




Общая характеристика работы

Актуальность темы. Задача сопоставления изображений является
одной из наиболее важных задач в компьютерном зрении, которая возника-
ет во многих практических приложениях, таких как бинокулярная стерео-
реконструкция (Szelinski: 2010), детекция движения на видеопоследователь-
ностях (Zach: 2007, Dosovitkiy: 2015, Ilg: 2017) и анализ медицинских ультра-
звуковых снимков (Ophir: 1991, Fleming: 2012, Rivaz: 2014).

В общем случае задача сопоставления изображений допускает несколь-
ко различных постановок, применимость которых зависит от конкретного
приложения. Параметрическое сопоставление изображений представляет со-
бой задачу поиска трансформации внутри выбранного семейства парамет-
рических преобразований, таких как, например, афинные преобразования,
которые позволяют сопоставить изображения с учетом перспективных иска-
жений (Szelinski: 2010). В данной работе рассмотрена задача непараметриче-
ского сопоставления изображений. Такой вариант задачи является наиболее
общим: каждый пиксел изображения получает независимую трансформацию,
при этом число степеней свободы пропорционально числу пикселов (Кузьмин:
2018).

Другим важным аспектом постановки задачи является способ сопо-
ставления изображений. Первым важным случаем является разреженное со-
поставление, при котором соотносятся отдельные визуально выделяющиеся
элементы изображений. Вторым важным случаем, рассмотренным в данной
работе, является плотное сопоставление. При этом соотносятся все пиксели
изображения, и решением задачи является двумерное поле смещений. Такое
поле определяет трансформацию для каждого из пикселов изображения.

Наиболее важными характеристиками методов сопоставления являют-
ся вычислительная сложность и качество сопоставления на реальных данных.
В настоящее время, наиболее перспективными методами сопоставления яв-
ляются методы, основанные на глубоком машинном обучении (Zbontar: 2016,
Luo: 2016, Dosovitskiy: 2015). При этом существенным недостатком большин-
ства таких методов являтся высокая вычислительная сложность, что не поз-
воляет применять их в задачах, требующих сопоставления в реальном вре-
мени (Luo: 2016, Xu: 2017), таких как анализ дорожных сцен и медицинская
диагностика в режиме реального времени (с частотой порядка 25 кадров в
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секунду и выше). В связи с этим, особый интерес представляет разработка
методов машинного обучения, имеющих низкую вычислительную сложность
на этапе исполнения (Kuzmin: 2017, Кузьмин: 2018).

Большинство современных методов сопоставления изображений мож-
но разделить на две категории. К первой категории относятся методы,
основанные на глубоком машинном обучении (Zbontar: 2016, Luo: 2016,
Dosovitskiy: 2015, Kuzmin: 2017). Для таких методов применяется обучение
с учителем на большом количестве тренировочных данных. Методы второй
категории основаны на формулировке задачи сопоставления изображений в
виде оптимизационной задачи, при этом поле смещений получается в резуль-
тате минимизации целевого функционала, зависящего от входных данных
(Rivaz: 2014, Kuzmin: 2015). Такой подход может быть применен в случае
отсутствия тренировочных данных и является актуальным, например, для
сопоставления медицинских ультразвуковых изображений - в этом случае
трудно получить эталонные поля смещений.

В работе рассмотрена задача сопоставления изображений в
трех различных приложениях. Первым является бинокулярная стерео-
реконструкция, которая основана на оценке смещений для левого и правого
изображений со стерео-камеры, возникающих засчет бинокулярного эф-
фекта (Scharstein: 2002, Szelinski: 2010). Вторым является сопоставление
изображений движущихся объектов на видео-последовательности, известная
как задача вычисления оптического потока (Horn: 1981, Szelinski: 2010,
Dosovitskiy: 2015). Третьим является задача ультразвуковой эластографии
(Ophir: 1991, Fleming: 2012, Rivaz: 2014). Она соответствует сопоставлению
медицинских ультразвуковых сников для тканей различной степени механи-
ческого сжатия с целью оценки локальной деформации, которая является
важной величиной для медицинской диагностики.

Сопоставление изображений в каждом из трех перечисленных выше
приложений позволяет количественно оценивать различные свойства объек-
тов на анализируемых изображениях. В задаче стерео-реконструкции, сопо-
ставление позволяет оценить геометрию сцены, в задаче нахождения опти-
ческого потока – скорости движущихся объектов, а в задаче эластографии –
механические свойства изучаемых тканей.
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Целью данной работы является разработка методов машиного обуче-
ния для задачи сопоставления изображений, эффективных на этапе исполне-
ния и позволяющих вычислять поля смещений в режиме реального времени
(с частотой 25 кадров в секунду и выше) для реальных данных с использо-
ванием параллельного программирования.

Для достижения поставленной цели необходимо было решить следую-
щие задачи:

1. Аналитический обзор состояния задачи и систематизация методов
сопоставления изображений.

2. Разработка новых методов машинного обучения для сопоставления
изображений, имеющих низкую вычислительную сложность на эта-
пе исполнения.

3. Экспериментальная проверка разработанных методов на реальных
данных, сравнение результатов с предложенными в литературе ме-
тодами с использованием количественных критериев качества сопо-
ставления.

4. Программная реализация предложенных методов с использованием
графических ускорителей, позволяющая вычислять поля смещений
в реальном времени.

Основные положения, выносимые на защиту:
1. Предложена серия моделей для сопоставления изображений, име-

ющих низкую вычислительную сложность на этапе исполнения. В
качестве основы для построения вычислительно эффективных мо-
делей была выбрана обучаемая регуляризация. Этапы вычисления
полей смещения были представлены как слои сверточной и рекур-
рентной нейросети, что позволило получить обучаемую модель.

2. Показаны результаты применения предложенных методов на реаль-
ных данных, включая дорожные сцены и медицинские ультразву-
ковые снимки. Рассмотрены такие приложения как бинокулярная
стерео-реконструкция, оптическии поток и ультразвуковая эласто-
графия. Проведен количественный анализ качества сопоставления.

3. Предложная эффективная параллелизация разработанных мето-
дов. Построен комплекс эффективных параллельных программ с
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использованием графических ускорителей, демонстрирующих при-
менимость предложенных моделей в режиме реального времени.

Научная новизна:
1. Предложен новый метод сопоставления изображений, используе-

мый в задаче бинокулярной стерео-реконструкции. В отличие от
аналогичных подходов, основанных на глубоком машинном обуче-
нии и сверточных нейросетях, предложенный метод основан на ком-
бинировании сверточной и рекуррентной нейросети, что позволяет
получить алгоритм, эффективный на этапе исполнения, имеющий
эффективную параллельную реализацию. Такой подход позволяет
избежать трудоемкого сравнения визуальных дескрипторов боль-
шой размерности, являющегося ключевым этапом прочих методов
стерео-сопоставления, основанных на глубоком машинном обуче-
нии.

2. Разработана новая архитектура нейросети для задачи сопоставле-
ния изображений, возникающей при вычислении оптического пото-
ка. Предложенный метод основан на обучении оператора регуляри-
зации. Подход, основанный на представлении графа вычислений оп-
тимизационного алгоритма в виде слоев сверточной нейросети, поз-
волил получить сверточную архитектуру, имеющую более низкую
вычислительную сложность по сравнению с методами, предложен-
ными в литературе. При этом обучаемая регуляризация позволяет
получить сопоставления более высокого качества по сравнению с
оптимизационными алгоритмами низкой вычислительной сложно-
сти, предложенными в литературе.

3. Предложен новый оптимизационный метод для сопоставления уль-
тразвуковых изображений, который позволяет улучшить качество
сопоставления засчет использования серии из трех снимков. В от-
личие от предложенных в литературе методов, предложенный под-
ход основан на применении адаптивной регуляризации, что позво-
лило получить метод, устойчивый к участкам неверного сопостав-
ления, при этом имеющий низкую вычислительную сложность. При
этом вычислительная эффективность алгоритма достигатся засчет
обобщения функционала полной вариации. Предложенный функ-
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ционал является выпуклым и позволяет применять эффективные
двойственные методы минимизации.

Теоретическая значимость заключается в разработке новых моде-
лей для задачи сопоставления изображений. Предложена модель для сопо-
ставления изображений в применении к стерео-реконструкции, основанная на
сверточно-рекуррентной нейросети. Такая модель является целиком обучае-
мой на эталонных данных и позволяет вычислять поля смещения в реальном
времени на этапе исполнения. Также предложена модель на основе сверточ-
ной нейросети для задачи вычисления оптического потока, которая позво-
ляет обучать оператор регуляризации. Наконец, автором предложен метод
сопоставления ультразвуковых снимков на основе выпуклой оптимизации,
который позволяет эффективно вычислять смещения на основе нескольких
ультразвуковых снимков.

Практическая значимость работы заключается в возможности ре-
шать задачу сопоставления изображений в режиме реального времени на
данных соответствующих фотографиям дорожных сцен и медицинским уль-
тразвуковым снимкам. Потенциальные приложения разработанных методов
включают в себя системы беспилотного управления автомобилем, а также
программное обеспечение, используемое в устройствах ультразвуковой меди-
цинской диагностики.

Разработанный метод сопоставления серии ультразвуковых изображе-
ний был внедрен в программный продукт по анализу последовательности
медицинских снимков ООО "СиВижинЛаб".

Достоверность полученных результатов обеспечивается серией чис-
ленных экспериментов, проведенных с использованием открытих коллекций
изображений.

Апробация работы. Основные результаты работы докладыва-
лись на:

1. Международная конференция “Machine Can See Summit”, 2017.
2. Международная конференция “IEEE Workshop on Machine Learning

for Signal Processing”, 2017.
3. Семинар Вычислительного центра им. Дородницына ФИЦ ИУ РАН,

2017.
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4. Международная конференция “IEEE 13th International Symposium
on Biomedical Imaging”, 2016.

5. Международная конференция “IEEE 37th Annual International
Conference on Medicine and Biology Society”, 2015.

Личный вклад. Все результаты получены автором лично.
Публикации. По тематике исследования опубликовано 5 научных ра-

бот, в том числе 5 статей в изданиях, рекомендованных ВАК.
Объем и структура работы. Диссертация состоит из введения, пя-

ти глав и заключения и приложения. Полный объем диссертации 133 стра-
ницы текста с 47 рисунками и 7 таблицами. Список литературы содержит
145 наименований.

Содержание работы

Во введении обосновывается актуальность проводимых исследова-
ний, научная и практическая ценность работы, сформулированы цели и за-
дачи, а также сформулированы основные положения, выносимые на защиту.

Первая глава посвящена постановке задачи плотного сопоставления
изображений и описанию приложений, рассмотренных автором. Глава начи-
нается с разбора различных постановок задачи сопоставления изображений,
а также предположений, необходимых для решения задачи на практике. В
главе также рассмотрена задача плотного сопоставления изображений в трех
приложениях: бинокулярное стерео-сопоставление, оптический поток и уль-
тразвуковая эластография. Главу завершает набор примеров практического
использования предложенных в работе методов.

Вторая глава посвящена задаче плотного сопоставления изображе-
ний в приложении к бинокулярной стерео-реконструкции (Kuzmin: 2017).
Приводится описание метода, предложенного автором, обзор предложенных
в литературе методов, и численные эксперименты по сравнению различных
методов.

В настоящее время, из всех предложенных в литературе методов, наи-
более низкой ошибкой стерео-сопоставления обладают методы глубокого ма-
шинного обучения на основе сверточных нейросетей (Zbontar: 2015, Luo:
2016). При этом большинство таких методов основано на обучении дескрип-
торов большой размерности, которые затем используются для сопоставле-
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ния фрагментов изображений. Несмотря на высокое качество реконструкции,
сравнение большого количества дескрипторов большой размерности имеет
высокую вычислительную сложность (Zbontar: 2015, Luo: 2016). Целью дан-
ной работы является разработка альтернативных моделей, позволяющих по-
низить вычислительную сложность методов машинного обучения на этапе
исполнения.

Предложенный метод в явном виде хранит в памяти трехмерный
тензор энергий стерео-сопоставления в виде трехмерного массива размера
(h,w,d

max

), где h and w - размеры изображения, а d

max

- максимальный раз-
решенный диспаритет. Вычисление тензора энергий производится в соответ-
ствии с локальными методами стерео-сопоставления. При этом, энергия равна
сумме двух членов:

E(x,y,d) = ↵E

SAD

(x,y,d) + (1� ↵)E
census

(x,y,d), (1)

где коеффициент ↵ 2 [0,1]. Первый член есть абсолютное значение разностей
интенсивностей соответствующих пикселов:

E

SAD

(x,y,d) = |IL(x,y)� I

R(x� d,y)|. (2)

Второй член E

census

(x,y,d) основан на сопоставлении локальных
дескрипторов, соответствующих следующему ценсус-преобразованию. Для
черно-белого изображения I , определим функцию ⇠, которая будет будет при-
нимать значение 0 или 1 в зависимости от результата сравнения интенсивно-
стей в пикселах p и q:

⇠(p,q) =

8
<

:
1, если I(q) < I(p),

иначе 0.
(3)

Используя такую функцию, определим ценсус-преобразование (Zabih:
1994), которое ставит в соответствии каждому пикселу изображения следую-
щий многомерный вектор из нулей и единиц:

R

⌧

(p) = ⌦
[i,j]2Dw

⇠(p,p+ [i,j]), (4)
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где ⌦ - операция конкатенации, а D

w

- набор возможных двумерных
смещений внутри квадратного окна размера n ⇥ n с центром в пикселе p.
Полученные дескрипторы, заданные битовыми последовательностями, срав-
ниваются, используя расстояние Хэмминга.

В качестве архитектуры для сверточной нейросети, была использова-
на многомасштабная модель для детекции границ (Xie: 2015). Предложен-
ный автором метод агрегирования энергий сопоставления основан на рекур-
сивном фильтре, учитывающем границы, и его обучаемой версии. Алгоритм
вычисления фильтра принимает на вход сигнал x и вектор коеффициентов
w

i

2 [0,1]. Результатом применения фильтра является сглаженный сигнал y.
Для одномерных сигналов, вычисление фильтра происходит в соответствии
со следующей рекуррентной последовательностью. Начиная с y1 = x1, для
i = 2,...,N имеем:

y

i

= (1� !

i

)x
i

+ !

i

y

i�1 (5)

Варьирование весов !

i

используется для контроля степени сглажива-
ния, что дает возможность сохранять пространственные границы изображе-
ния: в самом деле фрагменты изображения с величиной !

i

, близкой к едини-
це, усредняются между соседними пикселами y

i�1 и y

i

, тогда как величина
w

i

, близкая к нулю (например, в пикселах, соответствующих границам изоб-
ражения), ведет к отсутствию пространственного сглаживания, т.е. y

i

= x

i

.
Рекурсивный фильтр, учитывающий границы объектов применяется

к двумерным изображениям в сепарабельном виде, т.е. вычисление рекурсии
осуществляется в виде серии одномерных направленных проходов - горизон-
тального, слева направо и справа налево и вертикального, сверху вниз и сни-
зу вверх. При этом представляется целесообразным использовать отдельные
карты весов W

h

и W

v

для горизонтальных и вертикальных проходов соответ-
ственно. Действие двумерного фильтра, который принимает на вход изобра-
жение I , две карты весов и вычисляет выходное изображение I

filt

обозначим
следующим образом:

I

filt

= F(I,W
h

,W

v

). (6)
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Рис. 1 � Схематическое изображение метода фильтрации тензора энергий.

Алгоритм вычисления описанных выше четырех рекуррентных прохо-
дов задается соотношениями:

I

L(x,y,d) = (1�W

h

(x,y)) I(x,y) +W

h

(x,y) I(x� 1,y), (7)

I

R(x,y,d) = (1�W

h

(x,y)) IL(x,y) +W

h

(x,y) IL(x+ 1,y), (8)

I

T (x,y,d) = (1�W

v

(x,y)) IR(x,y) +W

v

(x,y) IR(x,y � 1), (9)

I

B(x,y,d) = (1�W

v

(x,y)) IT (x,y) +W

v

(x,y) IT (x,y + 1), (10)

где выражения для I

L,IR,IT ,IB соответствуют направленным подхо-
дам слева направо, справа налево, снизу вверх и сверху вниз соответственно.
Результат каждого следующего прохода подается на вход предыдущего. На
каждом из направленых проходов вычисления осуществляются независимо
для строк или столбцов изображения.

Для того, чтобы построить обучаемую модель фильтрации, веса пред-
сказываются на основе входного изображения с помощью сверточной нейро-
сети. Схема алгоритма агрегирования энергий представлена на рис. 1. Про-
цесс фильтрации выполняется используя четыре направленных прохода, при
этом для того чтобы использовать двумерные карты весов для W

h,v

(x,y) для
фильтрации трехмерного массива E

d

= E(x,y,d), x = 0,..,w, y = 0,..,h, при-
меняется дублирование весов по третьему измерению:
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E

filt

d

= F(E
d

,W

h

,W

v

),

d = {0,1,...,d
max

}.
(11)

Для того, чтобы выделить максимум функции энергии сопоставления,
требуется применить функцию предобработки, которая усилит имеющиеся
максимумы на фоне остальных ненулевых значений функции. В качестве та-
кой функции может быть использована операция softmax, заданная отоб-
ражением � : RK ! [0,1]K . Такое отображение для некоторого одномерного
вектора энергий E выражается следующим образом:

�

j

(E) =
e

Ej

P
K

i=1 e
Ei

. (12)

Подобная функция предобработки применяется независимо ко всем одномер-
ным функциям энергии, соответствующим различным пикселам изображе-
ния:

C

sm

(x0,y0,d) = �

�
C(x0,y0,d)

�
. (13)

Для того, чтобы смоделировать функцию, которая имеет максимум в
эталонном значении диспаритета, используется дельта функция:

C

gt

(x,y,d) =

8
<

:
1, если d = D

gt

(x,y),

иначе 0.
(14)

В качестве функции потерь используется значение кросс-энтропии:

L(C,C
gt

) = �
X

x,y

X

d

C

sm

(x,y,d) log C

gt

(x,y,d). (15)

В процессе обучения веса модели изменяются таким образом, чтобы
обнаружить максимальное значение энергии в компоненте, соответствующей
эталонному диспаритету. Так, в результате получается обучаемая модель на
основе сверточно-рекуррентной нейросети, не требующая постобработки (см.
рис. 2).
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Рис. 2 � Схема предложенной сверточно-рекуррентной нейросети.

Наиболее трудоемким этапом алгоритма является агрегирование тен-
зора энергий, количество операций оценивается как O(nd

max

), где n - количе-
ство пикселов в изображении, а d

max

- максимальный диспаритет. При этом
трудоемкость наиболее быстрого метода, основанного на машинном обучении,
предложенного в литературе оценивается как O(nd

max

k), где k - размерность
глубоких дескрипторов.

Продолжение третьей главы содержит результаты численных экспе-
риментов на реальных данных и сравнение результатов с предложенными в
литературе методами. В главе также приводится анализ времени исполнения
на графическом ускорителе по отдельным этапам работы алгоритма.

Третья глава посвящена задаче плотного сопоставления изображе-
ний в приложении к вычислению оптического потока для кадров видео-
последовательности (Кузьмин: 2018). Приводится описание метода, предло-
женного автором, обзор предложенных в литературе методов и результаты
численных экспериментов.

В задаче вычисления оптического потока требуется вычислить дву-
мерное поле смещений для пары изображений I0,1, определенных на области
⌦ (Horn: 1985). Оптический поток u = (u

x

,u

y

) имеет две компоненты u

x

и
u

y

, соответствующих горизонтальным и вертикальным смещениям соответ-
ственно. Искомое поле смещений должно сопоставлять изображения пары
таким образом, что для всех пикселов, I0(x,y) и I1(x + u

x

(x,y),y + u

y

(x,y))

соответствуют одним и тем же точкам сцены. В отличие от задачи стерео-
сопоставления, которая сводится к нахождению одномерного поля смещений,
движение объектов на сцене может быть произвольным, поэтому поле сме-
щенией в задаче оптического потока является двумерным.
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Серия современных подходов для задачи вычисления оптического по-
тока основана на применении методов машинного обучения с использованием
сверточных нейросетей (Dosovitskiy: 2015, Xu: 2017, Ilg: 2017). При этом ней-
росети могут быть использованы как для попиксельного предсказания опти-
ческого потока для входных изображений, так и для обучения дескрипторов
для сопоставления изображений. В то время как такие методы позволяют
получить оценки достаточно высокого качества, они обладают высокой вы-
числительной сложностью. В связи с этим, представляется актуальной задача
разработки методов машинного обучения, имеющих низкую вычислительную
сложность на этапе исполнения.

Развитие вариационных методов для вычисления оптического потока
связано с разработкой эффективных методов оптимизации. При этом набор
функций энергии, используемых в задаче, ограничен возможностью предста-
вить задачу в виде минимизации одного или последовательности выпуклых
функционалов (Wedel: 2009, Werlberger: 2010, Ranftl: 2014). Метод, основан-
ный на применении сверточной нейросети, предложенный в данной работе
(Кузьмин: 2018), позволяет обучать оператор регуляризации с использова-
нием тренировочной выборки пар изображений, для которых предоставлены
эталонные значения оптического потока. Идея построения обучаемой модели
состоит в представлении итераций оптимизационного алгоритма в виде слоев
сверточной нейросети.

В соотвествии с алгоритмом оптимизации, используемым в методе
оценки оптического потока в реальном времени, определим архитектуру ней-
росети, которая будет состоять из модуля деформации и модуля итерации
двойственного метода. Нейросеть получает на вход пару изображений I0,1 и
вычисляет оптический поток, представленный в виде двухканального изоб-
ражения. Нейросеть обучается на основе размеченных пар изображений, для
которых определены эталонные значения оптического потока. При этом в ка-
честве функции потерь используется средняя квадратичная ошибка для дву-
мерных векторов смещений. Результат, полученный нейросетью, не требует
дополнительной постобработки.

Оптический поток вычисляется с использованием многомасштабного
подхода (рис. 3). Начиная с наиболее крупного масштаба, для которого ней-
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Рис. 3 � Архитектура предложенной нейросети для задачи оптического
потока.

росеть получает на вход нулевое приближение, полученная оценка оптиче-
ского потока масштабируется с использованием билинейной интерполяции и
шкалируется. Результат вычисления используется на более и более мелком
масштабе, вплоть до исходного разрешения.

Модуль деформации. Модуль деформации использует операцию поро-
гового преобразования как слой нейросети. Модуль принимает на вход пару
изображений I0,1 на соответствующем масштабе и начальную оценку поля
смещений u0. Для вычисления градиента используется процедура деформа-
ции изображения и центральная разностная схема. Для того, чтобы обучать
нейросеть методом обратного распространения ошибки, для вычисления де-
формированного изображения используется слой пространственной деформа-
ции (spatial transformer layer), предложенный в литературе (Jaderberg: 2015):

@I1

@x

=
S(I1,u0x +�x, u0y)� S(I1,u0x ��x,u0y)

2�x

, (16)

@I1

@y

=
S(I1,u0x,u0y +�y)� S(I1,u0x,u0y ��y)

2�y

. (17)
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Такой слой основывается на параметризации решетки, использованной
для сэмплирования деформированного изображения. При этом для сэмпли-
рования используется билинейная интерполяция. Применение данного слоя
позволяет вычислять градиент деформированного изображения по компонен-
там поля смещений. Прочие функции, используемые для построения модуля
деформации соответствуют стадартным арифметическим операциям и поро-
говому преобразованию.

Модуль итерации двойственного метода. В двойственном методе ми-
нимизации обновленные значения переменных на каждой итерации вычисля-
ются с использованием операторов регуляризации. Представим эти операто-
ры, r : RN ! R

N⇥2 и r⇤ : RN⇥2 ! R

N (N - количество пикселов в изобра-
жении) в качестве сверток с фильтрами, соотвествующими горизонтальной и
вертикальной конечной разности:

ru

d

=
h
@u

d

@x

,

@u

d

@y

i
= [u

d

⇤ f
x

,u

d

⇤ f
y

], (18)

div p =
@p1

@x

+
@p2

@y

= p1 ⇤ f̃x + p2 ⇤ f̃y. (19)

При этом фильтры f

x

и f

y

соответствуют горизонтальной и верти-
кальной конечной разности соотвественно, а фильтры f̃

x

и f̃

y

определя-
ют соответствующий сопряженный оператор r⇤. При этом в терминах ней-
росети, двойственная переменная соотвествует некоторому двухканальному
изображению, которое вычисляется при помощи набора из двух фильтров.
Используя аналогичную конструкцию, определим оператор регуляризации
L : RN ! R

N⇥K с использованием произвольного количества фильтров K:

Lu

d

= =

2

66664

u

d

⇤ f1
u

d

⇤ f2
...

u

d

⇤ f
K

3

77775
. (20)

При этом сопряженный оператор L

⇤ : RN⇥K ! R

N , определенный для
двойственной переменной p, на выходе дает изображение, которое имеет K
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каналов p = [p1,p2, . . . ,pK ]. Такой оператор может быть записан в следующем
виде:

L

⇤p =
KX

i=1

p

i

⇤ f̃
i

. (21)

В отличие от оптимизационного метода с фиксированным оператором
регуляризации, предложенный метод основан на обучаемой регуляризации,
что позволяет уменьшить ошибку сопоставления.

Ввиду применения обучаемой регуляризации, количество итераций ал-
горитма может быть снижено по сравнению с оптимизационным методом,
основанном на фиксированной регуляризации. При этом для каждой итера-
ции, обучается отдельный набор фильтров с целью увеличения способности
нейросети адаптироваться ко входным данным.

Продолжение третьей гловы содержит серию численных эксперимен-
тов по оценке предложенного метода на публичной коллекции изображений
Sintel (Butler: 2012).

Разработанный метод имеет низкую вычислительную сложность и мо-
жет быть использован для расчетов в реальном времени с использованием
графического ускорителя. Количество арифметических операцией оценива-
ется как O(NDMF

2), где N - количество пикселей изображения, D - коли-
чество слоев нейросети, M - количество фильтров, а F - размер фильтра.
Малое потребление памяти (например, 40 МБ для изображений рассмотрен-
ной коллекции при использовании перезаписываемых операций) позволяет
потенциально использовать предложеный метод на мобильных платформах.

В четвертой главе приведено описание разработанного метода сопо-
ставления ультразвуковых изображений на основе многих кадров (Kuzmin:
2015).

Глава описывает метод, предложенный автором, а также содержит ре-
зультаты сравнения с прочими методами на основе реальных данных. Основ-
ное преимущество предложенного подхода состоит в возможности получать
более качественные оценки механической деформации засчет использования
трех кадров с известным соотношением силы нажатия (большинство предло-
женных в литературе методов использует два кадра). При этом сила нажа-
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тия определяется аппаратно, используя специальную ультразвуковую пробу
со встроенным датчиком силы.

Пусть входные три кадра ультразвукового снимка даны в виде ин-
тенсивностей {I0,I1,I2}. Ультразвуковой снимок состоит из m одномерных
сигналов по n временных интервалов каждый, что соответствует изображе-
нию размера m⇥n. Каждая пара кадров может быть сопоставлена при по-
мощи двумерного поля смещения d(x,y) = (d

a

(x,y), d
l

(x,y)), определенного
для каждого пиксела эталонного (первого) кадра, так что пиксел (x,y) соот-
носится с пикселом (x � d

a

(x,y),y � d

l

(x,y) на втором кадре. Поля d

a

(x,y) и
d

l

(x,y) есть продольные и поперечные компоненты смещений соответствен-
но. Задачей ультразвуковой эластографии является оценка двумерного поля
механической деформации s(x,y) = (s

a

(x,y), s
l

(x,y)), которое может быть по-
лучено из поля смещения путем дифференцирования по пространственным
переменным.

Для каждого кадра, вектор смещения полагается целочисленным и
конечным внутри преписанного декартового произведения двух интервалов.
Окно поиска ⇤ может быть описано следующим образом:

⇤ = {0, . . . ,+D

a

}⇥ {�D

l

, . . . ,+D

l

} .

Где D
a

и D

l

- максимальные абсолютные значения продольного и поперечного
смещения соответственно.

Первым этапом предложенного метода является вычисление поля сме-
щения для небольшой контактной силы, соответствующей приблизительной
степени сжатия 1%. При этом используется стандартный локальный алго-
ритм поиска соотвествующих фрагментов по прямоугольному окну методом
полного перебора. Обозначим результат такой процедуры следующим обра-
зом:

d
coarse

= B(I0,I1) ,

Где B - алгоритм поиска смещений описанный выше, который принима-
ет на выход пару кадров и вычисляет двумерное поле смещений. Обозначим
за d

coarse

двумерный вектор смещений, вычисленный для пары изображений
I0 и I1.
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Использование описанной выше ультразвуковой пробы позволяет по-
лучать значение силы нажатия в режиме реального времени, что позволяет
без дополнительной задержки экстраполировать полученное значение поля
смещений на большую степень сжатия, соответствующую третьему кадру I2

(при этом на практике характерная степень сжатия составляет 2-3%). Таким
образом получается первоначальная оценка поля смещения на основе линей-
ного соотношения сила-деформация.

Определим операцию деформации изображения. Пусть W - функция
деформации, которая принимает на вход изображение I и поле смещений
d = (d

x

,d

y

):
I

d

= W (I,d), (22)

Тогда интенсивность деформированного выражения выражается следующим
образом:

I

d

(x,y) = I(x� d

x

,y � d

y

). (23)

Для того, чтобы уточнить первоначальное приближение f2

f1
d
coarse

, по-
лученное для поля смещений, запускается второй проход аналогичной про-
цедуры поиска двумерных смещений, при этом на вход процедуре подает-
ся пара изображений I0 и деформированная с использованием первоначаль-
ной оценки смещения версия кадра I2, которая может быть обозначена как
W(I2,

f2

f1
d
coarse

). При этом интервал поиска смещения на данном этапе может
быть существенно сужен:

d
local

= B

✓
I0, W(I2,

f2

f1
d
coarse

)

◆
. (24)

Используя оценки d
coarse

и d
local

, поле смещения для кадров I0 и I2

может быть получено суммированием:

d
total

=
f2

f1
d
coarse

+ d
local

. (25)

Полное смещение подается на выход процедуры реконструкции механической
деформации.

В качестве метрики для сопоставления фрагментов изображения ис-
пользуется сумма квадратов разностей интенсивностей по прямоугольному
окну. Помимо поля смещений, процедура выдает на выходе меру качества
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Рис. 4 � Пример поля смещений для ткани печени человека.

полученного сопоставления, соответствующую относительной ошибке в той
же метрике.

При этом оценка механической деформации формулируется в качестве
обратной задачи с использованием функционала следующего вида:

E(s
a

) = ||As
a

� d

a

||2 + �⇢(s
a

).

Где s

a

- регуляризованная оценка продольной деформации, ⇢(s
a

) -
функционал регуляризации и � - параметр, отвечающий за сглаживание:

As

a

+ d

a

(0) =

Z
L

0
s

a

(x)dx+ d

a

(0) = d(L).

В соответствии с проведенными автором численными эксперимента-
ми, оценка поля смещений часто содержит участки со значительной ошиб-
кой, часто встречаемые на границе различных тканей (рис. 4 слева). В таком
случае, большая ошибка в оценке поля смещений даже на небольшом про-
странственном участке, приводит к существенным выбросам и разрывам в
оценке механической деформации. При этом качество сопоставления может
быть оценено количественно, используя относительную ошибку сопоставле-
ния в L2 норме (рис. 4 справа). Такая оценка позволяет использовать адаптив-
ную регуляризацию: в регионах сопоставления с низкой ошибкой полагаться
на входные изображения, а в регионах с высокой ошибкой - полагаться на
пространственное сглаживание. Для того, чтобы включить информацию о
качестве сопоставления в регуляризационный функционал, вводится диаго-
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нальная матрица весов D = diag(w), которая зависит от описанной выше
меры качества сопоставления:

E(s
a

) = kD(As
a

� d

a

)k2 + �⇢(s
a

).

В алгоритме используется бинарная маска весов w для каждого пиксе-
ла, основанная на пороговом отсечении относительной ошибки сопоставления
q

ij

:

w

ij

=

8
<

:
1 q(x,y) < t

0 q(x,y) � t.

Так, пикселы со значениями весов w(x,y), близкими к нулю, соответ-
ствуют неверному сопоставлению - решение в таких регионах полностью по-
лагается на регуляризацию.

В соответствии с проведенными численными экспериментами, исполь-
зование L2 нормы в качестве регуляризации ведет к пересглаженным решени-
ям с потерей визуальной информации на границах различных типов тканей.
Для избежания подобного эффекта, представляется целесообразным исполь-
зование полной вариации в качестве регуляризационного функционала. При
этом исходный функционал может быть записан в виде:

E(s
a

) = kD(As
a

� d

a

)k2 + �TV

↵

(s
a

),

где полная вариация выражается с использованием пространственных про-
изводных продольного поля деформации:

TV

↵

(s
a

) =

Z q
↵[D

x

s

a

]2 + [D
y

s

a

]2.

Использование регуляризации на основе полной вариации ведет к со-
хранению границ на перепадах между мягкими и жесткими тканями. При
этом была использована эффективная реализация двойственного градиент-
ного метода для эффективной минимизации. Алгоритм параллелизован на
уровне различных пикселов изображения, что позволило естественным обра-
зом получить реализацию на графическом ускорителе.

Далее в главе приводятся количественные и качественные результа-
ты применения предолженного метода на следующих экспериментах: моде-
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лирование сжатия синтетических фантомов с известной геометрией, снимки
специально изготовленных фантомов с приближенно известной геометрией и
снимки реальных тканей человека.

Автором были произведены численные эксперименты по сравнению
пяти методов, из которых четыре являются разновидностями предложенного
подхода. Эти методы соотвествуют использованию двух видов регуляризации
(L2 норма или полная вариация) и разному количеству используемых кадров
(пара или тройка кадров). При использовании пары изображений, результат
сопоставления пары кадров напрямую используется для оценки деформации.

В заключении приведены основные результаты диссертационной ра-
боты, которые заключаются в следующем:

1. Предложена серия моделей для сопоставления изображений, име-
ющих низкую вычислительную сложность на этапе исполнения. В
качестве основы для построения вычислительно эффективных мо-
делей была выбрана обучаемая регуляризация. Этапы вычисления
полей смещения были представлены как слои сверточной и рекур-
рентной нейросети, что позволило получить обучаемую модель.

2. Показаны результаты применения предложенных методов на ре-
альных данных, включая дорожные сцены и медицинские уль-
тразвуковые снимки. Рассмотрены такие приложения как стерео-
реконструкция, вычисление оптический поток и ультразвуковая
эластография. Проведен количественный анализ качества сопостав-
ления.

3. Предложная эффективная параллелизация разработанных мето-
дов. Построен комплекс эффективных параллельных программ с
использованием графических ускорителей, демонстрирующих при-
менимость предложенных моделей в режиме реального времени.
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