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Введение

Диссертационная работа посвящена исследованию новой моде-
ли машинного обучения, использующего современные методы тео-
рии решеток (анализа формальных понятий). Предлагается новый
вероятностно-комбинаторный формальный подход к интеллектуаль-
ному анализу данных, обладающих хорошей структурированностью,
позволяющей определить такую операцию сходства, которая выявит
некоторые структурные фрагменты, отвечающие за исследуемые це-
левые свойства.

Актуальность темы. В различных областях человеческой де-
ятельности (социологии, истории, медицине, фармакологии, эконо-
мике, лингвистике, и др.) повседневно возникает необходимость ре-
шения задач анализа, прогноза и диагностики, выявления скрытых
зависимостей и поддержки принятия рациональных решений. Из-за
бурного роста объема информации, развития технологий ее сбора и
хранения в базах данных (описываемых термином Big Data) точные
методы анализа информации и моделирования исследуемых объек-
тов нуждаются в автоматизации поддержки эксперта средствами ин-
теллектуального анализа данных, машинного обучения, распознава-
ния образов и классификации [58].

В большинстве случаев эти подходы используют выборки преце-
дентов (наборы описаний-наблюдений объектов, предметов, ситуа-
ций или процессов) в качестве исходной информации, при этом каж-
дый прецедент записывается в виде вектора значений отдельных его
свойств-признаков.

Выборки признаковых описаний являются представлениями ис-
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ходных данных, которые возникают в различных предметных об-
ластях в процессе сбора однотипной информации, и которые могут
быть использованы для решения следующих задач:

• классификация ситуаций, явлений, объектов или процессов;

• выявление существенных и несущественных признаков (сниже-
ние размерности);

• исследование структуры данных;

• нахождение эмпирических закономерностей различного вида;

• нахождение выбросов, пропущенных значений и устранение их
влияния;

• формирование эталонных описаний.

К самым первым работам анализа данных по прецедентам можно
отнести появившиеся в 30-х годах прошлого столетия труды осново-
положников математической статистики, заложивших основы бай-
есовской теории принятия решений (Дж. Нейман, Э. Пирсон [73]),
классификации с использованием разделяющих функций (Р. Фи-
шер [65]), теории проверки статистических гипотез (А. Вальд [80]).

В 50-х годах появились первые нейросетевые модели машинного
обучения (перцептрон Ф. Розенблата [51]).

К концу 60-х годов уже были разработаны и детально исследова-
ны различные подходы для решения задач ИАД в рамках статисти-
ческих, нейросетевых моделей, и моделей с пороговыми функциями.
Итоги данных и последующих исследований были представлены в
ряде монографий [1,5, 7, 33–35,41,42,45,47].

Большой вклад в развитие теории ИАД внесли советские и рос-
сийские ученые: М.А. Айзерман, Э.М. Браверман, Л.И. Розоноэр
(метод потенциальных функций [1]), В.Н. Вапник, А.Я. Червоненкис
(статистическая теория обучения, метод «обобщенный портрет» [7]),
Ю.И. Журавлев (алгоритмы вычисления оценок и алгебраическая
теория распознавания [32]), Н.Г. Загоруйко (алгоритмы таксономии
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[34,35]), Г.С. Лбов (логические методы распознавания и поиска зави-
симостей [41]), Вл.Д. Мазуров (метод комитетов [42]), В.Л. Матросов
(статистическое обоснование алгебраического подхода к распознава-
нию [43]), К.В. Рудаков (теория алгебраического синтеза корректных
алгоритмов [52]).

Интенсивные исследования проводятся с начала 80-х годов в ВИ-
НИТИ АН СССР (потом в ВИНИТИ РАН, в настоящее время - в
ФИЦ ИУ РАН). С 1981 года [56] группа исследователей под руковод-
ством проф. В.К. Финна создала и развивает логико-комбинаторный
ДСМ-метод автоматического порождения гипотез [31], в котором
формализованы различные когнитивные процедуры, основанные на
понятии сходства.

ДСМ-метод назван так в честь известного английского философа,
экономиста и логика Джона Стьюарта Милля. Используя технику
многозначных логик, В.К. Финну с коллегами [2, 3] удалось поста-
вить систему индуктивной логики Милля [44] на четкие логические
основания. Ключевым компонентом этого подхода является бинар-
ная операция сходства [30]. Следует указать, что примерно в это же
самое время аналогичный подход (но основанный не на логике, а на
теории решеток) был разработан группой зарубежных исследовате-
лей под руководством проф. Рудольфа Вилле под названием ана-
лиз формальных понятий (АФП) [67]. Однако отечественный подход
включил в рассмотрение контр-примеры, чего не имеется у зарубеж-
ных авторов.

Второй когнитивной процедурой стало доопределение по анало-
гии, что превратило ДСМ-метод в средство интеллектуального ана-
лиза данных [58], когда после анализа прецедентов стало возможным
применить приобретенное знание (гипотезы о причинах) для прогно-
зирования целевых свойств у ранее неизученных примеров.

Наконец, третья когнитивная процедура - абдуктивное принятие
гипотез - возникло в трудах В.К. Финна в результате осмысления
наследия известного американского математика и логика Чарльза
Сэндерса Пирса [50].

После выяснения сути указанных когнитивных процедур проф.
В.К. Финн создал единую систему, объединяющую все эти процеду-
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ры в одно целое. Эта система и получила название ДСМ-метод [57].
Следует признать, что имеются некоторые особенности ДСМ-

метода, которые выдвигают вопрос о реализации вычислений для
интеллектуального анализа данных на его основе.

Во-первых, множество порождаемых ДСМ-гипотез может ока-
заться экспоненциально велико по сравнению с размером обучающей
выборки.

Во-вторых, С.О. Кузнецовым [39], М.И. Забежайло и др. были
доказаны пессимистические оценки сложности для многих ДСМ-
процедур (NP -полнота и #P -полнота).

В-третьих, автор сумел обнаружить эффект «переобучения»: по-
рождение так называемых фантомных ДСМ-гипотез. Эти фантом-
ные гипотезы возникают тогда, когда вычисляется сходство двух
(или более) обучающих примеров, каждый из которых имеет свой
собственный механизм порождения целевого свойства. Это сходство
оказывается фрагментом (набором общих признаков), который не
является причиной исследуемого целевого свойства. Если же допу-
стить его в процедуру предсказания эффекта у нового примера, предъ-
явленного на прогноз, то он будет мешать корректному предска-
занию. Подобный эффект «переобучения» характерен для многих
методов машинного обучения, когда максимальный учет информа-
ции из обучающей выборки приводит к модели, демонстрирующей
плохую предсказательную способность.

Чтобы справиться с возникающими проблемами, автором предла-
гается новый вероятностно-комбинаторный подход. Так как некото-
рые ингредиенты заимствованы мной из анализа формальных поня-
тий (АФП), я назвал его вероятностно-комбинаторный формальный
метод, сокращенно ВКФ-метод.

Цель диссертационной работы. Целью данной работы яв-
ляется исследовать модель машинного обучения, основанного на ме-
тодах теории решеток, разработать вероятностные алгоритмы ин-
теллектуального анализа данных для этого метода и исследовать
математические свойства предложенных алгоритмов.
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Научная новизна. Вероятностный подход к машинному обу-
чению, основанному на методах теории решеток, до сих пор не ис-
следовался.

Известные ранее детерминированные алгоритмы основывались
на полном переборе возникающих сходств. Теоретическая оценка в
этом случае пессимистична: возможно получение O(2n) различных
битовых строк длины n с помощью побитого умножения на n × n
бинарных матрицах. На практике это проявлялось как «экспоненци-
альный взрыв», когда из обучающей выборки, содержащей несколько
сотен примеров, порождалось более миллиона гипотез, даже уже со-
кращенных проверками дополнительных логических условий. Неко-
торые из этих гипотез только вредят предсказанию (наблюдается эф-
фект «переобучения»). Изучение феномена «переобучения» в главе
2 также является новым.

Методы исследования. Для исследования нового вероятностно-
комбинаторного метода машинного обучения, основанного на теории
решеток, пришлось привлечь технику цепей Маркова, особенно, спа-
ривающих цепей Маркова, производящих функций распределений
вероятностей, теорию представлений групп.

Применяемые в работе методы относятся к области дискретной
математики на стыке с алгеброй и теорией вероятностей. Все комби-
наторные результаты имеют наглядный вероятностный смысл.

Теоретическая значимость. Математические результаты дан-
ной работы могут служить фундаментом для дальнейшего изучения
предложенных вероятностных моделей и алгоритмов.

Наиболее интересной темой для дальнейших исследований, на
взгляд автора, является вопрос о возможности полностью избавить-
ся от «переобучения» посредством последовательного расширения
обучающих выборок. Анализ производящих функций, полученных в
теореме 2.4, возможно, приведет к разрешению этого вопроса.

Все полученные вероятностные результаты имеют наглядный ал-
горитмический смысл и приводят к значительному ускорению вы-
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числений (оценка эффективности ленивых вычислений в теореме 1.2,
применение остановленной «спаривающей» цепи Маркова из теоре-
мы 3.3) или определению ключевых параметров (достаточное число
сходств в теореме 4.1).

Практическая значимость. Разработанные математические
модели, методы и алгоритмы позволяют организовать интеллекту-
альный анализ данных, основываясь как на малых, так и на больших
выборках сложно структурированных обучающих примеров.

Малыми можно считать такие выборки, для которых все множе-
ство сходств может быть проанализировано экспертом. Большие вы-
борки обеспечивают достаточный объем, чтобы статистические вы-
воды могли быть сделаны с заданной надежностью.

Хотя диссертационная работа носит теоретический характер, ав-
тор проверил свои идеи путем применения созданной им программ-
ной системы, реализующий синтез описываемых вероятностных ал-
горитмов, к двум массивам (SPECT Hearts и Mushrooms) из репо-
зитория данных для тестирования алгоритмов машинного обучения
(UCI Machine Learning Repository).

Успешное применение к массиву Mushrooms (8124 объекта) поз-
воляет надеяться, что предложенный подход сможет конкурировать
с другими методами интеллектуального анализа «больших данных».

Область исследования. По паспорту специальности 05.13.17 —
«Теоретические основы информатики» областями исследования яв-
ляются:

• разработка и исследование моделей и алгоритмов анализа дан-
ных, обнаружения закономерностей в данных (п.5)

• моделирование формирования эмпирического знания (п.7)

• разработка методов обеспечения высоконадежной обработки
информации (п.11)
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Согласно формуле специальности «Теоретические основы инфор-
мации» к ней относятся, в числе прочего, «... исследования методов
преобразования информации в данные и знания; создание и иссле-
дование ... методов машинного обучения и обнаружения новых зна-
ний». Таким образом, исследование вероятностной модели машинно-
го обучения, основанного на теории решеток, соответствует данной
специальности.

Апробация работы. Результаты работы неоднократно расска-
зывались на научных семинарах ФИЦ ИУ РАН и на конференциях:

• XIII Всероссийская конференция по искусственному интеллек-
ту КИИ-2012, Белгород, 2012 ( [10])

• 35 European Conference on Information Retrieval, Moscow, 2013
( [76])

• VI Мультиконференция по проблемам управления МКПУ-2013,
с. Дивноморское, 2013 ( [11])

• XIV Всероссийская конференция по искусственному интеллек-
ту КИИ-2014, Казань, 2014 ( [12])

• Conference on Analysis of Images, Social networks, and Texts AIST-
2014, Ekaterinburg, 2014 ( [77])

• Всероссийская конференция «Гуманитарные чтения РГГУ –
2014», Москва, 2014 ( [13])

• VIII Мультиконференция по проблемам управления МКПУ-
2015, с. Дивноморское, 2015 ( [15])

• International Workshop «Formal Concept Analysis for Knowledge
Discovery», Moscow, 2017 ( [78])

• X Мультиконференция по проблемам управления МКПУ-2017,
с. Дивноморское, 2017 ( [21])
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• XVI Всероссийская конференция по искусственному интеллек-
ту КИИ-2018, г. Москва, 2018 ( [79])

Материалы настоящей работы используются при чтении курсов
лекций «Теория сходства в интеллектуальных системах» и «Интел-
лектуальный анализ данных и машинное обучение», читаемых сту-
дентам старших курсов Отделения интеллектуальных систем в гума-
нитарной сфере Российского Государственного Гуманитарного Уни-
верситета.

Публикации. Публикации по теме диссертации в изданиях из
списка, рекомендованного ВАК: [9, 13,14,16–20,22–24,49,66,76–79].

Другие публикации автора по теме: [10–12,15,21].
Отдельные результаты включались в отчеты по проектам РФФИ

• 11-07-00618а «Интеллектуальные системы для наук о жизни и
социальном поведении и стратегии когнитивного анализа дан-
ных» 2011-2013

• 14-07-00856а «ДСМ-метод автоматического порождения гипо-
тез как средство конструирования интеллектуальных систем»
2014-2016

• 17-07-00539a «Интеллектуальная система для обнаружения эм-
пирических закономерностей в последовательностях баз фак-
тов» 2017

и по программам Президиума РАН П15 за 2012-2014 гг.

Личный вклад автора. В диссертационной работе представ-
лены только результаты, полученные лично автором: исследование
феномена переобучения для комбинаторных методов, основанных на
операции сходства (вероятности возникновения фантомного сходства
при наличии контр-примеров), вероятностные алгоритмы машинно-
го обучения, основанного на прикладной теории решеток, и их свой-
ства. Из совместных публикаций в диссертацию включены лишь ре-
зультаты автора.
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Структура и объем работы. Диссертационная работа состо-
ит из Введения, 4 глав, Заключения, списка используемых сокраще-
ний, словаря терминов и библиографии. Общий объем работы – 131
страница. Список литературы содержит 80 названий.

Краткое содержание работы по главам. В главе 1 опре-
деляются решетки сходства и напоминаются основные факты ана-
лиза формальных понятий (АФП) и вводятся ключевые операции
«замыкай-по-одному», для которых оценивается алгоритмическая эф-
фективность «ленивой» схемы их вычисления (теорема 1.1). Исполь-
зуя технику АФП, удалось сформулировать и доказать (теорема 1.2)
корректность алгоритма 1 кодирования объектов битовыми строка-
ми, при котором операция сходства заменяется побитовым умноже-
нием, что позволяет эффективно использовать архитектуру совре-
менных ЭВМ.

В главе 2 изложены результаты автора о «переобучении» при ин-
дуктивном обобщении обучающих примеров - возникновении «фан-
томных» сходств. Для устранения таких сходств имеется несколько
механизмов. Наиболее важные среди них - ограничение на число ро-
дителей и запрет на контр-примеры. Доказаны теоремы 2.1 и 2.2 о
том, что ни один из этих механизмов не могут полностью устранить
феномен «переобучения». Параграф 2.3 содержит вывод явных фор-
мул производящих функций для вероятности возникновения «фан-
томных» сходств при наличии фиксированного и произвольного чис-
ла контр-примеров (теоремы 2.3 и 2.4).

В главе 3 предложены и исследованы вероятностные алгоритмы
нахождения кандидатов в гипотезы о причинах появления целевого
свойства. Сначала описываются несколько алгоритмов из работы ав-
тора [9], используемых для вероятностного порождения сходств. Для
одного из них (спаривающая цепь Маркова в алгоритме 4) имеется
естественный момент остановки, который является конечным с веро-
ятностью единица. Для этой цепи Маркова удалось доказать теоре-
му 3.3 об изменении вероятностей эргодических состояний, если мы
отбросим траектории, длина которых превосходит сумму длин тра-
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екторий во время заданного числа предварительных прогонов. Па-
раграф 3.3 содержит теоремы о времени склеивания спаривающей
цепи Маркова для случая Булевой алгебры. Завершается эта глава
выводом верхней оценки (3.15) времени перемешивания монотонной
цепи Маркова и доказательством теоремы 3.9 об асимптотической
точности этой оценки (снова лишь для случая Булевой алгебры).

Глава 4 посвящена процедурам машинного обучения, основанного
на методах теории решеток, для порождения причинно-следственных
зависимостей. Здесь дано их формальное описание и приведены до-
казательства их свойств. Для доопределения по аналогии установ-
лен ключевой результат о надежности (теорема 4.1). Описание про-
граммной реализации ВКФ-метода содержится в параграфе 4.3. Па-
раграф 4.4 описывает апробацию разработанного подхода на масси-
вах SPECT Hearts и Mushrooms из репозитория данных для тести-
рования алгоритмов машинного обучения.
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Глава 1

Прикладная теория
решеток

В первом параграфе этой главы мы обсудим свойства бинарной
операции сходства, определяющей нижнюю полурешетку с наимень-
шим элементом. Классический метод превращения конечной нижней
полурешетки (с добавлением наибольшего элемента, если его нет) в
решетку ставит задачу о нахождении супремума. Анализ формаль-
ных понятий (АФП) [67] позволяет предложить эффективный алго-
ритм.

В параграфе 1.2 вводим понятия операций «замыкай-по-одному»
и устанавливаем их базисные свойства (корректность и монотон-
ность). С использованием идей АФП предлагается «ленивая» схема
вычисления операций «замыкай-по-одному». Теорема 1.1 оценивает
алгоритмическую эффективность этого подхода.

Наконец, параграф 1.3 описывает алгоритм 1 кодирования слож-
ных структур признаков битовыми строками с операцией побитового
умножения в качестве операции сходства. То, что такое представле-
ние всегда возможно составляет содержание фундаментальной тео-
ремы АФП. Мы докажем корректность этого алгоритма (теорема
1.2), опираясь на результаты анализа формальных понятий [62].
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1.1 Основные определения
Сходство является бинарной операцией на множестве X, объем-

лющем множество объектов, то есть представляет собой отображе-
ние ∩ : X × X → X. Элементы множества X мы будем называть
фрагментами. Терминология происходит из фармакологических ис-
следований, где изучаются причины того или другого биологическо-
го действия химических соединений. Такие причины (фармакофо-
ры) ищутся среди общих частей некоторой группы биологически-
активных соединений путем нахождения их общего фрагмента (воз-
можно, несвязного). При вычислении сходства объектов, перечислен-
ным в некотором порядке, применяется операция сходства. Проме-
жуточные результаты - фрагменты - тоже могут выступать аргумен-
тами операции сходства.

Для независимости результата нахождения сходства нескольких
объектов от порядка вычисления операция сходства должна удовле-
творять аксиомам нижней полурешетки:

x ∩ x = x (1.1)

x ∩ y = y ∩ x (1.2)

(x ∩ y) ∩ z = x ∩ (y ∩ x) (1.3)

Для выражения тривиальности сходства добавляется специаль-
ный пустой фрагмент ∅ со свойством наименьшего элемента:

x ∩ ∅ = ∅ (1.4)

Важнейшим примером для нас будет нижняя полурешетка, состо-
ящая из битовых строк фиксированной длины с побитовым умноже-
нием в качестве операции сходства. Пустым фрагментом будет яв-
ляться строка, состоящая из одних нулей. Каждый бит может быть
отождествлен с бинарным признаком. Тогда битовая строка соответ-
ствует множеству признаков, в которых встречаются единицы. При
этом операция сходства соответствует пересечению множеств при-
знаков, а пустой фрагмент - пустому множеству признаков.
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Ясно, что в этом примере строка из одних единиц будет соответ-
ствовать наибольшему элементу F со свойством:

x ∩ F = x (1.5)

Легко доказать известный результат [62] о том, что любую ко-
нечную нижнюю полурешетку с наибольшим элементом мож-
но превратить в решетку.

Операция x ∪ y задается как последовательное сходство (в про-
извольном порядке) множества {z1, . . . , zk} всех общих верхних гра-
ней для x и y - элементов полурешетки со свойствами zj ∩ x = x и
zj ∩ y = y. Сходством одноэлементного множества является фраг-
мент того элемента, который в нем содержится. Сходством пустого
множества является наибольший элемент (существующий по усло-
вию).

Тогда можно проверить свойства решетки:

x ∪ x = x (1.1′)

x ∪ y = y ∪ x (1.2′)

(x ∪ y) ∪ z = x ∪ (y ∪ x) (1.3′)

x ∪ F = F (1.4′)

x ∪ ∅ = x (1.5′)

x ∪ (x ∩ y) = x x ∩ (x ∪ y) = x (1.6)

Важность этого примера объясняется двумя фактами:

1. Операция побитового умножения допускает эффективную реа-
лизацию на современных ЭВМ. Существуют специальные клас-
сы объектов (например, boost :: dynamic_bitset в C++), реа-
лизующие удобное оперирование битовыми строками.

2. Анализ формальных понятий позволяет эффективно опреде-
лить полурешетку битовых строк с операцией побитового умно-
жения, изоморфную заданной нижней полурешетке.
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К сожалению, вариант вложения нижней полурешетки (с добав-
лением наибольшего элемента, если его первоначально не было), опи-
санный в этом параграфе, может рассматриваться неудовлетвори-
тельным по двум причинам:

1. Обычно операция супремума ∪ не совпадает с побитовой дизъ-
юнкцией, которая тоже эффективно вычисляется на современ-
ных ЭВМ;

2. Вычисление же супремума как сходства всех общих верхних
граней не является эффективным (может потребовать побито-
во перемножить почти все объекты).

Для обоснования первого утверждения достаточно рассмотреть
нижнюю полурешетку битовых строк с операцией побитового умно-
жения:

O | F f1 f2 f3

o1 1 0 0
o2 1 1 0
o3 0 0 1
∅ 0 0 0

Легко проверить, что добавление максимального элемента F по-
родит решетку-«пентагон» N5

F
o3o2

o1

∅

Эта решетка не является дистрибутивной, то есть не удовлетво-
ряет условиям:

x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z) x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z) (1.7)
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Первое равенство опровергается при x = o1, y = o2, z = o3, так
как тогда o1∪(o2 ∩ o3) = o1∪∅ = o1, но (o1 ∪ o2)∩(o1 ∪ o3) = o2∩F =
o2.

То, что решетка 〈{0, 1}n,∩,∪, ∅ = 0n, 1n〉 (т.е. множество всех
строк с побитовыми операциями конъюнкции и дизъюнкции) явля-
ется дистрибутивой, следует из того, что на каждой компоненте мы
имеем дистрибутивную решетку 〈{0, 1},∧,∨, 0, 1〉, для которых об-
разуется их Декартово произведение.

Теперь напомним определение гомоморфизма h : 〈L1,∩,∪, 0, 1〉 →
〈L2,∩,∪, 0, 1〉 решеток как такого отображения h : L1 → L2, что
h(0) = 0, h(1) = 1, и для всех x, y ∈ L1 выполняются равенства:

h(x ∪ y) = h(x) ∪ h(y) h(x ∩ y) = h(x) ∩ h(y) (1.8)

Если гомоморфизм является инъективным отображением h : L1 →
L2, то называется мономорфизмом, а решетка 〈L1,∩,∪, 0, 1〉 (точнее,
ее изоморфный образ) является подрешеткой решетки 〈L2,∩,∪, 0, 1〉.

Из равенств (1.8) легко выводится, что из дистрибутивности ре-
шетки 〈L2,∩,∪, 0, 1〉 следует дистрибутивность любой ее подрешетки
〈L1,∩,∪, 0, 1〉.

Поэтому для вышеприведенного формального контекста, порож-
дающего недистрибутивную решетку N5, невозможен мономорфизм
ни в какую Булеву алгебру вида 〈{0, 1}n,∩,∪, ∅, 1n〉, то есть невоз-
можно реализовать операцию супремума ∪ побитовой дизъюнкцией.

Однако анализ формальных понятий, к изложению которого мы
переходим, позволяет обойти второе препятствие.

Собирая вместе битовые строки, представляющие объекты, мы
получаем прямоугольную таблицу I, которую мы будем называть
формальным контекстом [67]. Формальный контекст можно пони-
мать как бинарное отношение между элементами множества O, кото-
рые мы называем именами объектов (или даже объектами), и эле-
ментами множества F , которые мы называем признаками. Если в
строчке, соответствующей объекту o ∈ O, и столбце, соответствую-
щим признаку f ∈ F , стоит единица, то мы говорим, что объект
o обладает признаком f , и обозначаем это через oIf . В противном
случае, говорим, что объект o не имеет признака f .
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Для подмножества A ⊆ O объектов его сходством называется
подмножество A′ = {f ∈ F : ∀o ∈ A [oIf ]} ⊆ F . Полагаем ∅′ = F .

На самом деле, это определение совпадает с последовательным
вычислением побитового умножения строк, соответствующих ото-
бранным во множество A объектов, как это определялось в преды-
дущем параграфе.

Для подмножества B ⊆ F признаков его сходством называется
подмножество B′ = {o ∈ O : ∀f ∈ B [oIf ]} ⊆ O. Полагаем ∅′ = O.

Понятия сходства, определенные выше, задают операции ′ : 2O →
2F и ′ : 2F → 2O, называемые полярами.

Сформулируем простую лемму, прямо выводящуюся из определе-
ния, которая будет широко применяться в последующем изложении:

Лемма 1.1. Для A1 ⊆ O и A2 ⊆ O выполняется (A1∪A2)
′ = A′1∩A′2.

Для B1 ⊆ F и B2 ⊆ F выполняется (B1 ∪B2)
′ = B′1 ∩B′2.

Особенно часто мы будем использовать такие варианты:

(A ∪ {o})′ = A′ ∩ {o}′ (1.9)

для любых A ⊆ O и o ∈ O, и

(B ∪ {f})′ = B′ ∩ {f}′ (1.10)

для любых B ⊆ F и f ∈ F .
Легко проверить следующие свойства соответствий Галуа для

сходства [67]:

∀A [A ⊆ A′′] ∀B [B ⊆ B′′] (1.11)

∀A1∀A2 [A1 ⊆ A2 ⇒ A′1 ⊇ A′2] ∀B1∀B2 [B1 ⊆ B2 ⇒ B′1 ⊇ B′2] (1.12)

∀A [A′ = A′′′] ∀B [B′ = B′′′] (1.13)

Определение 1.1. Пару 〈A,B〉 назовем кандидатом, если A =
B′ ⊆ O и B = A′ ⊆ F .
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В АФП такие пары называют формальными понятиями, но мы
предпочитаем сменить название, так как термин «понятие» имеет
другой смысл для специалистов в области машинного обучения.

Наглядно, кандидаты в формальном контексте соответствуют мак-
симальным подматрицам, заполненным единицами:

O × F f1 . . . fj1 fj1+1 . . . fjm−1
. . . fjm . . . fn

o1 0 . . . 0 0 . . . 1 . . . 0 . . . 0
... ... . . . ... ... . . . ... . . . ... . . . ...
oi1 0 . . . 1 1 . . . 1 . . . 1 . . . 1
oi1+1 0 . . . 0 0 . . . 1 . . . 1 . . . 0
... ... . . . ... ... . . . ... . . . ... . . . ...
oil−1

1 . . . 1 0 . . . 1 . . . 1 . . . 0
... ... . . . ... ... . . . ... . . . ... . . . ...
oil 1 . . . 1 1 . . . 1 . . . 1 . . . 0
... ... . . . ... ... . . . ... . . . ... . . . ...
ok 0 . . . 1 0 . . . 0 . . . 0 . . . 0

Здесь подмножество объектов (строк) A = {oi1, . . . , oil−1
, oil} назы-

вается списком родителей, а подмножество признаков (столбцов)
B = {fj1, . . . , fjm−1

, fjm} называется фрагментом. Максимальность
означает, что нельзя добавить ни одну строку, ни одного столбца так,
чтобы расширенная подматрица состояла лишь из одних единиц.

Равенство A = B′ из определения 1.1 означает невозможность до-
бавить еше одну строку и называется «принципом исчерпываемости
родителей». Равенство B = A′ соответствует невозможности доба-
вить еще один столбец и говорит, что фрагмент B - общая часть
всех примеров-родителей из A.

Одна из главных проблем предыдущих подходов к анализу дан-
ных, основанных на операции сходства, при которых предварительно
вычислялись всевозможные сходства подмножеств обучающих при-
меров - высокая вычислительная сложность. На практике этому со-
ответствует «комбинаторный взрыв». В теории имеем экспоненци-
альную оценку на число сходств в худшем случае.
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Такой худший случай (Булеан) возникает, когда из n обучающих
примеров с n признаками можно получить 2n различных сходств.

Рассмотрим формальный контекст для Булеана:
Пусть O = {o1, o2, . . . , on} будет множеством объектов, каждый

из которых признаками из списка F = {f1, f2, . . . , fn}, и

oiIfj ⇔ i 6= j. (1.14)

O | F f1 f2 . . . fn
o1 0 1 . . . 1
o2 1 0 . . . 1
... ... ... . . . ...
on 1 1 . . . 0

Ясно, что
⋂
{oj1, . . . , ojl} = F \ {fj1, . . . , fjl}, так как добавление

в сходство примера ok с номером k удаляет из фрагмента признак fk
с тем же самым номером k.

Очевидно, что таким образом может быть получено любое под-
множество n-элементного множества F .

Нужно сказать, что такой «комбинаторный взрыв», хотя и ока-
зывает влияние на скорость анализа данных, тем не менее гораздо
безобиднее фантомных сходств (определяемых в главе 2): если есть
некоторая «настоящая» причина, и порождается также много ее над-
множеств, то, с точки зрения предсказания по аналогии (составля-
ющий алгоритм 6), любое надмножество будет правильно доопре-
делять объекты, так как при его включении «настоящая» причина
тоже будет содержаться в предсказываемых объектах, и, значит, бу-
дет вынуждать целевое свойство. При этом все такие надмножества,
когда они сработают (породят положительный прогноз), дадут оди-
наковый результат.

Определение 1.2. Порядок на кандидатах: 〈A1, B1〉 ≤ 〈A2, B2〉,
если B1 ⊆ B2.

Это двойственное (с точки зрения анализа формальных понятий)
определение приводится в настоящем виде для согласованности с
традицией отечественной школы.
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Легко проверить (доказательство есть, например, в [62]), чтомно-
жество всех кандидатов (для фиксированного формального кон-
текста I ⊆ O × F ) образует решетку L относительно операций

〈A1, B1〉 ∩ 〈A2, B2〉 = 〈(A1 ∪ A2)
′′, B1 ∩B2〉 (1.15)

〈A1, B1〉 ∪ 〈A2, B2〉 = 〈A1 ∩ A2, (B1 ∪B2)
′′〉 (1.16)

1.2 Операции «Замыкай-по-одному»
Для понимания смысла главных рабочих операций ВКФ-метода

- операций «замыкай-по-одному» - полезны отображения g : O → L
и h : F → L объектов и признаков, соответственно, в решетку L всех
кандидатов

g(o) = 〈{o}′′, {o}′〉 (1.17)

h(f) = 〈{f}′, {f}′′〉 (1.18)

Теперь операции «замыкай-по-одному» можно определить как:

Определение 1.3. Операция замыкай-по-одному-вниз на кан-
дидате 〈A,B〉 и объекте o ∈ O порождает пару

CbODown(〈A,B〉, o) = 〈(A ∪ {o})′′, B ∩ {o}′〉.

Операция замыкай-по-одному-вверх на кандидате 〈A,B〉 и
признаке f ∈ F порождает пару

CbOUp(〈A,B〉, f) = 〈A ∩ {f}′, (B ∪ {f})′′〉.

Операция CbODown соответствует шагу алгоритма «Замыкай-
по-одному», который был предложен С.О.Кузнецовым [40] для вы-
числения всех кандидатов перебором сверху-вниз. Операции CbOUp
и CbODown были предложены автором безымянно [9] и под этим
именем в [76] для процедур случайного блуждания по решетке всех
кандидатов, варианты которого описаны в главе 3.
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Легко проверяется с использованием формул (1.15), (1.16), (1.17),
(1.18)что

CbODown(〈A,B〉, o) = 〈A,B〉 ∩ g(o) (1.19)

CbOUp(〈A,B〉, f) = 〈A,B〉 ∪ h(f) (1.20)

Теперь легко установить

Лемма 1.2. Для любого кандидата 〈A,B〉 и любого объекта o ∈ O
пара CbODown(〈A,B〉, o) является кандидатом.

Аналогично, для любого кандидата 〈A,B〉 и любого признака f ∈
F пара CbOUp(〈A,B〉, f) является кандидатом.

Лемма 1.3. Для всякой упорядоченной пары кандидатов

〈A1, B1〉 ≤ 〈A2, B2〉

и любого o ∈ O имеем

CbODown(〈A1, B1〉, o) ≤ CbODown(〈A2, B2〉, o).

Для всякой упорядоченной пары кандидатов

〈A1, B1〉 ≤ 〈A2, B2〉

и любого f ∈ F имеем

CbOUp(〈A1, B1〉, f) ≤ CbOUp(〈A2, B2〉, f).

Это утверждение легко проверяется с использованием формул
(1.12) и определения 1.2.

Сформулированные выше леммы 1.2 и 1.3 будут использованы
нами при описании вероятностных алгоритмов поиска сходств в па-
раграфе 3.2.

Для дальнейшего нам будет полезен явный вид операций «замыкай-
по-одному» в решетке-Булеане oiIfj ⇔ i 6= j для множества объек-
тов O = {o1, o2, . . . , on}, каждый из которых описывается признака-
ми из списка F = {f1, f2, . . . , fn}.
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Ясно, что в этом случае

CbODown(〈A,B〉, ok) =

{
〈A ∪ {ok}, B \ {fk}〉, если ok /∈ A
〈A,B〉, иначе,

(1.21)
так как добавление в сходство объекта ok с номером k удаляет из
фрагмента признак fk с тем же самым номером k.

Аналогично,

CbODown(〈A,B〉, fk) =

{
〈A \ {ok}, B ∪ {fk}〉, если fk /∈ B
〈A,B〉, иначе,

(1.22)
так как добавление в сходство признака fk с номером k удаляет из
родителей сходства объект ok с тем же самым номером k.

Эти выражения помогут нам понять, что в этом частном случае
вероятностные алгоритмы 2 и 3 поиска сходств, описанные в пара-
графе 3.1, совпадают с классическими случайными блужданиями на
гиперкубе всех подмножеств.

В базисном алгоритме 4 операции CbODown и CbOUp применя-
ются в зависимости от того, выпадает объект или признак. Исполь-
зуя возможность появления длинных серий из одних объектов или
из одних признаков, можно добиться существенного ускорения, если
реализовывать их с использованием ленивых вычислений. Вопросу о
вычислительной эффективности этого подхода посвящена основная
теорема настоящего параграфа.

Согласно определению 1.3

CbODown(〈A,B〉, o) = 〈(A ∪ {o})′′, B ∩ {o}′〉.

Если вычисление пересечения B ∩ {o}′ фрагмента текущего канди-
дата с фрагментом выбранного объекта o соответствует побитово-
му умножению соответствующих строк, то операция (A ∪ {o})′′ =
(B ∩ {o}′)′ (равенство следует из формулы (1.10)) формирования но-
вого списка родителей может потребовать побитово перемножить с
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полученным ранее пересечением почти все объекты, чтобы прове-
рить, обладает ли еще какой-нибудь объект полученным пересечени-
ем.

Для улучшения ситуации предлагается (лениво) откладывать вы-
числения замыкания (двух последовательных поляр), пока последо-
вательный выбор нескольких объектов для CbODown не сменится
выбором признака c переходом к операции CbOUp.

Аналогично, операция CbOUp имеет в своем составе потребляю-
щую много времени компоненту (B ∪ {f})′′ = (A ∩ {f}′)′ (равенство
следует из формулы (1.11)). Здесь тоже можно лениво откладывать
вычисления этой части до тех пор, пока выбор нескольких признаков
для CbOUp не сменится выбором объекта c переходом к операции
CbODown.

Возникает вопрос о степени экономии, достигаемой такой проце-
дурой. Впервые эта задача была решена в работе автора [17]. Здесь
мы проведем более подробный анализ и используем более понятные
обозначения.

Рассмотрим последовательность типов (объект или признак) эле-
ментов, выбираемых в ходе работы алгоритма 4. Ясно, что это - по-
следовательность (вообще говоря, бесконечная) испытаний Бернулли
〈σ1, . . . , σj, . . .〉 с вероятностью успеха (например, выбора признака),
равной p = n

n+k , где n - число признаков, а k - число обучающих
примеров.

Прежде всего зафиксируем два события {σ1 = 0} и {σ1 = 1}.
В случае σ1 = 0 нас интересует длина события {σ1 = . . . = σi =

0, σi+1 = . . . = σj = 1, σj+1 = 0} , а в случае σ1 = 1 интересна длина
{σ1 = . . . = σi = 1, σi+1 = . . . = σj = 0, σj+1 = 1}.

Рассмотрим случайную величину T суммы длин двух переходов
от объектов к признакам и снова к объектам (при σ = 0) и суммы
длин двух переходов от признаков к объектам (при σ = 1)

Воспользуемся формулой полной вероятности (для средних), что-
бы получить

E [T ] = E [T |σ1 = 0] ·P [σ1 = 0] + E [T |σ1 = 1] ·P [σ1 = 1] (1.23)
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Легко видеть, что

P [T = j|σ1 = 0] =
1

1− p
·
j−1∑
i=1

(1− p)i+1 · pj−i =

= pj−1 · (1− p) ·
j−2∑
r=1

(
1− p
p

)r
= pj−1 · (1− p) ·

(
1−p
p

)j−1

− 1

1−p
p − 1

=

= p · (1− p) · (1− p)
j−1 − pj−1

1− 2p
. (1.24)

P [T = j|σ1 = 1] = p · (1− p) · (1− p)
j−1 − pj−1

1− 2p
. (1.25)

Теперь применим технику производящих функций [55], т.е. рас-
смотрим функции (для σ = 0 и σ = 1)

ψσ(z) =
∞∑
j=2

P(T = j|σ1 = σ) · zj.

Суммирование геометрической прогрессии доказывает

Лемма 1.4.

ψ0(z) = ψ1(z) =
p · (1− p)

1− 2p
· z ·

[
(1− (1− p)z)−1 − (1− pz)−1

]
.

Среднее значение вычисляется как значение первой производной
от ψσ(z) в единице: Поэтому

E [T = j|σ1 = 0] = ψ′0(1) =
p · (1− p)

1− 2p
·

·
([

1

1− (1− p) · 1
− 1

1− p · 1

]
+ 1 ·

[
1− p

(1− (1− p) · 1)2 −
p

(1− p · 1)2

])
=

=
p · (1− p)

1− 2p
·
(

1

p2
− 1

(1− p)2

)
=

1

1− 2p
·
(

1− p
p
− p

1− p

)
=

=
(1− p)2 − p2

p · (1− p) · (1− 2p)
=

1

p · (1− p)
. (1.26)
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E [T = j|σ1 = 0] = ψ′1(1) =
1

p · (1− p)
. (1.27)

Теорема 1.1. В ленивой схеме вычислений на каждую пару приме-
нений операции замыкания (одной в CbOUp и одной в CbODown)
в среднем в классической схеме мы будем делать (n+k)2

k·n операций
замыкания.

Доказательство. По формулам (1.23), (1.26) и (1.27) имеем E [T ] =
1

p·(1−p) · (1− p) + 1
p·(1−p) · p = 1

p·(1−p) Так как p = k
n+k и 1− p = n

n+k , то
выигрыш от введения ленивых вычислений в среднем составляет

1

p · (1− p)
=

(n+ k)2

k · n
(1.28)

раз.

Ясно, что выигрыш тем больше, чем больше разница между k и
n, где k - число обучающих примеров, а n - число признаков, исполь-
зуемых для описания объектов, так как (n+k)2

k·n = 4 + (n−k)2

k·n . Даже в
худшем случае k = n это сокращение вызовов трудоемкой операции
не меньше двух раз, потому что (2k)2

k·k = 4. В работе [17] автора при-
водится формула k

n + n
k , которая получается из выведенной в теореме

1.1 вычитанием числа двух обязательных операций замыкания, так
как (n+k)2

k·n − 2 = k
n + n

k .

1.3 Кодирование битовыми строками
Фундаментальная теорема анализа формальных понятий [62, 67]

гласит: Любая конечная решетка изоморфна решетке всех
кандидатов для подходяще выбранного формального кон-
текста.

Сначала мы напомним некоторые понятия и воспроизведем неко-
торые результаты из анализа формальных понятий, так как это поз-
волит нам использовать их для представления объектов, описывае-
мых признаками со сложной структурой значений, с помощью бито-
вых строк (породить формальный контекст).
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Прежде всего мы назовем подмножество элементов S ⊆ L решет-
ки L ∩-плотным, если для любого элемента x ∈ L найдется такое
подмножество X ⊆ S, что x = ∩X. Подмножество элементов S ⊆ L
решетки L называется ∪-плотным, если для любого элемента x ∈ L
найдется такое подмножество X ⊆ S, что x = ∪X.

Очевидно, что все L является как ∩-, так и ∪-плотным. Более
полезный пример доставляется следующим утверждением:

Лемма 1.5. Для решетки кандидатов L, порождаемой формаль-
ным контекстом I ⊆ O × F , образ g(O) = {g(o) : o ∈ O} отобра-
жения g : O → L, задаваемого правилом g(o) = 〈{o}′′, {o}′〉, яв-
ляется ∩-плотным подмножеством. Образ h(F ) = {h(f) : f ∈ F}
отображения h : F → L, задаваемого правилом h(f) = 〈{f}′, {f}′′〉,
является ∪-плотным подмножеством.

Легко установить и обратный результат (доказательство имеется,
например, в [62]):

Лемма 1.6. Пусть для любой конечной решетки L найдутся та-
кие два множества O и F c отображениями g : O → L и h :
F → L, что g(O) ⊆ L - ∩-плотное подмножество, а h(F ) ⊆ L
- ∪-плотное подмножество. Тогда, полагая oIf ⇔ g(o) ≥ h(f), мы
получим формальный контекст, решетка кандидатов которого бу-
дет изоморфна исходной решетке L.

Ясно, что тождественные отображения g = id : L→ L и h = id :
L → L удовлетворяют условию леммы 1.6. Именно так и проходило
первоначальное доказательство фундаментальной теоремы АФП.

К сожалению, этот вариант обычно порождает слишком большой
формальный контекст. Множество объектов обычно бывает задано
извне. Чтобы выбрать минимальное подмножество F ⊆ L, нам необ-
ходимо ввести понятие ∪-неразложимых элементов.

Определение 1.4. Элемент x ∈ L назовем ∪-неразложимым, если
x 6= ∅ и для любых y, z ∈ L если y < x и z < x, то y ∪ z < x.

Простые вычисления доказывают следующий результат:
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Лемма 1.7. Для любой конечной решетки L любое надмножество
всех ∪-неразложимых элементов образуем ∪-плотное подмноже-
ство.

Если предполагать, что объекты описываются признаками, име-
ющими на их значениях структуру нижней полурешетки (с добав-
ленным наименьшим элементом, интерпретируемым как отсутствие
сходства по этому признаку), а операция сходства вычисляется по-
компонентно, то достаточно рассмотреть каждый признак отдельно.
Кодирование же целого объекта составляет конкатенацию (соедине-
ние) кодирований значений каждого признака.

Сосредоточимся на кодировании множества V значений одно-
го признака. Если нижняя полурешетка V не имеет максимально-
го элемента, добавим новым элемент, объявляя его максимальным.
Эта процедура уже встречалась нам ранее. Очевидно, что при та-
ком добавлении этот максимальный элемент будет ∪-разложимым
в расширенной решетке L. Поэтому мы можем игнорировать его и
рассматривать контекст ≥⊆ V × V .

Требование, чтобы значения каждого признака образовывали ниж-
нюю полурешетку, необходимо для того, чтобы не возникало ситуа-
ции, когда сходством нескольких объектов в этом признаке порож-
дается новое значение, которое не имеет имени.

Так как операция сходства порождает порядок (x ≤ y ≡ x ∩ y = x),
то отношение накрытия (x ≺ y ≡ x < y&¬∃z[x < z < y]) задает
ациклический ориентированный граф.

Будем считать заданными только перечисление вершин графа (с
их именами, используемыми для наглядного представления порож-
даемых сходств) и отношение накрытия на них. Поэтому предвари-
тельно из этих данных восстанавливается порядок ≥⊆ V × V (как
транзитивное замыкание отношения накрытия). В алгоритме 1 это
делается с помощью предварительной топологической сортировки
множества вершин:

Определение 1.5. Линейный порядок V [0] < V [1] < . . . < V [n −
1] назовем топологической сортировкой, если ∀i, j[V [i] ≺ V [j] ⇒
i < j].
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Основной идеей описанного ниже алгоритма кодирования явля-
ется процедура сокращения формального контекста ≥⊆ V × V до
множества F всех ∪-неразложимых элементов.

Data: множество V = [0, 1, . . . , n− 1] значений текущего
признака

Result: матрица B такая, что B[j] - битовая строка для
кодирования значения j

V := topological_sort(V ); // топологическая сортировка
∀i∀j[T [i][j] := false]; // матрица порядка
for (index = 0; index < n; + + index) do

T [V [index]][V [index]] := true;
for (indx = 0; indx < index; + + indx) do

if (V [indx] ≺ V [index]) then
for (ndx = 0;ndx < n; + + ndx) do

T [V [index]][ndx] |= T [V [indx]][ndx];
end

end
end

end
∀i[Del[i] = false]; // удаляемые столбцы
for (index = 2; index < n; + + index) do

for (indx = 1; indx < index; + + indx) do
for (ndx = 0;ndx < indx; + + ndx) do

if (T [ ][V [index]] == T [ ][V [indx]]&T [ ][V [ndx]])
then
Del[V [index]] := true;

end
end

end
end
¬Del[indx]⇒ B[indx][index] := T [index][indx];

Algorithm 1: Кодирование битовыми строками
Предлагаемый алгоритм кодирования состоит из четырех частей.
Сначала осуществляется топологическая сортировка. Известно,
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что топологическую сортировку можно выполнить за O(|V | + |V |2)
шагов (например, как описано в [38]).

Во второй части строится матрица T порядка как транзитивное
и рефлексивное замыкание отношения накрытия. Временная слож-
ность этой части алгоритма пропорциональна |V |3.

Главная часть - третья - обнаружение лишних столбцов. Времен-
ная сложность этой части равна O(|V |4). Если структура для хра-
нения временной матрицы T представляет собой std :: list < boost ::
dynamic_bitset <>> (список столбцов), то операция в самом внут-
реннем цикле хорошо векторно распараллеливается современными
компиляторами, чем сильно уменьшается реальное время работы.

Наконец, последняя часть алгоритма составляет кодировочную
матрицу B из оставшихся столбцов (=бинарных признаков). Ясно,
что временная сложность этой части равна O(|V |2).

Теперь мы продемонстрируем работу этого алгоритма на приме-
ре (несколько цветов спор для массива Mushrooms из репозитория
данных для тестирования алгоритмов машинного обучения Универ-
ситета Калифорнии в г. Ирвайн):

∅
��

� жёлтый(y)
коричневый(n)H

H
H

��
�жёлто-коричневый(b)шоколадный(h)

На первом и втором шагах создается матрица отношения поряд-
ка. В матрицу пишется 1, если метка строки совпадает или располо-
жена выше (более специфична), чем метка столбца

y n h b y n h
y 1 0 0 0 1 0 0
n 0 1 0 0 ⇒ 0 1 0
h 0 1 1 0 0 1 1
b 1 1 0 1 1 1 0

На третьем шаге в матрице помечаются те столбцы, которые яв-
ляются побитовым умножением двух каких-то других столбцов.
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Наконец, на четвертом шаге все отмеченные столбцы удаляются,
а кодирование соответствует сокращенным битовым строкам.

В ключевой теореме 1.2) используется следующая лемма.

Лемма 1.8. Для любой конечной решетки L в формальном контек-
сте ≥⊆ L× L для любого кандидата 〈A,B〉 найдется такой эле-
мент x ∈ L, что A = {y | y ≥ x} = {x}′ и B = {y | y ≤ x} = {x}′′.

Доказательство корректности этого алгоритма составляет утвер-
ждение следующей теоремы:

Теорема 1.2. Для решетки кандидатов L, порождаемой формаль-
ным контекстом ≥⊆ L× L образ признака h(f) = 〈{f}′, {f}′′〉 яв-
ляется ∪-разложимым элементом, если и только если найдутся
такие два признака f1 < f и f2 < f , что {f}′ = {f1}′ ∩ {f2}′.
Доказательство. По определению 1.4 для ∪-разложимого элемента
〈{f}′, {f}′′〉 должна найтись такая пара 〈A1, B1〉 и 〈A2, B2〉, что

〈{f}′, {f}′′〉 = 〈A1, B1〉 ∪ 〈A2, B2〉.

По лемме 1.8 {f1}′ = A1 и {f2}′ = A2. С использованием уравнения
(1.16)) и леммы 1.1 получаем

〈{f}′, {f}′′〉 = 〈A1 ∩ A2, (A1 ∩ A2)
′〉 = 〈{f1}′ ∩ {f2}′, ({f1}′ ∩ {f2}′)′〉.

Согласно определениям 1.2 и 1.4 из уравнений (1.12) и (1.13) полу-
чаем f1 ∈ {f1}′′ ⊂ {f}′′, т.е. f1 < f . Аналогично, f2 < f .

В работе Е.С.Панкратовой и автора [49] описаны представления
битовыми строками сложных структур значений признаков для ме-
дицинских данных. Там рассматривалось несколько типов нижних
полурешеток на значениях признаков, широко используемых в ре-
альных экспериментальных исследованиях. Алгоритм 1 автоматизи-
рует кодирование битовыми строками и расширяет его на более об-
щий случай дискретных значений признаков, задающих произволь-
ную нижнюю полурешетку. Замена операции сходства побитовым
умножением позволяет эффективно использовать архитектуру со-
временных ЭВМ.
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Основные выводы
1. Некоторые особенности ДСМ-метода, требующие специального

изучения вероятностных вариантов его познавательных проце-
дур (индукции, абдукции и аналогии), могут быть продемон-
стрированы на формальном контексте для Булеана 1.21, в кото-
ром число сходств экспоненциально велико относительно раз-
мера контекста.

2. Задача вычисления сходства всегда сводится к случаю побито-
вого умножения строк из 0 и 1 (по фундаментальной теореме
анализа формальных понятий), что позволяет эффективно ис-
пользовать архитектуру современных компьютеров.

3. Базовые операции «замыкай-по-одному» допускают ленивую
организацию вычислений, для которой теорема 1.1 устанавли-
вает степень увеличения эффективности не менее 2-х раз.

4. Можно предложить алгоритм 1 эффективного кодирования при-
знаков, на значениях которых заданы нижние полурешетки,
битовыми строками так, чтобы операция сходства совпадала с
побитовым умножением. Корректность этого алгоритма уста-
навливается в теореме 1.2.
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Глава 2

Переобучение при
вычислении сходств

Во второй главе изложены результаты автора [16] и [14] о веро-
ятности возникновения эффекта «переобучения» - порождении та-
ких сходств обучающих примеров, которые не соответствуют ника-
кой причине, а возникают лишь из-за одновременного наличия со-
ответствующего общего фрагмента в нескольких объектах, при этом
каждый из примеров-родителей имеет свой фрагмент-причину, от-
личную от этого фрагмента. Мы называем такие сходства «фантом-
ными», так как они обнаруживаются тем же самым механизмом, что
и реальные причины, но их использование для прогнозирования це-
левого свойства у тестовых примеров может приводить к ошибочно-
му предсказанию.

Мы специально приводим в первом параграфе пример возник-
новения фантомного сходства, наглядно демонстрирующий нереле-
вантность таких сходств для предсказания целевого свойства.

Возникновение таких сходств следует рассматривать как меша-
ющий фактор для проведения интеллектуального анализа данных
с помощью операции сходства, подобно тому, как «переобучение»
мешает применению многих методов машинного обучения. Для пре-
одоления этой трудности можно предложить два подхода.

Первый - увеличить нижнюю границу на число объектов, порож-
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дающих данное сходство. Такие объекты называются его родителя-
ми.

Следует заметить, что грубое применение правила отбрасывания
сходств с малым числом родителей может привести к неправомерно-
му отбрасыванию причин, для которых в обучающей выборке слу-
чайно оказалось недостаточно примеров. Так что, пытаясь избавить-
ся от одной напасти (переобучения), мы впадаем в другую крайность
- «недообучение».

Второй способ устранения фантомных сходств - это использо-
вать контр-примеры.Контр-примером называется объект, представ-
ленный битовой строкой, который не обладает целевым свойством.
Он может устранить сходство, если множество признаков сходства
является подмножеством множества признаков контр-примера. Эта
процедура называется запретом контр-примеров.

В параграфе 2.1 мы опишем вероятностную модель, основанную
на случайном задании «сопутствующих» признаков, комбинации ко-
торых могут образовывать фантомные сходства, с помощью незави-
симых серий испытаний Бернулли. Теорема 2.1 сформулирует оцен-
ку на вероятность успеха, чтобы фантомные сходства с заданным
числом родителей возникали.

Следует отметить, что А.С. Опарышева в своей выпускной квали-
фикационной работе [48] бакалавра, выполненной под руководством
автора, продемонстрировала, что имеется значительная (от 10% по
22%) доля ДСМ-гипотез, подозрительных на «фантомность» в экс-
периментах по фармакологии. Запрет контр-примеров снижает сте-
пень переобучения (долю подозрительных гипотез), но не устраняет
их полностью. Это показывает, вероятностная модель, положенная в
основу всех математических результатов настоящей главы, является
достаточно адекватным приближением к реальности.

В параграфе 2.2 мы представим негативный результат автора
о положительности предельной (при числе признаков, стремящем-
ся к бесконечности) вероятности возникновения фантомного сход-
ства, неустранимого контр-примерами, даже тогда, когда вероят-
ность появления каждого признака стремится к нулю, а число контр-
примеров возрастает до бесконечности.
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Параграф 2.3 описывает неасимптотические результаты автора
о вероятности появления фантомного сходства при наличии контр-
примеров. Мы получили производящие функции для вероятностей
неустранения контр-примерами фантомного сходства при фиксиро-
ванном и произвольном числе контр-примеров. Хочется надеяться,
что асимптотический анализ этих производящих функций позволит
оценить вероятность возникновения фантомного сходства, неустра-
нимого контр-примерами, при расширении обучающей выборки (см.
3 открытый вопрос списка из Заключения).

2.1 Модель для переобучения
Мы начнем с наглядного примера:
Пусть

O = {o1 = B737, o2 = SSJ100, o3 = IL76, o4 = A320}

будет множеством самолетов, находящихся на ремонте, каждый из
которых описывается проблемами из списка

F = {f1 = оперение, f2 = двигатель, f3 = ругательство} :

O | F f1 f2 f3

o1 1 0 0
o2 1 0 1
o3 0 1 1
o4 0 1 0

Перечислим всех кандидатов для этого формального контекста в
таблице:
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i A B
1 ∅ {f1, f2, f3}
2 {o2} {f1, f3}
3 {o3} {f2, f3}
4 {o1, o2} {f1}
5 {o2, o3} {f3}
6 {o3, o4} {f2}
7 {o1, o2, o3, o4} ∅

Если рассмотреть непустые сходства не менее двух объектов, то
мы получим две «настоящие» причины: 〈{o1, o2} , {f1}〉 «самолет с
поврежденным оперением не летает» и 〈{o3, o4} , {f2}〉 «самолет с
поврежденным двигателем не летает», и одно «фантомное» сходство
〈{o2, o3} , {f3}〉 «самолет, на котором написано ругательство, не ле-
тает». Последний кандидат возник из-за случайного совпадения под-
множества признаков {f3} у двух примеров o2 и o3, каждый из ко-
торых имеет свою отличную от других «настоящую» причину.

Этот наглядный пример, очевидно, может вызвать полемику: по-
чему мы заранее не можем устранить признаки, оставив только су-
щественные; почему мы используем нашу интуицию при отнесении
третьего сходства к «фантомным»; почему все фрагменты состоят
из единственного признака?

По поводу разделения признаков по степеням существенности
имеются некоторые идеи у коллег автора, но он не будет здесь об-
суждать чужие идеи. Отметим лишь, что признак f3 может быть с
таким же результатом называться «быть отечественного производ-
ства», что уже в значительно меньшей степени вызывает вопрос,
почему вообще этот признак появляется при описании самолетов.
Более того, необходимость его исключения тоже становится неоче-
видной, так как он может выступать частью реальной причины.

Однопризнаковость фрагментов в этом примере вызвана лишь
желанием сократить несущественные детали. Понятно, что разру-
шение оперения и повреждение двигателя обычно описываются ком-
бинациями многих признаков.

Ясно, что подобные фантомные сходства нежелательны, так как
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они приводят в неправильному предсказанию целевых свойств у неис-
следованных примеров (предоставленных для прогноза).

В настоящей главе будут исследованы вероятности их появления.
Но сначала мы должны определить вероятностную модель возник-
новения таких сходств.

Вопрос о том, является ли вероятностная модель, предложенная
автором и описанная ниже, достаточно адекватным приближением
к реальности, исследовался А.С. Опарышевой в ее выпускной ква-
лификационной работе бакалавра, выполненной под руководством
автора.

А.С. Опарышева разработала программу [48] для обнаружения
подозрительных на «фантомность» ДСМ-гипотез, порожденных си-
стемой «ДСМ-решатель по фармакологии», созданной с.н.с. ФИЦ
ИУ РАН, к.т.н. Д.А. Добрыниным.

В ДСМ-экспериментах исследовались причины мутагенной ак-
тивности у замещенных нитробензолов. Обучающая выборка была
подготовлена фармакологами Ливерпульского Университета (Вели-
кобритания). Биологически активными было 166 соединений.

Использовались кодирование фрагментарным кодом суперпози-
ций подструктур (ФКСП), разработанным к.х.н. В.Г. Блиновой и
к.т.н. Д.А. Добрыниным, и MNA, предоставленным нам сотрудни-
ками ИБМХ им. В.Н. Ореховича РАН.

Результаты исследований А.С. Опарышевой [48] суммированы в
следующей таблице:

кодировка контр-примеры ДСМ-гипотез подозрительных
ФКСП нет 130 13
ФКСП есть 247 32
MNA есть 407 105

Очевидно, что имеется значительная (от 10% по 22%) доля ДСМ-
гипотез, подозрительных на «фантомность». Запрет контр-примеров
снижает степень переобучения (долю подозрительных гипотез), но не
устраняет их полностью.
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Зафиксируем все признаки (называемые существенными), участ-
вующие в фрагментах, соответствующих «настоящим» причинам.
Оставшиеся (называемые сопутствующими) признаки будут порож-
даться с помощью последовательностей испытаний Бернулли.

Последовательность n испытаний Бернулли — это распределе-
ние вероятностей на {0, 1}n c

P(x1 = δ1, . . . , xn = δn) =
n∏
j=1

p
δj
j · (1− pj)

1−δj ,

где n ∈ N и 0 < pj < 1. Число pj называется вероятностью успеха
xj = 1 в j-ом испытании.

Элементы формального контекста для вычисления сходств (мы
их будем называть обучающими примерами) порождаются путем
присоединения независимых реализаций этого вероятностного про-
странства (определяющих, какие сопутствующие признаки имеются
у соответствующего примера) к заранее заданным «настоящим» при-
чинам - битовым строкам, задающим соответствующие фрагменты.
Лемма 2.1. Фантомное сходство b обучающих примеров является
последовательностью 〈a1, . . . , an〉 испытаний Бернулли с вероятно-
стью успеха aj = 1 равной pbj, присоединенной к некоторой строке
для существенным признаков, отличной от «настоящих» причин.

Доказательство следует из условия независимости серий Бернул-
ли и определения сходства как побитового умножения. Несовпаде-
ние «настоящих» причин обеспечивает отличие получаемой строки
на месте существенных признаков от «настоящих» причин.

В дальнейшем мы будем игнорировать признаки, необходимые
для описания «настоящих» причин, сосредоточившись только на со-
путствующих признаках, так как только комбинации таковых обра-
зуют фрагменты, соответствующие фантомным сходствам.

В этой главе, кроме последнего параграфа, нас будет интере-
совать случай, когда все сопутствующие признаки равновероятны:
∀j [pj = p]. Такие обучающие примеры мы будем называть случай-
ными p-примерами. Это требование носит технический характер, и
в теореме 2.1 может быть заменена на минимум из pj.
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Лемма 2.2. С вероятностью, равной 1− (1−pb)n, сходство b неза-
висимых случайных p-примеров

〈
x1

1, . . . , x
1
n

〉
,. . .,

〈
xb1, . . . , x

b
n

〉
являет-

ся нетривиальным.

Доказательство легко следует из леммы 2.1.
Попробуем избежать возникновения фантомных сходств увели-

чением порога b на число родителей (наименьшее число обучающих
примеров, сходства которых допускаются).

Теорема 2.1. Для p ≥ (− ln(1− ε)/n)1/b вероятность появления
фантомного сходства b случайных p-примеров не меньше, чем ε >
0.

Доказательство. Из-за выпуклости e−u имеем неравенство

(1− u) ≤ e−u

(e−u лежит над касательной (1−u) к ней в нуле). Применяем лемму
2.1 вместе с этим неравенством и получаем

1− (1− pb)n ≥ 1− e−pb·n ≥ ε.

Из этой теоремы вытекает, что увеличение порога b на число ро-
дителей не сработает: когда число сопутствующих признаков вели-
ко, то даже при достаточно малой вероятности появления каждого
признака вероятность возникновения фантомного сходства положи-
тельна.

Автор хотел бы подчеркнуть, что грубое применение правила от-
брасывания сходств с малым числом родителей может привести к
неправомерному отбрасыванию причин, для которых в обучающей
выборке оказалось недостаточно примеров. Пытаясь избавиться от
одной напасти (переобучения), мы впадаем в другую крайность -
«недообучение».

Как уже говорилось в начале настоящей главы, остается надежда
на контр-примеры. Напомним, что контр-примером называется объ-
ект, представленный битовой строкой, который не обладает целевым
свойством.
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Контр-примеры для устранения фантомных сходств получают-
ся путем присоединения независимых реализаций последовательно-
стей испытаний Бернулли к нулевым строкам, соответствующим су-
щественным признакам, используемых для «настоящих» причин. В
дальнейшем мы будем игнорировать существенные признаки.

Определение 2.1. Контр-пример 〈y1, . . . , yn〉 устраняет фантом-
ное сходство 〈a1, . . . , an〉, если

∀j [aj = 1⇒ yj = 1] .

Другими словами, если отождествить битовую строку со множе-
ством признаков, на местах соответствующих которым стоит едини-
ца, то контр-пример устраняет фантомное сходство, если множество
признаков в сходстве является подмножеством множества признаков
контр-примера.

В следующем параграфе мы получим асимптотическую оценку
на вероятность возникновения фантомного сходства при наличии
контр-примеров. Этот отрицательный результат указывает, что под-
ход к интеллектуальному анализу данных, основанный на вычис-
лении всех сходств среди обучающих примеров, демонстрирует эф-
фект «переобучения», когда построенная исчерпывающая модель бу-
дет иметь плохую предсказательную силу.

2.2 Предельная вероятность переобучения
Рассмотрим модель формирования множества контр-примеров и

обучающих примеров, основанную на независимых последователь-
ностях испытаний Бернулли, описанную в предыдущем параграфе.

В этом параграфе число n обозначает количество сопутствующих
(не входящих ни в какую «настоящую» причину) признаков, кото-
рыми мы ограничиваемся. Для каждого контр-примера или обучаю-
щего примера образуем последовательность n испытаний Бернулли с
одинаковой вероятностью успеха p, причем последовательности для
разных объектов независимы. Число m будет равно числу контр-
примеров.
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Мы ограничимся в этом параграфе случаем двух родителей фан-
томного сходства (это является стандартным условием, применяе-
мым в ДСМ-методе). Из теоремы 2.1 вытекает, что вероятность успе-

ха должна быть не меньше
√
− ln(1−ε)

n , чтобы возникло хотя бы одно
фантомное сходство. Мы обозначим a = − ln(1− ε) и предположим,
что a ≤ 1, т.е. 0 < ε ≤ 1− e−1.

Лемма 2.3. С вероятностью

m∑
j=0

(
m

j

)
· (−1)j · (1− p2 + p2+j))n

возникнет фантомное сходство, которое не устранится ни одним
из m случайных контр-примеров.

Доказательство. По лемме 2.1 фантомному сходству двух обучаю-
щих примеров соответствует последовательность n испытаний Бер-
нулли с вероятностью успеха p2.

Зафиксируем мощность (= количество единиц = число сопут-
ствующих признаков) l фантомного сходства. Тогда искомая вероят-
ность равна

n∑
l=0

(
n

l

)
·
(
p2
)l · (1− p2

)n−l · (1− pl)m,
так как pl равна вероятности устранения этого сходства фиксиро-
ванным контр-примером, поэтому

(
1− pl

)m – вероятность того фан-
томное сходство не устранится ни одним из m случайных контр-
примеров, а

(
n
l

)
·
(
p2
)l · (1− p2

)n−l – вероятность порождения фан-

42



томного сходства мощности l. Но
n∑
l=0

(
n

l

)
·
(
p2
)l · (1− p2

)n−l · (1− pl)m =

=
n∑
l=0

(
n

l

)
·
(
p2
)l · (1− p2

)n−l ·( m∑
j=0

(
m

j

)
· (−1)j · plj

)
=

=
m∑
j=0

(
m

j

)
· (−1)j ·

(
n∑
l=0

(
n

l

)
·
(
p2+j

)l · (1− p2
)n−l)

=

=
m∑
j=0

(
m

j

)
· (−1)j · (1− p2 + p2+j))n.

C помощью принципа «включение-исключение» можно провести
прямое доказательство леммы 2.3. Мы получим этот же самый ре-
зультат в следующем параграфе как следствие теоремы 2.3.

Сформулируем теперь несколько вспомогательных лемм:

Лемма 2.4. Для любой константы c верно
m∑
j=0

(
m

j

)
· (−1)j · c = 0.

Требуемое равенство следует из формулы бинома Ньютона.

Лемма 2.5. Для натурального j > 0 и a ≤ 1 при n→∞ имеем(
1− a

n
+
(a
n

)1+j/2
)n
−
(

1− a

n

)n
=

= a · e−a ·
(a
n

)j/2
+
a2

2
· e−a ·

(a
n

)j
+ rn,

где остаточный член оценивается сверху

rn,j ≤ a · e−a ·
(a
n

)j/2
·
(

1− e1/n
)

+
a2

2
· e−a ·

(a
n

)j
·
(

1− e2/n
)

+
ea

n3j/2
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и снизу − a2+j

2n1+j · e−a ≤ rn,j.

Доказательство. Применим формулу бинома Ньютона[
1− a

n
+
(a
n

)1+j/2
]n
−
(

1− a

n

)n
= n ·

(
1− a

n

)n−1

·
(a
n

)1+j/2

+

+
n(n− 1)

2
·
(

1− a

n

)n−2

·
(a
n

)2+j

+
n∑
k=3

(
n

k

)
·
(

1− a

n

)n−k
·
(a
n

)(1+j/2)k

≤

≤
(

1− a

n

)n−1

· a
1+j/2

nj/2
+
(

1− a

n

)n−2

· a
2+j

2nj
+

1

n3j/2
·
∞∑
k=0

ak

k!
≤

≤
(

1− a

n

)n−1

· a
1+j/2

nj/2
+
(

1− a

n

)n−2

· a
2+j

2nj
+

ea

n3j/2
.

Используем оценку (при n ≥ m для m = 1, 2)(
1− a

n

)n−m
= exp{(n−m) · ln

(
1− a

n

)
} =

= exp{−(n−m) ·
∞∑
k=1

ak

k · nk
} ≤ exp{−a+

m · a
n
} = e−a · e

am
n .

Первые два слагаемых оцениваются так

(
1− a

n

)n−1

· a
1+j/2

nj/2
+
(

1− a

n

)n−2

· a
2+j

2nj
≤

≤ e−a · a
1+j/2

nj/2
· e

a
n + e−a · a

2+j

2nj
· e

2a
n .

Оценка снизу получается тривиально.

Лемма 2.6. При n→∞ имеем разложение(
1− a

n

)n
= e−a − e−a · a

2

2n
+ e−a · a

3(3a− 8)

24n2
+O

(
n−3
)
.
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Доказательство аналогично предыдущему и общеизвестно.
Теперь все готово, чтобы доказать основную теорему этого пара-

графа и статьи автора [16]:

Теорема 2.2. При числе сопутствующих признаков n → ∞ и ве-
роятности появления этих признаков у контр-примеров и обуча-
ющих примеров, равной p =

√
a
n, вероятность возникновения фан-

томного сходства двух обучающих примеров, не устраненного ни-
каким из m = c ·

√
n контр-примеров, будет стремиться к

1− e−a − a · e−a ·
[
1− e−c·

√
a
]
.

Доказательство. Оценим
∑m

j=0

(
m
j

)
· (−1)j · (1− p2 + p2+j))n и сошлем-

ся на лемму 2.3.
Подставляя p =

√
a
n , по лемме 2.4 получим

m∑
j=0

(
m

j

)
· (−1)j ·

(
1− a

n
+
(a
n

)1+j/2
)n

=

=
m∑
j=0

(
m

j

)
· (−1)j ·

[(
1− a

n
+
(a
n

)1+j/2
)n
−
(

1− a

n

)n]
.

Далее применяем леммы 2.5 и 2.6

m∑
j=0

(
m

j

)
· (−1)j ·

[(
1− a

n
+
(a
n

)1+j/2
)n
−
(

1− a

n

)n]
=

=
[
1−

(
1− a

n

)n]
+

+
m∑
j=1

(
m

j

)
· (−1)j ·

[(
1− a

n
+
(a
n

)1+j/2
)n
−
(

1− a

n

)n]
=

=
[
1− e−a +O(n−1)

]
+

+
m∑
j=1

(
m

j

)
· (−1)j ·

[
a · e−a ·

(a
n

)j/2
+
a2

2
· e−a ·

(a
n

)j
+ rn,j

]
.
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Так как m = c ·
√
n = O(n1/2), то

m∑
j=1

(
m

j

)
· (−1)j · rn,j = O(n−1).

Во втором слагаемом главный вклад у первого элемента
m∑
j=1

(
m

j

)
· (−1)j ·

[
a2

2
· e−a ·

(a
n

)j]
=

= −m · a
3

2n
· e−a +O(n−1) = −e−a · c · a

3

2
√
n

+O(n−1).

Наконец, оценка
m∑
j=1

(
m

j

)
· (−1)j ·

[
a · e−a ·

(a
n

)j/2]
=

=
m∑
j=1

(
m

j

)
· (−1)j ·

[
a · e−a ·

(
c ·
√
a

m

)j]
=

= a · e−a ·
[(

1− c ·
√
a

m

)m
− 1

]
=

= a · e−a ·
[
e−c·

√
a − 1− e−c

√
a · c · a

2
√
n

]
+O(n−1),

где последнее равенство следует из леммы 2.6, завершает доказа-
тельство.

Легко увидеть, что

1− e−a − a · e−a ·
[
1− e−c·

√
a
]
> 0 (2.1)

для любых положительных a и c.
Достаточно выражение в скобках заменить единицей (вероятность

только уменьшится), а затем заметить, что результат совпадет с ве-
роятностью для случайной величины Пуассона (со средним a) при-
нять значение больше единицы. Эта вероятность, очевидно, строго
положительна.
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Неравенство 2.1 означает, что при большом числе сопутствую-
щих признаков, даже если вероятность появления каждого такого
признака мала, а число контр-примеров не слишком велико, суще-
ствует ненулевая вероятность появления фантомного сходства.

Конечно, наша модель случайных контр-примеров будет неадек-
ватной, если их число m сравнимо с 2n, так как тогда многие контр-
примеры будут повторяться. Впрочем, с практической точки зре-
ния наличие экспоненциального числа контр-примеров тоже нереа-
листично (уж очень быстро растет экспонента).

Интересно исследовать случай, когда число m контр-примеров
растет, а число n признаков постоянно. В следующем параграфе мы
найдем производящие функции для вероятностей появления фан-
томного сходства при фиксированном и переменном числе контр-
примеров. Можно надеяться, что в этом интересном случае асимп-
тотический анализ этих производящих функций позволит получить
стремящуюся к нулю вероятность возникновения фантомного сход-
ства, неустранимого контр-примерами (см. 3 открытую проблему из
списка в Заключении).

2.3 Производящие функции для переобу-
чения

Настоящий параграф посвящен выводу производящих функций
для вероятностей появления фантомного сходства при фиксирован-
ном и переменном числе контр-примеров. Первоначально эти произ-
водящие функции были опубликованы в работе автора [14].

Напоминаем, что мы используем вероятностную модель возник-
новения фантомного сходства и случайных контр-примеров из пара-
графа 2.1. Через n мы обозначим число сопутствующих признаков,
которыми мы и ограничиваемся. В этом параграфе ситуация рас-
сматривается в максимальной общности: число b - граница на число
родителей - минимальное число обучающих примеров, участвующих
в порождении фантомного сходства - может быть любой. Более то-
го, вероятность появления j-ого признака - вероятность успеха в j-ом
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испытании серии Бернулли - равна pj, то есть может изменяться в
зависимости от признака.

Сначала рассматривается случай фиксированного числаm контр-
примеров.

Для вывода производящих функций мы воспользуемся техникой
конечных цепей Маркова [37], производящими функциями [55] (мно-
гочленами) для конечных распределений вероятностей и оператора-
ми перехода [28], действующими на многочленах.

Рассмотрим процесс одновременного задания t-ых признаков

〈a1, . . . , at . . . , an〉

фантомного сходства и всех контр-примеров〈
y1

1, . . . , y
1
t . . . , y

1
n

〉
, . . . , 〈ym1 , . . . , ymt . . . , ymn 〉 .

Ясно, что это возможно из-за независимости n испытаний Бернулли
для фантомного сходства и контр-примеров.

Определение 2.2. Назовем выжившими на шаге t контр-примеры〈
yk1 , . . . , y

k
t . . . , y

k
n

〉
, для которых ∀j ≤ t

[
aj = 1⇒ ykj = 1

]
.

В момент времени t состоянием цепи Маркова [37] будет число
X

(m)
t контр-примеров, выживших после одновременного нахождения

t-ых признаков m контр-примеров и фантомного сходства. Ясно, что
это число должно быть элементом множества S = {0, 1, . . . ,m}.

Определение 2.3. Цепью Маркова на множестве S = {0, 1, . . . ,m}
состояний назовем (m + 1) × (m + 1)-матрицу P = (pi,j) из неот-
рицательных чисел, удовлетворяющую условию, что все суммы по
строкам равны 1:

∑m
j=0 pi,j = 1. Матрицы такого вида называются

стохастическими. Элемент pi,j = P
[
X

(m)
t+1 = j | X(m)

t = i
]
этой

матрицы — это вероятность перехода в момент времени t + 1 в
состояние X(m)

t+1 = j, стартуя в момент времени t из состояния
X

(m)
t = i.
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Так как первоначально было m контр-примеров (на это указыва-
ет верхний индекс), то X(m)

0 = m с вероятностью 1. Нас интересует
P
[
X

(m)
n = 0

]
— вероятность того, что после определения всех n при-

знаков ни один из m контр-примеров не будет выжившим.

Лемма 2.7. Матрица перехода цепи Маркова имеет элементы:

ps+r,s =

{(
1− pbt+1

)
+ pbt+1 · pst+1, если r = 0

pbt+1 ·
(
s+r
r

)
· (1− pt+1)

r · pst+1, если 0 < r ≤ m− s

Доказательство. Если после определения t-ых признаков остава-
лось s + r (0 < r ≤ m− s) выживших контр-примеров, а после
определения (t+ 1)-ых признаков их осталось s, то t-й признак at+1

сходства обязан быть единицей at+1 = 1, что происходит с вероят-
ностью pbt+1, и какие-то r из s+ r выживших контр-примеров долж-
ны получить нули в (t+ 1)-ой позиции, а остальные контр-примеры
должны получить единицы в (t + 1)-ой позиции, вероятность чего
равна

(
s+r
r

)
· (1− pt+1)

r · pst+1.
Верхняя строка (когда число выживших контр-примеров не умень-

шается) вычисляется разбором случаев, когда (t+1)-й признак сход-
ства равен нулю at+1 = 0, что происходит с вероятностью 1− pbt+1, и
когда at+1 = 1 и все s выживших контр-примеров получают единицы
в (t+ 1)-ой позиции, вероятность чего равна pbt+1 · pst+1.

При вычислении вероятности pbt+1 того, что (t + 1)-ый признак
фантомного сходства равен единице (at+1 = 1), мы использовали
лемму 2.1.

Определение 2.4. Производящей функцией для конечного рас-
пределения вероятностей p : S → [0, 1] на множестве S = {0, 1, . . . ,m}
состояний назовем многочлен ϕ(z) =

∑m
j=0 p(j) · zj.

Производящие функции (многочлены) для распределений

P
[
X

(m)
t = s

]
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будем обозначать через

ϕ
(m)
t (z) =

m∑
j=0

P
[
X

(m)
t = j

]
· zj.

Очевидно, что ϕ(m)
0 (z) = zm. При этом нас интересует число

ϕ(m)
n (0) = P

[
X(m)
n = 0

]
.

Лемма 2.8. Производящие многочлены ϕ(m)
t (z) связаны следующим

образом:

ϕ
(m)
t+1(z) =

(
1− pbt+1

)
· ϕ(m)

t (z) + pbt+1 · ϕ
(m)
t (pt+1 · z + (1− pt+1)) .

Доказательство. Пусть

ϕ
(m)
t (z) =

m∑
s=0

ws · zs, ϕ(m)
t+1(z) =

m∑
s=0

vs · zs,

где ws = P
[
X

(m)
t = s

]
и vs = P

[
X

(m)
t+1 = s

]
. Тогда

vs = P
[
X

(m)
t+1 = s

]
=

=
m−s∑
r=0

P
[
X

(m)
t+1 = s | X(m)

t = s+ r
]
·P
[
X

(m)
t = s+ r

]
=

=
m−s∑
r=0

P
[
X

(m)
t+1 = s | X(m)

t = s+ r
]
· ws+r =

(
1− pbt+1

)
· ws +

m−s∑
r=0

pbt+1 ·
(
s+ r

r

)
· (1− pt+1)

r · pst+1 · ws+r.
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по лемме 2.7. Поэтому получаем

ϕ
(m)
t+1(z) =

m∑
s=0

vs · zs =
(
1− pbt+1

)
·

m∑
s=0

ws · zs+

+ pbt+1 ·
m∑
s=0

m−s∑
r=0

(
s+ r

r

)
· (1− pt+1)

r · ws+r · (pt+1 · z)s .

Переставляя суммирования и вводя обозначение k = s+ r, полу-
чим

ϕ
(m)
t+1(z) =

(
1− pbt+1

)
· ϕ(m)

t (z)+

+ pbt+1 ·
m∑
k=0

k∑
r=0

(
k

r

)
· (1− pt+1)

r · wk · (pt+1 · z)k−r =

=
(
1− pbt+1

)
· ϕ(m)

t (z)+

+ pbt+1 ·
m∑
k=0

wk ·

[
k∑
r=0

(
k

r

)
· (1− pt+1)

r · (pt+1 · z)k−r
]

=

=
(
1− pbt+1

)
· ϕ(m)

t (z) + pbt+1 ·
m∑
k=0

wk · (pt+1 · z + (1− pt+1))
k =

=
(
1− pbt+1

)
· ϕ(m)

t (z) + pbt+1 · ϕ
(m)
t (pt+1 · z + (1− pt+1)) .

Сворачивание выражения в квадратных скобках происходит по
формуле бинома Ньютона, что завершает доказательство.

Преобразование

q(z) 7→
(
1− pbt+1

)
· q(z) + pbt+1 · q (pt+1 · z + (1− pt+1))

задает линейный оператор Lt+1 на многочленах.
Применяя лемму 2.8 n раз, мы получим, что

ϕ(m)
n (z) = Ln [Ln−1 [. . . [L1[z

m]] . . .]] , (2.2)
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так как ϕ(m)
0 (z) = zm. Как уже говорилось ранее, нам нужно вычис-

лить значение этого многочлена в нуле: ϕ(m)
n (0) = P

[
X

(m)
n = 0

]
Для вычислений окажется полезным общий собственный базис

для всех операторов L1, . . . , Ln [28].
Как обычно, собственным базисом линейного оператора L, дей-

ствующего в векторном пространстве V размерности d, называется
базис из собственных векторов, то есть таких элементов

{v1, . . . , vd} ⊆ V,

что найдутся такие числа {λ1, . . . , λd}, для которых выполняются
равенства

L[vj] = λj · vj
для всех j = 1, . . . , d.

Лемма 2.9. Для каждого оператора Lt, действующего в (m + 1)-
мерном пространстве многочленов степени ≤ m собственный ба-
зис образуют многочлены (z−1)j с собственными значениями pb+jt +(
1− pbt

)
.

Имея собственный базис, остается только разложить по нему ис-
ходный полином ϕ

(m)
0 (z) = zm

Лемма 2.10. ϕ(m)
0 (z) =

∑m
j=0

(
m
j

)
· (z − 1)j.

Доказательство. По формуле бинома Ньютона

ϕ
(m)
0 (z) = zm = (1 + (z − 1))m =

m∑
j=0

(
m

j

)
· (z − 1)j .

Теорема 2.3. ϕ(m)
n (z) =

∑m
j=0

(
m
j

)
·
∏n

t=1

[
pb+jt +

(
1− pbt

)]
· (z − 1)j

Доказательство. Собираем вместе утверждения лемм 2.9 и 2.10.
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Подставляя в результат теоремы 2.3 нуль вместо z, получаем при
b = 2 другое доказательство леммы 2.3.

Переходя к случаю переменного числа контр-примеров, заметим,
что каждый оператор Lt не зависит от числа m контр-примеров, и
их собственные базисы совпадают.

Определение 2.5. Производящей функцией для последователь-
ности вероятностей P

[
X

(m)
n = 0

]
, где m = 0, 1, . . ., назовем фор-

мальный степенной ряд

ϕn(0, u) =
∞∑
m=0

P
[
X(m)
n = 0

]
· um.

Двойной производящей функцией для P
[
X

(m)
n = s

]
назовем фор-

мальный ряд

ϕn(z, u) =
∞∑
m=0

m∑
s=0

P
[
X(m)
n = s

]
· zs · um =

∞∑
m=0

ϕ(m)
n (z) · um.

Лемма 2.11. ϕ0(z, u) =
∑m

j=0
uj

(1−u)j+1 · (z − 1)j - разложение по соб-
ственному базису.

Доказательство.

ϕ0(z, u) =
∞∑
m=0

zm · um =
1

1− z · u
=

1

1− u
· 1

1− u·(z−1)
1−u

=

=
m∑
j=0

uj

(1− u)j+1
· (z − 1)j.

Теорема 2.4. ϕn(0, u) =
∑∞

j=0

∏n
t=1

[
pb+jt +

(
1− pbt

)]
· (−u)j

(1−u)j+1 .

Доказательство. Аналогично доказательству теоремы 2.3, но вме-
сто леммы 2.10 нужно использовать лемму 2.11 совместно с леммой
2.9, а потом подставить нуль вместо z.
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Основные выводы
1. Возникновение фантомных сходств (общих фрагментов обуча-

ющих примеров, каждый из которых имеет отличную от этого
фрагмента структурную причину) мешает правильному пред-
сказанию целевых свойств (наблюдается эффект переобучения).

2. Теоремы 2.1 и 2.2) утверждают о недостаточности двух меха-
низмов устранения сходств (запрет контр-примеров и ограни-
чения на число родителей) для полного устранения эффекта
переобучения.

3. Ограничение на число родителей может привести к эффекту
«недообучения» - неправомерному отбрасыванию причин, для
которых не нашлось достаточного числа обучающих примеров.

4. Явный вид производящих функций (теоремы 2.3 и 2.4) для
вероятности переобучения при наличии контр-примеров поз-
волит получать приближенную оценку на число фантомных
сходств на основе характеристик обучающей выборки и грани-
цы на число родителей.
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Глава 3

Вероятностный поиск
кандидатов

Отвечая на вызовы, описанные во введении и предыдущих гла-
вах, мы предлагаем использовать вероятностный подход к интел-
лектуальному анализу данных с использованием прикладной теории
решеток. Если некоторые сходства заведомо плохи (фантомные), а
огромное большинство сходств предсказывает по аналогии примеры
одинаковым образом, то нет никакой необходимости вычислять их
все, достаточно найти случайное подмножество сходств.

В этой главе мы будем обсуждать вероятностные алгоритмы для
нахождения сходств и их свойства.

Первый параграф опишет несколько алгоритмов, первоначально
предложенных в работе автора [9], для спаривающих вариантов ко-
торых удалось доказать останавливаемость с вероятностью единица
(следствие из теоремы 3.2). Для спаривающей цепи Маркова дока-
зана теорема 3.3 об изменении вероятностей эргодических состояний
для спаривающей цепи Маркова, остановленной по верхней оценке
на основе предварительных прогонов, по сравнению с исходной це-
пью Маркова.

Параграф 3.2 содержит описание других цепей Маркова, подхо-
дящих для вероятностного вычисления сходств (немонотонная и мо-
нотонная цепи Маркова), для которых, однако, имеется проблема

55



момента остановки. В этом параграфе на примерах демонстрируют-
ся некоторые простейшие свойства предложенных цепей Маркова.

Параграф 3.3 содержит теорему 3.4 об оценке среднего времени
склеивания спаривающей цепи Маркова и теорему 3.5 о сильной кон-
центрации времени склеивания около его среднего в частном случае
Булевой алгебры всех подмножеств признаков (Булеана).

В параграфе 3.4 приводятся ключевые понятия и результаты о
времени перемешивания произвольной цепи Маркова. Вопрос о вре-
мени перемешивания существенен даже для случая спаривающей це-
пи Маркова, так как после склеивания она совпадает с монотонной
цепью Маркова.

Для случая Булеана в параграфе 3.5 получена верхняя оценка
(3.15) времени перемешивания монотонной цепи Маркова и доказана
теорема 3.9 об асимптотической точности этой оценки.

3.1 Цепи Маркова для поиска сходств
В работе автора [9] были рассмотрены три алгоритма для ве-

роятностного поиска сходств: немонотонный, монотонный и спари-
вающий. В случае решетки всех подмножеств признаков - Булеана -
первые два оказались классическими алгоритмами случайного блуж-
дания и ленивого случайного блуждания, соответственно.

Все эти алгоритмы используют операции «замыкай-по-одному»,
введенные в определении 1.3 главы 1:

CbODown(〈A,B〉, o) = 〈(A ∪ {o})′′, B ∩ {o}′〉.
для кандидата 〈A,B〉 и объекта o ∈ O и

CbOUp(〈A,B〉, f) = 〈A ∩ {f}′, (B ∪ {f})′′〉

для кандидата 〈A,B〉 и признака f ∈ F .
Ниже мы представим формальное представление этих алгорит-
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мов:
Data: множество обучающих (+)-примеров; внешние

функции CbOUp( , ) и CbODown( , ) операций
«замыкай-по-одному»

Result: кандидат 〈A,B〉
O := (+)-примеры, F := признаки; I ⊆ O × F - формальный
контекст для (+)-примеров;
A := O; B = O′;
for (i := 0; i < T ; i = i+ 1) do

R := (O \ A) ∪ (F \B);
Выбираем случайный элемент r ∈ R;
if (r ∈ O \ A) then
〈A,B〉 := CbODown(〈A,B〉, r);

end
else
〈A,B〉 := CbOUp(〈A,B〉, r);

end
end

Algorithm 2: Немонотонная цепь Маркова
Очевидно, что решетке-Булеане алгоритм 2 никогда не использу-

ет вторые случаи в уравнениях (1.22) и (1.23), а с равной 1
n вероятно-

стью переходит с текущего подмножества на одного из n его соседей,
то есть представляет собой случайное блуждание по соответствую-
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щему гиперкубу.
Data: множество обучающих (+)-примеров; внешние

функции CbOUp( , ) и CbODown( , ) операций
«замыкай-по-одному»

Result: кандидат 〈A,B〉
O := (+)-примеры, F := признаки; I ⊆ O × F - формальный
контекст для (+)-примеров;
A := O; B = O′; R := O ∪ F ;
for (i := 0; i < T ; i = i+ 1) do

Выбираем случайный элемент r ∈ R;
if (r ∈ O) then
〈A,B〉 := CbODown(〈A,B〉, r);

end
else
〈A,B〉 := CbOUp(〈A,B〉, r);

end
end

Algorithm 3: Монотонная цепь Маркова
В случае Булеана алгоритм 3 с вероятностью n

2·n = 1
2 попадает

на вторые случаи в уравнениях (1.22) и (1.23), и с равной 1
2·n ве-

роятностью переходит с текущего подмножества на одного из n его
соседей, то есть представляет собой ленивое случайное блуждание
по соответствующему гиперкубу.

Заметим, что корректность алгоритмов 2 и 3 (т.е. то, что в ре-
зультате их работы мы обязательно получим кандидат) следует из
леммы 1.2 главы 1.

Основная проблема с алгоритмами 2 и 3, применяемыми к про-
извольным формальным контекстам, состоит в том, что неизвестна
никакая оценка на «время остановки» T , которая обеспечивала бы
хорошую «перемешиваемость» соответствующей цепи Маркова. По-
дробнее о скорости перемешивания можно прочитать в параграфе
3.4. Таким образом, вопрос о выборе параметра T (фактически, о
длине цикла) в этих алгоритмах остается открытым. Этот вопрос
составляет открытую проблему 2 списка направлений дальнейших
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исследований из Заключения.
Дополнительные характеристики цепей Маркова, задаваемых ал-

горитмами 2 и 3, будут представлены в параграфе 3.2. Там же мы
обсудим причины, по которым эти алгоритмы получили свое назва-
ние.

Гораздо более интересными, чем вышеописанные алгоритмы, яв-
ляются те или иные варианты спаривающих цепей Маркова. Состо-
янием таких алгоритмов является упорядоченная пара кандидатов.
Эти цепи Маркова обладают естественным моментом остановки -
склеиванием - первым шагом, на котором пары кандидатов совпада-
ют.

Ниже мы приводим классический вариант спаривающей цепи:
Data: множество обучающих (+)-примеров; внешние

функции CbOUp( , ) и CbODown( , ) операций
«замыкай-по-одному»

Result: случайный кандидат 〈A,B〉
O := (+)-примеры, F := признаки; I ⊆ O × F - формальный
контекст для (+)-примеров;
R := O ∪ F ; Min := 〈O,O′〉; Max := 〈F ′, F 〉;
while (Min 6= Max) do

Выбираем случайный элемент r ∈ R;
if (r ∈ O) then

Min := CbODown(Min, r);
Max := CbODown(Max, r);

end
else

Min := CbOUp(Min, r); Max := CbOUp(Max, r);
end

end
〈A,B〉 := Min;

Algorithm 4: Спаривающая цепь Маркова
Состоянием изменяемых переменных в цикле (= состоянием це-

пи Маркова) является упорядоченная пара кандидатов 〈A1, B1〉 ≤
〈A2, B2〉.
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Первоначально меньший кандидат совпадает с наименьшим кан-
дидатом Min := 〈O,O′〉, а больший - с наибольшим Max := 〈F ′, F 〉.

В цикле к обоим кандидатам применяется одна и та же операция
CbODown с выбранным объектом, или CbOUp c выбранным при-
знаком.

Процесс останавливается, когда меньший кандидат совпадет c
большим. Тогда этот общий кандидат и выдается алгоритмом 4.

Следующая теорема из статьи автора [77] объясняет, откуда здесь
возникает цепь Маркова:

Теорема 3.1. Алгоритм 4 соответствует цепи Маркова.

Доказательство. Операция CbODown относительно фиксирован-
ного объекта определяет детерминистскую функцию (не являющую-
ся биекцией, в общем случае) из множества кандидатов в себя. Поэто-
му каждая строка соответствующей матрицы перехода имеет едини-
цу в одной из ячеек и нули в остальных местах. Очевидно, что такая
матрица является стохастической.

Аналогичный факт верен для операции CbOUp относительно фик-
сированного признака.

Так как преобразования кандидатов определяются случайным
(равномерным) выбором или объекта, или признака, то матрица пе-
рехода является взвешенной (равномерно) суммой соответствующих
матриц для каждого признака и каждого объекта. Но взвешенная
сумма стохастических матриц сама является стохастической матри-
цей.

Одновременное применение операций «замыкай-по-одному» от-
носительно или некоторого признака, или некоторого объекта к упо-
рядоченной паре кандидатов соответствует тензорному (Кронекеров-
скому) произведению матрицы преобразований саму на себя с огра-
ничением на инвариантное подпространство таких пар.

То, что это подпространство инвариантно, следует из леммы 1.3 в
главе 1. Тензорное произведение двух стохастических матриц явля-
ется стохастической матрицей. Ограничение стохастической матри-
цы на инвариантное подпространство оставляет матрицу стохастиче-
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ской. Поэтому матрица преобразования, соответствующая алгорит-
му 4 задает конечную цепь Маркова.

Следует отметить, что первая часть доказательства предыдущей
теоремы обосновывает, почему алгоритмы 2 и 3 задают цепи Мар-
кова на пространстве кандидатов. Теперь мы переходим к вопросу о
склеивании спаривающей цепи Маркова.

Определение 3.1. Состояние вида 〈A,B〉 = 〈A,B〉 спаривающей
цепи Маркова для совпадающей пары кандидатов называется эрго-
дическим. Состояние вида 〈A1, B1〉 < 〈A2, B2〉 называется невоз-
вратным.

Теперь мы имеем классическую теорему о сходимости с вероят-
ностью единица:

Теорема 3.2. Вероятность того, что состояние

〈A1(t), B1(t)〉 ≤ 〈A2(t), B2(t)〉

спаривающей цепи Маркова окажется невозвратным, стремится
к нулю, когда t→∞.

В статье автора [9] приводится доказательство этого результата,
но это - классический результат в теории цепей Маркова [36], поэтому
здесь мы не будем приводить его доказательство.

Теперь, соединяя вместе алгоритм 4 и теорему 3.2, видим, что с
вероятностью единица алгоритм спаривающей цепи Маркова оста-
новится.

Хотя вопрос о среднем времени работы алгоритма 4 остался от-
крытым, в параграфе 3.3 получены теорема 3.4 о среднем времени
склеивания спаривающей цепи Маркова и теорема 3.5 о сильной кон-
центрации около этого среднего для случая Булеана.

В качестве практического средства для устранения наиболее длин-
ных траекторий возможно применение следующей техники останов-
ки алгоритма 4 (или его ленивого варианта в алгоритме 8) и запуска
его заново:
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Определение 3.2. Если T1, . . . , Tr – независимые целочисленные
случайные величины, имеющие распределение времени склеивания
T , то верхняя граница склеивания по r испытаниям определя-
ется как T̂ = T1 + · · ·+ Tr.

На практике предлагается сделать r прогонов спаривающей цепи
Маркова и взять оценку t1 + . . .+ tr верхней границы склеивания.

Оценим, как изменяются вероятности попадания в эргодические
состояния при остановке спаривающей цепи Маркова по r прогонам.

Определение 3.3. Для целочисленной случайной величины T̂ , неза-
висимой от целочисленной случайной величины T , условное рас-
пределение состояний относительно события B = {T ≤ T̂} есть
распределение

µT̂ ,i =
P[XT = i, T ≤ T̂ ]

P[T ≤ T̂ ]

для любого эргодического состояния i.

Определение 3.4. Расстояние тотального изменения меж-
ду распределениями вероятностей µ = (µi)i∈U и ν = (νi)i∈U на
конечном пространстве U определяется правилом: ‖µ − ν‖TV =
1
2 ·
∑

i∈U |µi − νi|.

Это расстояние является половиной метрики l1, следовательно,
само является метрикой (в частности, симметрично).

Известна классическая и доказываемая прямо из определения 3.4

Лемма 3.1. ‖µ− ν‖TV = maxR⊆U |µ(R)− ν(R)|.

В лемме 3.1 подмножество R, на котором достигается максимум,
определяется так: R = {i ∈ U | µi > νi}.

Следующая лемма является технической:

Лемма 3.2. ‖µ − µT̂‖TV ≤
P[T>T̂ ]

1−P[T>T̂ ]
, где µT̂ - распределение оста-

новленной на верхней границе T̂ склеивания по r > 1 испытаниям,
а µ - распределение выдачи неостановленной цепи.
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Доказательство. По определению 3.3 µT̂ ,i = P[XT =i,T≤T̂ ]

P[T≤T̂ ]
. Тогда

P[T ≤ T̂ ] ·
(
µT̂ ,i − µi

)
= P[XT = i, T ≤ T̂ ]−P[T ≤ T̂ ] · µi =

= P[T > T̂ ] · µi −P[XT = i, T > T̂ ] ≤ P[T > T̂ ] · µi.

Суммируя по множеству R = {i ∈ U | µi > µT̂ ,i}, получим

P[T ≤ T̂ ] · ‖µ− µT̂‖TV ≤ P[T > T̂ ],

что и приводит к утверждению леммы.

Теперь докажем основную лемму:

Лемма 3.3. ‖µ − µT̂‖TV ≤
1

2r−1 , где µT̂ - распределение останов-
ленной на верхней границе склеивания по r > 1 испытаниям, а µ -
распределение выдачи неостановленной цепи.

Доказательство. Из-за леммы 3.2 достаточно доказать, что

P[T > T̂ ] ≤ 2−r.

Из определения T, T1, . . . , Tr как независимых одинаково распре-
деленных случайных величин, следует, что P[T > Tj] ≤ 1

2 для всех
1 ≤ j ≤ r.

Докажем субмультипликативность:

P[T >
k∑
j=1

Tj] ≤ P[T >
k−1∑
j=1

Tj] ·P[T > Tk]

для всех 1 < k ≤ r.
Но это следует из формулы условной вероятности, так как если

T >
k−1∑
j=1

Tj,
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то

〈A1(
k−1∑
j=1

Tj), B1(
k−1∑
j=1

Tj)〉 < 〈A2(
k−1∑
j=1

Tj), B2(
k−1∑
j=1

Tj)〉.

Поэтому, применяя ко всем четырем кандидатам

Min ≤ 〈A1(0 +
k−1∑
j=1

Tj), B1(0 +
k−1∑
j=1

Tj)〉 <

< 〈A2(0 +
k−1∑
j=1

Tj), B2(0 +
k−1∑
j=1

Tj)〉 ≤Max

одинаковые операции CbODown и CbOUp, имеем, что если

〈A1(t+
k−1∑
j=1

Tj), B1(t+
k−1∑
j=1

Tj)〉 < 〈A2(t+
k−1∑
j=1

Tj), B2(t+
k−1∑
j=1

Tj)〉

склеивается позднее момента Tk +
∑k−1

j=1 Tj =
∑k

j=1 Tj, то и скле-
ивание Min < Max (из-за транзитивности порядка) совершается
позднее момента Tk, то есть

P

[
T >

k∑
j=1

Tj|T >

k−1∑
j=1

Tj

]
≤ P[T > Tk].

Теперь результат леммы следует по индукции.

Соединяя результаты лемм 3.1 и 3.3, получим

Теорема 3.3. Для любого R ⊆ U c µ(R) = ρ и r > log2(ρ + 1) −
log2(ρ) имеем µT̂ (R) ≥ ρ − 1

2r−1 для верхней границы T̂ склеивания
по r > 1 испытаниям.

Доказательство.

ρ− 1

2r − 1
≤ µ(R)− ‖µ− µT̂‖TV =

= µ(R)−maxQ⊆U |µ(Q)− µT̂ (Q)| ≤
≤ µ(R)− |µ(R)− µT̂ (R)| ≤ µT̂ (R).
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3.2 Свойства цепей Маркова
Этот параграф воспроизводит наблюдения и результаты из ста-

тьи автора [9]. Многие свойства цепей Маркова, получаемых из ал-
горитмов 2, 3 и 4, станут более понятными.

Рассмотрим формальный контекст:

O | F f1 f2 f3 f4

o1 1 1 0 0
o2 1 0 1 0
o3 0 0 0 1

Решетка кандидатов содержит 6 элементов с фрагментами

∅, {f1}, {f4}, {f1, f2}, {f1, f3}, {f1, f2, f3, f4},

упорядоченными по включению.
Выпишем стохастическую матрицу для алгоритма 2, применен-

ного к данному формальному контексту, (порядок строк и столбцов
соотвествует перечислению кандидатов из предыдущего абзаца):

0 1/4 1/4 1/4 1/4 0
1/4 0 0 1/4 1/4 1/4
2/5 0 0 0 0 3/5
1/4 1/4 0 0 0 2/4
1/4 1/4 0 0 0 2/4
0 0 1/3 1/3 1/3 0

Заметим, что последний элемент (1/4) второй строки соответ-
ствует переходу из кандидата 〈{o1, o2}, {f1}〉 в кандидата 〈∅, {f1, f2, f3, f4}〉,
получающемуся при выборе признака f4. Обратный переход из кан-
дидата 〈∅, {f1, f2, f3, f4}〉 в 〈{o1, o2}, {f1}〉 невозможен (0 на втором
месте последней строки), так как при выборе признака мы остаемся
на месте, а при выборе объекта добавится только один этот объект,
тогда как у 〈{o1, o2}, {f1}〉 имеется 2 родителя.
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Такая ситуация препятствует выполнению тождества баланса:

πi · (P )i,j = πj · (P )j,i, (3.1)

так как иначе для i = 〈∅, {f1, f2, f3, f4}〉 и j = 〈{o1, o2}, {f1}〉 полу-
чаем, что должно быть πj = 0, так как (P )i,j = 0 и (P )j,i 6= 0.

Поэтому цепь Маркова из алгоритма 2 не является обратимой.
Обсудим теперь название алгоритма 2. Нам потребуется два опре-

деления:

Определение 3.5. Подмножество J ⊆ S упорядоченного множе-
ства 〈S,≤〉 называется порядковым идеалом, если выполняется
следующие условие

∀l, k ∈ S [l ≤ k ∧ k ∈ J ⇒ l ∈ J ] .

Примером порядкового идеала для решетки кандидатов является
J = {〈{o1, o2, o3}, ∅〉, 〈{o3}, {f4}〉}.

Определение 3.6. Цепь Маркова с упорядоченного пространством
состояний 〈S,≤〉 называется монотонной, если для любых i ≤
j ∈ S и любого порядкового идеала J ⊆ S выполняется неравенство

P [Xt+1 ∈ J | Xt = i] ≥ P [Xt+1 ∈ J | Xt = j] .

Используя формулу P [Xt+1 ∈ J | Xt = i] =
∑

k∈J(P )i,k, для i =
〈{o1}, {f1, f2}〉 и порядкового идеала J = {〈{o1, o2, o3}, ∅〉, 〈{o3}, {f4}〉}
получаем для алгоритма 2 P [Xt+1 ∈ J | Xt = i] = 1

4 . Аналогично,
для j = 〈∅, {f1, f2, f3, f4}〉 имеем в алгоритме 2P [Xt+1 ∈ J | Xt = j] =
1
3 . Но это нарушает условие из определения 3.6, поэтому алгоритм 2
задает немонотонную цепь Маркова.

Выпишем стохастическую матрицу для алгоритма 3 (порядок
строк и столбцов определяется перечислением кандидатов с фраг-
ментами ∅, {f1}, {f4}, {f1, f2}, {f1, f3}, {f1, f2, f3, f4}):
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3/7 1/7 1/7 1/7 1/7 0
1/7 3/7 0 1/7 1/7 1/7
2/7 0 2/7 0 0 3/7
1/7 1/7 0 3/7 0 2/7
1/7 1/7 0 0 3/7 2/7
0 0 1/7 1/7 1/7 4/7

Заметим, что в этом случае переход из кандидата 〈{o1, o2}, {f1}〉
в кандидат 〈∅, {f1, f2, f3, f4}〉 возможен, а обратный переход нет.

Поэтому цепь Маркова из алгоритма 3 тоже не является обрати-
мой.

Напомним, что стационарным называется такое распределение
вероятностей π на пространстве состояний S цепи Маркова, что вы-
полняется соотношение:

∀i ∈ S

πi =
∑
j∈S

πj · (P )j,i

 . (3.2)

Отождествляя распределение вероятностей со строкой чисел π =
(πi)i∈S, можно записать это в матричном виде: π ·P = π, где (P )i,j =
P [Xt+1 = j | Xt = i] - компоненты матрицы переходов цепи Марко-
ва.

Вычисление собственного вектора транспонированной матрицы
переходов для цепи Маркова из алгоритма 3 с собственным значени-
ем 1 дает стационарное распределение ( 78

512 ,
58
512 ,

50
512 ,

77
512 ,

77
512 ,

172
512), кото-

рое не является равномерным.
Установим теперь монотонность цепи Маркова, определяемого

алгоритмом 3, для произвольного формального контекста:

Лемма 3.4. Пусть J - порядковый идеал в решетке кандидатов, и
пусть i = 〈A1, B1〉 ≤ 〈A2, B2〉 = j - возрастающая пара кандидатов.
Тогда P [Xt+1 ∈ J | Xt = i] ≥ P [Xt+1 ∈ J | Xt = j] для цепи Маркова
из алгоритма 3.

Доказательство. В алгоритме 3 равновероятно выбирается элемент
O ∪ F . Если выбран o ∈ O, то по лемме 1.3 имеем

CbODown(〈A1, B1〉, o) ≤ CbODown(〈A2, B2〉, o).
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По определению 3.5 из

CbODown(〈A2, B2〉, o) ∈ J

следует
CbODown(〈A1, B1〉, o) ∈ J.

Если выбран f ∈ F , то опять по лемме 1.3 имеем

CbOUp(〈A1, B1〉, f) ≤ CbOUp(〈A2, B2〉, f).

Снова определение 3.5 позволяет из

CbOUp(〈A2, B2〉, f) ∈ J

вывести
CbOUp(〈A1, B1〉, f) ∈ J.

Поэтому имеем включение событий

[Xt+1 ∈ J | Xt = j] ⊆ [Xt+1 ∈ J | Xt = i] ,

то есть требуемое соотношение

P [Xt+1 ∈ J | Xt = i] ≥ P [Xt+1 ∈ J | Xt = j] .

Это дает нам основание назвать цепь Маркова из алгоритма 3
монотонной.

Теперь перейдем к исследованию спаривающейся цепи Маркова
из алгоритма 4.

Сначала перечислим все упорядоченные пары фрагментов кан-
дидатов для формального контекста, заданного в начале настоящего
параграфа:
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1 ∅ ⊆ ∅
2 {f1} ⊆ {f1}
3 {f4} ⊆ {f4}
4 {f1, f2} ⊆ {f1, f2}
5 {f1, f3} ⊆ {f1, f3}
6 {f1, f2, f3, f4} ⊆ {f1, f2, f3, f4}
7 ∅ ⊆ {f4}
8 ∅ ⊆ {f1}
9 {f1} ⊆ {f1, f2}

10 {f1} ⊆ {f1, f3}
11 ∅ ⊆ {f1, f2}
12 ∅ ⊆ {f1, f3}
13 {f4} ⊆ {f1, f2, f3, f4}
14 {f1, f2} ⊆ {f1, f2, f3, f4}
15 {f1, f3} ⊆ {f1, f2, f3, f4}
16 {f1} ⊆ {f1, f2, f3, f4}
17 ∅ ⊆ {f1, f2, f3, f4}

Тогда матрица перехода для цепи Маркова из алгоритма 4 имеет
блочный вид

S O
R Q

Блок S в точности совпадает с 6 × 6-матрицей переходов цепи
Маркова для алгоритма 3. 6×11-матрица O состоит из одних нулей.
11× 6-матрица R имеет вид:
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2/7 0 1/7 0 0 0
1/7 1/7 0 1/7 1/7 0
1/7 1/7 0 1/7 0 1/7
1/7 1/7 0 0 1/7 1/7
1/7 0 0 1/7 0 0
1/7 0 0 0 1/7 0
0 0 1/7 0 0 3/7
0 0 0 1/7 0 2/7
0 0 0 0 1/7 2/7
0 0 0 0 0 1/7
0 0 0 0 0 0

Наконец, 11× 11-матрица Q имеет вид:
1/7 0 0 0 0 0 0 1/7 1/7 1/7 0
0 2/7 0 0 0 0 1/7 0 0 0 0
0 0 2/7 0 0 0 0 0 1/7 0 0
0 0 0 2/7 0 0 0 1/7 0 0 0
0 1/7 1/7 0 1/7 0 1/7 0 1/7 0 0
0 1/7 0 1/7 0 1/7 1/7 1/7 0 0 0
0 0 0 0 1/7 1/7 1/7 0 0 0 0

1/7 0 0 1/7 0 0 0 2/7 0 0 0
1/7 0 1/7 0 0 0 0 0 2/7 0 0
1/7 0 1/7 1/7 0 0 0 1/7 1/7 1/7 0
1/7 0 0 0 1/7 1/7 1/7 1/7 1/7 1/7 0

Матрица S в качестве левого верхнего блока возникает из-за того,
что при ограничении эргодическими состояниями 〈A,B〉 ≤ 〈A,B〉
алгоритм 4 сводится к алгоритму 3.

Из предыдущих рассуждений следует, что спаривающая цепь Мар-
кова, в общем случае, не является обратимой и стационарное распре-
деление не является равномерным.

То обстоятельство, что вероятность для спаривающейся цепи ока-
заться на шаге t→∞ в каком-то невозвратном состоянии 〈A1, B1〉 <
〈A2, B2〉 (теорема 3.2) находит свое проявление в предельном соотно-
шении lim

t→∞
Qt = O, где O - квадратная матрица, состоящая из одних

нулей.
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Заметим, что в некоторых других случаях (например, для фор-
мального контекста из уравнения (1.21), определяющего Булеан) ал-
горитмы 2 и 3, могут задавать обратимые цепи Маркова с равно-
мерным стационарным распределением. Подробное доказательство
этого факта, можно найти в параграфе 3.5.

При этом цепь из алгоритма 2 будет монотонной. Фактически,
для Булеана эти цепи Маркова совпадают со случайным и ленивым
случайным блужданиями по вершинам Булеана, соответственно.

3.3 Скорость склеивания спаривающей це-
пи: случай Булеана

Во время проведения экспериментов с ВКФ-системой был обна-
ружен феномен очень быстрого нахождения очередного кандидата.
Хотя мы не смогли получить оценку в общем виде, для случая Бу-
леана имеются результаты о среднем времени склеивания и сильной
концентрации этого времени около своего среднего.

Мы воспроизведем здесь эти результаты из статьи автора [15], так
как они могут служить дополнительным доводом о том, что предло-
женный подход эффективен с вычислительной точки зрения.

До конца этого параграфа мы ограничимся случаем Булеана (урав-
нение (1.21) параграфа 1.2 задает формальный контекст, определя-
ющий Булеан).

Определение 3.7. Расстояние ρ(〈A1, B1〉, 〈A2, B2〉) между кан-
дидатами 〈A1, B1〉 и 〈A2, B2〉 определяется как число позиций, в
которых отличаются битовые строки B1 и B2. Другими словами,
расстояние равно минимальному количеству ребер между соот-
ветствующими вершинами гиперкуба.

Это расстояние на Булеане называется метрикой Хэмминга.
Оказывается, что после применения операций «замыкай-по-одному»

в случае Булеана, это расстояние не увеличивается. Точнее,
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Лемма 3.5. Пусть 〈A1, B1〉 ≤ 〈A2, B2〉. Тогда

ρ(CbOUp(〈A1, B1〉, f), CbOUp(〈A2, B2〉, f)) =

= ρ(〈A1, B1〉, 〈A2, B2〉), если f ∈ B1 ∧ f ∈ B2.

ρ(CbOUp(〈A1, B1〉, f), CbOUp(〈A2, B2〉, f)) =

= ρ(〈A1, B1〉, 〈A2, B2〉)− 1, если f /∈ B1 ∧ f ∈ B2.

ρ(CbOUp(〈A1, B1〉, f), CbOUp(〈A2, B2〉, f)) =

= ρ(〈A1, B1〉, 〈A2, B2〉), если f /∈ B1 ∧ f /∈ B2.

ρ(CbODown(〈A1, B1〉, o), CbODown(〈A2, B2〉, o)) =

= ρ(〈A1, B1〉, 〈A2, B2〉), если o ∈ A1 ∧ o ∈ A2.

ρ(CbODown(〈A1, B1〉, o), CbODown(〈A2, B2〉, o)) =

= ρ(〈A1, B1〉, 〈A2, B2〉)− 1, если o ∈ A1 ∧ o /∈ A2.

ρ(CbODown(〈A1, B1〉, o), CbODown(〈A2, B2〉, o)) =

= ρ(〈A1, B1〉, 〈A2, B2〉), если o /∈ A1 ∧ o /∈ A2.

Заметим, что в общем случае это расстояние может увеличиться.
Рассмотрим опять формальный контекст из начала параграфа 3.2.
Здесь ρ(〈{o1, o2, o3}, ∅〉, 〈{o3}, {f4}〉) = 1, но

ρ(CbOUp(〈{o1, o2, o3}, ∅〉, f1), CbOUp(〈{o3}, {f4}〉, f1)) =

= ρ(〈{o1, o2}, {f1}〉, 〈∅, {f1, f2, f3, f4}〉) = 3. (3.3)

Нам теперь понадобится один известный класс распределений ве-
роятностей [55]:

Определение 3.8. Геометрическим распределением вероятно-
стей называется целочисленная случайная величина T с P [T = k] =
(1− p)k−1 · p, где 0 < p ≤ 1 и k ≥ 1.

Лемма 3.6. Время Tn ожидания уменьшения расстояния с

ρ(〈O, ∅〉, 〈∅, F 〉) = n

до n−1 имеет геометрическое распределение вероятностей с p = 1.
Время Tj ожидания уменьшения расстояния с j до j − 1 имеет
геометрическое распределение вероятностей с p = j

n.
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Доказательство следует из предыдущей леммы и разбора случаев
выбора для следующего замыкаемого объекта или признака.

Сформулируем и докажем теперь классическую лемму:

Лемма 3.7. Для целочисленной случайной величины T с геомет-
рическим распределением вероятностей выполнено E[T ] = 1/p и
D[X] = (1− p)/p2.

Доказательство. Воспользуемся производящей функцией

ψT (z) = E[zT ] =
p · z

1− (1− p) · z
.

Имеем
E[T ] = ψ′T (1) = 1/p

и
D[T ] = ψ′′T (1) + ψ′T (1)− (ψ′T (1))2 = (1− p)/p2.

Теорема 3.4. Среднее время склеивания для n-мерного гиперкуба
равно

E[
n∑
j=1

Tj] =
n∑
j=1

n

j
≈ n · ln(n) + n · γ +

1

2
.

Доказательство. Из-за линейности среднего имеем

E[
n∑
j=1

Tj] =
n∑
j=1

E[Tj].

По лемме 3.7 имеем E[Tj] = n
j .

Вспомним следующую классическую лемму П.Л.Чебышева:

Лемма 3.8. P [| T − E[T ] |≥ ε] ≤ D[T ]/ε2.

Теорема 3.5. P
[∑n

j=1 Tj ≥ (1 + ε) · n · ln(n)
]
→ 0 при n → ∞ для

любого ε > 0.
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Доказательство. Из-за независимости Tj имеем

D[
n∑
j=1

Tj] =
n∑
j=1

D[Tj].

По лемме 3.7 имеем D[Tj] ≈ n2/j2. Поэтому
∑n

j=1 D[Tj] = O(n2).
Для T =

∑n
j=1 Tj по лемме 3.8 при достаточно больших n имеем

P [T ≥ (1 + ε) · n · ln(n)] ≤

≤ P [| T − E[T ] |≥ ε · n · ln(n)] ≤ D[T ]

ε2 · n2 · ln2(n)
.

При n→∞, имеем требуемый результат.

Хотелось бы обратить внимание читателя на следующие замеча-
тельные обстоятельства:

1. Для 32-мерного гиперкуба среднее время склеивания

E[T ] = 32 ·
32∑
j=1

1

j
≤ 130.

Чтобы выбрать случайное подмножество из 32 признаков, нуж-
но использовать 32 раза датчик случайных чисел, так что наша
оценка не сильно (только логарифмически) хуже.

2. Но в 32-мерном гиперкубе 4294967296 сходств, подавляющее
большинство которых не будет вычисляться в процессе вероят-
ностного поиска сходств.

3. Эксперименты показывают, что и в общем случае время скле-
ивания мало по сравнению с числом различных кандидатов.
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3.4 Скорость перемешивания: постановка
задачи

Как было указано в параграфе 3.2 в ВКФ-методе мы используем
спаривающую цепь Маркова, порождаемую алгоритмом 4, которая
имеет очевидное условие остановки, тогда как алгоритмы 2 и 3 имеют
проблему определения числа T , сколько раз должен выполняться
шаг соответствующей цепи Маркова.

В западной литературе [63,68–70,72,74] вопрос об остановке цепи
Маркова активно исследовался, начиная с начала 80-х годов про-
шлого века. Однако были получены лишь частичные результаты.
Особенно хорошо поддаются исследованию случаи обратимых це-
пей Маркова, порождаемых сверткой распределений вероятностей
на группах, то есть случайные блуждания на группах.

Нам эти результаты могут быть полезны, когда для случая Буле-
ана всех подмножеств n-элементного множества, мы получаем слу-
чайное блуждание на группе Zn2 . Как было указано в параграфе 3.1
алгоритмы 2 и 3 задают случайное и ленивое случайное блуждание
на Булеане, соответственно.

Вычислительные эксперименты, проведенные Е.Ю.Сидоровой [54]
в рамках дипломной работы, показали, что из-за большей сложно-
сти внутреннего цикла в алгоритме 2, он уступает алгоритму 3 более,
чем в 2 раза, что нивелирует его чуть более высокую скорость пере-
мешивания (в случае Булеана ровно в 2 раза).

В параграфе 3.5 мы исследуем время перемешивания монотон-
ной цепи Маркова из алгоритма 3 для Булеана в надежде на про-
движение исследования алгоритма 3 для самых общих формальных
контекстов.

Следует отметить, что для случая спаривающей цепи Маркова,
порождаемой алгоритмом 4, подобные результаты о времени переме-
шивания будут полезны, так как после склеивания алгоритм 4 совпа-
дает с алгоритмом 3. Таким образом, продолжая вычисления, можно
добиться близости в метрике тотального изменения к стационарному
распределению.
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Впрочем, для случая Булеана это оказывается излишним: рас-
пределение состояний склеивания алгоритма 4 уже является равно-
мерным (=стационарным).

Основным результатом теории конечных цепей Маркова является
эргодическая теорема 3.6.

Цепь Маркова, определяемая стохастической матрицей P пере-
ходов, называется неприводимой, если любые два ее состояния до-
стижимы друг из друга с положительной вероятностью:

∀i, j ∈ S∃t
[
(P t)i,j > 0

]
. (3.4)

Цепь Маркова называется апериодичной, если наибольший общий
делитель шагов возвращения в исходное состояние равен 1:

∀i ∈ S
[
gcd{t > 0|(P t)i,i > 0} = 1

]
. (3.5)

Стационарным называется такое распределение вероятностей π
на пространстве состояний S цепи Маркова с матрицей переходов P ,
что выполняется соотношение:

∀i ∈ S

πi =
∑
j∈S

πj · (P )j,i

 . (3.6)

Теорема 3.6. Для неприводимой апериодичной цепи Маркова с мат-
рицей переходов P существует единственное стационарное распре-
деление π. Более того

∀i, j ∈ S
[

lim
t→∞

(P t)i,j = πj

]
.

Другими словами, при неограниченном возрастании t → ∞ все
строки матрицы P t переходов за t шагов будут сходиться к стацио-
нарному распределению π, рассматриваемого как вектор-строка.

Напомним, что метрикатотального изменения, играющая в даль-
нейшем изложении ключевую роль, имеет вид:

‖µ− ν‖TV =
1

2
·
∑
i∈S

|µi − νi|. (3.7)

Полезна следующая лемма, легко выводимая из тождества (3.7):
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Лемма 3.9. ‖µ− ν‖TV = 1
2 ·maxh:S→[−1,1]

∑
i∈S h(i) · (µi − νi).

С использованием леммы 3.9 из теоремы 3.6 легко доказать:

Теорема 3.7. Для любого начального распределения µ(0) на состо-
яниях неприводимой апериодичной цепи Маркова с матрицей пере-
ходов P имеем

lim
t→∞
‖µ(0) · P t − π‖TV = 0.

Заметим, что µ(0) · P t будет распределением вероятностей состо-
яний цепи Маркова после t шагов с начальным распределением µ(0).

Рассмотрим начальные распределения δj, сконцентрированные в
состоянии j ∈ S c (δj)i = δj,i (где δj,i - символ Дирака).

Определение 3.9. Для заданного порога ε > 0 временем переме-
шивания называется такое минимальное целое число T = τ(ε),
что для любого стартового состояния j ∈ S выполняется

∀t ≥ T
[
‖δj · P t − π‖TV ≤ ε

]
.

3.5 Скорость перемешивания: частичные
результаты

В этом параграфе мы докажем вариант результата Перси Дьяко-
ниса [63] о сильной концентрации времени перемешивания для моно-
тонной цепи Маркова, порождаемой алгоритмом 3, примененного к
формальному контексту Булеана (уравнение (1.21)). Замечательным
фактом является то обстоятельство, что немонотонная цепь Марко-
ва для Булеана совпадает с классической моделью Пауля и Татьяны
Эренфестов [64] из статистической механики, предложенной ими в
начале 20 века.

Модель Эренфестов [55] состоит из двух урн с номерами 0 и 1 и
n шаров, пронумерованных числами 1, 2, . . . , n.

Конфигурацией называется размещение шаров по урнам. Ясно,
что имеется 2n конфигураций, однозначно соответствующих подмно-
жествам B шаров, находящихся в урне с номером 1.
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Начальная конфигурация - та, в которой все шары находятся в
урне с номером 0, что соответствует подмножеству B0 = ∅.

На каждом шаге t равновероятно выбирается один из шаров f ∈
{1, 2, . . . , n} любой из урн, который перекладывается в другую урну.
Пусть в момент времени t цепь Маркова находится в конфигурации,
соответствующей подмножеству Bt. Если f /∈ Bt, то цепь переходит
в состояние, соответствующее подмножеству Bt+1 = Bt ∪ {f}. Если
f ∈ Bt, то цепь переходит в состояние Bt+1 = Bt \ {f}.

Эта процедура (диффузия Эренфестов) полностью совпадает с
алгоритмом 2 немонотонной цепи Маркова из параграфа 3.1, ес-
ли там следить только за второй компонентой (фрагментом) ВКФ-
кандидата.

К сожалению, это правило задает периодическую цепь Марко-
ва (с периодом 2). Это легко увидеть, если рассмотреть двудольный
граф Булеана всех подмножеств и заметить, что каждый шаг пере-
водит состояние из одной доли в состояния другой доли.

Формально, мы имеем gcd{t > 0|(P t)j,j > 0} = 2 для любого со-
стояния j ∈ S, что противоречит условию (3.5).

Для получения апериодической цепи достаточно с вероятностью
1
2 не изменять текущую конфигурацию и с вероятностью 1

2n (вместо
1
n) выбирать перекладываемый шар.

Легко проверить, что так модифицированная диффузия Эренфе-
стов полностью совпадает с алгоритмом 3 монотонной цепи Маркова
из параграфа 3.1, если там следить только за второй компонентой
(фрагментом) кандидата.

Для модифицированной диффузии Эренфестов и будет оцени-
ваться время перемешивания из определения 3.9. В дальнейшем из-
ложении прилагательное «модифицированная» будет опускаться.

Так как (P )i,i = 1
2 > 0, то модель Эренфестов задает апериодич-

ную цепь Маркова.
Легко убедиться в том, что (модифицированная) модель Эрен-

фестов задает неприводимую цепь Маркова. Для проверки условия
(3.4) достаточно взять t = n: если конфигурация i ∈ S соответствует
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подмножеству B1, а состояние j ∈ S - подмножеству B2, то

(P n)i,j ≥ (P )i,i(1)j · (P )i(1)j,i(2)j · . . . · (P )i(n−1)j,j ≥
(

1

2n

)n
> 0,

где i(k)j соответствует {f ∈ B2 | f ≤ k} ∪ {f ∈ B1 | f > k}.
Другими словами, мы можем перекладывать шары по порядку

так, чтобы конфигурация i переходила в конфигурацию j. Если на
k-ом шаре конфигурации не различаются, то мы делаем тождествен-
ный переход.

Тот факт, что стационарным распределением для модели Эрен-
фестов является равномерное, легче всего установить через обрати-
мость.

Напомним, что цепь Маркова называется обратимой, если вы-
полняются тождества баланса:

πi · (P )i,j = πj · (P )j,i, (3.8)

для некоторого распределения вероятностей π.
Легко проверить, что модель Эренфестов обратима с балансом

относительно равномерного распределения: (P )i,j = 0 = (P )j,i, если
i и j отличаются более чем по одному шару; (P )i,j = 1

2n = (P )j,i, если
i и j отличаются ровно по одному шару; случай i = j тривиален.

Теперь осталось применить следующую лемму:

Лемма 3.10. Если неприводимая апериодичная цепь Маркова удо-
влетворяет тождеству баланса относительно распределения π,
то π является ее стационарным распределением.

Доказательство.∑
j∈S

πj · (P )j,i =
∑
j∈S

πi · (P )i,j = πi ·
∑
j∈S

(P )i,j = πi.

Итак, мы установили, что стационарное распределение модели
Эренфестов является равномерным.

79



В случае Булеана всех подмножеств n-элементного универсума F
мы имеем пространство состояний {0, 1}n, которое мы отождествим
с группой Zn2 - прямым произведением циклических групп Z2.

Введем единичные орты в Zn2 стандартным способом:

e1 = (1, 0, . . . , 0); . . . ; en = (0, 0, . . . , 1).

Рассмотрим теперь распределение вероятностей µ, задаваемое на
S = Zn2 равенствами

µ(0) =
1

2
; (3.9)

µ(e1) = . . . = µ(en) = 1
2n .

и µ(j) = 0 всех остальных j ∈ Zn2 .
Ясно, что для модели Эренфестов выполнено (P )i,j = µ((−i)+j),

где конфигурации i и j понимаются как элементы абелевой группы
Zn2 .

Как обычно, свертка распределения вероятностей µ с распреде-
лением вероятностей ν на абелевой группе G = 〈S; +, 0,−〉 задается
равенством

µ ∗ ν(j) =
∑
i∈S

µ(i) · ν((−i) + j). (3.10)

t-кратная свертка распределения вероятностей µ с собой обозна-
чается через

µ∗t = µ ∗ µ∗(t−1).

Теперь с помощью формулы полной вероятности легко доказы-
вается следующая

Лемма 3.11. (P t)i,j = µ∗t((−i) + j)

Для замены свертки произведением необходимо сделать преобра-
зование Фурье из теории представления конечных групп [53]. Для
группы Zn2 оно называется преобразованием Уолша-Адамара [27].
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Определение 3.10. Характером группы Zn2 называется такое
отображение χ : Zn2 → T = {z ∈ C | |z| = 1}, что выполняется

∀x, y ∈ Zn2 [χ(x+ y) = χ(x) · χ(y)] .

Вектор весов w = (w1, . . . , wn) ∈ Zn2 задает характер χw группы
Zn2 по правилу:

χw(x) = (−1)w·x = (−1)
∑n

k=1 wk·xk. (3.11)

Индукцией по размерности n группы легко устанавливается

Лемма 3.12. Для любого характера χ группы Zn2 найдется такой
вектор w = (w1, . . . , wn) ∈ Zn2 , что χ = χw.

Рассмотрим линейное пространство функций L(Zn2) = {g : Zn2 → C}
на группе Zn2 .

Следующие две леммы устанавливают ортогональность характе-
ров (как векторов L(Zn2)):

Лемма 3.13. ∑
x∈Zn

2

χw(x) =

{
2n, если w = 0

0, если w 6= 0.

Доказательство. Если w = 0, то
∑

x∈Zn
2
χ0(x) = |Zn2 | = 2n, так

как ∀x [χ0(x) = 1]. В противном случае найдется такое y ∈ Zn2 , что
χw(y) = −1. Тогда

−
∑
x∈Zn

2

χw(x) = χw(y) ·
∑
x∈Zn

2

χw(x) =
∑
x∈Zn

2

χw(y + x) =
∑
x∈Zn

2

χw(x),

что доказывает второе равенство.

Лемма 3.14. ∑
x∈Zn

2

χw(x) · χv(x) =

{
2n, если w = v

0, если w 6= v.
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Доказательство. Из равенства (3.11) сразу выводится, что χw ·χv =
χw+v. Но равенство w = v в Zn2 эквивалентно равенству w + v = 0.
Теперь результат следует из леммы 3.13.

Определение 3.11. Преобразованием Фурье элемента g ∈ L(Zn2)
называется

ĝ(w) = 〈g, χw〉 =
∑
x∈Zn

2

g(x) · χw(x).

Преобразование Фурье свертку распределений вероятностей пе-
реводит в произведение преобразований Фурье:

Лемма 3.15. Для любых распределений вероятностей µ и ν на
группе Zn2 выполняется µ̂ ∗ ν = µ̂ · ν̂.

Доказательство.

µ̂ ∗ ν(w) =
∑
x∈Zn

2

(µ ∗ ν)(x) · χw(x) =

=
∑
x∈Zn

2

(
∑
y∈Zn

2

µ(y) · ν((−y) + x)) · χw(y + ((−y) + x)) =

=
∑
y∈Zn

2

(
∑
x∈Zn

2

µ(y) · ν((−y) + x) · χw((−y) + x)) · χw(y) =

=
∑
y∈Zn

2

µ(y) · ν̂(w) · χw(y) = µ̂(w) · ν̂(w).

Отсюда индукцией по t получаем важное соотношение:

µ̂∗t = µ̂t. (3.12)

Вычислим коэффициент Фурье ν̂(0) для распределения вероят-
ностей ν, где 0 ∈ Zn2 :

Лемма 3.16. Для любого распределения вероятностей ν на группе
Zn2 выполняется ν̂(0) = 1.
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Ясно, что Фурье-образ ĝ принадлежит L(Zn2). Имеет место фор-
мула обращения Фурье.

Лемма 3.17. Для g ∈ L(Zn2) имеем

g =
1

2n
·
∑
w∈Zn

2

ĝ(w) · χw =
1

2n
·
∑
w∈Zn

2

〈g, χw〉 · χw.

Доказательство.

1

2n
·
∑
w∈Zn

2

ĝ(w) · χw(y) =
1

2n
·
∑
w∈Zn

2

∑
x∈Zn

2

g(x) · χw(x) · χw(y) =

=
1

2n
·
∑
w∈Zn

2

∑
x∈Zn

2

g(x) ·χw(x+ y) =
1

2n
·
∑
x∈Zn

2

g(x) ·
∑
w∈Zn

2

χw(x+ y)

 =

=
1

2n
·
∑
x∈Zn

2

g(x) ·
∑
w∈Zn

2

χx+y(w)

 =
1

2n
·
∑
x∈Zn

2

(g(x) · 2n · δx,y) = g(y).

Другими словами, лемма 3.17 доказывает полноту ортогонально-
го базиса характеров в пространстве L(Zn2).

Разложим равномерное распределение π(x) = 2−n по этому бази-
су, используя результат леммы 3.13:

Лемма 3.18. π̂(w) = δ0(w) = δ0,w.

Вводя обозначение Σ(w) = w1 + . . . + wn, где w = (w1, . . . , wn) ∈
Zn2 , получим разложение по базису характеров распределения веро-
ятностей µ, задаваемое равенствами (3.9):

Лемма 3.19.
µ̂(w) = 1− Σ(w)

n
.
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Доказательство. Заметим, что χw(ej) = 1−2·wj и χw(0) = 1. Тогда

µ̂(w) =
∑
x∈Zn

2

µ(x) · χw(x) =
1

2
· χw(0) +

1

2n
· [χw(e1) + . . .+ χw(en)] =

=
1

2
+

1

2n
· [(1− 2 · w1) + . . .+ (1− 2 · wn)] =

=
1

2
+

n

2n
− 1

2n
· [2 · w1 + . . .+ 2 · wn] =

=

(
1

2
+

1

2

)
− w1 + . . .+ wn

n
= 1− Σ(w)

n
.

Используя равенство (3.12), из предыдущей леммы получаем:

µ̂∗t(w) =

(
1− Σ(w)

n

)t
. (3.13)

Еще один нужный нам результат носит название формулы План-
шереля:

Лемма 3.20. Для g ∈ L(Zn2) имеем

‖ĝ‖2 = 2n · ‖g‖2.

Доказательство.

‖ĝ‖2 = 〈ĝ, ĝ〉 =
∑
w∈Zn

2

ĝ(w) · ĝ(w) =

=
∑
x,y∈Zn

2

g(x) · g(y) ·
∑
w∈Zn

2

χw(x) · χw(y)

 =

= 2n ·
∑
x∈Zn

2

g(x) · g(x) = 2n · ‖g‖2.
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Воспользуемся неравенством Коши-Буняковского:

(‖ν − π‖TV )2 =
1

4
·

∑
i∈Zn

2

1 · |νi − πi|

2

≤ 1

4
· 2n · ‖ν − π‖2. (3.14)

Мы будем применять этот результат к (ν − π) ∈ L(Zn2), где
ν = µ∗t, µ определяется равенствами (3.9), а π - равномерное рас-
пределение на Zn2 .

Следующий результат является вариантом неравенства Дьякониса-
Шахшахани:

Лемма 3.21. Для µ, определяемого равенствами (3.9), и равномер-
ного распределения π имеем

(
‖µ∗t − π‖TV

)2 ≤ 1

4
·
∑
w 6=0

(
1− Σ(w)

n

)2t

.

Доказательство.

(
‖µ∗t − π‖TV

)2 ≤ 1

4
· 2n · ‖µ∗t − π‖2 =

1

4
· ‖µ̂∗t − π̂‖2 =

=
1

4
·
∑
w 6=0

(
1− Σ(w)

n

)2t

.

Первый основной результат этого параграфа таков:

Теорема 3.8. Пусть µ определяется равенствами (3.9), а π - рав-
номерное распределение. Для t ≥ 1

2 · n · (log n+ c) имеем

(
‖µ∗t − π‖TV

)2 ≤ 1

4
·
(
ee

−c − 1
)
.
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Доказательство. Имеем

(
‖µ∗t − π‖TV

)2 ≤ 1

4
·
∑
w 6=0

(
1− Σ(w)

n

)2t

=

=
1

4
·

n∑
k=1

(
n

k

)
·
(

1− k

n

)2t

≤ 1

4
·

n∑
k=1

nk

k!
· e−

2tk
n .

Первое неравенство - результат леммы 3.21, равенство - группи-
ровка w ∈ Zn2 по k = Σ(w), а последнее неравенство следует из(
n
k

)
= n!

k!·(n−k)! ≤
nk

k! и
(
1− k

n

)2t ≤ e−
2tk
n , которое, в свою очередь,

выводится из неравенства (1− x) ≤ e−x.
Продолжим оценку, подставляя t ≥ 1

2 · n · (log n+ c):

(
‖µ∗t − π‖TV

)2 ≤ 1

4
·

n∑
k=1

nk

k!
· e−

2tk
n ≤ 1

4
·

n∑
k=1

nk

k!
· e−

k·n·(logn+c)
n =

=
1

4
·

n∑
k=1

1

k!
· e−k·c ≤ 1

4
·
∞∑
k=1

1

k!
· e−k·c =

1

4
·
(
ee

−c − 1
)
.

Теперь получаем оценку сверху для времени перемешивания:

τ(ε) ≤ 1

2
· n · (log n− log log(4ε2 + 1)) (3.15)

при 0 < ε <
√
e−1
2 .

Для вывода оценки снизу на скорость перемешивания будем ис-
пользовать лемму 3.1.

Другими словами, для любого подмножества R ⊆ Zn2 имеем

‖µ∗t − π‖TV ≥ π(R)− µ∗t(R).

Мы выберем в качестве такого подмножества

Rd = {x ∈ Zn2 | |n− 2Σ(x)| < d ·
√
n}, (3.16)
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то есть элементы c числом единиц, близким к половине.
Для дальнейшего обозначим подмодульное выражение через

φ(x) = n− 2Σ(x) =
n∑
k=1

χek(x), (3.17)

где e1 = (1, 0, . . . , 0); . . . ; en = (0, 0, . . . , 1) - единичные орты.
Для любой функции g ∈ L(Zn2) и любого распределения вероят-

ностей ν на Zn2 определим среднее (значение):

E ν(g) =
∑
i∈Zn

2

g(x) · ν(x) (3.18)

и дисперсию:
Dν(g) = E ν((g − E ν(g))2). (3.19)

Вычислим среднее значение для φ относительно равномерного
распределения π.

Лемма 3.22.
Eπ(φ) = 0.

Доказательство.

Eπ(φ) =
1

2n
·
∑
y∈Zn

2

φ(y) =
1

2n
·

n∑
k=1

∑
y∈Zn

2

χek(y) = 0

по лемме 3.13.

Вычислим дисперсию для φ относительно равномерного распре-
деления π.

Лемма 3.23.
Dπ(φ) = n.
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Доказательство. Воспользуемся легко проверяемым из равенства
(3.19) тождеством Dπ(φ) = Eπ(φ2)− (Eπ(φ))2. Тогда по лемме 3.22

Dπ(φ) = Eπ(φ2) =
1

2n

∑
y∈Zn

2

n∑
k,l=1

χek(y) · χel(y) =

=
1

2n
·

n∑
k,l=1

∑
y∈Zn

2

χek(y) · χel(y) =
1

2n
·

n∑
k=1

2n = n

по лемме 3.14.

Вычислим среднее значение для φ относительно распределения
µ∗t, где µ задается равенствами (3.9):

Лемма 3.24.

Eµ∗t(φ) = n ·
(

1− 1

n

)t
.

Доказательство.

Eµ∗t(φ) =
n∑
k=1

∑
y∈Zn

2

µ∗t(y) · χek(y) =
n∑
k=1

[µ̂(ek)]
t = n ·

(
1− 1

n

)t
,

где используется определение 3.11 и равенство (3.13), в котором для
всех ортов ek имеем Σ(ek) = 1.

Оценим дисперсию для φ относительно распределения µ∗t, где µ
задается равенствами (3.9):

Лемма 3.25.
Dµ∗t(φ) ≤ n.

Доказательство. Опять используем тождествоDµ∗t(φ) = Eµ∗t(φ2)−
(Eµ∗t(φ))2. По лемме 3.24 (Eµ∗t(φ))2 = n2 ·

(
1− 1

n

)2t.

88



Получим выражение для

Eµ∗t(φ2) =
∑
y∈Zn

2

µ∗t(y) ·
n∑

k,l=1

χek(y) · χel(y) =

=
∑
y∈Zn

2

µ∗t(y) ·
n∑

k,l=1

χek+el(y) = n · [µ̂(0)]t +
n∑

k,l=1:k 6=l

[µ̂(ek + el)]
t ,

так как χek · χel = χek+el, причем при k = l будет ek + el = 0, далее
используется определение 3.11 совместно с формулой (3.13).

По формуле (3.13) [µ̂(0)]t = 1 и [µ̂(ek + el)]
t =

(
1− 2

n

)t. Собираем
все вместе

Eµ∗t(φ2) = n · 1 + n · (n− 1) ·
(

1− 2

n

)t
.

Наконец, получаем

Dµ∗t(φ2) = n · 1 + n · (n− 1) ·
(

1− 2

n

)t
− n2 ·

(
1− 1

n

)2t

≤ n,

так как nt+1 · (n− 1) · (n− 2)t ≤ n2 · (n− 1)2t.

Также нам понадобится неравенство Чебышева:

ν{x ∈ Zn2 | |g(x)− E ν(g)| ≥ α} ≤ Dν(g)

α2
. (3.20)

Сначала применяем неравенство Чебышева к g = φ и равномер-
ному распределению π, чтобы оценить вероятность попадания в мно-
жество Rd:

Лемма 3.26.
π(Rd) ≥ 1− 1

d2
.
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Доказательство.

π(Rd) = 1− π{x ∈ Zn2 | |φ(x)| ≥ d ·
√
n} =

= 1− π{x ∈ Zn2 | |φ(x)− Eπ(φ)| ≥ d ·
√
n} ≥

≥ 1− Dπ(φ)

d2 · n
= 1− 1

d2
.

Теперь можно доказать второй основной результат этого пара-
графа:

Теорема 3.9. Пусть µ определяется равенствами (3.9), а π - рав-
номерное распределение. Для t = 1

2 · n · (log n− 2 · log(2d)) и доста-
точно больших n имеем

‖µ∗t − π‖TV ≥ 1− 5

d2
.

Доказательство. По лемме 3.1 ‖µ∗t − π‖TV ≥ π(Rd) − µ∗t(Rd), где
Rd задается равенством (3.16).

Лемма 3.26 дает нам оценку π(Rd) ≥ 1− 1
d2 . Осталось оценить

сверху µ∗t(Rd).
Так как |φ(x)| < d ·

√
n влечет Eµ∗t(φ)−d ·

√
n ≤ |φ(x)− Eµ∗t(φ)|,

то

Rd = {x ∈ Zn2 | |φ(x)| < d ·
√
n} ⊆

⊆ {x ∈ Zn2 | |φ(x)− Eµ∗t(φ)| ≥ Eµ∗t(φ)− d ·
√
n}.

Применение неравенства Чебышева (формула (3.20)) дает

µ∗t(Rd) ≤
Dµ∗t(φ)

(Eµ∗t(φ)− d ·
√
n)

2 .

Лемма 3.25 гарантирует, что Dµ∗t(φ) ≤ n. Осталось оценить зна-
менатель.
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По лемме 3.24 для t = 1
2 · n · (log n− 2 · log(2d)) имеем

Eµ∗t(φ) = n · exp

[
log

(
1− 1

n

)
· 1

2
· n · (log n− 2 · log(2d))

]
=

= n · exp

[(
−1

n
− 1

2n2
· (1 + o(1))

)
· 1

2
· n · (log n− 2 · log(2d))

]
=

= n · exp

[(
− log n− 2 · log(2d)

2
− log n− 2 · log(2d)

4n
· (1 + o(1))

)]
=

= n · 2d√
n

exp

[
− log n− 2 · log(2d)

4n
· (1 + o(1))

]
≥ 3

4
· 2d ·

√
n

для достаточно больших n, так как 2·log(2d)−log n
4n → 0 при n→∞.

Поэтому

(
Eµ∗t(φ)− d ·

√
n
)2 ≥

(
3

2
· d ·
√
n− d ·

√
n

)2

=
d2 · n

4
,

что дает в результате

µ∗t(Rd) ≤
n
d2·n

4

≤ 4

d2
.

Собирая все вместе, имеем

‖µ∗t − π‖TV ≥ π(Rd)− µ∗t(Rd) ≥ 1− 5

d2
.

Оба ключевых результата этого параграфа вместе доказывают
эффект быстрого перемешивания для монотонной цепи Маркова,
определяемой алгоритмом 3 на формальном контексте Булеана.

К сожалению, никаких общих результатов о времени перемеши-
вания алгоритма 3 для произвольного формального контекста ав-
тору неизвестно. Хочется надеяться, что в этом открытом вопросе
появится прогресс.
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По поводу значения результатов настоящего параграфа можно
сделать несколько замечаний:

Во-первых, техника преобразований Фурье из теории представле-
ний конечных групп не может быть расширена на цепи Маркова, по-
рождаемые алгоритмом 3 из произвольных формальных контекстов.
Препятствием, например, является неравномерность стационарного
распределения, что было установлено в параграфе 3.2.

Во-вторых, стационарное распределение часто не имеет легко вы-
числяемого вида. Пример такой ситуации имеется в параграфе 3.2.
Да и смысла порождать кандидаты с распределением, близким к ста-
ционарному, особого нет: результат ключевой теоремы 4.1 не зависит
от вида распределения ВКФ-гипотез.

В-третьих, логические условия, налагаемые на кандидаты, что-
бы стать ВКФ-гипотезой (порог числа родителей и запрет на контр-
примеры), изменяют распределение ВКФ-гипотез, выдаваемых ал-
горитмом 6.

Наконец, «ленивые» вычисления операций «замыкай-по-одному»
из параграфа 1.3 тоже изменяют распределение порождаемых кан-
дидатов.

Тем не менее, исследование скорости сходимости монотонной це-
пи Маркова может дать возможность заменить алгоритм 4 спарива-
ющей цепи Маркова алгоритмом 3 монотонной цепи Маркова.

Однако против такой замены спаривающей цепи Маркова моно-
тонной цепью из алгоритма 3 говорят многие теоретические резуль-
таты, установленные в настоящей работе.

Автор полагает, что методом, который может привести к продви-
жению в задаче оценки скорости перемешивания монотонной цепи
Маркова, примененной к произвольному формальному контексту,
является «спаривание» [69]. Как это работает в других ситуациях,
можно посмотреть в работах [68,74].

Другим перспективным методом является «эволюционирующие
множества» [70,72].
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Основные выводы
1. Алгоритмы вероятностного нахождения сходств (немонотон-

ный, монотонный и спаривающий) соответствуют цепям Мар-
кова (теорема 3.1 и замечание после нее).

2. Алгоритм 4 спаривающей цепи Маркова останавливается с ве-
роятностью единица (следствие из теоремы 3.2).

3. В случае малого числа длинных траекторий ими можно прене-
бречь с оценкой изменений результатов в теореме 3.3.

4. Для случая Булеана (множества всех подмножеств признаков)
среднее время работы алгоритма 4 имеет порядок O(n · lnn).

5. Для случая Булеана можно заменить алгоритм 4 на алгоритм
3, используя оценку (3.15) времени перемешивания.
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Глава 4

Машинное обучение,
основанное на теории
решеток

Мы предлагаем использовать вероятностный подход к машинно-
му обучению, с использованием техники теории решеток, для порож-
дения причин из обучающей выборки сложно-структурированных
прецедентов.

В первом параграфе мы опишем генезис развиваемых процедур
в рамках логико-комбинаторного подхода проф. В.К. Финна и его
учеников, перечислим еще раз проблемы, с которыми он сталкива-
ется, а затем сформулируем новый подход, который мы называем
ВКФ-метод, как дань уважения нашему учителю Виктору Констан-
тиновичу Финну.

Параграф 4.2 посвящен описанию процедур машинного обуче-
ния, основанных на сходстве, для порождения причин, достаточных
для проведения правдоподобных рассуждений. Для доопределения
по аналогии будет установлен ключевой результат (теорема 4.1) о
надежности (оценка правдоподобия получаемых результатов).

Описание программной реализации ВКФ-метода содержится в
параграфе 4.3.

Параграф 4.4 описывает апробацию разработанного подхода на
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массивах из репозитория данных для тестирования алгоритмов ма-
шинного обучения.

4.1 Истоки: ДСМ-метод
В начале 1980-х проф. В.К.Финн [56] придумал ДСМ-метод, ко-

торый объединяет несколько когнитивных процедур:

1. индуктивное обобщение данных (развивая идеи Д.С.Милля [44]);

2. предсказание целевого свойства у новых объектов по аналогии
с обучающими примерами;

3. абдуктивное принятие гипотез (развивая идеи Ч.С.Пирса [50]).

ДСМ-гипотезами будут называться сходства обучающих при-
меров, удовлетворяющие дополнительным условиям. Минимальные
требования - число родителей не менее двух и «запрет контр-примеров»
(чтобы ни один контр-пример не выжил в смысле главы 2).

Развитие ДСМ-метода привело к созданию программных ДСМ-
систем [31], которые применяются к самым разнообразным предмет-
ным областям:

• социология и социальная психология [46];

• фармакология [4];

• медицина [25,49];

• датировки исторических источников [29];

• биология [66];

• почерковедческая экспертиза;

• техническая диагностика.
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Однако имеются некоторые особенности ДСМ-метода, которые
выдвигают вопрос о реализации вычислений для интеллектуального
анализа данных на его основе.

Во-первых, множество порождаемых ДСМ-гипотез может ока-
заться экспоненциально велико по сравнению с размером обучающей
выборки (пример Булеана, демонстрирующий этот феномен, приве-
ден в параграфе 1.2).

Во-вторых, С.О. Кузнецовым [39], М.И. Забежайло и другими ав-
торами были доказаныNP - и #P -полнота для многих ДСМ-процедур.

В-третьих, появление фантомных сходств, которые были иссле-
дованы в главе 2, снижает качество предсказания по аналогии, ана-
логично феномену «переобучения» в других процедурах машинного
обучения.

Чтобы справиться с возникающими эффектами автором предла-
гается новый вероятностно-комбинаторный подход.

ВКФ-метод использует вероятностные модификации двух проце-
дур из ДСМ-метода:

1. индуктивное обобщение обучающих примеров в структурных
фрагментах - гипотезах о причинах проявления исследуемого
свойства;

2. предсказание целевого свойства у тестовых примеров с помо-
щью порожденных гипотез (по аналогии с обучающими приме-
рами).

Абдукция - условие принятия порожденных гипотез - первона-
чально была дополнена процедурой абдуктивного уточнения множе-
ства гипотез.

Абдуктивное уточнение заключается в применении операции

CbODown(〈A,B〉, o)

к каждому исходному обучающему примеру o и каждой порожден-
ной на шаге индукции ВКФ-гипотезе 〈A,B〉.
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Это казалось необходимым для увеличения шансов найти ВКФ-
гипотезу, которая правильно объясняет исходный обучающий при-
мер. Из-за вероятностного характера порождения гипотез все ВКФ-
гипотезы, включающиеся в выбранный пример, могли быть пропу-
щены.

Однако, как показали эксперименты на реальных данных, отказ
от абдуктивного уточнения за счет увеличения объема порождае-
мых ВКФ-гипотез на этапе индукции, контролируемого с помощью
результата теоремы 4.1, приводит к уменьшению общего количества
ВКФ-гипотез на несколько порядков (и соответствующему сокраще-
нию времени работы) без снижения качества предсказания тестовых
примеров.

Так как меньшее количество гипотез легче анализировать экспер-
там, мы предпочли отказаться от процедуры абдуктивного уточне-
ния. Следует, однако, отметить, что нахождение уникальных обуча-
ющих примеров (не объясняемых порожденными гипотезами) пред-
ставляет интерес в качестве процедуры, позволяющей пополнять обу-
чающую выборку их аналогами для выявления дополнительных ме-
ханизмов, вызывающих проявление целевого свойства.

4.2 Процедуры ВКФ-метода
Мы изменим порядок изложения процедур машинного обучения,

основанного на сходстве, с той целью, чтобы легче было устанавли-
вать их свойства. Они будут рассматриваться в следующем порядке:

1. предсказание целевого свойства у тестовых объектов по анало-
гии с обучающими примерами;

2. индуктивное обобщение обучающих примеров (используя цепь
Маркова для порождения вероятностным образом заранее пред-
писанного числа гипотез);

3. абдуктивное уточнение и принятие гипотез (порождая допол-
нительные гипотезы для объяснения исходных примеров).
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Предсказание целевого свойства по аналогии с обучающими при-
мерами осуществляется с помощью следующего алгоритма:

Data: расширенная выборка S+ ВКФ-гипотез, файл
(τ )-примеров

Result: предсказанные свойства (τ )-примеров
X := (τ )-примеры;
for (o ∈ X) do

PredictPositively(o) := false;
for (〈A,B〉 ∈ S+) do

if (B ⊆ o′) then
PredictPositively(o) := true;

end
end

end
Algorithm 5: Процедура предсказания по аналогии

Процедура предсказания по аналогии (алгоритм 5) пытается най-
ти вложение хотя бы одного фрагмента B ⊆ o′, соответствующего
хотя одной из порожденных (индукцией и абдукцией) ВКФ-гипотез
〈A,B〉, в каждый (τ )-пример o. Если такое вложение случается, то
для этого (τ )-примера предсказывается наличие целевого свойства
по аналогии с родителями A ⊆ O ВКФ-гипотезы 〈A,B〉, чей фраг-
мент B вложился. Иначе предсказывается отсутствие целевого свой-
ства у этого (τ )-примера o.

Установим полезную характеризацию предсказания по аналогии.
Начнем с формального определения:

Определение 4.1. Объект o, описываемый фрагментом o′ ⊆ F
(множеством признаков), предсказывается положительным
с помощью ВКФ-гипотезы 〈A,B〉, если B ⊆ o′.

Если число признаков равно n = |F |, то можно рассматривать
вершины n-мерного гиперкуба {0, 1}n.

Каждый объект o, предъявляемый для предсказания, задает се-
мейство нижних полупространств в Rn:
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Определение 4.2. Нижнее полупространство H↓κ(o), опреде-
ляемое объектом o с фрагментом o′ ⊆ F , задается линейным нера-
венством

xj1 + . . .+ xjk < κ,
где F \ o′ = {fj1, . . . , fjk} и 0 < κ < 1. Допускается также вырож-
денное нижнее полупространство 0 < κ, соответствующее o′ =
F , и совпадающее со всем Rn. Класс нижних полупространств,
определяемых объектами, обозначим через (Sub ↓).

Лемма 4.1. Пример o предсказывается положительным тогда и
только тогда, когда в любом его нижнем полупространстве содер-
жится хотя одна ВКФ-гипотеза.

Доказательство. По определению 4.1 условие, что ВКФ-гипотеза
〈A,B〉 предсказывает объект o положительным, эквивалентно B ⊆
o′, то есть условию B ∩ (F \ o′) = ∅. Но в обозначения определения
4.2 это означает, что ∀i [fji /∈ B]. Последнее эквивалентно условию
0 = xj1 + . . .+ xjk < κ для любого 0 < κ < 1.

Индуктивное обобщение обучающих примеров осуществляется сле-
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дующей процедурой:
Data: множество обучающих (+)- и (-)-примеров; число N

порождаемых ВКФ-гипотез
Result: случайная выборка S ВКФ-гипотез
O := (+)-примеры, F := признаки; I ⊆ O × F формальный
контекст для (+)-примеров;
C := (-)-примеры; S := ∅; i := 0;
while (i < N) do

породить кандидата 〈A,B〉 с помощью цепи Маркова;
hasObstacle := false;
for (c ∈ C) do

if (B ⊆ c′) then
hasObstacle := true;

end
end
if (hasObstacle = false) then

S := S ∪ {〈A,B〉};
i := i+ 1;

end
end

Algorithm 6: Процедура индуктивного обобщения
Проверка условия (B ⊆ c′) в алгоритме 6 означает, что фрагмент

B кандидата 〈A,B〉 вкладывается в фрагмент (множество призна-
ков) контр-примера c. Любое такое вложение означает, что кандидат
нарушает условие «запрета контр-примеров». Если кандидат преодо-
левает все такие проверки, то он становится ВКФ-гипотезой (о при-
чине наличия целевого свойства).

Для выбора числа N запусков спаривающей цепи Маркова (ал-
горитма 4) рассмотрим задачу вероятно приближенно корректного
(probably approximately correct (PAC-)) обучения [6], [75].

Зафиксируем ε > 0 - точность предсказания.

Определение 4.3. Объект o назовем ε-важным, если суммар-
ная вероятность появления таких ВКФ-гипотез 〈A,B〉, что B ∈
H↓κ(o) будет больше ε.
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Семейство ВКФ-гипотез назовем ε-сетью, если для каждого
ε-важного объекта найдется хотя бы одна ВКФ-гипотеза из этого
семейства, которая предскажет этот объект положительно.

Теперь мы будем проводить рассуждения, аналогичные рассуж-
дениям В.Н. Вапника и А.Я. Червоненкиса [8], хотя нас будет инте-
ресовать только вероятность ошибки «первого рода» (отказ от поло-
жительного предсказания).

Другими словами, требуется найти такое число N , зависящее от
ε и δ, что с вероятностью, большей 1− δ, случайная выборка объема
N будет образовывать ε-сеть.

Для того, чтобы прямо сравнить с результатами В.Н. Вапника и
А.Я. Червоненкиса, несколько расширим класс подмножеств.

Определение 4.4. Нижнее полупространство задается ли-
нейным неравенством

n∑
j=1

wj · xj < κ,

где κ > 0 и вектор нормали 〈w1, . . . , wn〉 направлен в неотрица-
тельный ортант Rn

+, то есть ∀j [wj ≥ 0]. Семейство нижних по-
лупространств обозначим через (Lin ↓)

Определение 4.5. Расколотым называется такое множество в
неотрицательном ортанте (без начала координат) Rn

+\{〈0, . . . , 0〉},
что любое его подмножество может быть отколото нижним по-
лупространством H ∈ (Lin ↓).

Максимальная мощность dimV C↓ расколотого подмножества
называется размерностью Вапника-Червоненкиса.

Максимальное число подмножеств, откалываемых нижними
полупространствами H ∈ (Lin ↓) у множества мощности l, за-
дает функцию роста mLin↓(l).

Сами В.Н. Вапник и А.Я. Червоненкис [8] называли свою харак-
теристику емкостью класса подмножеств.

Нам потребуется лемма Радона из теории выпуклых тел:
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Лемма 4.2. Для любых n+ 2 точек {v0, v1, . . . , vn+1} в Rn надется
такое разбиение на два непустых подмножества, что их линейные
оболочки пересекаются.

Доказательство. Рассмотрим n + 1 вектор {v1 − v0, . . . , vn+1 − v0}
в Rn. Они линейно зависимы, то есть найдутся такие не все одновре-
менно равные нулю числа {λ1, . . . , λn+1}, что

∑n+1
j=1 λj · (vj − v0) = 0.

Обозначим через λ0 число −
∑n+1

j=1 λj. Пусть Λ = {λj1, . . . , λjl} - мно-
жество всех неотрицательных чисел среди {λ0, λ1, . . . , λn+1}. Тогда

l∑
i=1

λji · vji =
n+1∑

j=0:λj /∈Λ

λj · vj,

причем и слева и справа стоят положительные коэффициенты. По-
ложим теперь µj =

λj∑l
i=1 λji

. Тогда

n+1∑
j=0:λj∈Λ

µj · vj =
n+1∑

j=0:λj /∈Λ

µj · vj

задает предстваление общей точки выпуклых оболочек {vj | λj ∈ Λ}
и его дополнения {vj | λj /∈ Λ}.

Лемма 4.3. dimV C↓(Rn
+) = n.

Доказательство. Ясно, что вершины единичного симплекса обра-
зуют n-элементное расколотое подмножество. Докажем, что никакое
(n + 1)-элементное подмножество точек в Rn

+ не является расколо-
тым. Добавим к нашему множеству начало координат. По лемме 4.2
Радона найдется разбиение этих n+2 точек на два непересекающих-
ся подмножества, чьи выпуклые оболочки пересекаются. Отберем
подмножество исходных точек, попавших в одну группу с началом
координат. Ясно, что это множество не может быть отколото ника-
ким нижним полупространством, так как комбинации точек, лежа-
щих в нижнем полупространстве, сами лежат в нижнем полупро-
странстве, а комбинации точек из верхнего полупространства лежат
в верхнем.
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Теперь, дословно повторяя рассуждения Вапника-Червоненкиса
[7], получаем следующий результат:

Лемма 4.4. mLin↓(l) ≤
∑n

i=0

(
l
i

)
.

Лемма 4.5. Для l ≥ n верно mLin↓(l) ≤
(
e·l
n

)n.
Доказательство. По лемме 4.4 нужно доказать

∑n
i=0

(
l
i

)
≤
(
e·l
n

)n
при l ≥ n. Но

(n
l

)n
·

n∑
i=0

(
l

i

)
≤

n∑
i=0

(
l

i

)
·
(n
l

)i
≤

≤
l∑

i=0

(
l

i

)
·
(n
l

)i
=
(

1 +
n

l

)l
≤ en.

Лемма 4.5 слегка усиливает оригинальную оценку В.Н. Вапника и
А.Я. Червоненкиса [7], но изложена, например, в учебнике В.В. Вью-
гина [26].

Но в нашем случае функция роста оказывается независимой от l:

Определение 4.6. Максимальное число подмножеств, откалыва-
емых нижними полупространствами H ∈ (Sub ↓) у множества
мощности l, задает функцию роста mSub↓(l).

Лемма 4.6. Для l ≥ n верно mSub↓(l) = 2n.

Доказательство. Легко проверить, что вершины единичного сим-
плекса образуют расколотое множество относительно (Sub ↓).

С другой стороны, (Sub ↓) содержит 2n элементов.

Применим метод повторной выборки Вапника-Червоненкиса [7],
[6]. В следующей лемме |S2 ∩H| понимается с учетом кратности, так
как элементы повторной выборки S2 могут повторяться.
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Лемма 4.7. Для любого ε при l > 2
ε для независимых случайных

выборок S1 и S2 ВКФ-гипотез объемов l имеем оценку:

Pl{S1 : ∃H ∈ (Sub ↓) [S1 ∩H = ∅,PH > ε]} ≤
≤ 2 ·P2l{S1S2 : ∃H ∈ (Sub ↓) [S1 ∩H = ∅, |S2 ∩H| > ε · l/2]}.

Доказательство. Для выборки S1 рассмотрим нижнее полупростран-
ство H ∈ (Sub ↓), удовлетворяющее условиям S1 ∩H = ∅ и PH > ε.
Из неравенства треугольника следует, что

Pl{S2 : l ·PH − |S2 ∩H| ≤ ε · l/2} ≤ Pl{S2 : |S2 ∩H| > ε · l/2}.

Покажем, что при l > 2
ε выполняется

Pl{S2 : l ·PH − |S2 ∩H| ≤
ε · l
2
} =

= Pl{S2 : l ·PH − ε · l
2
≤ |S2 ∩H|} ≥

1

2
.

Это - вероятность для биномиальной случайной величины |S2 ∩H|
быть не меньше своего математического ожидания l ·PH за вычетом
ε·l
2 > 1 (при l > 2

ε). Известно, что медиана биномиального распре-
деления отличается от его среднего меньше, чем на единицу. Это и
доказывает нужное нам неравенство.

Из-за независимости выборок S1 и S2 имеем

1

2
·Pl{S1 : S1 ∩H = ∅,PH > ε} ≤

≤ Pl{S2 : l ·PH − |S2 ∩H| ≤
ε · l
2
} ·Pl{S1 : S1 ∩H = ∅,PH > ε} ≤

≤ Pl{S2 : |S2 ∩H| > ε · l/2} ·Pl{S1 : S1 ∩H = ∅,PH > ε} =

= P2l{S1S2 : S1 ∩H = ∅, |S2 ∩H| > ε · l/2}.

Объединяя события в левой и в правой частях по H ∈ (Sub ↓), удо-
влетворяющим условиям S1 ∩H = ∅ и PH > ε, получаем утвержде-
ние леммы.
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Лемма 4.8. Для любого ε для двух независимых случайных выборок
S1 и S2 ВКФ-гипотез объемов l имеем оценку:

P2l{S1S2 : ∃H ∈ (Sub ↓) [S1 ∩H = ∅, |S2 ∩H| > ε · l]} ≤
≤ mSub↓(2l) · 2−εl.

Доказательство. Зададим отображение g выборки S1S2 в мульти-
множество над {0, 1}n, фиксирующее состав выборки. Вероятность
P2l на ({0, 1}n)2l индуцирует вероятностную меру g(P) на составах
выборки объема 2l. Из-за независимости и одинаковой распределен-
ности ВКФ-гипотез в разных прогонах спаривающей цепи Марко-
ва вероятности на выборках одного состава одинаковы. Фиксиру-
ем состав выборки ν. Для конкретного нижнего полупространства
H ∈ (Sub ↓) условная вероятность оценивается через гипергеомет-
рическое распределение:

P{S1S2 : [S1 ∩H = ∅, |S2 ∩H| > ε · l] | g(S1S2) = ν} ≤

≤
(
l
εl

)(
2l
εl

) =
l! · (εl)! · (2l − εl)!

(εl)! · (l − εl)! · (2l)!
=

=
l · (l − 1) · . . . · (l − εl + 1)

(2l) · (2l − 1) · . . . · (2l − εl + 1)
≤ 2−εl.

Тогда условная вероятность на выборках заданного состава

P {S1S2 : ∃H ∈ (Sub ↓)[S1 ∩H = ∅, |S2 ∩H| > ε · l] |
| g(S1S2) = ν} ≤ mSub↓(2l) · 2−εl.

Правая часть не зависит от состава ν, поэтому, интегрируя по мере
g(P), получаем утверждение леммы.

Собираем вместе результаты трех предыдущих лемм и получаем
основной результат этого параграфа.

Теорема 4.1. Для n признаков и любых ε > 0 и 1 > δ > 0 доста-
точно породить

N ≥ 2 · (n+ 1)− 2 · log2 δ

ε

105



ВКФ-гипотез, чтобы вероятностью > 1− δ все ε-важные объекты
могли быть предсказаны положительно.

Доказательство. По леммам 4.7 и 4.8 для N > 2
ε имеем оценку

PN{S ⊆ {0, 1}n | ∃H ∈ (Sub ↓) [S ∩H = ∅,PH > ε]} ≤
≤ 2 ·mSub↓(2N) · 2−εN/2.

Теперь по лемме 4.6 остается решить неравенство 2 · 2n · 2−εN/2 ≤ δ
относительно N , чтобы получить утверждение теоремы.

Отметим некоторую специфику нашего подхода относительно клас-
сической парадигмы Вапника-Червоненкиса:

1. Мы ограничиваемся рассмотрением точек (фрагментов ВКФ-
гипотез) в вершинах единичного гиперкуба. Поэтому удается
получить лучшую оценку (не зависящую от длины обучающей
выборки, лишь бы эта длина была больше размерности n про-
странства. Поэтому метод повторной выборки не дает допол-
нительного завышающего множителя. Хотя оценка все равно
сильно завышена по другим причинам.

2. Тестовые примеры задают множества точек (отсекаемые гипер-
плоскостями) на гиперкубе, где должны оказаться фрагмен-
ты ВКФ-гипотез, чтобы предсказать тестовые примеры поло-
жительно. Это двойственно парадигме Вапника-Червоненкиса
(там гипотезы определяют области пространства, куда должны
попасть тестовые точки).

3. Спаривающая цепь Маркова используется для порождения ВКФ-
гипотез из обучающих примеров, при этом независимые траек-
тории порождают независимые элементы решетки кандидатов
(с распределением первого попадания в ВКФ-гипотезы).

4. Мы рассматриваем только ошибки первого рода, когда положи-
тельный тестовый пример не предсказывается положительным.
Про неправильное предсказание отрицательных примеров речь
не идет.
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Еще одной исследовавшейся процедурой ВКФ-метода является
алгоритм абдуктивного уточнения множества гипотез. Эта процеду-
ра является расширением условия принятия ДСМ-гипотез, сформу-
лированная В.К. Финном по результатам анализа идей Ч.С. Пирса
об абдукции.

В своем первоначальном виде (у Ч.С. Пирса) абдукция задавала
схему принятия гипотез посредством проверки того, что они объ-
ясняют эмпирические факты. Уточнение В.К. Финна делает проце-
дуру абдукции конструктивной (гипотезы порождаются с помощью
индуктивного обобщения обучающих примеров). При этом свойства
самих примеров служат эмпирическими фактами, требующими объ-
яснения. Объяснение же состоит в предъявлении (гипотетической)
причины для наблюдаемого эффекта у каждого обучающего приме-
ра.

Как уже было указано ранее, вероятностный характер алгорит-
ма 6 не позволяет быть уверенным в том, что мы не пропустили все
ВКФ-гипотезы, фрагменты которых содержатся в объясняемом при-
мере. Логико-комбинаторный ДСМ-метод лишен указанного недо-
статка. Чтобы частично устранить указанный дефект ВКФ-метод
может досчитывать дополнительные ВКФ-гипотезы с помощью аб-
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дуктивного уточнения множества ВКФ-гипотез:
Data: выборка S ВКФ-гипотез, внешняя функция

CbODown( , ) операции «замыкай-по-одному-вниз»
Result: расширенная выборка S+ ВКФ-гипотез
S+ := ∅;
O := (+)-примеры, C := (-)-примеры; for (o ∈ O and
〈A,B〉 ∈ S) do

вычислить 〈X, Y 〉 := CbODown(〈A,B〉, o);
Explained(o) := false; hasObstacle := false;
for (c ∈ C) do

if (Y ⊆ c′) then
hasObstacle := true;

end
end
if (hasObstacle = false) then

S+ := S+ ∪ {〈X, Y 〉};
Explained(o) := true;

end
end

Algorithm 7: Процедура абдуктивного уточнения
Как видно из алгоритма 7 абдуктивное уточнение заключается

в применении оператора CbODown к каждому исходному обуча-
ющему примеру и каждой порожденной на шаге индукции ВКФ-
гипотезе.

Проверка условия (Y ⊆ c′) в алгоритме 7 означает, что фраг-
мент Y кандидата 〈X, Y 〉 вкладывается в фрагмент (множество при-
знаков) контр-примера c, так проверяется условие «запрета контр-
примеров».

Абдуктивное уточнение казалось необходимым для увеличения
шансов найти ВКФ-гипотезу, которая правильно объясняет исход-
ный обучающий пример. Из-за вероятностного характера порожде-
ния гипотез все ВКФ-гипотезы, включающиеся в выбранный пример,
могли быть пропущены.

Однако, как показали эксперименты на реальных данных (см.
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параграф 4.4), отказ от абдуктивного уточнения за счет увеличе-
ния объема порождаемых ВКФ-гипотез на этапе индукции, контро-
лируемого с помощью результата теоремы 4.1, приводит к уменьше-
нию общего количества ВКФ-гипотез на несколько порядков (и соот-
ветствующему сокращению времени работы) без снижения качества
предсказания тестовых примеров.

Так как меньшее количество ВКФ-гипотез легче анализировать
экспертам, мы предпочли отказаться от процедуры абдуктивного
уточнения. Еще раз подчеркнем, что нахождение уникальных обуча-
ющих примеров (не объясняемых порожденными гипотезами) пред-
ставляет интерес в качестве процедуры, позволяющей пополнять обу-
чающую выборку их аналогами для выявления дополнительных ме-
ханизмов, вызывающих проявление целевого свойства.

4.3 Программная реализация
Описанные выше алгоритмы были запрограммированы автором

в программной системе, получившей название ВКФ-система:

• Программа реализована как консольное приложение client.exe
с использованием библиотеки разделяемого доступа (libvkf.so
под Linux, vkf.dll под Windows).

• Программа платформенно независима: она собиралась и запус-
калась под Windows и под Linux.

• Компилятор C++: под Linux - GNU C++ toolset (version 4.9.1
или более поздние), под Windows - Microsoft Visual BuildTools
2017.

При программной реализации системы мы отказались от класси-
ческого варианта спаривающей цепи Маркова (алгоритм 4) в пользу
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описываемой ниже «ленивой» версии:
Data: множество обучающих (+)-примеров
Result: случайный кандидат 〈A1, B1〉
O := (+)-примеры, F := признаки; I ⊆ O × F - формальный
контекст;
R := O ∪ F ; 〈A1, B1〉 := 〈O,O′〉; 〈A2, B2〉 := 〈F ′, F 〉;
moveUp := true;
while (〈A1, B1〉 6= 〈A2, B2〉) do

Выбираем случайный элемент r ∈ R;
if (r ∈ O&&moveUp) then

B1 := A′1; B2 := A′2;
end
if (r ∈ O) then

B1 := B1 ∩ ({r}′); B2 := B2 ∩ ({r}′);
end
if (r ∈ F&&!moveUp) then

A1 := B′1; A2 := B′2;
end
if (r ∈ F ) then

A1 := A1 ∩ ({r}′); A2 := A2 ∩ ({r}′);
end

end
if (!moveUp) then

B1 := A′1; B2 := A′2;
end
if (moveUp) then

A1 := B′1; A2 := B′2;
end
〈A,B〉 := Min;

Algorithm 8: Ленивая спаривающая цепь Маркова
Причина перехода к ленивому варианту кроется в значительном

повышении скорости вычислений. Теоретически это следует из тео-
ремы 1.1.

Л.А. Якимова в ее выпускной квалификационной работе бака-
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лавра [60], выполненной под руководством автора, продемонстриро-
вала, что выигрыш от такого перехода на реальных данных может
достигать очень большой величины, близкой к теоретическому пред-
сказанию.

Л.А. Якимова разработала программу, которая реализует срав-
нение алгоритмов 4 и 8 на массиве Mushrooms из репозитория дан-
ных для тестирования алгоритмов машинного обучения Универси-
тета Калифорнии в г. Ирвайн.

В этом массиве (фактически, оцифрованном «Определителе гри-
бов Северной Америки» [71]) содержится описание 8124 грибов, из
которых k = 4208 являются съедобными, а 3916 ядовитыми. Грибы
кодировались битовыми строками длины n = 124 бита.

По теореме 1.1 средний выигрыш от применения ленивой схемы
вычислений достигает на операциях замыкания

1

2
· (k + n)2

k · n
≈ 18.

Л.А. Якимова запускала программную реализацию алгоритма
6 индуктивного обобщения с использованием спаривающих цепей
Маркова в стандартном (алгоритм 4) и ленивом вариантах (алго-
ритм 8) и сравнивала времена вычисления выбранного числа ВКФ-
гипотез. Соотношение этих промежутков времени (чуть более 17 раз)
оказалось замечательно согласованным с теоретическим результа-
том, вычисленным выше. То, что выигрыш оказался несколько мень-
ше, объясняется тем, что кроме операций взятия поляр (замыкания)
в этих алгоритмах имеется еще операции сходства (побитового умно-
жения), которые хоть и очень быстрые, тем не менее остаются в неиз-
менном количестве. За подробностями читатель отсылается к [60].

Суммируем программные технологии, используемые при разра-
ботке ВКФ-системы:

• Объекты (обучающие примеры, контр-примеры и тестовые при-
меры, представленные для предсказания целевого свойства)
представляются битовыми строками (объектами класса boost ::
dynamic_bitset).
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• Полученные наборы битовых строк хранятся в контейнерах ти-
па std :: vector стандартной библиотеки C++.

• Классы boost :: dll обеспечивают платформенно независимый
доступ к библиотеке разделяемого доступа.

• Программа использует классы std :: random для датчиков слу-
чайных чисел. Это нужно для ленивой спаривающей цепи Мар-
кова (алгоритм 8).

• Для реализации многопоточности используются классы std ::
thread.

ВКФ-система реализована с помощью следующих классов:

1. AttrSet - dynamic_bitset для представления фрагмента кан-
дидата или фрагмента объекта;

2. ObjSet - dynamic_bitset для представления списка родителей
кандидата;

3. AOMatrix - класс для представления формального контекста,
хранящий наибольший и наименьший кандидаты для устране-
ния повторных вычислений;

4. Candidate - пара объектов классов AttrSet и ObjSet, исполь-
зующихся для представления кандидатов;

5. Obstacles - контейнер объектов класса AttrSet, представляю-
щих контр-примеры;

6. MCState - упорядоченная пара объектов класса Candidate,
применяемая в алгоритме 4 и реализующая вызовы операций
«замыкай-по-одному»;

7. Hypothesis - потомок класса Candidate, запускающий алго-
ритм 8 в своем конструкторе;
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8. Hypotheses - контейнер для Hypothesis, запускающий алго-
ритм 6 (индуктивное обобщение) в своем конструкторе, и реа-
лизующий алгоритм 7 (абдуктивное уточнение) как специаль-
ный метод;

9. PredictMe - класс для представления объектов, предъявлен-
ных для предсказания целевого свойства;

10. TestSample - контейнер для PredictMe, запускающий алго-
ритм 5 (предсказание по аналогии) в своем конструкторе.

Укажем на некоторые достоинства ВКФ-системы:

• Так как каждая ВКФ-гипотеза порождается независимым за-
пуском цепи Маркова, то ВКФ-программа использует несколь-
ко потоков для вычисления индуктивного обобщения.

• ВКФ-система вычисляет процедуру абдуктивного уточнения и
принятия ВКФ-гипотез тоже в несколько потоков.

• Предсказание свойств по аналогии осуществляется в один по-
ток, так как вычислительная сложность этого шага мала в
сравнении с шагом индукции.

• На современных компьютерах загрузка ядер процессора заме-
чательно балансируется по вычислительным потокам (превы-
шает 90% на этапе индуктивного обобщения).

4.4 Экспериментальная апробация
Программная ВКФ-система применялась к двум массивам из ре-

позитория данных для проверки алгоритмов машинного обучения.
Первым массивом был SPECT Hearts (данные компьютерной то-

мографии сердца).

• Обучающая выборка содержит 40 (+)- и 40 (-)-примеров.
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• Тестовая выборка содержит 172 (+)- и 15 (-)-примеров.

• Каждый пример описывался 22 бинарными атрибутами.

• ВКФ-система добавила отрицания исходных признаков, чтобы
отсутствие атрибута могло быть частью причины проявления
свойства. Поэтому обучающая выборка - это матрица 40× 44.

• Точность предсказания простейшей ВКФ-системы достигла 86.1%
(151 из 172 (+)-примеров и 10 из 15 (-)-примеров).

• Авторы массива SPECT достигли 84.0% точности своей про-
граммой CLIP (версия 3), которая реализует обучение покры-
тию средствами целочисленного программирования. Более позд-
няя 4 версия программы CLIP достигла точности 86.1%, сов-
падающей с точностью ВКФ-системы

Второй массив Mushrooms - данные из определителя грибов Се-
верной Америки [71], оцифрованные в файл agaricus-lepiota.data

• Исходные данные включают описания 8124 грибов, разделен-
ные на две категории (съедобные и ядовитые). Мы случайным
образом разделили их на обучающую и тестовую выборки.

• Обучающая выборка содержит 4032 объекта, из которых 2088
(+)-объектов (съедобные грибы).

• Тестовая выборка содержит 2120 (+)- и 1972 (-)-примеров (ядо-
витые грибы).

• Каждый пример описывался 22 признаками, описывающие раз-
личные характеристики грибов (цвет шляпки, форма шляпки,
запах, форма ножки, ..., цвет спор, места произрастания,частота
встречаемости и т.п.). Эти признаки - номинальные, принима-
ющие одно из нескольких значений.

• ВКФ-система закодировала (с использованием алгоритма 1)
эти признаки битовыми строками длины 110 бит.
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• Точность предсказания ВКФ-системы достигла 100% для 80
ВКФ-гипотез о причинах ядовитости или 150 ВКФ-гипотез о
причинах съедобности (без процедуры абдуктивного уточне-
ния).

• Время работы ВКФ-системы с абдуктивным уточнением (по 80
ВКФ-гипотез дают 100% точность) превышает время работы
без нее (80/150 ВКФ-гипотез, соответственно) более, чем на два
порядка.

Основные выводы
1. Познавательные процедуры логико-комбинаторного ДСМ-метода

(индуктивного обобщения, абдукции и предсказания по анало-
гии), основанные на сходстве, для поиска причинно-следственных
зависимостей в сложно-структурированных данных допускают
вероятностные варианты.

2. Абдукция не нуждается в предварительном расширении мно-
жества вероятностно порожденных ВКФ-гипотез с помощью
алгоритма 7 абдуктивного уточнения, так как может быть успеш-
но заменена увеличенным числом порождаемых ВКФ-гипотез
на этапе индукции.

3. Оценка необходимого числа ВКФ-гипотез для надежного пред-
сказания важных объектов (теорема 4.1) превращает ВКФ-метод
в метод статистического машинного обучения (с указанием сте-
пени надежности выводов).

4. Программная ВКФ-система, реализующая метод машинного
обучения, основанного на теории решеток, великолепно распа-
раллеливается.

5. Применение ВКФ-системы к массиву SPECT Hearts из репо-
зитория данных для тестирования алгоритмов машинного обу-
чения продемонстрировало преимущества нашего подхода над
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некоторыми другими алгоритмами комбинаторного анализа дан-
ных.

6. Успешное применение ВКФ-системы к массиву Mushrooms (8124
объекта) из этого же репозитория подтверждает возможность
ее применения к обучающим выборкам большого размера.
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Заключение

Результаты, выносимые на защиту
1. Оценка эффективности ленивых вычислений на шаге индукции

в теореме 1.2.

2. Оценка (теорема 2.2) асимптотической вероятности появления
фантомного сходства при наличии контр-примеров. Доказатель-
ство этой теоремы оценивает скорость сходимости к пределу.

3. Явный вид производящих функций (теоремы 2.3 и 2.4) для ве-
роятности возникновения фантомного сходства при фиксиро-
ванном и произвольном числе контр-примеров.

4. Теорема 3.3 об изменении вероятностей множеств эргодических
состояний для спаривающей цепи Маркова, остановленной с
верхней границей по r предварительным прогонам.

5. Теорема 3.4 о среднем времени склеивания и теорема 3.5 о силь-
ной концентрации времени склеивания около его среднего для
случая Булеана (множества всех подмножеств признаков).

6. Верхняя оценка (3.15) (из теоремы 3.8) времени перемешивания
и теорема 3.9 об асимптотической точности этой оценки для
случая Булеана.

7. Теорема 4.1 о необходимом числе ВКФ-гипотез, чтобы с веро-
ятностью, не ниже заданной, можно было предсказать поло-
жительно все ε-важные объекты.
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Выводы из проведенных исследований
1. При вычислении всех сходств обучающих примеров возможно

порождение фантомных сходств, которые вредят корректному
предсказанию целевого свойства у объектов, предъявленных
для его прогнозирования.

2. Запрет на контр-примеры и ограничение на минимальное чис-
ло родителей не позволяют полностью избавиться от эффекта
переобучения(порождения фантомных сходств).

3. Механизм отбрасывания кандидатов с малым числом родите-
лей может устранять и нужные причины целевого свойства.

4. Эффекты экспоненциального числа сходств в худшем случае и
переобучения требуют создания нового вероятностно-комбинаторного
метода обучения, основанного на операции сходства.

5. Алгоритм вычисления сходств объектов сводится побитовому
умножению, что позволяет эффективно использовать архитек-
туру современных компьютеров.

6. Среди нескольких вероятностных алгоритмов поиска сходств
имеются такие (спаривающие цепи Маркова), которые обеспе-
чивают остановку вычислений с вероятностью единица.

7. Ленивая спаривающая цепь Маркова значительно эффектив-
нее стандартного варианта (и теория находится в хорошем со-
ответствии с практикой).

8. Имеется механизм удаления длинных траекторий спариваю-
щих цепей Маркова с учетом времени работы предварительных
запусков этой цепи.

9. Оценка среднего времени работы спаривающей цепи Маркова
в частном случае Булеана демонстрирует вычислительную эф-
фективность этого алгоритма.
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10. Абдукция не нуждается в расширении посредством процеду-
ры абдуктивного уточнения множества ВКФ-гипотез, так как
с успехом может быть заменена увеличением числа порождае-
мых гипотез на этапе индукции.

11. Оценка необходимого числа ВКФ-гипотез для надежного пред-
сказания важных объектов превращает ВКФ-метод в метод
статистического машинного обучения.

12. Программная ВКФ-система продемонстрировала хорошую ба-
лансировку нагрузки по вычислительным узлам при многопо-
точной реализации.

13. Применение компьютерной системы к массивам данных проде-
монстрировало превосходство предложенного подхода над неко-
торыми другими алгоритмами комбинаторного машинного обу-
чения и возможность его применения к массивам данных боль-
шого объема.

Направления дальнейших исследований
Теперь мы сформулируем открытые проблемы, разрешение кото-

рых позволит улучшить понимание вероятностных когнитивных про-
цедур, основанных на операции сходства, для обнаружения причинно-
следственных зависимостей в сложно-структурированных данных:

• Получить оценку среднего времени склеивания для спариваю-
щей цепи Маркова в случае произвольного контекста. Полезно
указать, что метрика Хэмминга между верхним и нижним кан-
дидатами не является функцией Ляпунова (может возрастать).
Соответствующий пример приводится в параграфе 3.3.

• Исследовать вопрос о времени перемешивания для монотонной
цепи Маркова в случае произвольного контекста. Следует от-
метить, что в частном случае Булеана подобный результат был
доказан нами в параграфе 3.5.
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• Исследовать асимптотическую вероятность возникновения фан-
томного сходства, когда число контр-примеров растет, а число
признаков сохраняется. Автор надеется, что изложенные в па-
раграфе 2.3 главы 2 производящие функции окажутся при этом
полезными.
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Список сокращений и
условных обозначений

АФП - анализ формальных понятий
ДСМ - Джон Стьюарт Милль (английский философ, экономист

и логик)
ИАД - интеллектуальный анализ данных
п.ф. - производящая функция (последовательности чисел)
р.в. - распределение вероятностей
с.в. - случайная величина
ц.с.в. - целочисленная с.в.
CbODown - операция «Замыкай-по-одному-вниз»
CbOUp - операция «Замыкай-по-одному-вверх»
D - дисперсия с.в.
E - математическое ожидание с.в.
P - вероятность (включая условную) случайного события
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Словарь терминов

ВКФ-гипотеза - кандидат, фрагмент которого не включается
ни в один контр-пример

ВКФ-метод - вероятностно-комбинаторный формальный метод
машинного обучения, назван так в честь В.К. Финна

ВКФ-система - программная система, реализующая вероятност-
ные алгоритмы ВКФ-метода

ДСМ-гипотеза - кандидат, имеющий не менее двух родителей
(в разных вариантах должен удовлетворять дальнейшим логическим
условиям, например, запрету контр-примеров)

ДСМ-метод - логико-комбинаторный метод ИАД, созданный
группой исследователей под руководством проф. В.К. Финна

ДСМ-система - программная система, реализующая синтез по-
знавательных процедур ДСМ-метода

запрет контр-примеров - условие, что фрагмент никакого кан-
дидата не может включаться в описание никакого контр-примера

кандидат - пара, состоящая из списка родителей и фрагмента -
то же самое, что и формальное понятие в АФП

контр-пример - объект, не обладающий целевым свойством
обучающий пример - объект, обладающий целевым свойством
родители кандидата - множество всех обучающих примеров,

содержащих фрагмент этого кандидата
формальный контекст - множество всех обучающих примеров,

заданных битовыми строками
фрагмент кандидата - множество всех общих признаков у всех

объектов-родителей этого кандидата
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