〈1, 1〉, ψ(z(2)) = 〈0, 0〉. За-

тем действуем сопряжением на p(2) подстановкой, задаваемой элементом Ni2 , получаем пару

p(3) = (x(3),y(3)) ◦ (x(3), z(3)), где ψ(x(3)) = 〈0, 0〉, ψ(y(3)) = 〈1, 0〉, ψ(z(3)) = 〈0, 1〉. После этого

действуем сопряжением на p(3) подстановкой, задаваемой элементом Ci2;i1 , получаем пару

p(4) = (x(4),y(4)) ◦ (x(4), z(4)), где ψ(x(4)) = 〈0, 0〉, ψ(y(4)) = 〈1, 0〉, ψ(z(4)) = 〈1, 1〉. В кон-

це действуем сопряжением на p(4) подстановкой, задаваемой элементом Ni2 , получаем пару

q = (x(5),y(5)) ◦ (x(5), z(5)), где ψ(x(5)) = 〈0, 1〉, ψ(y(5)) = 〈1, 1〉, ψ(z(5)) = 〈1, 0〉.
Всего для получения транспозиции q требуется ровно 8 Ф.Э. из множества Ω2

n. Для

этой пары зависимых транспозиций верны равенства: φ(x(5)) = 2n − 1 − 2i1−1, φ(y(5)) =
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2n − 1, φ(z(5)) = 2n − 1 − 2i2−1. Если действовать сопряжением на подстановку q теми же

подстановками, что и на p, но в обратном порядке, то получится исходная подстановка p.

Согласно утверждению 1.24, подстановка q задаётся следующей композицией Ф.Э.:

Sq = Ci2,j;i1 ∗ CI;i2 ∗ Ci2,j;i1 ∗ CI;i2 ,

где j 6= i1, i2, I = { i | 1 6 i 6 n; i 6= j, i2 }. Согласно утверждению 1.23, элемент k-CNOT при

k < n − 1 и n > 3 можно представить в виде композиции 8(k − 3) элементов 2-CNOT. Т. к.

|I| = n− 2 ⇒ элемент CI;i2 можно заменить на композицию не более чем 8(n− 5) элементов

2-CNOT без использования дополнительных входов схемы.

Отсюда следует, что суммарную сложность реализации пары зависимых транспозиций

можно оценить как

LΩ2
n
(pdep) 6 4(n+ 1) + 8 + 2(8(n− 5) + 1) = 20n+O(1)

при использовании Ф.Э. множества Ω2
n. Если же допускается использовать Ф.Э. множества

Ωn, то LΩn
(pdep) 6 4n+O(1).

Теперь можно подсчитать суммарную сложность обратимой схемы Sh, синтезирован-

ной при помощи алгоритма A4.2, умножая максимально возможное количество пар транспо-

зиций одного типа (зависимых или независимых) в представлении подстановки h на слож-

ность реализации этого типа пары транспозиций. Сложность синтезированной схемы при

использовании Ф.Э. множества Ω2
n не превосходит следующей величины:

LΩ2
n
(Sh) 6 2m−1LΩ2

n
(pindep) + LΩ2

n
(pdep) 6 2m−1(14n+O(1)) + 20n+O(1) . 7n2m .

Если же допустимо использовать Ф.Э. множества Ωn, то сложность синтезированной схемы

не превосходит следующей величины:

LΩn
(Sh) 6 2m−1LΩn

(pindep) + LΩn
(pdep) 6 2m−1(6n+O(1)) + 4n+O(1) . 3n2m .

Временна́я сложность алгоритма A4.2 составляет порядка O(n2m), а точнее . 3n2m: для каж-

дой пары независимых транспозиций необходимо рассмотреть три транспозиции (x,y), (x, z)

и (x,w) и применить к каждой из них n действий для выполнения действия сопряжением.

Требуемый для синтеза объём памяти равен O(2m) (хранение всех элементов подстановки).

По сравнению с алгоритмом A3.5, алгоритм A4.2 имеет на порядок меньшее время

работы (O(n2m) против O(n22m)) и на порядок меньшую сложность синтезированной схемы

(O(n2m) против O(n22m)), сохраняя при этом такой же объём памяти, требуемый для синтеза

(O(n2m)). Вместе с тем, алгоритм A4.2 может всегда синтезировать схему из элементов мно-

жества Ω2
n без использования дополнительных входов схемы, в отличие от алгоритма A4.1.
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2.6 Сравнение быстрых алгоритмов синтеза, основанных на теории

групп подстановок

Результаты сравнения алгоритмов A3.5, A4.1 и A4.2 синтеза обратимой схемы S, зада-

ющей требуемую подстановку h ∈ A(Zn
2 ), приведены в таблице 2.2. Обзначения: T(A) — вре-

менна́я сложность алгоритма синтеза; M(A) — требуемый для синтеза объём памяти; LΩn
(S)

и LΩ2
n
(S) — сложность синтезированной схемы при использовании Ф.Э. из множества Ωn

и Ω2
n соответственно; Q(S) — количество дополнительных входов схемы; m = ⌈log2 |M |⌉,

M = {x ∈ Z
n
2 | h(x) 6= x } — множество подвижных точек подстановки h.

Характеристика
Алгоритм

A3.5 A4.1 A4.2

T(A) . 10
3 n

22m . 2n2m . 3n2m

M(A) O(n2m) O(n2m) O(n2m)

LΩn(S) . 16
3 n

22m . 2n2m . 3n2m

LΩ2
n
(S) . 64

3 n
22m . 10n2m . 7n2m

Q(S) 0 6 1 0

Таблица 2.2 Сравнение быстрых алгоритмов синтеза обратимых схем, основанных на теории

групп подстановок.

По результатам сравнения, приведённым в таблице 2.2, можно сделать вывод, что

алгоритмы A4.1 и A4.2 синтезируют обратимую схему со сложностью, меньшей на порядок,

за время, меньшее на порядок, по сравнению с алгоритмом A3.5. Вместе с тем, алгоритм A4.2

по сравнению с алгоритмом A4.1 позволяет получить схему с меньшей примерно в 1.4 раза

сложностью в базисе Ω2
n за счёт увеличенного примерно в 1.5 раза времени синтеза. При

этом алгоритм A4.2 гарантированно не использует дополнительные входы в синтезированной

схеме, в отличие от алгоритма A4.1.

Однако, несмотря на все достоинства предложенных алгоритмов синтеза, у них есть

один существенный недостаток: сложность синтезированной схемы зависит только от m, но

никак не зависит от вида конкретной подстановки h. К примеру, рассмотрим преобразование

следующего вида:

f (〈x1, x2, . . . , xn〉) = 〈x1, x2 ⊕ x1, x3, . . . , xn〉 .

Соответствующую подстановку hf можно задать одним элементом C1;2. При этом количе-

ство подвижных точек подстановки hf будет равно половине от всех векторов множества Z
n
2

(для которых x1 = 1) ⇒ |M | = 1
2
|Zn

2 | = 2n−1 ⇒ m = n− 1. Отсюда следует, что для всех пре-

образований, схожих с f , алгоритмы A4.1 и A4.2 будут синтезировать схему со сложностью

порядка O(n2n).

В следующих главах будет рассматриваться вопрос снижения сложности синтезиро-

ванных схем.
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3 Снижение сложности обратимых схем

В данной главе будут рассмотрены способы снижения сложности обратимой схемы,

синтезированной при помощи алгоритма синтеза A4.2, рассмотренного в предыдущей главе.

Можно выделить два основных направления снижения сложности:

1. Внесение изменений в сам алгоритм синтеза с целью получения обратимой схемы с

меньшей сложностью.

2. Снижение сложности уже синтезированной обратимой схемы.

Первое направление зависит от конкретного алгоритма синтеза, поэтому предлагаемые для

него способы снижения сложности могут быть неприменимы к другим алгоритмам синте-

за. Второе же направление может позволить получить «универсальные» способы снижения

сложности обратимых схем, синтезированных произвольным алгоритмом.

Примером «универсального» способа снижения сложности обратимых схем может слу-

жить применение таблиц эквивалентных замен композиций Ф.Э. Такой способ применяется,

к примеру, в алгоритмах синтеза обратимых схем, описанных в работах [58, 71]. Правила

эквивалентных замен были рассмотрены в работах [35, 58] и частично были описаны в раз-

деле 2.1 на с. 39. В работе [58] эти правила рассматривались для классических элементов

k-CNOT: для изменения значения на контролируемом выходе значения на всех контроли-

рующих входах должны равняться 1. В работе же [35] авторами рассматриваются правила

эквивалентных замен для обобщённых элементов k-CNOT, у которых нет ограничений на

значения на контролирующих входах. Авторами этой работы предложен способ использова-

ния карт Карно для получения правил эквивалентных замен.

В следующем разделе будут описаны расширенные правила эквивалентных замен ком-

позиций обратимых Ф.Э., основанные на операциях на множествах. Также будет приведено

доказательство корректности предлагаемых замен. Результаты следующего раздела были

опубликованы автором в работе [102]. В отличие от результатов, полученных в работе [35], в

предлагаемом далее подходе получения правил эквивалентных замен не используются карты

Карно, а только описания множеств контролирующих входов обратимых элементов k-CNOT,

что является, на взгляд автора, более гибким подходом.

3.1 Обобщённое представление элемента k-CNOT

Классический элемент k-CNOT Ci1,...,ik;j инвертирует значение на контролируемом j-

м входе, когда значение на всех контролирующих входах i1, . . . , ik равно 1. В работе [35]

было предложено обобщить представление элемента k-CNOT для случая нулевого значения

на некоторых контролирующих входах. Формальное определение 1.6 такого элемента было

дано на с. 20. Будем обозначать такой Ф.Э. через CI;J ;t или E(t, I, J), где t — контролируемый

выход, I — множество прямых контролирующих входов, J — множество инвертированных

контролирующих входов.
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Элемент E(t, I, J) инвертирует значение на контролируемом входе только тогда, ко-

гда значение на всех прямых контролирующих входах равно 1, на всех инвертированных

контролирующих входах — 0. Графически прямые контролирующие входы будем обозна-

чать символом •, инвертированные — символом ◦, контролируемый вход — символом ⊕;

элемент NOT — символом ⊗ (рис. 3.1).

а) б) в)

x1

x2

x3

x4

x5

Рис. 3.1 Графическое обозначение обратимых элементов (n = 5):

а) E(2); б) E(4, { 1, 2, 5 }); в) E(4, { 1 }, { 2, 5 }).

Элементы E(t, I, J) могут применяться при описании алгоритмов синтеза [92] и [95].

Любой элемент E(t, I, J) можно представить в виде композиции классических элементов

NOT и k-CNOT (рис. 3.2).

В общем случае элемент E(t, I, J) можно заменить без изменения результирующего

преобразования на композицию элементов

(

∗
t∈J

E(t)

)

∗ E (t, I ∪ J) ∗
(

∗
t∈J

E(t)

)

.

x1

x2

x3

x4

x5

Рис. 3.2 Представление элемента E(4, { 1 }, { 2, 5 }) в виде

композиции элементов E(2), E(5) и E(4, { 1, 2, 5 }) (n = 5).

3.2 Коммутирующие обратимые Ф.Э.

При решении задачи снижения сложности обратимой схемы часто необходимо выяс-

нить, можно ли два подряд идущих Ф.Э. поменять местами без изменения преобразования,

реализуемого схемой.

Определение 3.1. Обратимые Ф.Э. E1 и E2 являются коммутирующими, если их ком-

позицию E1 ∗E2 можно заменить на композицию E2 ∗E1 без изменения результирующего

преобразования. Иначе элементы E1 и E2 являются некоммутирующими.

В работе [58] были рассмотрены условия коммутируемости для классических эле-

ментов k-CNOT. Рассмотрим, при каких условиях являются коммутирующими элементы



58

E(t, I, J). Здесь и далее активно используется функция φ(x, I, J) : Zn
2 → Z2 следующего ви-

да:

φ(x, I, J) =

(

∧
i∈I
xi

)

∧
(

∧
i∈J

x̄i

)

.

Будем считать, что φ(x,∅,∅) = 1.

Лемма 3.2. Элементы E(t1, I1, J1) и E(t2, I2, J2) являются коммутирующими тогда и

только тогда, когда выполняется хотя бы одно из условий:

1. t1 /∈ I2 ∪ J2 и t2 /∈ I1 ∪ J1 (в частности, t1 = t2);

2. I1 ∩ J2 6= ∅ или I2 ∩ J1 6= ∅.

Доказательство. Докажем необходимость.

Пусть функция fi(x) задаётся элементом E(ti, Ii, Ji). Тогда fi(x) = y, где yj = xj при

j 6= ti, yti = xti ⊕ f
(k)
i (x), f

(k)
i (x) = φ(x, Ii, Ji).

Пусть для некоторого a значение f
(k)
1 (a) = 1, f1(a) = b. По условию, элементы

E(t1, I1, J1) и E(t2, I2, J2) являются коммутирующими, следовательно, f2(f1(a)) = f1(f2(a)).

Отсюда следует, что либо t1 = t2, либо t1 6= t2 и f
(k)
2 (a) = f

(k)
2 (b). Операция ⊕ является ком-

мутативной, поэтому в любом случае, вне зависимости от значений t1 и t2, верно равенство

f
(k)
2 (a) = f

(k)
2 (b). Оно может выполняться только в двух случаях:

1. Функция f
(k)
2 (x) фиктивно зависит от переменной xt1 ⇒ t1 /∈ I2 ∪ J2. Мы не делали

различия между двумя Ф.Э., следовательно, аналогичное условие верно и для другого

Ф.Э.: t2 /∈ I1 ∪ J1.

2. Функция f
(k)
2 (x) существенно зависит от переменной xt1 , т. е. t1 ∈ I2 ∪ J2, тогда из

условия f
(k)
2 (a) = f

(k)
2 (b) можно вывести равенство

φ(a, I2 \ { t1 }, J2 \ { t1 }) = 0 .

Отсюда следует, что для всех значений a, для которых f
(k)
1 (a) = 1, верно равенство

f
(k)
2 (a) = 0, таким образом, получаем следующее равенство:

φ(a, I2 \ I1, J2 \ J1) = 0 .

Выше было условлено считать, что φ(x,∅,∅) = 1, следовательно, либо I2 \I1 6= ∅, либо

J2 \ J1 6= ∅. Пусть I2 ∩ J1 = ∅ и J2 ∩ I1 = ∅. Рассмотрим следующее значение a′: a′i = 1

при i ∈ I1∪I2, a′i = 0 при i ∈ J1∪J2. В этом случае f
(k)
1 (a′) = 1 и φ(a′, I2\I1, J2\J1) = 1 —

противоречие. Следовательно, либо I2 ∩ J1 6= ∅, либо J2 ∩ I1 6= ∅.

Необходимость обоих условий доказана. Теперь докажем их достаточность.

Для каждого из двух условий рассмотрим функции f(x) = f2(f1(x)), соответствую-

щую композиции E(t1, I1, J1) ∗E(t2, I2, J2), и g(x) = f1(f2(x)), соответствующую композиции

E(t2, I2, J2) ∗ E(t1, I1, J1), где x — входной вектор значений.

Элементы E(t1, I1, J1) и E(t2, I2, J2) будут коммутирующими, если f(x) = g(x).
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1. Рассмотрим условие t1 /∈ I2 ∪ J2 и t2 /∈ I1 ∪ J1 (в частности, t1 = t2).

f1(x) = y; yi = xi при i 6= t1; yt1 = xt1 ⊕ φ(x, I1, J1).

f(x) = f2(y) = z; zi = yi = xi при i 6= t1, t2; zt1 = yt1 = xt1 ⊕ φ(x, I1, J1).

zt2 = yt2 ⊕ φ(y, I2, J2) = xt2 ⊕ φ(x, I2, J2).

f2(x) = y′; y′i = xi при i 6= t2; y
′
t2
= xt2 ⊕ φ(x, I2, J2).

f(x) = f2(y
′) = z′; z′i = y′i = xi при i 6= t1, t2; z

′
t2
= yt2 = xt2 ⊕ φ(x, I2, J2).

z′t1 = yt1 ⊕ φ(y, I1, J1) = xt1 ⊕ φ(x, I1, J1).

z = z′ ⇒ f(x) = g(x).

2. Рассмотрим условие I1 ∩ J2 6= ∅ или I2 ∩ J1 6= ∅.

Пусть I1 ∩ J2 6= ∅, тогда ∃k ∈ I1 ∩ J2, f1(x) = x при xk = 0, f2(x) = x при xk = 1.

Рассмотрим случай xk = 0:

f(x) = f2(f1(x)) = f2(x).

g(x) = f1(f2(x)) = f1(y).

k ∈ I1 ∩ J2 ⇒ yk = xk = 0 ⇒ g(x) = f1(y) = y = f2(x) ⇒ f(x) = g(y).

Рассмотрим случай xk = 1:

f(x) = f2(f1(x)) = f2(y).

k ∈ I1 ∩ J2 ⇒ yk = xk = 1 ⇒ f(x) = f2(y) = y = f1(x).

g(x) = f1(f2(x)) = f1(x) ⇒ f(x) = g(y).

Таким образом, для всех xk верно f(x) = g(y). Аналогично для случая I2 ∩ J1 6= ∅.

Условие коммутируемости 2 из Леммы 3.2 является новым результатом, не выводимым

из условий коммутируемости для классических элементов k-CNOT. Примеры коммутирую-

щих обратимых Ф.Э. показаны на рис. 3.3.

1) 2) 3)

Рис. 3.3 Примеры коммутирующих обратимых Ф.Э.

3.3 Эквивалентные замены композиций Ф.Э.

В работе [58] было предложено несколько эквивалентных замен одной композиции эле-

ментов E(t, I) на другую. Эти замены были описаны в разделе 2.1 на с. 39. В некоторых слу-

чаях такая замена снижает либо сложность схемы, либо количество контролирующих входов
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у элементов. В работе [35] были рассмотрены некоторые эквивалентные замены композиций

элементов E(t, I, J). Далее будет приведён расширенный и дополненный список таких замен.

Стоит отметить, что используемое ниже по тексту словосочетание «композиция Ф.Э.

может быть заменена» означает, что результат замены не меняет результирующего преобра-

зования исходной композиции Ф.Э.

Замена 3.1. Композиция элементов E(t, I, J)∗E(t, I, J) может быть исключена из схемы.

Доказательство тривиально и следует из определения (1.6). По сути, замена 3.1 — исключение

дублирующих Ф.Э. из схемы.

Замена 3.2. (слияние) Если I1 = I2 ∪ { k }, J2 = J1 ∪ { k }, k /∈ I2 ∪ J1, то композиция

элементов E(t, I1, J1) ∗E(t, I2, J2) может быть заменена одним элементом E(t, I2, J1).

Доказательство. Пусть функция f1(x) задаётся элементом E(t, I1, J1), а функция f2(x) —

элементом E(t, I2, J2). Рассмотрим функцию f(x) = f2(f1(x)).

f1(x) = y; yi = xi при i 6= t; yt = xt ⊕ φ(x, I1, J1).

I1 = I2 ∪ { k }, k /∈ I2 ⇒ yt = xt ⊕ xk ∧ φ(x, I2, J1).
f(x) = f2(y) = z; zi = yi = xi при i 6= t; zt = yt ⊕ φ(x, I2, J2).

J2 = J1 ∪ { k }, k /∈ J1 ⇒ zt = yt ⊕ x̄k ∧ φ(x, I2, J1).
zt = xt ⊕ xk ∧ φ(x, I2, J1)⊕ x̄k ∧ φ(x, I2, J1).
zt = xt ⊕ (xk ⊕ x̄k) ∧ φ(x, I2, J1) = xt ⊕ φ(x, I2, J1).

Функция f(x) = z задаётся элементом E(t, I2, J1).

Замена 3.3. (уменьшение количества контролирующих входов) Если существуют такие

индексы p и q, что p ∈ I1∩J2, q ∈ J1∩I2, I2 = I1\{ p }∪{ q }, J2 = J1\{ q }∪{ p }, то композиция

элементов E(t, I1, J1)∗E(t, I2, J2) может быть заменена композицией E(t, I1, J3)∗E(t, I2, J3),
где J3 = J1 \ { q } = J2 \ { p }.

Доказательство. Пусть функция f1(x) задаётся элементом E(t, I1, J1), а функция f2(x) —

элементом E(t, I2, J2). Рассмотрим функцию f(x) = f2(f1(x)).

f1(x) = y; yi = xi при i 6= t; yt = xt ⊕ φ(x, I1, J1).

q ∈ J1 ⇒ yt = xt ⊕ (1⊕ xq) ∧ φ(x, I1, J1 \ { q }).
q /∈ I1 ⇒ yt = xt ⊕ φ(x, I1, J3)⊕ φ(x, I1 ∪ { q }, J3).

f(x) = f2(y) = z; zi = yi = xi при i 6= t; zt = yt ⊕ φ(x, I2, J2).

p ∈ J2 ⇒ zt = yt ⊕ (1⊕ xp) ∧ φ(x, I2, J2 \ { p }).
p /∈ I2 ⇒ zt = yt ⊕ φ(x, I2, J3)⊕ φ(x, I2 ∪ { p }, J3).

zt = xt ⊕ φ(x, I1, J3)⊕ φ(x, I1 ∪ { q }, J3)⊕ φ(x, I2, J3)⊕ φ(x, I2 ∪ { p }, J3).
I2 = I1 \ { p } ∪ { q }, p ∈ I1 ⇒ I2 ∪ { p } = I1 ∪ { q } ⇒ φ(x, I1 ∪ { q }, J3) = φ(x, I2 ∪ { p }, J3).
zt = xt ⊕ φ(x, I1, J3)⊕ φ(x, I2, J3).

Функция f(x) = z задаётся композицией элементов E(t, I1, J3) ∗ E(t, I2, J3).
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Замена 3.4. (перестановка некоммутирующих Ф.Э.) Если t1 ∈ I2 ∪ J2, t2 /∈ I1 ∪ J1, то

композиция некоммутирующих элементов E(t1, I1, J1) ∗E(t2, I2, J2) может быть заменена

композицией E(t2, I1 ∪ I2 \ { t1 }, J1 ∪ J2 \ { t1 }) ∗ E(t2, I2, J2) ∗ E(t1, I1, J1).

Доказательство. (I1 ∪ I2) ∩ (J1 ∪ J2) = (I1 ∩ J1) ∪ (I2 ∩ J1) ∪ (I1 ∩ J2) ∪ (I2 ∩ J2) =
= (I2 ∩ J1)∪ (I1 ∩ J2) = ∅, т. к. в противном случае элементы E(t1, I1, J1) и E(t2, I2, J2) будут

коммутирующими. Следовательно, элемент E(t2, I1∪I2\{ t1 }, J1∪J2 \{ t1 }) не нарушает тре-

бований, накладываемых на множества прямых и инвертированных контролирующих входов

(см. определение 1.6).

Пусть f1(x) задаётся элементом E(t1, I1, J1), f2(x) — элементом E(t2, I2, J2), f3(x) —

элементом E(t2, I1 ∪ I2 \ { t1 }, J1 ∪ J2 \ { t1 }). Рассмотрим две функции: f(x) = f2(f1(x)) и

g(x) = f1(f2(f3(x))).

f1(x) = y; yi = xi при i 6= t1; yt1 = xt1 ⊕ φ(x, I1, J1).

f(x) = f2(y) = z; zi = yi = xi при i 6= t2; zt2 = yt2 ⊕ φ(y, I2, J2).

Пусть t1 ∈ I2, тогда zt2 = xt2 ⊕ yt1 ∧ φ(x, I2 \ { t1 }, J2).
zt2 = xt2 ⊕ (xt1 ⊕ φ(x, I1, J1)) ∧ φ(x, I2 \ { t1 }, J2).
zt2 = xt2 ⊕ φ(x, I2, J2)⊕ φ(x, I1 ∪ I2 \ { t1 }, J1 ∪ J2).
t1 /∈ J2 ⇒ zt2 = xt2 ⊕ φ(x, I2, J2)⊕ φ(x, I1 ∪ I2 \ { t1 }, J1 ∪ J2 \ { t1 }).

Если же t1 ∈ J2, то zt2 = xt2 ⊕ ȳt1 ∧ φ(x, I2, J2 \ { t1 }).
zt2 = xt2 ⊕ ((1⊕ xt1)⊕ φ(x, I1, J1)) ∧ φ(x, I2, J2 \ { t1 }).
zt2 = xt2 ⊕ φ(x, I2, J2)⊕ φ(x, I1 ∪ I2, J1 ∪ J2 \ { t1 }).
t1 /∈ I2 ⇒ zt2 = xt2 ⊕ φ(x, I2, J2)⊕ φ(x, I1 ∪ I2 \ { t1 }, J1 ∪ J2 \ { t1 }).

Таким образом, во всех случаях:

zt2 = xt2 ⊕ φ(x, I2, J2)⊕ φ(x, I1 ∪ I2 \ { t1 }, J1 ∪ J2 \ { t1 }).
f2(f3(x)) = y′; y′i = xi при i 6= t2; y

′
t2 = xt2 ⊕ φ(x, I1 ∪ I2 \ { t1 }, J1 ∪ J2 \ { t1 })⊕ φ(x, I2, J2).

g(x) = f1(y
′) = z′; z′i = y′i при i 6= t1; z

′
t1
= y′t1 ⊕ φ(y′, I1, J1).

t2 /∈ I1 ∪ J1 ⇒ z′t1 = xt1 ⊕ φ(x, I1, J1).

z′ = z ⇒ f(x) = g(x) ⇒ замена 3.4 не меняет результирующего преобразования

исходной композиции Ф.Э.

Замена 3.5. (следствие замены 3.4) Если в условии замены 3.4 I1 ⊆ I2 и J1 ⊆ J2, то

композиция некоммутирующих элементов E(t1, I1, J1) ∗E(t2, I2, J2) может быть заменена

композицией E(t2, I2 ∪ { t1 }, J2 \ { t1 }) ∗ E(t1, I1, J1), если t1 ∈ J2, и композицией E(t2, I2 \
{ t1 }, J2 ∪ { t1 }) ∗ E(t1, I1, J1), если t1 ∈ I2.

Доказательство.

Согласно условию замены 3.4, композиция элементов E(t1, I1, J1) ∗ E(t2, I2, J2) может

быть заменена композицией E(t2, I1 ∪ I2 \ { t1 }, J1 ∪ J2 \ { t1 }) ∗ E(t2, I2, J2) ∗ E(t1, I1, J1).
I1 ⊆ I2, J1 ⊆ J2 ⇒ E(t2, I1 ∪ I2 \ { t1 }, J1 ∪ J2 \ { t1 }) = E(t2, I2 \ { t1 }, J2 \ { t1 }).

Пусть t1 ∈ J2, тогда E(t2, I2\{ t1 }, J2\{ t1 }) = E(t2, I2, J2\{ t1 }). Рассмотрим функцию

f(x) = f2(f1(x)), задаваемой композицией E(t2, I2, J2 \ { t1 }) ∗E(t2, I2, J2), где f1(x) задаётся
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элементом E(t2, I2, J2 \ { t1 }), а f2(x) — элементом E(t2, I2, J2).

f1(x) = y; yi = xi при i 6= t2; yt2 = xt2 ⊕ φ(x, I2, J2 \ { t1 }).
f(x) = f2(y) = z; zi = yi = xi при i 6= t2; zt2 = yt2 ⊕ φ(x, I2, J2).

zt2 = xt2 ⊕ φ(x, I2, J2 \ { t1 })⊕ φ(x, I2, J2) = xt2 ⊕ φ(x, I2, J2 \ { t1 })⊕ x̄t1 ∧ φ(x, I2, J2 \ { t1 }).
zt2 = xt2 ⊕ φ(x, I2 ∪ { t1 }, J2 \ { t1 }).

Таким образом, при t1 ∈ J2 функция f(x) задаётся элементом E(t2, I2∪{ t1 }, J2\{ t1 }).

Пусть t1 ∈ I2, тогда E(t2, I2\{ t1 }, J2\{ t1 }) = E(t2, I2\{ t1 }, J2). Рассмотрим функцию

g(x) = g2(g1(x)), задаваемой композицией E(t2, I2 \ { t1 }, J2) ∗E(t2, I2, J2), где g1(x) задаётся

элементом E(t2, I2 \ { t1 }, J2), а g2(x) — элементом E(t2, I2, J2).

g1(x) = y′; y′i = xi при i 6= t2; y
′
t2
= xt2 ⊕ φ(x, I2 \ { t1 }, J2).

g(x) = g2(y
′) = z′; z′i = y′i = xi при i 6= t2; z

′
t2 = y′t2 ⊕ φ(x, I2, J2).

z′t2 = xt2 ⊕ φ(x, I2 \ { t1 }, J2)⊕ φ(x, I2, J2) = xt2 ⊕ φ(x, I2 \ { t1 }, J2)⊕ xt1 ∧ φ(x, I2 \ { t1 }, J2).
zt2 = xt2 ⊕ φ(x, I2 \ { t1 }, J2 ∪ { t1 }).

Таким образом, при t1 ∈ I2 функция g(x) задаётся элементом E(t2, I2 \ { t1 }, J2 ∪
{ t1 }).

Замена 3.6. (зеркальное отображение замены 3.4) Если t2 ∈ I1 ∪ J1, t1 /∈ I2 ∪ J2, то

композиция некоммутирующих элементов E(t1, I1, J1) ∗E(t2, I2, J2) может быть заменена

композицией E(t2, I2, J2) ∗ E(t1, I1, J1) ∗ E(t1, I1 ∪ I2 \ { t2 }, J1 ∪ J2 \ { t2 }).

Доказательство. Доказательство аналогично доказательству для замены 3.4.

Замена 3.7. (следствие замены 3.6) Если в условии замены 3.6 I2 ⊆ I1 и J2 ⊆ J1, то

композиция некоммутирующих элементов E(t1, I1, J1) ∗E(t2, I2, J2) может быть заменена

композицией E(t2, I2, J2)∗E(t1, I1∪{ t2 }, J1 \{ t2 }), если t2 ∈ J1, и композицией E(t2, I2, J2)∗
E(t1, I1 \ { t2 }, J1 ∪ { t2 }), если t2 ∈ I1.

Доказательство. Доказательство аналогично доказательству для замены 3.5.

Замена 3.8. Элемент E(t, I, J) можно заменить на композицию Ф.Э. вида

(

∗
t∈J

E(t)

)

∗ E(t, I ∪ J) ∗
(

∗
t∈J

E(t)

)

.

Доказательство. См. рис. 3.2 и определение элемента E(t, I, J).

Замена 3.9. Если k ∈ J , то элемент E(t, I, J) можно заменить на композицию элементов

E(t, I ∪ { k }, J \ { k }) ∗ E(t, I, J \ { k }).

Доказательство. Пусть f1(x) задаётся элементом E(t, I ∪ { k }, J \ { k }), f2(x) — элементом

E(t, I, J \ { k }). Рассмотрим функцию f(x) = f2(f1(x)).

f1(x) = y; yi = xi при i 6= t; yt = xt ⊕ φ(x, I ∪ { k }, J \ { k }).
f(x) = f2(y) = z; zi = yi = xi при i 6= t; zt = yt ⊕ φ(x, I, J \ { k }).
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zt = xt ⊕ φ(x, I ∪ { k }, J \ { k })⊕ φ(x, I, J \ { k }).
k /∈ I ⇒ zt = xt ⊕ xk ∧ φ(x, I, J \ { k })⊕ φ(x, I, J \ { k }) = xt ⊕ φ(x, I, J).

Функция f(x) = z задаётся элементом E(t, I, J).

Стоит также отметить, что элемент k-CNOT, k < n − 1, может быть заменён компо-

зицией не более чем 8(k − 3) элементов 2-CNOT без использования дополнительных входов

в схеме [37]. Замены 3.3–3.7 являются новым результатом, полученным автором.

Примеры эквивалентных замен показаны на рис. 3.4.

3.1) 3.2) 3.3)

3.4) 3.5) 3.6)

3.7) 3.8) 3.9)

Рис. 3.4 Примеры эквивалентных замен композиций Ф.Э.

Можно выделить ещё два частных случая замены «слиянием».

Замена 3.10. (обратная к замене 3.9) Если I1 = I2 ∪ { k }, то композиция элементов

E(t, I1, J) ∗ E(t, I2, J) может быть заменена одним элементом E(t, I2, J ∪ { k }).

Замена 3.11. Если J1 = J2 ∪ { k }, то композиция элементов E(t, I, J1) ∗E(t, I, J2) может

быть заменена одним элементом E(t, I ∪ { k }, J2).

Доказательство корректности замен 3.10 и 3.11 вытекает из доказательства коррект-

ности замен 3.1 и 3.9. Примеры замен 3.10 и 3.11 показаны на рис. 3.5.

3.4 Алгоритм снижения сложности обратимой схемы

Предложенные эквивалентные замены композиций Ф.Э. позволяют в некоторых слу-

чаях снизить сложность обратимой схемы. В основном для этого используется замена, ис-

ключающая дублирующие Ф.Э. (3.1), и замены «слиянием» (3.2, 3.10 и 3.11). Замены 3.3–3.7
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3.10) 3.11)

Рис. 3.5 Частные случаи замены композиций Ф.Э. «слиянием».

позволяют получить новую обратимую схему с новыми Ф.Э., для которой можно снова попро-

бовать использовать замены 3.1, 3.2, 3.10 и 3.11. В случае, когда сложность уже невозможно

снизить, можно использовать замены 3.8 и 3.9, чтобы заменить все элементы E(t, I, J) на

классические элементы NOT и k-CNOT и получить обратимую схему, не содержащую эле-

ментов E(t, I, J).

Пусть обратимая схема представляет собой композицию элементов
l∗

i=1
Ei, где l — слож-

ность схемы. Если композиция элементов Ei ∗Ej удовлетворяют условию какой-либо замены,

i < j, и при этом существует такой индекс s, i 6 s < j, что элементы Ei и Ek являются ком-

мутирующими для всех i < k 6 s, и элементы Ej и Ek являются коммутирующими для всех

s < k < j, то элементы Ei и Ej можно исключить из схемы, а результат замены композиции

Ei ∗ Ej вставить в схему между элементами Es и Es+1.

В качестве примера, на рис. 3.6 показан процесс применения эквивалентных замен

композиций Ф.Э. для некоторой абстрактной схемы.

1) 2) 3) 4)

Рис. 3.6 Процесс снижения сложности схемы: 1) исходная схема; 2) схема после применения

замены 3.5; 3) схема после применения замены 3.11; 4) схема после применения замены 3.1.

Оценим временну́ю сложность T (Areduction) данного алгоритма снижения сложности

обратимой схемы S
(0). Пусть в начале работы алгоритма Areduction сложность L(S(0)) = L0,

в конце L(S(k)) = Lk, при этом обратимые схемы S
(0) и S

(k) задают одно и тоже преобразо-

вание, Lk 6 L0, k — количество шагов алгоритма Areduction.

На i-м шаге алгоритма текущая обратимая схема S
(i) имеет сложность Li. Оценим

сложность работы алгоритма Ti на данном шаге. В начале необходимо найти два Ф.Э. в схе-

ме, удовлетворяющих условию какой-либо замены. В худшем случае для этого потребуется

рассмотреть все возможные пары Ф.Э. в схеме S
(i) (O(L2

i ) операций). Затем для найденной

пары Ф.Э. (если она существует) необходимо выяснить, могут ли рассматриваемые Ф.Э.

быть перемещены друг к другу в схеме без изменения её результирующего преобразования
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(O(Li) операций). Следовательно, Ti & L2
i . Заметим, что данная оценка является грубой, т. к.

в случае, если рассматриваемая эквивалентная замена не снижает сложность, а позволяет

получить схему S
(i)′ с новыми Ф.Э., то алгоритм Areduction может быть применён ещё раз

уже к этой схеме. И так до тех пор, пока не будет получена схема S
(i+1) сложности Li+1 < Li;

если же такая обратимая схема не может быть получена, алгоритм заканчивает работу. Дан-

ные требования позволяют говорить о сходимости описываемого алгоритма. В зависимости

от того, сколько раз будет применён этот рекурсивный поиск схемы S
(i+1) для эквивалент-

ных замен, не снижающих сложность, временна́я сложность Ti может вырасти на несколько

порядков по сравнению с величиной O(L2
i ).

Суммарная временна́я сложность T (Areduction) может быть оценена следующим обра-

зом:

T (Areduction) =

k∑

i=0

Ti &

k∑

i=0

L2
i .

В худшем случае на каждом шаге алгоритма сложность снижается на 1, т. е. L0 − Lk = k.

Таким образом, можно повысить нижнюю оценку для T (Areduction):

T (Areduction) &

L0∑

i=Lk

i2 =

L0∑

i=0

i2 −
Lk−1∑

i=0

i2 =
L0(L0 + 1)(2L0 + 1)− (Lk − 1)Lk(2Lk − 1)

6
. (3.1)

Если Lk = O(L0), то формулу (3.1) можно упростить: T (Areduction) & L2
0. Если же

Lk = o(L0), то T (Areduction) & L3
0 / 3.

Отсюда можно сделать следующий вывод: время работы описанного алгоритма сниже-

ния сложности обратимой схемы нелинейно зависит от начального значения сложности этой

схемы. Поэтому в некоторых случаях может потребоваться синтезировать обратимую схему с

минимально возможной сложностью, чтобы уменьшить время, затрачиваемое на дальнейшее

снижение сложности. Этому вопросу будут посвящены следующие разделы данной главы.

3.5 Снижение сложности схемы на этапе синтеза за счёт увеличения

времени синтеза

Если в предыдущем разделе 3.4 предложенный алгоритм снижения сложности обрати-

мой схемы не зависел от алгоритма, при помощи которого данная схема была синтезирована,

то в данном разделе речь пойдёт о различных способах снижения сложности синтезируемой

схемы на этапе синтеза конкретно для алгоритма синтеза A4.2, описанного в разделе 2.5. Все-

го будет рассмотрено три таких способа: поиск грани булева куба, выбор между умножением

подстановок справа либо слева, поиск наилучшего представления цикла в виде произведения

циклов меньшей длины.

3.5.1 Поиск грани булева куба

На с. 55 было описано обратимое преобразование f , которое может быть задано одним
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элементом CNOT, но для которого алгорим A4.2 синтезирует схему сложности O(n2n):

f (〈x1, x2, . . . , xn〉) = 〈x1, x2 ⊕ x1, x3, . . . , xn〉 . (3.2)

Такой неоптимальный результат синтеза связан с тем, что алгоритм A4.2 работает с представ-

лением подстановки hf , задаваемой преобразованием f , в виде произведения пар независи-

мых транспозиций. Каждая такая пара транспозиций рассматривается независимо от других,

что и приводит к избыточной сложности синтезированной схемы. В качестве очевидного ре-

шения данной проблемы напрашивается переупорядочивание независимых транспозиций в

представлении подстановки hf по какому-либо признаку таким образом, чтобы для некото-

рой последовательности транспозиций в этом представлении нашлась бы такая задающая её

обратимая подсхема, использование которой в синтезированной схеме позволило бы снизить

суммарную сложность.

Для того, чтобы выделить такой «объединяющий» признак, введём некоторые обозна-

чения. Произвольную подстановку h можно представить в виде произведения независимых

циклов. Такое представление единственно с точностью до порядка следования циклов в про-

изведении и порядка следования элементов в этих циклах. К примеру, h = (ab) ◦ (cde) =

(dec) ◦ (ba). Для произвольной подстановки h сумму длин циклов в её представлении в виде

произведения независимых циклов будем называть длиной этой подстановки.

Будем говорить, что вектор x принадлежит циклу c, если x принадлежит множеству

элементов этого цикла. К примеру, y ∈ (x,y, z), w /∈ (x,y, z). Аналогичным образом будем

говорить, что транспозиция τ = (x,y) принадлежит циклу c, если оба вектора этой транспо-

зиции принадлежат циклу c. В этом случае найдётся такая подстановка h′, что c = τ ◦ h′ и

длина h′ на 1 меньше, чем длина цикла c:

1. c = (x,y, a1, . . . , ak) = (x,y) ◦ (x, a1, . . . , ak).

2. c = (x, a1, . . . , ak,y,b1, . . . ,bp) = (x,y) ◦ (x,b1, . . . ,bp) ◦ (y, a1, . . . , ak).

Если подстановка h представляется в виде произведения независимых циклов h = ◦
i
ci, то

запись τ ∈ h будет обозначать, что существует такой цикл cj в этом произведении, что

τ ∈ cj.

Для двух векторов x,y ∈ Z
n
2 обозначим через ∆(x,y) вектор, равный ∆(x,y) = 〈x1 ⊕

y1, . . . , xn ⊕ yn〉 ∈ Z
n
2 . Будем называть ∆(x,y) вектором разницы (или просто разницей)

векторов x и y. Для транспозиции τ = (x,y) разницу векторов x и y будем обозначать

также через ∆(τ).

Теперь для произвольного цикла c можно ввести множество транспозиций T (d, c) сле-

дующим образом:

T (d, c) ⊆ { τ = (xi,yi) | τ ∈ c,∆(τ) = d } .

Другими словами, множество T (d, c) — это множество транспозиций (не обязательно всех

возможных), принадлежащих циклу c, разница векторов для которых равняется заданному
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вектору d. Среди всех возможных множеств T (d, c) существует такое множество T ∗(d, c),

которое удовлетворяет двум условиям:






c =

(

◦
τ∈T ∗(d,c)

τ

)

◦ h′ ,

∀τ ′ ∈ h′ : ∆(τ ′) 6= d .

(3.3)

Таким образом, любое из возможных множеств T ∗(d, c) позволяет задать представление цик-

ла c в виде произведения транспозиций с ∆(τ) = d и, возможно, некоторой новой подстановки

h′, не имеющей транспозиций с разницей векторов, равной d. При этом длина подстановки

h′ меньше длины цикла c на величину |T ∗(d, c)|.
Обозначим через T ∗

max(d, c) множество максимальной мощности среди всех возможных

множеств T ∗(d, c) (при этом возможна ситуация, когда таких множеств будет несколько). От-

метим, что задача нахождения множества T ∗
max(d, c) не является тривиальной, способы его

нахождения будут исследоваться далее. На данном этапе будем считать, что нам подходит

любое множество T ∗(d, c). Оно может быть получено следующим относительно простым спо-

собом:

1. Пусть T (d, c) = ∅.

2. Найти какую-либо транспозицию τ ∈ c, для которой ∆(τ) = d, добавить её в множество

T (d, c).

3. Вычислить подстановку h′ = τ ◦ c, найти представление подстановки h′ в виде произве-

дения независимых циклов.

4. Для каждого цикла из этого произведения повторить шаги (2)–(4).

5. T ∗(d, c) = T (d, c).

Для подстановки h, представимой в виде произведения независимых циклов ci, введём

множество T ∗(d, h) следующим образом:

T ∗(d, h) =
⊔

i

T ∗(d, ci) .

Тогда верно следующее равенство:

h =

(

◦
τ∈T ∗(d,h)

τ

)

◦ h′ ,

где T ∗(d, h′) = ∅.

Теперь перейдём к рассмотрению множества векторов Bd,h ⊆ Z
n
2 , задаваемого следу-

ющим образом:

Bd,h = {x ∈ Z
n
2 | ∃τ ∈ T ∗(d, h) : x ∈ τ } .

Другими словами, Bd,h — множество векторов, принадлежащих транспозициям из множества

T ∗(d, h). Множество Z
n
2 можно рассматривать как булев куб B

n. Будем искать грань этого
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куба B
n,i1,...,ik
σ1,...,σk

⊆ Bd,h, удовлетворяющую условию: dij = 0 для всех i1, . . . , ik. Другими словами,

вектора транспозиций из множества T ∗(d, h) не различаются в координатах i1, . . . , ik.

Если такая грань B
n,i1,...,ik
σ1,...,σk

⊆ Bd,h размерности (n − k) существует, то для каждого

вектора x ∈ B
n,i1,...,ik
σ1,...,σk

найдётся парный ему вектор y ∈ B
n,i1,...,ik
σ1,...,σk

, такой что транспозиция

(x,y) ∈ T ∗(d, h). Это следует из построения множества Bd,h и ограничений, которые мы

наложили на грань B
n,i1,...,ik
σ1,...,σk

. Таким образом, данная грань включает в себя вектора 2n−k−1

транспозиций, т. к.
∣
∣B

n,i1,...,ik
σ1,...,σk

∣
∣ = 2n−k. Обозначим эти транспозиции τ1, . . . , τ2n−k−1 . Введём два

множества, состоящих из i1, . . . , ik:

1. I = { ij | σj = 1 } — множество прямых контролирующих входов;

2. J = { ij | σj = 0 } — множество инвертированных контролирующих входов;

Тогда можно легко показать, что подстановка g =
2n−k−1

◦
i=1

τi задаётся обратимой схемой Sg:

Sg = ∗
i : di=1

E(ti, I, J) , (3.4)

сложность которой L(Sg) = w(d), где w(d) обозначает вес Хэмминга вектора d. Следователь-

но, L(Sg) 6 n (при использовании обобщённых элементов E(t, I, J)). При этом выполняется

равенство h = g ◦h′, где длина подстановки h′ меньше длины подстановки h ровно на 2n−k−1.

С другой стороны, все транспозиции τ1, . . . , τ2n−k−1 независимы, потому что для них

выполняется условие ∆(τi) = d. Согласно алгоритму A4.2, их можно разбить на 2n−k−2 пар

независимых транспозиций, каждая из которых задаётся обратимой схемой сложности O(n)

(см. формулу (2.5) на с. 53). Следовательно, алгоритм A4.2 задал бы подстановку g =
2n−k−1

◦
i=1

τi

обратимой схемой Sg сложности L(Sg) = 2n−k−2 · O(n).
Отсюда следует, что для рассматриваемой грани B

n,i1,...,ik
σ1,...,σk

сложность обратимой под-

схемы Sg, задающей подстановку g =
2n−k−1

◦
i=1

τi, можно уменьшить примерно в 2n−k−2 раз.

Опишем теперь кратко, как можно изменить алгоритм A4.2, чтобы применялся поиск

грани булева куба. Для заданной чётной подстановки h ∈ A(Zn
2 ):

1. Найти все вектора di ∈ Z
n
2 , такие, что найдётся транспозиция τi ∈ h, для которой

∆(τi) = di.

2. Для каждого найденного вектора di построить множества T ∗(di, h) и Bdi,h.

3. Для каждого множества Bdi,h найти в булеве кубе B
n грань Bi ⊆ Bdi,h максимальной

размерности, удовлетворяющую условиям, описанным на с. 68.

4. Среди всех найденных граней Bi выбрать грань Bj максимальной размерности k.

5. Если k < 2 (|Bj| 6 2), то
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• воспользоваться алгоритмом A4.2 для синтеза подсхемы, задающей пару транспо-

зиций p;

• получить новую подстановку h′ = p ◦ h.

6. Если k > 2 (|Bj | > 4), то

• найти все 2k−1 транспозиций τ1, . . . , τ2k−1 ∈ T ∗(dj , h), векторы которых принадле-

жат множеству Bj ;

• для подстановки g =
2k−1

◦
i=1

τi синтезировать схему Sg согласно формуле (3.4) и вклю-

чить её в качестве подсхемы в итоговую схему;

• получить новую подстановку h′ = g ◦ h.

7. Сделать замену h = h′ и повторить все шаги, начиная с 1-го. Полученная подстановка

h′ будет иметь меньшую длину по сравнению с исходной подстановкой h, что позволяет

говорить о сходимости описываемого алгоритма синтеза.

Оценим примерную сложность каждого шага этого модифицированного алгоритма.

Обозначим длину подстановки h через lh. Для большинства подстановок h ∈ Z
n
2 длина lh =

O(2n). При выполнении шагов 1 и 2 необходимо рассмотреть все возможные транспозиции,

входящие в подстановку h. Для этого потребуется рассмотреть пары векторов каждого с

каждым, а значит, временна́я сложность выполнения этих шагов равна T1-2 = O(l2h) = O(22n).

Всего существует 3n различных граней булева куба B
n. На шаге 2 может быть найдено

не более 2n различных множеств Bdi,h, каждое из которых мощностью не более 2n векторов.

Для того, чтобы понять, является ли множество векторов грани булева куба подмножеством

какого-либо множества Bdi,h, необходимо просмотреть все векторы множества Bdi,h. Поэтому

временну́ю сложность шага 3 можно грубо оценить сверху, как T3 6 12n.

Временна́я сложность шага 4 не превышает количества различных множеств Bdi,h, т. е.

T4 6 2n.

Временна́я сложность шага 5 равна T5 = O(n), как было показано на с. 53 для алго-

ритма A4.2.

На шаге 6 необходимо получить все транспозиции подстановки h из найденной грани

булева куба Bj , поэтому временна́я сложность этого шага T6 6 2n.

В самом худшем случае на шаге 7 длина подстановки будет сокращаться на 2, если

всё время будет выполняться шаг 5. Таким образом, последний шаг будет выполняться не

более lh / 2 раз, а суммарная временна́я сложность описанного алгоритма ограниченна сверху

следующей величиной:

Tedge 6
lh
2
(T1-2 + T3 + T4 + T5) = O(24n) . (3.5)

Шаг 1 выполняется всегда, поэтому Tedge ограничено снизу временно́й сложностью этого

шага

Tedge > O(22n) . (3.6)
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На первый взгляд, такое увеличение временно́й сложности алгоритма синтеза не

оправдано снижением сложности синтезированной схемы. Однако в случае, когда сложность

синтезированной схемы равна L = O(n2n), то, согласно формуле (3.1), время, затраченное

на снижение сложности такой схемы при помощи алгоритма, описанного на с. 64, может

превысить O(L3) = O(n323n). При этом такой алгоритм может дать в результате обратимую

схему с бо́льшей сложностью, чем если бы её сложность была снижена на этапе синтеза

приведённым выше способом.

3.5.2 Умножение справа подстановки на произведение транспозиций

На с. 66 было показано, что любой цикл длины больше двух можно представить в виде

произведения некоторой транспозиции и подстановки. Это было сделано при помощи умноже-

ния слева транспозиции на подстановку. Легко показать, что любой цикл длины больше двух

может быть также получен при помощи умножения справа транспозиции на подстановку:

(x, a1, . . . , ak,y,b1, . . . ,bp) = (x,y) ◦ (x,b1, . . . ,bp) ◦ (y, a1, . . . , ak) , (3.7)

(x, a1, . . . , ak,y,b1, . . . ,bp) = (y,b1, . . . ,bp) ◦ (x, a1, . . . , ak) ◦ (x,y) . (3.8)

Отсюда следует, что и произвольная подстановка может быть получена при помощи как

произведения слева, так и произведения справа транспозиции и некоторой новой подстановки.

По формулам (3.7) и (3.8) видно, что при этом новая подстановка будет иметь различный

вид.

На шагах 5 и 6 на с. 68 использовалось умножение слева транспозиции и произведе-

ния нескольких транспозиций на новую подстановку. Однако если использовать умножение

справа, то далее на шаге 1 могут быть получены другие вектора di, а на шаге 2 — другие

множества T ∗(di, h) и Bdi,h, имеющие, возможно, бо́льшую мощность. Всё это в итоге может

повлиять на выбор грани Bj на шаге 4 и на сложность синтезированной схемы.

Не представляется возможным однозначно выбирать левое или правое произведение

на каждом этапе работы алгоритма синтеза, чтобы в итоге получить обратимую схему с

меньшей сложностью. Однако можно использовать следующий подход:

• вначале на шагах 5 и 6 применить левое произведение, получить новую подстановку

hleft и найти для неё грань булева куба Bleft максимальной размерности на следующем

этапе алгоритма;

• затем на шагах 5 и 6 применить правое произведение, получить новую подстановку hright

и найти для неё грань булева куба Bright максимальной размерности на следующем этапе

алгоритма;

• выбрать между Bleft и Bright грань наибольшей размерности и соответствующее ей левое

или правое произведение для данного этапа работы алгоритма синтеза;

• перейти к следующему этапу работы алгоритма синтеза.
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Если грани Bleft и Bright имеют одинаковую размерность, то для однозначности можно всегда

выбирать в таком случае левое произведение.

Данный подход увеличивает временну́ю сложность алгоритма синтеза в 2 раза, од-

нако в некоторых случаях он позволяет получить в результате работы такого алгоритма

обратимую схему с меньшей сложностью, по сравнению с алгоритмом синтеза, использую-

щим только левое или только правое произведение.

3.5.3 Увеличение мощности множества транспозиций с одинаковой разницей

векторов

На с. 67 было сказано, что для фиксированного вектора d и цикла c задача нахождения

множества T ∗
max(d, c) не является тривиальной. Покажем это на простом примере.

Пусть c = (x1,x2,x3,y1,y3,y2), ∆(xi,yi) = d, ∆(xi,yj) 6= d при i 6= j, ∆(xi,xj) 6= d,

∆(yi,yj) 6= d. Тогда существует множество T (d, c) = { (x1,y1), (x2,y2), (x3,y3) }. Воспользо-

вавшись формулой (3.7), мы можем представить цикл c двумя способами:

1. c = (x1,y1) ◦ (x1,y3,y2) ◦ (y1,x2,x3);

2. c = (x2,y2) ◦ (x3,y3) ◦ (x1,x2) ◦ (x3,y2) ◦ (y1,y3).

Таким образом, мы нашли два множества:

T ∗
1 (d, c) = { (x1,y1) } ,
T ∗
2 (d, c) = { (x2,y2), (x3,y3) } .

Очевидно, что в алгоритме синтеза желательно всегда получать такие множества, как

T ∗
2 (d, c), а не T ∗

1 (d, c), т. к. это, возможно, позволит найти грань булева куба большей размер-

ности.

Для решения данной задачи можно использовать следующий алгоритм. Пусть вначале

T (d, c) = ∅, тогда

1. Зафиксировать представление цикла c, чтобы можно было пронумеровать элементы

этого цикла слева направо от 1 до lc, где lc — длина цикла c. Сами элементы цикла

будем обозначать через ai, где 1 6 i 6 lc. В итоге цикл c можно однозначно записать

как c = (a1, . . . , alc).

2. Для заданного значения вектора разницы d посторить множество упорядоченных пар

индексов:

M = { (i, j) | i < j,∆(ai, aj) = d } .

3. Используя фильтрующую функцию φ(x, (i, j)) вида

φ(x, (i, j)) =







1, если i 6 x 6 j ,

0 иначе .
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и весовую функцию w(x) вида

w(x) =
∑

(i,j)∈M

φ(x, (i, j)) ,

найти такую пару индексов (i, j) ∈ M , для которой значение функции f(i, j) = w(i) +

w(j) является минимальным (если таких пар несколько, выбрать любую).

4. Добавить транспозицию τ = (ai, aj) в множество T (d, c).

5. Получить новую подстановку h′ = τ◦c (либо h′ = c◦τ , в зависимости от требуемого вида

произведения). Найти представление подстановки h′ в виде произведения независимых

циклов, для каждого из которых повторить данный алгоритм, начиная с самого первого

шага. Отметим, что длина полученной подстановки h′ будет меньше, чем исходного

цикла c, поэтому можно говорить о сходимости данного алгоритма.

В итоге получим множество T (d, c) = T ∗(d, c), мощность которого близка к T ∗
max(d, c).

Цикл c можно рассматривать как отрезок, разделённый на части элементами множе-

ства M . Эти элементы также можно рассматривать как отрезки, которые, возможно, частич-

но перекрывают друг друга. Тогда весовая функция w(x) показывает, скольким отрезкам

принадлежит точка x. Таким образом, предложенный алгоритм представляет собой поиск

отрезка, у которого концы принадлежат наименьшему количеству отрезков.

Поясним данный алгоритм на примере цикла, описанного в начале данного параграфа:

• c = (x1,x2,x3,y1,y3,y2), ∆(xi,yi) = d, ∆(xi,yj) 6= d при i 6= j, ∆(xi,xj) 6= d, ∆(yi,yj) 6=
d;

• фиксируем представление цикла c: a1 = x1, . . . , a6 = y2;

• строим множество M = { (1, 4), (2, 6), (3, 5) };

• ищем значение функции w(x): w(1) = 1, w(2) = 2, w(3) = 3, w(4) = 3, w(5) = 2,

w(6) = 1;

• ищем значение функции f(i, j): f(1, 4) = 4, f(2, 6) = 3, f(3, 5) = 5;

• добавляем в множество T (d, c) транспозицию τ1 = (a2, a6) = (x2,y2);

• h′ = τ1 ◦ c = (x1,x2) ◦ (x3,y1,y3,y2);

• в подстановке h′ только для транспозиции τ2 = (x3,y3) значение разницы ∆(τ2) = d,

добавляем τ2 в множество T (d, c);

• h′′ = τ2 ◦ h′ = (x1,x2) ◦ (x3,y2) ◦ (y1,y3);

• для всех транспозиций τ ∈ h′′ значение разницы ∆(τ) 6= d, закончить работу.
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В этом примере получено множество T (d, c) = { (x2,y2), (x3,y3) } = T ∗
2 (d, c), что и требова-

лось от алгоритма.

Предложенный алгоритм по увеличению мощности множества транспозиций с одина-

ковой разницей векторов позволяет в некоторых случаях находить грани булева куба боль-

шей размерности (см. параграф 3.5.1, шаг 2 на с. 68) и синтезировать обратимую схему с

меньшей сложностью. Если длина входной подстановки h равна lh, то временна́я сложность

данного алгоритма равна O(lh log2 lh): основное время занимает составление множества M ,

т. к. приходится сравнивать друг с другом элементы циклов подстановки h; поиск минималь-

ного значения функции f(i, j) делается за линейное время при обходе всех элементов циклов

подстановки h. При lh = O(2n) временна́я сложность равна O(n2n).

3.6 Экспериментальные результаты снижения сложности схемы

Для того, чтобы проверить целесообразность применимости на практике различных

способов снижения сложности обратимой схемы, было разработано программное обеспече-

ние, реализующее алгоритм синтеза A4.2. На стадии синтеза схемы данным программным

обеспечением применяются все способы снижения сложности, описанные в разделе 3.5. На

заключительной стадии работы к схеме применяются правила эквивалентных замен по ал-

горитму, описанному в разделе 3.4.

В качестве тестовой функции было решено использовать функцию rd53 : Z5
2 → Z

3
2,

принимающую на вход двоичный вектор размерности 5 и выдающую на выходе двоичное

представление веса Хэмминга этого вектора. По определению, такая функция не может быть

обратимой и, как следствие, не может быть задана обратимой схемой. Однако можно найти

обратимую схему, реализующую rd53. Для этой цели авторами работы [70] была задана об-

ратимая функция f : Z7
2 → Z

7
2, часть входов/выходов которой соответствует входам/выходам

функции rd53. В работе [71] авторами была найдена обратимая схема сложности 12, задаю-

щая функцию f и, как следствие, реализующая функцию rd53 (рис. 3.7).

x1

x2

x3

x4

x5

0

0

∗

∗

∗

∗

y1

y2

y3

Рис. 3.7 Обратимая схема, реализующая функцию rd53.

На сегодняшний день данная обратимая схема имеет минимальную сложность сре-

ди всех обратимых схем, реализующих функцию rd53, имеющих 7 входов и состоящих из

элементов k-CNOT. Данная схема была принята в качестве образца для сравнения сложно-

сти при проведении эксперимента. Обозначим эту схему Srd53, тогда L(Srd53) = 12. Сам
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эксперимент заключался в следующем:

1. Схема Srd53 представляется в виде композиции элементов k-CNOT:

Srd53 =
L(Srd53)∗

j=1
E(tj , Ij) .

2. Для всех значений l от 1 до L(Srd53) формируется подсхема Sl =
l∗

j=1
E(tj , Ij) (первые

l элементов схемы Srd53).

3. Для каждой схемы Sl находится задаваемая ей подстановка hl ∈ A(Z7
2).

4. Каждая подстановка hl подаётся в качестве входа разработанному программному обес-

печению по синтезу обратимых схем.

5. Замеряется время синтеза схемы S
′
l и её сложность L(S′

l), которая затем сравнивается

со сложностью эталонной схемы Sl.

Во время проведения эксперимента измерялись следующие величины:

• Ts и Ls — время синтеза схемы S
′
l без применения правил эквивалентных замен ком-

позиций Ф.Э. и её сложность соответственно (схема содержит обобщённые элементы

E(t, I, J));

• Tr,1 и Lr,1 — время, затраченное на снижение сложности синтезированной схемы при по-

мощи правил эквивалентных замен композиций Ф.Э. (за исключением замен 3.8 и 3.9),

и сложность полученной схемы соответственно (схема содержит обобщённые элементы

E(t, I, J));

• Tr,2 и Lr,2 — время, затраченное на снижение сложности синтезированной схемы при

помощи всех правил эквивалентных замен композиций Ф.Э., и сложность полученной

схемы соответственно (схема содержит только элементы k-CNOT).

Результаты измерений представлены в таблице 3.1. Отметим, что в данной таблице

представлены наилучшие результаты, при которых достигалась наименьшая сложность син-

тезированной схемы (за счёт увеличенного времени работы). В некоторых случаях для этого

требовалось менять набор правил эквивалентных замен композиций Ф.Э. и последователь-

ность их применения. Также стоит отметить, что алгоритм A4.2 без применения различных

способов снижения сложности обратимой схемы синтезирует все схемы S
′
l со сложностью

порядка 7 · 27 = 896 элементов.

Проанализировав данные таблицы 3.1, можно сделать вывод, что применение правил

эквивалентных замен композиций Ф.Э. 3.8 и 3.9 позволяет в некоторых случаях (l = 12)

снизить сложность синтезированной схемы. Этот вывод не является очевидным, т. к. по дан-

ным правилам замен все обобщённые элементы E(t, I, J) в схеме заменяются на композицию

элементов E(t, I), что должно было бы увеличить, а не снизить сложность.
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l Ts, мс Ls Tr,1, мс Lr,1 Tr,2, мс Lr,2

1 0,09 1 0,00 1 0,01 1

2 0,10 2 0,00 2 0,02 2

3 0,27 3 0,00 3 0,01 3

4 0,31 5 0,00 4 0,01 4

5 1,11 6 0,01 5 0,02 5

6 1,03 7 0,01 6 0,02 6

7 1,54 9 0,02 7 0,03 7

8 2,98 10 0,02 8 0,04 8

9 3,85 16 3,25 9 0,05 9

10 6,39 16 5,13 10 0,07 13

11 6,83 24 13,46 11 0,07 12

12 14,2 30 29,75 16 0,08 13

Таблица 3.1 Экспериментальные результаты работы разработанного программного обеспечения

по синтезу подсхем схемы Srd53.

Из таблицы 3.1 видно, что разработанное программное обеспечение, реализующее ал-

горитм синтеза A4.2 с применением различных способов снижения сложности обратимой

схемы, позволяет синтезировать схемы, имеющие сложность, близкую к минимальной. При

этом время синтеза очень мало. Для сравнения, в работе [71] схема Srd53 была получена авто-

рами за 1,84 секунды на процессоре Pentium III 750 MHz, в то время как схема S
′
12, имеющая

всего на 1 элемент k-CNOT больше, получена автором за 15 миллисекунд на процессоре Core

i7 2,40 GHz.

В работе [67] был описан достаточно простой и быстрый алгоритм синтеза обратимых

схем без дополнительной памяти, использующий спектр Рида-Маллера (полином Жегалки-

на). Данный алгоритм эффективен для синтеза булевых преобразований, описываемых поли-

номами Жегалкина малой степени, но становится неэффективным для полиномов высокой

степени. В разработанном программном обеспечении [103] были объединены алгоритм A4.2 и

алгоритм из работы [67], а также различные способы снижения сложности обратимой схемы,

описанные в данной главе и в Главе 4. Алгоритм A4.2 в данном программном обеспечении

предназначен для работы с остаточными полиномами Жегалкина, имеющими высокую сте-

пень. При помощи данного программного обеспечения удалось получить новую обратимую

схему, реализующую функцию rd53. Полученная схема имеет 7 входов, её сложность равна

11, квантовый вес равен 96 (см. рис. 3.8). На сегодняшний день эта обратимая схема имеет

минимальную сложность среди всех известных обратимых схем, состоящих из обобщённых

элементов Тоффоли с инвертированными входами и реализующих функцию rd53 с 7-ю вхо-

дами [78, 79]. Более того, все остальные схемы имеют сложность 12 или выше.

Также был проведён ряд экспериментов по синтезу обратимых схем, реализующих раз-

личные булевы отображения, при помощи разработанного программного обеспечения [103].

Спецификация функций, их название и уже построенные обратимые схемы для них брались
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Рис. 3.8 Полученная обратимая схема с наименьшей известной сложностью, реализующая

функцию rd53 и имеющая 7 входов.

с сайтов [78, 79]. Удалось получить более 40 новых обратимых схем, имеющих либо меньшее

количество входов, либо меньшую сложность, либо меньший квантовый вес, по сравнению с

известными результатами. Измерение характеристик всех обратимых схем (полученных и из-

вестных) производилось при помощи программного обеспечения RCViewer+ [22]. Результаты

экспериментов сведены в следующих таблицах.

В таблице 3.2 приведены характеристики полученных обратимых схем, имеющих мень-

шее количество входов по сравнению с известными результатами; в таблице 3.3 — имеющих

меньшую сложность по сравнению с известными результатами; в таблице 3.4 — имеющих

меньший квантовый вес по сравнению с известными результатами. В первой колонке всех

таблиц приведено имя функции, взятое с сайта [78]. Далее таблицы разбиваются на две части:

в левой части указаны характеристики полученных схем, в правой части — наилучших из-

вестных схем. Обозначения: n — количество входов схемы, L(S) — сложность схемы, W (S) —

квантовый вес схемы. Нижний индекс «min» приписывается к той характеристике, по кото-

рой идёт сравнение. К примеру, в таблице 3.3 идёт сравнение по сложности схемы, поэтому

колонка сложности имеет обозначение Lmin(S). Все остальные характеристики указаны для

этой же схемы с данной минимальной характеристикой.

Название функции
Полученные схемы Существующие схемы

nmin L(S) W (S) nmin L(S) W (S)

gf2^3mult 7 73 740

9 11 47gf2^3mult 7 79 712

gf2^3mult 7 145 704

gf2^4mult 9 415 47649
12 19 83

gf2^4mult 9 1834 5914

nth_prime9_inc 9 3942 19313 10 7522 17975

rd73 9 296 43421
10 20 64

rd73 9 835 4069

rd84 11 679 359384
15 28 98

rd84 11 2560 12397

Таблица 3.2 Характеристики обратимых схем, полученных при помощи разработанного

программного обеспечения [103], имеющих меньшее количество входов по сравнению с известными

результатами.
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Название функции
Полученные схемы Существующие схемы

n Lmin(S) W (S) n Lmin(S) W (S)

2of5 6 9 268
6 15 107

2of5 6 10 118

2of5 7 11 32 7 12 32

3_17 3 4 14
3 6 12

3_17 3 5 13

4b15g_2 4 12 57 4 15 31

4b15g_4 4 12 49
4 15 35

4b15g_4 4 14 47

4b15g_5 4 14 72 4 15 29

4mod5 5 4 13 5 5 7

5mod5 6 7 429 6 8 84

6sym 7 14 1308
7 36 777

6sym 7 15 825

9sym 10 73 61928
10 129 6941

9sym 10 74 31819

ham7 7 19 77 7 25 49

hwb12 12 42095 134316 12 55998 198928

nth_prime7_inc 7 427 10970

7 1427 3172nth_prime7_inc 7 474 10879

nth_prime7_inc 7 824 2269

nth_prime8_inc 8 977 10218
8 3346 7618

nth_prime8_inc 8 1683 6330

nth_prime9_inc 10 2234 22181 10 7522 17975

nth_prime10_inc 11 5207 50152 11 16626 40299

nth_prime11_inc 12 11765 124408 12 35335 95431

rd53 7 11 96 7 12 120

Таблица 3.3 Характеристики обратимых схем, полученных при помощи разработанного

программного обеспечения [103], имеющих меньшую сложность по сравнению с известными

результатами.

Полученные экспериментальные результаты позволяют утверждать, что предложен-

ные в данной и последующей главах способы снижения сложности обратимых схем являются

применимыми на практике и в некоторых случаях позволяют синтезировать обратимые схе-

мы, имеющие лучшие характеристики, по сравнению с известными результатами.
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Название функции
Полученные схемы Существующие схемы

n L(S) Wmin(S) n L(S) Wmin(S)

2of5 7 12 31 7 12 32

6sym 7 41 206 7 36 777

9sym 10 347 1975 10 210 4368

hwb7 7 603 1728 7 331 2611

hwb8 8 1594 4852 8 2710 6940

hwb9 9 3999 12278 9 6563 16173

hwb10 10 8247 26084 10 12288 35618

hwb11 11 21432 69138 11 32261 90745

hwb12 12 42095 134316 12 55998 198928

nth_prime7_inc 7 824 2269 7 1427 3172

nth_prime8_inc 8 1683 6330 8 3346 7618

rd53 7 12 82

7 12 120rd53 7 12 95

rd53 7 11 96

Таблица 3.4 Характеристики обратимых схем, полученных при помощи разработанного

программного обеспечения [103], имеющих меньший квантовый вес по сравнению с известными

результатами.
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4 Оценка сложности, глубины и квантового веса обрати-

мых схем

Теория схемной сложности берёт своё начало с работы К. Шеннона [82]. В ней он

предложил в качестве меры сложности булевой функции рассматривать сложность мини-

мальной контактной схемы, реализующей эту функцию. О.Б. Лупановым была установле-

на [19] асимптотика сложности L(n) ∼ ρ2n / n булевой функции от n переменных в произ-

вольном конечном полном базисе элементов с произвольными положительными весами, где

ρ обозначает минимальный приведённый вес элементов базиса.

В работе [6] рассматривается вопрос о вычислениях с ограниченной памятью.

Н.А. Карповой было доказано, что в базисе классических Ф.Э., реализующих все p-местные

булевы функции, асимптотическая оценка функции Шеннона сложности схемы с тремя и бо-

лее регистрами памяти зависит от значения p, но не изменяется при увеличении количества

используемых регистров памяти. Также было показано, что существует булева функция, ко-

торая не может быть реализована в маломестных базисах с использованием менее, чем двух

регистров памяти.

О.Б. Лупановым были рассмотрены схемы из Ф.Э. с задержками [18]. Было доказа-

но, что в регулярном базисе Ф.Э. любая булева функция может быть реализована схемой,

имеющей задержку T (n) ∼ τn, где τ — минимум приведённых задержек всех элементов ба-

зиса, при сохранении асимптотически оптимальной сложности. Однако не рассматривался

вопрос зависимости T (n) от количества используемых регистров памяти. Хотя задержка и

глубина схемы в некоторых работах определяется по-разному [26], в рассматриваемой модели

обратимой схемы их, по мнению автора, можно отождествить.

Вопрос асимптотической сложности обратимых схем рассматривался в работе [66]. В

ней было показано, что сложность обратимой схемы S, состоящей из элементов E(t, I, J),

удовлетворяет неравенству L(S) 6 n2n. При этом было показано, что существует обратимая

схема S сложности L(S) > 2n / ln 3 + o(2n). Для обратимых схем, состоящих из элементов

mEXOR (терминология авторов), в той же работе [66] были доказаны следующие оценки

сложности схемы по Шеннону: 2n / ln 3+ o(2n) 6 L(n) 6 2n+1− 4. В работе [1] была доказана

нижняя оценка сложности L(S) > n2n /(n + log2 n− 1) обратимых схем, состоящих из обоб-

щённых элеметов Тоффоли k-CNOT. В работе [83] была доказана нижняя асимптотическая

оценка Ω(n2n / logn) сложности обратимой схемы, состоящей из Ф.Э. множества Ω2
n и не

имеющей дополнительных входов. В работе [67] была доказана наилучшая известная на се-

годняшний день верхняя асимптотическая оценка сложности L(S) . 5n2n обратимой схемы

S, состоящей из Ф.Э. множества Ω2
n и не имеющей дополнительных входов. Однако стоит от-

метить, что всеми авторами рассматривались только обратимые схемы без дополнительной

памяти.

В данной главе рассматривается вопрос асимптотической сложности, глубины и кван-

тового веса обратимых схем, реализующих некоторое преобразование Z
n
2 → Z

n
2 и состоящих
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из элементов NOT, CNOT и 2-CNOT. Вводится множество F (n, q) всех отображений Z
n
2 → Z

n
2 ,

которые могут быть реализованы такими обратимыми схемами с (n + q) входами. Оцени-

ваются сложность, глубина и квантовый вес обратимой схемы, реализующей отображение

f ∈ F (n, q) с использованием q дополнительных входов (дополнительной памяти). Опре-

деляются функции Шеннона сложности L(n, q), глубины D(n, q) и квантового веса W (n, q)

обратимой схемы как функции от n и количества дополнительных входов схемы q.

Использование дополнительных входов должно, по-видимому, снижать сложность об-

ратимых схем, но никаких конкретных оценок до настоящего времени известно не было.

Удалось получить такие оценки, согласно которым сложность и глубина обратимой схемы, в

отличие от схем из классических Ф.Э., существенно зависят от количества дополнительных

входов (аналог регистров памяти, см. [6]).

4.1 Функции Шеннона сложности, глубины и квантового веса

Обозначим через P2(n, n) множество всех булевых отображений Z
n
2 → Z

n
2 . Обозна-

чим через F (n, q) ⊆ P2(n, n) множество всех отображений Z
n
2 → Z

n
2 , которые могут быть

реализованы обратимыми схемами с (n + q) входами, состоящими из Ф.Э. множества Ω2
n+q.

Множество подстановок из S(Zn
2 ), задаваемых всеми Ф.Э. множества Ω2

n, генерирует зна-

копеременную A(Zn
2 ) и симметрическую S(Zn

2 ) группы подстановок при n > 3 и n 6 3,

соответственно [83, 97]. Отсюда следует, что F (n, 0) совпадает с множеством отображений,

задаваемых всеми подстановками из A(Zn
2 ) и S(Zn

2 ) при n > 3 и n 6 3, соответственно. С

другой стороны, несложно показать, что при q > n верно равенство F (n, q) = P2(n, n). Дру-

гими словами, имея n или более дополнительных входов, можно реализовать с помощью

обратимой схемы любое отображение из P2(n, n). Это следует из утверждения 1.32 на с. 36.

Рассмотрим произвольное отображение f ∈ F (n, q). Среди всех обратимых схем, со-

стоящих из Ф.Э. множества Ω2
n+q и реализующих отображение f с использованием q допол-

нительных входов, мы можем найти схему Sl с минимальной сложностью, схему Sd с ми-

нимальной глубиной и схему Sw с минимальным квантовым весом. Обозначим через L(f, q),

D(f, q) иW (f, q) минимальную сложность, минимальную глубину и минимальный квантовый

вес, соответственно, обратимой схемы, состоящей из Ф.Э. множества Ω2
n+q и реализующей

отображение f ∈ F (n, q) с использованием q дополнительных входов. Тогда L(f, q) = L(Sl),

D(f, q) = D(Sd) и W (f, q) = W (Sw). Определим функции Шеннона сложности L(n, q), глу-

бины D(n, q) и квантового веса W (n, q) обратимой схемы:

L(n, q) = max
f∈F (n,q)

L(f, q) ,

D(n, q) = max
f∈F (n,q)

D(f, q) ,

W (n, q) = max
f∈F (n,q)

W (f, q) .
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Из неравенства (1.3) следует, что

W (n, q) >

(

min
E∈Ω2

n+q

W (E)

)

· L(n, q) . (4.1)

Как было сказано на с. 23, чем меньше в обратимой схеме элементов k-CNOT с

k > 1, тем проще её реализовать при помощи квантовых технологий. Связано это с тем,

что W (NOT) = W (CNOT) = 1 и W (2-CNOT) = 5 [37]. Следовательно, представляет собой

интерес подсчёт в обратимой схеме отдельно количества различных Ф.Э. Для этого вве-

дём соответствующие сложности: L(C)(S) — количество элементов NOT и CNOT в схеме

S; L(T )(S) — количество элементов 2-CNOT (Тоффоли) в схеме S. Аналогичным образом

введём величины L(C)(f, q), L(T )(f, q), L(C)(n, q) и L(T )(n, q). Также обозначим через W (C) ве-

личину W (CNOT), а через W (T ) — величину W (2-CNOT). Тогда можно считать, что верно

следующее равентсво:

W (n, q) =W (C) · L(C)(n, q) +W (T ) · L(T )(n, q) . (4.2)

Для двух вещественных положительных функций f(n) и g(n) от натуральной пере-

менной n мы будем использовать следующие обозначения [30, с. 355]:

1. Функция f(n) асимптотически больше или равна функции g(n), т. е. f(n) & g(n), если

для любого ε > 0 найдётся N = N(ε) такое, что при любом n > N верно неравенство

(1− ε) · g(n) 6 f(n).

2. В случае, если f(n) & g(n) и g(n) & f(n), говорят, что f(n) и g(n) асимптотически рав-

ны (эквивалентны) и пишут f(n) ∼ g(n). В этом случае предел f(n) / g(n) существует

и равен 1.

3. Если 0 < c1 < f(n) / g(n) < c2, то говорят, что функции f(n) и g(n) эквивалентны с

точностью до порядка. В этом случае пишут f(n) ≍ g(n).

При помощи мощностного метода Риордана–Шеннона в следующих разделах будут

доказаны общие нижние оценки для функций L(n, q) и D(n, q). Будет дано описание двух ал-

горитмов синтеза, позволяющих получить обратимую схему с наилучшей асимптотической

сложностью и глубиной в случае отсутствия дополнительных входов в схеме и в случае их

использования. Будет доказано, что L(n, 0) ≍ n2n / log2 n и D(n, 0) & 2n /(3 log2 n). Будет

также описан аналогичный методу Лупанова [18] подход к синтезу обратимой схемы, для

которого сложность синтезированной схемы L(n, q0) ≍ 2n при использовании q0 ∼ n2n−o(n)

дополнительных входов, а глубина D(n, q1) . 3n при использовании q1 ∼ 2n дополнитель-

ных входов. На основании полученных оценок будут даны некоторые оценки для функций

L(C)(n, q) и L(T )(n, q), а также для W (n, q).
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4.2 Нижние оценки

Как было сказано в предыдущем разделе, множество подстановок из S(Zn
2 ), задавае-

мых всеми Ф.Э. множества Ω2
n, генерирует знакопеременную A(Zn

2 ) при n > 3. В работе [2]

было показано, что длина L(G,M) группы подстановокG относительно системы образующих

M удовлетворяет неравенству

L(G,M) >
⌈
log|M | |G|

⌉
. (4.3)

В нашем случае G = A(Zn
2 ), |G| = (2n)! / 2, |M | = |Ω2

n|. Поскольку мощность множества Ω2
n

равна

|Ω2
n| =

2∑

k=0

(n− k)

(
n

k

)

=
n3

2
(1 + o(1)) , (4.4)

то мы можем вывести простую нижнюю оценку для L(n, 0):

L(n, 0) &
log2((2

n)! / 2)

log2(n
3 / 2)

&
log2 2

n2n − log2 e
2n

3 log2 n
,

L(n, 0) &
n2n

3 log2 n
. (4.5)

Нижняя оценка (4.3) в работе [2] строго доказана не была и, по мнению автора, основы-

вается на не совсем верном предположении, что достаточно рассмотреть только все возмож-

ные произведения подстановок из M длины ровно L(G,M), чтобы получить все элементы

группы подстановок G. Данное предположение верно только для системы образующих M , со-

держащей тождественную подстановку. В противном случае, необходимо рассматривать все

возможные произведения подстановок изM длины менее L(G,M) в том числе. Очевидно, что

множество подстановок, задаваемых всеми Ф.Э. множества Ω2
n, не содержит тождественной

подстановки.

Для того, чтобы получить общую нижнюю оценку L(n, q), также необходимо учиты-

вать те булевы отображения, которые могут быть реализованы обратимой схемой с (n + q)

входами. Таких отображений не более An
n+q (количество размещений из (n + q) по n без

повторений).

Перейдём к первой теореме данной главы.

Теорема 4.1 (нижняя оценка сложности обратимой схемы).

L(n, q) >
2n(n− 2)

3 log2(n+ q)
− n

3
.

Доказательство. Доказательство основано на использовании мощностного метода Риор-

дана-Шеннона. Пусть r = |Ω2
n|. Из формулы (4.4) следует, что

r =

2∑

k=0

(n− k)

(
n

k

)

=
n3 − n2 + 2n

2
,

n2(n− 1)

2
+ 1 < r 6

n3

2
при n > 2 . (4.6)
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Обозначим через C
∗(n, s) = rs и C(n, s) количество всех обратимых схем, которые со-

стоят из Ф.Э. множества Ω2
n и сложность которых равна s и не превышает s, соответственно.

Тогда

C(n, s) =
s∑

i=0

C
∗(n, i) =

rs+1 − 1

r − 1
6

(
n3

2

)s+1

· 2

n2(n− 1)
,

C(n, s) 6

(
n3

2

)s

·
(

1 +
1

n− 1

)

при n > 2 .

Как было сказано выше, каждой обратимой схеме с (n + q) входами соответствует

не более An
n+q различных булевых отображений Z

n
2 → Z

n
2 . Следовательно, верно следующее

неравенство:

C(n+ q, L(n, q)) · An
n+q > |F (n, q)| .

Поскольку |F (n, q)| > |A(Zn
2 )| = (2n)! / 2 и An

n+q 6 (n+ q)n, то

(
(n + q)3

2

)L(n,q)

·
(

1 +
1

n+ q − 1

)

· (n+ q)n > (2n)! / 2 .

Несложно убедиться, что при n > 0 верно неравенство (2n)! > (2n / e)2
n

. Следовательно,

L(n, q) · (3 log2(n+ q)− 1) + log2

(

1 +
1

n+ q − 1

)

+ n log2(n + q) > 2n(n− log2 e) .

Отсюда следует неравенство из условия теоремы

L(n, q) >
2n(n− 2)

3 log2(n+ q)
− n

3
.

Теорема 4.2 (нижняя оценка глубины обратимой схемы).

D(n, q) >
2n(n− 2)

3(n + q) log2(n + q)
− n

3(n+ q)
.

Доказательство. Следует из Теоремы 4.1 и неравенства (1.2).

Теорема 4.3 (нижняя оценка квантового веса обратимой схемы).

W (n, q) > min
(
W (C),W (T )

)
·
(

2n(n− 2)

3 log2(n+ q)
− n

3

)

.

Доказательство. Следует из Теоремы 4.1 и неравенства (4.1).

В работе [96] была сделана попытка снизить константу 3 в знаменателе нижней оценки

сложности L(n, q) из Теоремы 4.1 при помощи свойства эквивалентности некоторых обрати-

мых схем с точки зрения задаваемых ими преобразований. Для этой цели была выдвинута

следующая гипотеза о структуре обратимых схем из Ф.Э. множества Ω2
n:
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Гипотеза 4.4. Почти каждая обратимая схема, состоящая из элементов NOT, CNOT и

2-CNOT и имеющая n→ ∞ входов, может быть представлена в виде композиции подсхем

сложности k = o(n) (кроме последней, у которой сложность L 6 k), таких что в каж-

дой подсхеме все элементы являются попарно коммутирующими. Количество обратимых

схем, для которых это неверно, пренебрежимо мало.

Покажем, что данная гипотеза неверна для обратимых схем со сложностью O(n) и

выше.

Пусть r = |Ω2
n| (см. формулу (4.6)). Обозначим через M(n, k) множество обратимых

схем с n входами из Гипотезы 4.4. Очевидно, что |M(n, 2)| > |M(n, k)|. Будем строить схему

S ∈ M(n, 2) следующим способом: сначала выбираем r способами первый элемент в паре,

затем выбираем второй элемент, коммутирующий с предыдущим; так делаем ⌊L(S) / 2⌋ раз.

Оставшийся элемент в случае нечётной сложности схемы S выбираем r способами.

В работе [96] использовалось следующее свойство коммутируемости: два элемента

E(t1, I1) и E(t2, I2) из множества Ω2
n являются коммутирующими, если t1 /∈ I2 и t2 /∈ I1. Если

рассматривать только элементы 2-CNOT из множества Ω2
n, то второй элемент в паре можно

выбрать не менее
(
n−2
1

)
·
(
n−2
2

)
способами. Следовательно, верно следующее неравенство:

|M(n, 2)| >
(

r ·
(
n− 2

1

)

·
(
n− 2

2

))⌊s / 2⌋

,

где s = L(S). Оценим величину Q(n, s) = |M(n, 2)| / rs:

Q(n, s) =
|M(n, 2)|

rs
>

(
n− 2

n
· n− 2

n
· n− 3

n

)(s−1)/2

>

(

1− 3

n

)2(s−1)

. (4.7)

Таким же образом можно оценить величину Q(n, s) сверху: при выборе второго Ф.Э.

пары не будут рассматриваться как минимум те элементы 2-CNOT, у которых один из кон-

тролирующих входов равен контролируемому выходу предыдущего элемента. Таких элемен-

тов Тоффоли
(
n−1
2

)
штук. Следовательно, верно неравенство

Q(n, s) =
|M(n, 2)|

rs
6

(

r

r
· r −

(
n−1
2

)

r

)s/2

=

(

1− n− 2

n2

)s/2

.

Отсюда следует, что

lim
n→∞

e−6s / n 6 lim
n→∞

Q(n, s) 6 lim
n→∞

e−s /(2n) . (4.8)

Таким образом, rse−6s / n . |M(n, 2)| . rse−s /(2n).

Из неравенства, аналогичного неравенству (4.7), в работе [96] был сделан ошибочный

вывод, что |M(n, 2)| ∼ |M(n, k)| ∼ rs для всех значений s, если k = o(n). Из (4.8) видно, что

|M(n, 2)| ∼ rs только при s = o(n). И уже при s > n количество обратимых схем, не соот-

ветствующих утверждению гипотезы, перестаёт быть пренебрежимо малым. Следовательно,

при оценке сложности обратимых схем нельзя опираться на Гипотезу 4.4.

На практике бо́льший интерес представляют верхние оценки сложности, глубины и

квантового веса обратимых схем. Этот вопрос будет изучаться в следующих двух разделах.
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4.3 Верхние оценки для схем без дополнительной памяти

Как уже неоднократно было сказано ранее, обратимая схема без дополнительных вхо-

дов может реализовывать только чётные подстановки. В работе [67] был описан алгоритм

синтеза таких схем, позволяющий получить обратимую схему S, реализующую заданную

чётную подстановку h ∈ A(Zn
2 ) со сложностью L(S) . 5n2n. Эту оценку можно считать

простейшей верхней оценкой для L(n, 0):

L(n, 0) . 5n2n . (4.9)

В разделе 2.5 был описан алгоритм A4.2 синтеза обратимых схем, состоящих из Ф.Э.

множества Ω2
n. Было доказано, что для синтезированной данным алгоритмом схемы S её

сложность L(S) . 7n2n. Алгоритм A4.2 основывается на синтезе пары независимых транспо-

зиций. Однако если обобщить данный подход для синтеза бо́льшего количества независимых

транспозиций, то верхнюю оценку (4.9) можно существенно улучшить.

Теорема 4.5 (о сложности обратимой схемы без дополнительных входов).

L(n, 0) 6
3n2n+4

log2 n− log2 log2 n− log2 φ(n)
(1 + ε(n)) ,

где φ(n) — любая сколь угодно медленно растущая функция такая, что φ(n) < n/ log2 n,

ε(n) =
1

6φ(n)
+

(
8

3
− o(1)

)
log2 n · log2 log2 n

n
.

Доказательство. Опишем новый алгоритм синтеза A5.1, являющийся обобщением алгорит-

ма A4.2. Рассмотрим произвольную чётную подстановку h ∈ A(Zn
2 ) и задаваемое ей булево

преобразование fh : Z
n
2 → Z

n
2 . Основная идея алгоритма синтеза заключается в представле-

нии подстановки h в виде произведения транспозиций таким образом, чтобы их можно было

разбить на группы по K независимых транспозиций в каждой группе:

h = G1 ◦G2 ◦ . . . ◦Gt ◦ h′ , (4.10)

где Gi = (xi,1,yi,1) ◦ . . .◦ (xi,K ,yi,K) — i-я группа K независимых транспозиций, xi,j ,yi,j ∈ Z
n
2 ;

h′ — некоторая остаточная подстановка. Далее мы покажем, что любая группа Gi может

быть задана композицией одного элемента k-CNOT с большим количеством контролирующих

входов k и множества элементов CNOT и 2-CNOT.

Подстановка h ∈ A(Zn
2 ) может быть представлена в виде произведения независимых

циклов, сумма длин которых не превышает 2n (см. с. 49). Имея это представление, мы можем

получать независимые транспозиции из циклов по формулам (2.3)–(2.4) следующим образом:

(i1, i2, . . . , il1) ◦ (j1, j2, . . . , jl2) = (i1, i2) ◦ (j1, j2) ◦ (i1, i3, . . . , il1) ◦ (j1, j3, . . . , jl2) ,
(i1, i2, . . . , il) = (i1, i2) ◦ (i3, i4) ◦ (i1, i3, i5, i6, . . . , il) .
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Если посмотреть на представление подстановки (4.10) и на формулы (2.3)–(2.4), то

можно сделать вывод, что K независимых транспозиций нельзя получить из остаточной

подстановки h′, только если она в своём представлении имеет строго меньше K независимых

циклов, и каждый из этих циклов имеет длину строго меньше 5. Таким образом, сумма длин

циклов в представлении подстановки h′ не превосходит 4(K − 1).

Обозначим через Mg множество подвижных точек подстановки g ∈ S(Zn
2 ):

Mg = {x ∈ Z
n
2 | g(x) 6= x } .

Тогда можно утверждать, что |Mh| 6 2n и |Mh′| 6 4(K − 1).

Из формул (2.3) и (4.10) следует, что в представлении подстановки h в виде про-

изведения траспозиций можно получить не более |Mh| /K групп, в каждой из которых K

независимых транспозиций, а в представлении подстановки h′ в виде произведения траспо-

зиций можно получить не более |Mh′| / 2 пар независимых транспозиций и не более одной

пары зависимых транспозиций. Пара зависимых транспозиций (i, j)◦(i, k) выражается через

произведение двух пар независимых транспозиций:

(i, j) ◦ (i, k) = ((i, j) ◦ (r, s)) ◦ ((r, s) ◦ (i, k)) .

Обозначим через g(i) подстановку, представляющую собой произведение i независимых

транспозиций, а через fg(i) — задаваемое ей булево преобразование. Тогда можно оценить

сверху величину L(fh, 0) следующим образом:

L(fh, 0) 6
|Mh|
K

· L(fg(K) , 0) +

( |Mh′|
2

+ 2

)

· L(fg(2) , 0) ,

L(fh, 0) 6
2n

K
· L(fg(K) , 0) + 2K · L(fg(2) , 0) . (4.11)

Всё, что нам остаётся сделать, — оценить сверху величину L(fg(K) , 0).

Рассмотрим произвольную подстановку g(K). Обозначим через k величину |Mg(K) |, то-

гда k = 2K. Суть описываемого алгоритма заключается в действии сопряжением на подста-

новку g(K) таким образом, чтобы получить некоторую новую подстановку, соответствующую

одному обобщённому элементу Тоффоли. Напомним, что действие сопряжением не меняет

цикловой структуры подстановки, поэтому подстановка g(K) в результате действия сопряже-

нием всегда будет оставаться произведением K независимых транспозиций. Любой элемент

E из множества Ω2
n задаёт подстановку hE на множестве двоичных векторов Z

n
2 . Для этой

подстановки верно равенство h−1
E = hE. Следовательно, применение к g(K) действия сопря-

жением подстановкой hE , записываемое как h−1
E ◦ g(K) ◦ hE , соответствует присоединению

элемента E к началу и к концу текущей обратимой подсхемы.
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Пусть g(K) = (x1,y1) ◦ . . . ◦ (xK ,yK). Составим матрицу A следующим образом:

A =












x1

y1

. . .

xK

yK












=












a1,1 . . . a1,n

a2,1 . . . a2,n

. . . . . . . . . . . . . . . . .

ak−1,1 . . . ak−1,n

ak,1 . . . ak,n












. (4.12)

Наложим на значение k следующее ограничение: k должно быть степенью двойки,

2⌊log2 k⌋ = k. Если k 6 log2 n, то в матрице A существует не более 2k и не менее log2 k попарно

различных столбцов. Без ограничения общности будем считать, что такими столбцами яв-

ляются первые d 6 2k столбцов матрицы. Тогда для любого j-го столбца, j > d, найдётся

равный ему i-й столбец, i 6 d. Следовательно, применив к подстановке g(K) действие сопря-

жением подстановкой, задаваемой элементом Ci;j, можно обнулить j-й столбец в матрице A

(для этого потребуется 2 элемента CNOT). Обнуляя таким образом все столбцы с индексами

больше d, использовав L1 = 2(n− d) элементов CNOT, мы получим новую подстановку g
(K)
1

и соответствующую ей матрицу A1 следующего вида:

A1 =












a1,1 . . . a1,d

a2,1 . . . a2,d

. . . . . . . . . . . . . . . . .

ak−1,1 . . . ak−1,d

ak,1 . . . ak,d

n−d
︷ ︸︸ ︷

0 . . . 0

0 . . . 0

. . . . . . . . .

0 . . . 0

0 . . . 0












.

Теперь для всех a1,i = 1 применяем к g
(K)
1 действие сопряжением подстановкой, за-

даваемой элементом Ni. Для этого потребуется L2 6 2d элементов NOT. В итоге получим

подстановку g
(K)
2 и соответствующую ей матрицу A2 (элементы матрицы обозначены через

bi,j, чтобы показать их возможное отличие от элементов матрицы A1):

A2 =












0 . . . 0

b2,1 . . . b2,d

. . . . . . . . . . . . . . . . .

bk−1,1 . . . bk−1,d

bk,1 . . . bk,d

n−d
︷ ︸︸ ︷

0 . . . 0

0 . . . 0

. . . . . . . . .

0 . . . 0

0 . . . 0












.

Следующим шагом является приведение матрицы A2 к каноническому виду, где каж-

дая строка, если её записать в обратном порядке, представляет собой запись в двоичной

системе счисления числа «номер строки минус 1».

Все строки матрицы A2 различны. Первая строка уже имеет канонический вид, поэто-

му мы последовательно будем приводить оставшиеся строки к каноническому виду, начиная

со второй. Предположим, что текущая строка имеет номер i, и все строки с номерами от 1

до (i− 1) имеют канонический вид. Возможны два случая:



88

1. Существует ненулевой элемент в i-й строке с индексом j > log2 k: bi,j = 1. В этом случае

для всех элементов матрицы bi,j′, j
′ 6= j, j′ 6 d, не равных j′-ой цифре в двоичной запи-

си числа (i−1), мы применяем к g
(K)
2 действие сопряжением подстановкой, задаваемой

элементом Cj;j′. Для этого потребуется не более 2d элементов CNOT. После этого нам

остаётся только обнулить j-й элемент текущей строки. Для этого мы применяем к g
(K)
2

действие сопряжением подстановкой, задаваемой элементом CI;j, где I — множество

индексов ненулевых цифр в двоичной записи числа (i − 1). К примеру, если i = 6, то

I = { 1, 3 }. Поскольку |I| 6 log2 k, мы можем заменить данный элемент CI;j компо-

зицией не более 8 log2 k элементов 2-CNOT [37]. Следовательно, для данного действия

сопряжением нам потребуется не более 16 log2 k элементов 2-CNOT.

Итак, суммируя количество используемых Ф.Э., мы получаем, что для приведения i-й

строки к каноническому виду в данном случае требуется L
(i)
3 6 2d+16 log2 k элементов

из множества Ω2
n.

2. Не существует ненулевого элемента в i-й строке с индексом j > log2 k: bi,j = 0 для всех

j > log2 k. В этом случае мы применяем к g
(K)
2 действие сопряжением подстановкой,

задаваемой элементом CI;log2 k+1, где I — множество индексов ненулевых элементов

текущей строки. Т. к. все строки матрицы различны и при этом все предыдущие строки

находятся в каноническом виде, мы можем утверждать, что значение элемента матрицы

bj,log2 k+1 после данного действия сопряжением будет изменено только в случае, если j >

i. Поскольку |I| 6 log2 k, мы можем заменить данный элемент CI;j композицией не более

8 log2 k элементов 2-CNOT [37]. Следовательно, для данного действия сопряжением нам

потребуется не более 16 log2 k элементов 2-CNOT. После этого мы можем перейти к

предыдущему случаю.

Итак, суммируя количество используемых Ф.Э., мы получаем, что для приведения i-й

строки к каноническому виду в данном случае требуется L
(i)
3 6 2d+32 log2 k элементов

из множества Ω2
n.

После приведения матрицы A2 к каноническому виду, мы получим новую подстановку

g
(K)
3 и соответствующую ей матрицу A3 следующего вида:

A3 =












log2 k
︷ ︸︸ ︷

0 0 0 . . . 0

1 0 0 . . . 0

. . . . . . . . . . . . . . .

0 1 1 . . . 1

1 1 1 . . . 1

n−log2 k
︷ ︸︸ ︷

0 . . . 0

0 . . . 0

. . . . . . . . .

0 . . . 0

0 . . . 0












.

Для этого в сумме потребуется L3 Ф.Э. множества Ω2
n:

L3 =

k∑

i=2

L
(i)
3 6 k(2d+ 32 log2 k) .
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При этом мы получили ещё одно ограничение на значение k: значение log2 k должно быть

строго меньше n, иначе не всегда будет возможно привести матрицу A2 к каноническому

виду.

На последнем шаге для каждого i > log2 k мы применяем к g
(K)
3 действие сопряжением

подстановкой, задаваемой элементом Ni. Для этого нам потребуется L4 = 2(n−log2 k) элемен-

тов NOT. В итоге получим подстановку g
(K)
4 и соответствующую ей матрицу A4 следующего

вида:

A4 =












log2 k
︷ ︸︸ ︷

0 0 0 . . . 0

1 0 0 . . . 0

. . . . . . . . . . . . . . .

0 1 1 . . . 1

1 1 1 . . . 1

n−log2 k
︷ ︸︸ ︷

1 . . . 1

1 . . . 1

. . . . . . . . .

1 . . . 1

1 . . . 1












.

Подстановка g
(K)
4 задаётся одним элементом Cn,n−1,...,log2 k+1;1. Этот элемент имеет (n−

log2 k) контролирующих входов, поэтому он может быть заменён композицией не более L5 6

8(n− log2 k) элементов 2-CNOT [37].

Мы получили подстановку g
(K)
4 , применяя к g(K) действие сопряжением подстановка-

ми определённого вида. Если мы применим к g
(K)
4 действие сопряжением в точности теми же

подстановками, но в обратном порядке, мы получим g(K). В терминах синтеза обратимой ло-

гики это означает, что мы должны присоединить ко входу и выходу элемента Cn,n−1,...,log2 k+1;1

все те Ф.Э., что мы использовали в наших преобразованиях исходной матрицы A, но в об-

ратном порядке, и как результат, мы получим обратимую схему SK , задающую подстановку

g(K).

Таким образом, можно утверждать, что L(g(K), 0) 6 L(SK) и

L(g(K), 0) 6
5∑

i=1

Li 6 2(n− d) + 2d+ k(2d+ 32 log2 k) + 2(n− log2 k) + 8(n− log2 k) ,

L(g(K), 0) 6 12n+ k2k+1 + 32k log2 k − 10 log2 k . (4.13)

Отсюда также следует, что L(g(2), 0) 6 12n+ 364.

Подставляя полученные верхние оценки в формулу (4.11), мы получаем следующую

верхнюю оценку для L(fh, 0):

L(fh, 0) 6
2n+1

k
(12n+ k2k+1 + 32k log2 k − 10 log2 k) + k(12n+ 364) . (4.14)

Описанным алгоритмом требуется, чтобы k было степенью двойки и чтобы log2 k было

строго меньше n. Пусть m = log2 n − log2 log2 n − log2 φ(n) и k = 2⌊log2 m⌋, где φ(n) — любая

сколь угодно медленно растущая функция такая, что φ(n) < n/ log2 n. Тогда m/2 6 k 6 m и

L(fh, 0) 6
2n+2

m
(12n+ 2m2m + (32− o(1))m log2m) ,

L(fh, 0) 6
3n2n+4

m

(

1 +
2m log2 n

6n
+

(
8

3
− o(1)

)
log2 n · log2 log2 n

n

)

.
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Отсюда следует итоговая верхняя оценка для L(fh, 0):

L(fh, 0) 6
3n2n+4

log2 n− log2 log2 n− log2 φ(n)
(1 + ε(n)) ,

где функция ε(n) равна

ε(n) =
1

6φ(n)
+

(
8

3
− o(1)

)
log2 n · log2 log2 n

n
.

Поскольку мы описали алгоритм синтеза обратимой схемы S для произвольной под-

становки h ∈ A(Zn
2 ), то функция L(n, 0) ограничена сверху также, как и функция L(fh, 0) в

формуле выше.

Теорема 4.6.

L(n, 0) ≍ n2n

log2 n
.

Доказательство. Следует из Теорем 4.1 и 4.5.

Стоит отметить, что если представлять подстановку h ∈ A(Zn
2 ) в виде произведения

пар независимых транспозиций, то в этом случае задающая её обратимая схема Sh согласно

формуле (4.14) будет иметь сложность L(Sh) . 6n2n. Данная сложность схемы асимптоти-

чески ниже, чем сложность L(S) . 7n2n обратимой схемы, синтезируемой алгоритмом A4.2,

но выше, чем сложность L(S) . 5n2n обратимой схемы, синтезируемой алгоритмом из рабо-

ты [67].

Для того, чтобы пояснить основную часть алгоритма синтеза A5.1, рассмотрим под-

становку g(2) = (〈1, 0, 0, 1〉, 〈0, 0, 0, 0〉) ◦ (〈1, 1, 1, 1〉, 〈0, 1, 1, 0〉). Данная подстановка задаётся

обратимой схемой S = C1;4 ∗ C2;3 ∗ N1 ∗ N3 ∗ N4 ∗ C3,4;1 ∗ N4 ∗ N3 ∗ N1 ∗ C2;3 ∗ C1;4. Процесс

получения схемы S показан на рис. 4.1.

Для глубины обратимой схемы мы можем получить похожую, однако не асимптоти-

чески оптимальную верхнюю оценку.

Теорема 4.7 (о глубине обратимой схемы без дополнительных входов).

D(n, 0) 6
n2n+5

log2 n− log2 log2 n− log2 φ(n)
(1 + ε(n)) ,

где φ(n) — любая сколь угодно медленно растущая функция такая, что φ(n) < n/ log2 n,

ε(n) =
1

4φ(n)
+ (4 + o(1))

log2 n · log2 log2 n
n

.

Доказательство. Из описания алгоритма синтеза A5.1 следует, что некоторые операции

можно делать с логарифмической или линейной глубиной. К примеру, обнуление столбцов

матрицы может быть произведено с логарифмической глубиной (см. рис. 4.2). Также дей-

ствие сопряжением подстановками, задаваемыми элементами NOT, может быть реализовано

обратимой подсхемой с константной глубиной.
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S C1;4 ∗S ∗ C1;4 C2;3 ∗S1 ∗ C2;3

A =









1 0 0 1

0 0 0 0

1 1 1 1

0 1 1 0









⇒









1 0 0 0

0 0 0 0

1 1 1 0

0 1 1 0









⇒









1 0 0 0

0 0 0 0

1 1 0 0

0 1 0 0









⇒

N1 ∗S2 ∗N1 N3 ∗S3 ∗N3 N4 ∗S4 ∗N4

⇒









0 0 0 0

1 0 0 0

0 1 0 0

1 1 0 0









⇒









0 0 1 0

1 0 1 0

0 1 1 0

1 1 1 0









⇒









0 0 1 1

1 0 1 1

0 1 1 1

1 1 1 1









N4 ∗N3 ∗N1 ∗ C2;3 ∗ C1;4 ∗S ∗ C1;4 ∗ C2;3 ∗N1 ∗N3 ∗N4 = C3,4;1

Рис. 4.1 Процесс получения обратимой схемы S, задающей подстановку

g(2) = (〈1, 0, 0, 1〉, 〈0, 0, 0, 0〉) ◦ (〈1, 1, 1, 1〉, 〈0, 1, 1, 0〉).

x 0 0 0 0 0 0 0

x x x x x x x x

Рис. 4.2 Обнуление дублирующих входов с логарифмической глубиной (входы схемы сверху).

Отсюда следует, что D1 = 2⌈log2(n − d)⌉ (против L1 = 2(n − d), см. с. 87), D2 6 2

(против L2 6 2d, см. с. 87) и D4 = 2 (против L4 = 2(n − log2 k), см. с. 89). Для других

этапов алгоритма синтеза A5.1 получаются подсхемы, у которых глубина равна сложности:

D3 = L3 6 k(2d+ 32 log2 k), D5 = L5 6 8(n− log2 k) (см. с. 88).

Используя данные значения глубин подсхем, можно вывести следующую оценку свер-

ху:

D(g(K), 0) 6
5∑

i=1

Di 6 2 log2 n + k(2k+1 + 32 log2 k) + 8(n− log2 k) + 6 .

Отсюда также следует, что D(g(2), 0) 6 8n+ 2 log2 n+ 374.

Подставляя данные значения в формулу для глубины обратимой схемы, аналогичную

формуле (4.11), мы получаем следующую верхнюю оценку для D(fh, 0):

D(fh, 0) 6
2n+1

k
(8n+ (2 + o(1)) log2 n+ k2k+1 + 32k log2 k − 8 log2 k) .

При m = log2 n − log2 log2 n − log2 φ(n) и k = 2⌊log2 m⌋, где φ(n) — любая сколь угодно

медленно растущая функция такая, что φ(n) < n/ log2 n, верно следующее неравенство для
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D(fh, 0):

D(fh, 0) 6
n2n+5

m

(

1 +
m2m

4n
+ (4 + o(1))

m log2m

n

)

,

D(fh, 0) 6
n2n+5

log2 n− log2 log2 n− log2 φ(n)
(1 + ε(n)) ,

где функция ε(n) равна

ε(n) =
1

4φ(n)
+ (4 + o(1))

log2 n · log2 log2 n
n

.

Поскольку описанный алгоритм синтеза A5.1 позволяет получить обратимую схему

S для произвольной подстановки h ∈ A(Zn
2 ), то функция D(n, 0) ограничена сверху также,

как и функция D(fh, 0) в формуле выше.

Стоит отметить, что полученные верхние и нижние оценки глубины обратимой схемы

без дополнительных входов достаточно неточны: они не являются эквивалентными с точно-

стью до порядка, в отличие от оценок для сложности такой схемы (см. Теорему 4.6).

Оценим теперь квантовый вес обратимой схемы без дополнительной памяти.

Теорема 4.8 (о квантовом весе обратимой схемы без дополнительных входов).

W (n, 0) 6
n2n+4

(
W (C)(1 + εC(n)) + 2W (T )(1 + εT (n))

)

log2 n− log2 log2 n− log2 φ(n)
,

где φ(n) — любая сколь угодно медленно растущая функция такая, что φ(n) < n/ log2 n,

εC(n) =
1

2φ(n)
−
(
1

2
− o(1)

)

· log2 log2 n
n

,

εT (n) = (4− o(1))
log2 n · log2 log2 n

n
.

Доказательство. Согласно формуле (4.2), нам необходимо оценить величины L(C)(n, 0) и

L(T )(n, 0). Из описания алгоритма синтеза A5.1 следует, что

L
(C)
1 = 2(n− d) , L

(T )
1 = 0 ,

L
(C)
2 6 2d , L

(T )
2 = 0 ,

L
(C)
3 6 2kd , L

(T )
3 6 32k log2 k ,

L
(C)
4 = 2(n− log2 k) , L

(T )
4 = 0 ,

L
(C)
5 = 0 , L

(T )
5 6 8(n− log2 k) .

Суммируя эти величины по отдельности, мы получаем следующие оценки сверху:

L(C)(g(K), 0) 6
5∑

i=1

L
(C)
i 6 2(n− d) + 2d+ 2kd+ 2(n− log2 k) ,

L(T )(g(K), 0) 6

5∑

i=1

L
(T )
i 6 32k log2 k + 8(n− log2 k) ,

L(C)(g(K), 0) 6 4n+ k2k+1 − 2 log2 k ,

L(T )(g(K), 0) 6 8n+ 32k log2 k − 8 log2 k .
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Отсюда также следует, что L(C)(g(2), 0) 6 4n+ 124 и L(T )(g(2), 0) 6 8n + 240.

Подставляя данные значения в формулу (4.11), мы получаем следующие верхние оцен-

ки для L(C)(fh, 0) и L(T )(fh, 0):

L(C)(fh, 0) 6
2n+1

k
(4n+ k2k+1 − 2 log2 k) + k(4n+ 124) ,

L(T )(fh, 0) 6
2n+1

k
(8n+ 32k log2 k − 8 log2 k) + k(8n+ 240) .

При m = log2 n − log2 log2 n − log2 φ(n) и k = 2⌊log2 m⌋, где φ(n) — любая сколь угодно

медленно растущая функция такая, что φ(n) < n/ log2 n, верны следующие неравенства для

L(C)(fh, 0) и L(T )(fh, 0):

L(C)(fh, 0) 6
n2n+4

log2 n− log2 log2 n− log2 φ(n)
(1 + εC(n)) ,

L(T )(fh, 0) 6
n2n+5

log2 n− log2 log2 n− log2 φ(n)
(1 + εT (n)) ,

где функции εC(n) и εT (n) равны

εC(n) =
1

2φ(n)
−
(
1

2
− o(1)

)

· log2 log2 n
n

,

εT (n) = (4− o(1))
log2 n · log2 log2 n

n
.

Поскольку описанный алгоритм синтеза A5.1 позволяет получить обратимую схему

S для произвольной подстановки h ∈ A(Zn
2 ), то функция W (n, 0) ограничена сверху также,

как и функция W (fh, 0). Из верхних оценок L(C)(fh, 0) и L(T )(fh, 0), а также из формулы (4.2)

следует верхняя оценка для W (n, 0) из условия теоремы.

4.4 Верхние оценки для схем с дополнительной памятью

Элемент k-CNOT при k < (n−1), где n — количество значимых входов схемы, можно

заменить композицией не более 8k элементов 2-CNOT [37], если не использовать дополнитель-

ные входы. Однако если использовать (k − 2) дополнительных входов, то элемент k-CNOT

при любом значении k < n можно заменить композицией (2k − 3) элементов 2-CNOT с

уборкой вычислительного мусора (см. рис. 4.3). При этом после такой замены на всех незна-

чимых выходах будет значение 0, поэтому их можно будет использовать в дальнейшем. Если

же элемент k-CNOT заменить композицией (k − 1) элементов 2-CNOT с использованием

(k − 2) дополнительных входов, то на незначимых выходах после замены могут быть зна-

чения, отличные от 0. Как следствие, эти незначимые выходы нельзя будет использовать в

дальнейшем.

Таким образом, если в алгоритме синтеза, описанном в предыдущем разделе, ис-

пользовать ровно (n − 3) дополнительных входов, то в формуле (4.13) слагаемое 12n =

4n + 8n можно заменить на 6n = 4n + 2n. В этом случае из формулы (4.14) следует, что
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Рис. 4.3 Замена одного элемента 4-CNOT композицией элементов 2-CNOT при помощи двух

дополнительных входов.

L(n, n− 3) 6 3n2n+3(1 + o(1)) / log2 n. Если же в описанном алгоритме синтеза использовать

q0 > (n − 3)2n+2/(log2 n − log2 log2 n − log2 φ(n)) дополнительных входов, где φ(n) — любая

сколь угодно медленно растущая функция такая, что φ(n) < n/ log2 n, то в формуле (4.13)

слагаемое 12n = 4n + 8n можно заменить на 5n = 4n + n. В этом случае из формулы (4.14)

следует, что L(n, q0) 6 5n2n+2/ log2 n. Однако можно получить существенно меньшую верх-

нюю оценку для L(n, q) при использовании гораздо меньшего количества дополнительных

входов, что и будет показано далее.

О.Б. Лупановым был предложен [18] асимптотически оптимальный алгоритм синтеза

для произвольной булевой функции в базисе Ф.Э. {¬,∧,∨}. Им было доказано, что любая

булева функция от n переменных может быть реализована в схеме из Ф.Э. данного базиса со

сложностью, эквивалентной 2n / n, и с задержкой, эквивалентной с точностью до порядка n.

Воспользуемся данным результатом и применим аналогичный подход для синтеза обратимых

схем, состоящих из Ф.Э. множества Ω2
n и реализующих булево отображение f ∈ F (n, q) с

использованием q дополнительных входов.

Базис {¬,⊕,∧} является функционально полным, следовательно, в нём можно ре-

ализовать любое булево отображение f ∈ F (n, q). Выразим каждый элемент этого базиса

через композицию элементов NOT, CNOT и 2-CNOT. Из рис. 4.4 видно, что это может быть

сделано при помощи не более двух Ф.Э. и с глубиной не выше 2 при использовании одного

дополнительного входа.

x

0

x

x̄

x

y

0

x

y

x⊕ y

x

y

0

x

y

x ∧ y

Рис. 4.4 Выражение Ф.Э. базиса {¬,⊕,∧} через

композицию элементов NOT, CNOT и 2-CNOT.

На рис. 1.4 на с. 33 схематично изображена обратимая схема, реализующая некоторое

булево отображение. На данном рисунке все незначимые выходы, которые могут содержать

или не содержать вычислительный мусор, были помечены символом *. В большинстве слу-

чаев, значения на этих выходах не обнуляются. Очистить вычислительный мусор, очевидно,

можно только в том случае, когда булево отображение f , реализуемое обратимой схемой S,
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биективно. В этом случае, продублировав часть оригинальной схемы (обозначим её через

S∗), можно обнулить значения на всех незначимых выходах, за исключением выходов, соот-

ветствующих входам отображения f . Затем можно присоединить обратимую схему S
−1, ре-

ализующую обратное отображение f−1, которая позволит обнулить значения на незначимых

выходах, соответствующих входам отображения f , но которая также, возможно, породит

свой собственный вычислительный мусор на незначимых выходах. Этот вычислительный

мусор может быть убран дублированием части схемы S
−1 (обозначим её через S

−1
∗ ). Таким

образом, итоговая обратимая схема Sres без вычислительного мусора на незначимых выходах,

имеет сложность L(Sres) 6 4 ·max(L(S), L(S−1)) и глубину D(Sres) 6 4 ·max(D(S), D(S−1))

(см. рис. 4.5).
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Рис. 4.5 Пример обратимой схемы Sres = S ∗ (S∗) ∗S−1 ∗ (S−1
∗ ) с уборкой вычислительного

мусора на незначимых выходах.

Исходя из этих соображений, все асимптотические оценки для сложности и глубины

будут даваться далее по тексту для обратимых схем с вычислительным мусором на незна-

чимых выходах. Умножив эти оценки на 4, можно получить аналогичные оценки уже для

обратимых схем без вычислительного мусора на незначимых выходах.

4.4.1 Снижение сложности схемы

В дальнейшем нам потребуется следующая лемма о сложности обратимой схемы, ре-

ализующей все конъюнкции n переменных вида xa11 ∧ . . . ∧ xann , ai ∈ Z2.

Лемма 4.9. Все конъюнкции n переменных вида xa11 ∧ . . . ∧ xann , ai ∈ Z2, можно реализо-

вать обратимой схемой Sn, состоящей из Ф.Э. множества Ω2
n+q и имеющей сложность

L(Sn) ∼ 2n при использовании Q(Sn) ∼ 2n дополнительных входов.

Доказательство. Сперва мы реализуем все инверсии x̄i, 1 6 i 6 n. Это может быть сделано

при помощи L1 = 2n элементов NOT и CNOT при использовании q1 = n дополнительных

входов.

Искомую обратимую схему Sn мы строим следующим образом (см. рис. 4.6): с помо-

щью обратимых схем S⌈n / 2⌉ и S⌊n/ 2⌋ мы реализуем все конъюнкции ⌈n / 2⌉ первых и ⌊n / 2⌋
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последних переменных. Затем мы реализуем конъюнкции значимых выходов этих двух схем

каждого с каждым. Для этого потребуется L2 = 2n элементов 2-CNOT и q2 = 2n дополни-

тельных входов.

Отсюда следует, что

L(Sn) = Q(Sn) = 2n(1 + o(1)) + L(S⌈n / 2⌉) + L(S⌊n / 2⌋) = 2n(1 + o(1)) .

S⌈n/2⌉ S⌊n/2⌋

x1 x⌈n/2⌉ x⌈n/2⌉+1 xn
... ...

... ...

...

...

0 0 0 0

y1 y2n

Рис. 4.6 Структура обратимой схемы, реализующей все конъюнкции от n переменных

с минимальной сложностью (входы схемы сверху).

Перейдём теперь непосредственно к теореме данного параграфа.

Теорема 4.10 (о сложности обратимой схемы с дополнительными входами).

L(n, q0) . 2n при q0 ∼ n2n−⌈n /φ(n)⌉ ,

где φ(n) и ψ(n) — любые сколь угодно медленно растущие функции такие, что φ(n) 6

n /(log2 n + log2 ψ(n)).

Доказательство. Опишем алгоритм синтеза A5.2, который основан на методе Лупанова, и

основная цель которого заключается в снижении сложности обратимой схемы при помощи

использования дополнительных входов в схеме.

Произвольное булево отображение f : Zn
2 → Z

n
2 можно представить в виде некоторых

n булевых функций fi : Z
n
2 → Z2 от n переменных

f(x) = 〈f1(x), f2(x), . . . , fn(x)〉 . (4.15)

Каждую функцию fi(x) можно разложить по последним (n− k) переменным:

fi(x) =
⊕

ak+1,...,an∈Z2

x
ak+1

k+1 ∧ . . . ∧ xann ∧ fi(〈x1, . . . , xk, ak+1, . . . , an〉) . (4.16)

Каждая из n2n−k булевых функций fi(〈x1, . . . , xk, ak+1, . . . , an〉), 1 6 i 6 n, является

функцией от k переменных x1, . . . , xk, её можно получить при помощи аналога СДНФ, в

котором дизъюнкции заменяются на сложение по модулю два:

fi(〈x1, . . . , xk, ak+1, . . . , an〉) = fi,j =
⊕

σ∈Zk
2

fi,j(σ)=1

xσ1
1 ∧ . . . ∧ xσk

k . (4.17)
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Все 2k конъюнкций вида xσ1
1 ∧ . . . ∧ xσk

k можно разделить на группы, в каждой из

которых будет не более s конъюнкций. Обозначим через p = ⌈2k / s⌉ количество таких групп.

Используя конъюнкции одной группы, мы можем реализовать не более 2s булевых функций

по формуле (4.17). Обозначим через Gi множество булевых функций, которые могут быть

реализованы при помощи конъюнкций i-й группы, 1 6 i 6 p. Тогда |Gi| 6 2s. Следовательно,

мы можем переписать формулу (4.17) следующим образом:

fi(〈x1, . . . , xk, ak+1, . . . , an〉) =
⊕

t=1...p
gjt∈Gt

16jt6|Gt|

gjt(〈x1, . . . , xk〉) . (4.18)

Отсюда следует, что

fi(x) =
⊕

ak+1,...,an∈Z2

x
ak+1

k+1 ∧ . . . ∧ xann ∧









⊕

t=1...p
gjt∈Gt

16jt6|Gt|

gjt(〈x1, . . . , xk〉)









. (4.19)

Отметим, что все булевы функции множества Gi можно реализовать, используя такой

же подход, что и в Лемме 4.9. Из рис. 4.6 видно, что в этом случае каждый элемент 2-CNOT

просто заменяется композицией двух элементов CNOT. Суммарно нам потребуется L ∼ 2s+1

элементов CNOT и q ∼ 2s дополнительных входов.

Алгоритм синтеза A5.2 конструирует обратимую схему S, реализующую булево отоб-

ражение f (4.15), при помощи следующих подсхем (см. рис. 4.7):

1. Подсхема S1, реализующая все конъюнкции k первых переменных xi, согласно Лем-

ме 4.9, со сложностью L1 ∼ 2k и q1 ∼ 2k дополнительными входами. Подсхема S1 почти

вся состоит из элементов 2-CNOT (количество остальных элементов пренебрежимо ма-

ло).

2. Подсхема S2, реализующая все булевы функции g ∈ Gi для всех i ∈ Zp по форму-

ле (4.17) со сложностью L2 ∼ p2s+1 и q2 ∼ p2s дополнительными входами (см. замеча-

ние выше про реализацию всех булевых функций множества Gi). Подсхема S2 состоит

только из элементов CNOT.

3. Подсхема S3, реализующая все n2n−k координатных функций fi,j(x), i ∈ Z2n−k , j ∈ Zn,

по формуле (4.18) со сложностью L3 6 pn2n−k и q3 = n2n−k дополнительными входами.

Подсхема S3 состоит только из элементов CNOT.

4. Подсхема S4, реализующая все конъюнкции (n−k) последних переменных xi, согласно

Лемме 4.9, со сложностью L4 ∼ 2n−k и q4 ∼ 2n−k дополнительными входами. Подсхема

S4 почти вся состоит из элементов 2-CNOT (количество остальных элементов прене-

брежительно мало).
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5. Подсхема S5, реализующая булево отображение f по формулам (4.15) и (4.16) со слож-

ностью L5 6 n2n−k и q5 = n дополнительными входами. Подсхема S5 состоит только

из элементов 2-CNOT.

S1 S4

S2

S3

S5

x1 xk xk+1 xn
... ...

... ...

...

... ...

...

xσ1

1 ∧ . . . ∧ xσk

k

g ∈ Gi

fi,j(x1, . . . , xk)

x
ak+1

k+1
∧ . . . ∧ xan

n

f(x)

Рис. 4.7 Структура обратимой схемы S, синтезируемой алгоритмом A5.2 (входы схемы сверху).

Будем искать значения параметров k и s, удовлетворяющие следующим условиям:






s = n− 2k ,

k = ⌈n / φ(n)⌉ , где φ(n) — некоторая растущая функция ,

1 6 s < n ,

1 6 k < n / 2 ,
2k

s
> ψ(n) , где ψ(n) — некоторая растущая функция .

В этом случае p = ⌈2k / s⌉ ∼ 2k / s и 2⌈n/φ(n)⌉ > sψ(n), откуда следует, что при φ(n) 6

n /(log2 n + log2 ψ(n)) параметры k и s будут удовлетворять условиям выше.

Суммируя сложности обратимых подсхем S1–S5 и количество используемых ими до-

полнительных входов, мы получаем следующие оценки для искомой обратимой схемы S:

L(S) ∼ 2k + p2s+1 + pn2n−k + 2n−k + n2n−k ∼ 2k +
2n−k+1

s
+
n2n

s
,

Q(S) ∼ 2k + p2s + n2n−k + 2n−k + n ∼ 2k +
2n−k

s
+ n2n−k .

Следовательно, при k = ⌈n /φ(n)⌉ и s = n − 2k, где φ(n) 6 n /(log2 n + log2 ψ(n)) и

ψ(n) — некоторые растущие функции, верны следующие соотношения:

L(S) ∼ 2⌈n /φ(n)⌉ +
2n+1

n(1 − o(1))2⌈n/φ(n)⌉
+

n2n

n(1− o(1))
∼ 2n ,

Q(S) ∼ 2⌈n /φ(n)⌉ +
2n

n(1− o(1))2⌈n/φ(n)⌉
+

n2n

2⌈n /φ(n)⌉
∼ n2n

2⌈n /φ(n)⌉
.

Поскольку мы описали алгоритм синтеза обратимой схемы S для произвольного бу-

лева отображения f ∈ F (n, q), то L(n, q0) 6 L(S) ∼ 2n, где q0 ∼ n2n−⌈n /φ(n)⌉.



99

Теорема 4.11.

L(n, q0) ≍ 2n при q0 ∼ n2n−⌈n /φ(n)⌉ ,

где φ(n) и ψ(n) — любые сколь угодно медленно растущие функции такие, что φ(n) 6

n /(log2 n + log2 ψ(n)).

Доказательство. Следует из Теорем 4.1 и 4.10.

Оценим теперь квантовый вес обратимой схемы с дополнительной памятью.

Теорема 4.12 (о квантовом весе обратимой схемы с дополнительными входами).

W (n, q0) .W (C) · 2n +W (T ) · n2n−⌈n/φ(n)⌉, при q0 ∼ n2n−⌈n/φ(n)⌉ ,

где φ(n) и ψ(n) — любые сколь угодно медленно растущие функции такие, что φ(n) 6

n /(log2 n + log2 ψ(n)).

Доказательство. Согласно формуле (4.2), нам необходимо оценить величины L(C)(n, q0) и

L(T )(n, q0). Из описания алгоритма синтеза A5.2 видно, что

L
(C)
1 = O(k) , L

(T )
1 ∼ 2k ,

L
(C)
2 ∼ p2s+1 , L

(T )
2 = 0 ,

L
(C)
3 6 pn2n−k , L

(T )
3 = 0 ,

L
(C)
4 = O(n− k) , L

(T )
4 ∼ 2n−k ,

L
(C)
5 = 0 , L

(T )
5 6 n2n−k .

При k = ⌈n / φ(n)⌉ и s = n − 2k, где φ(n) и ψ(n) — любые сколь угодно медленно растущие

функции такие, что φ(n) 6 n /(log2 n+ log2 ψ(n)), верны следующие соотношения:

L(C)(n, q0) . O(k) + p2s+1 + pn2n−k +O(n− k) ∼ 2k+s+1

s
+
n2n

s
,

L(T )(n, q0) . 2k + 2n−k + n2n−k ∼ 2k + n2n−k ,

L(C)(n, q0) .
2n+1

(n− o(n))2⌈n /φ(n)⌉
+

n2n

n− o(n)
∼ 2n ,

L(T )(n, q0) . 2⌈n /φ(n)⌉ +
n2n

2⌈n /φ(n)⌉
∼ n2n

2⌈n /φ(n)⌉
.

Из этих верхних оценок и из формулы (4.2) следует верхняя оценка для функции

W (n, q0) из условия теоремы.

Стоит отметить, что в случае W (T ) = O(W (C)) = const верно соотношение

W (n, q0) ≍ L(C)(n, q0) ∼ L(n, q0) ,

где q0 ∼ n2n−⌈n /φ(n)⌉, φ(n) и ψ(n) — любые сколь угодно медленно растущие функции та-

кие, что φ(n) 6 n /(log2 n + log2 ψ(n)). Другими словами, количество элементов 2-CNOT
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в обратимой схеме, синтезируемой алгоритмом A5.2, пренебрежимо мало по сравнению со

сложностью этой схемы. В случае же когда использование дополнительных входов запре-

щено, количество элементов 2-CNOT в обратимой схеме, согласно Теоремам 4.3, 4.6 и 4.8,

эквивалентно с точностью до порядка сложности этой схемы.

Для булева отображения f : Zn
2 → Z

m
2 можно получить аналогичные верхние оценки

сложности реализующей его обратимой схемы.

Теорема 4.13. Любое булево отображение f : Zn
2 → Z

m
2 можно реализовать с помо-

щью обратимой схемы S, имеющей сложность L(S) . m2n / n, при использовании q ∼
(m + 1)2n−⌈n/φ(n)⌉ дополнительных входов, где φ(n) и ψ(n) — любые сколь угодно медленно

растущие функции такие, что φ(n) 6 n /(log2 n + log2 ψ(n)).

Доказательство. Алгоритм синтеза A5.2 можно модифицировать таким образом, чтобы он

мог синтезировать обратимую схему, реализующую заданное булево отображение f : Zn
2 →

Z
m
2 .

Булево отображение f(x) в формуле (4.15) теперь будет представляться системой не n,

а m булевых функций. Следовательно, подсхема S3 будет уже иметь сложность L3 6 pm2n−k

и использовать q3 = m2n−k дополнительных входов, а подсхема S5 иметь сложность L5 6

m2n−k и использовать q5 = m дополнительных входов.

Используя эти обновлённые значения при подсчёте суммарной сложности схемы S и

количества дополнительных входов, можно убедиться, что даже при m = 1 верна верхняя

оценка L(S) . m2n / n из условия теоремы при использовании q ∼ (m+ 1)2n−⌈n /φ(n)⌉ допол-

нительных входов, где φ(n) и ψ(n) — любые сколь угодно медленно растущие функции такие,

что φ(n) 6 n /(log2 n+ log2 ψ(n)).

4.4.2 Снижение глубины схемы

Мы описали алгоритм синтеза A5.2, основная цель которого была снижение сложно-

сти синтезированной обратимой схемы при помощи использования дополнительных входов

в схеме. Однако мы можем использовать аналогичный подход для снижения глубины об-

ратимой схемы. Обозначим такой алгоритм синтеза через A5.3. Важнейшей особенностью

данного алгоритма является копирование значений с некоторых выходов на дополнительных

входы с логарифмической глубиной (см. рис. 4.8). В результате все эти дополнительные вхо-

ды могут быть использованы независимо друг от друга, что позволяет достичь глубины 1

для следующей операции. Всё, что нам нужно сделать для этого, — скопировать значение

достаточное количество раз.

Докажем теперь лемму, схожую с Леммой 4.9, о глубине обратимой схемы, реализую-

щей все конъюнкции n переменных вида xa11 ∧ . . . ∧ xann , ai ∈ Z2.

Лемма 4.14. Все конъюнкции n переменных вида xa11 ∧ . . . ∧ xann , ai ∈ Z2, могут быть реа-

лизованы обратимой схемой Sn, состоящей из Ф.Э. множества Ω2
n+q и имеющей глубину
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x 0 0 0 0 0 0 0

x x x x x x x x

Рис. 4.8 Копирование значения x на дополнительные входы

с логарифмической глубиной (входы схемы сверху).

D(Sn) ∼ n при использовании Q(Sn) ∼ 3 · 2n дополнительных входов. Сложность такой

схемы L(Sn) ∼ 3 · 2n.

Доказательство. Сперва реализуем все инверсии x̄i, 1 6 i 6 n. Это можно сделать с глуби-

ной D1 = 2 при использовании L1 = 2n элементов NOT и CNOT и q1 = n дополнительных

входов.

Искомую обратимую схему Sn мы строим таким же образом, что и в Лемме 4.9, ис-

пользуя подсхемы S⌈n/ 2⌉ и S⌊n/ 2⌋ (см. рис. 4.9). Каждый значимый выход этих двух подсхем

будет использован не более чем в 2 · 2n/ 2 конъюнкциях со значимыми выходами другой под-

схемы, поэтому все конъюнкции могут быть реализованы с глубиной D2 6 2 + n / 2 при

использовании 2n+1 элементов CNOT, 2n элементов 2-CNOT и q2 = 3 · 2n дополнительных

входов.

Отсюда следует, что

D(Sn) ∼ 2 +
n

2
+ max(D(S⌈n/ 2⌉), D(S⌊n/ 2⌋)) ∼ n ,

L(Sn) ∼ 3 · 2n + L(S⌈n / 2⌉) + L(S⌊n / 2⌋) ∼ 3 · 2n ,
Q(Sn) ∼ 3 · 2n +Q(S⌈n / 2⌉) +Q(S⌊n/ 2⌋) ∼ 3 · 2n .

S⌈n/2⌉ S⌊n/2⌋

x1 x⌈n/2⌉ x⌈n/2⌉+1 xn
... ... ...

... ...

... ... ... ...

... ... ...

0 0 0 0

y1 y2n

×2
⌊n/2⌋

×2
⌊n/2⌋

×2
⌈n/2⌉

×2
⌈n/2⌉

Рис. 4.9 Структура обратимой схемы, реализующей все конъюнкции от n переменных

с минимальной глубиной (входы схемы сверху).

Перейдём теперь к первой теореме данного параграфа.
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Теорема 4.15.

D(n, q1) . 3n при q1 ∼ 2n .

Обратимая схема S, реализующая отображение f ∈ F (n, q1) с глубиной D(S) ∼ 3n, имеет

сложность L(S) ∼ 2n+1 и квантовый вес W (S) ∼ W (C) · 2n+1 +W (T ) · n2n−⌈n/φ(n)⌉, где φ(n)

и ψ(n) — любые сколь угодно медленно растущие функции такие, что φ(n) 6 n /(log2 n +

log2 ψ(n)).

Доказательство. Опишем алгоритм синтеза A5.3. Он схож с алгоритмом A5.2, поэтому мы

опустим описание представления булева отображения f ∈ P2(n, n) по формулам (4.15)–(4.16).

Отметим, что все булевы функции множества Gi можно реализовать с глубиной s,

используя такой же подход, что и в Лемме 4.14. Для этого нам потребуется L ∼ 3·2s элементов

CNOT, из которых 2s+1 Ф.Э. нужны для копирования значений на дополнительные входы,

и q ∼ 2s+1 дополнительных входов (см. рис. 4.10).

S⌈s/2⌉ S⌊s/2⌋

x1 x⌈s/2⌉ x⌈s/2⌉+1 xs
... ...

... ...

... ... ... ...

... ...

y1 y2s

×2
⌊s/2⌋

×2
⌊s/2⌋

×2
⌈s/2⌉

×2
⌈s/2⌉

Рис. 4.10 Структура обратимой подсхемы, реализующей все булевы функции g ∈ Gi

с минимальной глубиной (входы схемы сверху).

Алгоритм A5.3 конструирует обратимую схему S, реализующую булево отображение

f (4.15), при помощи следующих подсхем (см. рис. 4.11):

1. Подсхема S1, реализующая все конъюнкции k первых переменных xi, согласно Лем-

ме 4.14, с глубиной D1 ∼ k, сложностью L1 ∼ 3 · 2k и q1 ∼ 3 · 2k дополнительными

входами. Подсхема S1 содержит 2k элементов 2-CNOT.

2. Подсхема S2, реализующая все булевы функции g ∈ Gi для всех i ∈ Zp по форму-

ле (4.17) с глубиной D2 ∼ s, сложностью L2 ∼ 3p2s и q2 ∼ p2s+1 дополнительными

входами (см. замечание выше про реализацию всех булевых функций множества Gi).

Подсхема S2 состоит только из элементов CNOT.

3. Подсхема S3, реализующая все n2n−k координатных функций fi,j(x), i ∈ Z2n−k , j ∈ Zn,

по формуле (4.18). Особенностью данной подсхемы является то, что некоторая булева

функция g ∈ Gt может использоваться больше одного раза. Максимальное количество
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S1 S4

S2

S3

S6

S5

x1 xk xk+1 xn
... ...

... ...

... ...

... ...

...

xσ1

1 ∧ . . . ∧ xσk

k

g ∈ Gi

fi,j(x1, . . . , xk)

x
ak+1

k+1
∧ . . . ∧ xan

n

f(x)

Рис. 4.11 Структура обратимой схемы S, синтезируемой алгоритмом A5.3 (входы схемы сверху).

использования функции g не превосходит n2n−k. Следовательно, сперва нам необходи-

мо скопировать значения со значимых выходов подсхемы S2 для всех таких булевых

функций. Это можно сделать с глубиной (n − k + log2 n) при использовании не более

pn2n−k Ф.Э. и pn2n−k дополнительных входов (см. рис. 4.8). Затем производится сло-

жение по модулю 2 полученных выходов с глубиной log2 p, сложностью (p − 1)n2n−k

и без использования дополнительных входов (см. рис. 4.12). Таким образом, подсхема

S3 имеет глубину D3 ∼ n − k + log2 p, сложность L3 ∼ (2p − 1)n2n−k и q3 ∼ pn2n−k

дополнительных входов. Подсхема S3 состоит только из элементов CNOT.

4. Подсхема S4, реализующая все конъюнкции (n− k) последних переменных xi, соглас-

но Лемме 4.14, с глубиной D4 ∼ (n − k), сложностью L4 ∼ 3 · 2n−k и q4 ∼ 3 · 2n−k

дополнительными входами. Подсхема S4 содержит 2n−k элементов 2-CNOT.

5. Подсхема S5, необходимая для копирования (n − 1) раз значения каждого значимого

выхода подсхемы S4. Это можно сделать с глубиной D5 ∼ log2 n, сложностью L5 =

(n−1) · 2n−k и q5 = (n−1)2n−k дополнительными входами. Подсхема S5 состоит только

из элементов CNOT.

6. Подсхема S6, реализующая булево отображение f по формулам (4.15) и (4.16). Структу-

ра данной подсхемы следующая: все n2n−k координатных функций fi,j(x) группируются

по 2n−k функций (всего n групп, соответствующих n выходам отображения f). Функции

одной группы объединяются по две. В каждой паре функций производится конъюнк-

ция соответствующих значимых выходов подсхем S3 и S5 при помощи двух элементов

2-CNOT. При этом для каждой пары функций используется один дополнительный вход

для хранения промежуточного результата (см. рис. 4.13). Таким образом, данный этап

требует глубины 2, n2n−k элементов 2-CNOT и n2n−k−1 дополнительных входов. За-

тем в каждой из n групп полученных значений происходит суммирование по подулю

2 при помощи элементов CNOT с логарифмической глубиной (см. рис. 4.12 и 4.13).
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Следовательно, этот этап требует глубины (n− k − 1) при использовании n(2n−k−1 − 1)

элементов CNOT и без использования дополнительных входов, т. к. можно обойтись

уже существующими выходами для суммирования по модулю 2.

В итоге получаем подсхему S6 с глубиной D6 ∼ (n − k), сложностью L6 ∼ 3n2n−k−1 и

q6 ∼ n2n−k−1 дополнительными входами.

Отметим, что подсхемы S1–S3 и S4–S5 могут работать параллельно, т. к. они работают с

непересекающимися подмножествами множества входов x1, . . . , xn обратимой схемы S (см.

рис. 4.11).

x1 x2 x3 x4 x5 x6 x7 x8

y

Рис. 4.12 Реализация с помощью обратимой схемы функции y = x1 ⊕ . . . ⊕ x8

с логарифмической глубиной (часть подсхемы S3 алгоритма синтеза A5.3;

входы схемы сверху).

x1 x2 y1 y2 x3 x4 y3 y4 x5 x6 y5 y6 x7 x8 y7 y80 0 0 0

z

Рис. 4.13 Реализация с помощью обратимой схемы функции z =
⊕8

i=1 xi ∧ yi

с логарифмической глубиной (часть подсхемы S6 алгоритма синтеза A5.3;

входы схемы сверху).

Будем искать значения параметров k и s, удовлетворяющие следующим условиям:






k + s = n ,

1 6 k < n ,

1 6 s < n ,

2k / s > ψ(n) , где ψ(n) — некоторая растущая функция .

В этом случае p = ⌈2k / s⌉ ∼ 2k / s.

Суммируя глубины, сложности и количество дополнительных входов всех подсхем

S1–S6, мы получаем следующие оценки для характеристик обратимой схемы S.

Глубина

D(S) ∼ max(k + s+ n− k + log2 p ; n− k + logn) + n− k ,

D(S) ∼ 2n+ s . (4.20)
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Cложность

L(S) ∼ 3 · 2k + 3p2s + (2p− 1)n2n−k + 3 · 2n−k + n2n−k + 3n2n−k−1 ,

L(S) ∼ 3 · 2
n

2s
+

3 · 2n
s

+
n2n+1

s
∼ n2n+1

s
. (4.21)

Количество дополнительных входов

Q(S) ∼ 3 · 2k + p2s+1 + pn2n−k + 3 · 2n−k + n2n−k + n2n−k−1 ,

Q(S) ∼ 3 · 2
n

2s
+

2n+1

s
+
n2n

s
∼ n2n

s
. (4.22)

Из описания алгоритма A5.3 следует, что

L
(C)
1 ∼ 2k+1 , L

(T )
1 ∼ 2k ,

L
(C)
2 ∼ 3p2s , L

(T )
2 = 0 ,

L
(C)
3 ∼ pn2n−k+1 , L

(T )
3 = 0 ,

L
(C)
4 ∼ 2n−k+1 , L

(T )
4 ∼ 2n−k ,

L
(C)
5 ∼ n2n−k , L

(T )
5 = 0 ,

L
(C)
6 ∼ n2n−k−1 , L

(T )
6 = n2n−k .

Отсюда следует, что

L(C)(S) ∼ 2k+1 +
n2n+1

s
∼ n2n+1

s
, (4.23)

L(T )(S) ∼ 2k + n2n−k . (4.24)

Пусть k = ⌈n / φ(n)⌉, где φ(n) — любая сколь угодно медленно растущая функция

такая, что φ(n) = o(n). Тогда s = n− ⌈n / φ(n)⌉ и

2k > sψ(n) ⇒ k > log2 s+ log2 ψ(n) ⇒ φ(n) 6
n

log2 s+ log2 ψ(n)− 1
.

Мы всегда можем выбрать любые сколь угодно медленно растущие функции φ(n) и ψ(n)

такие, что φ(n) 6 n /(log2 n+log2 ψ(n)). Таким образом, мы получаем следующие оценки для

характеристик обратимой схемы S:

D(S) ∼ 2n+ n− ⌈n /φ(n)⌉ ∼ 3n ,

L(S) ∼ L(C)(S) ∼ n2n+1

n− ⌈n / φ(n)⌉ ∼ 2n+1 ,

L(T )(S) ∼ 2⌈n /φ(n)⌉ + n2n−⌈n /φ(n)⌉ ∼ n2n−⌈n/ φ(n)⌉ ,

Q(S) ∼ n2n

n− ⌈n /φ(n)⌉ ∼ 2n .

Поскольку описанный алгоритм A5.3 позволяет синтезировать обратимую схему S для лю-

бого отображения f ∈ F (n, q), можно утверждать, что D(n, q1) 6 D(S) ∼ 3n, где q1 ∼ 2n.

Также, синтезируемая схема S имеет сложность L(S) ∼ 2n+1 и квантовый весW (S) ∼
W (C) · 2n+1 +W (T ) · n2n−⌈n /φ(n)⌉, где φ(n) и ψ(n) — любые сколь угодно медленно растущие

функции такие, что φ(n) 6 n /(log2 n+ log2 ψ(n)).
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В следующей теореме показывается, что можно снизить асимптотическую глубину

обратимой схемы с 3n до 2n.

Теорема 4.16 (о глубине обратимой схемы с дополнительными входами).

D(n, q2) . 2n при q2 ∼ φ(n)2n ,

где φ(n) — любая сколь угодно медленно растущая функция такая, что φ(n) = o(n). Об-

ратимая схема S, реализующая отображение f ∈ F (n, q2) с глубиной D(S) ∼ 2n, имеет

сложность L(S) ∼ φ(n)2n+1 и квантовый вес W (S) ∼W (C) · φ(n)2n+1 +W (T ) · 2n−⌈n /φ(n)⌉.

Доказательство. Основано на результатах из доказательства Теоремы 4.15.

Пусть s = ⌈n /φ(n)⌉, где φ(n) — любая сколь угодно медленно растущая функция

такая, что φ(n) = o(n). В этом случае k = n− ⌈n /φ(n)⌉ и

ψ(n) 6
2k

s
6
φ(n)2n−o(n)

n
.

Из этого неравенства видно, что для любой сколь угодно медленно растущей функции φ(n)

такой, что φ(n) = o(n), мы всегда можем подобрать растущую функцию ψ(n). Из формул

(4.20)–(4.24) следует, что для таких значений параметров k и s верны следующие оценки:

D(S) ∼ 2n+ ⌈n /φ(n)⌉ ∼ 2n ,

L(S) ∼ L(C)(S) ∼ n2n+1

⌈n / φ(n)⌉ ∼ φ(n)2n+1 ,

L(T )(S) ∼ 2n−⌈n /φ(n)⌉ + n2⌈n /φ(n)⌉ ∼ 2n−⌈n/φ(n)⌉ ,

Q(S) ∼ n2n

⌈n /φ(n)⌉ ∼ φ(n)2n .

Поскольку описанный алгоритм A5.3 позволяет синтезировать обратимую схему S

для любого отображения f ∈ F (n, q), можно утверждать, что D(n, q2) 6 D(S) ∼ 2n, где

q2 ∼ φ(n)2n.

Также, синтезируемая схема S имеет сложность L(S) ∼ φ(n)2n+1 и квантовый вес

W (S) ∼W (C) · φ(n)2n+1 +W (T ) · 2n−⌈n/φ(n)⌉.

4.4.3 Общая верхняя оценка сложности и глубины

В разделe 4.3 и предыдущих параграфах данного раздела были получены верхние оценки для

функции L(n, q) в двух частных случаях: q = 0 (Теорема 4.5) и q ∼ n2n−o(n) (Теорема 4.10).

Из Теоремы 4.1 следует, что нижняя оценка для функции L(n, q) уменьшается с увеличе-

нием значения q. Следовательно, можно предположить, что и верхняя оценка для функции

L(n, q) также уменьшается с увеличением значения q. Доказательству этого утверждения и

посвящён данный параграф.

Рассмотрим обратимую схему Sn на рис. 4.6 на с. 96, реализующую все конъюнкции

n переменных вида xa11 ∧ . . . ∧ xann , ai ∈ Z2. Схема имеет n значимых входов и 2n значимых
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выходов; в неё входят подсхемы S⌈n/ 2⌉ и S⌊n/ 2⌋, реализующие конъюнкции от меньшего чис-

ла переменных. Если все 2n конъюнкций на значимых выходах основной схемы реализовать

одновременно, а не по мере необходимости, то L(Sn) ∼ 2n и Q(Sn) ∼ 2n, как было доказано

в Лемме 4.9. С другой стороны, мы можем конструировать конъюнкции по мере необходи-

мости по одной, а не все сразу, используя только лишь значимые выходы подсхем S⌈n / 2⌉ и

S⌊n/ 2⌋ и всего один дополнительный вход, который и будет хранить значение нужной нам

конъюнкции. После того, как все необходимые операции с этим значимым выходом будут

осуществлены, мы можем его обнулить, применив те же функциональные элементы, что и

для его получения, но в обратном порядке. Таким образом, в рассматриваемом нами случае

для получения каждой конъюнкции потребуется не более двух элементов 2-CNOT, а для

получения t конъюнкций (последовательно, по мере необходимости) — не более 2t элемен-

тов 2-CNOT. Следовательно, L(Sn) . O(2n/ 2) + 2t, Q(Sn) . O(2n/ 2) + 1. Такой же подход

можно применить к подсхемам S⌈n/ 2⌉ и S⌊n / 2⌋, а также к подсхемам этих подсхем. Если

вообще не хранить промежуточных значений, а конструировать конъюнкции по мере необ-

ходимости, имея лишь входы x1, . . . , xn, x̄1, . . . , x̄n, то для получения каждой конъюнкции

xa11 ∧ . . .∧xann , очевидно, потребуется не более 2(n−1) элементов 2-CNOT, а дополнительных

входов потребуется всего (n−1) на все конъюнкции. К примеру, на рис. 4.14 показан пример

конструирования конъюнкции x̄1x̄2x̄3x4x5x̄6x7x8 с использованием промежуточных значений

x̄1x̄2, x̄3x4, x5x̄6 и x7x8 и последующим обнулением значений на незначимых выходах.

x̄1x̄2 x̄3x4 0 x5x̄6 x7x8 0 0

x̄1x̄2x̄3x4x5x̄6x7x8

x̄1x̄2 x̄3x4 0 x5x̄6 x7x8 0 0

· · ·

Рис. 4.14 Пример конструирования конъюнкции с использованием промежуточных значений и

последующим обнулением значений на незначимых выходах (входы схемы сверху).

Рассмотрим в общем случае обратимую схему SCONJ(n,q), которая реализует конъюнк-

ции n переменных вида xa11 ∧ . . . ∧ xann , ai ∈ Z2, при условии, что для хранения промежуточ-

ных значений отведено q дополнительных входов, а значения x̄1, . . . , x̄n уже получены ранее.

Обозначим через LCONJ(n, q, t) сложность схемы SCONJ(n,q), реализующей по мере необходи-

мости t конъюнкций, не обязательно различных, причём значение t может быть любым, в

том числе больше 2n. Также обозначим через QCONJ(n, q, t) общее количество необходимых

дополнительных входов для такой обратимой схемы. Из рассуждений выше можно вывести
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следующие простые оценки:

LCONJ(n, 0, t) 6 2(n− 1)t , (4.25)

QCONJ(n, 0, t) = n− 1 . (4.26)

Для q0 ∼ 2⌈n / 2⌉ + 2⌊n / 2⌋ верны соотношения

LCONJ(n, q0, t) 6 q0 + 2t ,

QCONJ(n, q0, t) 6 q0 + 1 .

Выведем зависимость значения функции LCONJ(n, q, t) от значения q.

Лемма 4.17. Для любого значения q такого, что 2n < q < 2n24n, верны соотношения

LCONJ(n, q, t) 6 q +
8nt

log2 q − log2 n− 1
, (4.27)

QCONJ(n, q, t) 6 q + n− 1 . (4.28)

Доказательство. Соотношение QCONJ(n, q, t) 6 q + n− 1 следует из соотношения (4.26).

x1 x̄1 x2 x̄2 xn−1 x̄n−1 xn x̄n

L = O
(

2
n

4

)

L = O
(

2
n

4

)

L = O
(

2
n

4

)

L = O
(

2
n

4

)

L = O
(

2
n

2

)

L = O
(

2
n

2

)

L = 2n

L 6 4 L 6 4 k = ⌈log
2
n⌉

k = 3

k = 2

k = 1

· · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · ·

· · ·· · ·

· · ·

· · ·

y1 y2n

Рис. 4.15 Общая структура обратимой схемы SCONJ(n,q) (входы схемы сверху).
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Рассмотрим структуру искомой обратимой схемы SCONJ(n,q) на рис. 4.15: она разбита

на K = ⌈log2 n⌉ уровней, нумерация ведётся снизу вверх. На уровне номер k расположены

2k−1 обратимых подсхем, все они имеют примерно одинаковое количество значимых входов

и выходов и реализуют все конъюнкции от некоторого подмножества переменных x1, . . . , xn,

причём подмножества для разных схем одного уровня не пересекаются, их объединение равно

всему множеству { x1, . . . , xn }, а мощности данных подмножеств примерно равны.

Уровень Подсхема
Количество

входов

Количество

выходов

Подмножество

переменных, для

которых реализованы

все конъюнкции

1 S1;1 23 + 24 27 { x1, . . . , x7 }

2
S2;1 21 + 22 23 { x1, x2, x3 }
S2;2 22 + 22 24 { x4, x5, x6, x7 }

3

S3;1 2 (x1, x̄1) 21 { x1 }
S3;2 4 (x2, x̄2, x3, x̄3) 22 { x2, x3 }
S3;3 4 (x4, x̄4, x5, x̄5) 22 { x4, x5 }
S3;4 4 (x6, x̄6, x7, x̄7) 22 { x6, x7 }

Таблица 4.1 Описание структуры обратимой схемы SCONJ при n = 7.

Для пояснения структуры схемы SCONJ рассмотрим частный её случай для n = 7.

Схема имеет K = 3 уровня, каждый её уровень расписан в Таблице 4.1. Из данной таблицы

видно, что если некоторая подсхема Sk;i на уровне k имеет 2m значимых выходов, то на

уровне (k + 1) есть ровно две подсхемы Sk+1;j и Sk+1;j+1, подключённые к ней, первая из

которых имеет 2⌊m/ 2⌋ значимых выходов, а вторая — 2⌈m/ 2⌉ значимых выходов. Структура

подсхемы Sk;i проста: она реализует конъюнкции каждого значимого выхода подсхемы Sk+1;j

с каждым значимым выходом подсхемы Sk+1;j+1 (см. рис. 4.16). Следовательно, сложность

такой подсхемы будет равна 2⌊m/ 2⌋ · 2⌈m/ 2⌉ = 2m (используются только элементы 2-CNOT).

Вернёмся к общей схеме SCONJ . Нам дано q дополнительных входов для хранения

промежуточных значений. Разумнее всего потратить их для хранения значений на выходах

подсхем самых высоких уровней, поскольку видно, что чем меньше уровень схемы SCONJ ,

тем больше требуется дополнительных входов для хранения промежуточных значений.

Рассмотрим случай, когда мы имеем возможность хранить все промежуточные значе-

ния. Обозначим через Lk количество элементов на k-м уровне схемы. К примеру, L1 = 2n,

L2 = 2⌊n/ 2⌋ + 2⌈n / 2⌉.

Оценим значение Lk. Поскольку

⌈n

2

⌉

=

⌊
n+ 1

2

⌋

6
n+ 1

2
,
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x1 x2⌊m/2⌋ y1 y2⌈m/2⌉ 0 0 0 0

z1 z2⌈m/2⌉ z2m−2⌈m/2⌉+1 z2m

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Sk;i

Рис. 4.16 Структура подсхемы Sk;i обратимой схемы SCONJ (входы схемы сверху).

то

L2 6 2 ·max
(

2⌊n
2 ⌋, 2⌈n

2 ⌉
)

= 2 · 2⌈n
2 ⌉ 6 2 · 2n

2
+ 1

2 .

Отсюда следует, что

L3 6 4 · 2n
4
+ 1

4
+ 1

2 ,

L4 6 8 · 2n
8
+ 1

8
+ 1

4
+ 1

2 ,

Lk 6 2k · 2n/ 2k−1

.

Обозначим δk = 2k·2n/ 2k−1
. Значение переменной k лежит в диапазоне [1, . . . , K],K = ⌈log2 n⌉,

k ∈ N. Сделаем переобозначение переменной: k = K − s, тогда s = s(k) = K − k. Если

k обозначает номер уровня схемы при нумерации от выходов ко входам (снизу вверх), то

(s+1) будет означать номер уровня схемы при нумерации от входов к выходам (сверху вниз).

Значение переменной s лежит в диапазоне [0, . . . , K − 1], s ∈ Z+. В этом случае

δk =
2K

2s
· 2(2n·2s) / 2K 6

2n

2s
· 22s+1

= ∆s .

Следовательно, мы получили цепочку неравенств

Lk 6 δk 6 ∆s(k) =
2n

2s
· 22s+1

.

Выпишем первые члены ряда {∆s(k) }: { 8n, 16n, 128n, . . .}. Видно, что с ростом s зна-

чение ∆s растёт всё быстрее. Более того, можно утверждать, что для любого s > 1 верно

соотношение
s−1∑

i=0

∆i 6
∆s

2
.
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Отсюда следует, что

s∑

i=0

∆i 6
3∆s

2
,

K−s∑

i=K

Li 6
3n

2s
· 22s+1

. (4.29)

Другими словами, сумма сложностей всех подсхем на последних (s + 1) уровнях (при нуме-

рации снизу вверх) не превышает 3n · 2−s+2s+1
.

Вернёмся снова к общей схеме SCONJ . Из рис. 4.14 видно, что для конструирования

по мере необходимости одного значимого выхода схемы SCONJ на первых r уровнях будет

использовано не более (1+ 2+ 4+ . . .+2r−1) = (2r − 1) элементов 2-CNOT. Столько же Ф.Э.

потребуется для обнуления значений на незначимых выходах. Следовательно, при условии,

что количество уровней, для которых подсхемы надо конструировать по мере необходимости,

не превышает r, верно соотношение

LCONJ(n, q, t) 6 q + 2(2r − 1) · t 6 q + t · 2r+1 . (4.30)

Наличие слагаемого q в данном соотношении, очевидно, следует из того факта, что для

получения значения на одном выходе любой подсхемы Sk;i требуется ровно один элемент

2-CNOT. Если мы можем хранить не более q промежуточных значений на выходах подсхем,

то для их хранения потребуется не более q элементов 2-CNOT.

Нам требуется оценить значение r. Пусть для данного по условию задачи значения q

выполняется неравенство
3n

2s
· 22s+1

6 q <
3n

2s+1
· 22s+2

(4.31)

для некоторого значения s ∈ [0, . . . , K−1], s ∈ Z+. Тогда мы можем утверждать, что данного

значения q достаточно для хранения значений на всех выходах подсхем на последних (s+1)

уровнях при нумерации уровней снизу вверх (см. соотношение (4.29)), а количество первых

уровней, для которых подсхемы нужно конструировать по мере необходимости, не превышает

(k − 1), поскольку (s + 1) = K − (k − 1). Следовательно, r 6 k − 1. Из правого неравенства

соотношения (4.31) следует, что

log2 q < log2 3 + log2 n− s− 1 + 2s+2 ,

2K

2k
= 2s >

log2 q − (log2 3 + log2 n− s− 1)

4
,

(log2 q − (log2 3 + log2 n− s− 1))2k < 4 · 2K .

Поскольку K = ⌈log2 n⌉, s > 0, r + 1 6 k, то при q > 2n

2r+1 <
8n

log2 q − log2 n− 1
. (4.32)

Из этого неравенства и неравенства (4.30) следует оценка утверждения Леммы

LCONJ(n, q, t) 6 q +
8nt

log2 q − log2 n− 1
.
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Величина r является неотрицательной, целочисленной, её минимальное значение равно нулю,

поэтому из неравенства (4.32) следует ограничение q < 2n24n.

Хотя оценка Леммы 4.17 и верна при q < 2n24n, однако рассматривать схему SCONJ

с количеством дополнительных входов q таким, что 2n = o(q), нецелесообразно, поскольку

если все 2n конъюнкций на значимых выходах схемы реализовать одновременно, а не по мере

необходимости, то L(SCONJ) ∼ 2n и Q(SCONJ) ∼ 2n, как было доказано в работе [? , Лем-

ма 1]. Другими словами, имея q . 2n дополнительных входов, мы всегда сможем построить

схему SCONJ , а увеличение значения q не приведёт к снижению её сложности (следует из

построения схемы).

Отметим, что по аналогии со схемой SCONJ можно построить схему SXOR, которая

для заданных входов x1, . . . , xn на своих значимых выходах реализует по мере необходимости

t некоторых, не обязательно различных значений x1 ∧ a1 ⊕ . . .⊕ xn ∧ an, ai ∈ Z2. Для этого

просто надо каждый элемент 2-CNOT в схеме SCONJ заменить на два элемента CNOT (см.

рис. 4.4). Следовательно,

LXOR(n, q, t) 6 2q +
16nt

log2 q − log2 n− 1
,

QXOR(n, q, t) 6 q + n− 1 .

Теперь мы можем доказать основную теорему данного раздела.

Теорема 4.18 (общая верхняя оценка сложности обратимой схемы с дополнительными вхо-

дами). Для любого значения q такого, что 8n < q . 2n−⌈n /φ(n)⌉+1, где φ(n) и ψ(n) — любые

сколь угодно медленно растущие функции такие, что φ(n) 6 n /(log2 n + log2 ψ(n)), верно

соотношение

L(n, q) . 2n +
8n2n

log2(q − 4n)− log2 n− 2
.

Доказательство. Опишем алгоритм синтеза A5.4, который является модификацией алго-

ритма синтеза A5.2 из Теоремы 4.10 и который предназначен для синтезирования обратимых

схем в условиях ограничения на количество используемых дополнительных входов.

Напомним, что произвольное булево отображение f : Zn
2 → Z

n
2 можно представить в

виде некоторых n булевых функций fi : Z
n
2 → Z2 от n переменных

f(x) = 〈f1(x), f2(x), . . . , fn(x)〉 ,

где

fi(x) =
⊕

ak+1,...,an∈Z2









⊕

t=1...p
gjt∈Gt

16jt6|Gt|

x
ak+1

k+1 ∧ . . . ∧ xann ∧ gjt(〈x1, . . . , xk〉)









. (4.33)

(Описание внутренних переменных в формуле (4.33) можно найти в доказательстве Теоре-

мы 4.10 на с. 96.)
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Общая структура обратимой схемы Sf , которая реализует отображение f и которая

синтезируется алгоритмом A5.4, показана на рис. 4.17.

x1 xk xk+1 xn0 0 0 0 0 0 0 00 0 0 0 0 0

x̄1 x̄k x̄k+1 x̄n

y1

ys

ys

y1

ys+1

y2s

y1 ys 0 0 0 0z1 z2n−k

SXOR(s,q3)

S
−1
XOR(s,q3)

y1 ys 0 0

ys+1 y2s 0 0

.

.

.

.

.

.

.

.

.

SCONJ(k,q1)

SCONJ(n−k,q2)

q1 + k − 1 s q3 + s− 1 q2 + n− k − 1 n

f1 fn

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . .

. . .

. . .

. . .

. . . . . .

. . . . . .

. . . . . .
. . .

. . .

. . . . . .

Рис. 4.17 Структура обратимой схемы Sf , реализующей отображение f : Zn
2 → Z

n
2 в условиях

ограничения на количество используемых дополнительных входов (входы схемы сверху).

Сперва реализуем отрицания для всех входных значений x1, . . . , xn со сложностью 2n

(по элементу NOT и CNOT на каждый вход), задействовав n дополнительных входов.

Разобьём множество значимых входов схемы x1, . . . , xn на две группы: { x1, . . . , xk } и

{ xk+1, . . . , xn }. Первую группу входов вместе с их отрицаниями подадим на подсхему S1 =

SCONJ(k,q1) для реализации некоторых t1 конъюнкций xa11 ∧ . . . ∧ xakk , ai ∈ Z2, отведя данной

подсхеме q1 дополнительных входов для хранения промежуточных значений. Вторую группу

входов вместе с их отрицаниями подадим на подсхему S2 = SCONJ(n−k,q2) для реализации

некоторых t2 конъюнкций x
ak+1

k+1 ∧. . .∧xann , ai ∈ Z2, отведя данной подсхеме q2 дополнительных
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входов для хранения промежуточных значений.

Будем реализовывать все 2k различных конъюнкций на значимых выходах подсхемы

S1 последовательно. Полученные значения будем хранить, используя дополнительные вхо-

ды. Как только будут получены очередные s конъюнкций, соответствующие им s значимых

выходов подаём на значимые входы подсхемы S3;i = SXOR(s,q3) для получения значений

некоторых t3 функций от переменных x1, . . . , xk, отведя данной подсхеме q3 дополнительных

входов для хранения промежуточных значений. Всего будет не более p = ⌈2k / s⌉ различных

подсхем S3;i. Как только работа с очередной подсхемой S3;i будет закончена, значение на

q3 незначимых выходах обнуляем, применяя те же самые Ф.Э., что и для получения подсхе-

мы, но в обратном порядке. Затем обнуляем значения на s значимых выходах, служивших

значимыми входами подсхеме S3;i, реализуя ещё раз полученные ранее s конъюнкций при

помощи подсхемы S1 (см. рис. 4.17). Тем самым мы сможем не увеличивать количество ис-

пользуемых дополнительных входов, а использовать одни и те же дополнительные входы,

увеличивая однако при этом сложность соответствующих подсхем в два раза.

Из формулы (4.33) следует, что имея значения некоторого значимого выхода подсхе-

мы S2 и некоторого значимого выхода подсхемы S3;i, мы можем реализовать одно слагаемое

во внутренней скобке, используя ровно один элемент 2-CNOT, контролируемый выход кото-

рого будет одним из n значимых выходов нашей конструируемой схемы Sf (см. рис. 4.17).

Рассматриваемое нами отображение f имеет n выходов, количество групп конъюнкций от

первых k переменных x1, . . . , xk равно p, количество различных конъюнкций от последних

(n − k) переменных xk+1, . . . , xn равно 2n−k. Следовательно, схемная сложность реализации

функции fi по формуле (4.33) равна p2n−k, а отображения f в целом равна L4 = pn2n−k,

при этом потребуется ровно n дополнительных входов для хранения выходных значений

отображения f .

Таким образом, мы можем вывести соотношение для L(f, q) следующего вида:

L(f, q) = 2n+ LCONJ(k, q1, t1) + LCONJ(n− k, q2, t2) + 2p · LXOR(s, q3, t3) + pn2n−k , (4.34)

и для Q(Sf) следующего вида:

Q(Sf) = q = n +QCONJ(k, q1, t1) + QCONJ(n− k, q2, t2) +QXOR(s, q3, t3) + n . (4.35)

Отметим, что каждая из 2k различных конъюнкций на значимых выходах подсхемы

S1 будет получена ровно два раза, следовательно, t1 = 2k+1.

Поскольку каждый значимый выход подсхемы S2 используется в качестве входа для

pn элементов 2-CNOT, а значимый выход подсхемы S3;i может использоваться в качестве

входа для 2n−k элементов 2-CNOT, возникает два различных способа конструирования нашей

искомой схемы Sf .

1. В первом случае мы минимизируем значение t2: для каждой группы конъюнкций от

первых k переменных x1, . . . , xk мы один раз конструируем очередной значимый выход
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подсхемы S2, а затем конструируем для него n значимых выходов подсхемы S3;i. Тогда

можно утверждать, что t2 = p2n−k, t3 6 n2n−k.

2. Во втором случае мы минимизируем значение t3: для каждой группы конъюнкций от

первых k переменных x1, . . . , xk мы один раз конструируем очередной значимый выход

подсхемы S3;i, а затем конструируем для него нужные значимые выходы подсхемы

S2. Таких выходов может быть один, а может быть и 2n−k. Однако мы точно можем

утверждать, что t2 6 pn2n−k, t3 6 2s.

Оценим в общем случае значение L(f, q):

L(f, q) 6 2n + pn2n−k + q1 + q2 + 4pq3 +
8k2k+1

log2 q1 − log2 k − 1
+

+
8(n− k)t2

log2 q2 − log2(n− k)− 1
+

32pst3
log2 q3 − log2 s− 1

.

Будем искать такие значения k и s, что p = ⌈2k / s⌉ ∼ 2k / s. Тогда

L(f, q) . 2n +
n2n

s
+ q1 + q2 +

4q32
k

s
+

8k2k+1

log2 q1 − log2 k − 1
+

+
8(n− k)t2

log2 q2 − log2(n− k)− 1
+

32t32
k

log2 q3 − log2 s− 1
.

1. Пусть t2 = p2n−k ∼ 2n / s, t3 6 n2n−k. В этом случае

L(f, q) . 2n+
n2n

s
+ q1 + q2 +

4q32
k

s
+

8k2k+1

log2 q1 − log2 k − 1
+

+
8 · 2n

log2 q2 − log2(n− k)− 1
+

32n2n

log2 q3 − log2 s− 1
. (4.36)

Положим s = n − k, k = ⌈n / φ(n)⌉, где φ(n) и ψ(n) — любые сколь угодно медленно

растущие функции такие, что φ(n) 6 n /(log2 n+ log2 ψ(n)). В этом случае будет верно

неравенство 2k / s > ψ(n).

Поскольку q3 . 2s и q2 . 2n−k = o(2n), то верно соотношение

2n+
n2n

s
+ q2 +

4q32
k

s
. 2n+

n2n

n− o(n)
+ q2 +

2n+2

n− o(n)
. 2n . (4.37)

Положим q1 = 0, q2 = q3. Согласно формуле (4.25), LCONJ(n, 0, t) 6 2(n − 1)t, следова-

тельно, мы можем заменить в соотношении (4.36) сложность подсхемы S1 на k2k+2:

L(f, q) . 2n + k2k+2 +
8 · 2n

log2 q2 − log2(n− k)− 1
+

32n2n

log2 q3 − log2 s− 1
.

Очевидно, что k2k+2 = 4⌈n /φ(n)⌉ · 2⌈n /φ(n)⌉ = o(2n) и 8 · 2n /(log2 q3 − log2 s − 1) =

o (32n2n /(log2 q3 − log2 s− 1)), поэтому верно соотношение

L(f, q) . 2n +
32n2n

log2 q3 − log2 s− 1
.
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Согласно Лемме 4.17, QCONJ(n, q, t) 6 q + n − 1, поэтому соотношение (4.35) можо

переписать в виде

q 6 n+ k − 1 + q2 + n− k − 1 + q3 + s− 1 + n = 4n− k + 2q3 − 3 < 4n+ 2q3 . (4.38)

Следовательно, log2 q3 > log2(q − 4n)− 1. Отсюда получаем соотношение

L(f, q) . 2n +
32n2n

log2(q − 4n)− log2 n− 2
,

которое верно при log2(q − 4n) > log2 n + 2. Таким образом, q > 8n. С другой стороны

q < 4n + 2q3 . 2n−⌈n/φ(n)⌉+1.

2. Пусть t2 6 pn2n−k ∼ n2n / s, t3 6 2s. В этом случае

L(f, q) . 2n+
n2n

s
+ q1 + q2 +

4q32
k

s
+

8k2k+1

log2 q1 − log2 k − 1
+

+
8n2n

log2 q2 − log2(n− k)− 1
+

32 · 2n
log2 q3 − log2 s− 1

. (4.39)

Как и в первом способе, положим s = n − k, k = ⌈n /φ(n)⌉, где φ(n) и ψ(n) — любые

сколь угодно медленно растущие функции такие, что φ(n) 6 n /(log2 n + log2 ψ(n));

q1 = 0, q2 = q3. Тогда из рассуждений, приведённых при описании первого способа,

следует соотношение

L(f, q) . 2n +
8n2n

log2 q2 − log2(n− k)− 1
+

32 · 2n
log2 q3 − log2 s− 1

.

Очевидно, что 32 · 2n /(log2 q2 − log2(n − k) − 1) = o (8n2n /(log2 q2 − log2(n− k)− 1)),

поэтому верно соотношение

L(f, q) . 2n +
8n2n

log2 q2 − log2(n− k)− 1
.

Поскольку log2 q3 > log2(q − 4n) − 1, то и log2 q2 > log2(q − 4n) − 1. Отсюда получаем

соотношение

L(f, q) . 2n +
8n2n

log2(q − 4n)− log2 n− 2
,

которое верно при log2(q − 4n) > log2 n+ 2 ⇒ q > 8n.

Видно, что второй способ синтеза асимптотически лучше первого.

Поскольку мы описали алгоритм синтеза обратимой схемы для произвольного отоб-

ражения f , то

L(n, q) 6 L(f, q) . 2n +
8n2n

log2(q − 4n)− log2 n− 2

для любого значения q такого, что 8n < q . 2n−⌈n/φ(n)⌉+1.
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Следствие 4.19. Для любого значения q такого, что 8n < q . 2n−⌈n/φ(n)⌉+1, где φ(n) и

ψ(n) — любые сколь угодно медленно растущие функции такие, что φ(n) 6 n /(log2 n +

log2 ψ(n)), верны соотношения

W (n, q) . W (T ) ·
(

2n +
8 · 2n

log2(q − 4n)− log2 n− 2

)

+
32W (C)n2n

log2(q − 4n)− log2 n− 2
, (4.40)

W (n, q) . W (T ) ·
(

2n +
8n2n

log2(q − 4n)− log2 n− 2

)

+
32W (C)2n

log2(q − 4n)− log2 n− 2
. (4.41)

Доказательство. В обратимой схеме Sf из доказательства Теоремы 4.18 элементы NOT и

CNOT используются только для получения отрицаний для всех входных значений x1, . . . , xn

и в подсхемах S3;i. Следовательно, оценка (4.40) верна для случая t2 = p2n−k, t3 6 n2n−k,

описанного на с. 114, а оценка (4.41) верна для случая t2 6 pn2n−k, t3 6 2s, описанного там

же.

Теперь можно оценить порядок роста функции L(n, q).

Теорема 4.20. Для любого значения q такого, что n2 . q . 2n−⌈n /φ(n)⌉+1, где φ(n) и ψ(n) —

любые сколь угодно медленно растущие функции такие, что φ(n) 6 n /(log2 n + log2 ψ(n)),

верно соотношение

L(n, q) ≍ n2n

log2 q
.

Доказательство. Следует из Теоремы 4.1 и Теоремы 4.18.

Если рассматривать только знакопеременную группу A(Zn
2 ) и обратимые схемы, реа-

лизующие отображения Z
n
2 → Z

n
2 из этой группы, то можно установить следующий порядок

роста функции Шеннона LA(n, q) сложности таких обратимой схемы.

Теорема 4.21. Для любого значения q такого, что 0 6 q . 2n−⌈n /φ(n)⌉+1, где φ(n) и ψ(n) —

любые сколь угодно медленно растущие функции такие, что φ(n) 6 n /(log2 n + log2 ψ(n)),

верно соотношение

LA(n, q) ≍
n2n

log2(n+ q)
.

Доказательство. Следует из Теоремы 4.6 и Теоремы 4.20, поскольку без дополнительных

входов рассматриваемые нами обратимые схемы реализуют только чётные подстановки.

Из доказательства Теоремы 4.18 также можно получить верхнюю оценку для функции

D(n, q) в случае q > 8n, q . 2n−o(n), но для этого необходимо сперва доказать вспомогатель-

ную лемму.

Лемма 4.22. Для любого значения q такого, что 2n < q < 2n24n, верны соотношения

DCONJ(n, q, t) 6 q + 2t(2 + log2 n− log2(log2 q − log2 n− 1)) .

DCONJ(n, 0, t) 6 2t · ⌈log2 n⌉ .
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Доказательство. Рассмотрим схему SCONJ(n,q) из Леммы 4.17. Согласно формуле (4.30),

верно неравенство LCONJ(n, q, t) 6 q + 2t · 2r. Промежуточные значения, хранимые на q

дополнительных входах, можно получить с глубиной не более q. Также очевидно, что скон-

струировать по мере необходимости один значимый выход схемы SCONJ на первых r уровнях

можно с глубиной r, см. рис. 4.14. Отсюда следует, что

DCONJ(n, q, t) 6 q + 2tr .

Согласно формуле (4.32), при q > 2n верно неравенство

2r <
4n

log2 q − log2 n− 1
,

откуда следует, что

r < 2 + log2 n− log2(log2 q − logn−1) ,

DCONJ(n, q, t) 6 q + 2t(2 + log2 n− log2(log2 q − log2 n− 1)) .

Соотношение DCONJ(n, 0, t) 6 2t · ⌈log2 n⌉ следует из соотношения (4.25) и того факта,

что сконструировать одну конъюнкцию xa11 ∧ . . . ∧ xann можно с логарифмической глубиной

⌈log2 n⌉.

Аналогично, для обратимой схемы SXOR(n,q) верно неравенство

DXOR(n, q, t) = 2DCONJ(n, q, t) 6 2q + 4t(2 + log2 n− log2(log2 q − log2 n− 1))

для любого значения q такого, что 2n < q < 2n24n.

Итак, докажем последнюю теорему данного раздела.

Теорема 4.23 (общая верхняя оценка глубины обратимой схемы с дополнительными входа-

ми). Для любого значения q такого, что 8n < q . 2n−⌈n /φ(n)⌉+1, где φ(n) и ψ(n) — любые

сколь угодно медленно растущие функции такие, что φ(n) 6 n /(log2 n + log2 ψ(n)), верно

соотношение

D(n, q) . 2n+1(2, 5 + log2 n− log2(log2(q − 4n)− log2 n− 2)) .

Доказательство. Рассмотрим обратимую схему Sf из доказательства Теоремы 4.18, синтези-

рованную алгоритмом A5.4. Из соотношения (4.34) можно вывести аналогичное соотношение

для глубины D(f, q) вида

D(f, q) = 2 +DCONJ(k, q1, t1) +DCONJ(n− k, q2, t2) + 2p ·DXOR(s, q3, t3) + pn2n−k .

Положим s = n − k, k = ⌈n /φ(n)⌉, где φ(n) и ψ(n) — любые сколь угодно медлен-

но растущие функции такие, что φ(n) 6 n /(log2 n + log2 ψ(n)) В этом случае будут верны

соотношения p ∼ 2k / s > ψ(n) и pn2n−k ∼ n2n / s ∼ 2n.
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Положим q1 = 0. Поскольку t1 = 2k+1, то

DCONJ(k, q1, t1) 6 2t1 · ⌈log2 k⌉ 6 ⌈log2⌈n / φ(n)⌉⌉ · 2⌈n /φ(n)⌉+2 = o(2n) .

Таким образом, верно соотношение

D(f, q) . 2n +DCONJ(n− k, q2, t2) +
2k+1

s
·DXOR(s, q3, t3) .

Рассмотрим те же два случая для t2 и t3, что и на с. 114.

1. Пусть t2 = p2n−k ∼ 2n / s, t3 6 n2n−k. В этом случае

DCONJ(n− k, q2, t2) 6 q2 +
2n+1

s
(2 + log2 s− log2(log2 q2 − log2 s− 1)) ,

DXOR(s, q3, t3) 6 2q3 + n2n−k+2(2 + log2 s− log2(log2 q3 − log2 s− 1)) .

Положим q2 = q3. Обозначим d = 2 + log2 s− log2(log2 q2 − log2 s− 1), тогда

D(f, q) . 2n + q2 +
d2n+1

s
+
q32

k+2

s
+
dn2n+3

s
.

Согласно формуле (4.37), верно соотношение

2n + q2 +
4q32

k

s
. 2n .

Отсюда получаем, что

D(f, q) . 2n +
dn2n+3

s
. 2n + 2n+3(2 + log2 n− log2(log2 q3 − log2 n− 1)) .

Из соотношения (4.38) следует, что log2 q3 > log2(q− 4n)− 1. Таким образом, получаем

итоговую оценку сверху вида

D(f, q) . 2n(17 + 8(log2 n− log2(log2(q − 4n)− log2 n− 2))) ,

которая верна при log2(q − 4n) > log2 n + 2 ⇒ q > 8n.

2. Пусть t2 6 pn2n−k ∼ n2n / s, t3 6 2s. В этом случае

DCONJ(n− k, q2, t2) 6 q2 +
n2n+1

s
(2 + log2 s− log2(log2 q2 − log2 s− 1)) ,

DXOR(s, q3, t3) 6 2q3 + 2s+2(2 + log2 s− log2(log2 q3 − log2 s− 1)) .

Положим q2 = q3. Обозначим d = 2 + log2 s− log2(log2 q2 − log2 s− 1), тогда

D(f, q) . 2n + q2 +
dn2n+1

s
+
q32

k+2

s
+
d2n+3

s
.

Согласно формуле (4.37), верно соотношение

2n + q2 +
4q32

k

s
. 2n .
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Отсюда получаем, что

D(f, q) . 2n +
dn2n+1

s
. 2n + 2n+1(2 + log2 n− log2(log2 q2 − log2 n− 1)) .

Из соотношения (4.38) следует, что log2 q2 > log2(q− 4n)− 1. Таким образом, получаем

итоговую оценку сверху вида

D(f, q) . 2n+1(2, 5 + log2 n− log2(log2(q − 4n)− log2 n− 2)) ,

которая верна при log2(q − 4n) > log2 n + 2 ⇒ q > 8n.

Видно, что второй способ синтеза асимптотически лучше первого.

Поскольку мы описали алгоритм синтеза обратимой схемы для произвольного отоб-

ражения f , то

D(n, q) 6 D(f, q) . 2n+1(2, 5 + log2 n− log2(log2(q − 4n)− log2 n− 2))

при q > 8n. Ограничение q . 2n−⌈n /φ(n)⌉+1 следует из Теоремы 4.18.

При увеличении количества дополнительных входов с q ∼ 2n−o(n) до q ∼ 2n верх-

няя асимптотическая оценка функции D(n, q) снижается с экспоненциальной до линейной,

согласно Теоремам 4.10 (D(n, q) 6 L(n, q)) и 4.15. Однако выведение зависимости верхней

оценки функции D(n, q) от q для всех значений q таких, что 2n−o(n) . q . 2n, выходит за

рамки данной работы.

Теперь мы можем сформулировать основное утверждение данной главы.

Утверждение 4.24. Использование дополнительной памяти в обратимых схемах, состо-

ящих из элементов NOT, CNOT и 2-CNOT, почти всегда позволяет существенно снизить

сложность, глубину и квантовый вес таких схем.

Доказательство. Следует из Теорем 4.1–4.23.

Воспользуемся данным результатом, чтобы показать на примере реализации обрати-

мой схемой алгоритма дискретного логарифмирования по основанию примитивного элемента

в конечном поле характеристики 2, как использование дополнительных входов схемы позво-

ляет снизить её сложность.
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5 Примеры применения обратимых схем

В данной главе будет показано применение обратимых схем при решении задачи схем-

ной реализации некоторых вычислительно асимметричных преобразований. Будет подробно

рассмотрен алгоритм дискретного логарифмирования по основанию примитивного элемента

в конечном поле характеристики 2 на примере фактор-кольца F2[x] / f(x), где f(x) — непри-

водимый многочлен, и его реализация обратимой схемой. Будет показано, как использование

дополнительных входов схемы позволяет снизить её сложность. В заключении данной главы

будет рассмотрен вопрос схемной сложности реализации алгоритма, обратного к заданному,

и будет сделана попытка объяснить разницу в схемной сложности для прямого и обратно-

го алгоритмов через необратимость и потерю части информации во время работы прямого

алгоритма.

5.1 Дискретное логарифмирование в конечном поле характеристи-

ки 2

Задачу дискретного логарифмирования в поле F можно переформулировать следу-

ющим образом: для элементов x,y ∈ F
∗ найти такое k, что y = xk, либо показать, что

такого k не существует. Значение k является значением дискретного логарифма элемента y

по основанию x: k = logx y.

Группа F
∗ является циклической ⇒ существует примитивный элемент α, такой что

F
∗ = 〈α〉. Отсюда следует, что для любого x ∈ F

∗ существует такая степень k < |F∗|, что

x = αk. Тогда задачу нахождения logx y можно свести к решению уравнения

mkx = ky (mod |F∗|) ,

где m = logx y, kx = log
α
x, ky = log

α
y. Тогда m = kyk

−1
x (mod |F∗|).

На сегодняшний день неизвестно, существует ли полиномиальный алгоритм для за-

дачи дискретного логарифмирования в общем случае [51]. Тем не менее было предложе-

но несколько алгоритмов дискретного логарифмирования с субэкспоненциальной временно́й

сложностью для группы G. Обозначим через L(N, c, a) = exp(c(logN)a(log logN)1−a), L(a) =

L(|G|, c, a), где c — некоторая константа. Алгоритм Шенкса («baby-step giant-step»), опи-

санный в работе [81], имеет временну́ю сложностью L(1/2) [51]. Алгоритм Адлемана, пред-

ставленный в работе [32], также имеет временну́ю сложность L(1/2) [43]. В нескольких рабо-

тах [33, 50, 60, 61] были представлены различные алгоритмы дискретного логарифмирования

в конечных полях с временно́й сложностью L(1/3). В работе [43] коллективом авторов был

предложен алгоритм дискретного логарифмирования в поле характеристики 2 с временно́й

сложностью L(1/3). В работе [59] был описан алгоритм дискретного логарифмирования в

полях очень малой характеристики с временно́й сложностью L(1/4 + o(1)).

Наконец, на конференции EUROCRYPT в 2014 году был предложен эвристический

квази-полиномиальный алгоритм дискретного логарифмирования в полях малой характе-
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ристики, который при определённых допущениях имеет временну́ю сложность nO(logn) [36].

Также стоит отметить, что существуют квантовые алгоритмы дискретного логарифмирова-

ния (к примеру, алгоритм Шора) с полиномиальной временно́й сложностью [85].

Однако автору не удалось найти какие-либо опубликованные результаты по реализа-

ции алгоритма дискретного логарифмирования в схеме, состоящей из классических, некван-

товых Ф.Э., и оценок сложности такой схемы.

Рассмотрим некоторые особенности решения задачи нахождения log
α
x в фактор-

кольце F2[x] / f(x), где f(x) — неприводимый многочлен степени n, являющегося полем ха-

рактеристики 2.

Мощность M мультипликативной группы этого поля равна M = |F∗
2[x] / f(x)| = 2n−1.

Поскольку M нечётно, то для любого чётного числа m = 2k существует m−1 (mod M). Отсю-

да следует, что уравнение xm = a в поле F2[x] / f(x) разрешимо для всех a ∈ F
∗
2[x] / f(x) при

чётном m, x = am−1 (mod M). Значение m−1 (mod M) можно найти, к примеру, при помощи

алгоритма Евклида.

Утверждение 5.1. Все элементы a ∈ F
∗
2[x] / f(x) являются квадратичными вычетами.

Доказательство. Поскольку 2−1 = M+1
2

(mod M), то x = a(M+1) / 2 является решением урав-

нения x2 = a в поле F2[x] / f(x).

Следствие 5.2. Для извлечения квадратного корня из a ∈ F
∗
2[x] / f(x) необходимо возвести

a в степень M+1
2

.

Для произвольного x = αk степень k можно представить в двоичном виде с n разря-

дами:

αk = α[kn...k2k1] .

При возведении в квадрат элемента x все разряды ki в двоичной записи смещаются на одну

позицию влево:

(αk)2 = α[kn...k2k10] = αkn2nα[kn−1...k2k10] .

Заметим, что 2n (mod 2n − 1) ≡ 1 (mod 2n − 1) ⇒ αkn2n = αkn. Отсюда следует равенство

(α[kn...k2k1])2 = α[kn−1...k2k1kn] . (5.1)

Другими словами, при возведении в квадрат элемента αk происходит циклический сдвиг

разрядов влево в двоичной записи степени k. Несложно показать, что при извлечении квад-

ратного корня из αk происходит циклический сдвиг вправо разрядов в двоичной записи

степени k: √
α[kn...k2k1] = α[k1kn...k3k2] . (5.2)

Рассмотрим для произвольного элемента x ∈ F
∗
2[x] / f(x) следующую последователь-

ность:

{x,x2,x4, . . . ,x2n−1} .
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Очевидно, что x2n = x, поэтому выше рассмотрено только n последовательных квадратов,

которые в общем случае все различны. Рассмотрим, при каком условии x2i = x, где i 6= n−1.

Пусть x = αk, k = [kn . . . k2k1]. Согласно формуле (5.1), при возведении в квадрат проис-

ходит циклический сдвиг разрядов в двоичной записи степени k, поэтому верно следующее

равенство:

x2i = αk′, k′ = [kn−i . . . k2k1kn . . . kn−i+1] .

Отсюда можно сделать вывод, что k′ = k ⇔ i | n и число k в двоичной записи имеет

периодическую структуру с периодом, равным i разрядов. К примеру, при n = 6 число

k = [011011] имеет период из трёх разрядов, равный [011]. Поэтому для такого значения k

элемент x = αk в кубе будет равен самому себе: x3 = x.

Введём множество R(x) для элемента x ∈ F
∗
2[x] / f(x) следующим образом:

R(x) = {x2i | 0 6 i 6 n− 1,x2i 6= x при i 6= 0 } . (5.3)

Все элементы множества R(x) различны. Зная любой элемент y ∈ R(x), можно получить

всё множество R(x) путём последовательного возведения в квадрат элемента y. Из построе-

ния (5.3) множества R(x) следует, что

m · |R(x)| = n, m ∈ N
+ . (5.4)

Другими словами, мощность множества R(x) делит n.

Таким образом, все элементы мультипликативной группы F
∗
2[x] / f(x) разбиваются на

непересекающиеся множества R(xi) с, возможно, неравными мощностями. Умножив элемент

множества R(xi) на примитивный элемент α, получим новый элемент, который либо принад-

лежит этому же множеству R(xi), либо новому R(xj).

Для элемента x = α0 = 1 множество R(x) состоит только из одного этого элемента.

Отсюда следует одно утверждение для простого n, являющееся тривиальным следствием

равенства qp−1 ≡ 1 (mod p) для q = 2, где p — простое число:

Утверждение 5.3. 2n − 2 делится нацело на n, если n — простое.

Доказательство. Докажем при помощи свойств множеств R(x). Для всех αk мощность мно-

жества R(αk) должна делить n. По условию, n простое ⇒ |R(αk)| равно либо n, либо 1.

Только для k = 0 и k = 2n − 1 мощность |R(αk)| = 1. Однако α0 = α2n−1 = 1. Отсюда

следует, что |R(αk)| = n при k 6= 0, k < 2n − 1.

Выше было показано, что все элементы мультипликативной группы F
∗
2[x] / f(x) раз-

биваются на непересекающиеся множества R(xi), из которых только R(α0) имеет мощ-

ность 1, остальные множества имеют мощность n. Мощность мультипликативной группы

|F∗
2[x] / f(x)| = 2n − 1 ⇒ | (F∗

2[x] / f(x)) \ {α0}| = 2n − 2, откуда следует исходное утвержде-

ние.
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Если вычисление степени k для некоторого x = αk происходит путём опробования

всех возможных значений k, то для поля F2[x] / f(x) в общем случае можно опробовать не

∼ 2n значений, а ∼ 2n / n: при опробовании нового значения k′ получить x′ = αk′ и n − 1

последовательных квадратов (x′)2, . . . , (x′)2
n−1

. Если среди полученных n значений будет x,

то значение k вычисляется из k′ не более чем за n шагов при помощи циклического сдвига

влево двоичной записи k′.

С другой стороны, если окажется, что среди x,x2, . . . ,x2n−1
есть повторяющиеся эле-

менты, то можно утверждать, что степень k, x = αk, обладает периодом m < n. Пусть n не

является простым числом, тогда n = ml, l ∈ N
+. В этом случае пространство перебора для

степени k сокращается до ∼ 2m /m = o(2n / n) значений. Тем не менее, количество значений

степени k, обладающих периодом m < n, ничтожно мало по сравнению с количеством всех

возможных значений степени k. Отсюда следует, что для произвольного x = αk вероятность

того, что k обладает периодом m < n, стремится к нулю.

5.2 Схемная реализация дискретного логарифмирования в конеч-

ном поле характеристики 2

В данном разделе будут рассмотрены различные способы реализации с помощью об-

ратимых схем алгоритма возведения в степень и дискретного логарифмирования в конечном

поле характеристики 2 на примере фактор-кольца F2[x] / f(x), где f(x) — неприводимый

многочлен степени n.

Без ограничения общности дальнейших рассуждений будем считать, что для непри-

водимого многочлена f(x) элемент поля α = x, α ∈ F2[x] / f(x), является примитивным,

поскольку конечные поля с одинаковым количеством элементов изоморфны друг другу.

Сформулируем прямую задачу (задачу возведения в степень).

Дано: k ∈ ZM , где M = 2n − 1, n — степень неприводимого многочлена f(x).

Получить: αk.

Сформулируем обратную задачу (задачу дискретного логарифмирования).

Дано: β ∈ F
∗
2[x] / f(x).

Получить: k ∈ ZM : αk = β, где M = 2n − 1, n — степень неприводимого многочлена f(x).

Как было показано в предыдущих главах, обратимые схемы, состоящие из элементов

E(t, I, J), задают некоторую подстановку на множестве двоичных векторов. Построим вза-

имно однозначное отображение из множества двоичных векторов Z
n
2 в множество вычетов

ZM и в множество элементов поля F2[x] / f(x).

Зададим отображение fN : Z
n
2 → Z2n следующим образом:

fN(〈v1, . . . , vn〉) =
n∑

i=1

vi2
i−1 . (5.5)

В этом случае вектор v = 〈v1, . . . , vn〉 соответствует записи [vn, . . . , v1] в двоичной системе

счисления числа
∑n

i=1 vi2
i−1.
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Зададим отображение fF : Z
n
2 → F2[x] / f(x) следующим образом:

fF(〈v1, . . . , vn〉) =
n⊕

i=1

vix
i−1 . (5.6)

В этом случае вектор v = 〈v1, . . . , vn〉 представляет собой вектор коэффициентов многочлена
⊕n

i=1 vix
i−1.

Используя эти два отображения, зададим отображение fpow : Z
n
2 → Z

n
2 следующим

образом:

fpow(v) = u : fF(u) = αfN(v), если v 6= 〈1, . . . , 1〉 . (5.7)

На входном значении v = 〈1, . . . , 1〉 значение fpow(v) явно определять не будем, т. к. в этом

случае fN(v) /∈ ZM , где M = 2n − 1, n — степень неприводимого многочлена f(x).

Также зададим отображение flog : Z
n
2 → Z

n
2 следующим образом:

flog(v) = u : fF(v) = αfN(u), если v 6= 〈0, . . . , 0〉 . (5.8)

Как и в предыдущем случае, на входном значении v = 〈0, . . . , 0〉 значение flog(v) явно опре-

делять не будем, т. к. в этом случае fF(v) /∈ F
∗
2[x] / f(x).

Тогда можно утверждать, что обратимая схема является решением прямой задачи,

если она реализует отображение fpow (5.7), и является решением обратной задачи, если она

реализует отображение flog (5.8).

Обозначим для краткости через Ω2
∗ множество всех возможных элементов NOT, CNOT

и 2-CNOT в обратимой схеме, число входов которой заранее неизвестно. Этим мы ограни-

чимся обратимыми Ф.Э., имеющими не более двух прямых контролирующих входов.

5.2.1 Схемы без дополнительной памяти

Рассмотрим сперва решение прямой задачи при помощи обратимых схем, не исполь-

зующих дополнительную память. Доопределим отображение fpow до биекции:

f ′
pow(v) =







fpow(v), если v 6= 〈1, . . . , 1〉 ,

〈0, . . . , 0〉 иначе .
(5.9)

Получившееся отображение f ′
pow является биекцией, однако оно уже не является отобра-

жением, задаваемым непосредственно функцией возведения в степень в поле F2[x] / f(x).

Это следует из того, что fN(〈1, . . . , 1〉) = 2n − 1 и α2n−1 = α0 = 1, в то время как

fF(f
′
pow(〈1, . . . , 1〉)) = 0.

Отметим, что значение отображения (f ′
pow)

−1(v) совпадает со значением отображения

flog(v) при v 6= 〈0, . . . , 0〉. Отсюда следует, что обратимая схема, задающая преобразование

f ′
pow, является решением прямой задачи и позволяет получить обратимую схему, являющую-

ся решением обратной задачи, с той же сложностью путём зеркального отображения слева

направо данной схемы.
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Данный подход позволяет оценить сверху сложность обратимой схемы, реализующей

алгоритм дискретного логарифмирования в поле F2[x] / f(x). Если построенная схема будет

иметь минимальную сложность среди всех обратимых схем, реализующих отображение flog,

то можно будет утверждать, что при данном значении n прямая и обратная задачи решаются

с одинаковой схемной сложностью.

В таблице 5.1 приведены экспериментальные результаты синтеза обратимых схем, со-

стоящих из элементов E(t, I, J) и реализующих отображение flog без использования допол-

нительной памяти при различных значениях неприводимого многочлена f(x). Обозначения:

n — степень многочлена f(x), L(S) — сложность обратимой схемы. Синтез производился при

помощи разработанного программного обеспечения, основанного на алгоритме синтеза A4.2.

Из таблицы 5.1 видно, что с ростом n сложность обратимой схемы увеличивается при-

мерно в 2 раза. Эти результаты согласуются с теоремой 4.6, при этом можно сделать вывод,

что при реализации отображения flog обратимой схемой, состоящей из элементов E(t, I, J)

и не использующей дополнительную память, описанный подход не позволяет выявить суще-

ственных отличий данного отображения от произвольного.

5.2.2 Схемы c дополнительной памятью

Согласно утверждению 4.24, для большинства булевых отображений использование в

реализующих их обратимых схемах дополнительной памяти позволяет снизить их сложность.

Для решения задачи возведения в степень k ∈ Z2n известен быстрый алгоритм, использую-

щий не более 2n умножений. В работе [93] было показано, что существует обратимая схема,

состоящая из Ф.Э. множества Ω2
∗, реализующая умножение многочленов в поле F2[x] / f(x) со

сложностью 2n2 при использовании (2n−1) дополнительных входов. Таким образом, можно

построить обратимую схему, состоящую из Ф.Э. множества Ω2
∗, решающую задачу возведе-

ния в степень (прямую задачу) в поле F2[x] / f(x) со сложностью 4n3 при использовании

(4n2 − 2n) дополнительных входов.

Как уже было сказано в предыдущем параграфе, на данный момент неизвестно, су-

ществует ли полиномиальный алгоритм решения задачи дискретного логарифмирования в

общем случае. Тем не менее представляется интересным исследование снижения сложности

обратимой схемы, являющейся решением обратной задачи, за счёт использования дополни-

тельной памяти.

Отображение flog можно представить в виде совокупности n независимых координат-

ных функций f
(i)
log : Z

n
2 → Z2. Один из способов реализации таких функций при помощи об-

ратимых схем с дополнительной памятью использовался в алгоритме A5.2. Однако если мы

допускаем, что обратимые схемы могут состоять не только из Ф.Э. множества Ω2
∗, но и обоб-

щённых элементов E(t, I, J), то можно предложить второй способ реализации указанных

координатных функций, который в некоторых случаях даёт меньшую сложность.

В параграфе 3.5.1 был описан способ снижения сложности обратимой схемы, основан-
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n f(x) α L(S) L(S∗) n3

2 x2 + x+ 1 x 3 3 8

3 x3 + x+ 1 x 6 7 27

3 x3 + x2 + 1 x 8 7 27

4 x4 + x+ 1 x 23 18 64

4 x4 + x3 + x2 + x+ 1 x+ 1 18 15 64

4 x4 + x3 + 1 x 22 17 64

5 x5 + x2 + 1 x 53 41 125

5 x5 + x4 + x3 + x2 + 1 x 53 42 125

5 x5 + x4 + x2 + x+ 1 x 55 37 125

5 x5 + x3 + x2 + x+ 1 x 60 41 125

6 x6 + x+ 1 x 178 85 216

6 x6 + x4 + x2 + x+ 1 x+ 1 168 91 216

6 x6 + x5 + x2 + x+ 1 x 156 85 216

6 x6 + x3 + 1 x+ 1 145 90 216

7 x7 + x+ 1 x 415 184 343

7 x7 + x3 + 1 x 407 190 343

7 x7 + x5 + x2 + x+ 1 x 400 191 343

7 x7 + x6 + x4 + x+ 1 x 358 191 343

8 x8 + x4 + x3 + x2 + 1 x 951 422 512

8 x8 + x6 + x5 + x2 + 1 x 987 417 512

8 x8 + x7 + x6 + x+ 1 x 1019 414 512

8 x8 + x6 + x3 + x2 + 1 x 943 401 512

9 x9 + x4 + 1 x 2698 858 729

9 x9 + x8 + x4 + x+ 1 x 2691 873 729

9 x9 + x8 + 1 x2 + x+ 1 2780 892 729

9 x9 + x7 + x6 + x4 + 1 x 2679 849 729

10 x10 + x3 + 1 x 6312 1840 1000

10 x10 + x9 + x5 + x+ 1 x+ 1 6419 1873 1000

10 x10 + x6 + x2 + x+ 1 x+ 1 6437 1858 1000

10 x10 + x8 + x7 + x6 + 1 x2 + x+ 1 6289 1847 1000

11 x11 + x2 + 1 x 14659 3947 1331

11 x11 + x5 + x3 + x+ 1 x 14429 3952 1331

11 x11 + x7 + x6 + x5 + 1 x 14636 3941 1331

11 x11 + x7 + x5 + x3 + 1 x 14559 3921 1331

Таблица 5.1 Сложность L(S) и L(S∗) обратимых схем, состоящих из элементов E(t, I, J) и

реализующих отображение flog без использования и с использованием дополнительной памяти

соответственно при различных значениях неприводимого многочлена f(x).

ный на поиске грани булева куба. Множество двоичных векторов vj , для которых f
(i)
log(vj) = 1,

можно разбить на непересекающиеся подмножества, каждое из которых будет представлять

собой грань булева куба. Реализуя каждое из этих подмножеств с помощью обратимых эле-
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ментов E(t, I, J) (см. параграф 3.5.1), можно построить обратимую подсхему, реализующую

координатную функцию f
(i)
log. Объединив эти обратимые подсхемы для всех координатных

функций, мы получим обратимую схему, реализующую отображение flog. В результате будет

использовано всего n дополнительных входов (по количеству координатных функций).

Экспериментальные результаты синтеза обратимых схем при помощи разработанного

программного обеспечения, основанного на данном подходе, приведены в таблице 5.1. Обо-

значения: n — степень многочлена f(x), L(S∗) — сложность обратимой схемы, использующей

дополнительную память.

Из таблицы 5.1 видно, что с ростом n сложность обратимой схемы, использующей

дополнительную память, увеличивается примерно в 2 раза. При этом величина сложности

растёт медленней по сравнению с обратимыми схемами, не использующими дополнительную

память. Эти результаты согласуются с теоремой 4.11, при этом можно сделать вывод, что при

реализации отображения flog обратимой схемой, состоящей из элементов E(t, I, J) и исполь-

зующей дополнительную память, описанный подход не позволяет выявить существенных

отличий данного отображения от произвольного. Также стоит отметить, что предложенный

способ синтеза обратимых схем с дополнительной памятью при помощи поиска граней бу-

лева куба хоть и не позволяет во всех случаях снизить сложность, но даёт возможность

получить обратимую схему, использующую всего n дополнительных входов. Такое количе-

ство дополнительных входов намного меньше, чем количество q ∼ n2n−o(n) дополнительных

входов обратимой схемы, полученной при помощи алгоритма синтеза A5.2 обратимых схем

с дополнительной памятью, описанного на с. 96.

Использование свойства циклического сдвига при возведении в квадрат

В разделе 5.1 на с. 124 было показано, что для решения обратной задачи (задачи

дискретного логарифмирования) в поле F2[x] / f(x) можно перебирать не все 2n возможных

значений для степени, а только некоторые 2n / n значений. Можно воспользоваться этим

свойством для снижения сложности обратимой схемы, являющейся решением данной задачи.

Рассмотрим произвольный элемент x ∈ F
∗
2[x] / f(x), x = αk. На с. 123 мы ввели мно-

жество R(x) различных элементов из F
∗
2[x] / f(x) следующего вида:

R(x) = {x2i | 0 6 i 6 n− 1,x2i 6= x при i 6= 0 } .

В большинстве случаев мощность этого множества равна n. Если степень n неприводимого

многочлена f(x) — простое число, то только для x′ = 1 верно равенство |R(x′)| = 1, для всех

оставшися 2n − 2 элементов множества F
∗
2[x] / f(x) мощность |R(x)| = n.

Для различных элементов множества R(x) можно построить такие же множества.

Очевидно, что все такие множества будут равны между собой:

R(x) = R(x2i) .

Для каждого из различных множеств R(x) зафиксируем ровно один элемент из него d ∈ R(x).

Назовём этот элемент d представителем множества R(x).
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Введём отображение g : Zn
2 → Z

n
2 следующим образом:

g(v) = u : αfN(u) = d, где d — представитель множества R(fF(v)) . (5.10)

Другими словами, отображение g является решением задачи дискретного логарифмирования

не для самого элемента fF(v), а для представителя d множества R(fF(v)). В зависимости от

выбора представителей множеств R(x) будет меняться соответствующим образом и таблица

истинности для отображения g. Причём в отличие от таблицы истинности для отображения

flog, в этой таблице будет примерно в n раз меньше различных значений, что предположи-

тельно может позволить снизить сложность обратимой схемы, реализующей отображение g.

Обозначим эту схему и её сложность через S1 и L(S1) соответственно.

Зная представитель d множества R(x) и степень kd, для которой верно равенство

αkd = d, можно относительно просто узнать для любого элемента y ∈ R(x) степень ky,

для которой верно равенство αky = y. Рассмотрим, какова сложность обратимой схемы

S2, решающей данную задачу. Как было сказано в начале этого параграфа на с. 126, для

возведения α в степень kd требуется не более 4n3 обратимых Ф.Э. Оставшаяся часть схемы

представляет из себя n почти одинаковых частей, которые делают следующее: сравнивают

текущий результат y′ с входным значением y и, если результат совпадает, применяют к kd

циклический сдвиг на определённую величину и копируют это значение на выходы схемы; в

конце возводят текущий результат y′ в квадрат и передают его на вход следующей подсхеме.

Циклический свдиг делается на величину, равную порядку подсхемы в схеме минус 1: первая

подсхема не делает циклический сдвиг, вторая делает циклический сдвиг на 1, третья — на

2 и т. д.

Сравнение двух двоичных векторов длины n можно реализовать при помощи (2n+1)

элементов E(t, I, J): соответствующие координаты двух векторов копируются при помощи

элементов CNOT на отдельный выход в схеме, получается функция сложения по модулю 2

этих координат; затем при помощи одного элемента E(t, I, I), где множество I равно мно-

жеству тех выходов, которые были получены на предыдущем шаге, получается значение на

выходе t, равное 1, если два входных вектора совпадают по всем координатам, и 0 иначе.

Копирование степени kd на выходы схемы с циклическим сдвигом на любую величину

можно сделать при помощи n элементов 2-CNOT, у которых в качестве одного из контро-

лирующих входов будет вход t, полученный на предыдущем шаге. И, наконец, возведение в

квадрат текущего результата y′ можно реализовать при помощи 2n2 обратимых элементов,

как было показано в начале этого параграфа на с. 126.

Таким образом, суммарная сложность рассматриваемой обратимой схемы будет равна

L(S2) = 4n3 + n(2n + 1 + n+ 2n2) = 6n3 + 3n2 + n . (5.11)

Объединяя две рассмотренные схемы S1 и S2 в одну, можно получить обратимую

схему S, являющуюся решением обратной задачи (задачи дискретного логарифмирования).
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Её сложность L(S) будет равна

L(S) = L(S1) + 6n3 + 3n2 + n . (5.12)

Таким образом, чтобы описанный подход позволил снизить сложность обратимой схемы,

сложность L(S1) должна удовлетворять неравенству

L(S1) < L(S∗)− 6n3 − 3n2 − n , (5.13)

где S
∗ — обратимая схема, являющаяся решением обратной задачи, полученная при помощи

алгоритма синтеза по таблице истинности, описанного в начале данного параграфа.

В таблице 5.2 приведены экспериментальные результаты синтеза обратимых схем, со-

стоящих из элементов E(t, I, J) и реализующих отображение g (5.10) при различных значени-

ях неприводимого многочлена f(x) и различном выборе представителей di множеств R(xi).

Обозначения: n — степень многочлена f(x); L(S∗) — сложность обратимой схемы, реализу-

ющей отображение flog (5.8), взято из таблицы 5.1; L(S1) — сложность обратимой схемы,

реализующей отображение g (5.10); σ — отношение L(S∗) к минимальному из полученных

во время экспериментов значению L(S1). Синтез производился при помощи разработанного

программного обеспечения, основанного на алгоритме поиска граней булева куба (см. с. 128).

Для каждого элемента yj каждого из множеств R(xi) можно найти соответствующую

степень kj , такую что αkj = yj . Для одного множества R(xi) все степени kj, соответствующие

его элементам, представляют собой циклический сдвиг друг друга, поэтому вес Хэмминга

у них одинаковый. Во время проведения эксперимента выбор представителя di множества

R(xi) производился одним из следующих способов:

1. представитель с наименьшим значением kj (колонка kmin в таблице 5.2);

2. представитель с наибольшим значением kj (колонка kmax в таблице 5.2);

3. степень kj и все элементы множества R(xi) представляются в виде двоичных векто-

ров длины n; выбирается представитель, для которого минимальна сумма расстояний

Хемминга между вектором, представляющим kj, и векторами, представляющими все

элементы множества R(xi) (колонка kdist в таблице 5.2);

4. случайный представитель.

Было произведено 5 различных экспериментов с выбором случайного представителя di мно-

жества R(xi). В таблице 5.2 приведены результаты трёх таких экспериментов: когда полу-

чалась минимальная сложность L(S1) (колонка r1), когда получалась максимальная слож-

ность L(S1) (колонка r3), и один из экспериментов, при котором получалось промежуточное

значение L(S1) (колонка r2).

Из данных таблицы 5.2 видно, что наименьшая сложность L(S1) синтезированной

схемы получалась при выборе представителя с минимальной/максимальной степенью среди
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n f(x) L(S∗)
L(S1)

σ
kmin kmax kdist r1 r2 r3

2 x2 + x+ 1 3 3 3 3 3 3 3 1

3 x3 + x+ 1 7 5 5 5 5 5 5 1,4

3 x3 + x2 + 1 7 7 7 7 7 10 10 1

4 x4 + x+ 1 18 8 8 12 9 11 13 2,25

4 x4 + x3 + x2 + x+ 1 15 11 11 16 11 13 16 1,36

4 x4 + x3 + 1 17 11 11 11 11 13 18 1,55

5 x5 + x2 + 1 41 23 23 33 30 32 36 1,78

5 x5 + x4 + x3 + x2 + 1 42 29 29 45 38 45 50 1,45

5 x5 + x4 + x2 + x+ 1 37 26 26 29 28 33 38 1,42

5 x5 + x3 + x2 + x+ 1 41 22 22 27 25 31 36 1,86

6 x6 + x+ 1 85 50 51 60 73 75 88 1,7

6 x6 + x4 + x2 + x+ 1 91 48 50 64 62 66 69 1,9

6 x6 + x5 + x2 + x+ 1 85 57 56 80 73 81 88 1,52

6 x6 + x3 + 1 90 54 40 57 51 62 73 2,25

7 x7 + x+ 1 184 124 119 138 149 157 169 1,55

7 x7 + x3 + 1 190 119 119 128 159 160 172 1,6

7 x7 + x5 + x2 + x+ 1 191 128 117 146 155 168 179 1,63

7 x7 + x6 + x4 + x+ 1 191 123 108 169 169 179 189 1,77

8 x8 + x4 + x3 + x2 + 1 422 276 265 341 353 370 394 1,59

8 x8 + x6 + x5 + x2 + 1 417 273 260 378 375 389 403 1,6

8 x8 + x7 + x6 + x+ 1 414 279 272 358 369 385 415 1,52

8 x8 + x6 + x3 + x2 + 1 401 261 257 357 376 384 395 1,56

9 x9 + x4 + 1 858 600 598 795 839 857 874 1,43

9 x9 + x8 + x4 + x+ 1 873 595 609 814 836 845 850 1,47

9 x9 + x8 + 1 892 584 596 780 826 858 889 1,53

9 x9 + x7 + x6 + x4 + 1 849 618 605 775 828 849 886 1,4

10 x10 + x3 + 1 1840 1334 1311 1549 1797 1812 1838 1,4

10 x10 + x9 + x5 + x+ 1 1873 1339 1331 1763 1792 1828 1834 1,41

10 x10 + x6 + x2 + x+ 1 1858 1312 1288 1587 1789 1828 1845 1,44

10 x10 + x8 + x7 + x6 + 1 1847 1332 1305 1650 1820 1841 1872 1,42

11 x11 + x2 + 1 3947 2850 2891 3703 3849 3881 3910 1,38

11 x11 + x5 + x3 + x+ 1 3952 2856 2841 3444 3837 3881 3940 1,39

11 x11 + x7 + x6 + x5 + 1 3941 2882 2881 3591 3877 3900 3945 1,37

11 x11 + x7 + x5 + x3 + 1 3921 2823 2864 3396 3830 3890 3943 1,39

Таблица 5.2 Сравнение сложностей L(S∗) и L(S1) обратимых схем, состоящих из элементов

E(t, I, J) и реализующих отображение flog (5.8) и g (5.10) соответственно, при различном выборе

представителей di множеств R(xi): kmin — представитель с минимальной степенью; kmax — с

максимальной степенью; kdist — степень представителя имеет минимальное расстояние Хемминга

до векторов всех элементов R(xi); r1, r2, r3 — случайные представители (по возрастанию

сложности); σ = L(S∗) /minL(S1).
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возможных. При этом значение σ = L(S∗) /L(S1) колебалось от 1, 37 до 2, 25. Если пред-

положить, что при растущем значении n величина L(S∗) = 2n и что σ > 1, 35, то по нера-

венству (5.13) можно подсчитать, после какого значения n предложенный подход позволяет

снизить сложность:

2n

1, 35
< 2n − 6n3 − 3n2 − n ,

1, 35(6n3 + 3n2 + n) < 0, 35 · 2n ⇒ n > 17 .

Другими словами, при n > 17 предложенный подход по синтезу обратимой схемы, являющей-

ся решением обратной задачи (задачи дискретного логарифмирования) в поле F2[x] / f(x),

позволяет снизить сложность этой схемы в 1, 35 раза или больше по сравнению с обрати-

мой схемой, синтезированной по таблице истинности способом, описанным в начале парагра-

фа 5.2.2, при условии сохранения указанных выше темпов роста величин L(S∗) и L(S1).

5.2.3 Верхняя асимптотическая оценка сложности

Согласно теореме 4.10, отображение flog : Z
n
2 → Z

n
2 , которое мы ввели на с. 125, может

быть реализовано обратимой схемой Slog, состоящей из Ф.Э. множества Ω2
∗, со сложностью

L(Slog) . 2n. Это простейшая верхняя асимптотическая оценка сложности обратимой схемы,

реализующей алгоритм дискретного логарифмирования в поле F2[x] / f(x).

Однако в данной оценке сложности схемы не учитывается, что существует полиноми-

альный алгоритм возведения в степень в поле, и при синтезе обратимой схемы с указанной

выше сложностью работа бы велась, как с произвольным булевым отображением Z
n
2 → Z

n
2 .

Покажем, что верхнюю асимптотическую оценку сложности обратимой схемы Slog можно

снизить, если за основу взять схему, реализующую алгоритм возведения в степень в поле

F2[x] / f(x).

Теорема 5.4. Существует обратимая схема Slog, состоящая из Ф.Э. множества Ω2
n+q

и реализующая отображение flog со сложностью L(Slog) .
2n+1·log2 n

n
при использовании

Q(Slog) ∼ 2n−⌈n /φ(n)⌉+2 · log2 n дополнительных входов, где φ(n) и ψ(n) — любые сколь угодно

медленно растущие функции такие, что φ(n) 6 n /(log2 n+ log2 ψ(n)).

Доказательство. Введём пары множеств Ai и Bi при 1 6 i 6 n следующим образом:

A1 = { 1 } ,
Ai = Ai−1 ∪ Bi−1 ,

Bi = {α2i−1

x | x ∈ Ai } .

При таком построении видно, что Ai ∩Bi = ∅ при i < n. Следовательно, |Ai| = 2i−1 для всех

значений 1 6 i 6 n.

Отметим, что множество Ai можно трактовать, как множество всех элементов αki,

где ki ∈ Z2i−1 . Множество Bi содержит все элементы множества Ai, домноженные на α2i−1
.
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Введём характеристическую функцию φX : F
∗
2[x] / f(x) → Z2 на множестве X следую-

щим образом:

φX(x) =







1, если x ∈ X ,

0 иначе .

Теперь мы можем описать принцип работы алгоритма дискретного логарифмирования

в поле F2[x] / f(x), работающего за n шагов, взяв за основу известный нам полиномиальный

алгоритм возведения в степень. Обозначим этот алгоритм через Alog.

Для входного значения x ∈ F
∗
2[x] / f(x) выполняем следующие действия:

1. Определить начальные значения: i = n, xi = x.

2. Вычислить значение функции φAi
(xi) = φi.

3. Вычислить новое значение xi−1:

xi−1 =







α−2i−1
xi, если φi = 1 ,

xi иначе .

4. Уменьшить значение i на 1.

5. Если i = 0, закончить работу. Иначе перейти к шагу 2.

В конце работы этого алгоритма степень k = [φnφn−1 . . . φ2φ1] (квадратные скобки означают

запись в двоичной системе счисления) будет решением уравнения x = αk.

Осталось показать, что алгоритм Alog можно реализовать с помощью обратимой схе-

мы, состоящей из Ф.Э. множества Ω2
∗, с указанными в условии теоремы сложностью и коли-

чеством дополнительных входов.

Шаги 2–5 данного алгоритма будут повторены ровно n раз. Сложность всей схемы

L(Slog) будет складываться из суммарной сложности 2-го и 3-го шагов алгоритма L2 и L3

соответственно:

L(Slog) = L2 + L3 . (5.14)

Остальные шаги (4 и 5) реализуются без использования дополнительных Ф.Э. при помощи

n подсхем, реализующих шаги 2 и 3.

Значения элементов α−2n−1
, . . . ,α−2 для 3-го шага алгоритма можно вычислить зара-

нее. Умножение α−2i−1
на xi можно реализовать при помощи 2n2 Ф.Э. множества Ω2

∗ при

использовании (2n−1) дополнительных входов [93]. Выбор значения xi−1 на этом шаге можно

реализовать при помощи (2n + 1) элементов NOT и CNOT при использовании n дополни-

тельных входов. К примеру, на рис. 5.1 показана обратимая подсхема, реализующая такой

выбор при n = 3. Следовательно, суммарная сложность шага 3 равна

L3 = n(2n2 + 2n + 1) ∼ 2n3 ,
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hi

α
−2

i−1

xi

xi

0

hi

xi−10

0

Рис. 5.1 Реализация шага 3 алгоритма Alog с помощью обратимых элементов NOT и 2-CNOT при

n = 3.

а суммарное количество использованных дополнительных входов на этом шаге равно

q3 = n(2n− 1 + n) ∼ 3n2 .

Сложность 2-го шага алгоритма L2 зависит от сложности обратимой схемы, вычисля-

ющей значение φi. Обозначим эту сложность через Lφi
. Тогда верно равенство

L2 =
n∑

i=1

Lφi
.

Каждой из функций φAi
: F∗

2[x] / f(x) → Z2 можно поставить в соответствие булеву

функцию fi : Z
n
2 → Z2, такую что φAi

(x) = fi(v), v ∈ Z
n
2 — вектор коэффициентов многочлена

x ∈ F
∗
2[x] / f(x), fF(v) = x.

Согласно теореме 4.13, булеву функцию fi можно реализовать с помощью обратимой

подсхемы, состоящей из Ф.Э. множества Ω2
∗, со сложностью L . 2n / n при использовании

q ∼ 2n−⌈n /φ(n)⌉+1 дополнительных входов (см. начало данного параграфа), где φ(n) и ψ(n) —

любые сколь угодно медленно растущие функции такие, что φ(n) 6 n /(log2 n + log2 ψ(n)).

Таким образом,

Lφi
. 2n / n , (5.15)

qφi
∼ 2n−⌈n/φ(n)⌉+1 .

С другой стороны, функцию fi можно реализовать, используя аналог СДНФ, в кото-

ром дизъюнкции заменены на сложение по модулю 2:

fi(〈v1, . . . , vn〉) =
⊕

a1,...,an∈Z2

fi(〈a1,...,an〉)=1

va11 ∧ . . . ∧ vann .

Каждая из конъюнкций va11 ∧ . . . ∧ vann реализуется одним элементом E(t, I, J). Этот Ф.Э.

может быть выражен в виде композиции не более 2n элементов NOT для инверсии контро-

лирующих входов и не более (2n−3) элементов 2-CNOT для замены одного элемента n-CNOT
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(см. рис. 4.3). При этом используется всего (n − 2) дополнительных входов. Таким образом,

при реализации функции fi верны следующие соотношения:

Lφi
6 (4n− 3)|fi| ,
qφi

= n− 2 ,

где |fi| — вес вектора значений функции fi. На рис. 5.2 приведён пример реализации с помо-

щью обратимой схемы функции g(〈v1, v2, v3〉) = v01 ∧ v2 ∧ v03 ⊕ v1 ∧ v02 ∧ v3.

v1

v2

v3

0
0

0
g(〈v1, v2, v3〉)

v1

v2

v3

Рис. 5.2 Реализация функции g(〈v1, v2, v3〉) = v01 ∧ v2 ∧ v03 ⊕ v1 ∧ v02 ∧ v3 с помощью обратимых

элементов NOT и 2-CNOT.

В начале доказательства было показано, что |Ai| = 2i−1 для всех значений i от 1 до

n, следовательно, вес вектора значений функции fi равен |fi| = 2i−1. Отсюда следует, что

величины Lφi
и qφi

ограничены следующим образом:

Lφi
6 (4n− 3)2i−1 , (5.16)

qφi
= n− 2 .

Оценим, при каких значениях i величина Lφi
по формуле (5.16) будет не больше, чем

по формуле (5.15):

(4n− 3)2i−1 6 2n / n⇒ i 6 n− 2 log2 n .

Теперь можно оценить величину L2. Пусть k = n− 2 log2 n, тогда

L2 =
n∑

i=1

Lφi
.

k∑

i=1

(4n− 3)2i−1 +
n∑

i=k+1

2n

n
,

L2 . 4n2k + (n− k)
2n

n
=

2n+2

n
+

2n+1 · log2 n
n

.
2n+1 · log2 n

n
.

Аналогичным образом можно оценить количество использованных дополнительных входов:

q2 =
n∑

i=1

qφi
∼

k∑

i=1

(n− 2) +
n∑

i=k+1

2n−⌈n/φ(n)⌉+1 ,

q2 ∼ k(n− 2) + (n− k)2n−⌈n/φ(n)⌉+1 ∼ 2n−⌈n/φ(n)⌉+2 · log2 n .

Таким образом, мы получаем следующие оценки:

L(Slog) = L2 + L3 .
2n+1 · log2 n

n
+ 2n3 ∼ 2n+1 · log2 n

n
,

Q(Slog) = q2 + q3 ∼ 2n−⌈n/φ(n)⌉+2 · log2 n + 3n2 ∼ 2n−⌈n /φ(n)⌉+2 · log2 n .
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Данная верхняя асимптотическая оценка сложности (2n+1 · log2 n) / n намного выше,

чем самая лучшая асимптотическая оценка временно́й сложности O(nlog2 n) алгоритма дис-

кретного логарифмирования в поле F2[x] / f(x), известная на данный момент [36]. При этом

не представляется возможным реализовать с такой же или с любой другой субъэкспонен-

циальной сложностью алгоритм из работы [36], т. к. в указанном алгоритме используются

эвристические и вероятностные подходы, сложно реализуемые в схеме из обратимых Ф.Э.

5.3 Вопрос схемной сложности реализации алгоритма, обратного к

заданному

В работе [93] был описан способ построения обратимой схемы, состоящей из Ф.Э. мно-

жества Ω2
∗ и реализующей двоичный сумматор без порождения вычислительного мусора на

своих незначимых выходах. Такая схема позволила авторам оценить временны́е сложности

алгоритмов сложения и вычитания, которые оказались линейными от n, через оценку слож-

ности обратимой схемы.

В работе [93] также был описан подход к построению обратимой схемы, состоящей

из Ф.Э. множества Ω2
∗ и реализующей умножение многочленов в поле F2[x] / f(x) без по-

рождения вычислительного мусора на своих незначимых выходах. Как и в предыдущем

случае, такая схема позволила оценить временны́е сложности алгоритмов умножения и деле-

ния многочленов в поле F2[x] / f(x), которые оказались полиномиальными от n, через оценку

сложности обратимой схемы.

В то же время мы имеем алгоритм возведения в степень примитивного элемента α в

поле F2[x] / f(x) с полиномиальной временно́й сложностью, который также можно реализо-

вать с помощью обратимой схемы, использующей дополнительную память и состоящей из

Ф.Э. множества Ω2
∗, с полиномиальной сложностью. Однако для алгоритма дискретного ло-

гарифмирования, находящего для заданного x ∈ F
∗
2[x] / f(x) степень k, такую что αk = x в

поле F2[x] / f(x), неизвестно о существовании алгоритма с полиномиальной временно́й слож-

ностью [36] или о существовании реализующей его обратимой схемы с полиномиальной слож-

ностью.

Возникает вопрос: почему в одних случаях прямой и обратный алгоритм имеют при

реализации обратимой схемой сложности с одинаковой степенью роста (линейной или поли-

номиальной), и это можно доказать, а в других случаях не удаётся реализовать обратимой

схемой алгоритм, обратный к заданному, со сложностью, имеющей ту же степень роста?

Гипотеза 5.5. Обратимая схема, реализующая алгоритм, обратный к заданному, имеет

сложность с бо́льшей на порядок степенью роста по отношению к сложности обратимой

схемы, реализующей прямой алгоритм, если при переходе от прямого алгоритма к обрат-

ному теряется какая-то часть информации.

Рассмотрим на примерах, на чём основана данная гипотеза:
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1. Сложение.

Пусть необходимо сложить два элемента a и b какого-либо кольца K. Алгоритм сложе-

ния можно описать отображением fsum : K ×K → K ×K:

fsum(a, b) = (a, b+ a) .

Тогда обратное к нему отображение f−1
sum : K × K → K × K будет ничем иным, как

отображением fsub, описывающим алгоритм вычитания:

f−1
sum(a, b+ a) = fsub(a, b+ a) = (a, (b+ a)− a) = (a, b) .

Как видно, прямое и обратное преобразования fsum и fsub являются, во-первых, об-

ратимыми, во-вторых, множество входных и выходных значений у них совпадают, а

в-третьих, обратное преобразование есть по сути то же сложение, только с обратным

относительно операции сложения элементом: c− a = c+ (−a).

2. Умножение.

Пусть необходимо умножить два ненулевых элемента a и b какой-либо группы H . Ал-

горитм умножения можно описать отображением fmul : H ×H → H ×H :

fmul(a, b) = (a, b ∗ a) при a 6= 0, b 6= 0 .

Тогда обратное к нему отображение f−1
mul : H × H → H × H будет ничем иным, как

отображением fdiv, описывающим алгоритм деления:

f−1
mul(a, b ∗ a) = fdiv(a, b ∗ a) = (a, (b ∗ a) / a) = (a, b) .

Как и в предыдущем случае, прямое и обратное преобразования fmul и fdiv являются,

во-первых, обратимыми, во-вторых, множество входных и выходных значений у них

совпадают, а в-третьих, обратное преобразование есть по сути то же умножение, только

с обратным относительно операции умножения элементом: c / a = c ∗ a−1.

3. Возведение в степень.

Пусть необходимо возвести в степень n ненулевой элемент a какой-либо группы H .

Алгоритм возведения в степень можно описать отображением fpow : N×H → N×H :

fpow(n, a) = (n, 1 ∗ a ∗ . . . ∗ a
︸ ︷︷ ︸

n

) при a 6= 0 .

Однако алгоритм дискретного логарифмирования, который можно описать отображе-

нием flog : H ×H → N×H , не является обратным к данному:

flog(b, a) = (n, a), где fpow(n, a) = (n, b) .
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Это следует из того, что множество входных и выходных значений у отображений fpow

и flog не совпадают.

Также стоит отметить, что для конечной группы H верно равенство

fpow(n, a) = fpow(k · |H|+ n, a), где k ∈ N .

В то же время для пары ненулевых элементов a, b ∈ H отображение flog даёт всего

лишь одну степень n, для которой fpow(n, a) = (n, b), а не целое множество степеней

вида n+ k · |H|.

Однако если рассмотреть алгоритм извлечения корня n-й степени, описываемый отоб-

ражением froot : N×H → N×H следующего вида:

froot(n, a
n) = (n, n

√
an) = (n, a) при a 6= 0 ,

то он как раз и будет обратным к алгоритму возведения в степень: f−1
pow = froot. Эти

два преобразования являются, во-первых, обратимыми, во-вторых, множество входных

и выходных значений у них совпадают, а в-третьих, обратное преобразование есть по

сути то же возведение в степень, только с обратным относительно операции возведения

в степень элементом:
n
√
b = bn

−1
.

На с. 125 мы задали преобразование flog : Z
n
2 → Z

n
2 и ввели два отображения: одно

для отображения степени n в двоичный вектор N → Z
n
2 и для отображения элемента поля

x ∈ F2[x] / f(x) в двоичный вектор F
∗
2[x] / f(x) → Z

n
2 . Именно на данном этапе при переходе от

прямого алгоритма (алгоритма возведения в степень) к обратному (алгоритму дискретного

логарифмирования) произошла потеря информации о том, что для любой степени n ∈ N

существует обратимая схема, реализующая алгоритм возведения в степень со сложностью

не более 4(log2 n)
3. Рассматриваемое отображение flog : Z

n
2 → Z

n
2 было ограничено только

степенями n ∈ Z2n−1. Тем самым синтез обратимой схемы, реализующей это отображение,

перестал отличаться от синтеза обратимой схемы, реализующей произвольное отображение

Z
n
2 → Z

n
2 .

Доказательство верхней асимптотической оценки (2n+1 · log2 n) / n в теореме 5.4 ясно

показывает на примере, что не удаётся построить обратимую схему, реализующую алгоритм,

обратный к алгоритму возведения в степень, используя обратимую схему для прямого алго-

ритма, без увеличения сложности обратимой схемы на несколько порядков. Прямой алгоритм

принимает значения степени из множества N, а обратный алгоритм выдаёт в качестве ответа

степень из ограниченного множества Z2n . Выдвинутая гипотеза 5.5 заключается в том, что

такое увеличение сложности является следствием потери информации о прямом алгоритме —

следствием перехода из N в Z2n .

С другой стороны, для алгоритма извлечения корня n-й степени такого ограничения

множества входных/выходных значений не происходит, информация не теряется, поэтому
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данный алгоритм, как и алгоритм возведения в степень, тоже должен реализовываться об-

ратимой схемой с полиномиальной сложностью. По крайней мере, это выполняется для вре-

менно́й сложности данных алгоритмов: для степени корня n достаточно найти такую степень

k, что nk ≡ 1 (mod |H|), где |H| — порядок группы. Другими словами, k ≡ n−1 (mod |H|).
К примеру, данная степень k может быть найдена при помощи расширенного алгоритма Ев-

клида, имеющего полиномиальную сложность. В итоге, при извлечении корня n-й степени

из элемента b сначала ищется степень k ≡ n−1 (mod |H|) за полиномиальное время, а затем

b возводится в степень k также за полиномиальное время.

Рассмотрим общую схему для отображения f : H×G→ H×G, где H и G — некоторые

группы. Пусть данное отображение при помощи опреации ∗ переводит пару (h, g) в некоторую

новую пару (h, g′) следующим образом:

f(h, g) = (h, g ∗ h), g′ = g ∗ h .

Тогда обратное к данному преобразование f−1 будет выглядеть следующим образом:

f−1(h, g′) = (h, g′ ∗ finv(h)) и f−1(f(h, g)) = (h, g) ,

где finv(h) — функция обращения элемента h ∈ H относительно операции ∗.
Видно, что сложность L(Sf−1) обратимой схемы, реализующей отображение f−1, бу-

дет больше сложности L(Sf) обратимой схемы, реализующей отображение f , на величину

L(Sfinv), равную сложности обратимой схемы, реализующей отображение finv.

Если L(Sfinv) и L(Sf ) имеют одинаковый порядок роста, то и L(Sf−1) и L(Sf)

будут иметь одинаковый порядок роста (линейный, полиномиальный, экспоненциальный).

Примерами таких обратимых схем могут быть схемы, реализующие алгоритмы сложе-

ния/вычитания и умножения/деления элементов в группе (см. с. 137), а также схемы, реали-

зующие алгоритм возведения в степень k и извлечения корня k-й степени из элементов груп-

пы, k ∈ Z2n . Если же будет доказано, что L(Sf) = o(L(Sfinv)), то тогда L(Sf) = o(L(Sf−1)).
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Заключение

В связи с тепловыми потерями во время вычислительного процесса, вызванными необ-

ратимостью производимых операций, обратимость вычислений, по-видимому, станет в бли-

жайшем будущем одним из главных требований, предъявляемых к синтезу управляющих си-

стем. С другой стороны, обратимость является неотъемлемой частью, к примеру, квантовых

вычислений. Следовательно, уже сейчас необходимо развивать и улучшать существующий

математический базис для синтеза компактных обратимых схем с малым числом входов.

В данной диссертационной работе были рассмотрены существующие переборные и

непереборные алгоритмы синтеза обратимых схем, состоящих из элементов NOT, CNOT и

2-CNOT. Предложен новый быстрый и эффективный алгоритм синтеза обратимой схемы,

задающей подстановку на множестве Z
n
2 с малым числом подвижных точек. Предложены

различные эквивалентные замены композиций обратимых Ф.Э., описан алгоритм снижения

сложности обратимой схемы, использующий данные замены. Также были рассмотрены раз-

личные методы снижения сложности обратимой схемы на этапе её синтеза и показана эффек-

тивность этих методов на практике. Доказаны асимптотические верхние и нижние оценки

сложности, глубины и квантового веса обратимых схем, состоящих из элементов NOT, CNOT

и 2-CNOT. Показано, что использование дополнительных входов в таких схемах почти все-

гда позволяет существенно снизить их сложность, глубину и квантовый вес, в отличие от

классических схем, состоящих из необратимых Ф.Э. Снижение сложности обратимой схемы

за счёт использования дополнительных входов было также показано на примере реализации

алгоритма дискретного логарифмирования в конечном поле характеристики 2.

Однако в виду ограниченного времени не были рассмотрены некоторые вопросы, пред-

ставляющие научный интерес для дальнейших исследований. Одним из таких вопросов яв-

ляется улучшение нижней оценки глубины D(n, q) обратимой схемы, состоящей из элементов

NOT, CNOT и 2-CNOT. В настоящей работе эта оценка была получена из нижней оценки

сложности обратимой схемы S при помощи простого соотношения D(S) > L(S) /n, где

n — количество входов схемы. Тем не менее, можно попытаться посчитать количество неэк-

вивалентных обратимых схем заданной глубины. Если это будет сделано, то можно будет

применить мощностной метод Риордана–Шеннона и, предположительно, улучшить нижнюю

оценку для D(n, q).

Вторым направлением дальнейших исследований является поиск асимптотически оп-

тимального метода синтеза обратимых схем без дополнительной памяти. В доказанной в

настоящей работе верхней оценке L(n, 0) участвует константа 3 · 24. Её можно попытаться

снизить либо модифицировав предложенный алгоритм синтеза, либо разработав новый алго-

ритм. Также можно попытаться посчитать среднее значение сложности для всех обратимых

схем с n входами.

В настоящей работе почти не был затронут вопрос синтеза обратимых схем без допол-

нительной памяти с асимптотически оптимальной глубиной. Если для сложности обратимых
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схем удалось получить нижние и верхние оценки, эквивалентные с точностью до порядка,

то для глубины обратимых схем таких оценок получить не удалось. Отчасти это связано с

тем, что предложенный алгоритм синтеза обратимых схем без дополнительной памяти плохо

поддаётся модификации для снижения глубины синтезированной схемы.

Те же соображения касаются и обратимых схем с дополнительной памятью: для них

также не было получено эквивалентных с точностью до порядка нижних и верхних оце-

нок глубины (в отличие от оценок сложности). Дело осложняется ещё и тем, что нижняя

асимптотическая оценка глубины D(n, q) обратимых схем является очень слабой при быст-

ро растущем значении количества дополнительных входов q. Поэтому предлагается сперва

улучшить нижнюю оценку глубины обратимых схем, а затем попытаться улучшить верхнюю

оценку глубины.

Ещё одним важным направлением дальнейших исследований является изучение асим-

метричных преобразований через построение реализующих их обратимых схем. Если обрати-

мая схема не имеет дополнительных входов, то очевидно, что обратное преобразование мож-

но реализовать обратимой схемой с той же сложностью: для этого просто надо зеркально

отобразить существующую схему. Если обратимая схема без дополнительной памяти имеет

минимальную сложность среди всех обратимых схем, реализующих прямое преобразование,

можно утверждать, что и обратное преобразование реализуется с той же схемной сложно-

стью. Однако если схема имеет дополнительные входы и содержит вычислительный мусор

на своих незначимых выходах, то в этом случае уже нельзя так однозначно утверждать о

равенстве схемной сложности для обратного преобразования. Для такой схемы можно по-

строить подсхему по уборке вычислительного мусора. Тогда разница в схемной сложности

прямого и обратного преобразований будет зависеть от сложности подсхем, «генерирующей»

и «убирающей» вычислительный мусор.

В настоящей работе была сделана попытка построить схему по уборке вычислитель-

ного мусора для обратимой схемы, реализующей алгоритм возведения в степень в конечном

поле характеристики 2. К сожалению, ситуация осложнилась тем, что вычислительный му-

сор оказался равным входному значению показателя степени, т. е. по сути не было обратимой

подсхемы, «генерирующий» вычислительный мусор. Как следствие, подсхема по уборке вы-

числительного мусора оказалась равной обратимой схеме, реализующей алгоритм дискрет-

ного логарифмирования в конечном поле характеристики 2.

Тем не менее, несмотря на описанные сложности, объединение в одной обратимой

схеме реализаций как прямого, так и обратного преобразований, представляет, по мнению

автора, значительный научный интерес и открывает новые возможности для изучения слож-

ности асимметричных преобразований.
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