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Общая характеристика работы
Диссертационная работа посвящена исследованию новой моде-

ли машинного обучения, использующего современные методы тео-
рии решеток (анализа формальных понятий). Предлагается новый
вероятностно-комбинаторный формальный подход к интеллектуаль-
ному анализу данных, обладающих хорошей структурированностью,
позволяющей определить такую операцию сходства, которая выявит
некоторые структурные фрагменты, отвечающие за исследуемые це-
левые свойства.

Актуальность темы. В различных областях человеческой дея-
тельности (социологии, истории, медицине, фармакологии, экономи-
ке, лингвистике, и др.) повседневно возникает необходимость реше-
ния задач анализа, прогноза и диагностики, выявления скрытых за-
висимостей и поддержки принятия рациональных решений. Из-за
бурного роста объема информации, развития технологий ее сбора и
хранения в базах данных (описываемых термином Big Data) точные
методы анализа информации и моделирования исследуемых объек-
тов нуждаются в автоматизации поддержки эксперта средствами ин-
теллектуального анализа данных, машинного обучения, распознава-
ния образов и классификации1.

В большинстве случаев эти подходы используют выборки преце-
дентов (наборы описаний-наблюдений объектов, предметов, ситуа-
ций или процессов) в качестве исходной информации, при этом каж-
дый прецедент записывается в виде вектора значений отдельных его
свойств-признаков.

К самым первым работам анализа данных по прецедентам можно
отнести появившиеся в 30-х годах прошлого столетия труды осново-
положников математической статистики, заложивших основы байе-
совской теории принятия решений (Дж. Нейман, Э. Пирсон2), клас-

1Финн В.К. Об интеллектуальном анализе данных // Новости искусственного интел-
лекта. – 2004. – № 3. – C. 3–18

2Neyman, Jerzy and Egon S. Pearson. On the Problem of the Most Efficient Tests of
Statistical Hypotheses // Philosophical Transactions of the Royal Society of London. Series A,
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сификации с использованием разделяющих функций (Р. Фишер3),
теории проверки статистических гипотез (А. Вальд4).

В 50-х годах появились первые нейросетевые модели машинного
обучения (перцептрон Ф. Розенблата5).

К концу 60-х годов уже были разработаны и детально исследова-
ны различные подходы для решения задач ИАД в рамках статисти-
ческих, нейросетевых моделей, и моделей с пороговыми функциями.
Итоги данных и последующих исследований были представлены в
ряде монографий 6,7,8,9,10,11,12,13,14,15.

Большой вклад в развитие теории ИАД внесли советские и рос-
сийские ученые: М.А. Айзерман, Э.М. Браверман, Л.И. Розоноэр
(метод потенциальных функций), В.Н. Вапник, А.Я. Червоненкис
(статистическая теория обучения), Ю.И. Журавлев (алгоритмы вы-
числения оценок и алгебраическая теория распознавания16), Н.Г. За-

Mathematical and Physical Sciences., Vol. 231(694–706). – 1933. – p. 289–337
3Fisher, R.A. The use of multiple measurements in taxonomic problems // Annals of Eugenics,

Vol. 7, – Part 2. – 1936. – p. 179–188
4Wald, A. Contributions to the theory of statistical estimation and testing of hypotheses //

Annals of Mathematical Statistics, Vol. 10. – 1939. – p. 299–326
5Розенблатт Ф. Принципы нейродинамики. Перцептроны и теория механизмов мозга.

Пер. с англ. – М.: Мир, 1965. – 480 c.
6Айзерман М.А., Браверманн Э.М., Розоноэр Л.И. Метод потенциальных функций

в теории обучения машин. – М.: Наука. – 1970. – 384 c.
7Бонгард М.М. Проблема узнавания. – М.: Наука. – 1967. – 320 c.
8Вапник В.Н., Червоненкис А.Я. Теория распознавания образов (статистические про-

блемы обучения). – М.: Наука, Гл. ред. физ.–мат. лит. – 1974. – 416 c.
9Журавлев Ю.И., Рязанов В.В., Сенько О.В. «Распознавание». Математические

методы. Программная система. Практические применения. – М.: Фазис – 2006. – 176 c.
10 Загоруйко Н.Г. Методы распознавания и их применение. – М.: Сов.радио. – 1972. –

206 c.
11Загоруйко Н.Г. Прикладные методы анализа данных и знаний. – Новосибирск: Изд-во

Института математики. – 1999. – 270 c.
12Лбов Г.С. Методы обработки разнотипных экспериментальных данных. – Новосибирск:

Наука. – 1981. – 160 c.
13Метод комитетов в распознавании образов. (ред.: Мазуров Вл.Д.) – Свердловск: ИММ

УНЦ АН СССР, – 1974. – 165 c.
14Минский М., Пейперт С. Перcептроны. Пер. с англ. – М.: Мир, 1971. – 261 c.
15Нильсон Н. Обучающиеся машины. Пер. с англ. – М.: Мир, 1967. – 180 c.
16Журавлев Ю.И. Об алгебраическом подходе к решению задач распознавания или клас-

сификации // Проблемы кибернетики. Вып. 33. – М.:Наука, 1978. – C. 5–68
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горуйко (алгоритмы таксономии), Г.С. Лбов (логические методы рас-
познавания и поиска зависимостей), Вл.Д. Мазуров (метод комите-
тов), В.Л. Матросов (статистическое обоснование алгебраического
подхода к распознаванию17), К.В. Рудаков (теория алгебраического
синтеза корректных алгоритмов18).

Интенсивные исследования проводятся с начала 80-х годов в ВИ-
НИТИ АН СССР (потом в ВИНИТИ РАН, в настоящее время - в
ФИЦ ИУ РАН). С 1981 года19 группа исследователей под руковод-
ством проф. В.К. Финна создала и развивает логико-комбинаторный
ДСМ-метод автоматического порождения гипотез20, в котором фор-
мализованы различные когнитивные процедуры, основанные на по-
нятии сходства.

ДСМ-метод назван так в честь известного английского филосо-
фа, экономиста и логика Джона Стьюарта Милля. Используя тех-
нику многозначных логик, В.К. Финну с коллегами21,22 удалось по-
ставить систему индуктивной логики Милля23 на четкие логические
основания. Ключевым компонентом этого подхода является бинар-
ная операция сходства24. Следует указать, что примерно в это же

17Матросов В.Л. Синтез оптимальных алгоритмов в алгебраических замыканиях моделей
алгоритмов распознавания // Распознавание, классификация, прогноз. – М.:Наука, 1989. –
C. 149–176

18Рудаков К.В. Об алгебраической теории универсальных и локальных ограничений для
задач классификации // Распознавание, классификация, прогноз. – М.:Наука, 1989. – C. 176–
201

19Финн В.К. Базы данных с неполной информацией и новый метод автоматического по-
рождения гипотез // В кн.: Диалоговые и фактографические системы информационного обес-
печения. – М., 1981. – С. 153–156

20ДСМ-метод автоматического порождения гипотез: Логические и эпистемологические
основания. (ред.: Финн В.К., Аншаков О.М.) – М.: Эдиториал УРСС – 2009. – 432 c.

21Аншаков О.М., Скворцов Д.П., Финн В.К. Логические средства экспертных систем
типа ДСМ // Семиотика и информатика. – Вып. 28. – 1986. – C. 65–102

22Аншаков О.М., Скворцов Д.П., Финн В.К. О дедуктивной имитации некоторых
вариантов ДСМ-метода автоматического порождения гипотез // Семиотика и информатика.
– Вып. 33. – 1993. – C. 164–233

23Милль Дж.Ст. Система логики силлогистической и индуктивной: Изложение прин-
ципов доказательства в связи с методами научного исследования. Пер. с англ. Изд. 5. – М.:
Эдиториал УРСС, 2011. – 832 c.

24Гусакова С.М., Финн В.К. Сходства и правдоподобный вывод // Известия АН СССР,
Сер. «Техническая кибернетика». – 1987. – № 5. – C. 42–63
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самое время аналогичный подход (но основанный не на логике, а на
теории решеток) был разработан группой зарубежных исследовате-
лей под руководством проф. Рудольфа Вилле под названием анализ
формальных понятий (АФП)25. Однако отечественный подход вклю-
чил в рассмотрение контр-примеры, чего не имеется у зарубежных
авторов.

Второй когнитивной процедурой стало доопределение по анало-
гии, что превратило ДСМ-метод в средство интеллектуального ана-
лиза данных, когда после анализа прецедентов стало возможным
применить приобретенное знание (гипотезы о причинах) для про-
гнозирования целевых свойств у ранее неизученных примеров.

Наконец, третья когнитивная процедура - абдуктивное принятие
гипотез - возникло в трудах В.К. Финна в результате осмысления
наследия известного американского математика и логика Чарльза
Сэндерса Пирса26.

После выяснения сути указанных когнитивных процедур проф.
В.К. Финн создал единую систему, объединяющую все эти процеду-
ры в одно целое. Эта система и получила название ДСМ-метод 27.

Следует признать, что имеются некоторые особенности ДСМ-
метода, которые выдвигают вопрос о реализации вычислений для
интеллектуального анализа данных на его основе.

Во-первых, множество порождаемых ДСМ-гипотез может ока-
заться экспоненциально велико по сравнению с размером обучающей
выборки.

Во-вторых, С.О. Кузнецовым28, М.И. Забежайло и др. были дока-
заны пессимистические оценки сложности для многих ДСМ-процедур
(NP -полнота и #P -полнота).

25Ganter, Bernhard and Rudolf Wille. Formal Concept Analysis. Transl. from German. –
Berlin: Springer-Verlag, 1999. – 284 pp.

26Пирс Ч.С. Рассуждение и логика вещей: Лекции для Кэмбриджских конференций 1898
года. Пер. с англ. – М.: РГГУ, 2005. – 371 c.

27Финн В.К. Синтез познавательных процедур и проблема индукции // Научная и тех-
ническая информация, Сер. 2. – 1999. – № 1–2. – C. 8–45

28Кузнецов С.О. Интерпретация на графах и сложностные характеристики задач поиска
закономерностей определенного вида // Научная и техническая информация, Сер. 2. – 1989. –
№ 1. – C. 23–28

6



В-третьих, автор сумел обнаружить эффект «переобучения»: по-
рождение так называемых фантомных ДСМ-гипотез. Эти фантом-
ные гипотезы возникают тогда, когда вычисляется сходство двух
(или более) обучающих примеров, каждый из которых имеет свой
собственный механизм порождения целевого свойства. Это сходство
оказывается фрагментом (набором общих признаков), который не
является причиной исследуемого целевого свойства. Если же допу-
стить его в процедуру предсказания эффекта у нового примера, предъ-
явленного на прогноз, то он будет мешать корректному предска-
занию. Подобный эффект «переобучения» характерен для многих
методов машинного обучения, когда максимальный учет информа-
ции из обучающей выборки приводит к модели, демонстрирующей
плохую предсказательную способность.

Чтобы справиться с возникающими проблемами, автором предла-
гается новый вероятностно-комбинаторный подход. Так как некото-
рые ингредиенты заимствованы мной из анализа формальных поня-
тий (АФП), я назвал его вероятностно-комбинаторный формальный
метод, сокращенно ВКФ-метод.

Цель диссертационной работы. Целью данной работы являет-
ся исследовать модель машинного обучения, основанного на методах
теории решеток, разработать вероятностные алгоритмы интеллекту-
ального анализа данных для этого метода и исследовать математи-
ческие свойства предложенных алгоритмов.

Научная новизна. Вероятностный подход к машинному обуче-
нию, основанному на методах теории решеток, до сих пор не иссле-
довался.

Известные ранее детерминированные алгоритмы основывались
на полном переборе возникающих сходств. Теоретическая оценка в
этом случае пессимистична: возможно получение O(2n) различных
битовых строк длины n с помощью побитого умножения на n × n
бинарных матрицах. На практике это проявлялось как «экспоненци-
альный взрыв», когда из обучающей выборки, содержащей несколько
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сотен примеров, порождалось более миллиона гипотез, даже уже со-
кращенных проверками дополнительных логических условий. Неко-
торые из этих гипотез только вредят предсказанию (наблюдается эф-
фект «переобучения»). Изучение феномена «переобучения» в главе
2 также является новым.

Методы исследования. Для исследования нового вероятностно-
комбинаторного метода машинного обучения, основанного на теории
решеток, пришлось привлечь технику цепей Маркова, особенно, спа-
ривающих цепей Маркова, производящих функций распределений
вероятностей, теорию представлений групп.

Применяемые в работе методы относятся к области дискретной
математики на стыке с алгеброй и теорией вероятностей. Все комби-
наторные результаты имеют наглядный вероятностный смысл.

Теоретическая значимость. Математические результаты данной
работы могут служить фундаментом для дальнейшего изучения пред-
ложенных вероятностных моделей и алгоритмов.

Наиболее интересной темой для дальнейших исследований, на
взгляд автора, является вопрос о возможности полностью избавить-
ся от «переобучения» посредством последовательного расширения
обучающих выборок. Анализ производящих функций, полученных в
теореме 5, возможно, приведет к разрешению этого вопроса.

Все полученные вероятностные результаты имеют наглядный ал-
горитмический смысл и приводят к значительному ускорению вы-
числений (оценка эффективности ленивых вычислений в теореме 1,
применение остановленной «спаривающей» цепи Маркова из теоре-
мы 10) или определению ключевых параметров (достаточное число
сходств в теореме 13).

Практическая значимость. Разработанные математические мо-
дели, методы и алгоритмы позволяют организовать интеллектуаль-
ный анализ данных, основываясь как на малых, так и на больших
выборках сложно структурированных обучающих примеров.

8



Малыми можно считать такие выборки, для которых все множе-
ство сходств может быть проанализировано экспертом. Большие вы-
борки обеспечивают достаточный объем, чтобы статистические вы-
воды могли быть сделаны с заданной надежностью.

Хотя диссертационная работа носит теоретический характер, ав-
тор проверил свои идеи путем применения созданной им программ-
ной системы, реализующий синтез описываемых вероятностных ал-
горитмов, к двум массивам (SPECT Hearts и Mushrooms) из репо-
зитория данных для тестирования алгоритмов машинного обучения
(UCI Machine Learning Repository).

Успешное применение к массиву Mushrooms (8124 объекта) поз-
воляет надеяться, что предложенный подход сможет конкурировать
с другими методами интеллектуального анализа «больших данных».

Апробация работы. Результаты работы неоднократно рассказы-
вались на научных семинарах ФИЦ ИУ РАН и на конференциях:

• XIII Всероссийская конференция по искусственному интеллек-
ту КИИ-2012, Белгород, 2012 ( [18])

• 35 European Conference on Information Retrieval, Moscow, 2013
( [14])

• VI Мультиконференция по проблемам управления МКПУ-2013,
с. Дивноморское, 2013 ( [19])

• XIV Всероссийская конференция по искусственному интеллек-
ту КИИ-2014, Казань, 2014 ( [20])

• Conference on Analysis of Images, Social networks, and Texts AIST-
2014, Ekaterinburg, 2014 ( [15])

• Всероссийская конференция «Гуманитарные чтения РГГУ –
2014», Москва, 2014 ( [2])

• VIII Мультиконференция по проблемам управления МКПУ-
2015, с. Дивноморское, 2015 ( [21])
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• International Workshop «Formal Concept Analysis for Knowledge
Discovery», Moscow, 2017 ( [16])

• X Мультиконференция по проблемам управления МКПУ-2017,
с. Дивноморское, 2017 ( [22])

• XVI Всероссийская конференция по искусственному интеллек-
ту КИИ-2018, Москва, 2018 ( [17])

Материалы настоящей работы используются при чтении курсов
лекций «Теория сходства в интеллектуальных системах» и «Интел-
лектуальный анализ данных и машинное обучение», читаемых сту-
дентам старших курсов Отделения интеллектуальных систем в гума-
нитарной сфере Российского Государственного Гуманитарного Уни-
верситета.

Публикации. Публикации по теме диссертации в изданиях из спис-
ка, рекомендованного ВАК: [1–17].

Другие публикации автора по теме: [18–22].
Отдельные результаты включались в отчеты по проектам РФФИ

• 11-07-00618а «Интеллектуальные системы для наук о жизни и
социальном поведении и стратегии когнитивного анализа дан-
ных» 2011-2013

• 14-07-00856а «ДСМ-метод автоматического порождения гипо-
тез как средство конструирования интеллектуальных систем»
2014-2016

• 17-07-00539a «Интеллектуальная система для обнаружения эм-
пирических закономерностей в последовательностях баз фак-
тов» 2017

и по программам Президиума РАН П15 за 2012-2014 гг.
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Личный вклад автора. В диссертационной работе представлены
только результаты, полученные лично автором: исследование фе-
номена переобучения для комбинаторных методов, основанных на
операции сходства (вероятности возникновения фантомного сходства
при наличии контр-примеров), вероятностные алгоритмы машинно-
го обучения, основанного на прикладной теории решеток, и их свой-
ства. Из совместных публикаций в диссертацию включены лишь ре-
зультаты автора.

Структура и объем работы. Диссертационная работа состоит
из Введения, 4 глав, Заключения, списка используемых сокращений,
словаря терминов и библиографии. Общий объем работы – 131 стра-
ница. Список литературы содержит 80 наименований.

Содержание работы
Во введении обосновывается актуальность исследований, прово-

димых в рамках данной диссертационной работы, приводится обзор
научной литературы по изучаемой проблеме, формулируется цель,
ставятся задачи работы, сформулированы научная новизна и теоре-
тическая и практическая значимость представляемой работы.

Первая глава описывает основы современного раздела теории ре-
шеток - анализа формальных понятий (АФП) - позволяющего эф-
фективно работать со сходством.

Сходство - бинарная операция, задающая структуру нижней по-
лурешетки с наименьшим элементом. Мы ограничимся побитовым
умножением как сходством на множестве битовых строк и столбцов.

Формальный контекст можно понимать как бинарное отноше-
ние между элементами множества O, которые мы называем именами
объектов, и элементами множества F , которые мы называем призна-
ками. Если в строчке, соответствующей объекту o ∈ O, и столбце,
соответствующим признаку f ∈ F , стоит единица, то мы говорим,
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что объект o обладает признаком f , и обозначаем это через oIf . В
противном случае, говорим, что объект o не имеет признака f .

Для подмножества A ⊆ O объектов-родителей их сходством
(или общим фрагментом) называется подмножество признаков A′ =
{f ∈ F : ∀o ∈ A [oIf ]} ⊆ F . Полагаем ∅′ = F .

Эту операцию можно реализовать последовательным вычислени-
ем побитового умножения строк, соответствующих отобранным во
множество A объектов, с отбором всех признаков, соответствующих
единицам в результирующей строке.

Для подмножества B ⊆ F признаков (фрагмента) их сходством
называется подмножество B′ = {o ∈ O : ∀f ∈ B [oIf ]} ⊆ O обучаю-
щих примеров (родителей фрагмента). Полагаем ∅′ = O.

Эта операция вычисляется побитовым умножением отобранных
столбцов.

Определение 1. Пару 〈A,B〉 назовем кандидатом, если A = B′ ⊆
O и B = A′ ⊆ F .

Определение 2. Операция замыкай-по-одному-вниз на канди-
дате 〈A,B〉 и объекте o ∈ O порождает пару

CbODown(〈A,B〉, o) = 〈(A ∪ {o})′′, (A ∪ {o})′〉.

Операция замыкай-по-одному-вверх на кандидате 〈A,B〉 и
признаке f ∈ F порождает пару

CbOUp(〈A,B〉, f) = 〈(A ∪ {f})′, (A ∪ {f})′′〉.

Ускорение вычислений достигается с помощью ленивой схемы
для CbODown и CbOUp.

Операция CbODown(〈A,B〉, o) содержит быстро вычисляемый
фрагмент (A ∪ {o})′ = B ∩ {o}′ и вычислительно трудный список
родителей (A ∪ {o})′′ = (B ∩ {o}′)′. Аналогично, операция CbOUp
имеет в своем составе потребляющую много времени компоненту
(B ∪ {f})′′ = (A ∩ f ′)′.
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Предлагается лениво откладывать вычисления замыкания (вто-
рой производной), пока последовательный выбор нескольких объек-
тов не сменится выбором признака (для CbODown) или серия вы-
боров признаков не оборвется выбором объекта (для CbOUp).

Степень экономии оценивается так:

Теорема 1. В ленивой схеме вычислений на каждую пару приме-
нений операции замыкания (одной в CbOUp и одной в CbODown) в
среднем в классической схеме мы будем делать (n+k)2

k·n ≥ 4 операций
замыкания.

В параграфе 1.3 описан алгоритм порождения формального кон-
текста для обучающей выборки, объекты которой описываются при-
знаками, имеющими на множестве V значений структуру нижней
полурешетки (с добавленным наименьшим элементом, интерпрети-
руемым как отсутствие сходства по этому признаку).

Основной идеей описанного в параграфе 1.3 алгоритма представ-
ления битовыми строками является процедура сокращения формаль-
ного контекста ≥⊆ V × V до множества F всех ∪-неразложимых
элементов в качестве бинарных атрибутов.

Определение 3. Элемент x ∈ L назовем ∪-неразложимым, если
x 6= ∅ и для любых y, z ∈ L если y < x и z < x, то y ∪ z < x.

Основная теорема этого параграфа доказывает корректность это-
го алгоритма.

Вторая глава исследует эффект «переобучения» - возникновения
фантомных сходств при ограничении на число родителей и запре-
те контр-примеров. Фантомными называем сходства, возникающие
лишь из-за одновременного наличия общего фрагмента в нескольких
объектах-родителях, каждый из которых имеет свою собственную
фрагмент-причину. Контр-примером называем объекты, не облада-
ющие целевым свойством.

Пусть число n обозначает количество сопутствующих (не входя-
щих ни в какую причину) признаков, которыми мы ограничиваемся.
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Для каждого контр-примера или обучающего примера независимо
образуем последовательность n испытаний Бернулли с одинаковой
вероятностью успеха p, чтобы сформировать появление сопутствую-
щих признаков.

Теорема 2. Для p ≥ (− ln(1− ε)/n)1/b вероятность появления фан-
томного сходства b случайных примеров не меньше, чем ε > 0.

Теорема 3. При числе сопутствующих признаков n → ∞ и ве-
роятности появления этих признаков у контр-примеров и обучаю-
щих примеров, равной p =

√
a
n (a ≤ 1), вероятность возникновения

фантомного сходства двух случайных примеров, не устраненного
никаким из m = c ·

√
n случайных контр-примеров, будет стре-

миться к
1− e−a − a · e−a ·

[
1− e−c·

√
a
]
> 0.

Оценим вероятность переобучения с запретом контр-примеров и
ограничением на число родителей через производящие функции ве-
роятностей выживания разного количества контр-примеров, если од-
новременное определение фантомного сходства и случайных контр-
примеров осуществляется по признакам (столбцам).

Определение 4. Назовем выжившими на шаге t контр-примеры〈
yk1 , . . . , y

k
t . . . , y

k
n

〉
, для которых ∀j ≤ t

[
aj = 1⇒ ykj = 1

]
.

Будем следить за числом X
(m)
t контр-примеров, выживших по-

сле одновременного нахождения t-ых признаков m контр-примеров
и фантомного сходства. Ясно, что это число должно быть элементом
множества S = {0, 1, . . . ,m}.

Производящие многочлены для распределений

P
[
X

(m)
t = s

]
будем обозначать через

ϕ
(m)
t (z) =

m∑
j=0

P
[
X

(m)
t = j

]
· zj.
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Теорема 4. ϕ(m)
n (z) =

∑m
j=0

(
m
j

)
·
∏n

t=1

[
pb+j
t +

(
1− pbt

)]
· (z − 1)j

Определение 5. Двойной производящей функцией для P
[
X

(m)
n = s

]
назовем формальный ряд

ϕn(z, u) =
∞∑

m=0

m∑
s=0

P
[
X(m)

n = s
]
· zs · um =

∞∑
m=0

ϕ(m)
n (z) · um.

Теорема 5. ϕn(0, u) =
∑∞

j=0

∏n
t=1

[
pb+j
t +

(
1− pbt

)]
· (−u)j
(1−u)j+1 .

Третья глава посвящена исследованию вероятностных алгорит-
мов поиска кандидатов.

Data: множество обучающих (+)-примеров; внешние
функции CbOUp( , ) и CbODown( , ) операций
«замыкай-по-одному»

Result: случайный кандидат 〈A,B〉
O := (+)-примеры, F := признаки; I ⊆ O × F - формальный
контекст для (+)-примеров;
R := O ∪ F ; Min := 〈O,O′〉; Max := 〈F ′, F 〉;
while (Min 6=Max) do

Выбираем случайный элемент r ∈ R;
if (r ∈ O) then

Min := CbODown(Min, r);
Max := CbODown(Max, r);

end
else

Min := CbOUp(Min, r); Max := CbOUp(Max, r);
end

end
〈A,B〉 :=Min;

Algorithm 1: Спаривающая цепь Маркова
Состоянием цепи Маркова является упорядоченная пара ВКФ-

кандидатов 〈A1, B1〉 ≤ 〈A2, B2〉, что выполняется при B1 ⊆ B2.
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Первоначально меньший кандидат совпадает с наименьшим кан-
дидатом Min := 〈O,O′〉, а больший - с наибольшим Max := 〈F ′, F 〉.

В цикле к обоим кандидатам применяется одна и та же операция
CbODown с выбранным объектом, или CbOUp c выбранным при-
знаком.

Процесс останавливается, когда меньший кандидат совпадет c
большим. Тогда этот общий кандидат и выдается алгоритмом 1.

Теорема 6. Алгоритм 1 соответствует цепи Маркова.

Определение 6. Состояние вида 〈A,B〉 = 〈A,B〉 спаривающей це-
пи Маркова для совпадающей пары кандидатов называется эрго-
дическим. Состояние вида 〈A1, B1〉 < 〈A2, B2〉 называется невоз-
вратным.

Теперь мы имеем теорему о конечности траекторий с вероятно-
стью единица, как следствие классической теоремы о невозвратных
состояниях:

Теорема 7. Вероятность того, что состояние

〈A1(t), B1(t)〉 ≤ 〈A2(t), B2(t)〉

спаривающей цепи Маркова окажется невозвратным, стремится
к нулю, когда t→∞.

Теперь, соединяя вместе алгоритм 1 и теорему 7, видим, что с ве-
роятностью единица алгоритм спаривающей цепи Маркова
остановится.

Хотя вопрос о среднем времени работы алгоритма 1 остался от-
крытым, получены теорема 8 о среднем времени склеивания спари-
вающей цепи Маркова и теорема 9 о сильной концентрации около
этого среднего для случая Булеана.

Этот случай возникает, когда рассматривается контекст: O =
{o1, o2, . . . , on} - множество объектов, F = {f1, f2, . . . , fn} - множе-
ство признаков, а отношение между ними задается как

oiIfj ⇔ i 6= j. (1)

Другими словами,
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O | F f1 f2 . . . fn
o1 0 1 . . . 1
o2 1 0 . . . 1
... ... ... . . . ...
on 1 1 . . . 0

Во время проведения экспериментов с ВКФ-системой был обна-
ружен феномен очень быстрого нахождения очередного кандидата.
Хотя мы не смогли получить оценку в общем виде, для случая Бу-
леана имеются результаты о среднем времени склеивания и сильной
концентрации этого времени около своего среднего.

Теорема 8. Среднее время склеивания для n-мерного гиперкуба рав-
но

E[
n∑

j=1

Tj] =
n∑

j=1

n

j
≈ n · ln(n) + n · γ +

1

2
.

Теорема 9. P
[∑n

j=1 Tj ≥ (1 + ε) · n · ln(n)
]
→ 0 при n → ∞ для

любого ε > 0.

В качестве практического средства для устранения наиболее длин-
ных траекторий возможно применение следующей техники останов-
ки алгоритма 1 и запуска его заново:

Определение 7. Если T1, . . . , Tr – независимые целочисленные слу-
чайные величины, одинаково распределенные с распределением вре-
мени склеивания T , то верхняя граница склеивания по r испы-
таниям определяется как T̂ = T1 + · · ·+ Tr.

Мы устраняем те траектории спаривающей цепи Маркова, кото-
рые оказываются длиннее, чем T̂ (запускаем цепь заново).

Оценим соотношения вероятностей µ(R) и µT̂ (R) попадания в
некоторое подмножество R эргодических состояний для обычной и
остановленной по верхней границе T̂ спаривающих цепей Маркова:

Теорема 10. Для любого R ⊆ U c µ(R) = ρ и r > log2(ρ+1)−log2(ρ)
имеем µT̂ (R) ≥ ρ− 1

2r−1 для верхней границы T̂ склеивания по r > 1
испытаниям.
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Спаривающая цепь Маркова, в общем случае, не является обра-
тимой и стационарное распределение не является равномерным.

После склеивания алгоритм 1 будет совпадать со следующим ал-
горитмом.

Data: множество обучающих (+)-примеров; внешние
функции CbOUp( , ) и CbODown( , ) операций
«замыкай-по-одному»

Result: кандидат 〈A,B〉
O := (+)-примеры, F := признаки; I ⊆ O × F - формальный
контекст для (+)-примеров;
A := O; B = O′; R := O ∪ F ;
for (i := 0; i < T ; i = i+ 1) do

Выбираем случайный элемент r ∈ R;
if (r ∈ O) then
〈A,B〉 := CbODown(〈A,B〉, r);

end
else
〈A,B〉 := CbOUp(〈A,B〉, r);

end
end

Algorithm 2: Монотонная цепь Маркова
В случае Булеана алгоритм 2 с вероятностью n

2·n = 1
2 не изменяет

своего состояния, и с равной 1
2·n вероятностью переходит с текущего

подмножества на одного из n его соседей, то есть представляет собой
ленивое случайное блуждание по соответствующему гиперкубу.

Мы исследовали время перемешивания алгоритма 2 в случае Бу-
леана.

Определение 8. Для заданного порога ε > 0 временем переме-
шивания называется такое минимальное целое число T = τ(ε),
что для любого стартового состояния j ∈ S выполняется

∀t ≥ T
[
‖δj · P t − π‖TV ≤ ε

]
,

где π является стационарным распределением, а ‖ · ‖TV - норма
тотальной вариации (=половина l1-нормы).
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Введем единичные орты в Zn
2 стандартным способом:

e1 = (1, 0, . . . , 0); . . . ; en = (0, 0, . . . , 1).

Ясно, что для алгоритма 2 на Булеане выполнено (P )i,j = µ((−i)+
j), где µ - распределение вероятностей, задаваемое на S = Zn

2 равен-
ствами

µ(0) =
1

2
; (2)

µ(e1) = . . . = µ(en) =
1
2n .

и µ(j) = 0 всех остальных j ∈ Zn
2 .

Теорема 11. Пусть µ определяется равенствами (2), а π - равно-
мерное распределение. Для t ≥ 1

2 · n · (log n+ c) имеем(
‖µ∗t − π‖TV

)2 ≤ 1

4
·
(
ee

−c − 1
)
.

Из этой теоремы получаем оценку сверху для времени перемеши-
вания:

τ(ε) ≤ 1

2
· n · (log n− log log(4ε2 + 1)) (3)

при 0 < ε <
√
e−1
2 .

Теорема 12. Пусть µ определяется равенствами (2), а π - равно-
мерное распределение. Для t = 1

2 · n · (log n− 2 · log(2d)) и доста-
точно больших n имеем

‖µ∗t − π‖TV ≥ 1− 5

d2
.

Четвертая глава посвящена процедурам машинного обучения и
их программной реализации.

Автор развил вероятностно-комбинаторный формальный метод
(ВКФ-метод) машинного обучения. ВКФ-метод реализует вероят-
ностную процедуру индуктивного обобщения обучающих примеров
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и процедуру предсказания целевого свойства у тестовых примеров
по аналогии с обучающими.

Первоначально была предложена процедура абдуктивного уточ-
нения множества гипотез, но по результатам экспериментов на ре-
альных данных от нее было решено отказаться в пользу увеличения
числа порождаемых процедурой индукции гипотез.

Наконец, процедура предсказания целевого свойства по аналогии
с обучающими примерами соответствует следующему алгоритму:

Data: расширенная выборка S+ ВКФ-гипотез, файл
(τ )-примеров

Result: предсказанные свойства (τ )-примеров
X := (τ )-примеры;
for (o ∈ X) do

PredictPositively(o) := false;
for (〈A,B〉 ∈ S+) do

if (B ⊆ o′) then
PredictPositively(o) := true;

end
end

end
Algorithm 3: Процедура предсказания по аналогии

Формальное определение и полезная переформулировка таковы:

Определение 9. Объект o, описываемый фрагментом o′ ⊆ F (мно-
жеством признаков), предсказывается положительным с по-
мощью ВКФ-гипотезы 〈A,B〉, если B ⊆ o′.

Определение 10. Нижнее полупространство H↓1/2(o), опреде-
ляемое объектом o с фрагментом o′ ⊆ F , задается линейным нера-
венством xj1 + . . .+ xjk <

1
2, где F \ o

′ = {fj1, . . . , fjk}.

Лемма 1. Пример o предсказывается положительным тогда и толь-
ко тогда, когда в любом его нижнем полупространстве содержит-
ся хотя одна ВКФ-гипотеза.
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Индуктивное обобщение обучающих примеров осуществляется сле-
дующей процедурой:

Data: множество обучающих (+)- и (-)-примеров; число N
порождаемых ВКФ-гипотез

Result: случайная выборка S ВКФ-гипотез
O := (+)-примеры, F := признаки; I ⊆ O × F формальный
контекст для (+)-примеров;
C := (-)-примеры; S := ∅; i := 0;
while (i < N) do

породить кандидата 〈A,B〉 с помощью цепи Маркова;
hasObstacle := false;

for (c ∈ C) do
if (B ⊆ c′) then

hasObstacle := true;
end

end
if (hasObstacle = false) then

S := S ∪ {〈A,B〉};
i := i+ 1;

end
end

Algorithm 4: Процедура индуктивного обобщения
Проверка условия (B ⊆ c′) в алгоритме 4 означает, что фрагмент

B кандидата 〈A,B〉 вкладывается в фрагмент (множество призна-
ков) контр-примера c. Любое такое вложение означает, что кандидат
нарушает условие «запрета контр-примеров». Если кандидат преодо-
левает все такие проверки, то он становится ВКФ-гипотезой (о при-
чине наличия целевого свойства).

Для выбора числа N запусков спаривающей цепи Маркова (ал-
горитма 1) полезно применение следующей теоремы (мы используем
объекты, представленные для предсказания):

Зафиксируем ε > 0 - точность предсказания.

Определение 11. Объект o назовем ε-важным, если суммарная
вероятность появления таких ВКФ-гипотез 〈A,B〉, что B ∈ H↓κ(o)
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будет больше ε.

Теорема 13. Для n признаков и любых ε > 0 и 1 > δ > 0 доста-
точно породить

N ≥ 2 · (n+ 1)− 2 · log2 δ
ε

ВКФ-гипотез, чтобы вероятностью > 1− δ все ε-важные объекты
могли быть предсказаны положительно.

Вероятностные процедуры машинного обучения, описанные вы-
ше, были запрограммированы автором в программной системе, по-
лучившей название ВКФ-система:

• Программа реализована как консольное приложение с исполь-
зованием библиотеки разделяемого доступа. Она была создана
в среде Visual Studio Code с использованием библиотеки boost.

• Примеры (обучающие, контр- и представленные для предсказа-
ния целевого свойства) представляются объектами класса boost ::
dynamic_bitset. Они сохраняются в контейнерах типа std ::
vector стандартной библиотеки C++.

• Программа использует классы std :: random для датчиков слу-
чайных чисел. Это нужно для спаривающей цепи Маркова (ал-
горитм 1 или его ленивый вариант).

• Для реализации многопоточности используются классы std ::
thread.

• Программа платформенно независима: она собиралась и запус-
калась и под Windows, и под Linux.

Укажем на некоторые достоинства ВКФ-системы:

• Так как каждая ВКФ-гипотеза порождается независимым за-
пуском цепи Маркова, то ВКФ-программа использует несколь-
ко потоков для вычисления индуктивного обобщения.
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• Предсказание свойств по аналогии осуществляется в один по-
ток, так как вычислительная сложность этого шага мала в
сравнении с шагом индукции.

• Загрузка ядер процессора замечательно балансируется по вы-
числительным потокам (превышает 90% на этапе индуктивного
обобщения).

Программная ВКФ-система применялась к двум массивам из ре-
позитория данных для проверки алгоритмов машинного обучения.

Первым массивом был SPECT Hearts (данные компьютерной то-
мографии сердца).

• Обучающая выборка содержит 40 (+)- и 40 (-)-примеров.

• Тестовая выборка содержит 172 (+)- и 15 (-)-примеров.

• Каждый пример описывался 22 бинарными атрибутами.

• ВКФ-система добавила отрицания исходных признаков, чтобы
отсутствие атрибута могло быть частью причины проявления
свойства. Поэтому обучающая выборка - это матрица 40× 44.

• Точность предсказания простейшей ВКФ-системы достигла 86.1%
(151 из 172 (+)-примеров и 10 из 15 (-)-примеров).

• Авторы массива SPECT достигли 84.0% точности своей про-
граммой CLIP3, которая реализует обучение покрытию сред-
ствами целочисленного программирования.

Второй массив Mushrooms - данные из определителя грибов Се-
верной Америки29, оцифрованные в файл agaricus-lepiota.data

• Исходные данные включают описания 8124 грибов, разделен-
ные на две категории (съедобные и ядовитые). Мы случайным
образом разделили их на обучающую и тестовую выборки.

29Lincoff, G.H. The Audubon Society Field Guide to North American Mushrooms. – NY: Knopf,
1981. – 926 pp.
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• Обучающая выборка содержит 4032 объекта, из которых 2088
(+)-объектов (съедобные грибы).

• Тестовая выборка содержит 2120 (+)- и 1972 (-)-примеров (ядо-
витые грибы).

• Каждый пример описывался 22 признаками, описывающие раз-
личные характеристики грибов (цвет, форма шляпки, места
произрастания,частота встречаемости и т.п.). Эти признаки -
номинальные, принимающие одно из нескольких значений.

• ВКФ-система закодировала эти признаки битовыми строками
длины 110 бит.

• Точность предсказания ВКФ-системы достигла 100% для 80
ВКФ-гипотез о причинах ядовитости или 150 ВКФ-гипотез о
причинах съедобности (без процедуры абдуктивного уточне-
ния).

Заключение содержит перечисление математических резуль-
татов диссертационного исследования:

1. Оценка эффективности ленивых вычислений на шаге индукции
в теореме 1.

2. Теорема 2 об оценке снизу вероятности возникновения фантом-
ного сходства без учета контр-примеров.

3. Оценка (теорема 3) асимптотической вероятности появления
фантомного сходства при наличии контр-примеров.

4. Явный вид производящих функций (теоремы 4 и 5) для вероят-
ности возникновения фантомного сходства при фиксированном
и произвольном числе контр-примеров.

5. Теорема 8 о среднем времени склеивания и теорема 9 о силь-
ной концентрации времени склеивания около его среднего для
случая Булеана (множества всех подмножеств признаков).
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6. Теорема 10 об изменении вероятностей множеств эргодических
состояний для спаривающей цепи Маркова, остановленной с
верхней границей по r предварительным прогонам.

7. Верхняя оценка (3) (из теоремы 11) времени перемешивания
и теорема 12 об асимптотической точности этой оценки для
случая Булеана.

8. Теорема 13 о необходимом числе ВКФ-гипотез, чтобы с вероят-
ностью, не ниже заданной, можно было предсказать положи-
тельно все ε-важные объекты.

выводы из проведенных исследований

1. При вычислении всех сходств обучающих примеров возможно
порождение фантомных сходств, которые вредят корректному
предсказанию целевого свойства у объектов, предъявленных
для его прогнозирования.

2. Запрет на контр-примеры и ограничение на минимальное чис-
ло родителей не позволяют полностью избавиться от эффекта
переобучения(порождения фантомных сходств).

3. Механизм отбрасывания кандидатов с малым числом родите-
лей может устранять и нужные причины целевого свойства.

4. Эффекты экспоненциального числа сходств в худшем случае
и переобучения требуют создания нового метода обучения с
использованием вероятностных алгоритмов, опирающихся на
технику алгебраической теории решеток.

5. Алгоритм вычисления сходств объектов сводится побитовому
умножению, что позволяет эффективно использовать архитек-
туру современных компьютеров.

6. Среди нескольких вероятностных алгоритмов поиска сходств
имеются такие (спаривающие цепи Маркова), которые обеспе-
чивают остановку вычислений с вероятностью единица.
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7. Ленивая спаривающая цепь Маркова значительно эффектив-
нее стандартного варианта (и теория находится в хорошем со-
ответствии с практикой).

8. Имеется механизм удаления длинных траекторий спариваю-
щих цепей Маркова с учетом времени работы предварительных
запусков этой цепи.

9. Оценка среднего времени работы спаривающей цепи Маркова
в частном случае Булеана демонстрирует вычислительную эф-
фективность этого алгоритма.

10. Оценка необходимого числа ВКФ-гипотез для надежного пред-
сказания важных объектов превращает ВКФ-метод в метод
статистического машинного обучения.

11. Программная ВКФ-система продемонстрировала хорошую ба-
лансировку нагрузки по вычислительным узлам при многопо-
точной реализации.

12. Применение компьютерной системы к массивам данных проде-
монстрировало превосходство предложенного подхода над неко-
торыми другими алгоритмами комбинаторного машинного обу-
чения и возможность его применения к массивам данных боль-
шого объема.

список открытых проблем, исследование которых пред-
ставляется важным

• Получить оценку среднего времени склеивания для спариваю-
щей цепи Маркова в случае произвольного контекста.

• Исследовать вопрос о времени перемешивания для монотонной
цепи Маркова в случае произвольного контекста.

• Исследовать асимптотическую вероятность возникновения фан-
томного сходства, когда число контр-примеров растет, а число
признаков сохраняется.
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