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Глава 1

Введение

Актуальность темы. Задача сопоставления изображений является одной из наи-
более важных задач в компьютерном зрении, которая возникает во многих практи-
ческих приложениях, таких как бинокулярная стерео-реконструкция [1], детекция
движения на видеопоследовательностях [2–4] и анализ медицинских ультразвуковых
снимков [5–7].

В общем случае задача сопоставления изображений допускает несколько различных
постановок, применимость которых зависит от конкретного приложения. Парамет-
рическое сопоставление изображений представляет собой задачу поиска трансфор-
мации внутри выбранного семейства параметрических преобразований, таких как,
например, афинные преобразования, которые позволяют сопоставить изображения
с учетом перспективных искажений. В данной работе рассмотрена задача непара-
метрического сопоставления изображений. Такой вариант задачи является наиболее
общим: каждый пиксел изображения получает независимую трансформацию, при
этом число степеней свободы пропорционально числу пикселов.

Другим важным аспектом постановки задачи является способ сопоставления изоб-
ражений [1]. Первым важным случаем является разреженное сопоставление, при
котором соотносятся отдельные визуально выделяющиеся элементы изображений.
Вторым важным случаем, рассмотренным в данной работе, является плотное со-
поставление. При этом соотносятся все пиксели изображения, и решением задачи
является двумерное поле смещений. Такое поле определяет трансформацию для
каждого из пикселов изображения.

Наиболее важными характеристиками методов сопоставления являются вычисли-
тельная сложность и качество сопоставления на реальных данных. В настоящее
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время, наиболее перспективными методами сопоставления являются методы, осно-
ванные на глубоком машинном обучении [3, 8, 9]. При этом существенным недостат-
ком большинства таких методов являтся высокая вычислительная сложность, что
не позволяет применять их в задачах, требующих сопоставления в реальном време-
ни [9, 10], таких как анализ дорожных сцен и медицинская диагностика в режиме
реального времени (с частотой порядка 25 кадров в секунду и выше). В связи с
этим, особый интерес представляет разработка методов машинного обучения, име-
ющих низкую вычислительную сложность на этапе исполнения [11, 12].

Большинство современных методов сопоставления изображений можно разделить
на две категории. К первой категории относятся методы, основанные на глубоком
машинном обучении [3, 9, 11, 13]. Для таких методов применяется обучение с учи-
телем на большом количестве тренировочных данных. Методы второй категории
основаны на формулировке задачи сопоставления изображений в виде оптимиза-
ционной задачи, при этом поле смещений получается в результате минимизации
целевого функционала, зависящего от входных данных [7, 14]. Такой подход может
быть применен в случае отсутствия тренировочных данных и является актуальным,
например, для сопоставления медицинских ультразвуковых изображений - в этом
случае трудно получить эталонные поля смещений.

В работе рассмотрена задача сопоставления изображений в трех различных прило-
жениях. Первым является бинокулярная стерео-реконструкция, которая основана
на оценке смещений для левого и правого изображений со стерео-камеры, возника-
ющих засчет бинокулярного эффекта [15, 16]. Вторым является сопоставление изоб-
ражений движущихся объектов на видео-последовательности, известная как задача
вычисления оптического потока [1, 3, 17]. Третьим является задача ультразвуковой
эластографии [5–7]. Она соответствует сопоставлению медицинских ультразвуко-
вых сников для тканей различной степени механического сжатия с целью оценки
локальной деформации, которая является важной величиной для медицинской ди-
агностики.

Сопоставление изображений в каждом из трех перечисленных выше приложений
позволяет количественно оценивать различные свойства объектов на анализируе-
мых изображениях. В задаче стерео-реконструкции, сопоставление позволяет оце-
нить геометрию сцены, в задаче нахождения оптического потока – скорости дви-
жущихся объектов, а в задаче эластографии – механические свойства изучаемых
тканей.

Целью данной работы является разработка методов машиного обучения для зада-
чи сопоставления изображений, эффективных на этапе исполнения и позволяющих
вычислять поля смещений в режиме реального времени (с частотой 25 кадров в
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секунду и выше) для реальных данных с использованием параллельного програм-
мирования.

Для достижения поставленной цели необходимо было решить следующие задачи:

1. Аналитический обзор состояния задачи и систематизация методов сопоставле-
ния изображений.

2. Разработка новых методов машинного обучения для сопоставления изображе-
ний, имеющих низкую вычислительную сложность на этапе исполнения.

3. Экспериментальная проверка разработанных методов на реальных данных,
сравнение результатов с предложенными в литературе методами с использо-
ванием количественных критериев качества сопоставления.

4. Программная реализация предложенных методов с использованием графиче-
ских ускорителей, позволяющая вычислять поля смещений в реальном време-
ни.

Основные положения, выносимые на защиту:

1. Предложена серия моделей для сопоставления изображений, имеющих низ-
кую вычислительную сложность на этапе исполнения. В качестве основы для
построения вычислительно эффективных моделей была выбрана обучаемая
регуляризация. Этапы вычисления полей смещения были представлены как
слои сверточной и рекуррентной нейросети, что позволило получить обучае-
мую модель.

2. Показаны результаты применения предложенных методов на реальных дан-
ных, включая дорожные сцены и медицинские ультразвуковые снимки. Рас-
смотрены такие приложения как стерео-реконструкция, оптическии поток и
ультразвуковая эластография. Проведен количественный анализ качества со-
поставления.

3. Предложная эффективная параллелизация разработанных методов. Построен
комплекс эффективных параллельных программ с использованием графиче-
ских ускорителей, демонстрирующих применимость предложенных моделей в
режиме онлайн для реальных данных.

Научная новизна:



4

1. Предложен новый метод сопоставления изображений, используемый в зада-
че бинокулярной стерео-реконструкции. В отличие от аналогичных подходов,
основанных на глубоком машинном обучении и сверточных нейросетях, пред-
ложенный метод основан на комбинировании сверточной и рекуррентной ней-
росети, что позволяет получить алгоритм, эффективный на этапе исполнения,
имеющий эффективную параллельную реализацию. Такой подход позволяет
избежать трудоемкого сравнения визуальных дескрипторов большой размер-
ности, являющегося ключевым этапом прочих методов стерео-сопоставления,
основанных на глубоком машинном обучении.

2. Разработана новая архитектура нейросети для задачи сопоставления изобра-
жений, возникающей при вычислении оптического потока. Предложенный ме-
тод основан на обучении оператора регуляризации. Подход, основанный на
представлении графа вычислений оптимизационного алгоритма в виде сло-
ев сверточной нейросети, позволил получить сверточную архитектуру, име-
ющую более низкую вычислительную сложность по сравнению с методами,
предложенными в литературе. При этом обучаемая регуляризация позволяет
получить сопоставления более высокого качества по сравнению с оптимизаци-
онными алгоритмами низкой вычислительной сложности, предложенными в
литературе.

3. Предложен новый оптимизационный метод для сопоставления ультразвуко-
вых изображений, который позволяет улучшить качество сопоставления за-
счет использования серии из трех снимков. В отличие от предложенных в
литературе методов, предложенный подход основан на применении адаптив-
ной регуляризации, что позволило получить метод, устойчивый к участкам
неверного сопоставления, при этом имеющий низкую вычислительную слож-
ность. При этом вычислительная эффективность алгоритма достигатся засчет
обобщения функционала полной вариации. Предложенный функционал явля-
ется выпуклым и позволяет применять эффективные двойственные методы
минимизации.

Теоретическая значимость заключается в разработке новых моделей для задачи
сопоставления изображений. Предложена модель для сопоставления изображений в
применении к стерео-реконструкции, основанная на сверточно-рекуррентной нейро-
сети. Такая модель является целиком обучаемой на эталонных данных и позволяет
вычислять поля смещения в реальном времени на этапе исполнения. Также предло-
жена модель на основе сверточной нейросети для задачи вычисления оптического
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потока, которая позволяет обучать оператор регуляризации. Наконец, автором пред-
ложен метод сопоставления ультразвуковых снимков на основе выпуклой оптими-
зации, который позволяет эффективно вычислять смещения на основе нескольких
ультразвуковых снимков.

Практическая значимость работы заключается в возможности решать задачу
сопоставления изображений в режиме реального времени на данных соответству-
ющих фотографиям дорожных сцен и медицинским ультразвуковым снимкам. По-
тенциальные приложения разработанных методов включают в себя системы беспи-
лотного управления автомобилем, а также программное обеспечение, используемое
в устройствах ультразвуковой медицинской диагностики.

Разработанный метод сопоставления серии ультразвуковых изображений был внед-
рен в программный продукт по анализу последовательности медицинских снимков
ООО "СиВижинЛаб".

Достоверность полученных результатов обеспечивается серией численных экспе-
риментов, проведенных с использованием открытих коллекций изображений.

Апробация работы. Основные результаты работы докладывались на:

1. Международная конференция “Machine Can See Summit”, 2017.

2. Международная конференция “IEEE Workshop on Machine Learning for Signal
Processing”, 2017.

3. Семинар Вычислительного центра им. Дородницына ФИЦ ИУ РАН, 2017.

4. Международная конференция “IEEE 13th International Symposium on Biomedical
Imaging (ISBI)”, 2016.

5. Международная конференция “IEEE 37th Annual International Conference on
Medicine and Biology Society (EMBC)”, 2015.

Личный вклад. Все результаты получены автором лично.

Публикации. По тематике исследования опубликовано 5 научных работ в издани-
ях, рекомендованных ВАК:

1. Kuzmin Andrey, Mikushin Dmitry, Lempitsky Victor. End-to-end Learning of Cost-
Volume Aggregation for Real-time Dense Stereo // Machine Learning for Signal
Processing, 2017. MLSP 2017. IEEE Conference on / IEEE. 2017.
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2. Fast low-cost single element ultrasound reflectivity tomography using angular distribution
analysis / Andrey Kuzmin, Xiang Zhang, Jonathan Finche [и др.] // Biomedical
Imaging (ISBI), 2016 IEEE 13th International Symposium on / IEEE. 2016. C.
1021–1024.

3. A single element 3D ultrasound tomography system / Xiang Zhang, Jonathan
Fincke, Andrey Kuzmin [и др.] // Engineering in Medicine and Biology Society
(EMBC), 2015 37th Annual International Conference of the IEEE / IEEE. 2015.
С. 5541–5544.

4. Multi-frame elastography using a handheld force-controlled ultrasound probe /
Andrey Kuzmin, Aaron M Zakrzewski, Brian W Anthony [и др.] // IEEE transactions
on ultrasonics, ferroelectrics, and frequency control. 2015. Т. 62, № 8. С. 1486–1500.

5. Set2Model networks: Learning discriminatively to learn generative models / Alexander
Vakhitov, Andrey Kuzmin, Victor Lempitsky // Computer Vision and Image Understanding.
2017, № 8.

Краткое содержание работы

Во введении обосновывается актуальность проводимых исследований, научная и
практическая ценность работы, сформулированы цели и задачи, а также сформу-
лированы основные положения, выносимые на защиту.

Глава 3 начинается с введения в методы стерео-сопоставления (раздел 3.1). Обзор
основных этапов стерео-методов, предложенных в литературе содержится в подраз-
деле 3.2. Главу продолжает описание методов фильтрации изображений, использу-
ющих нахождение границ объектов (раздел 3.3). Затем, в разделе 3.4 приводится
описание методов глубокого машинного обучения для стерео-реконструкции. Главу
завершает описание метода, основанное на комбинации сверточной и рекуррентной
нейросети, предложенного автором (см. раздел 3.5). Подраздел так же содержит
результаты численных экспериментов по сравнению различных методов.

В главе 4 рассматривается задача вычисления оптического потока и описывается
метод, предложенный автором (см. раздел 4.4). В начале главы приведен обзор ме-
тодов, основанных на постановке оптимизационной задачи (раздел 4.2), описывается
основной набор практических трудностей, которые встречаются при решении дан-
ной задачи на реальных данных. Раздел 4.3 содержит обзор методов вычисления
оптического потока, основанных на глубоком машинном обучении. В конце главы
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приведен обзор многокадровых методов для оценки оптического потока, приведен-
ных с целью введения в многокадровые методы эластографии, рассмотренные в
главе 5.

Глава 5 содержит описание методов сопоставления ультразвуковых медицинских
изображений. Далее приводится обзор методов эластографии по двум кадрам (раз-
дел 5.2) и многим кадрам (раздел 5.3). Метод многокадровой эластографии, ис-
пользующий ультразвуковую пробу с датчиком силы описан в разделе 5.4. Раздел
также содержит численные эксперименты по сравнению различных методов эла-
стографии на данных, полученных при помощи моделирования а также реальных
снимков ткани человека. Завершает главу описание задачи сопоставления ультра-
звуковых сигналов, которая возникает в ультразвуковой отражательной томогра-
фии и результаты численных экспериментов с использованием метода реконструк-
ции, предложенного автором.



Глава 2

Задача плотного сопоставления
изображений

2.1 Постановка задачи

Задача сопоставления двух или серии изображений является одной из важных задач
компьютерного зрения, которая возникает во многих приложениях.

Для сопоставления изображений требуется некоторое основное предположение, та-
кое как, например, инвариантность интенсивности. Так, рассмотрим два черно-
белых изображения с интенсивностями I0(x, y) и I1(x, y). Полем смещений называ-
ется двумерное векторное поле u(x, y) = (u

x

(x, y), u
y

(x, y)), определенное в каждом
пикселе изображения, u

x

(x, y) и u
y

(x, y) - горизонтальные и вертикальные компо-
ненты смещений соответственно.

Решением задачи сопоставления изображений называется поле смещений, для ко-
торого следующая сумма по всем пикселам изображений минимальна:

E(u) =

X

x,y

(I0(x, y)� I1(x+ u
x

(x, y), y + u
y

(x, y)))2. (2.1)

Выбор прочих функций помимо квадратичного штрафа подробнее обсуждается в
главах 3 и 4. Для реальных данных предположение об инвариантности интенсив-
ности часто нарушено ввиду нескольких причин (см. рис. 2.1). Во-первых, некото-
рые соответствующие пикселы отсутствуют на втором изображении, что возникает,
например, в областях, соответствующих заслоненным объектам. Во-вторых, такое

8



9

Рис. 2.1: Особенности сопоставления изображений, проиллюстрированные на при-

мере стерео-сопоставления изображений коллекции KITTI 2015. Ряд (1) - яркие

отражения источников света, ряд (2) - прозрачные объекты, ряд (3) - однотонные

объекты, не содержащие текстуры, ряд (4) - повторяющиеся структуры, ряд (5)

- заслоненные объекты: показаны изображения с левого и правого видов стерео-

камеры.
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допущение не позволяет построить однозначное соответствие в однородных участ-
ках, не содержащих текстуры, а также в частях изображения, содержащих повто-
ряющиеся элементы, что особенно актуально при сопоставлении ультразвуковых
изображений. Инвариантность интенсивности может также быть нарушена ввиду
изменений освещения, шума на изображениях, наличия прозрачных или отражаю-
щих объектов.

Для того, чтобы построить плотное сопоставление изображений, основываясь на
неполной информации, требуется ввести регуляризацию, которая накладывает штраф
на пространственные изменения полей смещения. Как правило, в таком случае за-
дача сопоставления записывается в виде задачи оптимизации.

Другой возможностью является построение сопоставления для серии кадров изобра-
жения, при этом основой для регуляризации является пространственно-временная
непрерывность поля смещений.

В продолжении данной главы описаны варианты задачи сопоставления в разных
приложениях.

2.2 Бинокулярное стерео-сопоставление

Примером задачи, решение которой требует сопоставления изображений, является
трехмерная стерео-реконструкция на основе пары изображений со стерео-камеры.
Данный подраздел описывает идеи геометрических построений, используемых в ме-
тодах стерео-сопоставления.

Одной из особенностей визуального восприятия человека является разница меж-
ду изображениями, получаемыми для левого и правого глаза. Положение объек-
та, наблюдаемого левым и правым глазом смещено, при этом смещение обратно
пропорциональна расстоянию от глаза до объекта. Такое свойство может быть ис-
пользовано для стерео-реконструкции. Решение этой задачи позволяет восстановить
трехмерную геометрию сцены посредством оценки глубины для каждого из пиксе-
лов изображения.

Величина горизонтального смещения объектов между левым и правым видом стерео-
камеры обратно пропорционально расстоянию до наблюдаемого объекта. Для того,
чтобы использовать данное свойство для стерео-реконструкции, следует описать
модель камеры. Для точечной модели камеры геометрические свойства сцены для



11

Рис. 2.2: Пример стерео-реконструкции (изображение из работы [18]). Первый

ряд изображений (a) показывает левое и правое изображение, второй ряд (b) -

поле смещений, третий ряд (c) - результат трехмерной реконструкции.

двух видов описаны в работе [19] (см. рис 2.3). Наиболее сложным этапом стерео-
реконструкции является оценка одномерного поля смещения.

Одним из первых приложений, послуживших причиной развития методов стерео-
сопоставления, является фотограмметрия и восстановление карт высот на основе
серии аэроснимков. Стерео-реконструкция также широко применяется в робототех-
нике, включая современные системы беспилотного управления автомобилем.

Пример стерео-реконструкции показан на рис. 2.2. После спецификации модели
камеры и соотвествующих параметров, основным этапом реконструкции являет-
ся сопоставление пары изображений. После ректификации изображений, которая
заключается в применении афинного преобразования, поле смещений, сопоставля-
ющее левое и правое изображений, становится одномерным. Более подробно процесс
стерео-сопоставления рассмотрен в главе 3 и работе [11], опубликованной автором.
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Рис. 2.3: Геометрия двух видов стерео-камеры. Рисунок показывает формирова-

ние изображения для левого и правого вида для серии точек с разным расстояни-

ем от камеры. Как видно на рисунке, увеличение расстояния ведет к уменьшению

диспаритета.

Рис. 2.4: Пример вычисления оптического потока для кадра видео-

последовательности из публичной коллекции изображений [20]. Эталонный

кадр показан на рисунке слева, поле смещений представлено на рисунке по-

середине, цветовая схема для кодирования двумерных векторов смещения

представлена на рисунке справа.

2.3 Оптический поток

Наблюдаемое движение объектов на кадрах видеопоследовательности является важ-
ным источником информации для последующего анализа. Задача обнаружения дви-
жения движения на кадрах видеопоследовательности называется вычислением оп-

тического потока. Так, для изображений I0(x, y) и I1(x, y) требуется найти такое
двумерное поле смещений u(x, y) = (u

x

(x, y), u
y

(x, y)), что интенсивности I0(x, y) и
I1(x+u

x

(x, y), y+u
y

(x, y)) совпадают. Компоненты u
x

(x, y) и u
y

(x, y) соответствуют
горизонтальным и вертикальным смещениям. Для визуализации двумерного поля
смещений обычно используется цветовое кодирование, при котором направление
движение описывается оттенком цвета, а величина - его интенсивностью. Пример
вычисления оптического потока показан на рис. 2.4.

Оптический поток используется во многих приложениях по анализу видео, включая
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Рис. 2.5: Серия ультразвуковых снимков ткани с разной степенью сжатия. На

рисунке также показаны значения силы. Движение одной из точек ткани отме-

чено красным маркером. Маркер приближается к ультразвуковой пробе по мере

увеличения силы.

шумоподавление, стабилизацию камеры, многокадровую семантическую сегмента-
цию и оценку трехмерных векторов движения на сцене. Задача более подробно рас-
смотрена в главе 4 и работе [12], представленной автором.

2.4 Многокадровая ультразвуковая эластография

Эластографией называется метод оценки механических свойств ткани человека по-
средством сопоставления изображений ткани с различной степени сжатия. Часто,
применение эластографии позволяет избежать биопсии при диагностике опухолей,
а также избежать использования невоспроизводимых процедур, таких как пальпа-
ция. Эластография основана на сопоставлении ультразвуковых или МРТ снимков.
В данной работе рассмотрена так называемая квазистатическая эластография, в ко-
торой для получения изображений к ультразвуковой пробе применяется постоянная
сила.

Оценка механической деформации в эластографии основана на сопоставлении двух
или серии ультразвуковых изображений. При этом за эталонное принимается изоб-
ражение, полученное без применения механического сжатия. Это изображение сопо-
ставляется с одним или серией изображений, полученных при применении контакт-
ной силы (см. рис. 2.5). В данной работе рассмотрена многокадровая эластография,
при этом значение силы нажатия измеряется напрямую при помощи ультразвуковой
пробы, которая снабжена специальным датчиком.

Протокол использования ультразвуковой эластографии состоит из следующих эта-
пов (см. рис. 2.6). На первом этапе получается серия двух или более изображений,
полученных с применением разной контактной силы, начиная с нулевой. При этом
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Рис. 2.6: Схематическое изображение этапов работы метода эластографии, изоб-

ражение из работы [21]. Столбцы слева-направо: (1) объект, содержащий жесткое

сферическое включение, (2) ультразвуковое изображение без применения силы,

(3) изображение, полученное применением контактной силы продольного направ-

ления, (4) продольное поле смещений, (5) продольная механическая деформация,

вычисленная из продольного поля смещений.

контактная сила применяется в продольном направлении, т.е. в направлении рас-
пространения ультразвукового пучка. Продольное смещение вычисляется путем со-
поставления изображений. Затем поле механической деформации оценивается как
локальная степень сжатия. Поле механической деформации представляет интерес
для медицинской диагностики. Более подробно методы ультразвуковой эластогра-
фии рассмотрены в главе 3 и работе [14], представленной автором.

2.5 Приложения

Данный подраздел описывает приложения плотного сопоставления изображений, в
которых могут быть использованы методы сопоставления, предложенные автором.

2.5.1 Обнаружение препятствий на дорожных сценах

Одной из важных задач при разработке беспилотного автомобиля является опреде-
ление геометрии окружающих объектов для того, чтобы прокладывать дальнейший
маршрут. Некоторые системы используют лазерный сканер (LIDAR), в то время как
более экономически целесообразным представляется использование стерео-камеры.
При этом вместо использования аппаратного решения, задача реконструкции гео-
метрии окружающей сцены ложится на программную реализацию метода стерео-
сопоставления.
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Рис. 2.7: Визуализация препятствий на сцене, полученная путем стерео-

реконструкции, изображение из работы [22]. Столбец (1) - изображение с левой

камеры. Столбец (2) показывает трехмерное облако точек, полученное в результа-

те стерео-реконструкции (вид сверху). Сходными цветами обозначены точки близ-

кой глубины. Более близкие препятствия помечены красным, препятствия средней

глубины помечены оранжевым и наиболее далекие препятствие, соотвествующие

зданиям, помечены зеленым.

Целью стерео-реконструкции является качественное cопоставление изображений в
режиме реального времени с использованием ограниченных вычислительных ресур-
сов. Задачей таких методов является преодоление практических трудностей, таких
как изменяющееся освещение, заслоненные объекты, блики и однородные области,
не содержащие текстуры.

Пример трехмерного облака точек, полученного методом стерео-реконструкции по-
казан на рис. 2.7 справа. Каждый из наборов областей постоянного диспаритета
соответствует некоторому объекту, такому как, например, пешеход, автомобиль или
стена здания [22]. Остальная часть облака, соотвествущая дорожной поверхности,
не включена в визуализацию.

2.5.2 Оценка скорости движения на дорожных сценах

Оптический поток - это плотное двумерное поле смещений, которое описывает дви-
жение объектов на сцене относительно камеры. Приложения такой задачи включа-
ют в себя навигацию в робототехнике, ориентирование в динамически меняющихся
окружениях, механическую манипуляцию объектами и любые другие задачи, требу-
ющие оценки поля скоростей для окружающих объектов. Вычисление оптического
потока также используется в системах дополненной реальности.
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Рис. 2.8: Пример поля оптического потока, изображение из работы [23]. Верхний

ряд показывает поле диспаритета поверх эталонного изображения, нижний ряд

показывает поле оптического потока поверх эталнного изображения. Комбинация

полей диспаритета и оптического потока позволяет восстановить трехмерные поля

скоростей окружающих объектов.

Пример вычисления оптического потока для дорожной сцены показан на рис. 2.8. В
данном случае вычисление оптического потока произведено одновременно со стерео-
реконструкцией, что позволяет улучшить качество при решении обеих задач. Полу-
ченные в результате трехмерные вектора, описывающие скорости окружающих объ-
ектов относительно камеры, предоставляют исчерпывающую информацию о движе-
нии окружающих объектов, включая пешеходов. Такая инфомация является клю-
чевой для планирования дальнейшего маршрута в системах автоматического управ-
ления автомобилями.

2.5.3 Анализ механических свойств ткани человека для медицин-

ской диагностики

Эластография - это метод оценки механических свойств ткани человека. Данные,
полученные при применении эластографии, сходны с результатами пальпации, од-
нако являются более воспроизводимыми и менее подвержены ошибкам ввиду че-
ловеческого фактора. При этом, в отличие от пальпации, изображения, получен-
ные методом эластографии, могут использоваться для дальнейшего количествен-
ного анализа с применением алгоритмов сегментации. Локальная деформация, по-
лучаемая методом эластографии, обратно пропорциональна жесткости ткани, что
позволяет эффективно дагностировать злокачественные опухоли в ткани человека
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Рис. 2.9: Пример поля механической деформации, полученного методом ультра-

звуковой эластографии. Поле деформации соотвествует злокачественной опухоли,

обнаруженной в груди человека, изображение из работы [24]. Поле механической

деформации показано поверх ультразвукового снимка на рисунке слева. Ультра-

звуковой снимок показан на рисунке справа. Твердое включение, соотвествующее

синему цвету, представляет собой злокачественную фиброаденому, обнаруженную

у пациента.

без хирургического вмешательства (рис. 2.9). Прочие заболевания включают в себя,
например, фиброз печени, тироид простаты, а также патологии почек и лимфоуз-
лов. Более подробное описание различных клинических применений эластографии
приведено в работе [25].



Глава 3

Бинокулярное
стерео-сопоставление

Данная глава начинается с описания трехмерной геометрии двух видов и постанов-
ки задачи стерео-сопоставления. Подраздел 3.2 содержит обзор методов плотного
сопоставления, основанных на минимизации функционалов энергии. Также описа-
ны понятия стоимостей сопоставления и агрегирования тензора энергий. Подраз-
дел 3.3 содержит обзор методов фильтрации изображений, учитывающих границы
объектов, которые используются в методах стерео-реконструкции. Главу продолжа-
ет обзор современных методов для задачи, основанных на сверточных нейросетях
(подраздел 3.4). Завершает главу описание метода агрегирования тензора энергий,
предложенного автором и результаты численных экспериментов на реальных дан-
ных.

3.1 Введение в стерео-реконструкцию

3.1.1 Эпиполярная геометрия

Пусть дан пиксел p на левом изображении стерео-камеры I
l

. Задачей стерео-сопоставления
является нахождение соответствуещего пиксела на правом изображении I

r

. Данный
подраздел описывает последовательность афинных преобразований пары изображе-
ний, которые сводят задачу стерео-сопоставления к вычислению одномерного поля
смещений, называемого диспаритетом.

На рис. 3.1 показано, как точка трехмерного пространства отображается на эпипо-

лярные прямые. Эпиполярная плоскость (см. рис. 3.1) есть плоскость, проходящяя

18
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Рис. 3.1: Геометрия двух видов для простейшей точечной модели камеры (изобра-

жение из работы [1]). Эпиполярная плоскость, определенная для точки p окраше-

на желтым цветом. Эпиполярные прямые получаются пересечением эпиполярной

плоскости с двумя плоскостями изображения.

через центры левой и правой камер. Эпиполярные прямые получаются при пересе-
чении эпиполярной плоскости и плоскости изображения.

Процедура, позволяющая совместить эпиполярные прямые на двух изображениях,
называется ректификацией и состоит из следующих этапов, каждый из которых
включает в себя применение афинного преобразования к исходным изображени-
ям: на первом этапе изображения применяется такая афинная трансформация, что
эпиполярные прямые становятся параллельными. На втором этапе плоскости изоб-
ражений поворачиваются в трехмерном пространстве так, что эпиполярные прямые
совпадают [1].

После выполнения процедуры ректификации, задача стерео-реконструкции состоит
в том, чтобы найти поле диспаритета, т.е. одномерное поле горизонтальных смеще-
ний d, которое позволяют сопоставить пикселы изображений I

l

(x, y) и I
r

(x � d, y).
При этом каждая сопоставляемая пара пикселов соответствует лучам, исходящим из
центров камер, которые пересекаются в ближайшей точке трехмерной поверхности.

3.1.2 Задача бинокулярного стерео-сопоставления

Задачей стерео-сопоставления является оценка значения глубины для каждого пик-
села на основе двух изображений с откалиброванной стерео-камеры. Реконструкция
основана на вычислении поля диспаритета, т.е. горизонтального поля смещения, вы-
численного для каждого пиксела левого изображения I

L

(x, y). Как было показано
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выше, поле диспаритета является одномерным. При использовании точечной модели
камеры, глубина z вычисляется из диспаритета d, используя соотношение:

z =

fB

d
, (3.1)

где f - фокусное расстояние камеры, а B - расстояние между центрами камер.

3.1.3 Особенности задачи стерео-сопоставления для реальных дан-

ных

Задача стерео-сопоставления на реальных изображений встречает ряд практиче-
ских трудностей. Изображения, полученные с левого и правого вида стерео-камер
претерпевают ряд случайных изменений разной природы. Во-первых, это шум и фо-
тометрические изменения. Во-вторых, это разница в освещении при наблюдении с
разных точек пространства. Некоторые участки изображения содержат яркие отра-
жения источников света, прозрачные части, а также отражающие свет объекты. В
третьих, фотографии дорожных сцен содержат значительное количество однород-
ных участков, которые не содержат текстуры: в таких случаях, исходя из визуальной
информации, можно сделать вывод о большом количестве возможных совпадений,
при этом только одно из них соответствует реальному трехмерному объекту.

Дополнительным препятствием к установлению соответствия является присутствие
заслоненных объектов. В этом случае ожидаемым результатом работы стерео-реконструкции
является реконструкция глубины для объектов, которые представлены только на од-
ном из видов. При этом использование только визуальной информации недостаточно
для установления соответствия, требуется введение дополнительных ограничений
на ожидаемую форму объектов в подобных случаях. Дополнительную сложность
также создают перспективные преобразования - различные объекты меняют форму
при съемке с разных углов зрения.

Список наиболее часто встречаемых особенностей стерео-сопоставления на приме-
ре коллекции изображений KITTI 2015 представлен на рис. 2.1. Соответствующие
фрагменты изображений выделены синими прямоугольниками.
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3.2 Классификация методов стерео-сопоставления

Данный подраздел описывает различные этапы работы методов стерео-сопоставления
в соответствии с работой [15], в завершении приведена краткая классификация та-
ких методов.

3.2.1 Вычисление тензора энергий

Классические методы стерео-сопоставления используют различные метрики для со-
поставления изображений, включая абсолютное значение попиксельных разностей
(SAD), квадрат разностей интенсивности (SSD), нормированные кросс-корреляции
(NCC), взимная информация и многие другие. Например, используя абсолютное
значение попиксельных разностей для фрагментов размера 1x1, тензор энергии мо-
жет быть вычислен как:

C
SAD

(x, y, d) = |I
l

(x, y)� I
r

(x� d, y)|. (3.2)

На практике, вычисление тензора энергий, основанное на локальном сравнении пря-
моугольных фрагментов изображения, ведет к очень шумным полям диспаритета
для реальных данных, если не применяется дополнительных методов обработки.
Один из способов уменьшить количество выбросов поля диспаритета - увеличить
размер используемых фрагментов. Однако, это ведет к утолщению границ объек-
тов. Так, способность уменьшить ошибку поля диспаритета путем агрегирования
визуальной информации для соседних пикселов имеет фундаментальный предел.
Каждый метод данного семейства достигает баланса между количеством выбро-
сов вычисленного поля диспаритета и способности аккуратно восстановить границы
объектов на сцене. Этот предел послужил причиной развития методов регуляриза-
ции, учитывающих границы объектов. Такие методы описанны в разделе 3.3.

3.2.2 Агрегирование тензора энергий

Одним из общих подходов для построения методов стерео-сопоставления является
агрегирование тензора энергии по некоторой окрестности выбранного пиксела изоб-
ражения. При этом усреднение по двумерной окрестности соответствует поверхно-
стям, параллельным плоскости изображения камеры, а использование трехмерных
окрестностей - наклонным поверхностям.
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Обозначим трехмерный тензор энергий как C(x, y, d). Тогда агрегирование с исполь-
зованием трехмерной окрестности может быть записано как:

C
smooth

(x, y, d) = C(x, y, d) ⇤ !(x, y, d).

Использование более совершенных методов агрегирования позволяет уменьшить
ошибку оцениваемого поля диспаритета. Примеры используемых в данном конте-
сте фильров включают в себя управляемый фильтр, предложенный в работе [26],
рекурсивный фильтр, учитывающий границы объектов [27], а так же нелокальные
подходы к регуляризации [28].

3.2.3 Вычисление диспаритета как задача оптимизации

3.2.3.1 Метод динамического программирования

Одним из широко используемых на практике методов является алгоритм semi-global
matching, предложенный в работе [29]. Метод имеет низкую вычислительную слож-
ность благодаря использованию следующих двух упрощений. Во-первых, функция
штрафа, накладываемая на поле диспаритета, рассматривает всего три различных
возможности для каждого пиксела p: первый - диспаритет постоянен в окрестности
данного пиксела, второй - диспаритет изменяется на единицу (например, в участ-
ке наклонной поверхности), третий - диспаритет имеет разрыв. При этом вводятся
две константы, P1 и P2, которые соответствуют штрафу за единичное изменение и
разрыв диспаритета соотвественно. Особенностью такой функции штрафа являет-
ся независимость накладываемого штрафа от величины разрыва диспаритета, что
позволяет построить метод низкой вычислительно сложности с использованием ди-
намического программирования.

Итак, будем вычислять поле диспаритета как решение следующей оптимизационной
задачи:

E
SGM

(D) =

X

p

⇣
C(p, D(p)) +

X

q2N
p

P1 ⇥ {|D(p)�D(q)| = 1}+
X

q2N
p

P2 ⇥ {|D(p)�D(q)| > 1}
⌘
, (3.3)

Где p = (x, y) - это пиксел изображения, а N
p

- множество пикселов окрестности.
Данный метод решает описанную двумерную задачу минимизации приближенно,
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используя серию аналогичных одномерных задач. При этом используется окрест-
ность из четырех или восьми пикселов изображения. Для того чтобы уменьшить
количество выбросов, которые возникают ввиду приближенного решения, приме-
няется несколько итераций, каждый из которых выполняет четыре направленных
прохода - слева направо, справа налево, сверху внизу, снизу вверх (вектор r соот-
ветствует различным направлениям прохода):

C
r

(x, y, d) = C(x, y, d)�min

k

C
r

(x�r, d, k)+min

k

{C
r

(x�r, d, d), C
r

(x�r, d, d�1)+P1,

C
r

(x� r, d, d+ 1) + P1,min

k

{Cr(x� r, d, k) + P2}}. (3.4)

Финальный тензор энергий оценивается путем усреднения результатов прохода по
четырем направлениям:

C
SGM

(x, y, d) =
1

4

X

r

C
r

(x, y, d). (3.5)

Для вычисления диспаритета используется выбор минимальной энергии по третье-
му измерению тензора:

D(x, y) = argmin

d

C
SGM

(x, y, d). (3.6)

Таким образом, решение двумерной задачи 3.3 было сведено к серии одномерных
задач. Описанный метод имеет низкую вычислительную сложность, что позволяет
быстро решать задачу стерео-сопоставления на реальных данных. Для того, что-
бы гарантировать достаточную степень гладкости получаемых полей смещений, на
практике как правило используется несколько итераций алгоритма. При этом сгла-
женный тензор энергий 3.5 снова используется для решения оптимизационной за-
дачи 3.3.

3.2.3.2 Методы на основе случайных Марковских полей

Рассмотрим следующую оптимизационную задачу:

E
MRF

(D) =

X

x,y

⇣
C(x, y,D(x, y))+

+ ⇢(d(x, y)� d(x+ 1, y)) + ⇢(d(x, y)� d(x, y + 1))

⌘
, (3.7)
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где вместо фиксированных штрафов P1 и P2 рассмотрим монотонно растущую функ-
цию ⇢, так что целевая функция будет расти по мере роста величины перепада поля
смещений между соседними пикселами.

В литературе предложено большое количество методов стерео-сопоставления, осно-
ванных на минимизации функционала 3.7 и его модификациях. При этом миними-
зация может быть как сведена к серии одномерных задач, либо решена напрямую
приближенно - обзор таких методов приведен в работах [30, 31].

3.2.4 Постобработка диспаритета

Поле диспаритета, полученное в качестве решения задачи дискретной оптимизации,
является целочисленным, поэтому требуется вычислить субпиксельное уточнение.
Одним из применяемых на практике подходов является вписывание пораболы в со-
седние три значения энергии [8]. Рассмотрим тензор энергий C(x, y, d) в некотором
пикселе p = (x, y), которому соответствует поле смещений d0 = d(x, y). Пусть сме-
щению d0 соответствует энергия C = C(x, y, d0), а смещениям (d0 + 1) и (d0 � 1) -
энергии C+(x, y, d0+1) и C�(x, y, d0�1) соответственно. Рассмотрим три вышепере-
численных значения одномерной функции энергии и в эти точки впишем пораболу.
Ее минимум будет находиться в точке d

sub

[8]:

d
sub

= d0 � C+ � C�
2(C+ � 2C + C�)

. (3.8)

Таким образом, используя три соседних значения энергии, для каждой пары (x, y)

можно вычислить субпиксельное уточнение к первоначальной оценке поля диспа-
ритета.

Помимо субпиксельного уточнения, используются дополнительные шаги постобра-
ботки, такие как применение билатеральной фильтрации. На практике использу-
ются быстрые приближения билатерального фильтра [32], а также его обучаемые
версии [33].

3.2.5 Локальные и глобальные методы стерео-сопоставления

Большинство стерео методов могут отнесены в одну из следующих категорий, в
соответствии с этапами стерео-сопоставления, описанными в работе [15]. Каждый
алгоритм содержит подмножество следующих шагов:

• Вычисление тензора энергий,
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• Агрегирование тензора энергий,

• Вычисление или оптимизация диспаритета,

• Постобработка диспаритета.

Например, семейство локальных методов основано на следующих этапах: первый
- вычисление тензора энергий, используя сопоставление интенсивностей фрагмен-
тов изображения, второй - агрегирование тензора энергий по квадратным окнам
для соседних пикселов, третий - вычисление диспаритета путем выбора минималь-
ного значения энергии. В глобальных методах как правило используется функция
штрафа, накладываемая на пространственное изменение диспаритета. При этом фи-
нальное поле смещений получается как решение соответствующей оптимизационной
задачи.

3.3 Применение фильтров, учитывающих границы объ-

ектов на изображении

Одним из основных подходов к улучшению качества стерео-сопоставления, являет-
ся использование информации о границах объектов на изображении. При этом на
практике представляется целесообразным использовать предположение о том, что
набор перепадов диспаритета соответствует подмножеству границ объектов. Это
предположение может быть использовано как на этапе агрегирования энергий, так
и на этапе оптимизации диспаритета. В последнем случае значение функции штрафа
на изменение диспаритета уменьшается на границах объектов. Данный подраздел
содержит обзор применяемых в данном конктесте подходов к фильтрации изобра-
жений.

3.3.1 Билатеральный фильтр

Билатеральный фильтр - это нелинейный фильтр, сохраняющий границы объектов,
который вычисляет интенсивность каждого пиксела как взвешенную сумму интен-
сивностей его окрестности. Идея подхода состоит в том, чтобы вычислять значения
весов в зависимости от двух факторов: Евклидово расстояние до центрального пик-
села и расстояние в пространстве цветов. Например, для двумерного черно-белого
изображения с интенсивностью I(i, j), выход такого фильтра может быть вычислен
следующим образом:
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Рис. 3.2: Работа управляемого фильтра (изображения из работы [26]). Столбец

(1) - пример одномерного перепада интенсивностей, иллюстрирующего работу со-

отношения 3.11 на границе объектов. Столбец (2) показывает вклад пикселов в

результат фильтрации для квадратного окна.

I
filt

(i, j) ⇠
X

k,l

exp (�(i� k)2 + (j � l)2

2�
s

) · exp (k(I(i, j)� I(k, l)k
2�

r

)I(k, l) (3.9)

Первый множитель характеризует пространственное расстояние, в то время как
второй множитель характеризует цветовое расстояние. При этом, каждый из мно-
жителей представляет собой нормальное распределение c дисперсией �

s

и �
r

соот-
ветственно.

3.3.2 Управляемый фильтр

Другим подходом к нелинейной фильтрации является управляемый фильтр [34].
Его выход зависит от управляющего изображения, которое может совпадать или
не совпадать с фильтруемым изображением. Рассмотрим применение этого метода
для построения фильтра, учитывающего границы объектов.

Выход управляемого фильтра для входного изображения I0 может быть вычислен
как следующее взвешенное среднее:

I
filt

(x, y) =
X

p,q

W (x, y, p, q)I0(p, q), (3.10)

где суммирование производится по всему изображению. При этом веса W зависят
управляющего изображения ˆI согласно соотношению:
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W (x, y) =
1

|!|2
X

k:(i,j)2!
k

⇣
1 +

(

ˆI
i

� µ
k

)(

ˆI
j

� µ
k

)

�2
k

+ ✏

⌘
, (3.11)

где µ
k

и �
k

- среднее и дисперсия изображения ˆI по квадартному окну !
k

размера
r ⇥ r с центром в пикселе k, |!| - количество пикселов в этом в окне, а ✏ > 0 есть
параметр сглаживания.

Для того, чтобы показать действие такого фильтра в окрестности границы объекта,
рассмотрим одномерный срез интенсивности, изображенный на рис. 3.2 слева. Чис-
литель в соотношении 3.11, равный (

ˆI
i

� µ
k

)(

ˆI
j

� µ
k

) имеет положительный знак,
если пикселы I

j

и I
i

расположены по одну сторону от перепада интенсивности, ина-
че знак отрицательный. Таким образом, интенсивности пикселов не усредняются,
если они разделены границей объекта. Степень сглаживания контролируется пара-
метром ✏: если оно велико, то действие фильтра приближается к фильтру низких
частот с равными весами W (x, y) = 1

|!|2
P

k:(i,j)2!
k

1.

Таким образом, управляемый фильтр является еще одним способ построения сгла-
женных изображений с учетом границ объектов [26, 34]. Пример вклада соседних
пикселов при показан на рис. 3.2 справа.

3.3.3 Рекурсивный фильтр, учитывающий границы

Рекурсивный фильтр является одним из подходов к фильтрации изображений, име-
ющим низкую вычислительную сложность и возможность эффективной параллели-
зации. Данный метод имеет связь с приближенным билатеральным фильтром [35].
Практические преимущества метода включают в себя небольшой объем используе-
мой памяти и независимость вычислительной сложности от параметров фильтра.

Алгоритм вычисления фильтра принимает на вход сигнал x и вектор коеффици-
ентов w

i

2 [0, 1]. Результатом применения фильтра является сглаженный сигнал y.
Для одномерных сигналов, вычисление фильтра происходит в соответствии со сле-
дующей рекуррентной последовательностью. Начиная с y1 = x1, для последующих
i = 2, ..., N имеем:

y
i

= (1� !
i

)x
i

+ !
i

y
i�1. (3.12)

Варьирование весов !
i

используется для контроля степени сглаживания, что да-
ет возможность сохранять пространственные границы объектов на изображении: в
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самом деле фрагменты изображения с величиной !
i

, близкой к единице, аккуму-
лируются между соседними пикселами y

i�1 и y
i

, тогда как величина w
i

, близкая
к нулю (например, в пикселах, соответствующих границам объектов), заставляет
фильтр подавать на выход сигнал, равный входу, т.е. y

i

= x
i

.

Для двумерных изображений фильтр применяется в сепарабельном виде, т.е. в виде
четырех направленных одномерных проходов: слева направо, справа налево, сверху
вниз, снизу вверх. Подробное описание алгоритма приводится в разделе 3.5.1.3.

3.3.4 Метод нелокальных средних

Одним из важных наблюдений, применяемых при решении задач шумоподавления,
а также при решении недоопределенных обратных задач является наличие похожих
фрагментов, встречаемых на реальных изображениях. Поэтому использование все-
го изображения при решении задачи существенно уменьшить ошибку получаемых
решений.

Одним из таких подходов является использование оператора нелокальных средних.
Пусть дано изображение v, определенное в области ⌦, тогда выходное изображение
может быть вычислено следующим образом:

u(p) =
1

C(p)

Z

⌦
v(q)f(p, q)dq, (3.13)

где f(p, q) функция весов и интеграл вычисляется по всех области ⌦. Нормировоч-
ная функция C(p) в соответствии с соотношением:

C(p) =

Z

⌦
f(p, q)dq. (3.14)

В качестве функции весов будем использовать следующее нормальное распределе-
ние:

f(p, q) = exp

⇣
� |B(q)�B(p)|2

�2

⌘
, (3.15)

где B(p) и B(q) - локальные средние интенсивности изображения, вычисляемые по
некоторому квадратному окну, например B(p) может быть вычислено следующим
образом:

B(p) =
1

|R(p)|
X

i2R(p)

v(i), (3.16)
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где R(p) ✓ ⌦ - квадратное окно с центром в пикселе p и |R(p)| - число пикселов в
окне.

Метод нелокальных средних является в частности, одним из подходов к агрегиро-
ванию тензора энергий в задаче стерео-сопоставления [28].

3.4 Обзор методов, основанных на глубоком машинном

обучении

Данный подраздел содержит обзор основных методов стерео-сопоставления, осно-
ванных на глубоком машинном обучении. Обзор начинается с описания метода об-
ратного распространения ошибки, который является общим методом, используемым
для обучения нейросетевых моделей.

3.4.1 Метод обратного распространения ошибки

Рассмотрим метод обратного распространения ошибки, который применяется для
обучения фильтров в сверточных и рекуррентных нейросетях, используемых для
задачи стерео-сопоставления.

Опишем метод на примере одного слоя нейросети, который описывается функцией
f(x; ✓), где ✓ - набор обучаемых параметров. Обозначим выход слоя как y:

y = f(x; ✓). (3.17)

Пусть выход слоя подается на вход последующего слоя, описываемого функцией z:

z(x) = z(f(x; ✓)). (3.18)

Градиент выхода слоя z по входу x выражается следующим образом:

@z

@x
=

@yT

@x

@z

@y
, (3.19)

а градент z по параметрам ✓ вычисляется согласно выражению:

@z

@✓
=

@yT

@✓

@z

@y
. (3.20)
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Рис. 3.3: Архитектура сверточной нейросети, используемой для задачи стерео-

сопоставления (изображение из работы [9]). Операция корреляции использует-

ся для сравнения фрагмента левого изображения и массива соответствующих

фрагментов-гипотез на правом изображении. При этом каждый элемент тензора

энергий вычисляется как скалярное произведение соответствующих дескрипторов

размерности 64.

Формула 3.20 используется для вычисления градиента выхода слоя z по параметрам
✓, при этом требуется вычислять градиенты @z

@y

, затем @y

T

@✓

. Такой порядок вычисле-
ний является обратным по отношению к порядку вычисления выхода слоя z согласно
выражению 3.18, поэтому описанный алгоритм вычисления градиента называется
методом обратного распространения ошибки.

3.4.2 Обучение глубоких дескрипторов в задачах стерео-сопоставления

Данный раздел содержит обзор работ, которые основаны на обучении глубоких де-
скрипторов, используемых для стерео-сопоставления.

Идея данного семейства методов состоит в том, чтобы использовать сверточную
нейросеть для обучения метрики, используемой для сравнения фрагментов изобра-
жения:

CCNN(x, y, d) = �f(< PL

(x, y), PR

(x� d, y) >). (3.21)

Где f - выход сверточной нейросети, PL

(x, y) и PR

(x � d, y) - фрагменты левого и
правого изображения с центрами в пикселах (x, y) и (x� d, y) соответственно. При
этом, как правило, используются разновидности так называемой Сиамской архи-
тектуры [8, 9, 13]
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Первый метод подобного рода, предложенный в литературе, описан в работе [13].
При этом задача сопоставления изображений формулируется в виде задачи клас-
сификации на похожие и непохожие пары фрагментов. В качестве тренировочной
выборки используются сэмплы в виде набора пар фрагментов из колекций изобра-
жений, для которых задан эталонный диспаритет. На этапе тестирования энергия
сопоставления двух фрагментов вычисляется как вероятность принадлежости к по-
хожей паре для данных двух фрагментов. В работе предожено два варианта мето-
да, один из которых позволяет вычислить диспаритет с меньшей ошибкой, а другой
имеет меньшую вычислительную сложность.

Более эффективная модель с вычислительной точки зрения предожена в работе [9].
Метод основан на использовании дифференцируемой операции корреляции (рис. 3.3
слева), которая используется в качестве слоя нейросети и используется для сравне-
ния патча с изображения левого вида и линейного массива патчей-гипотез с право-
го изображения. При этом для моделирования эталонных совпадений используется
дельта-функция с пиком, положение которого соответствует верному значению дис-
паритета. В качестве функции потерь используется функция кросс-энтропии.

Несмотря на сравнительно низкую ошибку диспаритета, которую имеют на практи-
ке подобные методы, полученный результат требует постобработки для получения
оценки максимально возможного качества. Такая постобработка состоит из несколь-
ких этапов и включает в себя базовый метод агрегирования тензора энергий и
оптимизацию поля диспаритета. Последняя представляется наиболее важной для
уменьшения ошибки метода на практике. В методе также используется проверка на
наличие заслоненных объектов, основанная на сравнении диспаритета для левого и
правого вида с последующей интерполяцией выявленных несоответствий.

Несмотря на использование эффективных векторизованных операций, реализация
метода [9] требует 1 сек. для вычисления диспаритета с использованием современно-
го графического ускорителя и является неприменимой для практических приложе-
ний, требующих вычисления в реальном времени. При этом наиболее трудоемким
этапом является вычисление скалярного произведения для большого количества де-
скрипторов высокой размерности.

3.4.3 Обучаемая регуляризации на основе условных случайных по-

лей

Один из подходов, сочетающих достоинства методов, основанных на обучении глу-
боких дескрипторов и методов, основанных на дискретной оптимизации предложен
в работе [36]. При этом сверточная нейросеть используется как для вычисления



32

глубоких дескрипторов, так и для предсказания оптимальных потенциалов для по-
следующего метода оптимизации диспаритета, основанного на использовании Мар-
ковских случайных полей. Вывод основан на применении двойственного блочного
градиентного метода, на практике требуещего небольшого количества интераций.
В качестве функции потерь используется структурный метод опорных векторов.
Такой подход позволяет вычислить диспаритет без необходимости дальнейшей по-
стобработки.

Поле диспаритета получается в виде решения следующей оптимизационной задачи:

min

x2X

⇣X

i2V
f
i

(x
i

) +

X

i,j2E
f
ij

(x
i

, x
j

)

⌘
, (3.22)

Где V - множество всех вершин графа (пикселов изображения), E - множество всех
ребер, а X 2 L⌫ - набор возможных меток для диспаритета. Первое слагаемое соот-
ветствует унарным потенциалам, а второе - бинарым потенциалам, f

ij

: L⇥ L ! R:

f
ij

(x
i

, x
j

) = !
ij

⇢(|x
i

� x
j

|, P1, P2). (3.23)

Веса w
ij

предсказываются для каждого пиксела изображения I
l

с использованием
сверточной нейросети, ⇢ - функция сравнения, устойчивая к выбросам, аналогичная
функции, используемой в работе [29]:

⇢(|x
i

� x
j

|) =

8
>>><

>>>:

0, если |x
i

� x
j

| = 0,

P1, если |x
i

� x
j

| = 1,

иначе P2.

(3.24)

Унарные потенциалы получаются сравнением признаков, которые предсказываются
последовательностью сверточных слоев. При этом для нормировки используется
функция гиперболический тангенс.

Для того чтобы вычислить тензор энергий C(x, y, d), для полученных дескрипторов
�0

(x, y) и �1
(x� d, y), используется функция кросс-корреляции:

C(x, y, d) =
exp h�0

(x, y),�1
(x� d, y)iP

j2D exp h�0
(x, y),�1

(x� j, y)i . (3.25)
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Рис. 3.4: Иллюстрация алгоритма поиска одномерного поля смещений. На рисун-

ке сверху представлено левое изображение Il, фрагмент для которого производится

поиск соответствия выделен фиолетовым цветом. Правое изображение Ir показано

на рисунке снизу: линия, по которой ведется поиск соответствия, выделена зеле-

ным.

Для обучения такой нейросети используется функция потерь, используемая в струк-
турном методе опорных векторов. Параметры нейросети обучаются методом обрат-
ного распространения ошибки.

3.4.4 Функции потерь в обучаемых моделях стерео-сопоставления

Одним из ключевых аспектов построения моделей машинного обучения для задачи
стерео-сопоставления является выбор функции потерь, естественным образом опи-
сывающей задачу выбора значения энергии, соответствующего эталонному диспари-
тету. Рассмотрим операцию argmin, которая используется в классических методах
сопоставления:

D(x, y) = argmin

d

C(x, y, d). (3.26)

В самом деле, такая операция является дискретной, что не позволяет вычислить
производную от выхода D(x, y) по элементам тензора энергий C(x, y, d). Для того,
чтобы построить нейросеть для задачи стерео-сопоставления, требуется сконстру-
ировать дифференцируемую функцию, которая приближает такую операцию. На
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Рис. 3.5: Иллюстрация методов построения функции потерь для задачи стерео-

сопоставления. (a) Пример одномерной функции энергии. Синим цветом показан

максимум функции, зеленым цветом выделено эталонное значение диспаритета.

(b) Результат применения операции softmax к функции энергии. (c) Дельта функ-

ция с пиком, соответствующим эталонному значению диспаритета. (d) Вектор зна-

чений диспаритета, соответствующих оси абсцисс. (e) Одномерная функция энер-

гии. Синим цветом выделен результат дискретной операции argmax, красным цве-

том выделен результат дифференцируемой операции argmax, заданной выраже-

нием 3.34.

практике часто удобнее приближать функцию выбора максимума, поэтому далее
будет рассмотрен такой эквивалентный вариант задачи.

Для того, чтобы наглядно проиллюстрировать изложенные соображения, рассмот-
рим одномерную функцию энергии сопоставления, соотвутствующую фрагменту на
левом изображении с центром в точке (x,y):

E
x,y

(d) = C(x, y, d). (3.27)

Пример такой функции, соответствующий изображениям на рис. 3.4, показан на
рис. 3.5 (a). Функция имеет глобальный максимум, который соответствует значе-
нию диспаритета d

argmax

= 60 (синяя пунктирная линия), при этом эталонное зна-
чение диспаритета d

gt

= 59 (зеленая пунктирная линия). Также имеется несколько
локальных максимумов. В таком случае, функция потерь должна быть построена
таким образом, чтобы усилить главный максимум посредством изменения парамет-
ров модели.
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Функция softmax и кросс-энтропийная функция потерь

Для того, чтобы выделить максимум функции энергии сопоставления, требует-
ся применить функцию предобработки, которая усилит имеющиеся максимумы на
фоне остальных ненулевых значений функции. В качестве такой функции может
быть использована операция softmax, заданная отображением � : RK ! [0, 1]K .
Такое отображение для некоторого одномерного вектора энергий E выражается сле-
дующим образом:

�
j

(E) =

eEj

P
K

i=1 e
E

i

, (3.28)

Подобная функция предобработки применяется независимо ко всем одномерным
функциям энергии, соответствующим различным пикселам изображения:

C
sm

(x0, y0, d) = �
�
C(x0, y0, d)

�
. (3.29)

Результат применения функции softmax для энергии на рис. 3.5 (a) показан на
рис. 3.5 (b).

Для того, чтобы смоделировать функцию, которая имеет максимум в эталонном
значении диспаритета, используется дельта функция (см. рис. 3.5 (c)):

C
gt

(x, y, d) =

8
<

:
1, если d = D

gt

(x, y)

0, иначе.
(3.30)

При этом представляется целесообразным использовать кросс-энтропийную функ-
цию потерь:

L(C,C
gt

) = �
X

x,y

X

d

C
sm

(x, y, d) log C
gt

(x, y, d). (3.31)

Таким образом, используя операцию softmax, была построена серия дифференци-
руемых операций, приближающая дискретную функцию argmax. Такое приближе-
ние позволяет обучать нейросеть для задачи стерео-сопоставляния методом обрат-
ного рапространения ошибки.

Пороговая функция потерь

Другим способом построения функции потерь для задачи стерео-сопоставления яв-
ляется наложение штрафа в соответствии с пороговой функцией. Для описания
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этого метода, введем следующее обозначение для значений тензора энергии с ин-
дексами, соответствующими эталонному диспаритету:

C
D

(x, y) = C(x, y,D(x, y)). (3.32)

Используя двумерное поле C
D

и некоторую положительную константу ⌧ , пороговая
функция потерь может быть записана следующим образом:

L(C,D
gt

) =

X

x,y

X

d

max [0, C
D

(x, y) + ⌧ � C(x, y, d)] . (3.33)

Главным недостатком такого подхода является необходимость использовать одно
значение параметра ⌧ для всего изображения. В самом деле, интенсивность изобра-
жения значительно меняется, что, вообще говоря, требует соответствующих изме-
ненений значений порога.

Построение дифференцируемой операции выбора максимума

Альтернативным способом построения дифференцируемой операции argmax явля-
ется использование взвешенной суммы, в которой значение значение энергии имеет
вес, равный значению соответствующего диспаритета [37]:

D(x, y) =

d

maxX

d=0

d · C
sm

(x, y, d). (3.34)

Если применить к энергии предобработку в виде операции softmax, можно ожи-
дать, что значения диспаритета, не соответствующие минимальному значению, бу-
дут иметь пренебрежимо малый вес ( 3.5 (b)) и значение взвешенной суммы будет со-
ответствовать верному диспаритету. Пример применения такого метода для нахож-
дения максимума показан на рис 3.5. Значение векторов энергии после применения
операции softmax показано на рис. рис 3.5(b), вектор индексов, который соответству-
ет первому множителю в скалярном произведении изображен на рис. 3.5(d). Макси-
мум, выбранный в соответствии с выражением 3.34 показан на рис. 3.5(d) красной
пунктирной линией, истиное максимальное значение показано синей пунктирной ли-
нией. Так, описанный подход позволяет приблизить операцию выбора максимума с
точностью, приемлемой для решения задачи стерео-сопоставления на практике [37].
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3.5 Обучаемое агрегирование тензора энергий сопостав-

ления на основе сверточно-рекуррентной нейросети.

Данный раздел описывает сверточно-рекуррентную нейросеть для быстрого стерео-
сопоставления, предложенную автором.

Метод имеет этапы вычислений, сходные с серией методов для быстрого стерео-
сопоставления, предложенных в литературе. Во-первых, это метод динамического
программирования, применяемый для агрегирования тензора энергий в виде се-
рии одномерных направленных проходов [29]. Во-вторых, это методы агрегирова-
ния тензора энергий, исползующих фильтры изображений, учитывающих границы,
такие как билатеральный фильтр [38], управляемый фильтр [26], и рекурсивный
фильтр [39].

Предложенный метод основан на использовании дифференцируемого рекурсивного
фильтра [40], который основан на аналогии между используемым графом вычис-
ления и прямым проходом рекуррентной нейросети [41]. Такой поход был впервые
использован в задаче семантической сегментации [40]. Серия подходов для семан-
тической сегментации, показывающих связь между условными случайными поля-
ми и рекуррентными нейросетями, таких как [42] и [43], также имеет аналогии с
предложенным подходом в части построения обучаемых сглаживающих фильтров,
использующихся для сегментации изображений.

Подобно работам [8, 9, 13], предложенный метод использует сверточную архитек-
туру нейросети, однако, машинное обучение применяется на этапе агрегирования
тензора энергий, что позволяет построить модель, имеющую более низкую вычис-
лительную сложность на этапе исполнения.

3.5.1 Архитектура нейросети

3.5.1.1 Вычисление энергий стерео-сопоставления

Предложенный метод в явном виде хранит в памяти трехмерный тензор энергий
стерео-сопоставления в виде трехмерного массива размера (h,w, d

max

), где h and w

- размеры изображения, а d
max

- максимальный разрешенный диспаритет.

Вычисление тензора энергий производится в соответствии с локальными методами
стерео-сопоставления. При этом, энергия равна сумме двух членов:

E(x, y, d) = ↵E
SAD

(x, y, d) + (1� ↵)E
census

(x, y, d), (3.35)
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где коеффициент ↵ 2 (0, 1) используется для того, чтобы изменять вклад каждого
из слагаемых.

Первый член есть абсолютное значение разностей интенсивностей соответствующих
пикселов (SAD):

E
SAD

(x, y, d) =
X

r,g,b

|IL(x, y)� IR(x� d, y)|, (3.36)

при этом используются фрагменты размера 1x1, т.е. индивидуальные пикселы, для
того чтобы сохранить информацию о текстуре изображения. Сглаживание же про-
исходит только на стадии агрегирования тензора энергий.

Второй член E
census

(x, y, d) основан на сопоставлении локальных дескрипторов, пред-
ложенных в работе [44]. Вычисление такого дескриптора происходит следующим об-
разом. Для черно-белого изображения I, определим функцию ⇠, которая будет будет
принимать значение 0 или 1 в зависимости от результата сравнения интенсивностей
в пикселах p и q:

⇠(p, q) =

8
<

:
1, если I(q) < I(p),

иначе 0.
(3.37)

Используя такую функцию, определим ценсус-преобразование, которое ставит в со-
ответствии каждому пикселу изображения следующий многомерный вектор из ну-
лей и единиц:

R
⌧

(p) = ⌦
[i,j]2D

w

⇠(p,p+ [i, j]), (3.38)

где ⌦ - операция конкатенации, а D
w

- набор возможных двумерных смещений внут-
ри квадратного окна размера n⇥ n с центром в пикселе p. Таким образом локаль-
ная структура каждого фрагмента описывается последовательностью (n2 � 1) бит.
Каждый бит задается сравнением интенсивности центрального пиксела фрагмента
с интенсивностью остальных пикселов фрагмента.

Полученные дескрипторы, заданные битовыми последовательностями, сравнивают-
ся, используя расстояние Хэмминга. Например, расстояние для пары бинарных век-
торов a и b определим, используя индикаторную функцию I:
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Рис. 3.6: Архитектура сверточного детектора границ [45]. Нейросеть последо-

вательно извлекает признаки с 5 масштабов изображения, используя операцию

свертки. Переход к более крупному масштабу осуществляется при помощи опе-

рации пулинга максимального элемента в окрестности размера 2x2. Последний

сверточный слой вычисляет линейную комбинацию предсказаний нейросети для

всех пяти масштабов изображения. Для извлечения признаков используются пря-

мые соединения, показанные на рисунке. Таким образом, в предсказании участвует

информация со всех пяти масштабов.

H(a, b) =
X

i

I(a
i

6= b

i

). (3.39)

Такой алгоритм вычисления локального дескриптора естественным образом парал-
лелизуется, и поэтому на практике эффективно реализуется на графическом уско-
рителе. Так как при этом каждый поток вычисляет дескриптор для единичного
пиксела, такая операция выполняется за константное время.

Вычисление тензора энергий E(x, y, d) не участвует в обучении нейросети методом
обратного распространения ошибки, поэтому может содержать произвольный набор
недифференцируемых операций.

3.5.1.2 Детектор границ объектов на изображении

Аналогично работе [26] в предложенном методе используется агрегирование энер-
гий, которое зависит от входного изображения, описанное далее в подразделе 3.5.1.4.
При этом схема, основанная на машинном обучении гарантирует, что сглаживание
производится в соответствии со спецификой задачи стерео-сопоставления и учетом
особенностей обучающей выборки. Так, задача метода состоит в определении границ
объектов, релевантных для перепада поля диспаритета и игнорирование остальных
границ. В результате ошибка метода существенно снижается в результате обучения
алгоритма.
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Рис. 3.7: Пример предсказанных весов рекуррентного фильтра. Исходное изобра-

жение (1), исходная карта весов до применения обучения (2), веса горизонтального

прохода (3), веса вертикального прохода (4). Карта весов значительно меняется в

процессе обучения.

В качестве сверточной нейросети, используемой для предсказания границ объек-
тов, была использована многомасштабная архитектура, описанная в работе [45]. Ее
описание приводится на рис. 3.6.

Предложенный метод стерео-сопоставления оценивает две карты границ (рис. 3.7),
используемых для вертикального и горизонтального проходов нейросети, описан-
ных далее. В соответствии с этим, архитектура сверточной нейросети была моди-
фицирована следующим образом: количество карт на выходе каждого из масштабов
было увеличено до восьми, так чтобы последний сверточный слой вычислял значе-
ние двух выходных каналов в виде линейной комбинации из независимых восьми
слагаемых.

3.5.1.3 Сглаживание при помощи рекурсивного фильтра, учитывающе-

го границы изображения

Предложенный автором метод агрегирования энергий сопоставления основан на ре-
курсивном фильтре, учитывающем границы, предложенным в работе [35] и его обу-
чаемой версии, использованной для построения сверточной архитектуры для задачи
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семантической сегментации в работе [40]. Применение такого метода для одномер-
ных описано в разделе 3.3.3.

Рекурсивный фильтр, учитывающий границы объектов применяется к двумерным
изображениям в сепарабельном виде, т.е. вычисление рекурсии осуществляется в
виде серии одномерных направленных проходов - горизонтального, слева направо и
справа налево и вертикального, сверху вниз и снизу вверх. Ввиду причин, описан-
ных в подразделе 3.5.1.4, представляется целесообразным использовать отдельные
карты весов W

h

и W
v

для горизонтальных и вертикальных проходов соответствен-
но. Действие двумерного фильтра, который принимает на вход изображение I, две
карты весов и вычисляет выходное изображение I

filt

обозначим следующим обра-
зом:

I
filt

= F(I,W
h

,W
v

). (3.40)

Алгоритм вычисления описанных выше четырех рекуррентных проходов задается
соотношениями:

IL(x, y, d) = (1�W
h

(x, y)) I(x, y) +W
h

(x, y) I(x� 1, y), (3.41)

IR(x, y, d) = (1�W
h

(x, y)) IL(x, y) +W
h

(x, y) IL(x+ 1, y), (3.42)

IT (x, y, d) = (1�W
v

(x, y)) IR(x, y) +W
v

(x, y) IR(x, y � 1), (3.43)

IB(x, y, d) = (1�W
v

(x, y)) IT (x, y) +W
v

(x, y) IT (x, y + 1), (3.44)

где выражения для IL,IR,IT ,IB соответствуют направленным подходам слева на-
право, справа налево, снизу вверх и сверху вниз соответственно, результат каждого
следующего прохода подается на вход предыдущего. На каждом из этапов вычис-
ления осуществляются независимо для строк или столбцов изображения.

Для того, чтобы построить обучаемую модель фильтрации, веса предсказываются
на основе входного изображения. Для того, чтобы описать работу алгоритма об-
ратного распространения ошибки для вычисления одномерной фильтрации (3.12),
описанной выше, положим, что выход операции передается на вход последующе-
му слою L. Так, в процессе обратного распространения ошибки, градиент каждого
сэмпла выходного сигнала y

i

получает вклад от производной @L

@y

i

. Для того, чтобы
вычислить градиент фильтра по входу x, требуется развернуть данный рекуррент-
ный проход в обратном направлении, т.е. для i = N,N � 1, ..., 2 имеем:
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@L

@x
i

= (1� !
i

)

@L

@y
i

. (3.45)

Для того, чтобы вычислить градиент выхода по набору весов w
i

, используется со-
отношение:

@L

@w
i

=

@L

@w
i

+ (y
i�1 � x

i

)

@L

@y
i

, (3.46)

вычисление градиента выхода по y производится в соответствии с выражением:

@L

@y
i�1

=

@L

@y
i�1

+ !
i

@L

@y
i

. (3.47)

Так, четыре прохода описанного выше фильтра могут быть скомбинированы в обу-
чаемую модель, где соотношения 3.12 может быть рассмотрено в качестве эле-
мента рекуррентной нейросети. В самом деле, в последовательности вычислений
3.41, 3.42, 3.43, 3.44, каждый следующий направленный проход принимает на вход
результат предыдущего.

Каждое из рекуррентных соотношений аналогично пороговому элементу (gated recurrent
unit), предложенному в работе [46] для обучения на данных-последовательностях.
Такой элемент используется, например, в задачах анализа текстов. При этом зна-
чение (1�w

i

) управляет механизмом обнуления накопленной ранее информации, а
значение y

i�1 является кандидатом на активацию текущего элемента [40].

3.5.1.4 Агрегирование тензора энергий

Автором работы был выбран подход, в котором тензор энергий сглаживается с уче-
том границ объектов на изображении. Сходная стратегия используется в работе [26].
Предложенный автором подход может также рассматриваться как обобщение рабо-
ты [27, 39] на случай обучаемого метода. Так параметры фильтра предсказываются
на основе входного изображения с использованием сверточной нейросети.

Схема алгоритма агрегирования энергий представлена на рис 3.8. Процесс фильтра-
ции выполняется используя четыре направленных прохода, при этом для того чтобы
использовать двумерные карты весов для W

h,v

(x, y) для фильтрации трехмерного
массива E

d

= E(x, y, d), x = 0, .., w, y = 0, .., h, применяется простое дублирование
весов по третьему недостающему измерению:
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Рис. 3.8: Схематическое описание алгоритма агрегирования тензора энергий. Веса

рекуррентного фильтра используются для фильтрации двумерных срезов трехмер-

нога тензора энергий посредством четырех направленных проходов (слева направо,

справа налево, сверху вниз, снизу вверх). Фильтрация срезов трехмерного тензора

энергий выполняется параллельно. Выбор минимального элемента энергии исполь-

зуется для вычисления диспаритета.

Efilt

d

= F(E
d

,W
h

,W
v

),

d = {0, 1, ..., d
max

}.
(3.48)

Вычисление каждого из двумерного срезов тензора E
d

осуществляется независимо,
поэтому может быть использовано для параллелизации.

Для вычисления поля диспаритета, используется выбор минимального элемента по
третьему измерению.

Авторы [40] используют одну карту весов W для каждого из четырех направлен-
ных проходов. Подход, описанный в данной работе, однако, использует отдельные
карты для вертикального и горизонтального прохода - такой выбор основан на сле-
дующем практическом наблюдении: частота и величина изменения диспаритета в
горизонтальном и вертикальном направлении существенно различается. Использо-
вание двух карт не увеличивает число арифметических операций на этапе исполне-
ния, при этом позволяет уменьшить ошибку сопоставления.
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Для того, чтобы далее понизить вычислительную сложность метода, детектор гра-
ниц применяется к изображениям, уменьшенным до половины размера оригиналь-
ных изображений, при этом для применения весов к исходному масштабу использу-
ется билинейная интерполяция. Тензор энергий при этом вычисляется для изобра-
жений в исходном масштабе. Ввиду того, что изображения уменьшенного размера
содержат достаточно информации для обнаружения релевантых границ, данный
подход представляется целесообразным, т.к. ведет к уменьшению времени испол-
нения алгоритма с незначительными или вовсе без издержек со стороны ошибки
метода.

Для того, чтобы использовать выходы сверточной нейросети E
h

и E
v

в качестве вхо-
да рекуррентной нейросети, используется следующее нелинейное преобразование:

W
h

= exp(��E
h

), (3.49)

W
v

= exp(��E
v

), (3.50)

где � - настраиваемый параметр.

3.5.1.5 Функция потерь

Для того, чтобы сопоставить фильтруемый тензор энергий с эталонным полем дис-
паритета, каждая из эталонных меток представляется в виде дельта-функции с пи-
ком, соответствующим эталонному целочисленному значению. При этом использу-
ется операция softmax и кросс-энтропийная функция потерь, заданная соотноше-
нием 3.31.

Модель обучается методом обратного распространения ошибки. При этом разница
между вычисленным и эталонным полями диспаритета учитывается функцией по-
терь и ее градиент вносит вклад в обучение фильтров сверточной нейросети (см.
рис. 3.9). Данный подход не требует постобработки.
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Рис. 3.9: Схема предложенной сверточно-рекуррентной нейросети. Левое и пра-

вое изображения стерео-камеры подаются на вход процедуры вычисления тензора

энергий. Левое изображение, выборанное в качестве эталонного вида, использу-

ется сверточной нейросетью для предсказания релевантных границ. Рекурсивный

фильтр, обучаемый в качестве рекуррентной нейросети, принимает на вход тен-

зор энергий и две карты весов, предсказанных сверточной нейросетью. Кросс-

энтройпийная функция потерь используется в качестве штрафа за отклонение

вычисленного диспаритета от эталонных значений. В процессе обучения методом

обратного распространения ошибки, градиент функции потерь проходит через ре-

куррентную нейросеть и вносит вклад в процесс обучения фильтров сверточной

нейросети.

3.5.2 Численные эксперименты

3.5.2.1 Описание тренировочной выборки.

Предложенный алгоритм стерео-сопоставления протестирован с использованием от-
крытой коллекции изображений, описанной в работе [15, 23, 47]. Коллекция состо-
ит из ректифицированных пар фотографий со стерео-камеры. Для каждой пары
предоставлены эталонные значения диспаритета, которые вычислены используя по-
ля глубины, полученные с использованием лазерного сканера. При этом сканер мон-
тируется на крыше автомобиля, оборудованного стерео-камерой. Ввиду построчного
сканирования, эталонный диспаритет представляется набором горизонтальных по-
лос (рис. 3.10), что в результете ведет к уменьшению количества обучаемых данных.
При этом количество данных может быть увеличено, используя эвристические под-
ходы, например, с использованием дилатации. Однако, применение подобных техник
ограничено в виду невозможности аккуратно представить перепады диспаритета на
границах объектов сцены.

3.5.2.2 Методика оценки ошибки метода.

В задачах стерео-сопоставления используется несколько подходов для оценки ошиб-
ки. Первый подход состоит в том, что вычисляется средняя абсолютная ошибка поля
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Рис. 3.10: Пример эталонного поля диспаритета, полученного при помощи лазер-

ного сканера. Построчный процесс лазерного сканирования ведет к разреженной

структуре обучающих данных, что принимается в расчет при построении методов

машинного обучения для данной задачи.

диспаритета по изображению. Подобная стратегия чаще применяется при построе-
нии алгоритмов вычисления оптического подхода. Другой подход состоит в подсчете
доли пикселов, в которых абсолютная ошибка диспаритета превосходит некоторое
пороговое значение:

e(D,D
gt

) =

1

N

X

(x,y)

(I [|D(x, y)�D
gt

(x, y)| > t]), (3.51)

где N - количество пикселов, для которых определено эталонное поле смещений
D

gt

. Такая методика оценки ошибки применяется в данной работе, значение порога
t = 3.

Принципиально другим подходом представляется оценка ошибки посредством ис-
пользования полученного поля диспаритета для деформации второго изображения.
При этом деформированное изображение сравнивается с эталонным в некоторой
норме и вычисляется энергия полученного сопоставления. В таком случае важно ис-
ключать из рассмотрения пикселы, соответствующие заслоненным объектам. При
наличии эталонных полей смещений, данный подход не дает дополнительной ин-
формации по сравнению с ошибкой 3.51 и поэтому не используется в данной работе.

3.5.2.3 Процесс обучения.

Использованная коллекция изображений была разбита на тренировочную выборку
(160 пар изображений) и валидационную выборку (40 пар изображений). На вход
сверточной нейросети подавались трехканальные цветные изображения.
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Метод левый вид оба вида мед. фильтр

без агрегирования 58,67 39,37 28,58
без обучения 35,33 26,53 24,03

предложенный метод 8,33 6,12 6,05
метод [26] 35,14 25,03 32,67

метод [26] + тензор энергий (3.35) 13,42 10,44 11,79

Таблица 3.1: Количественное cравнение различных методов агрегирования энер-

гий с использованием 40 изображений валидационной выборки из коллекции

KITTI 2015.

Тензор энергий соответствал линейной комбинации абсолютного значения попик-
сельной разности и ценсус-преобразования 3.36 на основе фрагментов размера 7⇥7.
Оптимальное значение коеффициента линейной комбинации ↵ = 0, 43 выбрано экс-
периментально методом линейного поиска. Для параметра � выбрано значение 4,
экспериментальная проверка показала, что значение этого параметра не оказывает
заметного влияния на ошибку метода.

Исходная сверточная архитектура детектора границ была незначительно измене-
на. Во-первых, количество карт сверточных слоев было уменьшено наполовину для
того, чтобы уменьшить вычислительную сложность. Во-вторых количество сверточ-
ных карт, используемых для финальной линейной комбинации было увеличено с 1
до 8 (рис. 3.6).

Предложенная сверточно-рекуррентная нейросеть была обучена с использованием
кросс-энтропийной функции ошибки, используя адаптивную разновидность метода
стохастического градиентного спуска, описанную в работе [48]. Использовалась ве-
личина шага градиентного метода, равная 2, 5·10�5. Используемый детектор границ
был предобучен, используя коллекцию изображений BSDS [49]. При этом использо-
ваны эталонные границы, полученные методом ручной разметки.

Каждое изображение имеет размер 1242⇥ 375, интервал допустимых значений дис-
паритета соответствует значениям [0..256] пикселов. Вычисление стерео-сопоставления
представляется наиболее трудным в участках изображений, не содержащих тексту-
ры, включая однотонные автомобили, а так же в участках отражающий поверхно-
стей, таких как стекла автомобилей. Визуализация вклада соседних пикселей при
использовании обученного рекурсивного фильтра приведена на рис. 3.15.
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Ошибка Объекты Фон Все изображение
Все пикселы 4,97 % 1,38 % 4,47 %

Незаслоненные объекты 4,91 % 1,38 % 4,41 %

Ошибка Объекты Фон Все изображение
Все пикселы 4,30 % 6,64 % 4,56 %

Незаслоненные объекты 4,01 % 6,64 % 4,30 %

Рис. 3.11: Результаты предложенного метода сопоставления на коллекции изобра-

жений KITTI 2015 (тестовые изображения №0,1). Каждый рисунок содержит три

изображения: ряд (1) изображение с левой камеры, (2) вычисленное поле диспари-

тета, (3) карта ошибки для поля диспаритета. Таблица содержит долю ошибочных

пикселов с учетом и без учета заслоненных областей для областей соотвествующих

фону, передним объектам сцены, а так же для всего изображения.
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Ошибка Объекты Фон Все изображение
Все пикселы 5,68 % 9,09 % 5,84 %

Незаслоненные объекты 5,00 % 9,09 % 5,20 %

Ошибка Объекты Фон Все изображение
Все пикселы 5,92 % 9,14 % 6,21 %

Незаслоненные объекты 5,45 % 9,14 % 5,80 %

Рис. 3.12: Результаты предложенного метода сопоставления на коллекции изобра-

жений KITTI 2015 (тестовые изображения №2,3). Каждый рисунок содержит три

изображения: ряд (1) изображение с левой камеры, (2) вычисленное поле диспари-

тета, (3) карта ошибки для поля диспаритета. Таблица содержит долю ошибочных

пикселов с учетом и без учета заслоненных областей для областей соотвествующих

фону, передним объектам сцены, а так же для всего изображения.
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Порог ошибки t Незаслоненные объекты Все объекты
3 пиксела 3,42 % 5,34 %
4 пиксела 2,98 % 4,35 %
5 пикселов 2,36 % 3,18 %

Порог ошибки t Незаслоненные объекты Все объекты
3 пиксела 3,08 % 5,22 %
4 пиксела 2,38 % 3,81 %
5 пикселов 2,06 % 2,87 %

Рис. 3.13: Результаты предложенного метода сопоставления на коллекции изобра-

жений KITTI 2015 (тестовые изображения №0,1). Каждый рисунок содержит три

изображения: ряд (1) изображение с левой камеры, (2) вычисленное поле диспари-

тета, (3) карта ошибки для поля диспаритета. Таблица содержит долю ошибочных

пикселов с учетом и без учета заслоненных областей для областей для разных

пороговых значений.
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Порог ошибки t Незаслоненные объекты Все объекты
3 пиксела 11,37 % 12,19 %
4 пиксела 10,00 % 10,54 %
5 пикселов 9,05 % 9,52 %

Порог ошибки t Незаслоненные объекты Все объекты
3 пиксела 3,99 % 6,35 %
4 пиксела 2,81 % 4,76 %
5 пикселов 1,72 % 3,28 %

Рис. 3.14: Результаты предложенного метода сопоставления на коллекции изобра-

жений KITTI 2015 (тестовые изображения №2,3). Каждый рисунок содержит три

изображения: ряд (1) изображение с левой камеры, (2) вычисленное поле диспари-

тета, (3) карта ошибки для поля диспаритета. Таблица содержит долю ошибочных

пикселов с учетом и без учета заслоненных областей для областей для разных

пороговых значений.
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Рис. 3.15: Пример сглаживания с применением рекурсивного фильтра. Каждый

из трех фрагментов справа, обозначенных разными цветами, показывает относи-

тельный вклад центрального пиксела в интенсивности остальных пикселов фраг-

мента. Центральный пиксел первого фрагмента соответствует дорожному столбу

(процесс сглаживания ограничен границами столба ввиду перепада диспаритета).

Фрагменты, обозначеные зеленым и красным цветом, являются примерами отме-

ток или границ дорожной поверхности, релевантных (красный цвет) или нереле-

вантных (зеленый цвет) перепадам диспаритета.

Метод Объекты Фон Все изображение

Предложенный метод 5,34 11,35 6,34
метод [27] 8,43 18,51 10,11

Таблица 3.2: Сравнение предложеного метода и работы [27] на полном тестовом

наборе коллекции KITTI 2015.

Таблица 3.1 содержит количественное сравнение методов агрегирования энергий.
Была вычислена ошибка для трех случаев: ошибка метода на основе только левого
вида, ошибка после постобработки на основе сопоставления диспаритета для лево-
го и правого вида и ошибка после применения медианного фильтра размера 5x5.
Ошибка для метода [27] была вычислена для всей тестовой коллекции KITTI 2015,
сравнение с предложенным методом приведено в таблице 3.2 (оба метода основаны
на аналогичных тензорах энергии). Также приведена ошибка методов для случая
описанного тензора энергии без применения агрегирования и ошибка метода до на-
чала процесса обучения.

3.5.2.4 Оценка количества арифметических операций.

Наиболее трудоемким этапом алгоритма является агрегирование тензора энергий,
его трудоемкость оценивается как O(nd

max

), где n - количество пикселов в изобра-
жении, а d

max

- максимальный диспаритет.

Трудоемкость наиболее быстрого метода, основанного на машинном обучении, пред-
ложенного в литературе [9] оценивается как O(nd

max

k), где k - размерность глубо-
ких дескрипторов.
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Этап Кол-во вызовов Время, мс

вычисление тензора энергий 2 3
сверточный детектор границ 1 9

рекурсивный фильтр 2 19
операция argmin 2 1

обнаружение заслоненных объектов 1 2
полное время 34

Таблица 3.3: Время исполнения параллельной реализации метода с использо-

ванием графического ускорителя NVIDIA GeForce GTX Titan X на изображения

коллекции KITTI 2015. Процедура стерео-сопоставления была использована как

для левого, так и для правого вида стерео-камеры с последующим обнаружением

и интерполяцией заслоненных объектов. Выход сверточной нейросети вычисляется

сразу для пары изображений. Наибольшая доля времени исполнения приходится

на рекурсивный фильтр и сверточный детектор границ.

3.5.2.5 Время исполнения на графическом ускорителе.

Метод был реализован, используя комбинацию фреймворка Theano [50] и эффек-
тивной реализации процедур для вычисления тензора энергий на основе платфор-
мы CUDA. Реализация, применяемая на этапе исполнения использует библиотеку
CuDNN для вычисления границ. Программная реализация процедуры рекурсивной
фильтрации предложена автором. Обучение производилось на рабочей станции с
использованием ускорителя NVIDIA Titan X, процесс обучения занимает 4-5 часов.

Время исполнения различных стадий предложенного метода показано в таблице 3.3.
Полное время исполнения составляет 34 мсек, что соответствует частоте 29 кадров в
секунду для пары изображений, включая издержки на сопоставление диспаритетов,
полученных для правого и левого видов. Наибольшая доля времени исполнения
соответствует сверточному детектору границ и рекурсивному фильтру.

3.5.2.6 Обнаружение заслоненных объектов.

Т.к. ошибка диспаритета считается для полных изображений, включая заслоненные
объекты, представляется целесообразным вычислять маски заслоненных объектов
на основе сравнения полей диспаритетов, вычисленных для правого и левого видов
стерео-камеры [13]. Каждый из пикселов левого изображения получает одну из трех
возможных меток l(x, y) 2 {0, 1, 2}, которые соответствуют совпадению, ошибочно-
му пикселу и заслоненному объекту, согласно следующему критерию, где D

l

(x, y) и
D

r

(x, y) - оценки диспаритетов для левого и правого видов:
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l(x, y) =

8
>>><

>>>:

0, если |d�DR

(x� d, y)|  1 для d = DL

(x, y),

1, если |d�DR

(x� d, y)|  1 для некоторого d =2 [0, d
max

] ,

иначе 2.

(3.52)

Затем поле диспаритета интерполируется согласно следующему алгоритму. Дис-
паритет в пикселах с меткой 0 остается без изменений. В пикселах с меткой 2 -
значение диспаритета берется из ближайшего пиксела с меткой 0, находящегося в
той же строке изображения слева. Пикселы с меткой 1 получают значения ближай-
шего пиксела с меткой 0. Подобный алгоритм на практике позволяет существенно
снизить ошибку сопоставления (см. табл. 3.16).

3.6 Выводы

Наиболее точные методы оценки полей диспаритета основаны на методах глубокого
машинного обучения. Одним из факторов развития данного семейства методов яв-
ляется доступность больших коллекций обучающих данных, достаточных для обу-
чения моделей с большим количеством параметров.

Большинство современных методов содержит следующие этапы сопоставления: вы-
числение тензора энергий, агрегирование тензора энергий и оптимизация поля дис-
паритета. При этом каждый из перечисленных этапов может быть использован в
составе обучаемой модели. Сравнение дескрипторов большой размерности, вычис-
ленные с использованием разновидностей Сиамской архитектуры сверточной ней-
росети, позволяют вычислять поля диспаритета с низкой ошибкой, однако, исполь-
зование подобных подходов имеет высокую вычислительную сложность. Напротив,
применение обучаемого агрегирования тензора энергий, предложенного автором,
является более вычислительно эффективным подходом к построению обучаемой мо-
дели. Полная совокупность стерео-методов, предложенных в литературе, находится
на кривой, соответствующей критериям: качество и время исполнения. Метод, пред-
ложенный автором в статье [11], является Парето-оптимальным по совокупности
этих двух критериев, т.е. предложенные в литературе методы либо имеют большее
время исполнения, либо имеют большую ошибку. В качестве направления для бу-
дущего исследования, наиболее перспективным представляется разработка метода,
способного совместить обучение глубоких дескрипторов и предложенный метод аг-
регирования тензора энергий.
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Рис. 3.16: Сравнение различных методов агрегирования тензора энергии с исполь-

зованием тестового изображения из коллекции KITTI 2015. Изображения сверху-

вниз: (1) – изображение с левого вида стерео-камеры, (2) – поле диспаритета, по-

лученное методом [27], (3) – результат метода [26] при того же тензора энергий,

что и в данной работе, (4) результат метода SGM [29] с использованием тензора

энергий из данной работы, (5) – результат предложенного метода.



Глава 4

Задача вычисления оптического
потока

Данная глава содержит обзор методов вычисления методов оптического потока, а
также подробное описание подхода, предложенного автором в работе [12]. Глава
начинается с описания алгоритмов на основе оптимизации функционалов, предло-
женных для задачи вычисления оптического потока (раздел 4.2). Целью данного
описания является иллюстрация практических сложностей, которые встречаются
при вычисления оптического потока. Раздел 4.3 содержит описание методов вы-
числения оптического потока на основе глубокого машинного обучения. Последую-
щий раздел 4.6 описывает методы, использующие несколько кадров. Такие методы
во многом сходны с методами, используемыми для многокадровой ультразвуковой
эластографии, представленными в главе 5.

4.1 Постановка задачи

В задаче вычисления оптического потока требуется вычислить двумерное поле сме-
щений для пары изображений I0,1, определенных в области ⌦. Оптический поток
u = (u

x

, u
y

) имеет две компоненты u
x

и u
y

, соответствующих горизонтальным
и вертикальным смещениям соответственно. Искомое поле смещений должно со-
поставлять изображения пары таким образом, что для всех пикселов, I0(x, y) и
I1(x+u

x

, y+u
y

) соответствуют одним и тем же точкам сцены. В отличие от задачи
стерео-сопоставления, которая сводится к нахождению одномерного поля смещений,
движение объектов на сцене может быть произвольным, поэтому поле смещенией в
задаче оптического потока является двумерным.

56
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4.2 Обзор методов на основе минимизации функциона-

лов энергии

Начиная с первой работы, в которой была рассмотрена задача вычисления опти-
ческого потока [17], методы для этой задачи оптического потока существенно эво-
люционировали, однако набор практических сложностей при работе с реальными
данными остался прежним. Данный подраздел содержит описание работы [17] с
иллюстрацией соответствующих недостатков метода, послуживших мотивацией к
дальнейшему усоверешенствованию алгоритмов для данной задачи.

4.2.1 Метод на основе инвариантной интенсивности и линеариза-

ции изображения

Решением задачи оптического потока является двумерное поле смещений (u
x

, u
y

),
которое сопоставляет деформированную версию изображения I1 и изображение I2.
Одним из допущений, позволяющих решить данную задачу, является предположе-
ние об инвариантной интенсивности движущихся объектов, которое может быть
записано следующим образом:

I0(x, y, t) = I1(x+ u
x

(x, y), y + u
y

(x, y), t+�t). (4.1)

Для того, чтобы сформулировать задачу оценки оптического потока в виде опти-
мизационной задачи, введем следующий функционал, отвечающий за соотвествие
оценки оптического потока входным изображениям (особенности квадратичной це-
левой функции обсуждаются далее):

E
data

(u) =

X

x,y

(I1(x+ u
x

(x, y), y + u
y

(x, y))� I0(x, y))
2. (4.2)

Такой функционал, зависящий от переменных (u
x

, u
y

), является невыпуклым, что
не позволяет построить эффективный метод минимизации без использования до-
полнительных ограничений, таких как пространственная гладкость.

Еще одним важным свойством такого функционала является то, что он может быть
минимизирован для каждого пиксела изображения независимо. Такое свойство поз-
воляет использовать метод полного перебора при ограничении абсолютной вели-
чины смещений. Однако, решения полученные независимо для каждого писксела,
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содержат большое количество выбросов, что не позволяет построить метод с низкой
ошибкой без использования пространственной регуляризации.

Вычислительная сложность полного перебора вектором смещений может быть су-
щественно снижена при использовании линейной аппроксимации изображения [17]
в малой окрестности текущей оценки оптического потока:

I(x+u
x

(x, y), y+u
y

(x, y), t+�t) ⇡ I(x, y, t)+
@I

@x
u
x

(x, y)+
@I

@y
u
y

(x, y)+
@I

@t
�t. (4.3)

Используя такое линейное приближение, исходный функционал может быть записан
следующим образом:

E
data

(u, v) =

Z

⌦

✓
@I

@x
u
x

(x, y) +
@I

@y
u
y

(x, y) + I
t

◆2

dx, (4.4)

или используя вектор u:

E
data

(u) =

Z

⌦
(rI · u+ I

t

)

2dx. (4.5)

Рассмотрим скалярное произведение rI · u и заметим, что значение функционала
не изменится, если прибавить к вектору u произвольный вектор, ортогональный
градиенту изображения rI. Как следствие, оптический поток может быть оценен
с точностью до вектора, ортогонального градиенту изображения. Таким образом,
использование такого функционала недостаточно для оценки оптического потока
в участках малой величины градиента изображения. Однако, возможно избежать
подобной трудности при использовании пространственной регуляризации.

Одним из подходов к регуляризации поля движений является наложение штрафа
на квадрат пространственного изменения поля оптического потока [17]:

E
reg

(u) =

Z

⌦
↵
⇣
kru

x

k22 + kru
y

k22
⌘

dx, (4.6)

будем называть такой подход L2 регуляризацией. Такой способ аналогичен регуля-
ризации Тихонова, накладываемой на пространственные производные полей смеще-
ний.

Так, оценка оптического потока u = (u
x

, u
y

) может быть получена путем миними-
зации следующего функционала:
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J(u, v) =

Z

⌦
(I0(x, y)�I1(x+u

x

(x, y), y+u
y

(x, y)))2+↵
⇣
kru

x

k22 + kru
y

k22
⌘

dx. (4.7)

где x = (x, y). Необходимое условие на минимум такого функционала записывается
при помощи следующих уравнений Эйлера-Лагранжа:

8
<

:
0 = �(I0(x)� I1(x+ u))

@I1
@x

(x+ u)� ↵2
div(ru

x

)

0 = �(I0(x)� I1(x+ u))

@I1
@y

(x+ u)� ↵2
div(ru

y

)

. (4.8)

При использовании описанной выше линеаризации изображения, система уравнений
может быть записана следующим образом:

8
<

:
0 = �(I0(x)� I1(x+ u

n

)�rI1(x+ u

n

)(u

n+1 � u

n

))

@I1
@x

(x+ u

n

)� ↵2
div(run

x

)

0 = �(I0(x)� I1(x+ u

n

)�rI1(x+ u

n

)(u

n+1 � u

n

))

@I1
@y

(x+ u

n

)� ↵2
div(run

y

)

.

(4.9)

После дискретизации, такая система уравнений получает вид разреженной линей-
ной системы, которая может быть решена итерационным методом, используя при-
ближение h

n, полученное на предыдущем шаге.

4.2.2 Многомасштабная оценка оптического потока

Для того, чтобы оценить большие смещения, используются методы оценки опти-
ческого потока на основе нескольких масштабов. При этом оптический поток на
более крупных масштабах оценивается для пары уменьшенных изображений I1,2, а
полученный результат используется на более мелких масшабах после билинейной
интерполяции. В подобном подходе пирамида изображений соответствует набору
используемых масштабов s = 0, 1, . . . ,Ns � 1. Полное число масштабов обозначим
как N

s

. Рассмотрим пару последовательных масштабов s и (s � 1): интенсивности
соответствующих изображений I

s

и I
s�1 связаны следующим соотношением:

Is(⌘x, ⌘y) = G

�

⇤ Is�1
(⌘x, ⌘y), (4.10)
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где G

�

- Гауссовский фильтр, используемый для того, чтобы получить сглаженное
изображение на более крупном масштабе, а ⌘ 2 (0, 1) - пропорция между последова-
тельными масштабами. При этом значение параметра � выбирается в зависимости
от значения ⌘. Начиная с нулевого начального значения на первом масштабе, оценка
оптического потока используется для следующего масштаба после интерполяции и
шкалирования, которое может быть записано следующим образом:

us�1
x

(x, y) =
1

⌘
us
x

(⌘x, ⌘y), (4.11)

us�1
y

(x, y) =
1

⌘
us
y

(⌘x, ⌘y). (4.12)

Многомасштабная схема позволяет оценивать поля смещений большей величины с
меньшей ошибкой. На практике, в зависимости от ожидаемой скорости движения
объектов, требуется ввести достаточное количество масштабов N

s

, так что величина
смещений на масштабе s = 0 ограничена. Однако, подобный подход обладает фун-
даментальным недостатком: более мелкие объекты, претерпевающие значительные
смещения не представлены на крупных маштабах - как следствие оптический поток
не может быть оценен корректно для таких объектов.

4.2.3 Методы регуляризации.

Выбор регуляризационного функционала представляется одним из наиболее важ-
ных аспектов при построении методов вычисления оптического потока. При этом
метод регуляризации выбирается в соответствии с ожидаемыми свойствами оцени-
ваемых полей смещений.

Часто, используемые методы регуляризации в вариационных методах оценки опти-
ческого потока повторяют набор методов регуляризации, используемых для задачи
шумоподавления. В рассмотренной выше работе [17] была использована регуляриза-
ция Тихонова, заданная соотношением 4.6. Однако, использование такого функци-
онала ведет к переглаженным решениям ввиду того, что единичные выбросы ведут
к значельным увеличениям значения целевого функционала [51].

4.2.3.1 Полная вариация

Одним из способов, позволяющими избежать пересглаженных решений в задаче [17]
является использованием в качестве регуляризации функционала полной вариации
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(total variation), предложенного в работе [51]. Подобный подход позволяет корректно
производить реконструкцию пространственных разрывов поля смещений.

Полная вариация для изображения u(x, y) может быть определена следующим об-
разом:

TV(u) =

Z

⌦

s
@u

@x
+

@u

@y
dx. (4.13)

Такая функция изотропна и не является гладкой. Анизотропная версия полной ва-
риации может быть определена в следующем виде:

TV

aniso

(u) =

Z

⌦

⇣ ����
@u

@x

����+
����
@u

@y

����
⌘
dx. (4.14)

4.2.3.2 Двойственный градиентный метод для задачи шумоподавления

Эта секция описывает метод минимизации функционала полной вариации, кото-
рая используется для построения предложенного автором метода [12], описанного в
разделе 4.4.

Сформулируем задачу шумоподавления в виде следующей оптимизационной зада-
чи, где в качестве регуляризации используется функционал полной вариации:

E
p

(x) = min

x

1

2

ky � xk22+�TV(x), (4.15)

Где y - шумное изображение, x - сглаженая версия и k·k1,2 - смешанная l1,2 норма:

kxk1,2 =
KX

k=1

{
LX

l=1

kx
k,l

k2}1/2 = sup

kyk1,21
hx, yi. (4.16)

Используя двойственное определение нормы (! = (w1, w2) - двойственная перемен-
ная), целевая функция может быть записана в виде:

min

x

max

k!k1,21

1

2

ky � xk22+�hx,r⇤
!i, (4.17)

либо в следующей форме:

max

k!k1,21
min

x

1

2

xTx� xT (y � �r⇤
!) +

1

2

yT y. (4.18)
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Итак, целевая функция может быть записана в виде:

max

k!k1,21
min

x

1

2

kx� (y � �r⇤
!)k+1

2

kyk22 �
1

2

ky � �r⇤
!k22. (4.19)

Оптимальным значением x⇤ для переменной x является выражение x⇤ = y� �r⇤
!.

После такой подстановки, двойственная задача может быть записана в следующем
виде:

E
d

(!) = max

k!k1,21

1

2

kyk22 �
1

2

ky � �r⇤
!k22. (4.20)

Эта задача может быть решена методом градиентного подъема с последующим пе-
репроектированием на единичный шар:

r!f(!) = �r(�r⇤
! � y), (4.21)

!

k+1 = P1,2(!
k

� �r(�r⇤
! � y)), (4.22)

где P1,2 - попиксельная проекция на единичный шар в L2 норме:

P1,2(!) = (P2(!1), . . . , P2(!N

)). (4.23)

Итак, задача шумоподавления, где в качестве регуляризации выступает полная ва-
риация, может быть решена с использованием двойственного градиентного метода.
В качестве критерия сходимости используется разница между значением целевых
функций для прямой и двойственной задачи.

4.2.3.3 Обобщение полной вариации и условие гладкости второго поряд-

ка

Функционал полной вариации, описанный в предыдущем подразделе, ведет к кусочно-
постоянным решениям, что не всегда является желательным на практике. Для
случаев, когда такое условие на решения не выполнено, имеет смысл рассмотреть
функционал второго порядка. В этом случае, минимизация функционала порож-
дает кусочно-линейные решения. Такие решения являются более естественными с
точки зрения визуального анализа, производимого человеком. Подобное обобщение
полной вариации на гладкость второго порядка было предложено в работах [52, 53]:
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TGV

2
↵

(u, v) = min

v

↵1

Z

⌦
|ru� v|dx+ ↵0

Z

⌦
|"(v)|dx. (4.24)

Минимум находится среди всех векторных полей v, определенных в области ⌦. При
этом оператор второй производной " определяется следующим образом:

"(v) =
1

2

(rv +rvT ). (4.25)

Вводится дискретизация операторов divh2 , "h, rh, divh1 с использованием метода
конечных разностей:

(div

h

2)
⇤
= �"h, (4.26)

(div

h

1)
⇤
= �rh. (4.27)

Такой функционал регуляризации применяется для решения обратных задач, таких
как, например, МРТ реконструкция [54].

4.2.3.4 Модель для обучаемой регуляризации на основе случайных мар-

ковских полей

Важным шагом в развитии методов регуляризации был подход, предложенный в
работе [55]. Авторами была разработана общая конструкция для построения обу-
чаемой регуляризации для задач восстановления изображений. Метод совмещает
идеи из метода разреженного кодирования [56] и методов на основе случайных Мар-
ковских полей. Подход позволяет выявлять закономерности, возникающие между
интенсивностями соседних пикселов реальных изображений и использовать при ре-
шении ряда задач компьютерного зрения. Метод позволяет обобщить традиционные
модели на основе случайных Марковских полей путем обучения функций потенциа-
лов для расширенных окрестностей. Потенциалы смоделированны с использованием
модели [57], которая использует нелинейное преобразование большого количества
откликов на различные фильтры. Метод применяется в задачам шумоподавления
и прочим задачам восстановления изображений с использованием приближенной
схемы вывода.
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4.2.4 Метод для оценки больших смещений

Общая для многих методов вычисления оптического потока многомасштабная схема
упрощяет исходную задачу, т.к. поля смещений оцениваются на более крупном мас-
штабе. Полученный результат используется для инициализации алгоритма поиска
смещений на более мелком масштабе, что позволяет получить обновленное решение
для более мелких элементов на изображении. Следствием такого подхода является
неспособность корректно оценить поля смещений в тех случаях, когда более мелкие
объекты претерпевают большие смещения. Причиной такого недостатка является
отсутствие мелких деталей на более крупных масштабах, что ведет к некорректной
инициализации алгоритма на последующих масштабах и попаданию в локальный
минимум при оптимизации функционала энергии.

Метод оценки больших смещений, описанный в работе [58] использует разрежен-
ное сопоставление на основе визуальных дескрипторов для того, чтобы более точно
оценивать движение более мелких фрагментов изображения. В данной работе был
предложен способ совместить вариационные методы с методами на основе сопостав-
ления визуальных дескрипторов засчет введения в функционал энергии специаль-
ного члена [58].

4.2.5 Интерполяция соотвествий с учетом границ изображения

Важным шагом в разработке алгоритмов вычисления оптического потока стал ме-
тод, описанный в работе [59]. Подход использует разреженную оценку оптического
потока, описанную в работе [60]. Плотное поле смещений получено из разреженной
оценки путем интерполяции с учетом границ изображения. Полученный результат
служит инициализацией для последующего вариационного метода минимизации.

Наиболее важным аспектом предложенного метода является использование мето-
да интерполяции, который основан на использовании геодезического расстояния.
Такой подход позволяет аккуратно отражать границы движущихся объектов и эф-
фективно решать проблему заслоненных объектов.

Для оценки геодезического расстояния используется вычислительно эффективное
приближение [59]. Такое расстояние может быть определено как кратчайшее рас-
стояние между двумя пикселами изображения по отношению к некоторой карте
стоимостей, которая для данной задачи вычисляется из границ изображения. Так,
пиксел, принадлежащий непрерывно движущемуся сегменту является близким ко
всем пикселам сегмента, но при этом является достаточно далеким по отношению к
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пикселам за границей движущегося сегмента. Метод основан на допущении о том,
что границы движущихся объектов являются подмножеством границ изображения.

4.3 Обзор методов, основанных на глубоком машинном

обучении

Методы вычисления оптического потока на основе глубокого машинного обучения,
предложенные в литературе, можно условно разделить на следующие три катего-
рии. В первую категорию входят методы, основанные на сопоставлении глубоких
дескрипторов изображений, аналогичные методам стерео-сопоставления. При этом
результат сопоставления используется для построения задачи оптимизации, реше-
нием которой является искомое поле оптического потока [10]. Другая категория
методов основана на подходе PatchMatch и его модификациях [61]. К третьей ка-
тегории методов относится модель [3] и ее модификация [4], которые основаны на
варантах многомасштабной сверточной архитектуры для попиксельного предсказа-
ния оптического потока.

4.3.1 Сверточная нейросеть для задачи оптического потока и мо-

дель FlowNet

Модель FlowNet [3] является общей архитектурой, которая использует сверточную
нейросеть для попиксельного предсказания оптического потока. Прочие примене-
ния подобного подхода включают в себя семантическую сегментацию, предсказание
глубины на основе одного кадра и детекцию границ.

Итак, нейросеть принимает на выход пару изображений и вычисляет значение опти-
ческого потока u = (u

x

, u
y

). При этом в работе предложено два варианта архитекту-
ры [3]. Первый вариант (FlowNetSimple) является общей сверточной архитектурой,
не содержащей операций, специфических для данной задачи. Такая нейросеть спо-
собна выучить функцию вычисления оптического потока на основе большого коли-
чества тренировочных данных. Однако при этом нет гарантий, что метод локальной
оптимизации, основанный на градиентном спуске позволит методу сойтись к жела-
емому решению. Поэтому, был предложен второй вариант модели (FlowNetCorr),
который содержит корреляционный слой, введеный специально для задачи сопо-
ставления изображений. Идея метода состоит в том, чтобы добавить в нейросеть
операцию корреляции, широко используемую при сопоставлении изображений. Вы-
ход такого слоя для пары фрагментов изображения с центрами в (x1, y1) и (x2, y2)

вычисляется следующим образом:
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x
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y

),f2(x2 + o
x

, y2 + o
y

)i. (4.28)

Предшествующая и последующая корреляционному слою часть нейросети исполь-
зуется для обучения параметров. В качестве функции потерь используется Евкли-
дова ошибка для двумерного поля смещений, определенного на всем изображении.
Важным аспектом архитектуры является использование операций пулинга, которые
позволяют оценивать поля смещений для изображений меньшего размера. При этом
используются операции, аналогичные декодирующей части сверточных автокоди-
ровщиков, которые позволяют привести полученные поля смещений к оригиналь-
ному разрешению. Такой подход получает получить сглаженные поля оптического
потока без необходимости постобработки.

4.4 Обучаемая регуляризация для метода вычисления оп-

тического потока в реальном времени

Одним из наиболее важных аспектов построения алгоритмов вычисления оптиче-
ского потока представляется выбор функционала регуляризации. Начиная с класси-
ческой работы [17], использующей L2 норму в качестве регуляризации, методы регу-
ляризации претерпели значительную эволюцию. Важным шагом в разработке таких
методов было использование полной вариации (total variation [51]), при этом были
разработаны эффективные методы минимизации для такого функционала [2, 62].
Позднее были предложены методы регуляризации второго порядка [52, 54], так-
же применяемые в задаче стерео-сопоставления [63, 64]. Важным этапом развития
методов сопоставления изображений является использование нелокальных методов
регуляризации на основе полной вариации первого и второго порядка [65, 66].

Развитие вариационных методов для вычисления оптического потока связано с раз-
работкой эффективных методов оптимизации. При этом набор функционалов, ис-
пользуемых в задаче, ограничен возможностью представить задачу в виде мини-
мизации одного или последовательности выпуклых функционалов [67]. Метод осно-
ванный на применении сверточной нейросети, предложенный в данной статье поз-
воляет обучать оператор регуляризации с использованием тренировочной выборки
из пар изображений, для которых предоставлены эталонные значения оптического
потока. Идея построения обучаемой модели состоит в представлении итераций оп-
тимизационного алгоритма в виде слоев сверточной нейросети. Впервые подобные
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методы были предложены для задачи шумоподавления в работах [68, 69]. Также
обучаемая регуляризация на основе случайных марковских полей была предложена
в работе [55]. Наиболее схожая работа из представленных в литературе [70] пред-
лагает обучение проксимальной нейросети в качестве постобработки для метода
вычисления оптического потока, однако не позволяет получить целиком обучаемую
модель.

Метод, предложенный автором, основывается на представлении итераций TV-L1
алгоритма [2, 62] в качестве слоев сверточной нейросети, что позволяет получить
обучаемый оператор регуляризации, который является частью быстрого метода вы-
числения оптического потока.

Вклад данной работы состоит из следующих частей. Была предложена новая архи-
тектура сверточной нейросети для задачи оптического потока, которая имеет низ-
кую вычислительную сложность и потребление памяти на этапе исполнения. Также
был предложен способ обучения оператора регуляризации для задачи оптическо-
го потока. При этом оператор регуляризации выражается как серия операций, со-
держащая свертки с фильтрами, обучаемыми методом обратного распространения
ошибки. В статье приводятся результаты численных экспериментов, показывающих
уменьшение ошибки, достигаемое засчет обучения оператора регуляризации.

4.4.1 Двойственный метод оптимизации для вычисления оптиче-

ского потока в реальном времени

Данный раздел описывает метод вычисления оптического потока, основанный на
двойственном методе оптимизации, предложенный в работах [2, 62]. Следующий
раздел описывает обобщение этого метода, предложенное в данной работе.

Постановка задачи. Рассмотрим два черно-белых изображения, заданных интен-
сивностями I0(x, y) и I1(x, y), определенных в области ⌦. При этом значение интен-
сивностей каждого из пикселов с координатами (x0, y0) обозначено как I0,1(x0, y0) и
задано целыми числами от 0 до 255. Обозначим как x = [x, y] - вектор координат.
Целью является оценка двумерного поля смещения u : ⌦ ! R2, такого что пикселы
I0(x, y) и I1(x+u

x

, y+u
y

) соответствуют одним и тем же точкам сцены. Двумерный
вектор смещений обозначим как u = (u

x

, u
y

).

Функционал энергии. Рассмотрим формулировку задачи вычисления оптического
потока в виде оптимизационной задачи. Целью исследования является построение
сверточной архитектуры нейросети, обладающей низкой вычислительной сложно-
стью на этапе исполнения. Выбор оптимизационного метода продиктован целью
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представить его итерации в виде слоев нейросети, так что переиспользованы эффек-
тивные реализации операций для построения сверточных нейросетей. Метод, наи-
более соответствующий выбранной цели, это двойственный метод, предложенный в
работе [2] и использующий функционал полной вариации в качестве регуляризации.
Рассмотрим данный метод более подробно.

Целевой функционал состоит из следующих трех членов:

E(I0, I1,u,v) =

Z

⌦
{�|⇢(v)| +

X

d=x,y

1

2✓
(u

d

� v
d

)

2
+ kruk1,2}dx. (4.29)

Первый член �|⇢(v)| отвечает за соответствие оптического потока входным данным,
на практике рассматривается следующее линейное приближение (u0 - некоторая
первоначальная оценка поля смещений):

⇢(u,u0, x, y) = kI1(x+ u
x

, y + u
y

)� I0(x, y)k1 ⇡ I1(x+ u0x, y + u0y)+

+hrI1,u� u0i � I0(x, y). (4.30)

При этом для изображения I1 используется линейное приближение в окрестности
первоначального приближения (x+ u0x, y + u0y), rI1 - градиент изображения.

Параметр � - константа, которая позволяет варьировать соотношение между вход-
ными данными и регуляризацией, изменяя таким образом степень сглаживания по-
лученных решений. Третий член kruk1,2 является функционалом регуляризации,
второй член вводится для разделения первого и третьего члена. Целью такого раз-
деления является минимизация исходного функционала посредством разбиения на
две подзадачи. Первая подзадача состоит в минимизации суммы первого и второго
члена исходного функционала, а вторая подзадача - второго и третьего члена.

При этом, вводится вспомагательное поле смещений v, которое соответствует в про-
цессе оптимизации более шумной версии поля смещений u. Параметр ✓ является
константой, которая регулирует степень взаимного влияния полей u и v в процессе
решения задачи. Итак, минимизация выполняется в виде решения двух подзадач.
Далее описаны оба шага минимизации.

Подзадача 1. Для каждого d при фиксированном u
d

, решается следующая подзада-
ча:

min

v

Z

⌦
{�|⇢(v)| +

X

d=x,y

1

2✓
(u

d

� v
d

)

2}dx. (4.31)
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Описанная подзадача решается независимо для каждого пиксела, при этом решение
записывается в следующем виде [2]:

v = u+

8
>>><

>>>:

�✓rI1, если ⇢(u) < ��✓(rI1)
2

��✓rI1, если ⇢(u) > �✓(rI1)
2

�⇢(u)/rI1, если |⇢(u)|  �✓(rI1)
2.

(4.32)

Такое решение получается попиксельно путем раскрытия модуля в выражении |⇢(v)|
и последующей подстановкой линейного приближения 4.30 в функционал 4.31. Для
краткости введем для выражения 4.32 следующую запись:

v = T (u,rI1, It). (4.33)

Такая операция является пороговым преобразованием (thresholding) входной пере-
менной u. Временная производная изображения I

t

вычисляется как I
t

= I1(x +

u0x, y+u0y)�I0(x, y) в соответствии с первым и третьим членом в выражении (4.30).

Градиент изображения rI1(x+ u0x, y+ u0y) =
h
@I1
@x

(x+ u0x, y+ u0y),
@I1
@y

(x+ u0x, y+

u0y)
i

вычисляется с использованием операции деформации (warping) следующим
образом:

@I1
@x

=

W(I1, u0x +�x, u0y)� W(I1, u0x ��x, u0y)

2�x
, (4.34)

@I1
@y

=

W(I1, u0x, u0y +�y)� W(I1, u0x, u0y ��y)

2�y
, (4.35)

где W(I, u
x

, u
y

) - результат деформации изображения I с использованием двумерного
поля смещений u, а �x и �y - малые возмущения горизонтальной и вертикальной
компоненты оптического потока u

x0 и u
y0, используемые для вычисления градиента

с использованием центральной разностной схемы.

Подзадача 2. Для фиксированного v решается следующая подзадача:

min

u

Z

⌦
{
X

d=x,y

1

2✓
(u

d

� v
d

)

2
+ kruk1,2}dx. (4.36)

Решение может быть получено с помощью двойственного метода градиентного спус-
ка с перепроектированием на единичный шар, описанного в работе [62]. Итерация
метода записывается следующим образом:
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u = v � ✓r⇤
p, (4.37)

где p = (p1, p2) есть двойственная переменная (переменные p1,2 соответствуют дву-
мерным полям смещений, определенное в области ⌦) и r⇤ есть оператор, сопря-
женный к оператору градиента r. Шаг двойственного метода производится с ис-
пользованием градиентного подъема с последующим перепроектированием на шар,
соответствующий единичной норме:

p

n+1
= P(pn

+ (1/✓)rv), (4.38)

где операция проекции определена следующим образом:

P(p) =
p

max (1, |kpk2 |)
. (4.39)

4.5 Архитектура нейросети.

В соотвествии с методом оптимизации, описанным в предыдущем подразделе, опре-
делим архитектуру нейросети, которая будет состоять из модуля деформации и мо-
дуля итерации двойственного метода (рис. 4.1). Нейросеть получает на вход пару
изображений I0,1 и вычисляет оптический поток, представленный в виде двухка-
нального изображения. Нейросеть обучается на основе размеченных пар изображе-
ний, для которых определены эталонные значения оптического потока. При этом
в качестве функции потерь используется Евклидова ошибка для двумерных векто-
ров смещений, усредненная по изображению. Результат, полученный нейросетью, не
требует дополнительной постобработки.

Оптический поток вычисляется с использованием многомасштабного подхода. Начи-
ная с наиболее крупного масштаба, для которого нейросеть получает на вход нулевое
приближение, полученная оценка оптического потока масштабируется с использова-
нием билинейной интерполяции и шкалируется. Результат вычисления используется
на более и более мелком масштабе, вплоть до исходного разрешения.
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Рис. 4.1: Архитектура нейросети для задачи оптического потока. Сверточная ней-

росеть вычисляет оптический поток последовательно, начиная с нулевого прибли-

жения. При этом используется многомасштабный подход: поле смещений оцени-

вается на изображениях уменьшенного масштаба, и затем оценка используется в

качестве начального приближения для вычисления на следующем масштабе. Для

получения поля смещений на большем масштабе используется билинейная интер-

поляция. Нейросеть для каждого из масштабов состоит из повторяющихся ком-

бинаций из пары модулей: модуля деформации изображения и модуля итерации

двойственого метода. С целью эффективной визуализации, на рисунке показана

пирамида из 3 масштабов с коеффициентами масштабирования 2. В численных

экспериментах используется большее количество масштабов, а также меньшие зна-

чения коеффициентов масштабирования с целью увеличения качества метода.

Модуль деформации. Модуль деформации использует операцию порогового преоб-
разования (4.33) как слой нейросети. Модуль принимает на вход пару изображений
I0,1 на соответствующем масштабе и начальную оценку поля смещений u0 (см рис.
4.2). Для вычисления градиента используется процедура деформации изображе-
ния и центральная разностная схема, описанная выше. Для того, чтобы обучать
нейросеть методом обратного распространения ошибки, для вычисления деформи-
рованного изображения используется слой пространственной деформациии (spatial
transformer layer), предложенный в работе [71]:

@I1
@x

=

S(I1, u0x +�x, u0y)� S(I1, u0x ��x, u0y)

2�x
, (4.40)
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Рис. 4.2: Схематическое представление модуля деформации. Градиенты деформи-

рованного изображения по полям смещений вычисляются с использованием слоя

пространственной трансформации. Такое преобразование основано на деформации

исходного изображения с последующей билинейной интерполяцией и пересэмпли-

рованием.

@I1
@y

=

S(I1, u0x, u0y +�y)� S(I1, u0x, u0y ��y)

2�y
. (4.41)

Такой слой основывается на параметризации решетки, использованной для сэмпли-
рования деформированного изображения. При этом для сэмплирования использует-
ся билинейная интерполяция. Применение данного слоя позволяет вычислять гради-
ент деформированного изображения по компонентам поля смещений. Прочие функ-
ции, используемые для построения модуля деформации соответствуют стадартным
арифметическим операциям и пороговому преобразованию, заданному соотношени-
ем (4.32).
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Рис. 4.3: Схема модуля итерации двойственного метода. Модуль принимает на

вход начальные значения переменных u,p и вычисляет обновленные значения с

использованием обучаемых операторов регуляризации L, L⇤
с последующим пере-

проектированием на единичный шар (4.39).

Модуль итерации двойственного метода. В двойственном методе минимизации об-
новленные значения переменных на каждой итерации вычисляются с использова-
нием операторов регуляризации. Представим эти операторы, r : RN ! RN⇥2 и
r⇤

: RN⇥2 ! RN (N - количество пикселов в изображении) в качестве сверток с
фильтрами, соотвествующими горизонтальной и вертикальной конечной разности:

ru
d

=

h@u
d

@x
,
@u

d

@y

i
= [u

d

⇤ f
x

, u
d

⇤ f
y

], (4.42)

div p =

@p1
@x

+

@p2
@y

= p1 ⇤ ˜f
x

+ p2 ⇤ ˜f
y

. (4.43)

При этом фильтры f
x

и f
y

соответствуют горизонтальной и вертикальной конечной
разности, а фильтры ˜f

x

и ˜f
y

определяют соответствующий сопряженный оператор
r⇤. При этом в терминах нейросети, двойственная переменная соотвествует неко-
торому двухканальному изображению, которое вычисляется при помощи набора из
двух фильтров. Используя аналогичную конструкцию, определим оператор регуля-
ризации L : RN ! RN⇥K с использованием произвольного количества фильтров
K:
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Lu
d

= =

2

666664

u
d

⇤ f1
u
d

⇤ f2
...

u
d

⇤ f
K

3

777775
. (4.44)

При этом сопряженный оператор L⇤
: RN⇥K ! RN , определенный для двойствен-

ной переменной p, на выходе дает изображение, которое имеет K каналов p =

[p1, p2, . . . , pK ]. Такой оператор может быть записан в следующем виде:

L⇤
p =

KX

i=1

p
i

⇤ ˜f
i

. (4.45)

В отличие от оптимизационного метода [2, 62] с фиксированным оператором регуля-
ризации, предложенный метод основан на обучаемой регуляризации, что позволяет
уменьшить ошибку метода. Схема модуля итерации двойственного метода приведе-
на на рис. 4.3. Операция перепроектирования на единичный шар (4.39) выступает
в качестве нелинейного преобразования, используемого для построения нейросети.

Ввиду применения обучаемой регуляризации, количество итераций алгоритма мо-
жет быть снижено по сравнению с оптимизационным методом, основанном на фик-
сированной регуляризации. При этом для каждой итерации, набор фильтров обуча-
ется отдельно с целью увеличения способности нейросети адаптироваться ко вход-
ным данным.

Предложенный метод имеет низкую вычислительную сложность и может быть ис-
пользован для расчетов в реальном времени с использованием графического ускори-
теля (GPU). Количество арифметических операцией оценивается как O(NDMF 2

),
где N - количество пикселов изображения, D - количество слоев нейросети, M -
количество фильтров, а F - размер фильтра.
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Рис. 4.4: Результаты вычисления оптического потока для публичной коллекции

изображений Sintel [72]. Столбцы слева направо: метод, предложенный автором

(обучаемая регуляризация), эталонное значение оптического потока, cредняя квад-

ратичная ошибка. Средняя квадратичная ошибка метода на тестовой выборке со-

ставляет 9,17.
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Рис. 4.5: Сравнение фиксированной и обучаемой регуляризации для задачи опти-

ческого потока. Первый ряд изображений соотвествует фиксированной регуляри-

зации, второй ряд соответствует обучаемой регуляризации, и третий ряд - эталон-

ному значению оптического потока. Обучаемая регуляризация показывает более

качественый результат. Полученные поля смещений содержат меньше выбросов и

позволяют более четко наблюдать границы движущихся объектов.

4.5.1 Численные эксперименты.

Была проведена серия численных экспериментов по оценке предложенного метода
на публичной коллекции изображений Sintel [72]. Для каждой пары изображений
определено эталонное поле смещений на разрешении 1024 ⇥ 436, при этом коллек-
ция содержит сравнительно большие смещения. Вся коллекция была разбита на
тренировочное множество (832 пар изображений) и тестовое множество (208 пар
изображений).

Была задействована пирамида из 15 масштабов, для перехода между разными мас-
штабами была использована билинейная интерполяция. Использовалась пропорция
0,8 для соседних масштабов и 10 слоев нейросети на каждом масштабе. Каждый
слой состоит из модуля деформации и модуля итерации двойственного метода. Банк
фильтров для обучаемых операторов регуляризации состоит из 8 фильтров, ини-
циализированных базисными функциями дискретного косинусного преобразования
(постоянная компонента удалена из набора). Для операторов обучения операторов
L and L⇤ использовались отдельные значения фильтров. Для тренировки нейросети
методом обратного распространения ошибки использовалась Евклидова функция
потерь. Применялся адаптивный градиентный метод, описанный в работе [48] с ша-
гом 1, 0 · 10�5. Процесс обучения занимает 10

4 эпох и требует порядка 24 часов на
графическом ускорителе.



77

Финальная евклидова ошибка на тестовом наборе составила 9,17 (рис. 4.4), что пока-
зывает улучшение качества по сравнению с оптимизационным методом, использую-
щим фиксированный оператором регуляризации. Ошибка такого метода составляет
10,66. Качественное сравнение результатов для методов с фиксированной и обучае-
мой регуляризацией представлено на рис. 4.5.

Размер
изображения

Время
исполнения, с

Частота,
кадров/с

1240x375 0,032 31
1024x436 0,031 32
640x480 0,028 36
512x384 0,025 40

Таблица 4.1: Время работы предложенного метода на графическом ускорителе

NVIDIA Titan X.

Предложенный метод использует малое количество памяти, что позволяет потенци-
ально использовать его на мобильных платформах. Например, при использовании
набора из 8 фильтров, для рассмотренной коллекции изображений нейросеть тре-
бует 40 Мб памяти на этапе исполения при использовании перезаписываемых опе-
раций. Среди предложенных в литературе методов, наиболее перспективными для
использования в реальном времени являются модели FlowNetS [3] и FlowNet 2.0 [4].
Однако их существенным недостатком является сравнительно большое потребление
памяти, а также необходимость претренировки на синтетическом наборе данных,
содержащей 22872 пар изображений. Предложенный метод демонстрирует прирост
производительности более чем в 2 раза по сравнению с моделью FlowNetS [3] при
небольшом увеличении ошибки.

4.6 Многокадровые методы оценки оптического потока

На практике оценка оптического потока как правило производится для видеопосле-
довательности, содержащей большое количество кадров. Целью многокадровых ме-
тодов оценки оптического потока является улучшение качества оцениваемых полей
смещений посредством использования предположения о пространственно-временной
непрерывности движения объектов на сцене.
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Рис. 4.6: Иллюстрация метода пространственно-временной фильтрации (изобра-

жение из работы [1]). Первый и второй столбец соответствуют двум последова-

тельным кадрам видео. Третий столбец показывает динамику изменения одной из

строк изображения по времени (временное измерение соответствует вертикали).

4.6.1 Пространственно-временная фильтрация оптического потока

Классическим подходом для построения многокадрового метода оценки оптического
потока является фильтрация в совместных пространственно-временных измерени-
ях [73]. Трехмерный тензор T получается путем конкатенации последовательных
кадров видеопоследовательности I

t

(x, y) по третьему измерению:

T (x, y, t) = I
t

(x, y). (4.46)

В методе рассматриваются горизонтальные двумерные сечения этого объема (рис. 4.6
(с)), при этом наклон траектории каждого пиксела будет соответствовать горизон-
тальной компоненте скорости. Так, определение ориентации эквивалентно оценке
вектора смещений в единицу времени. В таком подходе, получение устойчивых оце-
нок скорости возможно только при использовании сравнительно больших времен-
ных интервалов. Для того чтобы корректно оценивать вектора скоростей на грани-
цах объектов, требуется накладывать ограничения на пространственные измерения
таких векторов.

4.6.2 Метод, основанный на нахождении траекторий малого ранга

Ввиду того, что визуальной информации не всегда достаточно для сопоставления
изображений, большинство методов полагается на регуляризацию. Однако, при ана-
лизе видеопоследовательностей возможно также использовать информацию о непре-
рывности движения. Одним возможным предположением является линейность рас-
сматриваемых траекторий, однако такой подход корректен только для небольших
промежутков времени, если на видео представлена нежесткая деформация объек-
тов.

Одним из возможных расширений такого допущения является предположение о том,
что траектории, не соответствующие заслоненным объектам, лежат на некотором
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многообразии малого ранга. Однако, как показано в работе [74] такое ограничение
должно быть добавлено в исходную задачу в некотором мягком виде, что позволяет
существенно улучшить качество временной интерполяции. При этом был предложен
способ наложения таких ограничений с использованием коэффициентов в некотором
базисе траекторий и предположении о разреженности этих коеффициентов. Для
последовательности входных изображений, используется следующая функция для
представления траекторий u = (u

x

, u
y

):

u(x, y, n) =
�
u
x

(x, y;n), u
y

(x, y, n)
�
: ⌦⇥ {1, . . . , F} ! R2, (4.47)

где ⌦ - область определения каждого изображения, n - номер кадра от 0 до F . Каж-
доя из траекторий может быть выражена в виде линейной комбинации R базисных
траекторий q

i

:

u(x, y, n) =
RX

i=1

q

i

(n)L
i

(x, y) + "(x, y;n), (4.48)

где "(x, y;n) - ошибка представления: наличие такого слагаемого позволяет накла-
дывать ограничение на ранг тректорий в нежестком виде. Базисные траектории
q

i

(n) определены как вектор-функции:

q1(n), . . . , qR(n) : {1, . . . , F} ! R2, (4.49)

при этом такие функции являются общими для всех пикселов изображения. В
работе рассматриваются ортонормированные базисы в пространстве траекторий.
При этом линейная оболочка набора базисных траекторий называется подпростран-

ством траекторий. Коеффициенты линейной комбинации L
i

(x, y) являются функ-
циями координат.

Для нахождения полей смещений, метод использует постановку оптимизационной
задачи, содержащую три члена: член, отвечающий за входные данные, член отве-
чающий за мягкое ограничение на ранг траекторий и функционал регуляризации.
Описанный метод позволяет оценивать поля смещений по многим кадрам видео и
эффективно использовать результат для временной интерполяции [74].
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4.7 Выводы

Методы оценки оптического потока, демонстрирующие результаты с наименьшей
ошибкой как правило можно поделить на две категории: методы глубокого машин-
ного обучения и оптимизационные методы. При этом наиболее качественные резуль-
таты достигаются при сочетании сопоставления глубоких дескрипторов с методами
регуляризации, основанными на дискретной оптимизации. Такие методы демонстри-
руют меньшую ошибку при большей вычислительной сложности по сравниню с об-
щими сверточными архитектурами, такими как модель FlowNet [3].

Для построения метода машинного обучения, имеющего низкую вычислительную
сложность, автором была предложена сверточная архитектура, полученная путем
представления итераций оптимизационного метода в виде слоев нейросети. При этом
важным аспектом представляется используемый подход к регуляризации. Автором
был предложен метод для обучения оператора регуляризации [12], описанный в дан-
ной главе. Такой подход позволяет улучшить качество оценки метода оценки опти-
ческого потока в реальном времени с незначительным увеличением вычислительной
сложности.



Глава 5

Сопоставление медицинских
ультразвуковых изображений

Данная глава посвящена задаче сопоставления ультразвуковых медицинских изоб-
ражений. Раздел 5.1 содержит постановку задачу эластографии, разделы 5.2 и 5.3
содержат обзоры методов эластографии по двум и многим кадрам. Главу завер-
шает описание метода, предложенного автором (раздел 5.4), приведены результаты
численных экспериментов.

Раздел 5.5 содержит постановку задачу сопоставления ультразвуковых сигналов в
отражательной томографии, описание метода, предложенного автором, и результа-
ты численных экспериментов на синтетических и реальных данных.

5.1 Задача ультразвуковой эластографии

Ультразвуковая эластография - это метод оценки упругости тканей человека, ос-
нованный на сопоставлении ультразвуковых изображений с разной степенью меха-
нического сжатия. В данной работе рассматривается задача так называемой ква-
зистатической эластографии, целью которой является реконструкция механической
деформации ткани из серии ультразвуковых снимков. Одним из наиболее практи-
ческих сложных этапов в построении методов эластографии является оценка меха-
нической деформации из поля смещений.

Ультразвуковая эластография - пример задачи сопоставления изображений, наибо-
лее сходная с задачей вычисления оптического потока, тем не менее, имеющая одно
важное отличие. Целью решения задачи эластографии также является оценка дву-
мерного поля смещений по паре или серии изображений. Однако, для медицинской
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диагностики используется не само поле смещений, а его пространственная производ-
ная, которая соответствует упругости ткани. Оценка пространственной производной
поля смещений требует разработки иных подходов к регуляризации, чем задача вы-
числения оптического потока.

Исследования по ультразвуковой эластографии соответствуют области анализа ме-
дицинских изображений, в связи с этим, нередко имеют терминологию, которая от-
личается от решении задачи сопоставления изображений, рассматриваемой в рамках
компьютерного зрения. Тем не менее, задача является одним из вариантов поста-
новки общей задачи, рассмотренной в данной работе.

5.2 Обзор методов эластографии, основанных на двух

кадрах

Большое количество методов эластографии, предложенных в литературе оценивают
механическую деформацию как производную от поля смещений, полученного со-
поставлением пар ультразвуковых снимков разной степени механического сжатия.
Некоторые методы [5, 75, 76] оценивают поля смещений методом кросс-корреляции
фрагментов изображения. Применение подобных методов без регуляризации при-
водит к шумным полям смещений. При этом результат может быть улучшен путем
использования дополнительных эвристик, таких как, например, адаптивный размер
блока [77].

Серия опубликованных методов основана на применении дискретной оптимизации,
при этом целевая функция состоит из члена, отвечающего за соответствие поля сме-
щений входным данным и функционала регуляризации первого порядка. Например,
метод предложенный в работе [78] использует метод динамического программиро-
вания для минимизации функционала с регуляризацией первого порядка. При этом
склонность метода к нулевому решению, характерная для метода ввиду штрафа,
накладываемого на пространственное изменение поля смещений, исключается за-
счет постобработки результата в виде решения дополнительной задачи непрерыв-
ной минимизации. Однако, такой метод позволяет вычислять боковые смещения в
небольшом ограниченном диапазоне, ввиду использования жадной стратегии поис-
ка. Другой метод, предложенный в работе [79], использует многомасштабный подход
для минимизации схожего функционала. При этом метод склонен к сходимости к
локальному минимуму, поэтому качество результат сильно зависит от начальной
инициализации. Для сильных степеней сжатия, такой метод как правило сходится
либо к локальному минимуму, соответствующему излишне гладкому решению, либо
расходится.



83

Для того, чтобы применять эластографию для медицинской диагностики, произво-
дится реконструкция локального поля механического сжатия на основе поля смеще-
ний. Такая реконструкция основана на вычислении градиента шумных полей сме-
щений. Классическим подход к устойчивому дифференцированию полей смещений
является алгоритм [80], основанный на методе наименьших квадратов. Более по-
дробный обзор методов реконструкции локального поля деформации проводится в
работе [81], он включает в себя методы численного дифференцирования, основан-
ные на построении сплайнов и методы шумоподавления с использованием вейвлет-
преобразования [82, 83]. Численное дифференцирование также может быть записано
в виде обратной задачи, где в качестве линейного оператора выступает интегриро-
вание [84].

Одним из наиболее важных аспектов методов эластографии является нахождение
достаточно гладкого решения, естественным образом описывающим входные дан-
ные. Входные ультразвуковые снимки часто содержат высокий уровень шума, так
что локальные алгоритмы сопоставления дают решения с большим количеством вы-
бросов. При этом качества результата зависит как от сложности изучаемой ткани,
так и от применяемой степени сжатия. На практике, методы локального сопостав-
ления не дают устойчивого решения при использования степени сжатия 2-3%. Од-
нако, использование больших степений сжатия в линейном диапазоне (до 5%) ведет
к проявлению дополнительных деталей на изображениях локальной деформации,
что увеличивает диагностические возможности метода.

Большинство предложенных методов использует регуляризацию для нахождения
полей смещений для высоких степеней сжатия [7, 79]. Часто, при этом, использо-
вание сильной регуляризации, необходимой для получения визуально гладкого ре-
шения, ведет к пересглаженным изображениям, которые не соотвествуют реальным
механическим деформациям и возможно не отражают некоторых деталей челове-
ческой ткани.

Одним из перпективных методов для нахождения устойчивой оценки поля смеще-
ний для изображений большой степени сжатия, является применение двухэтапного
поиска смещений. При этом входное изображение деформируется с применением
первоначальной оценки поля смещений и затем применяется для повторного поиска
смещений, что позволяет уменьшить эффективную степень сжатия [85].
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5.3 Обзор многокадровых методов эластографии

На практике, сопоставление ультразвуковых изображений, встречает ряд трудно-
стей, таких как, например, высокий уровень шума, участки с отсутствующей тек-
стурой. При этом, поле смещений, построенное по двум кадром, может содержать
значительное число выбросов. Одним из перспективных способов по преодолению
данных недостатков, является комбинирование информации с серии кадров. Такой
подход был рассмотрен в настоящей работе.

5.3.1 Метод ElastMI

Одним из методов по улучшению качества эластографии засчет использования несколь-
ких кадров предложен в работе [7]. При этом используется три ультразвуковых
снимка. Метод основан на введение ограничений специального вида, которые осно-
ваны на рассмотрении механики материала с жестким включением. Вводится целе-
вая функция, которая объединяет функционал входных данных и регуляризацию.
Такая функция минимизуется с использованием EM-алгоритма и метода итеративно
взвешиваемых наименьших квадратов с целью уменьшения количества выборосов.

5.3.2 Видеопоследовательность ультразвуковых снимков и видео-

эластограмма

Обобщение традиционного метода эластографии на видеопоследовательность пред-
ставлено в работе [86]. В то время как большинство методов эластографии опери-
рует парами или тройками снимков, данный метод осуществляет реконструкцию
пространственно-временной зависимости полей механических деформации на осно-
ве видеопоследовательностей ультразвуковых изображений. Метод использует спе-
цильную адаптивную меру близости, основанную на вычислении соотношения сиг-
нала и шума.

При анализе видеопоследовательностей, наиболее практически трудным представ-
ляется временное выравнивание рассматриваемых траекторий. При этом использу-
ется предположении о непрерывности изучаемого движения. Базовым методом при
переходе каждому следующему кадру является накопление поля смещений.
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Рис. 5.1: Схематическое изображение различных подходов к пространственно-

временному сопоставлению изображений (рисунок из работы [86]). Представлены

три различных способа обновления траекторий по времени: метод без обновления,

метод обновления по времени и метод дрейфового обновления.

Применение подобного метода корректно только в течение ограниченного проме-
жутка времени. За пределами такого промежутка требуется алгоритм временного
обновления, например:

It+1
(x, y) = It(x+ dt

x

(x, y), y + dt
y

(x, y)). (5.1)

Несмотря на то, что небольшие смещения между последовательными кадрами видео
могут быть оценены достаточно точно, даже небольшая ошибка с течением времени
имеет свойство накапливаться. Такой эффект называется временным дрейфом. Для
того, чтобы избежать накопления ошибки, в методе применяется специальная схема
дрейфового обновления. Метод основан на временном выравнивании, схематически
представленном на рис. 5.1.

5.4 Метод регуляризованной многокадровой эластогра-

фии

5.4.1 Описание метода

Этот подраздел описывает метод решения задачи ультразвуковой эластографии,
предложенный автором. Метод имеет ряд преимуществ по сравнению с другими
методами, предложенными в литературе. Основное преимущество состоит в воз-
можности получать более качественные оценки механической деформации засчет
использования трех кадров с известным соотношением силы нажатия (большинство
предложенных в литературе методов использует два кадра). При этом сила нажатия
определяется аппаратно, используя специальный вариант ультразвуковой пробы с



86

встроенным датчиком силы, описанным в работе [87]. Такая проба была спроекти-
рована с целью увеличения степени контроля за процессом получения изображений,
что представляется важным на практике в связи с заметным влиянием неточностей
оператора на качество получаемых снимков. Так, использование контроллируемой
пробы в экспериментах, описанных в данной работе, позволяет применить к дат-
чику предписанное значение силы нажатия, а также гарантировать плавное изме-
нение величины силы при получении нескольких кадров. Однако, разработанный
метод также может быть применен с использованием пробы, не имеющей датчика
силы, при этом соотношение между величиной силы для разных кадров может быть
определено алгоритмически из входных данных. Такой подход увеличивает вычис-
лительную сложность метода и вносит в качество снимков зависимость от точности
оператора.

Преложенный автором подход предлагает метод реконструкции механического сжа-
тия, который основан на использовании триплетов ультразвуковых снимков. Рекон-
струкция механической деформации основана на минимизации фукнционала, где в
качестве регуляризации используется адаптивный вариант полной вариации (total
variation). Используемый для минимизации двойственный метод градиентного спус-
ка был пареллилизован и эффективно реализован автором с использованием гра-
фического ускорителя.

Предложенный метод был провадилирован в серии экспериментов с использовани-
ем данных численного моделирования. В этом случае был смоделирован процесс
получения ультразвукового изображения на деформированных объектах известной
геометрии. Процесс деформации был расчитан с использованием метода конечных
элементов. Предложенный метод также был применен к фантомам, изготовленным
из смеси желатина и агара - такие фантомы имеют известную геометрию и позво-
ляют количественно оценить способность метода к выделению мягких или жестких
включений сферической или цилиндрической формы в деформируемых органиче-
ских материалах. Проведенные эксперименты показали, что метод позволяет оце-
нить поле смещений для вдвое большей силы сжатия по сравнению с методами,
основанными на использовании двух кадров, что ведет к увеличению простран-
ственного разрешения получаемых оценок механической деформации. Такой вывод
далее подтверждается серией экспериментов на реальных клинических данных, для
которых метод позволяет получить более четкие изображения жестких включений
ввиду использования большей силы нажатия. Результаты также подтверждают це-
лесообразность использования контроллируемой ультразвуковой пробы для эласто-
графии.
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5.4.1.1 Оценка поля смещения

Во многих случаях при исследовании тканей человека, в диапазоне от 0 до 5% сжа-
тия, связь между величиной силы нажатия и механической деформацией линей-
на [7]. Однако, имеется несколько причин, ввиду которых линейное соотношение
нарушается, например ввиду наличия источников механического давления внутри
тканей, таких как, например, кровеносные сосуды и стенки артерий. Другой ряд
причин включает в себя ненулевой вращательный момент, который получает проба
от оператора и случайное изменение плоскости, вдоль которой получется изображе-
ние. В таком случае целесообразно уточнять первоначальную оценку деформации,
основанную на описанном линейном соотношении, для того чтобы учесть нелиней-
ные эффекты - такой подход лежит в основе метода, предложенного автором.

Введем обозначения, используемые при описании метода. Обозначим входные три
кадра ультразвукового снимка как I0, I1, I2. Ультразвуковой снимок состоит из m

одномерных сигналов по n временных отсчетов каждый, что соответствует изобра-
жению размера m⇥n. Каждая пара кадров может быть сопоставлена при помощи
двумерного поля смещения d(x, y) = (d

a

(x, y), d
l

(x, y)), определенного для каждо-
го пиксела p = (x, y) эталонного (первого) кадра, так что пиксел соотносится с
пикселом p�d(p) на втором кадре. Поля d

a

и d
l

есть продольные и поперечные ком-
поненты смещений соответственно. Задачей ультразвуковой эластографии является
оценка двумерного поля механической деформации s(x, y) = (s

a

(x, y), s
l

(x, y)), кото-
рое может быть получено из поля смещения путем дифференцирования, описанного
ниже.

Для каждого кадра, вектор смещения полагается целочисленным и конечным внут-
ри преписанного декартово произведения двух интервалов ⇤ (окна поиска) и может
быть записано следующим образом:

⇤ = {0, . . . ,+D
a

}⇥ {�D
l

, . . . ,+D
l

} . (5.2)

Где D
a

и D
l

- максимальные абослютные значения продольного и поперечного сме-
щения соответственно.

Первым этапом предложенного метода является вычисление поля смещения для
небольшой контактной силы, соответствующей приблизительной степени сжатия
1%. При этом используется стандартный локальный алгоритм поиска соотвеству-
ющих фрагментов по прямоугольному окну методом полного перебора. Обозначим
результат такой процедуры следующим образом:

d

coarse

= B(I0, I1) , (5.3)
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Где B - алгоритм поиска смещений описанный выше, который принимает на выход
пару кадров и вычисляет двумерное поле смещений. Обозначим за d

coarse

двумер-
ный вектор смещений, вычисленный для пары изображений (I0, I1).

Использование описанной выше ультразвуковой пробы позволяет получать значе-
ние силы нажатия в режиме реального времени, что позволяет без дополнительной
задержки экстраполировать полученное значение поля смещений на большую сте-
пень сжатия, соответствующую третьему кадру I2 (при этом на практике характер-
ная степень сжатия составляет 2-3%). Таким образом получается первоначальная
оценка поля смещения на основе линейного соотношения сила-деформация.

Определим операцию деформации изображения. Пусть W - функция деформации,
которая принимает на вход изображение I и поле смещений d = (d

x

, d
y

):

I
d

= W (I,d), (5.4)

Тогда интенсивность деформированного выражения выражается следующим обра-
зом:

I
d

(x, y) = I(x� d
x

, y � d
y

). (5.5)

Для того, чтобы уточнить первоначальное приближение f2
f1

d

coarse

, полученное для
поля смещений, запускается второй проход аналогичной процедуры поиска двумер-
ных смещений, при этом на вход процедуре подается пара изображений I0 и де-
формированная с использованием первоначальной оценки смещения версия кадра
I2, которая может быть обозначена как W(I2,

f2
f1

d

coarse

). При этом интервал поиска
смещения на данном этапе может быть существенно сужен:

d

local

= B

✓
I0, W(I2,

f2
f1

d

coarse

)

◆
. (5.6)

Используя оценки d

coarse

и d

local

, поле смещения для кадров I0 и I2 может быть
получено суммированием:

d

total

=

f2
f1

d

coarse

+ d

local

. (5.7)

Полное смещение подается на вход процедуры реконструкции механической дефор-
мации, описанной в следующем подразделе.

В качестве метрики для фрагментов изображения используется сумма квадратов
разностей интенсивностей (SSD) по прямоугольному окну. Такой метод аналогичен
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Рис. 5.2: Пример поля смещений для ткани печени человека (данные для экспе-

римента предоставлены авторами работы [7]).

локальному методу стерео-сопоставления, заданному соотношением 3.2 и описан-
ному в разделе 3.2.1. Помимо поля смещений, процедура выдает на выходе меру
качества полученного поля смещения q(x, y), оцененную как относительную ошиб-
ку сопоставления в той же метрике.

Описанный метод использует линейное соотношение между контактной силой и де-
формации только в качестве начального приближения и позволяет вычислять от-
клонения от линейной модели, которые встречаются на практике.

5.4.1.2 Оценка механической деформации

5.4.1.3 Функционал.

Главной подзадачей ультразвуковой эластографии является вычисление механиче-
ской деформации на основе полученного поля смещения. При этом оценки поля
смещения на практике часто содержат выбросы и большое количество шума, что не
позволяет напрямую применять техники численного дифференцирования ввиду их
недостаточной устойчивости. При этом могут быть использованы идеи, предложен-
ные в современных методах шумоподавления и методах решения обратных задач,
таких как [52, 54, 88]. Исследование возможности подобных методов для задачи
ультразвуковой эластографии является одним из предметов данного исследования.

В соотвествии со сходной работой [81] оценка механической деформации формули-
руется в качестве обратной задачи, при этом используется функционал следующего
вида:

E(s
a

) = ||As
a

� d
a

||2 + �⇢(s
a

), (5.8)
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Где s
a

- регуляризованная оценка продольной деформации, ⇢(s
a

) - функционал,
соответствующий регуляризации и � - постоянный коеффициент, контроллирующий
степень сглаживания. Действие оператора A описывается следующим образом:

As
a

+ d
a

(0) =

Z
L

0
s
a

(x)dx+ d
a

(0) = d(L). (5.9)

Для фиксированного поля смещений, задача оценки механической деформации яв-
ляется выпуклой оптимизационной задачей. Качество решения, полученное нахож-
дением глобального минимума, зависит от выбора регуляризационного функциона-
ла.

В соответствии с проведенными авторам численными экспериментами, оценка поля
смещений часто содержит участки со значительной ошибкой, часто встречаемые на
границе различных тканей. В таком случае, большая ошибка в оценке поля сме-
щений даже на небольшом пространственном участке, приводит к существенным
выбросам и разрывам в оценке механической деформации. При этом качество со-
поставления может быть оценено количественно, используя относительную ошибку
интенсивности в L2 норме (рис. 5.2). Такая оценка позволяет использовать адап-
тивную регуляризацию: в регионах сопоставления с низкой ошибкой полагаться на
входные изображения, а в регионах с высокой ошибкой - полагаться на регуляри-
зацию. На вышеказанном рис. 5.2 приведена относительная ошибка сопоставления
и соответствующее поле смещений. Для того, чтобы включить информацию о ка-
честве сопоставления в регуляризационный функционал, вводится матрица весов
D = diag(w), которая зависит от описанной выше меры качества сопоставления:

E(s
a

) = ||D(As
a

� d
a

)||2 + �⇢(s
a

). (5.10)

Вычисление произведения As
a

в уравнении (5.10) является трудоемким ввиду того,
что матрица A содержит около половины ненулевых элементов. Т.к. оценка меха-
нической деформации является локальной, вычислительная сложность может быть
снижена, используя интегрирование по меньшей окрестности. Численные экспери-
менты, проведеные автором, показали, что использование окрестности в 100 вре-
менных отсчетов приводит к визуально неразличимым результатам по сравнению с
использованием полного изображения. Однако, ввиду наличия эффективных парал-
лельных реализаций операции префиксной суммы (cumsum), в работе для простоты
используется интегрирование по полному интервалу от 0 до L.

В алгоритме используется бинарная маска весов w(x, y) для каждого пиксела, ос-
нованная на пороговом отсечении относительной ошибки сопоставления q(x, y) для
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того, чтобы разделить пикселы на две категории, соответствующих высокой и низ-
кой ошибке сопоставления:

w(x, y) =

8
<

:
1 q(x, y) < t

0 q(x, y) � t
(5.11)

Так, пикселы со значениями весов w(x, y), близкими к нулю, соответствуют невер-
ному сопоставлению - решение в таких регионах полностью полагается на регуля-
ризацию.

5.4.1.4 Регуляризация.

Регуляризация c использованием L2
нормы. Для того, чтобы форсировать

пространственную гладкость оценки поля деформаций, накладывается штраф на
пространственные изменения этого поля:

E(s
a

) = ||D(As
a

� d
a

)||2 +
Z �

↵[D
x

s
a

]

2
+ [D

y

s
a

]

2
�
, (5.12)

где D
x

и D
y

- операторы дифференцирования методом конечных разностей в го-
ризонтальном и вертикальном направлении соответственно. Т.к. вертикальное раз-
решение ультразвукового снимка существенно ниже горизонтального, вводится до-
польнительный коеффициент ↵, для того чтобы компенсировать эту разницу. Ре-
шение находится минимизацией функционала методом наименьших квадратов, при
этом наиболее вычислительно трудоемкий этап соотвествует решению разреженной
линейной системы уравнений.

Регуляризация с использованием полной вариации. В соответствии с прове-
денными численными экспериментами, использование L2 нормы в качестве регуля-
ризации ведет к пересглаженным решениям с потерей визуальной информации на
границах тканей. Для избежания подобного эффекта, представляется целесообраз-
ным использование полной вариации (total variation [51]) в качестве регуляризаци-
онного члена. При этом исходный функционал может быть записан в виде:

E(s
a

) = kD(As
a

� d
a

)k2 + �TV
↵

(s
a

), (5.13)

где второй член выражается как:

TV
↵

(s
a

) =

Z q
↵[D

x

s
a

]

2
+ [D

y

s
a

]

2. (5.14)
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Использование регуляризации на основе полной вариации ведет к сохранению гра-
ниц на перепадах между мягкими и жесткими тканями. При этом возможно исполь-
зование эффективных реализаций двойственного градиентного метода, описанного
ниже, для эффективной минимизации. Численные эксперименты, проведеные ав-
тором не показали улучшения при использовании регуляризации второго порядка,
предложенной в работах [52, 54].

Используя двойственное определение нормы, описанный регуляризационный член
может быть записан в виде:

TV
↵

(u) = sup{
Z

u div
↵

v, kvk1  1.} (5.15)

При этом используются операторы градиента и дивергенции:

div
↵

v = ↵
@v1
@x

+

@v2
@y

, (5.16)

r
↵

u =

✓
↵
@u

@x
,
@u

@y

◆
. (5.17)

Для сопряженного оператора выполняется следующее соотношение:

( div
↵

)

⇤
= �r

↵

. (5.18)

5.4.1.5 Минимизация.

В соответствии с работой [89], автором был использован двойственный градиентный
метод минимизации. Диагональная матрица D опущена для простоты, при этом
минимизация может быть в виде выпукло-вогнутой задачи:

min

s

a

2S
max

p2P,r2R
hrs

a

,pi+ hAs
a

� d
a

, ri � �

2

krk22. (5.19)

Где p и r это двойственные переменные по отношению к s
a

и значению невязки
(As

a

� d
a

) соответственно. P и R - единичные шары, соответствующие тем же пе-
ременым:

P = {p 2 C2mn, kpk1  1}. (5.20)
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Также может быть определено следующее проксимальное отображение:

prox�2 (˜r) = argmin

r2R

kr � ˜

rk22
2�

+

�

2

krk22 =
˜

r

1 + ��
. (5.21)

Минимизация может быть проведена следующим образом. Положим s
a

= 0, p =

0,r = 0, выберем ⌧,� > 0. В соответствии с методом [53] на каждой итерации зна-
чения переменных обновляется согласно соотношениям:

p = proj
P

(p+ �rs
a

), (5.22)

r = prox�2 (r + �(As
a

� d
a

)), (5.23)

s = s+ ⌧(divp�A⇤
r). (5.24)

Процедура выполняется до сходимости s
a

. При этом на практике представляется
важным выбор шага минимизации, для этого автором была использована стратегия,
описанная [90], где значения шагов ⌧ и � на итерации n описываются следующим
образом:

�
n

= 0, 2 + 0, 08n, (5.25)

⌧
n

=

✓
0, 5� 5, 0

15, 0 + n

◆
. (5.26)

Дискретизация операторов градиента и дивергенции [52] производится с использо-
ванием конечных разностей:

div v = �
x+v1 + �

y+v2, (5.27)

ru = (�
x�u1, �y�u2), (5.28)

где �
x+, �y+ и �

x�, �y� соответствуют использованию конечных разностей горизон-
тального и вертикального направлений.

5.4.1.6 Реализация с использованием графических ускорителей.

Двойственный алгоритм градиентного спуска может быть параллелизован на уровне
различных пикселов изображения. Такая параллелизация может быть естественным
образом реализована на графическом ускорителе (GPU).

При этом важным практическим аспектом является использование локальной па-
мяти. Автором была разработана эффективная реализация метода с использова-
нием локальной памяти: при этом значения прямых и двойственных переменных в



94

Значение силы Значение силы Относительная ошибка
(прямое измерение) (оценка из смещений)

1,61 1,51 6%
1,68 1,68 0%
1,75 1,86 6%
1,75 1,84 5%
1,80 1,90 6%
1,86 1,76 5%
2,36 2,21 6%

Таблица 5.1: Ошибка алгоритмической оценки силы нажатия. Таблица содержит

результаты оценки силы, произведеной двумя способами: первый столбец содер-

жит значения приложенной силы, полученные путем прямого измерения и второй

столбец содержит значения, оцененные алгоритмически c использованием пар со-

ответствующих изображений. Проведеные результаты показывают, что средняя

ошибка алгоритмической оценки составляет 5%.

окрестности текущего пиксела загружаются в локальную память, вычисляется одна
итерация метода, и результат снова записывается в глобальную память.

Наиболее трудным на практике представляется реализация префиксной суммы. Ав-
тором была использована библиотека NVIDIA Thrust [91] для вычисления префикс-
ных сумм, а также для параллелизации базовых векторных операций, используемых
в итеративном алгоритме.

Вычисление значения целевого функционала, используемого для проверки на схо-
димость производится каждые 100 итераций метода с целью экономии вычислитель-
ных ресурсов.

5.4.2 Численные эксперименты

Далее, приводятся количественные и качественные результаты применения предо-
женных методов на следующих экспериментах: моделирование сжатия синтетиче-
ских фантомов с известной геометрией, снимки специально изготовленных фанто-
мов с приближенно известной геометрией и снимки реальных тканей человека.

Набор сравниваемых методов. Автором были произведены численные экспери-
менты по сравнению следующих пяти методов, из которых четыре являются разно-
видностями предложенного подхода. Четыре метода соотвествуют использованию
двух видов регуляризации (L2 норма и полная вариация) и разному количеству
используемых кадров (пары и тройки кадров). При использовании пары изображе-
ний, результат сопоставления используется для оценки механического изображения
в соотвествии с рядом работ, предложенных в литературе [78, 92, 93].
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Оценки поля продольной механической деформации для синтетического фантома.

Рис. 5.3: Оценка вертикальной компоненты поля механических деформаций для

фантомов, содержащих 6 включений: (а) эталонные значения, (б) L2
регуляри-

зация (2 кадра), (в) L2
регуляризации (3 кадра), (г) полная вариация (2 кадра),

(д) полная вариация (3 кадра), (е) метод, основанный на динамическом програм-

мировании. Наилучшие результаты получены с использованием 3 кадров. Пред-

ложенный метод превосходит метод на основе динамического программирования

при использовании любого из двух предложенных подходов для регуляризации

.

Преложенные методы были сравнены с методом оценки поля смещений на основе
динамического программирования, при этом производная поля смещений была вы-
числена с использованием регуляризации (использовалась полная вариация). Такой
метод аналогичен ряду работ [6, 94], что позволяет сравнить их с предложенным
подходом. При этом параметры метода были подобраны для получения оптималь-
ных результатов.

Продолжение данного раздела содержит описание используемых данных и резуль-
таты численных экспериментов.

Синтетический эксперимент на основе моделирования сжатия фантома

известной геометрии.
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Для моделирования сжатия синтетических фантомов был использован пакет про-
грамм Abaqus [95]. При этом использовалась степень сжатия до 5% в продольном
направлении. Для моделирования был использован метод конечных элементов.

Для этого эксперимента были использованы следующие значения диаметра сфери-
ческих включений: 6, 4, 2, 1, 0,5 и 0,25 мм, расположенных линейно в продольном
направлении. Включения имеют модуль упругости 30кПа, в то время как остальной
объем имеет модуль упругости 15 кПа. Для моделирования формирования ультра-
звуковых изображений использовался программный пакет Field-II [96, 97], при этом
было задано разрешение 3400 ⇥ 128. Центральная частота ультразвукового пучка,
использованная при моделировании соответствует 5 МГц.

В практических приложениях, наибольший интерес представляет использование
эластографии для сегментации опухолей. В связи с этим для предложенных ме-
тодов была количественно оценена способность выделения жестких включений на
основе метода пороговой сегментации. При этом в качестве количественной меры
был использован индекс Джаккарта (соотношение пересечения и объединения для
оцененой и эталонной сегментации):

J(A,B) =

|A \B|
|A [B| . (5.29)

Т.к. только три наиболее крупных включения были выделены рассмотренными ме-
тодами, в таблице 5.2 приведены значения индекса Джаккарта, соответствующие
трем включениям. Результаты сегментации представлены на рис. 5.4. После про-
ведения экспериментов было экспериментально установлено, что для методов на
основе 3 кадров, использование степеней сжатия в 1% и 3% является оптимальным
для второго и третьего кадров соответственно.

Приведенные результаты (рис. 5.3) показывают, что метод на основе трех кадров
превосходит по качеству метод на основе двух кадров и метод на основе динами-
ческого пограммирования. Главной причиной количественного улучшения является
возможность использовать большие степени сжатия при использовании трех кадров.

Набор синтетических фантомов случайной геометрии. Ввиду того, что че-
ловеческая ткань имеет многослойную структуру, одним из важных аспектов ме-
тодов эластографии является способность выделять опухоли, т.е. твердые и мягкие
включения, расположенные между слоями различной жесткости. Для того, чтобы
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Рис. 5.4: Результаты сегментации для фантомов, содержащих 6 жестких включе-

ний: (а) эталонный результат, (б) L2 регуляризация (2 кадра), (в) L2 регуляриза-

ция (3 кадра), (г) полная вариация (2 кадра), (д) полная вариация (3 кадра), (е)

метод на основе динамического программирования. Результаты показывают пре-

восходство метода на основе трех кадров вне зависимости от выбранного метода

регуляризации.

Метод 6 мм 4 мм 2 мм
Динамическое программирование 81,1% 66,2% 57,0%
Полная вариация (2 кадра) 77,7% 77,8% 84,0%
Полная вариация (3 кадра) 80,4% 81,4% 86,0%
L2 регуляризация (2 кадра) 78,5% 75,5% 69,9%
L2 регуляризация (3 кадра) 80,9% 78,5% 87,2%

Таблица 5.2: Индекс Джаккарта для трех жестких включений. Метод на основе

трех кадров демонстрирует наилучшие результаты.

измерить относительную производительность рассмотренных методов, был смоде-
лирован набор из 7 синтетических фантомов с 4 круглыми включениями каждый
(три из них показаны на рис. 5.5).

При этом каждый слой имеет случайную толщину, суммарная высота слоев состов-
ляет 44,45 мм. Координаты включений также были выбраны случайным образом
внутри объема фантомов. Каждый фантом состоит из включений с модулем упру-
гости 5 кПа, 10 кПа, 50 кПа и 120 кПа. Включения имеют диаметр 2 мм и модуль
упругости 30 кПа. Для моделирования также был использован метод конечных эле-
ментов.

Сначала была вычислена оценка поля деформаций, используя пару изображений:
изображение без сжатия и изображение с 1% сжатия. Затем, были вычислены оцен-
ки поля деформаций на основе тройки изображений: изображение без сжатия, изоб-
ражение с 0,5% сжатия и изображение с 3,0% сжатия.
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Метод Cредний инд. Джаккарта Cредняя L2 ошибка
Полная вариация (2 кадра) 31,0% 7, 0 · 10�2

Полная вариация (3 кадра) 40,5% 5, 9 · 10�2

Динамическое прогр. 25,6% 27, 6 · 10�2

L2 регуляризация (2 кадра) 34,6% 6, 4 · 10�2

L2 регуляризация (3 кадра) 41,0% 5, 5 · 10�2

Таблица 5.3: Количественное сравнение различных методов для 7 синтетических

фантомов со случайной геометрией. Фантомы содержат сферические включения со

случайными координатами, расположенными между слоями материала различной

жесткости.
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Рис. 5.5: Оценки механической деформации для трех синтетических фантомов.

Столбцы слева направо: (а) эталонные значения, (б) метод на основе динамиче-

ского программирования, (в) полная вариация (3 кадра), (г) L2
регуляризация (3

кадра)

В таблице 5.3 приведены результаты для набора из 7 случайных фантомов (всего 28
включений): средний индекс Джаккарта и средняя L2 ошибка для квадратного ре-
гиона размером 2,5 мм, окружающего каждое из сферических включений (таб. 5.3).
Также показана кумулятивная гистограмма ошибки, т.е. доля включений, имеющих
ошибку меньше, чем некоторое предписанное значение для обеих мер (рис. 5.7).

Проведенные автором численные эксперименты показали преимущество предложен-
ного метода, основанного на использовании трех кадров по сравнению с методом, ис-
пользующим 2 кадра. Оба критерия, выбранных для количественной оценки ошиб-
ки, показывают превосходство предложенного метода над методом на основе дина-
мического программирования.
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Рис. 5.6: Сравнение L2
регуляризации и полной вариации (были использованы

реальные данные, на рисунке приведена часть изображения 5.12). Использование

полной вариации позволяет получить более четкие изображения поля деформации

на границах тканей различной жесткости.

Рис. 5.7: Кумулятивный график ошибки для индекса Джаккарта. Каждый из

графиков показывает долю всех включений, которые имеют L2
ошибку и индекс

Джаккарта меньше, чем значение, соответствующее оси абсцисс. Все четыре пред-

ложенных метода значительно превосходят метод на основе динамического про-

граммирования, тогда как метод на основе двух кадров превосходит метод на ос-

нове трех кадров. Использование двух описанных подходов для регуляризации

ведет к сравнимым результатам.

Согласно проведенным численным экспериментам не было обнаружено улучшения
при использовании регуляризации на основе полной вариации по сравнению с L2

регуляризацией. Однако качественные наблюдения показывают, что использование
полной вариации порождает решение с более четкими границами, что ведет к более
легкому выделению жестких включений при визуальном наблюдении.

Фантомы, изготовленные из желатина и агара. Описанная ниже серия экспе-
риментов была произведена с использованием специально изготовленных фантомов
из желатина и агара. Для получения ультразвуковых снимков была использована
ультразвуковая проба Terason 3000t с частотой 5 МГц. Для измерения контактной
силы было использовано устройство, описанное в работе [98].
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Проведенные автором эксперименты (рис. 5.8) подтверждают способность предло-
женного метода и выделять мягкие включения уменьшющегося размера вплоть до
4 мм с высокой степенью достоверности. При этом достаточно использовать метод
на основе пары кадров на основе полной вариации. Использование трех кадров поз-
воляет увеличить степень сжатия с 1% до 2% (использование двух кадров в таком
случае влечет большое количество выбросов рис. 5.8, нижний ряд). В результа-
те использования более высокой степени сжатия, предложенный метод позволяет
выделять включения небольшого размера вплоть до 2 мм, что не представляется
возможным для метода на основе двух кадров.

На рис. 5.9 приведена оценка механической деформации для набора из трех фанто-
мов с жесткими цилиндрическими включениями и соответствующие индексы Дж-
аккарта. В качестве эталонной формы были рассмотрены круги соотвествующего
радиуса, оптимальное расположение которых была выбрано для каждого из изоб-
ражения механической деформации в пределах окна поиска размера 0,8 мм.

Эксперимент для тканей человека. Для проведения эксперимента, описанного в
данном подразделе были использованы ультразвуковые снимки печени человека, со-
держащей злокачественную опухоль. Снимки получены при помощи ульразвуковой
пробы Antares Siemens System. Для использования методов на основе трех кадров
были использованы уровни сжатия 1,5% и 3,0%. Эксперимент основан на косвенном
измерении степени сжатия и показывает возможность применения предложенно-
го метода для изображений со стандартной ультразвуковой пробы, не содержащей
датчика измерения контактной силы.

Результаты, приведеные на рис. 5.12, показывают, что предложенный метод оценки
механической деформации на основе трех снимков показывает значительно лучший
контраст для жестких и мягких включений, что является следствием возможности
использования больших степеней сжатия. Несколько мягких и твердых включений
проявляются на изображении благодаря использованию метода, основанного на ис-
пользовании трех кадров. В дополнение, использование полной вариации позволяет
сохранить резкие границы. При этом проявляется кусочно-постоянный характер
решений, который не имеет значительного влияния на возможности использования
изображений в медицинской диагностике.
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Рис. 5.8: Оценка механической деформации для фантомов из желатина и агара

c включениями размера 6,4,2 мм соответственно (слева направо). Первая строка:

ультразвуковое изображение, вторая строка: метод с использованием двух кадров

с использованием полной вариации, третья строка: метод на основе трех кадров с

использованием полной вариации, четвертая строка: оценка механической дефор-

мации для высокой степени сжатия с использованием двух кадров.
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Рис. 5.9: Поля механической деформации для фантомов из желатина и агара с

жесткими включениями диаметра (слева-направо). Первая строка: УЗИ снимок,

вторая строка: результат метода для двух кадров, полная вариация, третья строка:

метод основанный на трех кадров и использованием полной вариации, четвертая

строка: метод на двух кадров, примененый к первому и третьему кадров из тройки,

соответствующих более сильной степени сжатия. Приводится индекс Джаккарта

для каждого случая. Эталонная форма обозначена красными окружностями на

УЗИ снимках наряду с оптимальными линиями уровня для сегментации и вычис-

ления индекса Джаккарта.
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Рис. 5.10: Эксперимент по оценке ошибке косвенного измерения контактной си-

лы, основанной на сопоставлении изображений. График показывает относитель-

ную ошибку косвенного измерения по отношению к значениям, полученным с дат-

чика измерения силы. Синяя линия соответствуют фиксированному окну поиска

для второго этапа оценки поля смещений (рис. 5.9, третья строка, первый стол-

бец), красная линия соответствет расширенному окну поиска для второго этапа

сопоставления.

Вычислительная сложность и время исполнения метода.

Предложенный автором метод состоит из двух этапов: сопоставление блоков (ис-
пользуется два раза) и реконструкция деформации. Количество арифметических
операций при сопоставлении блоков оценивается как O(ND

a

D
l

), где N - количество
пикселов изображения, D

a

и D
l

- максимальные абсолютные значения продольных
и поперечных смещений соответственно. Количество операций при реконструкции
деформации составляет O(N).

На практике для реальных данных были использованы блоки 100x4 пикселов для
сопоставления с последующим применением медианного фильтра размера 9x7. Для
первого этапа сопоставления изображений используется степень сжатия 1%, в то
время как для второго этапа поиск производится внутри меньшего окна. Описание
эффективной реализации сопоставления изображения методом сравнения блоков в
применении к задаче эластографии описан в работе [99]. Последовательная реали-
зации на языке MATLAB, предложенная автором выполняется в течение 3,5 сек на
реальных данных.

Реализация алгоритма реконструкции механической деформации с использовани-
ем графических ускорителей, предложенная автором была протестирована на гра-
фическом ускорителе GTX 690 с использованием библиотеки CUDA 5.5, при этом
время исполнения составляет 0,54 сек для реальных данных размера 450x256 (поле
смещений размера 1800x256 после четырехкратного уменьшения разрешения в вер-
тикальном направлении). Соответствующее время исполнения на мобильной версии
графического ускорителя NVIDIA GeForce GT 650M c использованием библиотеки
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Рис. 5.11: Поле механической деформации для ткани печени человека, содер-

жащей злокачественную опухоль: (а) УЗИ снимок, (б) продольная деформация,

2 кадра, 3% сжатия, (в) продольная деформация, 2 кадра, 1,5% деформация (г)

продольная деформация, 3 кадра, 3% деформация, (д) поперечная деформация, 2

кадра, 1,5% сжатия, (е) поперечная деформация 3 кадра, 3% сжатия. Предложен-

ный метод демонстрирует улучшенную способность выделять мягкие и жесткие

включения засчет использования более высоких степенй сжатия. Злокачественная

опухоль (область высокой деформации слева от центра изображения) становится

более легко выделяемой при использовании метода основанном на трех кадрах.
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Рис. 5.12: Поля деформации для ткани печени человека, содержащей злокаче-

ственную опухоль: (a) УЗИ снимок, (b) продольная деформация, 2 кадра, 3% сжа-

тия, (c) продольное смещение, 2 кадра, 1,5% сжатия, (d) продольная деформация, 3

кадра, 3% сжатия, (e) поперечная деформация, 2 кадра, 1,5% сжатия, (f) попереч-

ное смещение, 3 кадра, 3% сжатия. Предоженный автором метод демонстрирует

улучшенную способность выделять мягкие и жесткие включения засчет исполь-

зование больших степеней сжатия для метода, основанного на применении трех

кадров. Злокачественная опухоль (участок высокой деформации слева от центра

изображения) становится более четко видимым при использовании метода на ос-

нове трех кадров.
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CUDA 6.0 составило 0,98 сек. Приведенные времена исполнения показывают воз-
можность клинического применения метода, т.к. время получения данных при ис-
пользовании контактной силы составляет порядка нескольких секунд.

Косвенное измерения степени сжатия на основе сопоставления изображе-

ний. Метод, предложенный автором, применим для любых ультразвуковых проб до
тех пор, пока проба не получает значительный вращательный момент. Была про-
ведена серия экспериментов, в которых значение силы, полученное со специальной
ультразвуковой пробы было сопоставлено со значением силы, измеренном алгорит-
мически. Для этого были использованы специально изготовленые фантомы из же-
латина и агара. Для определения силы используется соотношение для полей сме-
щения. Степень сжатия, соответствующая кадру с наименьшей силой принимается
за единичную, затем вычисляется соотношение смещений для каждого пиксела. За-
тем относительное значение силы оценивается как медиана соотношения смещений.
Таблица 5.1 содержит сравнение значения силы, измеренное напрямую и косвенно
для 8 серий снимков.

В соответствии с проведенными экспериментами, относительная ошибка косвенного
измерения силы поставляет 5%, в то время как ошибка прямого измерения силы
ограничена 2%. Для того чтобы далее оценить устойчивость алгоритма, основанно-
го на трех кадрах по отношению к ошибке в силе, был проведен следующий экс-
перимент. Был построен график зависимости ошибки сегментации по отношению к
относительной ошибке в силе. Фиксированное окно поиска было использовано для
первого эксперимента (см. рис. 5.10, синяя кривая) и расширенное окно поиска - для
второго эксперимента (см. рис. 5.10, красная кривая). Эксперимент показал, что ме-
тод может быть применен для данных без значения силы посредством косвенного
измерения, при этом, при этом нет необходимости расширять диапазон поиска. Та-
кая необходимость возникает при превышении ошибки измерения силы значения
6%. Однако, косвенное измерения силы увеличивает вычислительную трудоемкость
метода засчет использования допольнительного этапа сопоставления изображений.

5.5 Сопоставление сигналов в ультразвуковой томогра-

фии

Другой важной задачей, имеющей сходную постановку с задачей сопоставления
изображений, является реконструкция в отражательной ультразвуковой томогра-
фии. В данном случае, целью является сопоставление массива ультразвуковых сиг-
налов, получаемых с разных углов зрения по отношению к изучаемому объему
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(а) (б) (в)

Рис. 5.13: Установка и пример данных, получаемых в отражательной ультразву-

ковой томографии. (а) Геометрия установки. Пъезоэлементы, используемые для

генерации импульсов и приема сигналов расположены по кругу на равном рассто-

янии. (б) Пример одномерного сигнала, получаемого с одного из элементов. (в)

Входные данные, используемые для реконструкции: двумерное изображение по-

лучено из массива 1500 одномерных сигналов. Каждый из одномерных сигналов

получен с последовательных позиций приемников-передатчиков.

(рис. 5.13 (а)). Реконструкция производится на основе преобразования координат из
локальной системы каждого из премников в глобальную систему координат, привя-
занную к центру установки. Таким образом, каждый из временных отсчетов отра-
женного сигнала получает некоторое поле смещений в процессе перепроектирования
в глобальную систему координат. Метод реконструкции для данной задачи подроб-
но рассмотрен в последующих подразделах. При этом искажение вдоль направления
распространения ультразвукового сигнала обратно пропорционально скорости зву-
ка.

Одним из сходств данной задачи с задачей оценки поля смещений в бинокулярном
стерео, является сопоставление одномерных сигналов: в случае стерео-реконструкции
таковыми являются строки левого и правого изображений, в случае отражательной
томографии - амплитуды отраженных сигналов, записанные в разных положениях
приемников-передатчиков.

5.5.1 Постановка задачи

Разработанный автором метод реконструкции [100] предназначен для ульразвуко-
вого томографа, описанного в работе [101]. В установке использован единствен-
ный пъезоэлемент, который перемещается по окружности (рис. 5.13 (a)) и служит
приемником-отражателем: в каждом из положений элемент испускает импульс и
записывает отраженный сигнал. Каждый из временных отсчетов записанного одно-
мерного сигнала (рис. 5.13 (а)) соответствует временному интервалу, который им-
пульс прошел расстояние от приемника до некоторого отражателя и обратно. После
объединения каждого из одномерных сигналов, получается двумерное изображение
(рис. 5.13 (в)), которое является входным для метода реконструкции.



108

(а) (б) (в)

Рис. 5.14: Схема предложенного алгоритма реконструкции. (а) Дуга окружности

A(r, j). (б) Набор кривых-отражений, соответствующих каждой из точек дуги. (в)

Пример углового распределения до и после применения функции softmax.

Процедура калибровки устройства, которая необходима для установления соответ-
ствия между временными интервалами при распространения волн и пространствен-
ными координатами, описана в работе [101]. После проведения такой процедуры,
каждый пиксел входного изображения I(r, j) соответствует расстоянию r от приемника-
передатчика до некоторой точки изучаемого объема внутри установки, где j - номер
положения приемника-передатчика на окружности.

Такая система координат называется пространством данных. Конечной целью яв-
ляется проектирование входных сигналов на глобальную систему координат, центр
которой привязан к центру томографа. Заметим, что между этими двумя систе-
мами координат не существует однозначного соответствия: так, каждый пиксел в
пространстве данных, заданный парой (r, j), соответствует дуге A(r, j) в глобальной
системе координат (x, y). Такая дуга является объединением всех точек на одном
расстоянии r от приемника-передатчика (рис. 5.15 (а)). Каждая точка (x, y) в гло-
бальной системе координат, в свою очередь, соответствует некоторой синусоиде в
пространстве данных (рис. 5.15 (б)).

5.5.2 Описание метода

5.5.2.1 Анализ углового распределения

Методы реконструкции для задачи отражательной ультразвуковой томографии,
предложенные в работах [102, 103], проектируют исходные амплитуды I(r, j) в гло-
бальную систему координат путем их равномерного распроделения по соответству-
ющей дуге A(r, j). Данные методы основаны на допущении о том, что амплитуда
I(r, j) вызвана набором отражателей, распределенных равномерно вдоль всей дуги.
Для того, чтобы избежать использования такого грубого допущения, автором был
разработан метод, который оценивает полное угловое распределение для каждой
из дуг в явном виде. Было экспериментально показано, что использование такой
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оценки вместо равномерного распределения позволяет улучшить результаты рекон-
струкции [100].

Для того, чтобы оценить угловое распределение, для каждой дуги рассмотрим неко-
торую точку p(⇥; r, j) 2 A(r, j), заданную при помощи угла ⇥ (рис. 5.15 (а)). При
этом каждая точка соответствует некоторой синусоидо-образной кривой S(⇥; r, j) в
пространстве данных, а семейство таких кривых для разных углов ⇥ пересекается
в точке (r, j) (рис. 5.15 (б)).

Такой метод основан на допущении о том, что отражатель, расположенный в точке
p(⇥; r, j) 2 A(r, j) вызовет высокую амплитуду сигнала для нескольких последо-
вательных положений приемника j0 2 [j � �, j + �]. При этом вычисление углового
распределения позволяет установить, какие из точек на дуге p(⇥; r, j) действительно
содержат отражатель.

5.5.2.2 Метод реконструкции

Для вычисления углового распределения будем использовать следующий набор на-
правленных фильтров: каждый фильтр получается из части синусоиды, соответ-
ствующей окну вокруг точки (r, j) в пространстве данных (рис. 5.15 (б)). Каждый
из фильтров затем сворачивается с фрагментом изображения для того, чтобы оце-
нить угловое распределение в соответствующей точке входных данных (рис. 5.15
(в)):

p̃(⇥; r, j) = T (r, j) ⇤ f
t,⇥ , (5.30)

где T (r, j) - фрагмент изображения с центром в (r, j), и f
t,⇥ - фильтр, содержащий

соответствующую часть синусоиды S(⇥; r, j).

Полученное угловое распределение p̃(⇥; r, j) затем нормируется при помощи функ-
ции softmax:

p(⇥; r, j) =
exp (↵p̃(⇥; r, j) )R

� exp (↵p̃(�; r, j) ) d�
, (5.31)

Полученное нормированное распределение p(⇥; r, j) используется для проектирова-
ния из пространства данных в глобальную систему координат установки:

R(x, y) =
X

(x,y)=p(⇥;r,j)

I(r, j)p(r, j,⇥) , (5.32)

таким образом интенсивность в точке (x, y) суммируется из точек в пространстве
данных (r, j), таких что (x, y) 2 A(r, j), и вклад из точек (r, j) пропорционален
интенсивностям I(r, j), взвешенным соответствующими угловыми распределениями.
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При этом параметр ↵ в выражении (5.31) позволяет менять степень усиления мак-
симумов при использовании функции softmax: более высокие значения параметра
соответствуют более резким границам при реконструкции, а более низкие значения
повышают устойчивость метода к наличию шумов. В пределе ↵ ! +1, нормиро-
ванное угловое распределение соответствует дельта функции, которая помещяет всю
интенсивность I(r, j) в единственную точку p(⇥; r, j) с углом ⇥ = argmax⇥ p̃(⇥; r, j).
Далее в подразделе, такой метод имеет название метода доминтантой ориентации.
В пределе при значении ↵, стремящемся к нулю, получаем метод, соответствующий
равномерному угловому распределению.

5.5.3 Численные эксперименты

5.5.4 Эксперименты на синтетических данных

Данных подраздел содержит описание эксперимента на основе численного модели-
рования. В таком эксперименте результат реконструкции сравнивается с эталон-
ным изображением, который был использован для генерации синтетических вход-
ных данных. Приводятся сравнения реконструкции на основе трех методов: метод
на основе равномерного распределения, метод на основе доминантной ориентации и
метод на основе оценки углового распределения.

Ниже приводятся результаты, основанные на численном моделировании распро-
странения и отражения звуковых волн во временной области. Моделирование про-
изводилось с использованием программного пакета K-wave [104]. Был рассмотрен
двумерный срез объема, содержащего отражатель эллиптической формы, что соот-
ветствует двумерному срезу кости человека. Для внутренней части эллипса была
задана скорость света 1800 м/с, для внешней части эллипса - 1509 м/с. Из каждого
положения премника-отражателя был запущен волновой пакет с несущей частотой
5 МГц, затем записано значение амплитуды отраженного сигнала. Итого, входное
изображение содержит 1500 позиций приемника-получателя, для каждого записана
амплитуда по 1000 временным отсчетам. Форма отражающей поверхности и соот-
ветствующие результаты реконструкции показаны на рис 5.15 (первая строка). Для
того, чтобы сравнить устойчивость рассмотренных методов, ко входному изображе-
нию был добавлен Гауссов шум. Результаты, представленные на рис. 5.15 (вторая
строка) показывают превосходство двух методов на основе анализа углового рас-
пределения над методом на основе равномерного распределения.
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Рис. 5.15: Результаты реконструкции для синтетических входных данных, осно-

ванных на моделировании сильного перепада скоростей звука. (первый столбец)

Форма границ перепада двух сред. Реконструкция отражательной способности с

использованием равномерного распределения (второй столбец), доминантной ори-

антации, (третий столбец), полного углового распределения (четвертый столбец).

Вторая строка содержит результат реконструкции для аналогичного эксперимента

с дополнительным Гауссовым шумом, добавленным ко входному изображению.

.

5.5.5 Эксперименты на реальных данных

Данный подразел содержит результаты численных экспериментов на реальных дан-
ных, полученных с ультразвукового томографа, описанного в работе [101]. Размер-
ность входных данных соответствует 1500 позициям приемника-отражателя, для
каждого записана амплитуда для 10000 временных интервалов.

Рис. 5.16 содержит результаты реконструкции для двух срезов руки человека, при-
мерно на 15 см. ниже локтя. Результат реконструкции на основе равномерного рас-
пределения, показанный на рис. 5.16 (а,г) имеет большое количество артефактов,
сконцентрированных вокруг вероятных положений отражателей. Метод, основан-
ный на доминантной ориентации (рис.5.16 (б,д)) позволяет существенно снизить
число артефактов, однако, ведет к появлению шума на выходных изображениях.
Наиболее качественный результат получается с использованием метода на основе
полного углового распределения (рис. 5.16 (в,е)), который позволяет наблюдать при
реконструкции дополнительные детали, которые отсутствуют при использовании
других методов.

5.5.6 Оценка вычислительной сложности

Вычислительная сложность предложенного метода реконструкции оценивается как
O(TSF ), где T - количество положений приемников-передатчиков, S - количество
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Рис. 5.16: Реконструкция отражательной способности ткани среза руки человека

ниже локтя. Первая строка изображений соответствует первому и второму экс-

перименту, произведенному для разных людей. Первая колонка соответствует ис-

пользованию равномерного распределения, вторая колонка соответствует методу

доминантной ориентации, третья колонка соответствует методу оценки углового

распределения.

временных интервалов для каждого положения и F - количество фильтров в набо-
ре, используемом для анализа углового распределения (число дискретных значений
угла ⇥).

Каждый из рассмотренных методов может быть эффективно реализован с использо-
ванием графических ускорителей ввиду независимости вычислений, производимых
для каждого из пикселов входного изображения.

5.6 Выводы

Ультразвуковая эластография - задача, сходная задаче вычислению оптического
потока, однако в такой задаче возникают практические трудности, специфические
для ультразвуковых изображений. Вариационные подходы, основанные на линеари-
зации изображений не могут быть применены для эластографии ввиду большого ко-
личества шума, свойственного ультразвуковым изображениям. Поэтому, большин-
ство методов для эластографии полагается на полный перебор при сопоставлении
изображений. Одним из направлений, позволяющих улучшить результат является
применение нескольких кадров с целью увеличения используемой степени сжатия.
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Другим важным аспектом построения методов для задачи эластографии являет-
ся разработка подходов к регуляризации, устойчивых к участками неверного сопо-
ставления. Экспериментальное сравнение различных методов регуляризации, про-
веденное автором, показывает эффективность предложенного адаптивного метода
регуляризации в подобных случаях [14].

В данной главе также рассмотрена задача сопоставления ультразвуковых сигналов
в отражательной томографии. Такая задача схода к задаче сопоставления строк
изображения при стерео-реконструкции. Автором было показана важность анализа
угловых распределений при построения метода реконструкции [100].



Глава 6

Заключение

В настоящей работе предложено три метода для задачи сопоставления изображе-
ний, основанных на глубоком машинном обучении и решении оптимизационной за-
дачи. По сравнению со многими другими методами, предложенными в литературе,
разработанные алгоритмы достаточно эффективны на этапе исполнения и позволя-
ют решать задачу в реальном времени с использованием современных графических
ускорителей. Было рассмотрено три варианта задачи сопоставления изображений:
плотное бинокулярное стерео-сопоставление, вычисление оптического потока и уль-
тразвуковая эластография. В каждой из задач требуется оценить поле смещений на
основе пары или серии кадров: в случае стерео-сопоставления поле смещения явля-
ется одномерным, в двух других случаях требуется оценить произвольное двумерное
поле смещений. В работе было показано, что перспективными методами уменьшения
ошибки сопоставления являются использование машинного обучения на реальных
данных, а также использование информации с серии, а не пары изображений.

Предложенный метод для задачи стерео-сопоставления основан на агрегировании
тензора энергий. В силу того, что поле смещений в этой задаче является одномер-
ным, тензор энергий сопоставления является трехмерным и занимает сравнительно
небольшой объем памяти, достаточный для хранения в явном виде и последующей
обработки. Метод агрегирования энергий построен на основе рекурсивного фильтра,
учитывающего границы объектов на изображении. При этом границы, релевантные
для задачи, предсказываются при помощи сверточной нейросети. Так, предложен-
ная сверточно-рекуррентная модель принимает на вход пару изображений и вы-
числяет поле смещений без необходимости постобработки. В отличие от методов,
предложенных в литературе, в такой модели отсутствует необходимость сравнения
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большого количества глубоких дескрипторов большой размерности, что существен-
но снизило вычислительную сложность и позволило получить реализацию, которая
работает в реальном времени.

Проведенные численные эксперименты на реальных данных показали важность ис-
пользования информации о границах объектов на изображении. Модель, предло-
женная автором основана на применении машинного обучения и позволяет избе-
жать необходимости решения вычислительно трудоемкой задачи дискретной опти-
мизации.

Предложенный метод для задачи вычисления оптического потока использует обу-
чение оператора регуляризации. Новая архитектура сверточной нейросети основана
на представлении графа вычислений метода оптимизации энергий в качестве сло-
ев нейронной сети: был использован быстрый двойственный градиентный метод. В
соответствии с классической моделью для числения оптического потока в реальном
времени, метод основан на линеаризации изображения с использованием текущей
оценки поля смещений. Такая линеаризация позволяет вычислять поля смещений
ограниченной величины, однако применение обучаемой регуляризации позволяет
заметно уменьшить ошибку сопоставления по сравнению с фиксированной регу-
ляризацией. В частности, обучаемая регуляризация позволяет более качественно
оценивать смещения вблизи границ движущихся объектов, а также уменьшить ко-
личество выбросов, наблюдаемое при использовании оптимизационного метода.

Проведенные численные эксперименты подтвердили эффективность комбинирова-
ния вариационных алгоритмов и современных методов на основе глубоких сверточ-
ных нейросетей. Представление графа вычислений вариационных методов в каче-
стве слоев нейросети представляется перспективным способом построения моделей
для решения задач обработки изображений.

Предложенный метод сопоставления медицинских ультразвуковых изображений для
эластографии основан на применении адаптивной регуляризации. В силу отсутствия
обучающих данных, при решении задачи сопоставления ультразвуковых изображе-
ний, представляется перспективным подход, использующий информацию о каче-
стве полученного сопоставления для последующего сглаживания полей деформа-
ции. Так, в участках совпадения с низкой ошибкой, метод полагается на выходные
данные, а в участках выбросов, метод полагается на регуляризацию. Еще одним
важным аспектом предложенного метода является использование трех кадров. Ис-
пользование двухэтапного метода поиска смещений позволяет более точно оцени-
вать смещений для больших значений контактной силы, что позволяет улучшить
возможности применения эластографии для медицинской диагностики.
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Серия численных экспериментов показала возможность детекции жестких включе-
ний в органических тканях размером вплоть до 2 мм с использованием стандартной
ультразвуковой пробы, используемой для получения УЗИ снимков. Автором бы-
ла разработана эффективная реализация метода, которая позволяет решать задачу
сопоставления за время, сравнимое с получением данных при использовании гра-
фического ускорителя.

Результаты настоящей работы указали нескольких дальнейших направлений для
исследований. Исходя из проведенных экспериментов, наиболее песпективным пред-
ставляется построение моделей, совмещающих построение глубоких дескрипторов и
обучаемую регуляризацию, учитывающую границы объектов на изображении. При
этом возможно использование серии изображений в случае оценки полей смещения
для кадров видеопоследовательности. В случае медицинских ультразвуковых изоб-
ражений, перспективным представляется построение экспериментальных методов
для получения обучающих данных, что позволило бы уменьшить ошибку сопостав-
ления засчет применения машинного обучения.
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Proceedings of the Conference on Empirical Methods on Natural Language
Processing. 2014.

[42] Conditional random fields as recurrent neural networks / Shuai Zheng,
Sadeep Jayasumana, Bernardino Romera-Paredes [и др.] // Proceedings of the
IEEE International Conference on Computer Vision. 2015. С. 1529–1537.

[43] Schwing Alexander G., Urtasun Raquel. Fully Connected Deep Structured
Networks // CoRR. 2015. Т. abs/1503.02351.

[44] Zabih Ramin, Woodfill John. Non-parametric local transforms for computing visual
correspondence // European conference on computer vision / Springer. 1994.
С. 151–158.



Bibliography 121

[45] Xie Saining, Tu Zhuowen. Holistically-nested edge detection // Proceedings of the
IEEE International Conference on Computer Vision. 2015. С. 1395–1403.

[46] On the Properties of Neural Machine Translation: Encoder–Decoder Approaches /
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