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ВВЕДЕНИЕ 

Предметом исследования диссертационной работы является проблема 

многомасштабного моделирования физических явлений и процессов. Данной 

проблематике  посвящены  многие работы российских и зарубежных 

исследователей [1-7]. В настоящее время в области развития теоретических 

подходов к ее анализу не выработано общих стандартов. В основном при создании 

схем многомасштабного моделирования в ходе  решения широкого класса задач, 

включая  многомасштабное моделирование в области материаловедения и сложных 

газодинамических процессов [1-7], используются либо теоретические построения, 

основанные на применении методов теории графов [8], либо описательные, 

неформализованные   подходы к  созданию многомасштабных моделей.  В работах 

член.-корр. АН СССР Н.П. Бусленко, включая [9], посвященных имитационному  

моделированию сложных процессов и систем, высказывалась  идея о том, что 

сложная система состоит из составных частей, которые сами являются    

системами, объединенными  или  связанными между собой. В работах 

представителя ВЦ РАН ФИЦ ИУ РАН Ю.И.Бродского [10] эти идеи нашли свое 

развитие и был  предложен  формализованный подход к построению и 

компьютерной реализации имитационных моделей сложных систем, состоящих из 

разных компонент, использующий теоретико-множественное представление. 

Однако, напрямую разработанные теоретические подходы [10] не могут быть 

применены к моделированию многомасштабных систем и процессов, так как в  них 

помимо иерархической структуры необходимо учитывать пространственно-

временную иерархию масштабов. Данная диссертационная работа посвящена 

созданию формализованной технологии построения многомасштабных 

вычислительных моделей  и многоуровневых информационных систем для 

исследования процессов и явлений, характеризующихся широким спектром 

пространственных и/или временных масштабов.  

Актуальность работы 

 Основная часть математических моделей, применяемых для изучения 

физических явлений и процессов, предназначена для их описания в единственном 

пространственно-временном масштабе. Исследование многомасштабных научных 
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проблем, включающих в себя явления несопоставимых пространственных и/или 

временных масштабов, невозможно без  учета всех факторов, играющих ключевые 

роли в таких задачах. При построении схемы моделирования необходимо 

выстроить иерархию с учетом разномасштабности рассматриваемых явлений и 

процессов. В случаях, когда в рамках одной модели нужно провести исследование 

многомасштабного физического процесса или явления,  возникает проблема  

взаимосогласовать имеющиеся модели, что требует разработки теоретических 

основ их объединения. Применение технологии многомасштабного 

моделирования, согласно которой расчеты на каждом уровне масштаба проводятся 

с использованием соответствующих математических моделей  и вычислительных 

алгоритмов, позволяет: 

- объяснить многие явления и свойства объектов, включая исследование 

структурных особенностей  физических явлений и процессов на нескольких 

масштабах; 

- получать качественно новые результаты в области прогнозирования  свойств 

новых объектов; 

- решать задачи оптимизации состава и структуры многомасштабных объектов, 

выстраивать  взаимосвязи между структурой и свойствами, что дает возможность 

синтезировать композиционные структуры, обладающие заданным набором 

свойств. 

Применение предсказательного компьютерного моделирования с 

использованием высокопроизводительных программных комплексов  в настоящее 

время позволяет проводить детальные расчеты сложных явлений и процессов, что  

в значительной  мере ослабляет требования к проведению натурных 

экспериментов. Это, в свою очередь, дает возможность существенно удешевить и 

ускорить процессы разработки и применения современных технологий получения 

новых объектов с требуемыми свойствами. 

Цели и задачи диссертационной работы 

Основными целями диссертации были  разработка математического аппарата 

(методов,  моделей, алгоритмов) и технологии построения многомасштабных 

моделей и многоуровневых информационных систем с демонстрацией 
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работоспособности полученных результатов на актуальном классе задач о новых 

материалах. 

Для достижения поставленных  целей в диссертационной работе были 

поставлены задачи: 

• Разработка  и реализация  новой математической технологии  построения 

многомасштабных моделей физических явлений и процессов; 

•  Разработка теоретических основ  и общих принципов формирования  

интеграционных систем для информационной поддержки многомасштабного 

моделирования; 

• Создание  кроссплатформенной,  расширяемой интеграционной  системы, 

предназначенной для  решения задач многомасштабного моделирования на  

высокопроизводительных программных комплексах; 

• Применение созданной технологии к решению  актуальных прикладных 

задач структурного материаловедения. 

 Научная новизна. 

Предложено применение модельно-ориентированного подхода к построению 

программных систем многомасштабного моделирования. Впервые вводится 

понятие «базовая модель-композиция» - информационная структура, 

объединяющая данные и методы их обработки в единой информационно-

вычислительной среде.  Базовые модели-композиции (БК), отнесенные к разным 

масштабным уровням, являются  композиционными элементами, из которых 

строятся многомасштабные композиции (МK) - информационные  аналоги  

многомасштабных моделей. Для  описания разработанной технологии используется  

теоретико-множественный аппарат, который позволяет передать вычислительную 

сущность многомасштабных вычислительных процессов.   

Предложены и реализованы новые подходы к построению интеграционной 

платформы для информационного обеспечения многомасштабного моделирования. 

С целью эффективного представления данных применена гибридная технология, 
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основанная на сочетании различных типов баз данных – документно-

ориентированных и реляционных. Следуя логике модельно-ориентированного 

подхода к многомасштабному моделированию, МК представляется как коллекция, 

состоящая из сгруппированных документов с иерархической  структурой, 

отражающей последовательность присоединения экземпляров БК. Таким образом, 

МК интегрируется в универсальную платформу системы информационного 

обеспечения компьютерного моделирования физических процессов. 

Разработаны методы обработки кристаллографической информации в задаче 

поиска устойчивых кристаллических структур, совместных с заданной химической 

формулой. Сформулированы экстремальные постановки задач, построены 

эффективные вычислительные алгоритмы, учитывающие свойства симметрии и 

периодичности кристаллов. Разработана процедура информационного обмена 

между системами кристаллографического и квантово-механического 

моделирования.  

Разработана схема многомасштабного моделирования наноразмерных 

полупроводниковых гетероструктур с учетом эффектов спонтанной и 

пьезоэлектрической поляризации, объединяющая квантово-механические расчеты 

на атомарном уровне для получения плотности зарядов на гетероинтерфейсах, 

расчет электронной плотности в гетероструктуре на основе самосогласованного 

решения уравнений Шрёдингера и Пуассона, а также расчет подвижности 

электронов в двумерном электронном газе с учетом различных механизмов 

рассеяния. Построены эффективные вычислительные алгоритмы решения задач 

моделирования и оптимизации полупроводниковых гетероструктур.  

Разработана дискретно-элементная вычислительная модель, 

высокоскоростного внедрения. На основе сравнения результатов компьютерного 

моделирования с экспериментальными данными идентифицирована зависимость 

энергии межчастичной связи от динамической твердости материалов. 

Использование технологий распараллеливания вычислений на графических 

процессорах в сочетании со средствами трехмерной визуализации и анимации 

результатов позволило получить детальные пространственно-временные картины 
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процессов внедрения. Как результат, в ходе вычислительных экспериментов 

впервые обнаружен эффект «пластического» расклинивания преграды. 

Методология и методы  исследования 

Предлагаемая в данной работе информационная технология построения 

многомасштабных моделей опирается на модельно-ориентированный подход, 

особенностью которого  в данной работе является использование информационных 

структур (базовых моделей-композиций), объединяющих данные и методы их 

обработки. Для их  описания используется  теоретико-множественный аппарат 

[10,11], который позволяет передать вычислительную сущность исходных 

математических моделей. Базовые композиции являются  композиционными 

элементами, из которых согласно представленной в работе технологии строятся 

многомасштабные композиции (МK) - информационные  аналоги  

многомасштабных моделей, при помощи которых передается содержание 

вычислительных процессов. Структура базовой модели-композиции представлена в 

виде таблиц, в которых данные (входные, выходные, модели и алгоритмы) с 

помощью двойной индексации упорядочены  по масштабным уровням и по номеру 

модели на соответствующем уровне масштаба.   Далее на базе МK строятся 

сложные иерархические программные системы, применяемые для решения  задач 

материаловедения.  

При построении интеграционных систем для информационной поддержки 

многомасштабного моделирования используется  доменное представление 

взаимосвязанных вычислительных, информационных и управляющих 

программных компонент. Кроме того, используется  гибридная технология, 

сочетающая применение документно-ориентированного и  реляционного 

представления данных, а также методика формализации и унификации  сценариев 

всех стадий вычислительных экспериментов.  

Эффективность разработанных в диссертации подходов продемонстрирована  

на актуальном классе задач о новых материалах в ходе проведения  

вычислительных экспериментов. 
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 Теоретическая ценность 

 В настоящее время в области развития теоретических подходов к анализу 

проблемы многомасштабного моделирования не выработано общих стандартов. В 

основном при построении схем многомасштабного моделирования используются 

либо теоретические построения, основанные на применении теории графов [8], 

либо применяется описательный, неформализованный  подход к  представлению 

многомасштабных моделей [1-7]. В настоящей работе предлагается  технология 

построения многомасштабных моделей и многоуровневых информационных 

систем, основанная на теоретико-множественных представлениях. Используется 

двойная индексация, позволяющая идентифицировать базовую модель-

композицию    
 

, вместе с основными входящими в нее множествами 

(входных/выходных данных(включая фазовые переменные), моделей и 

алгоритмов) на  пространственном уровне i по ее номеру j. 

  Такой подход позволяет формализовать и в будущем автоматизировать 

процесс построения многомасштабных моделей и информационных систем на их 

основе. Это в свою очередь  может послужить основой для создания человеко-

машинных интеллектуальных систем нового поколения.  

Практическая значимость 

Разработанный математический аппарат (методы, модели, алгоритмы) и 

технологии построения многомасштабных моделей и многоуровневых 

информационных  систем могут найти широкое применение в практике 

компьютерного моделирования сложных систем и процессов. 

Разработанные методы и средства многомасштабного моделирования 

позволяют оперативно проводить многовариантный анализ многослойных 

наноразмерных полупроводниковых структур, что создает основу для решения 

ряда оптимизационных задач, актуальных для современной СВЧ-электроники.  

Задача высокоскоростного внедрения, решенная в диссертации, была 

поставлена в рамках хоздоговорной работы с государственной организацией. В 

ходе вычислительных экспериментов обнаружен эффект «пластического» 

расклинивания преграды, что открывает перспективы оптимизации состава и 

структуры композиционных материалов, используемых для изготовления 

ударника. 
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Положения и результаты, выносимые на защиту 

 Сформулированы основные принципы применения модельно-

ориентированного подхода к построению программных систем многомасштабного 

моделирования. Физико-математическим  моделям, отнесенным к 

соответствующим масштабным уровням, поставлены  в соответствие 

информационные структуры - базовые модели-композиции (композиционные 

объекты), служащие основой для построения композиций и многомасштабных 

композиций – вычислительных аналогов многомасштабных моделей сложных 

систем. Для описания базовых моделей-композиций и технологии построения 

многомасштабных композиций применен теоретико-множественный аппарат, 

позволяющий передать вычислительную сущность  соответствующих 

математических моделей. 

 Разработаны теоретические основы формирования интеграционных систем 

для информационной поддержки многомасштабного моделирования, 

сформулированы базовые принципы построения архитектуры системы, 

включающие доменное представление взаимосвязанных вычислительных, 

информационных и управляющих программных компонент, формализацию и 

унификацию сценариев всех стадий вычислительных экспериментов. Такой подход 

позволяет не только интегрировать различные приложения предметной области в 

единую канву вычислительного процесса, но и обеспечивает возможности для 

построения вариативных цепочек решения поставленных задач.  

 Создана  кроссплатформенная,  расширяемая интеграционная система, 

предназначенная для  решения задач многомасштабного моделирования на  

высокопроизводительных программных комплексах. Для представления данных в 

разработанной системе применена гибридная технология, основанная на сочетании 

различных типов баз данных - документных и реляционных. Такое представление 

данных наилучшим образом отражает логику модельно-ориентированного подхода 

к многомасштабному моделированию. 

 Разработаны методы и средства информационной поддержки решения 

задачи поиска устойчивых кристаллических структур, совместных с заданной 

химической формулой. Даны оптимизационные формулировки для моделей ионно-
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атомных радиусов, атомных радиусов и модели с перекрывающимися радиусами. 

Построены и реализованы эффективные вычислительные алгоритмы, 

учитывающие свойства симметрии и периодичности кристаллов. Создана база 

данных по Федоровским группам симметрии. Разработана процедура обмена 

данными между системами кристаллографического и квантово-механического 

моделирования. 

 Разработаны методы и средства информационной поддержки решения 

задачи  молекулярно-динамического моделирования и параметрической 

идентификации потенциалов межатомного взаимодействия.  

 Разработана схема построения «гибких потенциалов», позволяющая 

создавать новые гибридные типы потенциалов межатомного взаимодействия, 

необходимых для МД-моделировании сложных слоистых структур, многослойных 

полупроводниковых гетероструктур и процессов их роста в случаях, когда 

применение известных потенциалов межатомного взаимодействия не дает 

адекватных результатов.  

  Разработана многомасштабная композиция и  решена задача моделирования 

кристаллической структуры кремния (Si) с точечными и отдельными 

протяженными дефектами, включая    расчет  упорядоченных кластерных 

конфигураций вакансий и межузельных атомов. Результаты расчетов показали 

хорошее согласование с экспериментальными данными. 

 Разработана многомасштабная композиция и на ее основе решена задача  

МД-моделирования начальных этапов  процесса нитридизации поверхности Si(111) 

в атмосфере NH3. Представлены результаты параметрической идентификации 

потенциала Леннарда-Джонса молекулы аммиака, потенциала Терсоффа 

применительно к однокомпонентным кристаллам с ковалентным типом 

химической связи, для поверхности Si и структур SiN. Разработана 

многомасштабная композиция и на ее основе решена задача  для МД-

моделирования устойчивой системы         , А и В – металлы,  с помощью 

потенциала Rosato-Guillope-Legrand (RGL). 
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 Разработана схема многомасштабного моделирования наноразмерных 

полупроводниковых гетероструктур с учетом эффектов спонтанной и 

пьезоэлектрической поляризации, объединяющая квантово-механические расчеты 

на атомарном уровне для получения плотности зарядов на гетероинтерфейсах, 

расчет электронной плотности в гетероструктруре на основе самосогласованнного 

решения уравнений Шрёдингера и Пуассона, а также расчет подвижности 

электронов в двумерном электронном газе с учетом различных механизмов 

рассеяния. С целью ускорения вычислительного процесса при расчете электронной 

плотности в гетероструктуре применен подход, основанный на аппроксимации 

нелинейной зависимости электронной плотности от потенциала в сочетании с 

линеаризацией уравнения Пуассона. Показана эффективность данного подхода в 

задачах рассматриваемого класса. Сравнение результатов расчетов с 

экспериментальными данными показало достаточно высокую точность 

моделирования как в плане расчета концентрации носителей в двумерном 

электронном газе, так и касательно подвижности электронов. 

 Разработан эффективный вычислительный алгоритм решения задачи 

оптимального легирования полупроводниковых гетероструктур, основанный на  

построении сопряженной задачи для вычисления градиента целевого функционала. 

Полученные в ходе вычислительных экспериментов результаты согласуются с 

современной тенденцией к переходу от однородного профиля легирования к 

планарному  -легированию в технологиях изготовления полевых транзисторов. 

Разработана многомасштабная дискретно-элементная вычислительная 

модель высокоскоростного внедрения. Осуществлена идентификация зависимости 

энергии межчастичной связи от динамической твердости материалов. 

Сравнительный анализ экспериментальных и расчетных данных в широком 

диапазоне определяющих параметров показал достаточно высокую точность 

дискретно-элементного моделирования для различных вариантов. Были 

рассмотрены тонкие, пробиваемые с сохранением цельности деформируемого 

ударника преграды, преграды средней толщины, пробиваемые с практически 

полной фрагментацией ударника на выходе из преграды, а также непробиваемые 

насквозь преграды. 
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Достоверность результатов 

Достоверность и обоснованность результатов диссертационной работы 

основана на использовании фундаментальных законов при построении 

математических моделей и подтверждена хорошим согласованием результатов 

тестовых расчетов с известными аналитическими и численными решениями, 

экспериментальными данными.  

Личный вклад 

В диссертацию включены положения и результаты, полученные либо лично 

автором, либо при его определяющем участии. Автор лично является 

разработчиком теоретических основ создания многомасштабных моделей, 

методологии построения интеграционной платформы многомасштабного 

моделирования, информационно-вычислительных моделей и алгоритмов, 

исполнителем теоретических исследований, результаты которых изложены в 

диссертации.  

Вклад автора по публикациям, написанным в соавторстве: 

В работах [3-5,7,13-17,19-21,23,25,30-35] автору принадлежит создание 

многомасштабных моделей, построение и реализация объединенных численных 

подходов для решения рассмотренных задач, разработка основных алгоритмов 

решения задач, анализ и интерпретация полученных результатов.  В работе [2] 

автору принадлежит математическая постановка задачи определения устойчивых 

структур  кристаллических материалов, разработка оптимизационных алгоритмов 

ее решения, а также создание и программная реализация базы данных по 

Федоровским группам симметрии, анализ и интерпретация полученных 

результатов.   

 Реализация и внедрение результатов работы 

 Работа выполнялась  в рамках научных планов Вычислительного центра 

имени А.А.Дородницына ФИЦ ИУ РАН. Также работа поддерживалась грантами 

Российского фонда фундаментальных исследований: 

  10-08-01263-а. Исследование влияния процесса адгезии на образование 

многослойных наноструктур на основе полупроводников с включенными 
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дефектами на их теплофизические и проводящие свойства, с целью создания новых 

материалов с прогнозируемыми характеристиками; 

 13-08-01335 А Теоретическое и экспериментальное исследование структуры 

и свойств (теплофизических и проводящих) многослойных полупроводниковых 

наноструктур на основе кремния (2013-2015); 

 16-08-01178 A Теоретическое и экспериментальное исследование тепловых 

режимов электронной компонентной базы СВЧ диапазона на основе нитрида 

галлия (2016-2018). 

 В рамках хоздоговорных работ с  АО НИМИ проводились исследования по 

теме «Теоретическое исследование процесса высокоскоростного взаимодействия 

ударника с металлической преградой». Результаты данной работы   планируются к 

внедрению. 

Формула специальности: 

Диссертационная работа соответствует следующим пунктам паспорта 

специальности 05.13.17 - «Теоретические основы информатики»:                

- Исследование информационных структур, разработка и анализ моделей 

информационных процессов и структур (п.2); 

- Исследование и разработка средств представления знаний. Принципы создания 

языков представления знаний, в том числе для плохо структурированных 

предметных областей и слабоструктурированных задач; разработка 

интегрированных средств представления знаний, средств представления знаний, 

отражающих динамику процессов, концептуальных и семиотических моделей 

предметных областей (п.4); 

-  Моделирование формирования эмпирического знания (п.7); 

- Разработка математических, логических, семиотических и лингвистических 

моделей и методов взаимодействия информационных процессов, в том числе на 

базе специализированных вычислительных систем (п.12); 

- Разработка теоретических основ создания программных систем для новых 

информационных технологий  (п.14).  
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Апробация работы 

Основные результаты диссертационной работы были представлены и 

обсуждались  на  семинарах ВЦ РАН и на  конференциях: 

 Тринадцатая международная конференция “Взаимодействие ионов с 

поверхностью”, г. Москва, 1-5 сентября 1997 г.  

 XVIII  международная  конференция  «Взаимодействие ионов с поверхностью.VIP-

2007», г. Звенигород, 24-28 августа 2007 г. 

 XIX Международная конференция «Взаимодействие ионов с поверхностью. VIP -

2009», г. Звенигород,  21-25 августа 2009 г. 

 XX Международная конференция «Взаимодействие ионов с поверхностью» ВИП-

2011, г. Звенигород,   25-29 августа 2011 г. 

 XXI Международная конференция «Взаимодействие ионов с поверхностью» ВИП -

2013, г. Ярославль, 21-25 августа 2013 г. 

 XV (XVI, XVII) Международная  конференция по вычислительной механике и 

современным прикладным программным системам «ВМСППС-2007»(«ВМСППС 

2009», «ВМСППС’2011») г.Алушта, 25-31 мая 2007 (2009, 2011) г.  

 XVIII Международная конференция по вычислительной механике и современным 

прикладным программным системам (ВМСППС’2013), г.Алушта, 22-31 мая 2013 г. 

 XIX (XX) Международная конференция по вычислительной механике и 

современным прикладным программным системам «ВМСППС’2015»                                       

(«ВМСППС’2017») г. Алушта, 24-31 мая 2015(2017) г. 

 Российское совещание по актуальным проблемам полупроводниковой 

фотоэлектроники «Фотоника-2008», г. Новосибирск, 28 мая 2008 г. 

 VII(VIII, IX,  X,  XI) Международная конференция по неравновесным процессам в 

соплах и струях «NPNJ’2008»(«NPNJ 2010», «NPNJ 2012», «NPNJ 2014», «NPNJ 

2016») г. Алушта, 25-31 мая 2008 (2010, 2012, 2014, 2016) г. 

 Международная научно-техническая конференция «Нанотехнологии 

функциональных материалов» (НФМ’10), г. Санкт-Петербург. 2010 г. 

 VI Международная конференция. Фазовые превращения и прочность кристаллов, г. 

Черноголовка. 16-19 ноября 2010 г. 
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 8-я Всероссийская конференция «Нитриды галлия, индия и алюминия: структуры и 

приборы», г. Санкт-Петербург, 26-28 мая 2011 г. 

 Российская конференция и школа по актуальным проблемам полупроводниковой 

нанофотоэлектроники. Фотоника-2011,  г. Новосибирск, 22-26 августа 2011 г. 

 VIII Национальной Конференции "Рентгеновское, Синхротронное излучения, 

Нейтроны и Электроны для исследования наносистем и материалов. Нано-Био-

Инфо-Когнитивные технологии"РСНЭ-НБИК-2011, г. Москва, 14-18 ноября 2011 г. 

 Международная конференция «Кремний-2012», г. С.-Петербург 9-13 июля 2012 г.  

 Научно-практический семинар по проблеме «Математическое моделирование в 

материаловедении электронных наноструктур» ВЦ РАН, г. Москва, 8 марта 2013 г.  

 Научно-практический семинар по проблеме «Математическое моделирование в 

материаловедении электронных наноструктур» ВЦ РАН, г. Москва, 2 фев. 2014 г.  

 Научно-практический семинар по проблеме «Математическое моделирование в 
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посвященная 60-летию Вычислительного центра им.А.А.Дородницына РАН. Г. 
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2014. 

 E-MRS (European Materials Research Society) Spring Meeting, Lille.  France.11-15 

мау, 2015.  

 E-MRS (European Materials Research Society) Fall Meeting, Warsaw, Poland. 15-18 

september, 2015.  

 E-MRS (European Materials Research Society) Spring Meeting  2016. Lille,  France, 2-7 

мау, 2016. 

 E-MRS (European Materials Research Society) Spring Meeting. Strasbourg,  France, 22-

26 мау, 2017 г. 

 16-я международная конференция «Авиация и космонавтика - 2017». Москва, 

МАИ, 20-24 ноября 2017 г. 

  Научный семинар  отдела «Имитационные системы и исследование операций» 

ФИЦ ИУ РАН, г. Москва, 17 апреля 2018 г. 

 XII Международная конференция по прикладной математике и механике в 

аэрокосмической отрасли (NPNJ’2018), г. Алушта, 25-31 мая 2018 г. 

Публикации по теме диссертации  

 По материалам диссертации опубликовано 22 работы в журналах, входящих 

в Перечень рецензируемых научных изданий, рекомендованных Высшей 

аттестационной комиссией для опубликования основных научных результатов 

диссертаций, или входящих в одну из международных баз данных и систем 

цитирования Scорus, Web of Science (п.[1-22] из списка основных публикаций 

автора по материалам диссертации). Также по результатам диссертации оформлено  
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свидетельство о государственной регистрации программ для ЭВМ (№2018610753, 

от 17.01.2018) [24] и две монографии [25,26]. Прочие публикации автора по теме 

исследования: [23,27-35].  

Краткое содержание работы по главам 

В первой главе представлен новый математический аппарат, который 

используется для описания технологии построения многомасштабных моделей, 

позволяющий существенно расширить класс решаемых ресурсоемких задач 

вычислительного материаловедения. Применялся модельно-ориентированный 

подход, который был развит в работах Ю.И. Бродского [10]. Особенностью 

модельно-ориентированного подхода в данной работе является использование 

информационных структур, объединяющих данные и методы их обработки.  

Поскольку в задачах структурного материаловедения, как правило, имеют дело с 

композиционными объектами, такие структуры названы моделями-композициями. 

Основным математическим моделям, используемым  и подробно описанным в 

главах 2 и 3, поставлены в соответствие математические объекты, названные 

базовыми композициями (БК). Для их  описания используется  теоретико-

множественный аппарат [10,11], который позволяет передать   вычислительную 

сущность исходных математических моделей.   Базовые композиции являются  

композиционными элементами, из которых согласно представленной в работе 

технологии строятся  многомасштабные композиции (МK) - информационные  

аналоги  многомасштабных моделей, при помощи которых передается содержание 

многомасштабных вычислительных процессов. Далее, с использованием МK 

строятся сложные иерархические программные системы, применяемые для 

решения  задач материаловедения, в том числе полупроводникового. 

Во второй главе диссертации представлены статические модели, отнесенные 

согласно принятой в работе классификации к моделям  первого масштабного 

уровня и дано теоретико-множественное описание соответствующих базовых 

моделей-композиций. Это модель ионно-атомных радиусов, или, как ее называют, 

модель «плотной упаковки»  [12,13],   и  квантово-механическая модель твердого 

тела, в основе которой  лежит теория функционала электронной плотности (DFT), 

базирующаяся на уравнениях Кона-Шэма [14,15]. Применяя данные модели  в 

комплексе, можно достаточно точно воспроизводить атомно-кристаллическую 
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структуру и изучать энергетические свойства материалов, рассчитывать энергию 

адгезии,  диффузионные барьеры  и другие важнейшие свойства кристаллических 

структур. При  моделировании атомно-кристаллической структуры  материалов в 

данной работе  применяется сочетание оригинальных математических моделей и 

оптимизационных алгоритмов [13] для расчета метрических параметров 

кристаллической структуры и квантово-механических подходов [14,15]. Первые 

позволяют  по заданной химической формуле определять кристаллоструктурные 

характеристики (в том числе определять координаты базисных атомов, постоянные 

решетки и т.д.).  Квантово-механические  методы, основанные на теории 

функционала электронной плотности, дают возможность уточнить полученные 

метрические параметры для заданной кристаллической структуры и рассчитать  ее  

энергетические характеристики, в том числе электронную  плотность, полную 

энергию системы и другие важнейшие свойства кристалла [14,15]. Далее 

представлены примеры решенных задач, для которых с применением 

разработанной технологии были построены композиции из соответствующих 

базовых моделей-композиций. Приводятся  результаты расчетов  

однокомпонентных, двухкомпонентных, трехкомпонентных кристаллических 

структур и  их энергетических характеристик, энергии адгезии в нитридных   

нанопленках [16]. 

В третьей  главе рассматриваются  модели уровня молекулярно-

динамического моделирования и мезоуровня, которые позволяют решать широкий 

класс задач, связанных с моделированием нестационарных процессов, 

протекающих в твердом теле. При этом в качестве входных данных  используются 

результаты расчетов, полученные с помощью статических моделей  с нулевого  и 

первого  масштабных уровней. В частности, передаются параметры, которые 

участвуют в моделировании одновременно на нескольких масштабных уровнях. 

Таким образом, осуществляется переход  с нулевого масштабного уровня на 

первый,  и далее  на следующие масштабные уровни  к молекулярно-

динамическим, дискретно-элементным и макроскопическим моделям. При этом 

результаты  моделирования гетерогенных материалов на более мелком 

масштабном уровне используются как предварительный шаг обработки данных для 

моделей следующего масштабного уровня. Приводятся примеры  
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многомасштабных математических моделей, примененных для  моделирования 

кластеров точечных дефектов в кремнии [17], для изучения  начальных этапов 

нитридизации поверхности полупроводниковых наноструктур [18]. 

В четвертой главе представлена  дискретно-элементная модель для 

многомасштабного моделирования высокоскоростного внедрения ударника в 

преграду [19]. Модель основана на представлении ударника и преграды 

совокупностью плотно упакованных взаимодействующих частиц. Представлена 

многомасштабная  композиция, передающая вычислительную сущность 

математической модели, описывающей рассматриваемые процессы. На основе 

сравнения результатов компьютерного моделирования с экспериментальными 

данными идентифицирована зависимость энергии межчастичной связи от 

динамической твердости материалов. Показано, что эта зависимость носит 

линейный характер. Использование построенной таким образом дискретно - 

элементной модели позволяет достаточно точно описать процесс внедрения 

ударника в преграду в диапазоне скоростей взаимодействия 500 – 2500 м/c. 

Использование технологий распараллеливания вычислений на графических 

процессорах в сочетании со средствами трехмерной визуализации и анимации 

результатов позволило получить детальные пространственно-временные картины 

процесса внедрения.  Сравнительный анализ показал достаточно высокую точность 

дискретно-элементного моделирования для различных вариантов - для тонких 

преград, пробиваемых с сохранением цельности деформируемого ударника, для 

преград средней толщины, пробиваемых с практически полной фрагментацией 

ударника на выходе из преграды, а также для непробиваемых насквозь преград. В 

ходе вычислительных экспериментов обнаружен эффект «пластического» 

расклинивания, что открывает перспективы оптимизации состава и структуры 

композиционных материалов, используемых для изготовления ударника. 

 В пятой   главе представлена трехуровневая схема моделирования 

наноразмерных полупроводниковых гетероструктур с учетом эффектов спонтанной 

и пьезоэлектрической поляризации. Представлена многомасштабная  композиция, 

передающая вычислительную сущность математической модели, описывающей  

электронную плотность и  подвижность  носителей заряда в полупроводниковой 

гетероструктуре. Схема объединяет квантово-механические расчеты на атомарном 
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уровне для получения плотности зарядов на гетероинтерфейсах, расчет 

распределения носителей в гетероструктруре на основе решения сопряженных 

уравнений Шрёдингера и Пуассона, а также расчет подвижности электронов в 

двумерном электронном газе с учетом различных механизмов рассеяния [20, 21]. С 

целью ускорения вычислительного процесса при расчете электронной плотности в 

гетероструктуре применен подход, основанный на аппроксимации нелинейной 

зависимости электронной плотности от потенциала в сочетании с линеаризацией 

уравнения Пуассона. Разработан эффективный вычислительный алгоритм решения 

задачи оптимального легирования полупроводниковых гетероструктур, 

основанный на  построении сопряженной задачи для вычисления градиента 

целевого функционала. Полученные в ходе вычислительных экспериментов 

результаты согласуются с современной тенденцией к переходу от однородного 

профиля легирования к планарному  -легированию в технологиях изготовления 

полевых транзисторов. 

 В шестой главе показано как на базе многомасштабных композиций 

строятся сложные иерархические программные системы, применяемые для 

решения  задач многомасштабного моделирования  физических явлений и 

процессов. Представлены  основные принципы создания   интеграционных систем 

для информационной поддержки многомасштабного моделированиях [22], включая 

доменное представление взаимосвязанных вычислительных, информационных и 

управляющих программных компонент, гибридную технологию, сочетающую 

разные типы представления  данных (документно-ориентированное и 

реляционное), формализацию и унификацию сценариев всех стадий 

вычислительных экспериментов. Перечислены  основные достоинства 

разработанной системы информационной поддержки интеграционных систем, 

включая экономичность  предлагаемых  решений, кроссплатформенность 

серверной части платформы, универсальность серверной логики и протокола 

взаимодействия клиента с сервером приложений, расширяемость возможностей  

интеграционной платформы за счет  интеграции и модификации расчетных 

модулей под конкретную задачу.  
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Отмечено, что применение  представленных в диссертационной работе  

подходов дает возможность автоматизировать процесс построения 

многомасштабных математических  моделей и создавать на их базе современные  

программные комплексы, позволяющие  решать  широкий класс прикладных задач. 
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ГЛАВА 1 

КОНЦЕПЦИЯ МНОГОМАСШТАБНОГО МОДЕЛИРОВАНИЯ 

 В данной главе сформулированы  основные положения  теоретико-

множественного представления информационной технологии многомасштабного 

моделирования, которая может применяться для решения различного класса 

прикладных задач, в том числе  в области вычислительного материаловедения.  

Представлены подходы к построению многомасштабных вычислительных моделей 

за счет объединения базовых компонент с разных масштабных уровней в 

многомасштабные композиции (МK).  Рассмотрены вопросы обмена информацией 

между компонентами и  организации многоступенчатого вычислительного процесса. 

Представлен пример,  показывающий возможности применения разработанной 

технологии. Рассмотрены  задачи синтеза композиционных структур, обладающих 

заданным набором  свойств.  

1.1 Введение в проблематику многомасштабного моделирования 

Физическую реальность окружающего нас мира можно описать с помощью 

понятия «непрерывного поля» [1]. Это поле возможно охарактеризовать с помощью 

различных независимых «мер», включая меру пространства,  времени, «плотности 

поля» и других. При построении физико-математических моделей для изучения того 

или иного физического процесса или явления могут использоваться разные 

подходы. Могут учитываться лишь пространственные характеристики поля 

(статические процессы) или пространственно-временные – при изучении 

динамических процессов, а также пространственно-временные и плотность поля 

(энергетическая мера поля), или   другие характеристики.   Описывая физическую 

реальность, используют понятие физической системы, состояние которой является  

точкой в «пространстве всех возможных состояний». Например, состояние 

движущейся материальной точки можно определить, используя шесть чисел 

(числовых функций точки, полностью определяющих ее положение в пространстве), 

а именно три пространственные координаты  и три компоненты вектора скорости.  

Здесь можно говорить о шестимерном пространстве состояний в двумерном 

непрерывном поле пространства и времени. 
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 Если рассматривается научная проблема в физическом пространстве 

непрерывного поля и мы  называем  ее в широком смысле  «многомасштабной», то  

имеется в виду, что она включает в себя явления несопоставимых пространственных 

и/или временных, либо пространственных, временных и плотностно-полевых, либо 

каких-либо   иных масштабов, охватывающих  несколько порядков величин. 

Важным является то, что   все эти явления играют ключевые роли в данной 

проблеме.  Поэтому мы не можем правильно смоделировать и изучить  

интересующее нас явление, не принимая во внимание в явном виде шкалы разного 

масштаба. Необходимо отметить, что  говоря  о многомасштабном моделировании, 

мы стараемся рассматривать проблему на разных масштабах одновременно [2].  При 

построении схемы моделирования в  ходе изучения конкретного явления или 

процесса необходимо выстроить иерархию с учетом разномасштабности 

рассматриваемых явлений и процессов. Во многих случаях многомасштабные 

методы включают в себя всего две шкалы: «грубую» (макро-) и «тонкую» (микро-), 

каждая из которых играет свою роль в решении  задачи [2]. В зависимости от 

ракурса многомасштабные модели дают разные преимущества. Тому, кто создает 

модель по "тонкой" шкале, многомасштабный подход позволяет изучать системы 

намного большего размера (или более длительные по времени), чем те, которые 

могли бы изучаться только на микромасштабном уровне. С другой стороны, эксперт, 

работающий с грубой шкалой, рассматривает многомасштабную модель как способ 

вывести существенные закономерности проблемы исходя из первоначальных 

принципов или же, по крайней мере, из более фундаментальной научной основы, 

чем это было бы возможно только в макромасштабе. В первом случае очевидно 

практическое преимущество. Во втором же зачастую достигается более глубокое 

научное понимание причин того или иного явления; но практическая польза также 

присутствует. Например, существенная закономерность может быть выявлена в 

случаях, когда путем прямого эксперимента определить макромасштабное 

поведение невозможно. 

           Многомасштабные методы можно разделить на две категории: 

«последовательные» и «параллельные». Последовательные многомасштабные 

подходы - это методы, с помощью которых микромасштабные симуляции 

осуществляются в качестве «этапа предварительной обработки данных» для 

макромасштабной модели. В простых примерах при таких подходах в 
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микромасштабных моделях создаются параметры, необходимые для завершения 

описания в рамках модели макромасштаба, после чего предполагается, что 

микромасштабная модель больше не требуется. В более амбициозных методах 

микромасштабная модель используется для выведения самой формы основных 

уравнений для макромасштаба, что часто приводит к глубокому физическому 

осмыслению того, чем обусловлено поведение на уровне макромасштаба. 

  Основная часть математических моделей, применяемых для изучения 

физических процессов и явлений, предназначена для их описания в одном 

пространственно-временном масштабе. Исследование многомасштабных научных 

проблем, включающих в себя явления несопоставимых пространственных и/или 

временных масштабов, невозможно без  учета всех факторов, играющих ключевые 

роли в таких задачах. В случаях, когда необходимо в рамках одной модели провести 

исследование многомасштабного физического процесса или явления, возникает 

проблема  соединить имеющиеся модели, что требует разработки теоретических 

основ их объединения.  

1.2 Адаптация модельно-ориентированного подхода к многомасштабной 

парадигме моделирования 

Пусть необходимо изучить многомасштабную проблему (процесс или явление) в 

некоторой предметной области. Определим сколько масштабных уровней должно 

быть задействовано для ее изучения. Для различных задач может потребоваться 

разное количество уровней.  Предположим, в нашем распоряжении имеется 

несколько математических моделей, применяемых для изучения физических 

процессов и явлений, каждая из которых предназначена для их описания на одном 

пространственно-временном масштабе. Назовем их базовыми. Распределим 

имеющиеся  базовые математические  модели по соответствующим масштабным 

уровням.  

  Будем использовать модельно-ориентированный подход к разработке 

программных систем, который развит в работах Ю.И. Бродского [3].     

Особенностью модельно-ориентированного подхода в данной работе является 

использование информационных структур, объединяющих данные и методы их 

обработки.  Поскольку в задачах вычислительного материаловедения, как правило, 

имеют дело с композиционными объектами, такие информационные структуры 
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названы моделями-композициями. Базовым математическим моделям поставлены в 

соответствие математические объекты, названные базовыми композициями (БК). 

Для их  описания используется  теоретико-множественный аппарат [3-5], который 

позволяет передать   вычислительную сущность исходных математических моделей.  

Базовые композиции являются  композиционными элементами, из которых согласно 

представленной в работе технологии строятся многомасштабные композиции (МK) – 

информационные  аналоги  многомасштабных моделей, при помощи которых 

передается содержание многомасштабных вычислительных процессов. Далее на 

базе МK строятся сложные иерархические программные системы, применяемые для 

решения  задач материаловедения, в том числе полупроводникового. 

В данной работе рассмотрены базовые композиции со структурой одного вида 

(состоят из данных и методов их обработки). В нашем описании в базовой 

композиции может использоваться один или несколько  процессов, в которых 

задействованы внутренние характеристики модели (фазовые переменные и данные-

свойства). В нашем описании в базовой композиции может использоваться один или 

несколько  «алгоритмически элементарных процессов» [3] (далее элементарных 

процессов)  над ее внешними и внутренними характеристиками (фазовыми 

переменными и данными - свойствами). При этом, признаки вида – объединение 

данных и методов их обработки - остаются теми же, что позволяет говорить о 

сходстве видов (родов в [3]). Это дает возможность объединить их в 

однопараметрическое (параметр – число элементарных процессов) семейство, 

состоящее из множеств с разным структурным типом.  Согласно описанию  [3] 

«процесс состоит из множества элементов и событий,  начального элемента и 

правила переключений».  В нашем описании рассматриваются  динамические  

процессы  (либо динамика, заданная логикой оптимизации или итерационного 

процесса, либо динамика в прямом смысле - перемещение атомов в физическом 

пространстве под действием сил). Под элементами  в  [3] понимаются 

«элементарные алгоритмически однородные методы». В данной работе выделены 

модели и алгоритмы, при помощи которых реализуется общий вычислительный 

процесс в базовых моделях-композициях.  Событие в нашем представлении это 

метод,  при помощи которого происходит управление  процессом переключения с 

одного элементарного процесса в базовой модели-композиции  на другой, а также  

переключение на запуск новой  базовой композиции, когда речь идет об 
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объединении нескольких моделей в одном вычислительном процессе.  С его 

помощью  описывается завершение динамического процесса, когда достигается 

стационарное состояние системы (соответствующее минимуму полной энергии 

системы). С помощью события может быть описан момент, когда оптимизационный 

(итерационный) процесс сошелся - выполнен критерий остановки процесса. В связи 

с тем, что разработанная технология направлена на решение задач 

многомасштабного моделирования, возникают свои особенности. Так, при   

изучении  динамических процессов на разных масштабных уровнях мы 

рассматриваем их изменение в смысле преобразования фазовых переменных. 

Например, в рассмотренных далее задачах вычислительного материаловедения на 

первом масштабном уровне используется базовая композиция  

«КРИСТАЛЛОХИМИЧЕСКАЯ ФОРМУЛА», в которой  фазовые переменные - 

координаты атомов.  В применяемой  в том же классе задач, но на втором 

масштабном уровне  базовой композиции «АТОМНЫЙ КЛАСТЕР-СТАТИКА», 

фазовыми переменными являются параметры потенциалов межатомного 

взаимодействия, в определении значений которых и состоит  задача работы модели. 

1.3 Концептуальное  описание основных положений информационной 

технологии многомасштабного моделирования 

 

Для того, чтобы учесть пространственно-временные масштабные  

характеристики динамических процессов, вычислительную сущность которых 

возможно описать при помощи базовых моделей- композиций или комбинаций из 

них, мы используем понятия «процессы и события» на рассматриваемом уровне. Для 

простоты изложения будем строить базовые модели-композиции, привязывая их 

лишь к пространственному масштабному уровню. Под событиями будем понимать 

явления, относящиеся к конкретной БК. В каждой такой модели-композиции 

выделим данные и методы обработки данных (математические модели и 

алгоритмы). Данные    разделим на три класса: 

-входные данные (не меняются в ходе обработки); 

- фазовые переменные или координаты (меняются в ходе обработки и определяют 

основные свойства (характеристики) объекта;  

- данные-свойства (меняются в ходе обработки, но полностью определяются 

входными данными и фазовыми переменными). При этом на основе данных-свойств 
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могут формироваться правила изменения фазовых переменных. Далее фазовые 

переменные и данные свойства мы будем обозначать  как  выходные данные. 

Среди методов обработки данных выделим статические,  т.е. те, что вычисляют 

определенные свойства объекта (вычисляют данные-свойства по фазовым 

переменным и входным данным модели-компоненты) и динамические, которые 

изменяют фазовые переменные в соответствии с определенными правилами.  

Например, при решении прямых задач  из области  материаловедения в качестве 

фазовых переменных, как правило, выступают координаты атомов или дискретных 

элементов, а их изменение определяется законами динамики или стремлением к 

минимизации потенциальной энергии системы. Такая ситуация характерна для 

квантово-механических расчетов кристаллических структур,  молекулярно-

динамического  и дискретно-элементного моделирования. В ряде задач, где 

требуется итерационное согласование параметров, итерационный процесс может 

быть представлен как динамический в пространстве итерируемых параметров. При 

решении обратных задач  (задач идентификации или оптимизации) в качестве 

фазовых переменных выступают параметры, по которым ведется оптимизация, а их 

изменение диктуется логикой оптимизационного процесса. 

1.3.1  Базовые модели-композиции 

Представим базовую модель-композицию (базовую композицию, БК) в 

упрощенном виде, без выделения в отдельное подмножество фазовых переменных 

или координат. В этом случае базовую модель-композицию можно представить как 

объединение основных множеств разного структурного типа:  

    ,     ,    ,      
  

   

 
    

  
   

 
. 

Здесь i-номер масштабного уровня,            , где  L-число рассматриваемых 

уровней, j- номер базовой модели-композиции на текущем масштабном уровне,   

           – число моделей  на  i–ом уровне,  - номер элементарного  процесса БК.  

Опишем основные множества: 

                - множество данных, где: 

 
 
   

  
-множество входных данных (внешние характеристики модели); 

 
 
    - множество выходных данных (фазовых переменных и данных-свойств 

модели); 
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     - множество методов обработки данных (модели и алгоритмы); 

    - множество событий, отнесенных к описанию выполняемых в рамках БК 

элементарных процессов;  

     
  

   

 
–множество реализаций моделей и алгоритмов в зависимости от 

элементарного процесса  p; 

     
  

   

 
– множество реализаций событий по элементарным процессам.  

Множество методов обработки данных опишем подробнее. 

                                        . 

Множество моделей    , входящих в множество     , состоит из  статических 

(   ) и динамических (   ) методов обработки данных. Алгоритмические модели 

(алгоритмы)    ,            ,            могут быть  специализированными, то есть 

используемыми только в данной конкретной модели с определенного масштабного 

уровня, или универсальными, применяемыми  в различных моделях с разных 

масштабных уровней           . 

Определение 1. Под базовой моделью-композицией    
 
 будем понимать 

однопараметрическое семейство  основных множеств,  задействованных в общем 

вычислительном процессе, разного структурного типа, включая данные и методы их 

обработки.  

   
 
                      

  
   

 
     

  
   

 
  . 

Здесь 

               ,                , 

     
  

   

 
      

      
         

  ,      
  

   

 
     

     
        

  .  

Параметром семейства основных множеств является количество элементарных 

процессов в базовой модели-композиции  .   Индексы i и j  позволяют 

идентифицировать     
 
   на  пространственном уровне i по ее номеру j. 

Структуру модели-композиции удобно представить в виде табл.1.1. 
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           Таблица 1.1 

Такое представление полностью описывает структуру модели-композиции 

и задает шаблон, который будет заполняться конкретными данными, моделями 

и алгоритмами при создании реальных экземпляров модели-композиции. 

 

Базовая модель-композиция «НАЗВАНИЕ» (   
 
)  

   

№ 

Название и обозначение множеств  структурных 

элементов,  подмножеств 

Сос

тав 

1 

 

Множество 

данных      

    - множество входных данных  

              

–множество 

выходных 

данных(внутренние 

характеристики) 

Фазовые 

переменные    

   

 

Данные 

свойства     

 

2 

              

                          

Множество 

методов 

обработки 

данных (модели и 

алгоритмы): 

    –множество 

моделей     

   - статические   

     - 

динамические  

 

    -множество 

алгоритмов  

    - 

подмножество 

алгоритмов исп. 

только на   -м 
уровне 

масштаба 

(локальные)   

 

          - 

подмножество 

алгоритмов исп.  

на нескольких 

уровнях         
(универсальные)  

 

3 
Множество событий и реализаций событий по процессам     , 

    
  

   

 
 

 

4 
Множество реализаций методов обработки данных 

    
 =     
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1.3.2 Композиция и  многомасштабная композиция 

Для решения практических задач математического моделирования необходимо 

заполнить шаблоны БК конкретными данными  и в результате получить экземпляры 

БК. 

Под композицией ( ) будем понимать объединение экземпляров БК в более 

сложные математические объекты, состоящие из двух и более элементов.  

Композиция в некотором смысле является  аналогом понятия модель-комплекс, 

введенного в работе [3]. 

       Определение 2. Под композицией   
  

 будем понимать 

однопараметрическое семейство, полученное из экземпляров  БК с одного 

масштабного уровня за счет объединения их основных множеств разного 

структурного типа в общем вычислительном процессе. 

Здесь    принимает одно из значений от 0 до    в зависимости от масштабного уровня 

к которому отнесена К, а    обозначает совокупность номеров              базовых 

моделей-композиций на соответствующем масштабном уровне. В качестве 

параметра выступает                      
 
   , указывающий на 

количество процессов в К и  зависящий  от  числа процессов во всех 

задействованных БК, входящих в нее (   ).  

Таким образом, композиция может быть описана  следующим образом: 

  
 
                          

  
   

 
     

  
   

 
   . 

Здесь    обозначает подмножество                номеров БК, входящих в состав 

  
 
=  

            ,   -  номер масштабного уровня, на котором создается композиция. В 

определенном смысле    
 
 схожа с базовой моделью-композицией, так как 

представляет собой  совокупность  основных множеств разных структурных типов, 

связанных общим вычислительным процессом.   Однако, ее структуру можно 

представить набором таблиц, соответствующих экземплярам входящих в нее БК, 

расположенных в определенном порядке.  

  Пусть на   -м масштабном уровне у нас имеется    
   и    

  . Здесь       - 

номера соответствующих  БК на  масштабном уровне    , а      и     обозначения 

числа  элементарных процессов в базовых композициях. Составим композицию 
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        из    
   и    

  . Основными множествами   
 
,  с  процессом  ,  

объединяющим процессы     и    ,  будут: 

   =           ,    =          ,                  ,                

,       
  

   

 
=      

  
   

          
  

   

            
  

   

 
=     

  
   

         
  

   

   . 

Объединение основных множеств                   означает: 

                       
           ; 

                      
           ; 

                                     ; 

                                   .  

Объединение множеств       
  

   

   и       
  

   

    означает соответственно: 

      
      

   

         
      

   

     . 

 Аналогично  

     
  

   

         
  

   

         
        

   
     

    
   

     

Создание K из двух различных экземпляров БК осуществляется за счет того, что 

происходит объединение их основных множеств, соответственно структурному 

типу, в одном вычислительном процессе.  Важным элементом такого объединения 

является выделение параметров, которые передаются после окончания работы из 

одной БК в другую в качестве входных данных. 

При создании композиций,  состоящих из двух БК одного уровня, например  

   
 
 и    

   выделим локальные параметры.   

Локальными, будем называть  параметры              , где         
 
 -

множество выходных данных    
 
 и          

  - входных данных     
     

                            
          

 . 
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Далее приведем описание многомасштабной композиции (МК), позволяющее 

представить информацию, из  каких именно моделей-композиций, с каких масштабных 

уровней она состоит, сколько и  какие процессы задействованы в ее работе,  каким 

образом происходит обмен данными между моделями – композициями с разных 

уровней.  

 Определение 3.  Под многомасштабной композицией (МК) будем понимать 

однопараметрическое семейство, полученное из экземпляров  БК с разных масштабных 

уровней за счет объединения в общем вычислительном процессе их основных 

множеств разного структурного типа, включая данные и методы их обработки.  

Многомасштабную композицию будем обозначать через                 

                       . Здесь 

             - номера масштабных уровней, задействованных в данной МК,  а  

              - номера БК  на конкретном масштабном уровне. В определенном смысле  

              

                        схожа с БК, так как представляет собой  объединение основных 

множеств разных структурных типов, связанных общим вычислительным процессом.   

Ее структуру, так же как и структуру К,  можно представить набором таблиц, 

соответствующих экземплярам входящих в нее БК, расположенных в определенном 

порядке, соответствующем иерархии масштабов,  задействованных в ней.  

Пусть на   -м масштабном уровне у нас имеется экземпляр    
 
 и на    масштабном 

уровне экземпляр       

  . Здесь     - номера  базовых моделей-композиций на  

масштабных уровнях   и    соответственно. Составим многомасштабную композицию 

      

         из двух экземпляров базовых композиций    
 
 и     

  . Основными 

множествами, как и в случае создания МK, будут: 

         ,         ,           ,         ,      
  

   

 
        

  
   

  
,    

  
   

 
 

      
  

   

  
 

Здесь   и    - обозначают число процессов в базовых композициях     
 
 и     

   

соответственно.  

 

 



36 

 

Многомасштабную Композицию можно описать следующим образом: 

      

                                                            
  

   

 

        
  

   

  
     

  
   

 
       

  
   

  
     

 Число процессов в МК равно сумме       . 

Связующими элементами между вычислительными моделями с разных 

масштабных уровней, входящими в МК являются глобальные параметры, которые 

играют основную роль при передаче информации между масштабными уровнями. 

 Пусть необходимо составить         

             из     

    и      

   . В этом случае под 

глобальными параметрами                                        будем понимать 

элементы (параметры), относящиеся к множеству               , образованному в 

результате  пересечения двух множеств выходных данных       с нижнего 

масштабного уровня  и входных данных          с верхнего масштабного уровня.  

                            
             

            

Кроме того, при построении многомасштабной композиции используются 

базовые модели-композиции специального вида, обозначенные     ,  i-номер 

масштабного уровня,            , где  L-число рассматриваемых уровней.  Они  

требуются для  хранения и передачи дополнительной информации, необходимой 

для работы  БК соответствующего уровня. 

1.4 Многомасштабное моделирование в задачах структурного 

материаловедения  

Для решения проблем, возникающих в области создания новых материалов с 

заданными свойствами, сегодня широко применяются новые подходы к построению 

математических моделей и информационных систем на их основе [2]. Одним из 

важнейших инструментов, позволяющих получать качественно новые результаты в 

области прогнозирования структур и свойств новых материалов, является 

многомасштабное моделирование. Оно дает возможность изучать строение 

материалов на многих масштабах и выстраивать взаимосвязи между ними. 

Применение методов многомасштабного моделирования как последовательных, так и 
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параллельных предоставляет широкие возможности для изучения 

многокомпонентных и гетерогенных структур, структур с дефектами, позволяет 

прогнозировать магнитные, транспортные и другие свойства  материалов.  

На сегодня общепринятой  является следующая  иерархия проведения 

твердотельных расчетов (Рис 1.1).  

 

Рис. 1.1 Иерархия твердотельных расчетов 

 Согласно такому представлению, на первом масштабном уровне (атомно-

кристаллическом) применяется квантово-механическое описание твердого тела, в 

основе которого лежит теория функционала электронной плотности, на втором 

масштабном уровне молекулярно-динамическое представление, на третьем   уровне 

применяются статистические методы, на четвертом - континуальные подходы, в 

основе которых лежит теория сплошных сред.  При таком подходе результаты 

первопринципного моделирования [6,7] атомной структуры и электронных свойств  

систем, состоящих из 200-1000 атомов, используются в качестве входных данных для 

моделирования более сложных структур, состоящих из 1000-1000000 атомов. В 

данной работе  рассмотрен расширенный диапазон пространственных и временных 

шкал, имеющих отношение к моделированию материалов.                                   

Представлены обобщенные масштабные уровни - микроскопический (I), 
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мезомасштабный (II) и макроскопический (III). В работе к микроскопическому 

отнесены уровни: 

 атомно-кристаллический  (выделены подуровни с номерами 0 и 1); 

 молекулярно-динамического моделирования (выделены подуровни с номерами 

2 и 3). 

На уровне мезомасштаба, соединяющем I и III масштабные уровни, выделены 

подуровни с номерами 4, 5 и 6. На  макроскопическом уровне применяется 

континуальное описание, выделен уровень 7. Таким образом, для решения прикладных 

задач материаловедения в данной работе выделено  восемь подуровней (далее будем 

говорить «уровень»),  с номерами           , где   - номер уровня. Каждому из них 

поставлены в соответствие физико-математические модели,  область применения 

которых соотносится с пространственно-временным разрешением соответствующего 

масштаба. Условные названия, используемые в качестве базовых для построения 

многомасштабных моделей – модель ионно-атомных радиусов, квантово-механическая 

модель, молекулярно-динамическая модель,  дискретно-элементная модель. Описание 

математического аппарата, который задействован на различных уровнях, представлено 

во второй и третьей главах. Физико-математическим  моделям, отнесенным к восьми  

масштабным уровням, поставлены  в соответствие информационные структуры - 

базовые модели-композиции. 

     На  атомно-кристаллическом уровне (микроскопический масштаб) выделены 

два подуровня - нулевой и первый. К нулевому (атомарному) уровню отнесены  

модели, содержащие информацию об элементах из Таблицы Менделеева (ТМ), 

описывающие совокупность информационных данных-характеристик отдельных 

элементов ТМ. Для их теоретико-множественного описания   используется   базовая 

композиция  «АТОМ     
 » (   

 ). К первому уровню (уровень кристаллической 

решетки) отнесены базовые композиции двух типов:   «КРИСТАЛЛОХИМИЧЕСКАЯ 

ФОРМУЛА» (   
 ), соответствующая модели ионно-атомных радиусов, и 

«КВАНТОВО-МЕХАНИЧЕСКАЯ ЯЧЕЙКА» (   
 ), соответствующая квантово-

механическому описанию электронной структуры и свойств кристаллической решетки. 

Применяемые на атомно-кристаллическом масштабном уровне  математические 

модели  позволяют добиться пространственного разрешения от нескольких ангстрем 

до  10 нм, в расчетах обычно используются от нескольких до 1000 атомов. 
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На уровне молекулярно-динамического моделирования (микроскопический 

масштаб) выделены два подуровня, обозначенные как второй и третий. Ко второму 

уровню отнесены математические модели, использующиеся при молекулярно-

динамическом моделировании.  Для их теоретико-множественного описания 

используется базовая композиция «АТОМНЫЙ КЛАСТЕР-СТАТИКА» (   
 ) и БК 

«АТОМНЫЙ КЛАСТЕР-ДИНАМИКА» (   
 ). К третьему уровню отнесены 

математические модели, применяющиеся при моделировании наноразмерных 

объектов. Для их теоретико-множественного описания используются базовые 

композиции «НАНОРАЗМЕРНЫЙ СЛОЙ» (   
 ), «ГЕТЕРОИНТЕРФЕЙС» (   

 ), и 

«ПРИПОВЕРХНОСТНЫЙ СЛОЙ» (   
 ), которые позволяют определять свойства 

наноразмерных слоев и межслоевых интерфейсов. Вычислительные модели, 

применяемые на  молекулярно-динамическом масштабном  уровне, работают в 

диапазоне пространственно-временных параметров от 15 нм до 100 нм,  и от сотен 

наносекунд до нескольких микросекунд. В расчетах могут участвовать до 

нескольких миллионов атомов. 

       На уровне мезомасштаба (II) выделены три подуровня (четвертый, пятый и 

шестой). К четвертому отнесены модели, которые основаны на применении 

статистических методов, таких как, например, кинетический  метод Монте-Карло 

(КМK) [8], что позволяет существенно расширить границы моделирования. В 

данных методах в  качестве входной информации обычно используются наборы 

различных элементарных атомных процессов и их скорости. В тех случаях, когда 

исходная информация достаточно точна и полна становится возможным с большой 

степенью точности воспроизводить результаты реальных экспериментов, достигая 

макроскопических пространственно-временных масштабов [8].   Для теоретико-

множественного описания используется базовая модель-композиция    
  

«СТАТИСТИЧЕСКИЙ АНСАМБЛЬ». К пятому уровню отнесены модели, 

позволяющие  оценить отдельные физические свойства  наносистем и процессов с 

ними связанных. Здесь  представлена базовая модель-композиция 

«ГЕТЕРОСТРУКТУРА» (   
 ). К шестому  уровню отнесены модели, в которых 

применяются дискретно-элементные подходы. Здесь используется БК 

«ДИСКРЕТНО-ЭЛЕМЕНТНЫЙ КЛАСТЕР» (   
 ) (аналог дискретно-элементной 

модели). 
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На  макроскопическом масштабном уровне (III) для описания систем и 

процессов  выделены модели сплошных сред, основанные на   континуальных 

теориях.   Одна из соответствующих  базовых моделей-композиций обозначена    
  

«КОНТИНУАЛЬНОЕ ОПИСАНИЕ». 

Очевидно, что наполнение масштабных уровней соответствующими базовыми 

моделями-композициями зависит от поставленных задач. В данной работе 

представлены лишь те БК, которые используются при построении 

многомасштабных композиций, применяемых для решения рассмотренных задач из 

области материаловедения.  Классификация соответствующих БК приведена в таб. 

1.2. 

В Приложении 1 представлено описание базовых моделей-композиций в виде 

таблиц.                    

                                      
Таблица 1.2

 

                               
Классификация базовых моделей-композиций  

№               

уровня  

 

Обозначение  и название базовой модели-композиции 

 

0    
 «АТОМ   

 » 

1    
 «КРИСТАЛЛОХИМИЧЕСКАЯ ФОРМУЛА» 

   
   «КВАНТОВО-МЕХАНИЧЕСКАЯ ЯЧЕЙКА» 

2    
  «АТОМНЫЙ  КЛАСТЕР-СТАТИКА» 

   
 «АТОМНЫЙ КЛАСТЕР-ДИНАМИКА» 

3    
 «НАНОРАЗМЕРНЫЙ СЛОЙ» 

   
 «ГЕТЕРОИНТЕРФЕЙС» 

   
 «ПРИПОВЕРХНОСТНЫЙ СЛОЙ»  

4    
  «СТАТИСТИЧЕСКИЙ АНСАМБЛЬ» 

5    
  «ГЕТЕРОСТРУКТУРА» 

6    
  «ДИСКРЕТНО-ЭЛЕМЕНТНЫЙ КЛАСТЕР» 

7    
  «КОНТИНУАЛЬНОЕ ОПИСАНИЕ» 
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1.5 Компьютерная реализация концепции многомасштабного 

моделирования  

В данном разделе описываются подходы к компьютерной реализации концепции 

многомасштабного моделирования, описанной в предыдущих разделах, 

позволяющие осуществлять построение вычислительных моделей для решения 

задач определения свойств конкретных объектов. В дальнейшем эти модели 

используются для решения обратной задачи поиска объектов с заданными 

свойствами.  Общая схема построения программной реализации - двухэтапная. На 

первом этапе (этап декомпозиции объекта) осуществляется многомасштабная 

декомпозиция исследуемого объекта, в результате получается иерархическая 

структура, задающая логику построения программной реализации многомасштабной 

вычислительной модели. Такое построение осуществляется на втором этапе (этап 

композиции) путем восхождения по масштабным уровням. Опишем алгоритм более 

подробно.  

I этап.  Декомпозиция 

Пусть дан объект   , соответствующий масштабному уровню  , для которого 

необходимо определить ряд свойств.  

Проведем многомасштабную декомпозицию объекта, выделяя составляющие его 

объекты (элементы композиции или элементы композиционного объекта), 

относящиеся к разным уровням.  

Обозначим   
    . Декомпозицию будем проводить пошагово, спускаясь по 

масштабным уровням. На i-м шаге декомпозиции, соответствующем i-му 

масштабному  уровню, определим элементы нижележащего уровня, составляющие 

объекты i-го уровня:   
       

       
         

     ,         , где   - число 

элементов композиции на i - м масштабном уровне. В результате получаем 

иерархическую структуру, отражающую композиционное строение объекта (рис. 

1.2). Отметим, что здесь используется относительная нумерация масштабных 

уровней, т.е. последовательно сверху вниз нумеруются уровни, участвующие в 

декомпозиции. При этом относительная нумерация может не совпадать с глобальной 

нумерацией масштабов, приведенной в концептуальном описании. 
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Рис. 1.2. Схема декомпозиции 

II этап.  Композиция 

Полученная иерархическая структура задает логику построения программной 

реализации МК. Построение осуществляется путем восхождения по масштабным 

уровням. Для нижнего масштабного уровня    создадим     
 экземпляров базовой 

модели-композиции. При этом экземпляры могут быть как вновь созданными, так и 

взятыми из имеющейся базы данных. Для вновь созданных экземпляров из 

библиотеки программных модулей выбираются соответствующие реализации 

методов обработки данных. В ходе выполнения обработки данных формируется 

информация для построения экземпляров базовых композиций следующего уровня.  

Процесс продолжается до достижения высшего масштабного уровня  , 

соответствующего исследуемому объекту. 

Как отмечалось в п.1.3.2 при построении МК важным моментом является 

передача данных между моделями различного уровня. Для более подробного 

описания данного процесса множество входных данных многомасштабной 
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композиции    
 
 (  обозначает              ,  а     обозначает                          ) 

разделим на три группы:                ,  

здесь     - множество данных, поступающих с нижележащего уровня                           

                       , 

    - множество данных, поступающих из моделей текущего уровня                           

                       , 

     - множество данных, специфичных для текущего уровня и для данной модели-

композиции.  

Отметим, что передача данных осуществляется между моделями соседних 

уровней (возможно пропускать один или несколько)  или моделями одного уровня. 

При этом множества входных и выходных данных модели могут пересекаться, т.е. 

базовая модель-композиция, получая некоторые данные в качестве исходных, 

передает их без изменения в качестве выходных данных. С учетом построенной 

иерархии такой подход обеспечивает однозначность и полноту передачи данных.  

Следует также отметить, что, как правило, при построении многомасштабной 

модели имеет место ситуация, когда выходные данные модели верхнего уровня не 

пересекаются с входными данными моделей нижних уровней. Исключение 

составляют случаи обратного влияния «макро» параметров (данных с верхнего 

масштабного уровня) на процессы, проходящие на низших масштабных уровнях. 

Так, например, при расчете концентрации и подвижности электронов в 

гетероструктуре важной величиной является температура. При функционировании 

структуры в рабочих условиях температура будет зависеть от тепловыделения, 

которое в свою очередь, определяется интенсивностью неупругого рассеяния 

электронов (т.е. зависит от концентрации и подвижности). В таких случаях 

необходимо итерационное согласование параметров  данного множества с целью 

получения самосогласованного решения.  

Сформированные в процессе синтеза МК экземпляры моделей-композиций 

могут сохраняться в базе данных, что позволяет многократно использовать их в 

последующих исследованиях. Таким образом, основной информационной единицей 



44 

 

базы данных является экземпляр БК, соответствующий определенному объекту. При 

этом разбиение моделей-композиций по масштабным уровням соответствует 

реляционному принципу построения информационной системы.  

Отметим, что размещение в базе данных экземпляров БК позволяет наряду с 

характеристиками объекта хранить информацию о методах (и их реализациях), с 

помощью которых получены эти характеристики. Такое протоколирование процесса 

получения информации особенно актуально, когда речь идет об исследовании новых 

материалов и новых свойств, для расчета которых нет надежных устоявшихся 

моделей. В этих условиях важным становится сопоставление результатов, 

получаемых различными путями.                       

  Пример построения многомасштабной вычислительной модели  

Применение методов многомасштабного моделирования  широко используется 

для предсказательного моделирования структурных особенностей и различных 

свойств полупроводниковых наносистем [9-12]. Пусть требуется определить 

концентрацию и подвижность носителей заряда (электронов) в двухслойной 

полупроводниковой гетероструктуре AlvGa1-vN/GaN, где v - мольная доля алюминия 

в сплаве. Проведем декомпозицию объекта исследования, выделяя объекты, 

относящиеся к разным уровням.  

Согласно нашей логике на верхнем уровне расположена сама исследуемая 

гетероструктура AlvGa1-vN/GaN. В качестве входных данных (задаваемых 

характеристик объекта), специфичных  для этого уровня выступают:   количество и 

состав слоев, условия на границах гетероструктуры. Остальные характеристики, 

необходимые для проведения расчета, определяются на основе информации, 

поступающей со следующего масштабного уровня. 

Методы обработки входных данных должны обеспечить возможность расчета 

искомых свойств объекта. Здесь возможно использование моделей различной 

степени сложности.  Наиболее полное описание дает математическая модель, 

основанная на  системе уравнений Шредингера и Пуассона, позволяющая 

рассчитать распределение электронов в системе с учетом квантовых эффектов. Для 
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расчета подвижности носителей необходимо использование модели, описывающей 

основные механизмы рассеяния.  

Следующий уровень в декомпозиции составляют отдельные слои 

гетероструктуры - слой 1 - AlvGa1-vN, слой 2 – GaN (по масштабной классификации 

3-й масштабный уровень) и гетероинтерфейс AlvGa1-vN/GaN (по масштабной 

классификации 5-й). На данном уровне - три объекта, из которых два - принадлежат 

одному типу (слой), а один - другому типу (гетероинтерфейс).                                                                                                            

 Входные данные (задаваемые характеристики объекта), специфичные  для 

этого уровня - толщины слоев и уровень их легирования. Остальные 

характеристики, которые необходимо передать на верхний уровень, определяются 

на основе информации, поступающей со следующего (нижележащего) масштабного 

уровня. 

  Следующий уровень - уровень кристаллической решетки. На данном уровне 

каждому из двух объектов типа слой вышележащего уровня соответствуют по 

одному объекту - кристаллическая решетка AlvGaN для слоя 1 и кристаллическая 

решетка GaN для слоя 2. В декомпозиции объекта типа гетероинтерфейс принимают 

участие оба объекта уровня кристаллической решетки. Учитывая периодический 

характер расположения атомов, решетка может быть представлена 

кристаллографической ячейкой. Примеры такого представления представлены на 

рис.1.3. 

 

 

Рис. 1.3. Представление кристаллографической решетки([10]) 

 

Входные данные, специфичные  для этого уровня - состав материалов 

(химическая формула), структура решетки (сфалерит, вюрцит). Обработка данных 

на этом уровне осуществляется с использованием квантово-механической модели, 

позволяющей определить распределение электронной плотности в решетке. На 
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основании этой информации определяются другие свойства материалов, 

необходимые для решения поставленной задачи. К ним относятся - эффективная 

масса электрона, диэлектрическая проницаемость, энергетическая структура 

(ширина запрещенной зоны), уровни спонтанной и пьезоэлектрической 

поляризации.  Для работы квантово-механической модели должны быть определены 

ориентировочные координаты атомов, которые будут уточняться в ходе расчета. 

Учитывая периодический характер расположения атомов, решетка может быть 

представлена кристаллографической ячейкой. Координаты атомов в ячейке могут 

быть определены с использованием модели ионно-атомных радиусов.   

Информация о свойствах отдельных компонент (атомов) кристаллической 

решетки поступает с нижнего, атомарного, масштабного уровня. На этом уровне 

первому объекту вышестоящего уровня (кристаллическая решетка AlvGa1-vN) 

соответствует три объекта - атомы Al, Ga, N, а второму объекту вышестоящего 

уровня соответствуют два объекта - Ga, N.Таким образом,  многомасштабная 

декомпозиция объекта исследования проведена. Схема декомпозиции представлена 

ниже на рис.1.4.  

 

Рис. 1.4. Схема многомасштабной декомпозиции. 

 На втором этапе согласно полученной схеме осуществляется синтез 

вычислительной модели. Строятся (или берутся из базы данных) экземпляры 

базовых-композиций  нижнего (атомарного) масштабного уровня «атом»: 

   
  =    

  ,    
  =    

  ,    
 =    

 . На основе информации из этих компонент 
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формируются данные для построения экземпляров моделей-композиций 

следующего уровня:     
     ,     

    - экземпляры моделей-композиций 

«кристаллохимическая формула», позволяющие определить начальные значения 

координат атомов для экземпляров моделей-композиций «квантово-механическая 

ячейка»     
     ,     

   , где осуществляется квантово-механический расчет. В 

результате появляются данные для формирования экземпляров модели-композиции 

«нанослой»     
     ,     

   ,  и модели-композиции «гетероинтерфейс» 

   
         

.  Последняя модель  определяет плотность нескомпенсированного 

заряда на гетероинтерфейсе, которая в свою очередь зависит от технологии 

изготовления структуры. Заключает данный этап  формирование экземпляра 

модели-композиции верхнего уровня «полупроводниковая 

гетероструктура»     
         

. Таким образом, многомасштабная композиция для 

исследуемого объекта построена. Повторим, что здесь используется относительная 

нумерация масштабных уровней, т.е. последовательно сверху вниз пронумерованы 

уровни, участвующие в декомпозиции. При этом относительная нумерация может не 

совпадать с глобальной нумерацией масштабов, приведенной в концептуальном 

описании. Построенная многомасштабная композиция может быть представлена в 

следующем виде:  

 

         
                                                         

          
               

 

 

Структура МК полностью определяет вычислительная цепочку экземпляров 

базовых моделей-композиций (последовательность вычислений) для расчета 

искомых характеристик гетероструктуры: 
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В приведенной последовательности  указаны как применяемые методы, так и 

принимающие участие в расчетах данные.  

Элементы основных множеств  

   ,     ,      

размещаются  в таблицах согласно шаблону, описанному в п.1.3.1 Сформированные 

таблицы, дополненные информацией о последовательности вычислений, полностью 

характеризуют все объекты, участвующие в декомпозиции, с точки зрения его 

характеристик и методов их определения. При этом в силу иерархической структуры  

многомасштабной композиции нет необходимости хранить для каждого объекта 

информацию о всей последовательности вычислений, достаточно указать ссылку на 

композиции нижележащего и текущего масштабных уровней. В таком виде 

(таблицы, соответствующие моделям-композициям и ссылки на соседние 

композиции) информация сохраняется в базе данных.  

 На рис.1.5 представлена структура многомасштабной композиции для расчета  

концентрации и подвижности носителей заряда в двухслойной полупроводниковой 

гетероструктуре AlvGa1-vN/GaN. Выделено шесть пространственно-временных 

масштабных уровня. Указаны экземпляры базовых композиций  и 

последовательность их использования в вычислительном процессе. По данной 

многомасштабной композиции была построена информационная система, в которой 

каждой из используемых БК соответствует программный модуль, в котором 

реализована конкретная математическая модель. Так, например, базовой модели-

композиции «КРИСТАЛЛОХИМИЧЕСКАЯ ФОРМУЛА» (   
 ) соответствует 

программный модуль, в котором реализована модель ионно-атомных радиусов, 

позволяющая по заданной химической формуле рассчитывать метрические 

параметры кристаллических структур. Для уточнения полученных параметров и 

расчета энергетических характеристик заданной структуры, применяются квантово-

механические расчеты в рамках теории функционала электронной плотности [7], 

реализованные в пакете VASP (URL: https://cms.mpi.univie.ac.at/vasp/), которому 

соответствует  базовая модель-композиция «КВАНТОВО-МЕХАНИЧЕСКАЯ 

ЯЧЕЙКА» (   
 ). Далее на уровне гетероструктуры используется математическая 

модель, основанная на системе уравнений Шредингера и Пуассона, позволяющая 

https://cms.mpi.univie.ac.at/vasp/
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рассчитать распределение электронов в системе с учетом квантовых эффектов. 

Расчет подвижности носителей осуществляется с учетом основных механизмов 

рассеяния. 

 Вычисления проводились с применением высокопроизводительных 

программных средств МСЦ РАН и ЦКП ФИЦ ИУ РАН.  Результаты тестовых 

расчетов верифицировались по экспериментальным данным, собранным в ходе 

выращивания аналогичных структур методом молекулярно-лучевой эпитаксии   в 

Институте физики полупроводников СО РАН.  Было получено хорошее 

согласование экспериментальных и расчетных данных [11,12].  

 

 

 

 

 

 

 

 

 

 

 

Рис.1.5 Структура многомасштабной композиции для расчета свойств 

гетероструктуры AlvGa1-vN/GaN
 

Как видно на рис.1.5 при таком подходе вычислительный процесс естественно 

распараллеливается,  что существенно ускоряет скорость  расчета значений 

концентрации и подвижности носителей в рассматриваемом типе гетероструктур и 

позволяет собирать и накапливать для дальнейшей обработки информацию по схеме 

структура- свойства. Данная многомасштабная композиция может применяться для 

аналогичных расчетов полупроводниковых гетероструктур с другим химическим 
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составом, что существенно расширяет возможности по сбору и анализу 

материаловедческих данных. Разработанная информационная технология  

многомасштабного моделирования может применяться для решения обратных задач 

по определению химического состава и структурных характеристик 

полупроводниковых гетероструктур, обладающих заданным набором свойств, что 

создает основу для решения ряда оптимизационных задач, актуальных для 

современной СВЧ-электроники. 

1.6 Решение обратных задач. Определение  об ектов с заданными свойствами  

В предыдущих разделах рассматривалась прямая задача многомасштабного 

моделирования, когда для заданного объекта требуется определить некоторый набор 

его свойств. Для решения этой задачи с помощью описанной выше технологии 

строится многомасштабная вычислительная модель. 

В вычислительном материаловедении часто приходится иметь дело с обратными 

задачами. К ним относятся задачи идентификации характеристик объекта по 

экспериментальным данным, а также задачи нахождения/синтеза объектов с 

заданным набором свойств. Как правило, на основе известных/заданных свойств 

объекта (критериев) строится функционал, выражающий погрешность 

идентификации. Построенный функционал подлежит минимизации. 

Многокритериальность при этом учитывается интегрально, критерии входят в 

функционал с весами, отражающими их важность. Во многих случаях удается 

параметризовать задачу и свести ее решение к минимизации аппроксимирующей 

функции по набору искомых параметров.  Для данного класса задач применяются 

известные методы математического программирования. В Главе 3  приводится 

постановка и решение задачи параметрической идентификации потенциалов 

межатомного взаимодействия, в которой исходя из эталонных значений 

характеристик материала, полученных с помощью эксперимента или  

квантовомеханических расчетов,  строится функционал, характеризующий их 

отклонение от значений, вычисленных с помощью потенциала с 

идентифицируемыми параметрами. Задача состоит в определении наборов 

параметров потенциала, при которых функционал принимает  минимальное 

значение.   Кроме того, в качестве примера можно привести задачу определения 

параметров гетероструктуры c заданными характеристиками по концентрации и 

подвижности носителей заряда, которая  решалась как задача оптимального 
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управления [11,12]. В ходе оптимизационного цикла многократно решаются прямые 

задачи, что, как отмечалось выше, может требовать значительных вычислительных 

ресурсов. При этом приоритеты различных критериев оптимизации могут меняться 

в зависимости от текущих целей, что приводит к изменению весовых 

коэффициентов в минимизируемом функционале. В этой связи может оказаться 

полезным сохранение не только итоговой информации, соответствующей минимуму 

функционала, но и промежуточных состояний с упорядочиванием по отдельным 

критериям. Такой подход дает также возможность применять методы 

многокритериальной оптимизации, учитывающие текущие предпочтения 

исследователя.    

Рассмотрим метод структурирования материаловедческой информации, 

базирующийся на работах Хачатурова [13-14]. 

Перенесем его на  описание процесса нахождения решения обратных задач и 

определения тех математических моделей (включая многомасштабные), с помощью 

которых оно может быть найдено.  

 Пусть нам необходимо найти решение многомасштабной научной проблемы, то 

есть включающей  в себя явления несопоставимых пространственных и/или 

временных масштабов, охватывающих  несколько порядков величин. Например, для 

гетероструктуры с заданным числом слоев и известной информацией по толщине и 

химическому составу каждого слоя нам необходимо определить концентрацию и 

подвижность в двумерном электроном газе. Мы можем решать поставленную задачу 

несколькими способами, включая использование базовых композиций и (или) 

композиций и(или) многомасштабных композиций. Выделим из построенных МК 

(К) те, которые позволяют  адекватно (с учетом отношений предпочтений) 

определять свойства концентрации и подвижности ее носителей. Проведем с их 

помощью большое число расчетов.  Таким образом, мы можем собрать и хранить в 

Базе данных информацию,  при каких входных данных (число слоев гетероструктры, 

их толщины и хим.состав) и с помощью какой МК или К мы получили конкретные 

значения концентрации и подвижности. Такой подход позволяет нам перейти к 

решению обратной задачи определения по заданным критериям не только 

гетероструктуры,  обладающей заданными свойствами, но и МК (К), с помощью 

которых такие данные были получены.  
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Обозначим через    множество объектов, подлежащих рассмотрению. 

Элементы этого множества     , описываются с помощью конечного множества 

характеристик   ,                       . Пусть требуется найти элементы 

множества  , удовлетворяющие определенному набору критериев         
 , 

            . В задачах идентификации в качестве эталонных величин   
  обычно 

служат экспериментальные данные, в задачах поиска объектов с заданными 

свойствами эталонные величины, а также их приоритетность, определяются 

исследователем. В качестве примера приведем задачу нахождения слоистой 

полупроводниковой гетероструктуры с заданными свойствами подвижности 

носителей заряда и проводимости. В этом случае множество характеристик объекта 

(гетероструктуры) составляют характеристики слоев (толщина, химический состав, 

уровень легирования), а в качестве критериев выступают подвижность (  ) и 

проводимость (  ). Следует отметить, что, как правило, на значения характеристик 

объекта накладываются ограничения, обусловленные спецификой проблемы, 

например, технологическими аспектами. Это сужает область поиска и способствует 

более оперативному решению задачи. В дальнейшем будем считать, что множество 

  построено с учетом возможных ограничений.                                                                                    

 Для каждого критерия зададим окрестность, определяющую допустимое 

отклонение реальной величины от эталонной:       
       

     . Тогда для 

каждого критерия можно построить множества, состоящие из объектов, 

удовлетворяющих критерию в смысле попадания значений их свойств в диапазон 

  :  

                          . 

Обозначим через   множество индексов        . Каждому подмножеству этого 

множества     , можно поставить в соответствие  подмножество объектов       

  :                                     . Иными словами, в данное 

подмножество попадают объекты, удовлетворяющие группе критериев   и 

одновременно неудовлетворяющие остальным критериям. Можно ввести также 

множество объектов, неудовлетворяющих ни одному из заданных критериев: 

                      . Таким образом, множество объектов   
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разбивается на    непересекающихся подмножеств     . Подробно процедура 

декомпозиции описана в работах [13,14].  

В результате появляется возможность построения на множестве объектов   

конечного топологического пространства [13,14]. Пусть множество   объединяет 

все подмножества   (включая пустое множество) множества  . При этом каждому 

элементу     соответствует один и только один элемент     . Можно показать 

[13], что для                (пустое подмножество также является элементом  ):  

1)              , при      ;  

2)               

Для всех подмножеств     множества  ,   могут быть построены 

подмножества               множества объектов  . Можно показать,  что 

семейство замкнутых множеств  , состоящее из  множеств  ,    , а также   из  

пустого множества   , задает топологию пространства      .  При этом система   

всех множеств      является аддитивной базой этого топологического 

пространства, так как по построению каждый объект     содержится только в 

одном из множеств     , а каждый элемент    семейства   может быть получен 

путем объединения множеств      [13-15]. Топология   может быть представлена в 

виде решетки         , состоящей из     
 элементов, с нулем соответствующим 

пустому множеству  , с единицей соответствующей множеству   [13-15].  

В случае двух критериев наглядное представление о такой структуризации 

множества объектов дают диаграммы Эйлера-Венна.   

Таким образом, с помощью представленного подхода материаловедческая 

информация организуется с учетом требований, предъявляемых к свойствам 

объектов.  К достоинствам данного подхода следует отнести возможность 

эффективной адаптации к расширению критериальной базы (увеличению числа 

критериев). При добавлении нового критерия для каждого базового множества      

осуществляется проверка соответствия его элементов (объектов) этому критерию. В 

результате осуществляется разделение объектов каждого базового множества на два 

новых множества. Образованные таким образом множества составляют базу     

нового топологического пространства        , построенного на основе 

большего числа критериев. Строгое обоснование такой процедуры приведено в [16].  
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Алгоритм рекурсивного построения топологического пространства по мере 

расширения критериальной базы позволяет использовать и последовательно 

наращивать уже имеющиеся структуры данных. Классификация объектов по 

принципу соответствия различным критериям открывает возможность применения 

аппарата теории принятия решений с учетом отношений предпочтения [17]. 

1.7 Основные выводы 

 Сформулированы основные принципы применения модельно-

ориентированного подхода к построению программных систем многомасштабного 

моделирования. Физико-математическим  моделям, отнесенным к соответствующим 

масштабным уровням, поставлены  в соответствие информационные структуры - 

базовые модели-композиции (композиционные объекты), служащие основой для 

построения композиций и многомасштабных композиций – вычислительных 

аналогов многомасштабных моделей сложных систем. Для описания базовых 

моделей-композиций и технологии построения многомасштабных композиций 

применен теоретико-множественный аппарат, позволяющий передать 

вычислительную сущность  соответствующих математических моделей.  
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ГЛАВА 2 

МОДЕЛИ АТОМНО-КРИСТАЛЛИЧЕСКОГО  УРОВНЯ  

Одним из важнейших направлений современных технологий является 

создание новых конструкционных материалов с заранее заданными свойствами. 

Наряду с промышленными способами их получения и технологиями, связанными с 

искусственным выращиванием кристаллических структур, в последнее время все 

большее значение приобретают различные методы компьютерного моделирования 

новых материалов. Такие подходы позволяют существенно сократить число 

натурных экспериментов и время проведения расчетов различных свойств 

кристаллических структур. 

Многие  задачи  прикладного вычислительного материаловедения  связаны с 

необходимостью  установления взаимосвязи между кристаллической структурой,  

электронными характеристиками атомов или ионов и их физическими свойствами.   

В Главе 2 представлены некоторые математические модели,  численные методы и 

алгоритмы, используемые при проектировании и оптимизации современных 

кристаллических  структур, позволяющие исследовать такие зависимости в 

вычислительном эксперименте.  

В Главе 2 рассмотрены стационарные модели, в которых время   считается 

зафиксированным и неизменным в течении всего изучаемого процесса. В первом 

разделе данной Главы  представлена  модель ионно-атомных радиусов, называемая 

также моделью «плотной упаковки»  [1,2], в которой решается вариационная задача 

определения минимального объема элементарной ячейки и соответствующих 

координат базисных атомов для кристаллической структуры с заданной химической 

формулой. Изложены вычислительные алгоритмы, позволяющие рассчитывать 

основные характеристики устойчивых кристаллических структур 

многокомпонентных материалов. Приводится теоретико-множественное 

представление базовой модель-композиции «КРИСТАЛЛОХИМИЧЕСКАЯ 

ФОРМУЛА» (   
 ), в котором отражена вычислительная сущность данной модели. 

Во втором  разделе Главы 2  рассматривается  квантово-механическая модель 

твердого тела, в основе которой  лежит теория функционала электронной плотности 

(DFT), базирующаяся на уравнениях Кона-Шэма [3-5,6]. Представлена 

вычислительная схема проведения первопринципных расчетов. Квантово-
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механическая модель твердого тела   представлена как оптимизационная задача 

определения равновесного состояния  системы, характеризующегося  электронной 

плотностью и соответствующей конфигурацией базисных атомов. Равновесное 

состояние системы соответствует минимальному значению ее полной энергии. В 

известных пакетах прикладных программ, таких как VASP 

(https://cms.mpi.univie.ac.at/vasp/ ), SIESTA (https://departments.icmab.es/leem/siesta ), 

quantum ESPRESSO (https://www.quantum-espresso.org) и других,  реализован 

квантово-механический подход. 

Показано что, применяя представленные модели  в комплексе, в частности, 

используя модель ионно-атомных радиусов для получения начальных  данных об 

устойчивой кристаллической структуре исследуемого материала, можно, применяя 

далее квантово-механическую модель, достаточно точно воспроизводить атомно-

кристаллическую структуру и энергетические свойства материалов, рассчитывать 

энергию адгезии, диффузионные барьеры  и другие важнейшие свойства 

кристаллических структур. Приводится теоретико-множественное представление 

базовой модели-композиции «КВАНТОВО-МЕХАНИЧЕСКАЯ ЯЧЕЙКА» (   
 ).  

Рассмотрены примеры решения некоторых прикладных задач. Представлены 

результаты расчета энергии адгезии в нитридных нанопленках, а также расчет  

прогиба гетероструктуры, возникающего  при ее выращивании в лабораторных 

условиях.  Представлены результаты моделирования  нанокластера на поверхности 

сапфира и  расчета заряда на интерфейсе в полупроводниковых гетероструктурах. 

2.1 Модель ионно-атомных радиусов 

      2.1.1 Основные понятия кристаллографии 

В  1890 г.,  применив  математический аппарат  теории групп,  русский 

математик Е.С.Федоров вывел  230 пространственных групп симметрии 

(Федоровских групп симметрии (Fedorov groups)) - правил, которым подчиняются 

взаиморасположения частиц  в кристалле [7]. Несколько позднее  немецкий 

математик А. Шенфлис получил аналогичный результат и представил 

пространственные группы в   виде таблиц, которые получили название таблиц 

Шенфлиса [8]. Для дальнейшего изложения нам потребуются ввести некоторые 

понятия и определения из кристаллографии. 

https://cms.mpi.univie.ac.at/vasp/
https://departments.icmab.es/leem/siesta
https://www.quantum-espresso.org/
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 При описании кристалла, помимо пространственных групп (  ), с помощью 

которых   задают  топологию,  используется понятие базис кристаллической 

структуры, под которым понимают полную совокупность координат центров атомов 

в  ее симметрично независимой области (asymmetric unit). Соответствующие атомы 

называют базисными. С помощью операций симметрии  строится элементарная 

ячейка, которая в силу периодичности кристаллических структур может быть 

размножена. Известно, что центры атомов  любой идеальной кристаллической 

структуры образуют в простых случаях одну или в общем случае несколько 

правильных систем точек. Под правильной системой точек [7] (системой 

эквивалентных позиций) понимают совокупность точек, полученную размножением 

исходной точки всеми операциями симметрии данной пространственной группы. 

При этом каждая правильная система точек содержит лишь одну точку в 

независимой области.  В каждой пространственной группе симметрии правильные 

системы точек подразделяются на так называемые позиции Уайкова (Wikoff 

position). Позиции Уайкова могут быть свободными (область в трехмерном 

пространстве), либо задаваться как  плоскость, либо как  прямая  или  как точка в 

трехмерном пространстве (точечная позиция).  Базисные атомы исследуемого 

вещества [9-11] размещаются в конкретных позициях Уайкова в  рамках топологии, 

задаваемой пространственной группой симметрии. Всего в 230 пространственных 

группах симметрии насчитывается  1731 позиций Уайкова. Они задаются с 

помощью символа, обозначающего Федоровскую группу симметрии, и латинской 

буквы [8,9] Например,        обозначает позицию Уайкова  , относящуюся к  

Федоровской группе симметрии     .  

Под кристаллической структурой понимают «конечную совокупность 

правильных систем атомов с данной Федоровской группой» [12]. Кристаллическая 

структура  описывается c  помощью следующих характеристик: 

-пространственная группа симметрии; 

-метрические параметры элементарной ячейки (параллелепипеда Браве      

[1,7,13,14]), к которым относятся постоянные решетки и углы между ними; 

-позиции Уайкова центров базисных атомов, составляющих эту структуру, 

включая их индексы, обозначающие кратность позиции и числовые значения 
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свободных координат этих позиций в элементарной ячейке (параллелепипеде 

Браве, построенном  на репере Браве [9]). 

       Координаты всех атомов кристаллической  структуры можно рассчитать, исходя 

из этих данных и используя Федоровские группы симметрии [9] или уже 

упомянутые международные кристаллографические  таблицы (таблицы Шенфлиса) 

[8].   

Начнем рассмотрение материалов с идеальных кристаллов, которые 

представляют собой периодическую кристаллическую структуру с заданной 

химической формулой. Используем следующее определение химической формулы 

[2,15]. 

     Определение 1. Любое непустое  подмножество символов элементов из 

таблицы Менделеева (ТМ), каждому из которых  приписан индекс – некоторое 

положительное ненулевое целое число, назовем химической формулой. Пусть 

химическая формула задается выражением [2]: 

     
    

 
    

                                                     (2.1) 

Здесь    
  

– обозначает элемент из Таблицы Менделеева(ТМ),       - номера 

соответствующих элементов в ТМ, могут принимать значения от 1 до                           

Т (       по числу элементов в Таблице Менделеева (ТМ)),        - число атомов 

элемента    
   в формуле F. Если     , то будем обозначать    

    . 

Причем    

     

 , если     . Обозначим через   число различных сортов атомов в 

химической формуле      
    

 
    

 . Например если      
    

 
, где    , то 

    и материал будем называть двухкомпонентным. 

Пример: химическая формула оксида алюминия          в таких     обозначениях       

запишется  в виде   
    

 .                                         

Для определения свойств материала необходимо помимо химической формулы 

задать его кристаллическую структуру.  Обозначим  через      множество всех 

топологических типов кристаллических структур.  на  которых может быть 

реализована заданная химическая формула   . Под топологическим типом понимаем 

пространственную группу симметрии с однозначно определенными (с учетом 
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кратностей)  позициями Уайкова для базисных атомов. При этом топологический 

тип задает кристаллическую структуру для заданной химической формулы, но не 

определяет конкретного значения метрических параметров элементарной ячейки и 

координат позиций Уайкова. В работе  [9] показано, что каждой химической 

формуле  можно поставить в соответствие конечное число топологических типов 

кристаллических структур, в которых могут размещаться  атомы системы, т.е. 

         .   В работe   [11] представлены алгоритмы и описание расчетного 

модуля, позволяющего  для заданной химической формулы  генерировать все 

возможные топологические типы кристаллических структур. После этого, для 

каждого из возможных топологических типов, на котором, согласно законам 

кристаллографии,  может быть реализована заданная химическая формула, 

определяется конкретная кристаллическая структура. Как  было отмечено ранее, для 

этого необходимо рассчитать метрические значения свободных параметров 

параллелепипеда Бравэ (постоянные решетки и углы между ними),  а также 

определить координаты  базисных атомов, расположенных в  позициях Уайкова [2] 

выбранного топологического типа.   Таким образом, зная химическую формулу 

вещества и применив представленный подход,  можно получить конечное 

множество всех кристаллохимических формул, на которых она может быть 

реализована. Кристаллохимической формулой обозначают совокупность 

химической формулы рассматриваемого материала и его кристаллическую 

структуру [9].  

               2.1.2  Относительные координаты и расстояния 

Обычно, при моделировании кристаллических структур координаты базисных 

атомов представляются в относительных координатах в косоугольной системе : 

   
 

 
   

 
  ,    

 
 

   

 
,     

 
 

   

 
 [16,17].  Если  начало координат находится в вершине 

элементарной ячейки, они выражаются в долях элементарных трансляций [16,17].  

Данные координаты  характеризуют  отношение длин косоугольных проекций 

радиус-вектора                   , выходящего  из начала координат, к длинам 

базисных векторов  ,   ,    - элементарных трансляции (параметров) решетки Браве 

(элементарной ячейки).  Относительные  координаты i-го атома представляют собой  



60 
 

положительные числа в интервале от 0 до 1. Далее, штрихи использовать не будем, 

считая координаты атомов относительными.  

𝒓𝑖 = 𝑥1𝑖𝒂 + 𝑥2𝑖𝒃 + 𝑥3𝑖𝒄.                                                (2.2)                 

Параметры элементарной ячейки и относительные координаты атомов 

полностью определяют кристаллическую структуру. Если рассматривается 

ортогональный  базис  𝒂, 𝒃, 𝒄, тогда расстояние  𝒓𝑖 , 𝒓𝑗   между атомами 𝑖   и 

𝑗 будет вычисляться по формуле: 

 𝒓𝑖 , 𝒓𝑗  =     𝒂  𝑥1𝑖 − 𝑥1𝑗   
2

+   𝒃  𝑥2𝑖 − 𝑥2𝑗   
2

+   𝒄  𝑥3𝑖 − 𝑥3𝑗   
2
        (2.3) 

В общем случае квадрат расстояния между центрами атомов  вычисляется по 

формуле: 

 𝒓𝑖 , 𝒓𝑗  
2

=   𝒂  𝑥1𝑖 − 𝑥1𝑗   
2

+   𝒃  𝑥2𝑖 − 𝑥2𝑗   
2

+   𝒄  𝑥3𝑖 − 𝑥3𝑗   
2

+ 2  𝒃  𝒄  𝑥2𝑖 − 𝑥2𝑗  ∙  

  𝑥3𝑖 − 𝑥3𝑗  cos 𝛼 +  𝒂  𝒄  𝑥1𝑖 − 𝑥1𝑗   𝑥3𝑖 − 𝑥3𝑗  cos 𝛽 +  𝒂  𝒃  𝑥1𝑖 − 𝑥1𝑗   𝑥2𝑖 − 𝑥2𝑗  cos 𝛾 .  (2.4) 

Здесь 𝛼, 𝛽, 𝛾 - межплоскостные углы. Таким образом,  для расчета различных 

характеристик кристаллов (длина связи, валентные углы и т.д.),   в общем  случае,  

помимо относительных координат базисных атомов 𝒓𝑖 = 𝑿 𝑖 =  𝑥1𝑖  , 𝑥2𝑖 , 𝑥3𝑖 , 𝑖 =

1, 𝑛     , заданных в не ортогональном базисе 𝒂,𝒃,𝒄,  необходимо знать постоянные 

элементарной ячейки 𝑎,𝑏,𝑐 и углы 𝛼, 𝛽, 𝛾.   

                       2.1.3 Конфигурация базисных атомов  

Пусть для заданной химической формулы (2.1) известна ее кристаллическая   

реализация в виде конкретной Федоровской группы симметрии и позиций Уайкова 

(более подробно опишем далее), которые занимают  ее базисные атомы. Для 

описания  конфигурации, состоящей  из  h  базисных атомов, будем использовать 

матрицу 𝐾3ℎ = (𝒓1
0, … , 𝒓ℎ

0 ), размерностью  3 × ℎ,  столбцы которой 𝒓𝑖
0 ∈ 𝑅3, 𝑖 = 1, ℎ     , 

являются векторами 𝒓𝑖
0 = 𝑿 𝑖) = 𝑿(𝑖, 0 =  𝑥1𝑖(0), 𝑥2𝑖(0), 𝑥3𝑖(0)  координат 

базисных атомов для данной кристаллической структуры.  
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Координаты образа базисного атома (шара)   , находящегося в 

неэквивалентной позиции, полученные с использованием  однократного применения 

операций симметрии  обозначим через                                  Пусть     -

множество координат базисных атомов симметрично независимой области системы.  

При «размножении» элементарной ячейки и базисных атомов с  помощью операций 

симметрии, то есть при построении их образов в соседних ячейках, будем 

использовать аналогичные обозначения.  Пусть      - множество  координат всех 

образов базисных атомов в  элементарной ячейке и  соседних с ней ячейках, 

полученных при помощи операций симметрии для заданной Федоровской группы. 

Через      обозначим объединение элементов множества      и  множества 

базисных атомов     . Этому множеству координат поставим в соответствие  

матрицу     , описывающую конфигурацию, состоящую из        атомов. 

            2.1.4  Позиции Уайкова  

 Условие расположения  базисного атома из конфигурации     в заданной  

позиции Уайкова может означать, что центр атома находится в определенном 

объеме, располагается на  плоскости,  на прямой или занимает точечную позицию. 

Для i-го базисного атома (           , находящегося в  позиции Уайкова   , с 

координатами   
         это условие выражается системой уравнений или 

неравенств, ограничивающих область изменения координат этого атома. Пусть 

  
                                 

     . 

В  общем случае, для заданной группы симметрии множество    

определяется следующим образом [2]: 

          
    

    
         

    
 

  

   

   
    

 
                

       

 

    

   
                      

Здесь: 
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 Nb–число неэквивалентных неравенств, определяющих asymmetric unit в 

конкретной позиции Уайкова (информация из базы данных по федоровским группам 

симметрии); 

   
 - координата атома в позиции Уайкова   ; 

   - размерность позиции Уайкова; 

  
 - радиус-вектор, определяющий одну из точек в позиции Уайкова  ; 

  
 - радиус-вектор, определяющий допустимые направления движения в позиции 

Уайкова    

       и     - коэффициенты, определяющие неравенства, задающие элементарную 

ячейку. 

Для построения образов базисных атомов применяются операции симметрии 

по каждой Федоровской группе, информация по которым хранится в 

кристаллографической базе данных. Используем следующие обозначения: 

      =                                                             

Можно показать, что: 

                                      ,                 . 

Здесь     - число операций симметрии в заданной Федоровской группе, 

           – матрица преобразований,    – вектор трансляций [2]. Множество всех 

координат базисных атомов и их образов  принадлежит области   , так что: 

                                  
       

   
       ,           .  

Пусть задана произвольная Федоровская группа симметрии   . Обозначим 

через     позицию Уайкова в данной Федоровской группе. Опишем позицию 

Уайкова   , в которой располагается i-й базисный атом конфигурации: 

0            
  , 

  0            
   , 
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0            
  .                                                  (2.5) 

   Здесь     
  ,    

  ,    
   –константы, причем: 

      
    ,        

    ,       
    ,                 (2.6) 

   Здесь    - число позиций Уайкова в заданной Федоровской группе симметрии   . 

Неравенства (2.5)-(2.6) определяют области изменения координат i -го  базисного 

атома (          ) в позиции Уайкова   . 

Пусть i-ый базисный атом кристаллической структуры рассматриваемого 

вещества с координатами    
         занимает в Федоровской группе      точечную 

позицию  Уайкова   . Например,         
 

 
 
 

 
   . Тогда координаты  i-го базисного 

атома  однозначно определены  и равны значениям констант    
  ,    

  ,    
  , то есть:  

           
   

 

 
   ,            

   
 

 
  ,             

   = 0, 

  
          

 

 
 
 

 
    

  Если базисный атом размещается в позиции     ,  которая задает прямую, 

тогда центр базисного атома   
  может находиться на прямой, которая описывается 

неравенствами (2.5). Например,                     , тогда  компоненты вектора   
  

определяются соотношениями:  

0            
  ,         ,         . 

Eсли      описывает плоскость в которой могут изменяться координаты 

базисного атома, то центр базисного атома   
  может находиться в любой точке этой 

плоскости.   Например, если                     , тогда центр базисного атома   

  
                   , может находиться в любой точке плоскости.  

Если         (x,x,z) - свободная позиция Уайкова, тогда базисный атом  

  
                           находясь в такой позиции, может занимать 

произвольную точку в элементарной ячейке. 
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 Пусть с  помощью алгоритма из [9,11] мы определили, что перовскит с 

химической формулой        (         
    может быть реализован в Федоровской 

группе симметрии G (     – кубическая,       постоянные решетки,    

  ). Для краткости в данном примере обозначим                        

          .  Вариантов размещения базисных атомов        с учетом кратностей 

позиций Уайкова может быть несколько. Рассмотрим случай, когда: 

- первый базисный атом с центром в    
 , соответствующий атому     (   ) 

занимает позицию      (область), 
 

 
              ,         , здесь    

 
  ; 

- второй базисный атом с центром в   
  , соответствующий атому     (   ) 

занимает позицию      (область),  
 

 
                        , здесь    

 
  ; 

- третий базисный атом с центром   
  , соответствующий атому     (  

  ) 

занимает позицию      (плоскость),   
 

 
           ,        ,                                       

        ,       ,  здесь     
     

   ,    
 =0.  

Как видно из приведенного примера, задание позиций Уайкова оставляет 

существенный произвол в выборе расположения базисных  атомов, например, с 

точностью до размещения на прямой или плоскости. Этот произвол устраняется 

определением их расположения  согласно  критерию, который зависит от выбора 

оптимизационной модели. 

2.1.5 Модель ионно-атомных радиусов 

 Для определения метрических параметров (постоянных решетки, координат 

базисных атомов и т.д.) необходимо использовать модель твердого тела, которая 

отражает тип химической связи исследуемого материала. Так при моделировании  

ионных кристаллов или металлов и их оксидов для определения метрических 

параметров можно воспользоваться  моделью ионно-атомных радиусов («модель 

плотной упаковки»), описанной в [1,2,14], в которой атомы представляются 

твердыми неупругими шарами с ионными (атомными) радиусами, зависящими от 

элемента, валентности и координационного числа. Шары, соответствующие 

положительно и отрицательно заряженным  ионам (катионам и анионам),  

притягиваются друг к другу, а шары с одинаковыми знаками зарядов отталкиваются. 
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Такая модель хорошо воспроизводит центрально-симметричную химическую связь. 

Данный подход может быть применен и в общем случае, например, при 

моделировании  кристаллов с ионно-ковалентной химической связью, так как 

большинство из них устроены по   принципу плотной упаковки,   согласно которому 

наиболее плотная упаковка в большинстве случаев соответствует наиболее 

устойчивой и наиболее вероятной структуре.  Однако,  погрешность при 

определении метрических параметров для  кристаллов с не центрально-

симметричными   связями  может оказаться значительной. В связи с этим,  при 

моделировании ковалентных кристаллов в первом приближении чаще  всего  

используется известная модель Л. Полинга [13], в которой атомы  материала 

представлены многогранниками, что позволяет лучше воссоздать  несимметричную 

химическую связь. Применение приведенных выше, так называемых  «простых», 

моделей, дает возможность выделить из всех вероятных с точки зрения законов 

кристаллографии кристаллических структур,  совместных с заданной химической 

формулой, устойчивые и определить для них в первом приближении метрические 

параметры.  

Критерием устойчивости кристаллической структуры с заданной химической 

формулой, федоровской группой симметрии  и с базисными атомами, 

размещенными  в определенных  позициях Уайкова,  может быть условие 

достижения минимума внутренней энергии системы.  Для ионных кристаллов она 

может быть описана, например,  при помощи функционала: 

                        
 
                            ,                 (2.7) 

где произведение  - функций ограничивает область изменения векторов     , а  U  – 

парный потенциал взаимодействия ионов. Положительный параметр ассоциируется 

с обратной температурой    
 

 
. Парный потенциал U взаимодействия шаров может 

быть описан формулой (2.8):  

                          
              

             
                                                 (2.8) 

Здесь    – это атомный или ионный радиус i-го шара,   - расстояние между шарами. 

Если выполняется условие         ,  потенциал ( .8) описывает сильное 
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отталкивание при перекрытии электронных оболочек атомов,      . При      

   потенциал (1.8) должен описывать тенденцию к плотной упаковке шаров,  

поэтому в качестве        выбирается неотрицательная возрастающая функция,  

которая играет роль штрафной функции (функции притяжения).                                            

 Задача состоит в определении координат базисных атомов и метрических 

параметров элементарной ячейки, на которых достигается  минимум 

функционала (2.7), построенного для каждого из таких топологических типов. В 

работе [2] было показано, что добиться  минимизации функционала (2.7) можно за 

счет варьирования размеров элементарной ячейки, определив при этом   

оптимальную конфигурацию базисных атомов, расположенных в соответствующих 

позициях Уайкова. Такую задачу можно решать разными способами, например,  

используя метод имитации отжига (Simulated annealing) [18],  методы дискретной 

оптимизации [19],  метод Монте-Карло [20] и т.д. Сложность решения задачи в 

такой постановке состоит в выборе первоначальной конфигурации базисных атомов 

и в правилах изменения их взаиморасположений в ходе выполнения 

вычислительного  алгоритма.  Для того, чтобы  не потерять однозначности решения 

задачи, необходимо производить выбор начальной конфигурации базисных атомов и 

всех их перемещений в рамках позиций Уайкова, определенных для конкретного 

топологического типа.  При этом должно учитываться условие не перекрывания 

радиусов соседних атомов. С другой стороны, известно, что более шестидесяти 

процентов существующих в природе кристаллов подчиняются принципу  плотной 

упаковки [1] (см. рис.2.1), согласно которому   наименьшее значение внутренней 

энергии системы достигается на плотноупакованных структурах (рис. 2.1).  

 

Рис.2.1 Вырезанная в форме куба часть пространства с гранецентрированной 

кубической упаковкой   [22] 
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В  работе [2] сформулирована замкнутая математическая задача, описывающая 

поиск всех возможных кристаллических структур, совместных с заданной 

химической формулой, на основе модели ионно-атомных радиусов.  Представлена 

постановка различных вариантов оптимизационных задач для моделирования 

кристаллов с ненаправленными связями, в том числе, металлов и их оксидов. В 

модели используют одну из двух систем радиусов – ионную или атомную. Если в 

кристалле присутствуют ионно-ковалентные связи, то обе системы радиусов дают 

похожий   результат.  Однако, предпочтительнее использовать ионную, так как она 

учитывает зависимость радиуса атома как от химического элемента, так и от 

валентности иона в конкретном кристалле,  а также от числа окружающих атомов, 

т.е. от координационного числа [21,22]. В основе модели лежит принцип 

максимального заполнения, согласно которому под действием сил притяжения 

атомы стремятся сблизиться друг с другом, так чтобы допустимое число кратчайших 

контактов было максимальным, что соответствует минимуму потенциальной 

энергии системы атомов. При этом  в устойчивой кристаллической структуре в 

рамках данной модели никакие два катиона не должны соприкасаться, каждый 

катион должен касаться хотя бы одного аниона. В ходе различных вариаций 

координат базисных атомов в рамках разрешенных позиций Уайкова,    должно 

выполняться условие, при котором атомы могут сближаться на расстояние не 

меньшее, чем сумма их радиусов, то есть до касания. При этом, плотность упаковки, 

как функция координат центров шаров и объема элементарной ячейки, достигает 

локального максимума (при вариации параметров, не приводящих к перекрытию 

шаров).  

   

                           Рис.2.2 Простая кубическая упаковка        
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                 Рис 2.3.Гранецентрированная кубическая упаковка       . 

В случае, когда система ионных радиусов приводит к оптимальной структуре, 

в которой катионы касаются друг друга, это говорит о невозможности лишь с 

помощью ионно-ковалентных связей описать кристалл и требуется применить 

систему атомных радиусов. В таком случае, искомая плотноупакованная структура 

(рис.2.1 из [22],  -плотность упаковки)  удовлетворяет условию строгого локального 

максимума плотности упаковки, то есть любая разрешенная вариация параметров 

приведет к уменьшению плотности упаковки.  Известно, что для большинства 

существующих кристаллов значения плотности упаковки изменяются в интервале 

[0,47-0,74]. На рис.2.2 и рис.2.3 в качестве примера приведены наиболее известные 

плотноупакованные структуры - простая кубическая и гранецентрированная 

кубическая.  

2.1.6 Критерий устойчивости кристаллической структуры в рамках модели 

ионно-атомных радиусов 

Рассмотрим трехкомпонентный материал с заданной химической формулой 

     
    

 
   
 . Выберем один из  топологических типов (Федоровская группа 

симметрии и набор позиций Уайкова), в которых могут размещаться базисные 

атомы  с  учетом кратностей,  задаваемых химической формулой. Далее применяя 

операции симметрии, создавая образы базисных атомов, входящих в симметрично 

независимую область элементарной ячейки, получаем координаты  атомов всей 

элементарной ячейки. Используя свойства  периодичности  кристаллических 

структур,  при помощи операций симметрии,  «размножая» элементарную ячейку[2] 

и координаты базисных атомов по всем направлениям,  создаются  образы атомов 

исходной элементарной  ячейки в соседних ячейках. Теоретически, продолжая 

данный процесс по всем направлениям можно воссоздать структуру идеального 

кристалла.  
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Как отмечалось ранее,  плотная упаковка соответствует минимуму внутренней  

энергии системы и минимальному объему элементарной ячейки V
0
. Сформулируем 

критерий устойчивости кристаллической структуры в рамках модели ионно-

атомных радиусов (плотной упаковки).  

Кристаллическую структуру, соответствующую заданной химической 

формуле, атомы которой расположены в  Федоровской группе симметрии с 

определенными позициями Уайкова,   для которых   выполнено условие не 

перекрывания радиусов    будем считать устойчивой,      если    объем (постоянная 

решетки в  кубическом случае) ее элементарной ячейки достигает минимального 

значения.  При этом соответствующее значение   плотности  упаковки  должно 

лежать в интервале от 0.47 до  0.74.  

В случае кубической симметрии проблема определения устойчивой 

кристаллической структуры в рамках модели ионно-атомных радиусов  сводится к 

определению конфигурации базисных атомов, на которых достигается минимум 

постоянной решетки.  

Введем следующие обозначения. Пусть    - обозначает шар (атом), 

соответствующий химическому элементу     
 , с  радиусом         , находящийся  

в заданной  позиции Уайкова,   а    - обозначает шар,  соответствующий элементу 

   
 
, с радиусом          также находящийся в своей позиции Уайкова, шар    ,  с 

радиусом         соответствует       
 . Согласно  законам кристаллографии,   в 

рамках одной элементарной ячейки шары (атомы) одного сорта могут занимать 

различные неэквивалентные положения, то есть находиться  в положениях с 

разными координатами центров (в разных позициях Уайкова). 

Через     обозначим множество всех шаров элементарной ячейки, 

находящихся в неэквивалентных позициях, а через   обозначим объединенное 

множество, в которое входят шары из   и их образы в соседних  ячейках. 

Рассмотрим конечное множество всех возможных пар шаров        , где   пробегает 

множество позиций шаров, находящихся в неэквивалентных позициях Уайкова в 

рамках элементарной ячейки (    ), а   – пробегает все позиции шаров в пределах 

этой элементарной ячейки и соседних с ней ячеек (      .   
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С помощью модели ионно-атомных радиусов определим метрические 

параметры кристалла.  Расстояние между шарами        рассчитывается по 

формуле (2.4).   Пусть           -расстояние между  -м и  -м атомами, с 

соответствующими радиусами            

Согласно условию не перекрывания шаров, для любой пары шаров     должно 

выполняться выражение: 

                                                           (2.9) 

Здесь      и      - радиусы   –го и j-го шаров  из элементарной ячейки и соседних с 

ней ячеек,             ,            .  

Отметим, что если рассматриваются расстояния между шарами одного  

радиуса, т.е обозначающими один и тот же элемент, находящийся в определенной 

позиции Уайкова, то учитываются  только пары шаров (атомов), один из которых 

находится в основном базисном положении, а другой является его образом, 

полученным при помощи операций симметрии. 

2.1.7 Постановка оптимизационной задачи определения устойчивых структур  в 

модели ионно-атомных радиусов  

Наиболее плотная упаковка может быть  получена, если параметры решетки 

подобраны таким образом, что объем ячейки  будет минимальным.  

Необходимо отметить, что значение  объема V
0 
элементарной ячейки зависит 

от того, в какой системе (ионных или  атомных) радиусов проводятся вычисления. 

Кроме того, в зависимости от сингонии рассматриваемого кристалла, формулы для 

расчета значения  объема V
0   

элементарной ячейки различаются. Под сингонией 

понимаем классификацию кристаллографических групп симметрии, кристаллов и 

кристаллических решёток в зависимости от системы координат (координатного 

репера). Существует семь сингоний: 

 гексагональная                       ;  

 кубическая                  ; 

 моноклинная(                    ; 

https://ru.wikipedia.org/wiki/%D0%9A%D1%80%D0%B8%D1%81%D1%82%D0%B0%D0%BB%D0%BB
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 триклинная                  ; 

 тетрагональной                  : 

 орторомбическая                 ; 

 ромбоэдрическая                       . 

Для расчета объема элементарной ячейки для любой из семи сингоний можно 

использовать следующее выражение [16]: 

                       
 

 ,                              (2.10) 

где          - матрица Грамма: 

          

               

               
               

  

Элементами матрицы являются скалярные произведения векторов  , ,  . Выражая 

определитель через параметры      ,      , получим: 

                                                     
 

  (2.11) 

Таким образом, если заданы углы      , то задача плотной упаковки 

заключается в минимизации объема ячейки по параметрам элементарной ячейки  

      , зависящим от       :  

                , 

при  выполнении ограничений, соответствующих условию не перекрывания шаров 

(2.9). 

В случае сингонии:                                                                                                                                 

-кубической ,     
 ;                                                                                                                         

-моноклинной ,            ;                                                                                                      

-гексагональной                    
          

  

 
. 

Для ромбоэдрической и триклинной сингоний формулы для вычисления 

объема элементарной ячейки выводятся из (2.11) несколько сложнее.  
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                   Кубический случай 

Для кубической симметрии можно ввести независимые от постоянной решетки 

относительные расстояния между классами   и   неразличимых атомов [23]:  

        
 

 
                                                (2.12)             

Здесь   – постоянная элементарной ячейки (параметр решетки Браве),    – номер  

шара из класса  , а   - номер шара в классе   (не рассматриваются  случаи, когда 

   , т.е. атом   из класса    сравнивается с атомом из класса  , который 

фактический является тем же самым атомом  ,  так как в этом случае             

 ). При этом, выполняется  соотношение (2.9) 

         для всех пар шаров. С учетом (2.12) можем записать: 

                                                                                              (2.13) 

здесь       , R    - радиусы любого из шаров, принадлежащих,  классу   и   

соответственно  

Согласно модели ионно-атомных радиусов в случае кубической решетки, для 

заданного набора атомов, размещенных в своих позициях Уайкова, наиболее 

плотная упаковка, соответствующая минимуму полной энергии рассматриваемой 

системы, достигается при минимальном значении  постоянной элементарной ячейки 

 . Обозначим через      множество всех независимых координат, центров шаров, 

находящихся в заданных позициях Уайкова. Наиболее плотная упаковка 

рассматриваемой системы атомов получится,  когда будет выполнено условие:                                                                                   

     
   

   
       

         

      
                                                      

 

По полученным локальным минимумам постоянной решетки для 

рассматриваемой химической формулы можно вычислить плотности упаковки 

соответствующей системы атомов (шаров) с заданной  кристаллической структурой.   

Плотность упаковки для рассматриваемой системы атомов (шаров), может 

быть рассчитана при помощи следующей формулы:  

  
 

 
 
           

  
                                               (2.15) 



73 

 

где     – объем элементарной ячейки. Здесь сумма берется по классам 

неэквивалентных атомов,   (A)  -  число атомов в классе A в расчете на одну 

элементарную  ячейку (кратность соответствующей позиции Уайкова). В случае 

кубической симметрии  имеем       и  формула (2.15) принимает вид:  

                                      = 
 

 
 
            

  
                                                 (2.16) 

Общий случай (минимизация объема элементарной ячейки) 

 Задача плотной упаковки  состоит в определении конфигурации базисных 

атомов, расположенных в заданных позициях Уайкова, которой соответствует 

минимальный объем элементарной ячейки  V
0
. 

Для i-го и j-го атомов рассматриваемой системы, согласно модели ионно-атомных 

радиусов, должно выполняться  условие (2.9). 

Задача существенно упрощается, если кроме углов известны отношения длин 

трансляций: 

 

 
  , 

 

 
  , 

 

 
  =

 

 
. 

Тогда выражение для расстояния между шарами       (2.4) примет вид:  

           
          

 
 
  

  
         

 
 
  

  
         

 

 
   

 
                       

   

 
                      

 
   

  
                       

 
 

 

Постоянные решетки  могут быть определены явно: 

        
         

        
, 

b=    , c=    . 
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            (2.17) 

Рассмотренная процедура позволяет рассчитать параметры решетки при 

заданных координатах атомов в базисной ячейке. Эта процедура повторяется в 

оптимизационном цикле, в котором в рамках допустимых позиций варьируются 

координаты iii xxx 321 ,,  базисных атомов с целью достижения максимально плотной 

упаковки: 

     
    

   
   

           

        
     

                                              b=    , c=    .                                                 (2.18) 

         В этом случае, использовав формулу (2.11), можем записать задачу 

определения координат  базисных атомов    
  , при которых достигается 

оптимальный  объем элементарной ячейки, в следующем виде: 

      
       

      
           

      
                               

                 
 

  (2.19) 

Подставим       (2.18)  в  (2.19):            

      
       

      
           

      
         

   

         

         
 

 

            

                             
 

                                                       (2.20) 

Здесь      - множество всех возможных координат конфигураций     базисных 

атомов при которых их радиусы  не перекрываются и центры атомов находятся в 

заданных позициях Уайкова.         -объем элементарной ячейки, 

соответствующий конфигурации     базисных атомов с координатами       

                                       
   
       ,           ,     - число 

операций  симметрии  в  заданной  Федоровской  группе.      – область,  задаваемая  
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  позициями Уайкова, соответствующими заданной федоровской  группе симметрии, 

в которых размещаются центры атомов (шаров) рассматриваемой  системы.  

Кристаллическая решетка будет иметь минимальный объем в случае, когда 

шары максимально плотно упакованы, то есть соприкасаются друг с другом. 

Сформулируем  оптимизационную задачу нахождения устойчивой, в рамках модели 

ионно-атомных радиусов, кристаллической структуры для заданной химической 

формулы.  

Пусть необходимо найти такие  координаты базисных атомов элементарной 

ячейки, при которых достигаются   локальные минимумы     объема элементарной 

кристаллической ячейки. Необходимо учесть, что согласно модели шары могут 

сближаться до касания,  оставаясь в своих позициях Уайкова. При этом очевидно, 

что  чем ближе шары сближаются друг с другом, тем меньше будет объем 

элементарной ячейки. Тогда оптимизационную задачу  можно поставить следующим 

образом- необходимо найти все возможные конфигурации базисных атомов, при 

которых достигаются  локальные минимумы  объема элементарной ячейки  V
0
, что 

соответствует нахождению решения соответствующей задачи на минимакс (будет 

представлена далее) из [2]. 

Сформулированная таким образом задача представляет собой минимаксную 

задачу со связанными ограничениями, то есть  с ограничениями, накладываемыми 

на расположения центров базисных атомов  в заданных позициях Уайкова и  на 

выполнение условия не перекрывания радиусов (2.27), которое должно выполняться 

для всех возможных пар шаров, участвующих в рассмотрении. При этом 

учитываются как базисные атомы основной элементарной ячейки, так и их образы, 

построенные при помощи операций симметрии в соседних элементарных ячейках.  

Как отмечалось выше, в  модели ионно-атомных радиусов используют одну из двух 

систем радиусов ионную или атомную. В рамках такой постановки задачи можно 

рассматривать процесс поиска устойчивых структур для ионных кристаллов, 

металлов и их оксидов и отдельных соединений с ионно-ковалентными связями 

(например, некоторые перовскиты). Далее приведем постановки оптимизационных 

задач для системы ионных радиусов, атомных радиусов и систем с 
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перекрывающимися радиусами, которая может использоваться для моделирования 

металлов и их оксидов. 

Постановка оптимизационной задачи для системы ионных радиусов 

Пусть для рассматриваемой химической формулы с заданной Федоровской 

группой симметрии необходимо определить устойчивую кристаллическую 

структуру  с ионным типом  химической связи. Воспользуемся таблицами ионных 

радиусов из [24]. Обозначим через   множество всех шаров (атомов), размещенных 

в заданных позициях Уайкова (  ,           ), входящих в начальную конфигурацию  

  . Разобъем  множество   на подмножества     и    шаров (атомов) 

положительно и отрицательно заряженных. 

 Необходимо найти минимум целевой функции: 

           
      

 

                                            
   
       ,            

здесь          в общем случае определяется по формуле: 

               
   

         

         
 

 

                    

               
 
  

При этом должны выполняться условия: 

1) для   пары шаров                    , такое, что  

                      

2) для     шара           такой шар      , что  

                    

3) значение плотности упаковки   (2.15) принадлежит    интервалу  [0,47-0,74] .  

Для решения поставленной задачи необходимо найти все возможные 

конфигурации     
    , где          на которых достигаются локальные 

минимумы целевой функции и  выполняются условия 1)-3).  
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Постановка оптимизационной задачи для модели с перекрывающимися 

радиусами 

Пусть для рассматриваемой химической формулы металла или его оксида с 

заданной Федоровской группой симметрии необходимо определить устойчивую 

кристаллическую структуру. Воспользуемся значениями металлических радиусов 

химических элементов, входящих в формулу, зависящих  от координационного 

числа [7,13]. В этом случае, постановка оптимизационной задачи определения 

устойчивой кристаллической структуры, соответствующей интерметаллическому 

соединению, может быть сформулирована следующим образом. Необходимо найти 

минимум целевой функции: 

           
      

 

                                            
   
       ,            

здесь          в общем случае определяется по формуле: 

        

          
                 

         
 
 

                                   
 

 . 

Здесь        - малое положительное число - параметр перекрывания.  

При этом должны выполняться условия: 

1)для   пары шаров          ,     выполняется условие: 

                              

2)   такая конфигурация    
    , что         достигает строгого локального 

минимума, то есть     , такое что для         выполняется: 

       
                 

3) плотность упаковки   (2.15), как функция координат центров шаров и объема 

элементарной ячейки достигает своего локального максимума. 

     2.1.8 Общая схема для решения задачи плотной упаковки  

При построении вычислительного процесса  в  общем виде, необходимо 

решить  задачу минимизации  объема элементарной ячейки по заданному 
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 оответ твующей  ингонией набору параметров при у ловии не перекрывания 

шаров, ра положенных в заданных позициях Уайкова. В случае кубической 

симметрии,  ищется минимум постоянной решетки а. Для этого случая можно 

применить  специальный подход, описанный выше.  Он позволяет производить 

упаковку  шаров различного радиуса в трехмерном пространстве на решетках с  

заданными группами симметрии. Задание группы симметрии  позволяет выписать 

необходимые ограничения на взаиморасположение шаров.  

 Суть данного подхода заключается в дискретных перемещениях атомов 

(шаров) в рамках заданных позиций Уайкова,  согласно одному из двух специально 

разработанных алгоритмов (или их комбинаций), с  целью минимизации заданной 

функции (2.20). Разработанные алгоритмы (Рис.2.4) существенно  учитывают 

свойства симметрии и периодичности кристаллов, что позволяет уменьшить 

размерность задачи и время расчета структур [2]. В основе одного из алгоритмов 

лежат идеи метода покоординатного спуска [19], позволяющего осуществлять поиск 

локальных минимумов функционала.  Второй метод является аналогом метода 

Монте-Карло [20], который в данной задаче позволяет выходить из локальных 

минимумов, и продолжать поиск оптимальных конфигураций базисных 

атомов(шаров), стартуя с новых разрешенных позиций.    Важной составной частью 

разработанного подхода является База данных по Федоровским группам симметрии, 

с помощью которой осуществляется выбор начальной конфигурации базисных 

атомов и производятся дискретные перемещения атомов (шаров) в рамках заданных 

позиций Уайкова. 

 Для решения задачи определения координат базисных атомов, на которых 

достигается минимум полной энергии системы в рамках модели ионно-атомных 

радиусов, строится итерационный процесс. Для случая кубических систем схема 

представлена на  рис. 2.4. 
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Определение

Построение эл. ячейки.

Размножение элементарной ячейки  и 

образов базисных атомов

Расчет  плотности упаковки

Итерационный цикл k=0,1... до достижения сходимости

и определения конфигурации на которой достигается

Химическая формула                         , число базисных  атомов  h, гр.сим. 

Задаем нач.конф. ,  поз. Уайкова ,       ,          , 

 

Рис.2.4 Блок-схема алгоритма плотной упаковки (кубический случай) 

Аналогичные подходы могут применяться для решения задачи поиска 

минимального объема элементарной ячейки в общем случае. 

 2.1.9 Описание базы данных и основных массивов, задействованных в 

алгоритмах 

В Базе данных для каждой группы симметрии заложена следующая 

информация: 

1. Nb–число неэквивалентных неравенств, определяющих asymmetric unit 

(симметрично независимая область элементарной ячейки). 

2. Массив коэффициентов            , задается таблицей. Она состоит из четырех 

столбцов (           ), первые три из которых обозначают коэффициенты     ,  , на 

которые надо умножить соответственно               (                  ), 

чтобы после их сложения получить    значение меньшее правой части (коэффициент 

  из четвертого столбца)  одного из  неравенств, определяющих asymmetric unit. 

Число строк  в таблице  равно числу неэквивалентных неравенств   (              ). 

Пример массива коэффициентов              для группы      представлен на   рис 

2.5.                
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0  0  1     0.0                    0        0.0 

0  1 -1     0.0                    1         0.0 

1 -1  0     0.0                    1         0.0 

-1  0  0    0.5                  0         0.5  

Рис.2.5 Массив коэффициентов             для группы      

3.Массив коэффициентов (             ,           ,            ,               ),  

описывающий операции симметрии, использующийся для возвращения координат 

точек в asymmetric unit. Он задается таблицей, которая  состоит из четырех 

столбцов, первые три из которых обозначают координаты после действия операций 

симметрии    ,   ,   . Если в строке стоит  X, тогда      , если стоит  , тогда 

     (аналогично по координатам    и   ).  С четвертого по шестой коэффициенты 

– числитель дроби, которую мы прибавляем, чтобы получить новую координату 

после действия операции симметрии к соответствующей координате атома (шара). 

Седьмой столбец – это знаменатель дроби.  Операции симметрии для Федоровской 

группы       представлены на рис. 2.6.  

x y Z   0  0  0  1       x
/
=x+0/1   y

/
=y+0/1   z

/
= -z+0/1 

х z  y   0  0  0  1       x
/
=x+0/1   y

/
=z+0/1   z

/
= y+0/1 

у x  z   0  0  0  1       x
/
=y+0/1   y

/
=x+0/1   z

/
= z+0/1 

X y z   1  0  0  1       x
/
=-x+1/1   y

/
=y+0/1   z

/
= z+0/1 

Рис.2.6 Операции симметрии для  группы       

4.   - число операций симметрии данной группы, с помощью которых можно 

построить все копии  asymmetric unit, необходимые, чтобы рассчитать  плотность 

упаковки; 

5. Массив коэффициентов             ,           ,                            , с помощью 

которого описываются операции симметрии, позволяющие построить все копии 

asymmetric unit. Его структура схожа со структурой массива коэффициентов 

             . 
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  Приведем пример записи первых двух строк (из 20-ти (       )  массива 

             для Федоровской группы     :  

 

Х y Z   1  0  0  1       x
/
=-x+1/1   y

/
=y+0/1   z

/
=- z+0/1 

х Y Z   0  1  0  1       x
/
=x+0/1   y

/
=-y+1/1   z

/
=- z+0/1 

6.     -число позиций Уайкова  для данной группы симметрии; 

7. Информация, позволяющая сформировать массив                 , где           , 

                             . На рисунке 2.7  приведен пример хранения информации по 

позициям Уайкова в Федоровской группе       . В первом столбце - обозначения 

позиций Уайкова с помощью букв латинского алфавита.  Эта информация позволяет 

сформировать массив      ,  обозначений позиции Уайкова i -го шара (здесь i-

номер шара). Для группы      он будет состоять из a,b,c,d,e,f,g,h,i,j,k,l,m,n. 

Например,       =h. 

Второй столбец - кратность позиции.   Используется в массиве      , 

            . Для группы      значение кратности позиций меняется от 4, 16, 24 до 4. 

Третий столбец - информация по числу независимых переменных (размерность)  

позиции.  Число независимых переменных позиции хранится в массиве 

           ,   =        (тип позиции Уайкова i). Так позиции Уайкова a,b,c,d для 

Федоровкой группы симметрии       (рис2.7), имеют размерность 0,  e,f,g,h,I,g - 1, 

k,l,m – 2, n - размерность 3. Например, для позиции Уайкова h  (          

       ). 

 С четвертого по шестой столбцы - координаты точки начала отсчета для 

позиции. Седьмой столбец ( / ) - число, на которое мы делим координаты начала 

отсчета  и координаты   x,  y  и  z.  С восьмого по десятый – коэффициенты по x. С 

одиннадцатого по тринадцатый – коэффициенты по y, с четырнадцатого по 

семнадцатый - по z. 
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П.У.   Кр.   Н.п.   Н.о.          /         x           y            z 

n         48     3        0   0   0     1     1  0  0    0  1  0    0 0 1           (0,0,0)+x(1,0,0)+y(0,1,0)+z(0,0,1)=(x,y,z)  область 

m        24     2        0   0   0     1     1  1  0    0  0   1                      (0,0,0)+x(1,1,0)+y(0,0,1)=(х,х,y)  плоскость                                         

l          24     2        1   0  0      2     0  1  0    0  0   1                      (1/2,0,0)+x(0,1/2,0)+y(0,0,1/2)=( 1/2,х/2,y/2)               

k         24     2        0   0   0     1     0  1  0    0   0  1                       (0,0,0)+x(0,1,0)+y(0,0,1)=(0,x,y)                                        

j          12     1        1   0   0     2     0  1  1                                      (1/2,0,0)+x(0, 1/2, 1/2)=(1/2,x/2,x/2)  прямая                                 

i          12     1        0   0   0     1     0 1  1                                       (0,0,0)+x(0, 1, 1)=(0,x,x)                                                                                                                           

h         12     1        0   1   0     2     1  0  0                                      (0,1/2,0)+x(1/2, 0, 0)=(x/2,1/2,0)                                                                                                                                                                                                                                                                                                                                  

g           8     1        0   0   0     1     1  1  1                                      (0,0,0)+x(1, 1, 1)=(x,x,x)                                                                                                                                                                                                                                                                                                                                 

f           6     1         0   1   1     2     1  0  0                                      (0,1/2,1/2)+x(1, 0, 0)=(x,1/2,1/2)                                                                                                                                                                                                                                                                                                                                  

e          6      1        0  0    0     1      1  0  0                                      (0,0,0)+x(1, 0, 0)=(x,0,0)                                                                                                                                                                                                                                                                                                                                                              

d          3      0        1   0   0     2                                                      (1/2,0,0)         точка                                                                          

c          3      0        0   1   1     2                                                      (0,1/2,1/2)                                                                         

b          1      0        1   1   1     2                                                      (1/2,1/2,1/2)                                                                     

a          1      0        0   0   0     1                                                       (0,0,0)    

 Рис.2.7 Информация по позициям Уайкова в  Федоровской группе симметрии      

Параметры позиции Уайкова   , которую занимает i-ый атом,  описываются с 

помощью трехмерного массива: 

                , где 1i = 3,1 , i2= 3,0 , i =        .                        (2.21) 

Выбор начальной конфигурации 

Прежде чем приступить к описанию алгоритмов, согласно которым 

осуществляются дискретные перемещения шаров в рассматриваемом методе, 

покажем, как производился выбор первоначальной конфигурации набора шаров с 

заданными радиусами и заданными ограничениями при помощи описанной выше 

Базы данных.  

Пусть задана химическая формула и Федоровская группа симметрии в 

которой она может быть реализована. Выберем  первоначальную конфигурацию 

базисных атомов (шаров)     , с заданными радиусами      ,        , так, чтобы 

они  размещались в разрешенных (в данной группе симметрии)  позициях Уайкова   

            .  При этом, для всех пар            должно выполняться условие не 

перекрывания (2.9). 

Зададим в трехмерном пространстве  элементарную ячейку, которая 

определяется одной из 230 федоровских групп симметрий. За начало  координат 

примем (0,0,0). Если рассматривается кубическая группа симметрии  (a=b=c, 
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   ), то для описания элементарной ячейки такой группы необходимо задать 

неравенства, определяющие допустимые области изменения 3-х мерных координат 

шаров  (x,y,z)=                   ,          элементарной ячейки 

                      
      ,                              (2.22) 

              ,           - массив коэффициентов для любого   -того неравенства 

(задается для каждой из 230 федоровских групп симметрии с помощью таблиц). 

Здесь          , 3,11i ,  координаты i - го базисного атома (шара) шара, 

принадлежащего элементарной ячейке, т.е. 

               ,                 ,                 . 

Например, для федоровской группы симметрии Pm3m неравенства, 

описывающие элементарную ячейку, будут следующими:  

     ,       y  ,              ,              

 Как отмечалось ранее в Базе данных эта информация представлена в массиве 

коэффициентов             (рис. 2.5). 

При описании элементарных ячеек не кубических групп симметрии, кроме 

указанных неравенств, необходимо  задавать межосевые углы   ,,   (либо области 

их изменения). 

 Пусть нам задан набор базисных атомов элементарной ячейки                         , 

каждый со своим радиусом     ,           . Зададим начальные координаты )0,,1( iiX  

(где 3,11i ,           ) для каждого шара элементарной ячейки. Пусть нам известно, 

какой позиции Уайкова принадлежит каждый из заданных шаров, т. е. мы заранее 

знаем о каждом i  - м шаре, где он  находится: 

(i) в точечной позиции Уайкова (заданы конкретные координаты 

соответствующей   точки (данные из Базы данных);  

(ii) в позиции Уайкова прямая, (т.е. задано уравнение прямой, которой 

принадлежит центр i -того    шара); 
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(iii) в позиции Уайкова плоскость, (задано уравнение плоскости которой должны 

удовлетворять координаты (x,y,z)=(      ,       ,       ) i -го    шара); 

(iv) в позиции Уайкова  область (координаты (x,y,z)=(      ,       ,       ) i -го    

шара могут принимать любые значения, удовлетворяющие неравенствам, 

описывающим элементарную ячейку). 

Предварительно введем  массив      , определяющий тип позиции Уайкова в 

которой находится шар  i :  

     =





















3))((),(3

2))((),(2

1))((),(1

0))((),(0

iWkWtобла ть

iWkWtпло ко ть

iWkWtпрямая

iWkWtточка

                     (2.23) 

Пусть  i – й шар занимает позицию Уайкова, параметры которой описываются 

с помощью массива       (i1,i2,    (i)), где 1i = 3,1 , i2= 3,0 ,           . В 

зависимости от типа позиции, который задается  с помощью массива      ,  

координаты атома будут определяться по-разному. Например, если; 

a)       =0, тогда координаты i - го шара: 

                                                                      

            (2.24)  

б)       =1  и  u =2 r, где r  (0,1)- любое действительное число из интервала (0,1), 

тогда координаты i - го шара будут следующими: 

                                                        , 

                                      , 

                                        . 

(2.25) 

в)      =2 и        , тогда координаты i - го шара будут следующими: 

 

                                                                     

                                                                     



85 

 

                                                                                                                                                                                    

            (2.26)  

г) ST( i )=3 (шар занимает любую точку из элементарной ячейки), тогда  

координаты i - го шара будут следующими: 

              , 

                 

                                                                                  

        (2.27)     

Покажем  это на примерах.  

Пример 1.  Нам известно, что атом с номером  , занимает точечную позицию 

Уайкова (размерность 0),  например позицию   b  в группе симметрии Pm3m. В Базе 

данных эта информация хранится в виде: 

b   1  0  1 1 1  2 

Тогда его начальные координаты будут: 

       = 1/2  ,       =1/2  ,         =1/2. 

Пример 2. Пусть шар с номером   занимает позицию Уайкова  i (прямая).  В Базе 

данных эта информация хранится в виде:  

i  12  1  0 0 0  1   0 1 1 

Ее можно представить в виде: ((0,0,0)+x(1,0,0)=(x,0,0)). 

 Тогда начальные  координаты шара имеют вид: 

      = ,          =0,           =0. 

 Здесь         
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 Пример 3. Пусть шар с номером   занимает позицию Уайкова плоскость, например 

позицию Уайкова     в группе симметрии  Pm3m, а именно  

(0,0,0)+x(0,1,0)+y(0,0,1)=(0,x,y), тогда начальные  координаты шара будут иметь вид 

      =0,          = )2cos( *rr  ,           = )2sin( *rr  , 

здесь     - могут быть любыми действительными числам, такими  что    ,          

. 

Пример 4. Если позиция Уайкова   – го шара   l – область, то есть любая точка из 

элементарной ячейки, тогда: 

      =   -1,          =   -1,           =   -1, 

 здесь            любые действительные числа, причем          ,          ,     

    . 

Для того, чтобы осуществлять дискретные перемещения шаров в 

разрешенных позициях Уайкова и находить конфигурации базисных атомов, 

соответствующих наиболее плотной упаковке, при выполнении условия не 

перекрывания радиусов (2.9), построим следующие массивы и используем 

обозначения: 

1.Массив          ,           ,             . Для каждого i - го шара принадлежащего 

элементарной ячейке (кроме шаров, находящихся в точечной позиции Уайкова): 

     а) позиция Уайкова - прямая             :            1;                        (2.28) 

Далее                  – любые действительные числа; 

б) позиция Уайкова - плоскость             , 

         =
     

        
         

 
,         =

     

        
         

 
                             (2.29)                          

в) позиция Уайкова - любая точка элементарной ячейки (       ), 

        = 
     

        
         

         
 
,   
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        =
     

        
         

         
 
,                                                         

        =
     

        
         

         
 
.                                                                         (2.30) 

2. Массив            ,           ,           ,            ,  который в дальнейшем будет 

использоваться для выбора возможных направлений движения i го шара  в своей 

позиции Уайкова. Если i -й шар занимает позицию Уайкова, например прямую, 

тогда: 

                         , 

                         ,                                

                        ;                                                   (2.31) 

Если  плоскость, то к (2.31) добавляются уравнения (2.32): 

                        , 

                         ,                                

                        ,                                                                           

                          

                                      (2.32) 

                          

Если атом занимает свободную  позицию Уайкова в  элементарной ячейке, тогда: 

                           , 

                        ,                                                                             

                           ,                                                                                             
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            (2.33) 

3. В результате  выбора (см. п. 1) начальных координат для любых  шаров            

элементарной ячейки может оказаться, что координаты некоторых из этих шаров  /i  

не удовлетворяют неравенствам,  определяющим элементарную ячейку, т.е. 

найдется хотя бы одно            ,  для  которого будет иметь место неравенство: 

                      
      ,                                (2.34)  

тогда для таких шаров     c помощью    - й операции симметрии строятся новые 

координаты            такие, что для 3,11i  выполняется условие: 

                                       
                                      (2.35) 

Таким образом, мы получаем новые координаты  каждого из таких шаров      

такие, что  они удовлетворяют неравенствам (2.22). 

Необходимо отметить, что если в п.2 производилась замена  координат 

некоторых шаров   ,               (не удовлетворяющих неравенствам (2.22)), то 

необходимо пересчитать  массив              ,   = 3,1 , 1i = 3,1 ,              , на массив 

             .  При этом,  если        , тогда для 1i = 3,1 :   

                                     
                          (2.36) 

если ST( i )=2, тогда  для 1i = 3,1 : 

                                     
             ,              (2.37) 

                                                   
             ; 

если ST( i )=3, тогда  для 1i = 3,1 :  

                                      
                     (2.38) 
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4.Массив         , где           , а                 . Положим, что                         

                      =1.                                                  (2.39)  

Зная координаты базисных атомов           , 3,11i , элементарной ячейки,  

используя  операции симметрии (массив             , 3,11i ,           ,                 из 

Базы данных), для данной группы симметрии  можно построить координаты образов 

этих шаров в соседних ячейках 

                                                    
                (2.40)                                       

Тогда для  элементов массива        , при всех            и                , положим 

         , еcли  для   всех  3,11i , выполняется условие: 

                         ,                            (2.41) 

  здесь   =0.001 – заданная точность. В противном случае          . 

5. Массив       , для                 , для описания суммарных радиусов всех 

возможных пар атомов      элементарной ячейки: 

                    .                                     (2.42)                                  

6.Обозначим через            кратность   - го шара,  находящегося в позиции 

Уайкова      . Вычислим суммарный объем всех шаров                  в 

элементарной ячейке с постоянной решетки   , согласно формуле: 

   
 

 
                   

                                (2.43) 

Используя данные обозначения, составим конечное множество всех пар шаров  

  ji,  таких, что   - й шар  пробегает множество неэквивалентных позиций  шаров  в 

пределах одной элементарной ячейки, а    - й шар - множество позиций шаров  в 

пределах этой и соседних с ней ячеек  (координаты всех   -х шаров могут быть 

получены с помощью операций симметрии для данной группы симметрии). Будем 
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рассматривать лишь те пары шаров, все три координаты у которых не совпадают с 

точностью до   (см.  (2.41)), т.е. те пары атомов        , для которых          . 

Найдем минимальное значение:  

    

    
     

                     
 
                    

 
                    

 
 

      
 

(2.44) 

Здесь                 ,             , MinF  – величина обратная к целевой функции. После 

вычисления        , мы находим начальное значение постоянной решетки для 

случая кубической симметрии: 

                        
 

    
   ,                                                        (2.45)                     

затем вычислим величину  

 =         
 .                                                 (2.46) 

Здесь   – суммарный объем, который занимают рассматриваемые шары в 

элементарной ячейке с постоянной решетки   . 

     2.1.10  Алгоритмы поиска устойчивых  кристаллических структур для 

заданной химической формулы 

 Пусть нам известна кристаллохимическая формула вещества, т.е. задана 

химическая  формула,  федоровская группа симметрии на которой она может быть 

реализовано, и определены позиции Уайкова для каждого атома (шара, согласно 

используемой в данной работе модели ионно-атомных радиусов), входящего в 

заданную формулу ( см.[11]).  Прежде чем выполнять упаковку шаров с заданными 

ограничениями согласно Алгоритму 1 плотной упаковки шаров  или 

модифицированному Алгоритму 2  плотной упаковки шаров (см. ниже), мы задаем  

для каждого   -го шара ,             следующие  данные: 

   а) позицию Уайкова, в которой он находится   ;   

   б) радиус i -го шара     ;  
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   в) координаты i -го шара       =                      . 

Далее мы строим координаты образов шаров элементарной ячейки,  с помощью 

операций симметрии:  

                       =                      ,                  ,           . 

 На начальном этапе задается начальная конфигурация    
  ,  в которую входят 

базисные атомы в заданных позиция Уайкова элементарной  ячейки, строятся образы 

базисных атомов в соседних  с ней ячейках,  вычисляются  предварительные значения 

объема элементарной ячейки (постоянной решетки в кубическом случае)   и плотность 

упаковки  , по формуле (2.46) для кубического случая. Далее осуществляются  

дискретные перемещения шаров, находящихся в неточечных позициях Уайкова, 

согласно    алгоритмам,  представленным далее   конечное (в зависимости от 

количества шаров, находящихся  в неточечных позициях Уайкова) число раз. Если 

рассматривается конфигурация, все атомы которой находятся в точечных позициях, 

тогда согласно формуле (2.20)  сразу определяется объем элементарной ячейки, 

вычисляется  , согласно формуле (2.46) - аналог формулы (2.16), для кубического 

случая или по формуле (2.15) в общем случае.  В результате в конце первого цикла 

получим (если это возможно), набор возможных конфигураций    
         , на 

которых достигается минимум целевой функции  и при этом  плотность упаковки  

              .  Запомним значения целевой функции, значения    и 

соответствующие координаты  базисных атомов для каждой из   полученных 

конфигураций   (на каждом цикле значения   могут различаться). В противном случае 

будем считать, что данный набор шаров   с заданными радиусами, начальной 

конфигурации и при заданных условиях, (в зависимости от постановки 

оптимизационной задачи)   плотно упаковать невозможно  и следовательно 

устойчивую кристаллическую структуру для заданной химической формулы построить 

не удалось.  На следующем шаге выберем другую начальную конфигурацию шаров 

   
  .  Вновь будем совершать дискретные перемещения шаров, уже начиная с новой 

конфигурации, согласно заданным алгоритмам конечное число раз. В конце цикла 

вновь получим хотя бы одну конфигурацию    
   (если это возможно), на которой 

достигается минимум целевой функции и при этом               .  И в этом случае 
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запоминаем значения целевой функции, значения    и соответствующие координаты  

базисных атомов для каждой из   полученных конфигураций. Закончим выполнение 

циклов либо тогда, когда перестанут изменяться значения целевой функции, либо  

когда будет достигнута конфигурация на которой         (наиплотнейшая). Далее 

найдем конфигурации    
      

    и т.д., для которых значение целевой функции 

минимально внутри своего цикла и соответственно,                      по каждому 

циклу. Будем считать эти конфигурации наилучшими для рассматриваемого набора 

шаров с заданными ограничениями.  

Ал орит  1 

Для того чтобы определить, будет ли устойчивым  вещество с заданной 

кристаллохимической формулой в рамках рассматриваемой модели, необходимо 

применить алгоритм плотной упаковки шаров с заданными ограничениями согласно 

Алгоритму 1.  Необходимо найти все возможные конфигурации базисных атомов 

   
    ,        , при которых достигается минимум целевой функции, плотность 

упаковки лежит в заданном интервале и  выполняются ограничения, налагаемые   

конкретной постановкой оптимизационной задачи (см. выше). Далее из всех 

отобранных конфигураций выбирается та, у которой объем элементарной ячейки 

(постоянной решетки в кубическом случае) принимает наименьшее значение.    Суть 

специально разработанного подхода к решению одной из  оптимизационных задач, 

поставленных ранее,  заключается в дискретных перемещениях шаров, обладающих 

согласно заданной кристаллохимической формуле, определенной степенью свободы 

(с учетом возможного размещения атомов в не точечных позициях Уайкова) с целью 

минимизировать функционал (2.20) при условии, что плотность упаковки будет 

удовлетворять условию (2.46). Рассмотрим работу алгоритма в кубическом случае. 

Общее число шаров, которые участвуют в работе алгоритма: 

                                                                                              

Выберем первоначальную конфигурацию шаров    
              

   

           
 
       

 
         

     , шаров  в симметрично независимой области 

элементарной ячейки, c радиусами     ,            так, чтобы  выполнялись 

заданные ограничения.  При этом,  координаты центра каждого  шара    



93 

 

выбираются в соответствии с конкретной позицией Уайкова (заданной группы 

симметрии), в которую мы его помещаем. Построим в ячейках соседних с 

элементарной образы шаров из первоначальной конфигурации, и получим с 

помощью операций симметрии для данной группы симметрии конфигурацию 

всех шаров, участвующих в вычислительном процессе    
              

  
   

   
. 

Для решения задачи построим следующий итерационный процесс.  

  
      

    
                                             (2.47)                                                               

здесь вектор   , определяющий направление перемещения из конфигурации   
  в 

конфигурацию    
   , выбирается так, чтобы для достаточно малых      : 

  1) конфигурация   
       .  

2)     
         

  .                                                                              (2.48) 

Здесь     
  - максимальное из всех расстояний между центрами шаров   - й 

конфигурации. Под перемещением из конфигурации   
  в конфигурацию   

    

понимаем такое изменение координат шаров конфигурации   
  при котором  один  

из шаров элементарной ячейки   (выбираем вероятностно)  расположенный в 

неточечной позиции    Уайкова,  сдвигается на  вектор     так, чтобы его новые 

координаты и координаты его образов          =            
   

       
   

      , 

          ,                 изменились и при этом не вышли за пределы разрешенной для 

него (и его образов) позиции Уайкова.  Остальные координаты шаров элементарной 

ячейки остаются неизменными. То есть   ,              =       ,            , 

               .  

После выбора начальной конфигурации базисных атомов    
    и построения 

их образов (получаем координаты всех атомов первоначально рассматриваемой 

системы    
  ) последовательность выполнения алгоритма следующая: 

1.По формулам (2.44), (2.46) вычисляем начальное значение целевой функции    , 

плотность упаковки   .  
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2. Предположим, что среди   шаров элементарной ячейки найдется хотя бы один 

шар, который можно двигать,  то есть:  

                                     

В противном случае, начальная  конфигурация является конечной и в зависимости 

от того,                  мы либо считаем найденную конфигурацию устойчивой и 

запоминаем координаты базисных атомов, либо нет. 

 Приведем описание k - й итерации решения задачи. 

Шаг 1. Случайным образом выбираем первый  шар, расположенный в неточечной 

позиции. Обозначим через его номер    ,             ,         . Шаг 2. Рассчитаем 

все расстояния между шаром     и всеми остальными шарами (атомами) из 

конфигурации    
  . Обозначим через     номер ближайшего  к шару     соседнего 

шара. 

Шаг 3. Зададим вектор   , который определяет направление перемещения шара в    

сторону, противоположную направлению от центра     - го шара, вдоль его позиции 

Уайкова к центру ближайшего к нему шара    .  Это направление задается с 

помощью                            и зависит от типа позиции Уайкова, в 

которой находится шар ic : 

eсли          , то                   , где           . 

eсли          ,  тогда для   – любого действительного числа, такого , 

что          ,      и угла   =2  : 

                                                                                                        

здесь 3,11 i ; 

        eсли          ,  тогда: 

                                                      , 

                                                      , 

                           . 

  Шаг 4. Для    - го шара находим       по формуле (2.49) 
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                      , 

        
                        

  
    

       
                               (2.49) 

  Величина MinF  вычисляется по всем парам     - го шара с остальными 

шарами из элементарной ячейки  (   ) и по всем парам     - го шара с образами 

всех шаров элементарной ячейки (в том числе и с образами    - го    шара), 

полученными с помощью                  операций симметрии. Кроме того, при 

вычислении       рассматриваются лишь те шары, у которых различается хотя  

бы одна из координат. Обозначаем c помощью   индексов     (              , 

                        - тот  шар с координатами              , к которому ближе 

всего находится шар     (достигнут     ). 

            

                            
  

    

         
 

      Введем переменную:  

                                        
     .                                      (2.50) 

Если        , тогда шаг  изменяем на противоположный, то есть:                       

                               ,             ,              . 

  Если       , тогда шаг        остается прежним. 

Таким образом, мы выбираем направление перемещения    - го шара вдоль своей 

позиции Уайкова так, чтобы он удалялся от самого близкого к себе шара 

              (          ), одновременно сближаясь к каким - либо шаром из 

остальных.  

Введем переменную           и переменную                                                      

                              . 

a) если     , то    =        ;    

      б) если       , то       . 
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Таким образом, из всех рассматриваемых пар шаров мы вновь находим    шар, 

который ближе всего к    - у шару (не считая уже найденного самого близкого 

шара) и запоминаем величину Lc  либо, если       , то Lc= 0.5Lc1.  

Шаг 5. Будем искать      по всем парам     – го шара (с новыми координатами)  

с остальными шарами из неприводимой части элементарной ячейки  (   ) и по 

всем парам     -го  шара с образами всех шаров элементарной ячейки (в том 

числе и с образами   -го шара ), полученными с помощью  операций симметрии. 

Отметим, что при вычислении       рассматриваются лишь те шары,  для 

которых        , при всех             и                , принимает значение 1. 

      Для каждой  - й пары снова вычислим величину: 

                                    
                       (2.51) 

Если       ,то для каждой рассматриваемой пары по формуле (2.49) 

вычисляем значение        ,   и вновь рассчитываем        . 

Шаг 6. Сдвигаем шар   , то есть изменяем его координаты на шаг        , 

получим новые координаты    -го шара, выбранного на  -м шаге алгоритма.  Для 

всех 3,11 i :  

                               

Используя формулу (2.49) рассчитаем                .  

                           . 

То есть, здесь мы делаем шаг    - го шара вдоль его позиции Уайкова в 

направлении, удаляющем его от ближайшего шара, поэтому:  

     
                                     

  
    

         
                      (2.52) 

В то же время можно показать, что 
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(2.53) 

    для всех других шаров из элементарной ячейки и  соседних с ней ячеек.  

Шаг 7. В зависимости от выполнения либо невыполнения условия (2.34) для    

координат      - го шара изменяем, или нет  новые координаты данного шара          

( чтобы он вновь оказался в элементарной ячейке). Пересчитываем заново массив 

           ,           ,           ,                (2.36)-(2.38).  

Шаг 8. В соответствии с  изменением координат    -го шара, строим координаты 

          ,           ,                   образов шара    в ячейках соседних с 

элементарной,  и пересчитываем значения массива            ,                 . 

    Шаг 9. Согласно формулам (2.54) и (2.55) рассчитываем      и      . 

             
      

                       
  

    

,                               (2.54) 

                     ,    ,                     и      

      
 

 
                  

   

      
                                        (2.55)                

 Если                  , тогда запоминаем найденную конфигурацию   
   . и 

соответствующие значения      и       .  После выполнения Шагов 1-9 

переходим к следующей итерации,  повторяем всю последовательность действий 

снова. Таким образом, мы конечное число раз (например,   ) совершаем 

перемещение    шара  из элементарной ячейки  (выбранного каждый раз 

случайно), который находится не в точечной позиции Уайкова. Каждое такое 

перемещение выполняем  в зависимости от того, в какой позиции Уайкова 

находится выбранный шар, вдоль его позиции Уайкова,  в направлении 
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противоположном тому которое привело бы выбранный шар к еще большему 

сближению с самым близким к нему шаром.  

После выполнения конечного числа итераций (   ,  находим  

                
      

                       
  

    

,               (2.56) 

и 

         

 

 
                  

   

     
 .                          (2.57) 

Считаем, что оптимальная конфигурация   
  характеризующаяся наименьшим,  

из всех рассматриваемых,  значением  постоянной решетки     и наибольшим из 

возможных значением плотности упаковки      найдена. Кристаллохимическую 

формулу с найденной оптимальной конфигурацией будем считать устойчивой в 

рамках оптимизационной модели ионно - атомных радиусов. 

Ал орит  2 

При выполнении плотной упаковки шаров с заданными ограничениями, 

согласно Ал орит  1,  в некоторых случаях не удается добиться оптимального 

значения  плотности упаковки. Дело в том,  что при дискретных перемещениях 

шаров из начальной конфигурации    
  на некоторой итерации происходит касание 

отдельных  из них, а другие шары при этом остаются на достаточно большом 

расстоянии друг от друга и такая новая конфигурация   
  не меняется cогласно 

Ал орит у 1. В этом случае применяется Ал орит  2, который  является 

модификацией представленного выше алгоритма.  

Суть модификации заключается в следующем. В Ал орит   2, каждому шару 

  -ой  элементарной ячейки, который находится в позиции Уайкова, не являющейся 

точечной,   придается вероятностная «скорость»- вектор        который 

описывается с помощью массива          ,            ,            . В Ал орит   1  

направление перемещения случайным образом выбранного    - го  шара из 

элементарной ячейки, находящегося в такой позиции, заменяется  на направление 

прямо противоположное  направлению от центра  выбранного    - го  шара вдоль его 

позиции Уайкова к центру ближайшего     - го шара. В Ал орит   2 направление 
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перемещения    -го  шара совпадает с направлением, заданным            ,            . 

Таким образом, построенное перемещение    -го шара  позволяет в некоторых 

случаях перемещать  его из положений, когда он зажат с разных сторон соседями. В 

итоге, появляется возможность  выводить конфигурацию шаров   
  из тупиковых 

состояний в случаях, когда увеличить плотность упаковки нельзя, несмотря на то 

что в рассматриваемой   
  есть еще незаполненные пустоты. При этом  плотность 

упаковки конфигурации шаров вначале уменьшается, а затем уже на новых 

итерациях вновь начинает увеличиваться.  При больших значениях           

конфигурация шаров активно изменяется,  не задерживаясь в локальных 

экстремумах  плотности упаковки. С уменьшением          плотность упаковки 

текущей конфигурации   
  задерживается в локальных экстремумах, но может и 

выйти из них, причем в окрестностях более глубоких экстремумов она может 

задерживаться на большее число итераций (время    
 

 

         , где      - 

некоторый эффективный параметр,  выражающий глубину экстремума в единицах 

         ,  убывающий с ростом плотности упаковки). Таким образом, достаточно 

медленное уменьшение          , позволяет конфигурации шаров прийти в 

состояние динамического равновесия после каждого изменения и постепенно 

прийти к оптимальной конфигурации   
 , характеризующейся наименьшими из всех 

рассматриваемых конфигураций, значениями постоянной решетки     и наибольшим 

из возможных значением плотности упаковки    . 

При проведении расчетов удобно  использовать систему, состоящую из двух 

алгоритмов – Ал орит а 1 и Ал орит а 2. В результате проведения расчетов по 

такой системе,   для заданной кристаллохимической формулы можно получить 

набор оптимальных конфигураций (в случае, если их удалось найти согласно 

заданному критерию), на которых она будет устойчивой в рамках модели ионно-

атомных радиусов. В противном случае  если конфигураций, удовлетворяющих 

заданному критерию не нашлось, считаем, что данная кристаллохимическая 

формула в рамках модели ионно - атомных радиусов является неустойчивой. 

Представленные алгоритмы были апробированы при проведении расчетов 

конкретных материалов, в частности перовскитов (см. [23]).  В конце данной главы  

приведены примеры расчетов, которые позволили   оценить с точки зрения 
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устойчивости кристаллические структуры семейства перовскитов  кубической 

системы  (химическая формула     , группа симметрии      ), шпинелей и 

других материалов.  

Теоретико-множественное описание базовой модели-композиции 

«КРИСТАЛЛОХИМИЧЕСКАЯ ФОРМУЛА» (   
 ) 

Для начала работы вычислительной модели необходимо задать химическую  

формулу исследуемого материала (информация по атомам передается из 

соответствующего экземпляра базовой модели – композиции    
 
). Как было 

показано выше, она  задается выражением      
    

 
    

 .  

 Исходя из заданной химической формулы,  определяется                                                    

химический состав материала в том числе: 

-  - число различных сортов атомов в хим. формуле      
    

 
    

 ;  

-   - число атомов  -го сорта  в химической формуле  . 

Кристаллографическая структура  задается  Федоровской группой симметрии   , 

определяющей общую геометрию структуры. Определяется   - число базисных 

атомов в конфигурации     , которое может отличаться от числа различных атомов, 

входящих в химическую формулу, то есть     , так как атомы одного вида могут 

располагаться в неэквивалентных позициях: 

-    
        

  (позиции Уайкова (Wikoff position) для базисных атомов). 

Задаются (из Банка данных): 

-     
   

   
      

  –радиусы  атомов из химической формулы    
    

 
   
 . 

В зависимости от типа химической связи и от валентности  атомов,  входящих 

в химическую формулу,  задаются значения их радиусов  ( 
   
 - радиусы атомов   -го 

сорта (всего   различных)). Так, например, при моделировании ионных кристаллов,  

задаются ионные радиусы в зависимости от входящего в химическую формулу типа 

атома и от его координационного числа в конкретном материале. При 
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моделировании металлов и их оксидов задают так называемые металлические 

радиусы, ковалентных кристаллов - ковалентные радиусы  и так далее. 

  Пусть для произвольного материала  химическая формула задана 

выражением         
    

 
    

 , здесь       могут принимать значения от 1 до 127 (по 

числу элементов в ТМ),  =3. Координаты   базисных атомов (их первоначальные 

значения) задаются или  определяются  из модели-композиции    
  или     

 : 

   
      

       
  . 

Для рассматриваемого материала множество данных: 

               

состоит из подмножества входных данных     и множества  выходных данных 

(внутренних характеристик модели)    . 

Множество входных данных     можно представить как:     

                            
         

      
        

   

Множество выходных данных              -  внутренних характеристик модели, 

состоит из: 

- Массива фазовых  координат     базисных атомов конфигурации      

                                                               

- данных свойств      включая: 

1. Параметры решетки             , соответствующие устойчивой конфигурации 

атомов; 

 2. Значение плотности упаковки  . 

  Таким образом, 

              

                         
         

      
        

                     

Множество методов обработки данных     , состоит из  моделей и алгоритмов:   

                                         . 

Множество моделей      состоит из: 
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- статических моделей (применяются для определения свойств), включая:  

1. Расчет параметров решетки; 

2. Расчет плотности упаковки; 

-динамических моделей, включая: 

         - Оптимизацию. Изменение координат атомов согласно логике решения 

минимаксной задачи. По окончании динамического процесса  получаются итоговые 

координаты            и соответствующие им значения плотности упаковки и 

постоянной решетки (см.множество реализаций методов обработки данных). 

 Множество алгоритмов    , включая локальные    - модификации метода 

покоординатного спуска, переменных направлений и т.д. с учетом перемещений по 

периодической решетке с заданными ограничениями и  глобальные - метод Монте-

Карло. 

2.    
 - события, связанные с вычислениями по внешнему итерационному циклу 

   . 

 Множество событий    , связанных с началом и окончанием вычислений в  

различных вычислительных процессах в рамках базовой композиции. 

  Множество реализаций событий по процессам  определяется для 

экземпляров базовой композиции БК :    
      

     
 

,        
         

 ,.. 

Множество реализаций методов обработки данных     
 =     

     
 

 

определяется для экземпляров БК в соответствии с конкретной задачей. 

2.2 Квантово-механическая модель твердого тела. Теория функционала 

электронной плотности. 

 Методы первопринципного моделирования, базирующиеся на квантово-

механических подходах,  в частности, основанные на  теории функционала 

электронной плотности, позволяют наиболее точно проводить теоретические 

 Множество событий   и их реализаций по процессам:  

1.    
 - события, связанные с вычислениями по внутреннему итерационному 

циклу     
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исследования атомно-кристаллической структуры [3-5] и квантовых свойств 

однокомпонентных и многокомпонентных кристаллических материалов.  Как 

правило, первопринципные расчеты проводятся для основного состояния, то есть 

при температуре равной       К. Для изучения поведения кристаллических 

структур  при ненулевой температуре,  необходимо учесть вклад тепловых 

колебаний атомов, и перейти от полной энергии системы       к ее свободной 

энергии          ,  здесь T - температура, S - энтропия. 

На базе  квантово-механических методов стало возможным проведение 

вычислений из первых принципов термодинамических, магнитных, спектральных, 

сверхпроводящих и других характеристик материалов. Однако применение теории  

функционала электронной плотности носит более широкий характер, с ее помощью 

стало возможным объяснить релятивистские эффекты в тяжелых элементах и 

атомных ядрах, изучать классические жидкости и магнитные свойства сплавов. В 

последнее время появляются  приближения, позволяющие применять данную теорию  

для областей, традиционно удаленных от квантовой механики, таких как биология и 

минералогия. Широкое применение  при проведении научных исследований в 

области  вычислительного материаловедения получил первопринципный код VASP, 

основанный  на теории функционала электронной плотности ([25-27], https:// 

www.vasp.at ).    

 2.2.1  Основные уравнения квантовой механики 

Рассмотрим многочастичную систему, состоящую из  совокупности электронов 

и положительно заряженных ядер, которые за счет сильного межионного 

взаимодействия образуют  периодическую кристаллическую структуру.  Если в 

систему входит  N ядер, то мы сталкиваемся с проблемой ZN взаимодействующих 

электронов, где Z – заряд ядра. Фундаментальное уравнение, описывающее 

нерелятивистскую квантовую систему - это стационарное уравнение Шредингера, 

дающее решение для многочастичных волновых функций, зависящих от координат 

ядер и электронов (2.58): 

         (2.58) 

Здесь     Гамильтониан системы,   - энергия системы, - волновые функции.  

http://www.vasp.at/
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Гамильтониан системы представляет собой сумму кинетической энергии 

электронов,  потенциальной энергии электрон – ядерного взаимодействия, 

потенциальной энергии электрон - электронного взаимодействия, кинетическую 

энергию ядер и потенциальную энергию их взаимодействия. Гамильтониан системы 

может быть записан  в виде [3, 28]: 

   
  

 
 
   
 

  
 

 
  

 
 
   
 

  
 

 
 

    
  

    
       

 

  

 

    
 

  

          

 
 

    
 

      
       

   

 

(2.59) 

Здесь  ei mиr  обозначают радиус-векторы электронов и их массы, ll MиR - 

положения ионов  и их массы,   – число протонов в ядре l.  Первые два члена 

описывают кинетическую энергию ядер и электронов соответственно, три 

последних – электрон-ионное, электрон-электронное и ион-ионное взаимодействия. 

Решить многочастичное уравнение Шрёдингера  (2.59) довольно сложно в случае 

атомов, содержащих более одного электрона.  Ситуация усложняется, когда 

рассматриваются кристаллы, представляющие собой системы с большим 

количеством частиц.  В связи с этим, в вычислительной практике используются  

различные приближенные модели. Одним из таких распространенных приближений 

для  системы атомов является представление, использующее понятие 

замороженного остова (приближение Борна-Оппенгеймера). В его основе лежит тот 

факт, что массы ионов и электронов существенно отличаются.   Поэтому можно 

считать, что  ионы практически неподвижны (заморожены), а электроны движутся в 

потенциальном поле фиксированных ядер. Вид гамильтониана в таком приближении 

упрощается, и его можно записать следующим образом: 

         (2.60) 

Здесь     – кинетическая энергия электронов,   – внешний потенциал положительно 

заряженных ионов, а   - потенциал взаимодействия между электронами. В 

развернутом виде (2.60) можно записать: 

   
  

 
  

   
 

  
 

 
 

    
  

    
       

 

  

 

    
 

  

          

 
(2.61) 
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Данное приближение  было  использовано для расчета молекулы водорода. С 

его помощью удалось достаточно точно воспроизвести межъядерное расстояние и 

рассчитать энергию связи. В силу большой трудоемкости решения задачи при 

помощи такого подхода в случае, когда необходимо рассчитать систему с большим 

числом частиц, исследования по поиску новых приближений было продолжено.  

Томасом и Ферми [29] была предложена теория, согласно которой, вместо 

многочастичных волновых функций используется одна переменная – электронная 

плотность     , через нее выражается энергия системы электронов. Под 

электронной плотностью понимают плотность вероятности распределения 

электронов в квантовой системе. Такой подход позволил свести рассмотрение 

многочастичной задачи к решению одночастичной задачи в эффективном 

потенциале. Согласно этой теории, взаимодействующие электроны движутся в 

некотором внешнем потенциале     , описывающем взаимодействие электронов с 

ядрами, и существует взаимно однозначное соответствие между потенциалом  и 

распределением электронной плотности     . Полную энергию системы электронов 

тогда можно представить следующим образом [30]: 

              (2.62) 

Здесь T – кинетическая энергия электронного газа (неоднородного) может быть 

представлена в виде функционала электронной плотности: 

           
 
      (2.63) 

    – потенциальная энергия, описывающая взаимодействие электронов с системой 

ядер, которая также может быть представлена в виде функционала от     : 

                  (2.64) 

    - потенциальная энергия, описывающая кулоновское взаимодействие электронов 

Хартри может быть рассчитана через электронную плотность: 

     
 

 
   

         

      
      

(2.65) 

Таким образом, может быть сформулирована вариационная задача минимизации 

полной энергии системы    при условии сохранения полного числа электронов:  

                (2.66) 
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Для ее решения воспользуемся методом неопределенных множителей 

Лагранжа:  

                       (2.67) 

Уравнение Томаса-Ферми (2.11) является решением вариационного уравнения    

(уравнение Эйлера для функционала            ): 

 

 
     

 
    

     

      
drd            ,    (2.68) 

Здесь множитель Лагранжа   имеет смысл химического потенциала, зависящего от 

r, второй член в выражении (2.68)  представляет собой электростатический 

потенциал, создаваемый распределением электронной плотности      .   

Существенным  недостатком данной теории  является то, что с ее помощью может 

быть получено лишь  грубое  приближение к точному решению многоэлектронного 

уравнения Шрёдингера. Кроме того, при рассмотрении вопросов химии и 

материаловедения, она может давать ошибочные результаты, например, из нее не 

следует наличие химической связи. К достоинствам теории относится то, что в ней 

сформулирован важнейший принцип, согласно которому электронная плотность 

может полностью характеризовать систему и с ее помощью можно достаточно точно 

рассчитать полную энергию     системы. 

 Этот подход был развит Д. Хартри (D. Hartree) и В.А. Фоком.  Уравнения 

Хартри-Фока (2.69)-(2.70) представляют собой систему самосогласованных 

одночастичных уравнений Шрёдингера, описывавших электронную структуру 

атомов [4]: 

0)())(
2

1
( 2  rr iiXV    

(2.69) 

где i  - энергия электрона. Здесь используется приведенная система единиц 

измерения, в которой 1/2 em . Потенциал Хартри VХ  представляет собой 

эффективный одночастичный потенциал и определяется формулой: 
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В уравнении (2.70) первое слагаемое представляет собой электростатический 

потенциал ядра с атомным номером Z, а второе слагаемое описывает 
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взаимодействие со средней плотностью распределения электронов. Вместе с 

выражением для электронной плотности  (2.71): 


i

in 2|)(|)( rr   (2.71) 

уравнения (2.69), (2.70) составляют самосогласованную систему (2.69)-(2.71). 

Решение данной  системы уравнений осуществляется итерационно. В качестве 

начального приближения выбирается некоторое  приближенное значение 

электронной плотности      ), рассчитанное, например, с помощью теории Томаса-

Ферми, согласно  уравнениям (2.62), (2.63). Используя эту плотность, по формуле 

(2.70) рассчитывается потенциал VХ . Далее решается  уравнение Шредингера (2.69) 

и находятся электронные волновые функции ψi. Рассчитанные таким образом  

волновые функции ψi нужно подставить в (2.71) и вычислить новую плотность     . 

Если она окажется с необходимой точностью близкой к      ), согласование 

уравнений достигнуто и система уравнений (2.69) - (2.71) решена. В противном 

случае процесс повторяется. Необходимо отметить, что  модель Хартри – Фока  не 

учитывает эффект многочастичного взаимодействия, который прежде всего заметен 

в больших системах, таких как твердые тела. В связи с этим, теория Хартри-Фока 

применяется в квантовой химии,  для проведения численного моделирования 

конфигурации отдельных молекул, для расчётов свойств атомных конфигураций и 

для исследования физических свойств смешанных кристаллов. 

  В более строгой формулировке положение о том, что при помощи 

электронной плотности      возможно дать полное и точное описание электронной 

структуры основного состояния системы, было сформулировано в работах В. Кона 

(W. Kohn) и П. Хоэнберга  (P. Hohenberg) [31,32].  Была доказана лемма,  согласно 

которой  «электронная плотно ть n(r) о новного  о тояния  вязанной  и темы 

взаимодей твующих электронов в некотором внешнем потенциале v(r) однозначно 

определяет этот потенциал». Кроме того,  был сформулирован вариационный 

принцип, согласно которому из двух или более волновых функций «лучшей» 

является та, которой соответствует  наименьшее собственное значение 

гамильтониана системы. На основе леммы и вариационного принципа была 

сформулирована теорема Хоэнберга-Кона, в которой говорится, что «все свойства 

электронной структуры системы в невырожденном основном состоянии полностью 

https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0%D1%8F_%D1%85%D0%B8%D0%BC%D0%B8%D1%8F
https://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5
https://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D0%B0
https://ru.wikipedia.org/wiki/%D0%9A%D1%80%D0%B8%D1%81%D1%82%D0%B0%D0%BB%D0%BB
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определяются ее электронной плотностью n(r)» [31]. Таким образом, основное 

состояние системы может быть точно описано при помощи вариационного 

принципа (минимизация функционала электронной плотности). При построении  

своей теории, Хоэнберг и Кон исходили из  теории Томаса-Ферми, при этом 

использовав в качестве формальной основы уравнения из модели самоогласованного 

поля Хартри-Фока  [3,4,27].     

При выводе основных уравнений теории функционала плотности (ТФП) 

использовались следующие положения. Считается, что многоэлектронная система 

рассматривается как система невзаимодействующих электронов, в которой каждый 

электрон движется в эффективном потенциале, создаваемом другими электронами. 

При этом     физический смысл имеет только минимум функционала полной энергии 

системы    ,  соответствующий ее основному состоянию. 

Функционал полной энергии представляется в виде суммы: 

)]([)]([)]([)]([)]([ rrrrr nEnUnUnTnE xceeent  ,  (2.72) 

Здесь первое слагаемое в правой части выражает кинетическую энергию 

невзаимодействующих электронов, второе слагаемое описывает потенциальную 

энергия взаимодействия электронов с системой ядер, третье - потенциальную 

энергию кулоновского взаимодействия электронов, а слагаемое )]([ rnExc  - 

представляет собой обменно-корреляционную энергию системы, интегрально 

учитывающую все многочастичные взаимодействия.  

Поскольку все эффекты, связанные с многочастичным взаимодействием, 

учитываются в обменно-корреляционном слагаемом, кинетическая часть 

функционала может быть записана в одночастичном приближении: 

  rrrr(r) dnnT i
i

i )())()((
2

1
][ 2*  ,  

(2.73) 


i

in 2|)(|)( rr  .  (2.74) 

Здесь, как и ранее, используется приведенная система единиц измерения, )(ri  - 

одночастичные волновые функции, называемые орбиталями Кона-Шэма.  

Выражения для потенциальной энергии аналогичны рассмотренным выше: 

 rrrr dnVnUen )()()]([ , (2.75) 
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где )(rV  - электростатический потенциал неподвижного ядерного остова, 

рассматриваемый как внешний потенциал, в поле которого происходит движение 

электронов.  

 Вариационная задача на поиск минимума функционала )]([ rnEt  ставится при 

условии сохранения полного числа электронов в системе:  

constdn  rr)( .  

 Используя метод множителей Лагранжа, получим  

0))()]([(  rrr dnnEt  .  

 Решение данной вариационной задачи имеет вид:  

 

0)())(
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(2.77) 
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(2.79) 

Здесь i  - значения энергии электронов в соответствующих состояниях 

(собственные значения одночастичного оператора Гамильтона),     -полный 

потенциал, состоящий из потенциала электростатического взаимодействия 

электронов и из электростатического потенциала      «неподвижных» ионов,   

       обменно-корреляционный потенциал,  
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(2.80) 

Cуммирование в (2.79) производится по N низшим занятым состояниям. 

Уравнения (2.77) - (2.79) называются уравнениями Кона - Шэма. Отметим, что 

по своей структуре уравнения Кона - Шэма близки к рассмотренным выше 

уравнениям Хартри - Фока. Отличие состоит в использовании потенциала обменно-
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корреляционного взаимодействия, учитывающего многочастичные взаимодействия. 

В этом плане уравнения Кона-Шэма более точны, что обусловливает их широкое 

применение при расчетах свойств кристаллических структур. Решение уравнений 

Кона-Шэма дает минимум функционала для энергии основного состояния по 

отношению к зарядовой плотности )(rn . Энергия основного состояния 

определяется как  
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(2.81) 

Таким образом, исходная задача поиска решения многочастичного уравнения 

Шрёдингера значительно упрощается, так как число переменных  сокращается до 

трех (три пространственные координаты). 

Следует отметить, что волновые функции )(ri  не являются волновыми 

функциями реальных электронов, они описывают математические квази-частицы, не 

имеющие непосредственного физического смысла. Между электронной плотностью 

     и волновыми функциями i устанавливается взаимно-однозначное 

соответствие согласно формуле (2.79).  С помощью данной модели, зная  

химический состав, координаты системы базисных атомов элементарной ячейки,  

можно уточнить ее метрические параметры   (постоянные решетки, углы), 

рассчитать электронную структуру  системы, а также рассчитать полную и 

когезионную энергию системы и т.д. При этом важным фактором, определяющим 

точность расчетов, является  выбор потенциала обменно-корреляционного 

взаимодействия. Этому вопросу посвящен следующий раздел. 

 2.2.2 Приближения для обменно-корреляционного функционала 

Наиболее простым и распространенным в физических приложениях является 

приближение локальной плотности (LDA-Local Density Approximation) [33].  

Принимается, что значение функционала обменно-корреляционной энергии (ему 

отвечает электронная плотность      ), вычисляемое  для некоторой точки 

пространства    равно плотности обменно-корреляционной энергии  в однородном 

электронном газе с той же плотностью     . 

Согласно данному приближению функционал обменно-корреляционной 

энергии может быть записан в виде (2.82): 



111 

 

   
                   , (2.82) 

Здесь    – значение обменно-корреляционной энергии в расчете на одну частицу 

однородного электронного газа. 

          

     
 
            

     
. (2.83) 

Выражение для обменного вклада в атомных единицах выглядит следующим 

образом:  

      
     

  
, (2.84) 

где    - радиус Вигнера-Зейтца, то есть радиус сферического объема, приходящегося 

на один  электрон в электронном газе, определяемый соотношением:     
 

      
 

 

 
. 

 Д. М. Цеперли (Ceperly D.M.) удалось  c помощью квантового метода Монте-

Карло с высокой степенью точности (~1 %) рассчитать оценку для корреляционного 

вклада [34]. Необходимо отметить, что приближение LDA  достаточно точно 

описывает типичные металлы и  переходные металлы. При этом в отдельных 

случаях, например, для систем, в которых корреляционные эффекты электрон-

электронного взаимодействия настолько сильны, что эти системы теряют какое-либо 

сходство в электронным газом, данное приближение дает большую погрешность и 

обычно не используется. Кроме того,  при расчетах квантовых свойств систем с 

сильно неоднородным распределением электронной плотности, таких как, например, 

нанопровода,  это приближение также не позволяет получить достоверные 

результаты. В связи с этим было разработано новое приближение для обменно-

корреляционной энергии, в которое были  введены градиентные поправки [34].     

  В обобщенном градиентном приближении GGA 

(Generalized Gradient Approximation)  обменно-корреляционный функционал зависит 

не только от плотности, но и от ее первой пространственной производной [30, 35-

37]:  

rrrrr dnnnfEnE LDA
xcxc )(])(),([)]([ )1(  . (2.85) 

Известны удачные аппроксимации для функции ])(),([)1(
rr nnf  [38], 

позволяющие добиться повышения точности квантово-механических расчетов, 

основанных на теории функционала электронной плотности.  
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Необходимо отметить, что применение обменно-корреляционных 

функционалов в LDA  и GGA приближении не подходит для систем с ван-дер-

ваальсовым типом химической связи, для вигнеровских кристаллов и некоторых 

других систем, в которых выбор в качестве начального приближения 

невзаимодействующего электронного газа с медленноменяющейся электронной 

плотностью заведомо не применим. 

 2.2.3  Итерационный алгоритм решения уравнений Кона-Шэма в 

 базисе плоских волн 

 После того, как  определен вид функционала обменно-корреляционной 

энергии            , отражающий особенности строения и типа связи в 

рассматриваемой системе  атомов, можно приступить к решению уравнений 

одночастичных уравнений Кона-Шэма. 

 Для получения самосогласованного решения системы  уравнений (2.77) - 

(2.79) строится итерационный процесс([3-5]), схема которого представлена на  рис. 

2.8. 

 
Рис.2.8 Схема итерационного процесса для получения 

самосогласованного решения уравнений Кона-Шэма. 

Согласно представленной схеме сначала выбирается начальное 

распределение )()0(
rn , по которому строится эффективный потенциал и на основе 

решения уравнения Шредингера определяется энергетический спектр и 

соответствующие волновые функции. Затем, используя полученные волновые 

функции, строится новая электронная плотность      , и, соответственно, новый 

потенциал        .  Далее цикл повторяется. В результате выполнения 
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итерационного процесса  определяется  потенциал, соответствующий электронной 

плотности, т.е. находится самосогласованное решение задачи.  Плотность основного 

состояния и энергия системы находятся с точностью, ограниченной только 

приближением обменно-корреляционного функционала.  

Рассмотрим подробнее вопрос, связанный с определением  энергетического 

спектра }{ i  волновых функций  
 
   . Наиболее распространенным подходом к 

решению трехмерной спектральной задачи является разложение искомых волновых 

функций по подходящему базису: 


 
       

  
    

 
     . (2.86) 

Здесь  
 
   набор базисных функций. Коэффициенты разложения определяются с 

помощью подстановки разложения в уравнение (2.77) и последующего решения 

задачи на собственные значения и собственные векторы полученной матрицы. 

При выборе базисных функций исходят из того, чтобы  их количество было не 

слишком большим, так как противное может  привести   к существенному 

увеличению расчетного времени.  С  другой стороны, базисных функций должно 

быть достаточно для точного описания собственных функций гамильтониана. 

Широкое распространение в расчетах кристаллических структур нашел базис 

плоских волн: pr
rr

i
p

b
p eU )()(  , где 

prie - плоская волна, бегущая в направлении 

вектора p (волновой вектор), )(rpU  - функция координат, зависящая от волнового 

вектора и имеющая периодичность решетки. Используются и другие типы базисных 

функций: ЛКАО – линейная комбинация атомных орбиталей, ЛППВ - 

линеаризованные присоединенные плоские волны. В качестве примера можно 

привести известные программные пакеты SIESTA  [39] и VASP (Vienna Ab-initio 

Simulation Package) [40],  основанные на теории функционала электронной 

плотности. В SIESTA используется базис локализованных атомных орбиталей, а в 

VASP - базис плоских волн.   

Одной из основных проблем, возникающих при использовании разложения 

волновых функций по базису плоских волн, является  корректное описание 

поведения волновой функции в окрестности ядра, где Кулоновский потенциал резко 

возрастает. В результате вблизи ядра радиальные составляющие волновых функций 
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имеют множество экстремумов,  для их описания требуется большое количество 

плоских волн.   При этом для описания более удаленных от остова областей 

требуется значительно меньшее количество плоских волн. Для преодоления этих 

сложностей применяются методы псевдопотенцила и проектированных 

присоединенных волн (PAW), которые рассматриваются в следующих разделах. 

 2.2.4  Метод псевдопотенциалов 

Для ограничения числа задействованных в расчете плоских волн и, таким 

образом, для оптимизации расчетов часто  применяется   метод псевдопотенциалов 

[41-43]. Данный метод  берет свое начало из метода ортогонализированных плоских 

волн (ОПВ), в котором волновые функции валентных электронов могут быть 

представлены набором плоских волн. В методе псевдопотенциалов используется 

предположение о том, что при решении уравнений Кона-Шэма   пространство 

вокруг атомного ядра может быть разделено на две области: остов, состоящий из 

атомного ядра и сильно связанных с ним электронов, и валентная область. В области 

остова волновые функции валентных электронов сильно осциллируют из-за своей 

ортогональности по отношению к волновым функциям остова и, следовательно, для 

корректного представления требуют  большого набора плоских волн.  В связи с 

этим, вводят слабый эффективный потенциал (псевдопотенциал), который замещает 

ионный Кулоновский потенциал и при этом обладает теми же рассеивающими 

свойствами. Вне некоторого фиксированного  радиуса данный  потенциал дает те же 

волновые функции, что и истинный потенциал, а внутри - более гладкие волновые 

функции (рис. 2.9).  

 

Рис. 2.9 Схематическое представление метода псевдопотенциалов. Реальная волновая 

функция и потенциал заменяются   псевдоволновой функцией и псевдопотенциалом [28] 
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Таким образом, реальный потенциал вблизи остова, состоящего из 

положительно заряженных ионов, заменяется псевдопотенциалом, который точно 

описывает волновые функции вне остова, а внутри остова заменяет их более гладкой 

функцией. При этом электроны нижних оболочек объединяются вместе с ядром в 

один остов. Метод оказывается существенно экономичнее метода полного 

потенциала. Отличие псевдопотенциала и псевдоволновой функции от реальных 

функций схематически показано на рис. 2.9. Получаемая  псевдоплотность 

воспроизводит точную плотность валентных электронов.  

Псевдопотенциал должен обладать свойством «переносимости» 

(transferable), т. е. применяться в ситуациях с различными внешними окружениями 

данного иона. В теории рассеяния выводится уравнение [28, 42], которое является 

гарантией «переносимости» псевдопотенциала, и одновременно является условием 

однозначного соответствия псевдоволновой и реальной волновых функций. 

Выполнение этого  условия гарантирует совпадение псевдоволновой функции с 

волновой функцией на участке r > rC .  

Поскольку псевдоволновые функции внутри радиуса обрезаниях не 

совпадают с реальными волновыми функциями, необходимо ввести условие, 

обеспечивающее сохранение заряда внутри этого радиуса, а именно: норма 

радиальной части псевдо-волновой функции внутри радиуса обрезания должна 

оставаться равной норме радиальной части реальной волновой функции.  

Псевдопотенциалы, в которых учтено это условие, называют «сохраняющими 

норму» [43]. Псевдопотенциалы бывают «жесткими» или «мягкими» [28]. Жесткие 

потенциалы учитывают валентные электроны и электроны остова и, поэтому, 

требуют большего числа плоских волн в базисе. Мягкие же потенциалы описывают 

только валентные электроны, а для этого требуется меньшее число плоских волн. 

Кроме того, существуют и «ультрамягкие» псевдопотенциалы [28, 44], описываемые 

небольшим количеством плоских волн.  

Для элементов с сильно локализованными орбиталями (элементов первого 

ряда, 3d-элементов и редкоземельных металлов) классические сохраняющие норму 

псевдопотенциалы требуют достаточно большого числа плоских волн в базисе 

(жесткие псевдопотенциалы), что замедляет расчеты с участием этих элементов. Для 
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решения этой проблемы часто приходится значительно увеличивать радиус 

обрезания, а это негативно сказывается на свойстве переносимости потенциала. 

 2.2.5 Метод проектированных присоединенных волн (PAW - метод) 

Метод проектированных присоединенных волн  был предложен Блёхлем в 

1994 году [45]. Сегодня этот метод широко используется для проведения расчетов 

электронных структур. Он дополняет  методы псевдопотенциалов и 

линеаризованных присоединенных плоских волн (ЛППВ) и  сочетает их 

достоинства. В данном методе  вводится линейное  преобразование псевдоволновых 

функций в точные волновые функции.  Кроме того, с помощью этого 

преобразования PAW функционал полной энергии системы последовательно 

переводится в функционал энергии системы в приближении Кона-Шэма. Таким 

образом,  PAW - метод непосредственно работает с точной волновой функцией и  

потенциалом. 

PAW – метод переформулирует метод ортогонализированных плоских волн 

(ОПВ) ЛППВ, адаптируя его к современной методике вычислений. В приближении 

PAW сохраняются полные полноэлектронные волновые функции в форме, подобной 

обобщенному выражению для полноэлектронного метода присоединенных плоских 

волн. Так как полные волновые функции сильно осциллируют около ядра, все 

интегралы в приближении PAW представляются как комбинации интегралов 

гладких функций, распространяющихся в пространстве, и локализованных 

распределений, оценивающихся при помощи радиального интегрирования по МТ 

(маффин-тин) сферам (касающиеся атомные сферы). 

В данном методе вводится вспомогательные локализованные функции, 

которые фактически содержат всю информацию об остовных состояниях. Таким 

образом, многие аспекты вычислений, то есть: все операции с гладкими функциями, 

генерация гладкой плотности и т.д., идентичны вычислениям с использованием 

псевдопотенциалов. Точная  волновая функция n , включающая все электроны, и 

псевдоволновая функция 
n

~
 во всем пространстве связаны следующим линейным 

преобразованием: 

        
 
  

 
                (2.87) 
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где псевдофункция 
n

~
 является вариационной величиной, индекс i обозначает сразу 

несколько индексов: R – узел решетки, угловой l и магнитные m моменты и 

дополнительный индекс k, относящийся к энергии,  ip~  - функции-проекторы, 

обладающие следующим свойством: 

ijjip   )
~

,~(  
(2.88) 

В формуле (2.87) разложение проводится по точным волновым функциям i  

и псевдоволновым функциям 
i 

~
, которые эквивалентны за пределами сферы радиуса 

l

cR , а также   непрерывны, и дифференцируемы на поверхности сферы l

cR , часто 

выбираемого равным половине расстояния между ближайшими атомами. 

Полная энергия системы      может быть записана как сумма трех членов: 

           
    

   

 

(2.89) 

где первый член выражает энергию гладких функций, оцениваемых в пространстве 

Фурье или сетке, во всем  пространстве, второй член – энергия на сферах с полными 

функциями, а третий член обозначает те же вклады, оцениваемые только в сферах на 

радиальной сетке. 

Необходимо отметить, что одним из существенных преимуществ данного 

метода является реальная возможность изучения релаксации атомов и нахождения 

равновесных конфигураций. Это особенно важно при исследовании структур, 

обладающих низкой симметрией, а также дефектов и поверхностей.  Это один из 

наиболее точных методов, позволяющих рассчитывать кристаллическую структуру,  

электронную плотность и полную энергию рассматриваемого материала. 

К недостатком данного метода относится то, что расчеты,                                   

проводимые с его помощью  на супер - ЭВМ даже для  относительно небольшого 

числа  элементов (порядка 200 ионов), занимают  около 10-24 часов,  в зависимости 

от задаваемой кристаллической структуры. 

 2.2.6  Общая схема проведения первопринципных расчетов 

Как отмечалось ранее, для  проведения первопринципных расчетов можно  

применять программный комплекс VASP (Vienna Ab-initio Simulation Package) [40], 
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итерационно решающий уравнения Кона-Шэма в базисе плоских волн.  В настоящее 

время в программном коде VASP  все чаще используются  PAW-потенциалы в LDA- 

и GGA- (Perdew/Burke/Ernzerhof [46]) приближениях.  

Общая схема самосогласованного расчета представлена на рис. 2.8. 

Результатом самосогласованного решения  уравнений Кона-Шэма (2.77-2.79), как 

уже отмечалось ранее,  являются электронная плотность, распределение потенциала 

в системе и полная энергия основного состояния системы     . Используя эту 

информацию, можно по теореме Хельмана-Фейнмана [47] рассчитать силы, 

действующие на ионы.  

В основе этого подхода лежит второй закон Ньютона: 

                                                                  (2.90) 

Здесь      - масса i –го иона, а     силы,  действующие на ион, помещенный в точку 

  , выражаются следующим образом: 

     
     

  
                                                                           (2.91)

 

После того, как силы вычислены, ионы смещаются в направлении действия сил. В 

результате формируется система с меньшей энергией. Это приводит к изменению 

электронной  структуры системы и соответственно к изменению значения 

электронной плотности. Проводится следующий шаг самосогласования, в результате  

которого определяется новое значение электронной плотности  основного 

состояния, вычисляются новые  значения полной энергии и сил, действующих  в 

системе атомов. Когда силы, действующие на ионы, рассчитаны, ионы 

перемещаются в направлении действия сил, чтобы образовать структуру с меньшей 

энергией. При этом атомная структура изменяется, и необходимо вычислять новую 

систему волновых функций. Новые электронные волновые функции приводят к 

новой энергии основного состояния и к новым силам, действующим на ионы. Этот 

цикл должен повторяться до тех пор, пока силы не станут меньше, чем выбранный 

заранее критерий сходимости. Таким образом, динамические шаги продолжаются до 

тех пор, пока разница сил на     и       шаге не станет меньше предварительно 

заданного значения, после чего  система считается срелаксированной. Тем самым 

достигается минимум полной энергии системы. Отметим, что минимум полной 
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энергии основного состояния системы может быть получен также с использованием 

оптимизационных процедур. 

Общая схема проведения первопринципных расчетов представлена на рис. 

2.10. 

 
Рис.2.10 Общая схема алгоритма поиска атомной структуры, 

соответствующей минимуму полной энергии системы 

Для  определения значения      самосогласованный расчет производится  

столько раз, сколько необходимо для определения глобального минимума      , где 

  объем элементарной ячейки. 

  Варьируя объем элементарной ячейки на              возле значения, 

соответствующего минимальной энергии, и проводя расчет полной энергии системы 

при фиксированном значении объема элементарной ячейки, возможно построить 

кривую, характеризующую зависимость       от  , при помощи которой, совместно 

с  уравнением состояния Мурнагана ([48]), можно получить  важные 

характеристики, такие как модуль всестороннего растяжения/сжатия 

кристаллического материала или оценить энергию активации межузельной 

диффузии  и т.д.([49]). Далее приведено уравнение состояния Мурнагана: 

   
  

  
   

  

 
 
  

   . 

Здесь   - давление,   – объем элементарной ячейки при давлении  ,     объем 

элементарной ячейки в точке минимума кривой Мурнагана, отображающей 
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зависимость     ,    – значение модуля  всестороннего растяжения/сжатия в точке 

минимума кривой Мурнагана,     
  

  
 .  

Теоретико-множественное описание базовой модели-композиции «КВАНТОВО-

МЕХАНИЧЕСКАЯ ЯЧЕЙКА» (   
 ) 

Для начала работы вычислительной модели необходимо задать химическую  

формулу исследуемого материала (информация по атомам передается из 

соответствующего экземпляра базовой модели – композиции    
 
). Как было 

показано выше, она  задается выражением      
    

 
    

 .  

 Исходя из заданной химической формулы,  определяется                                                    

химический состав материала в том числе: 

-  - число различных сортов атомов в хим. формуле      
    

 
    

 ;  

-   - число атомов  -го сорта  в химической формуле  . 

 Кристаллографическая структура  задается  Федоровской группой симметрии 

  , начальные значения параметров  решетки, включая постоянные и углы 

                 , определяется   - число базисных атомов в начальной 

конфигурации      
   и их координаты (передаются из    

  или задаются исходя из 

экспериментальных данных): 

Задаются (из Банка данных): 

-     
        

  –радиусы  атомов. 

В зависимости от типа химической связи и от валентности  атомов,  входящих 

в химическую формулу,  задаются значения их радиусов  ( 
   
 - радиусы атомов   -го 

сорта (всего   различных)). 

- Задается число атомов   в расчете (или число элементарных ячеек, которые 

задействованы в расчетах). 

- Задаются значения  сверхлегких потенциалов по каждому химическому 

элементу, входящему в заданную химическую формулу    ,   ,    

Множество данных: 

               

состоит из подмножества входных данных     и множества  выходных данных 

(внутренних характеристик модели)    . 
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Множество входных данных    можно представить как:     

                       
                         

        
     

            

Множество выходных данных              -  внутренних характеристик модели, 

состоит из:  

- Массива фазовых координат     базисных атомов конфигурации     . 

                

- данных свойств      включая: 

-итоговые значения параметров решетки             , соответствующих устойчивой 

конфигурации атомов;                                                                                                                                 

-значение полной  энергии       конфигурации    ;                                                                                                

-константы упругости;                                                                                                         - 

поляризацию; 

- энергетические барьеры. 

Множество методов обработки данных     , состоит из  множества моделей и 

множества алгоритмов: 

                                       . 

             Множество моделей      состоит из: 

- статических моделей (применяются для определения свойств), включая расчет 

свойств, указанных выше. 

-динамических моделей, включая: 

         1. Оптимизация. Изменение координат атомов согласно логике решения 

оптимизационной задачи. По окончании динамического процесса - итоговые 

координаты            и соответствующие им значения полной энергии системы 

(см.множество реализаций методов обработки данных). 

 Множество алгоритмов    , включая локальные     - специальные 

алгоритмы, применяющиеся в конкретных реализациях, универсальные           , 

включая  оптимизационные методы решения задачи минимизации функционала и  

статистические методы. 

 Множество событий   и их реализаций по процессам:     
 - события, связанные с 

вычислениями по внутреннему итерационному циклу    ,    
 - события, 

связанные с вычислениями по внешнему итерационному циклу    .



122 

 

 Множество событий    , связанных с началом и окончанием вычислений в  

различных вычислительных процессах в рамках базовой композиции. 

  Множество реализаций событий по процессам  определяется для 

экземпляров базовой композиции БК:    
      

     
 

,        
         

 ,.. 

Множество реализаций методов обработки данных     
 =     

     
 

 

определяется для экземпляров БК в соответствии с конкретной задачей.  

 

2.3 Задачи расчета равновесного параметра решетки кристаллических 

структур и их электронных свойств 

 

В данном разделе приведены результаты расчета отдельных классов 

кристаллических структур и их свойств, проведенных с помощью программной 

реализации алгоритмов определения метрических параметров кристаллической 

решетки на базе модели ионно-атомных радиусов и  расчетов, проведенных при 

помощи программного комплекса VASP [40]. Квантовые расчеты проводились на 

супер-ЭВМ (вычислительных кластерах) Учреждения РАН Межведомственного 

суперкомпьютерного центра РАН и на базе компьютерных ресурсов МГУ им М.В. 

Ломоносова (СКИФ-МГУ «Чебышёв») Бажановым Д.И. и Мутигуллиным И.В. 

Показано что, применяя изложенные модели в комплексе, в частности, используя 

модель ионно-атомных радиусов для получения начальных  данных об устойчивой 

кристаллической структуре исследуемого материала, можно применяя далее 

квантово-механическую модель, достаточно точно воспроизводить атомно-

кристаллическую структуру и энергетические свойства материалов, рассчитывать 

энергию адгезии и другие важнейшие свойства кристаллических структур. 

 2.3.1 Исследование на устойчивость кристаллических структур  

кубической симметрии  

В п.2.1 изложен общий подход к решению задачи определения устойчивых с 

точки зрения модели ионно-атомных радиусов кристаллических структур. В данном 

разделе приведены примеры исследования на устойчивость  кристаллических 

структур кубической симметрии с применением подходов, представленных в п.2.1 и 

п.2.2.  
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     Двухкомпонентные материалы. Оксиды металлов. 

         Для исследования на устойчивость  двухкомпонентных кристаллических 

структур с заданной химической формулой    
    

 
 кубической симметрии и расчета 

плотности электронных состояний  была построена Композиция:  
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  задействованы следующие экземпляры  базовых моделей-композиций: 

   
       

      
       

    
 

   
        

      
       

     

    
   
    

 

      
   
    

 

    
   
    

 

     
   
    

 

   

    
   
    

 

      
   
    

 

    
   
    

 

     
   
    

 

          

         На рис. 2.11 представлена структура композиции     
    
    

 
 

. Указаны экземпляры 

базовых композиций  и последовательность их использования в вычислительном 

процессе. 

 

 

 

 

 

Рис.2.11 Композиция для определения  устойчивых кристаллических структур для 

заданной хим. формулы    
    

 
 и расчета плотности электронных состояний 

В табл. 2.1  приведены результаты расчетов, проведенных  для оксидов CaO, CdO, 

CeO2 значений плотности упаковки ( ), параметра ячейки (а), полученные с 

помощью модели ионно-атомных радиусов (close-packing) и параметра ячейки (а), 

полученного в ходе первопринципных расчетов на программном комплексе VASP (в 

приближении GGA), и значения энергии Ферми, рассчитанные также на  VASP. 

Приведенные в табл. 2.1 данные показывают, что результаты первопринципных 

расчетов постоянной решетки (а) близки к табличным данным[50] и к значениям, 
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полученным с помощью модели ионно-атомных радиусов.      

          Таблица 2.1 

Структурные характеристики оксидов металлов (Fm3m) 

 

 

 

 

 

 

На  рис.2.12 представлена кристаллическая структура оксида CaO, а на рис.2.13 - 

график плотности электронных состояний для CaO. Все расчеты проведены на  

VASP (URL http://www.vasp.at/).  

 

 

Рис.2.12 Кристаллическая структура 

CaO (зеленый-Ca, красный-О) 

Рис.2.13 Плотность электронных состояний  

CaO 

 На рис. 2.13 представлены результаты квантово-механических расчетов с 

применением композиции (рис. 2.11),  плотности электронных состояний  и энергии 

Ферми для CaO.  

Двух- и трехкомпонентные материалы. Соединения A
3
B

5
 (F43m) 

В табл.2.2 приведены результаты расчетов  структурных характеристик, 

проведенных  для соединений A
3
B

5
 (кубическая симметрия,  тип решетки сфалерит, 

тип симметрии F43m)[50]. Значения плотности упаковки ( ), параметра ячейки (а), 

Хим.формула а(эксперимент) 

(Ǻ) 

  a,close-

packing 

model 

(Ǻ) 

a, 

GGA  

vasp 

(Ǻ) 

Fermi 

Energy 

vasp 

(eV) 

CaO
 

4.81 0.528 4.81 4,81 2,25 

CdO 4.70 0.511 4,75  4,69 1,64 

CeO2 5.38 0.531 5,44 5,41  5,03 
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получены с помощью модели ионно-атомных радиусов (close-packing) и 

первопринципных расчетов на программном комплексе VASP (в приближении GGA 

и LDA). Значения энергии Ферми  рассчитаны также на  VASP.   Данные по 

экспериментальным значениям постоянной решетки (а) и значения энергии Ферми 

взяты из [51-53].           

           Таблица 2.2 

Структурные характеристики полупроводниковых материалов [53] 

 

 

 

 

 

 

На  рис.2.14 представлена кристаллическая структура GaAs, а на рис.2.15 - график 

плотности электронных состояний для GaAs. Все расчеты проведены на  VASP.  

 

Рис. 2.14 Кристаллическая структура GaAs (серый -As, желтый- Ga) [53]. 

 С применением композиции (рис. 2.11) был проведен расчет плотности 

электронных состояний и энергии Ферми для  GaAs,  GaP, GaAs0.75N0.25, GaAs0.25P0.75.  

Хим.формула a,(Ǻ) 

экспер

имент 

(300K) 

  a,close-

packing 

model 

(Ǻ) 

a, 

(Ǻ),GG

A 

a,(Ǻ), 

LDA 

Fermi Energy,  

эксперимент 

(eV) 

GaAs
 

5.654 0.528 5.238 5.751 5.621 1.42 

GaP 5.451 0.511 5.27 5.528 5.424 2.9 

GaAs0.75N0.25 - 0.531 - 5,456 5.336 - 

GaAs0.25P0.75 - - - - 5.4 - 
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Рис.2.15 Плотность электронных состояний, рассчитанная для  GaAs,  GaP, GaAs0.75N0.25 , 

GaAs0.25P0.75 [53]. 

 Трехкомпонентные материалы. Шпинели 

 В табл. 2.3  для известных шпинелей (AB2C4) приведены рассчитанные с 

помощью модели ионно-атомных радиусов значения плотности упаковки ( ),  и 

параметра ячейки (а), а также значения энергии Ферми, и параметра ячейки (а), 

полученные с помощью первопринципных расчетов на программном комплексе 

VASP (в приближении GGA). Приведенные в табл. 2.3 данные показывают, что 

результат первопринципного расчета постоянной решетки (а) близок к табличным 

данным [54] и к значениям, полученным с помощью модели ионно-атомных 

радиусов. 

 

 

 

Графики распределения электронной плотности вблизи уровня Ферми 
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           Таблица 2.3 

Структурные характеристики  трехкомпонентных  шпинелей (AB2 C4) (группа 

симметрии Fd3m) 

 

 

 

 

 

 

На рис.2.16 представлена кристаллическая структура MgAl2 O4, а на рис.2.17- график 

плотности электронных состояний для MgAl2O4.  

  

Рис.2.16 Кристаллическая структура 

MgAl2O4 (зеленый-Mg, голубой-Al, 

красный-О) 

Рис.2.17 Плотность        электронных 

состояний MgAl2 O4 

 Трехкомпонентные материалы. Перовскиты 

В табл. 2.4 приведены результаты расчетов кристаллические структуры 

семейства перовскитов  кубической системы  (химическая формула 3ABC , группа 

симметрии  Pm3m). Использовались  алгоритмы определения метрических 

параметров кристаллической решетки на базе модели ионно-атомных радиусов [2]. 

Проведенные  в данной работе расчеты были   оценены с точки зрения устойчивости 

с применением модели ионно-атомных радиусов, согласно которой устойчивыми 

считаются кристаллические структуры плотность упаковки которых попадает в  

интервал [0,47-0.74]. Результаты моделирования большинства структур совпали с 

Хим.форм

ула 

a,эксперим

ент (Ǻ) 

  

 

a (Ǻ), 

ПУ 

a, GGA  vasp 

(Ǻ) 

Fermi En. vasp 

(eV) 

NiAl2 O4
 

8,05 0,55 8,08 8.10 6,42 

MgAl2 O4 8,08 0.51 8,08 8,14 4,24 

ZnAl2 O4 8,08 0.54 8,13 8,15 4,04 
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экспериментальными данными о группах симметрии,  координатах атомов и 

постоянных решетки у известных перовскитов (было просчитано более 60 

различных структур). В табл. 2.4  приведены  результаты вычислительных 

экспериментов, проведенных для десяти перовскитов. Как видно из таблицы, 

плотность упаковки попадает в  интервал [0,47-0.74], что свидетельствует о 

устойчивости таких структур и согласуется с экспериментальными данными. 

Полученные данные могут служить в качестве начального приближения для расчета 

трехкомпонентных соединений со структурой перовскита при проведении квантово-

механических расчетов.                                  

          Таблица 2.4 

Структурные характеристики перовскитов (           

Хим. формула r(A) r(B) r(C) аэксп/(
0

A ) aвыч/(
0

A )   выч 

Zn 
2+

Rb 
1+

F3 
1- 

0,88 1,8 1,19 4,10 4,21 0,63 

NiRbF3 0,83 1,86 1,19 4,07 4,21 0,63 

FeCsF3 0,75 2,02 1,19 4,28 4,44 0,61 

Ti 
4+

Ca 
2+

O 
2-

3 0,745 1,48 1,26 3,908 4,01 0,62 

TiBaO3 0,745 1,75 1,26 4,01 4,257 0,64 

TiPbO3 0,745 1,63 1,26 3,96 4,087 0,65 

Al 
3+

La
3+

O
2-

3 0,675 1,50 1,26 3.818 3,903 0,68 

TiSrO3 0,745 1,58 1,26 3,91 4,01 0,67 

AlLaO3 0,675 1,5 1,26 3,818 3,903 0,68 

RbMnF3 0,97 1,86 1,19 4,236 4,32 0,64 

Значения ионных радиусов  взяты из [24], значения постоянных решеток aтаб для 

известных перовскитоподобных кристаллов из  [54]. Ионные радиусы конкретных 

химических элементов выбирались с учетом  валентности и координационных 

чисел, входящих в рассматриваемую структуру элементов. В табл. 2.5 для известных 
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перовскитов (ABC3) приведены рассчитанные   при помощи модели ионно-атомных 

радиусов  и уточненные с помощью первопринципных расчетов на программном 

комплексе VASP (в приближении GGA) значения плотности упаковки ( ),  

параметра ячейки (а), а также  значения энергии Ферми, рассчитанные также на  

VASP [40]. Приведенные в табл. 3.5 данные расчетов из статьи [55] показывают, что 

результат первопринципного моделирования постоянной решетки (а) близок к 

табличным данным и к значению, полученному с помощью модели ионно-атомных 

радиусов.            

             Таблица 2.6 

Трехкомпонентные перовскиты (ABC3, группа симметрии Pm3m) 

 

  

 

 

 

На рис. 2.18 представлена кристаллическая структура CaTiO3, а на рис. 2.19- график 

плотности электронных состояний для CaTiO3.  

Хим.формула a, 

эксп.(Ǻ) 

  

 

a, close-

packing 

model 

(Ǻ) 

a,   

GGA 

vasp 

(Ǻ) 

Fermi 

Energy 

vasp 

(eV) 

CaTi O3
 

3.795 0,627 4,02 3,857 1,95 

MgTh O3 4,10 0.69 4,077 4,329 - 

 

 

 

Рис.2.18 Кристаллическая структура CaTiO3 

(серый- Ca, красный-O, зеленый-Ti) 

Рис.2.19 Плотность электронных      

состояний CaTiO3 
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 Согласно полученным результатам можно сделать вывод о том, что используя 

для расчетов лишь  данные об элементах, входящих в исследуемую структуру  и 

предположения о типе симметрии устойчивой кристаллической структуры для 

перовскитов (химическая формула 3ABC , группа симметрии  Pm3m),  удается  

получить достаточно хорошие значения постоянных решеток для перовскитов. В 

дальнейшем их можно использовать  в качестве начальных значений параметров 

элементарной ячейки при проведении самосогласованных первопринципных 

расчетов для получения более точных геометрических параметров, 

соответствующих основному состоянию, и соответствующей плотности 

электронных состояний материала. В дальнейшем эти результаты  могут быть 

использованы для  расчета транспортных свойств моделируемого материала. 

 2.3.2 Исследование электронных и структурных свойств тонких пленок            

InN и GaN на кремниевых подложках 

Получение многослойных полупроводниковых наноструктур  с 

прогнозируемыми свойствами является одной из важнейших задач 

наноэлектроники.  Разработка элементной базы силовой электроники нового 

поколения на основе нитрида галлия обеспечит решение многих социально-

экономических проблем, а также задач оборонного значения. Приборы и устройства 

на основе многослойных полупроводниковых наноструктур, включающих слои 

нитридов галлия, алюминия или индия, найдут применение в следующих областях: 

компьютерной технике, промышленности (управление электроприводами, UPS), 

солнечной и ветряной энергетике и т. д. В качестве подложки для выращивания 

таких многослойных структур традиционно используются кремниевые пластины. 

 Для исследования электронных и  структурных свойств тонких пленок            

InN (GaN) на кремниевых подложках была построена Многомасштабная 

Композиция:          
                                

          
    
    

 
    
  

  В           
    
    

 
    
  

  

задействованы следующие экземпляры  базовых моделей-композиций: 
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На рис. 2.20 представлена структура многомасштабной композиции        
    
    

 
    
  

. 

Указаны экземпляры базовых композиций  и последовательность их использования 

в вычислительном процессе. 

 

 

 

 

 

 

 

 

 

 

Рис.2.20 Структура многомасштабной композиции        
    
    

 
    
  

 

Электронные свойства тонких пленок InN, выращенных на различных 

подложках (стекло, сапфир, кремний и др.), интенсивно изучались в последние годы 
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[56,57]. В отличие от GaN, свойства которого хорошо изучены, электронные 

свойства InN изучены недостаточно. Чаще всего InN кристаллизуется в 

гексагональной фазе (вюрцит), причем большое несоответствие параметров 

кристаллической решетки InN и монокристаллов подложки приводит к снижению 

кристаллического качества эпитаксиальных слоев. В результате в течение долгого 

времени удавалось получать лишь поликристаллические и дефектные слои. 

Экспериментальные данные по определению ширины запрещенной зоны 

показывают, что для монокристаллических образцов, обладающих высоким 

структурным совершенством и низкой концентрацией свободных электронов (~10
18

 

см
-3
), характерна ширина запрещенной зоны порядка 0,65-0,70 эВ [57]. Для 

поликристаллических образцов с большим содержанием дефектов и высокой 

концентрацией электронов проводимости (5*10
20

-1*10
21
см

-3
) характерна более 

высокая ширина запрещенной зоны порядка 1,9-2,1 эВ [55].  

С точки зрения технологических применений наиболее удобным типом 

подложки для выращивания InN и GaN является кремний, поскольку он является 

недорогим материалом, повсеместно применяемым в микроэлектронике. К тому же, 

он обладает гексагональной симметрией и его можно производить в виде широких 

пластин. Однако поскольку параметр решетки кремния отличается от параметров 

решетки InN и GaN, это может приводить к значительным структурным 

деформациям этих полупроводников, что может оказывать влияние на их 

электронную структуру. 

Приведем результаты расчетов, выполненных с использованием программного 

комплекса VASP. В работе [58] представлены результаты исследования из первых 

принципов особенностей адгезии монокристаллического нитрида индия в структуре 

вюрцита с ориентацией (0001) на кремниевой подложке с ориентацией (111), а также 

влияние упругих деформаций на электронную структуру InN и GaN. Ниже 

приведены результаты расчетов из этой работы.  
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        Методика решения задачи  

Исследование проводилось в рамках теории функционала электронной 

плотности с использованием базиса плоских волн и PAW-потенциалов. Для расчетов 

применялся программный комплекс VASP. Для описания обменно-корреляционного 

взаимодействия было выбрано приближение локальной электронной плотности 

(ЛЭП, LDA). В связи с тем, что для ТФП характерно занижение ширины 

запрещенной зоны полупроводников, для более корректного описания электронной 

структуры исследуемых систем было применено приближение LDA+U [59]. Для 

релаксации сил, действующих на ионы, использовался метод сопряженных 

градиентов. Динамическая релаксация атомов проводилась до тех пор, пока 

изменение полной энергии системы не становилось меньше 0.001 эВ, при этом 

остаточные силы, действующие на ионы, были меньше 0.01 эВ/Å. Энергия 

обрезания базиса плоских волн была выбрана равной 500 эВ. Расчеты электронной 

структуры осуществлялись интегрированием в зоне Бриллюэна с использованием k-

сетки, построенной по методу Монкхорста-Пака [60,61]. Размерность k-сетки для 

моделирования кристаллических массивов была выбрана 11х11х10 в структуре 

вюрцита и 11x11x11 в структуре сфалерита, а для моделирования интерфейсов - 

11x11x1. Представленные значения для перечисленных параметров расчетной схемы 

были достаточны для обеспечения надежности полученных результатов.   Структура 

интерфейсов моделировалась с помощью периодических супер-ячеек в 

приближении периодических кристаллических пластин. Для этой цели 

использовались суперячейки размерностью (1x1), состоящие 10 атомных слоев 

кремния и 11 атомных слоев InN (6 слоев индия и 5 слоев азота). Толщина 

вакуумного слоя выбиралась таким образом, чтобы две поверхности, образованные 

пластиной, не взаимодействовали друг с другом из-за периодических граничных 

условий.                                                                           

Результаты и их обсуждение 

  В первую очередь были проведены расчеты кристаллической и электронной 

структур InN и GaN. Для двух исследуемых соединений были рассмотрены два типа 

кристаллической решетки: сфалерит и вюрцит (Рис.2.21 a)  и б)). Полученные 

величины периодов решетки и ширин запрещенной зоны в сравнении с 
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экспериментальными значениями приведены в табл.3.5. Для всех структур получено 

хорошее согласие между рассчитанными периодами решеток и экспериментом. 

Таким образом, выбранный метод позволяет верно моделировать кристаллическую 

структуру исследуемых соединений. Полученные плотности электронных состояний 

(ПЭС) для всех рассматриваемых структур приведены на рис. 2.21 и 2.22. Нуль по 

шкале энергии соответствует верхней границе валентной зоны. Структуры 

рассчитанных ПЭС находятся в согласии с результатами первопринципных расчетов 

электронных свойств GaN и InN другими методами: полнопотенциальными 

методами линейных маффин-тин-орбиталей (ЛМТО) [62] и линеаризованных 

присоединенных плоских волн (ЛППВ) [63].                                    

                        Таблица 2.6 

 

 

Результаты экспериментальных данных, представленных в табл. 2.6  взяты из [57,61, 

63, 64]. 

Рассчитанные значения периода решетки и ширины 

запрещенной зоны для InN и GaN 

Структура Источники 

данных 

Период решетки, 

Å 

Ширина 

запрещенной 

зоны, эВ 

GaN 

вюрцит 

Теория (LDA) 3,15; c/a=1,63 2,02 

Теория (LDA+U) 3,05; c/a=1,63 3,45 

Эксперимент 3,19; c/a=1,63 

[64] 

3,5 [61] 

GaN 

сфалерит 

Теория 4,46 2,0 

Эксперимент 4,51 [61] 3,3 [61] 

InN вюрцит 

Теория (LDA) 3,50; c/a=1,62 0,3 

Теория (LDA+U) 3,40; c/a=1,61 0,79 

Эксперимент 3,54; c/a=1,61 1,9 [61]; 

0,65-0,7 [54] 

InN 

сфалерит 

Теория 4,94 0,4 

Эксперимент 4,98 [61] 1,9-2,0[61], 

1,4±0,2 [63] 



135 

 

На рис.2.21 представлена кристаллическая структура InN и GaN в структурах 

сфалерита и вюрцита.  

  

Рис. 2.21  InN и GaN в двух кристаллических решетках: а) сфалерит; б) вюрцит 
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Рис. 2.22 Рассчитанные значения электронной плотности  для GaN 
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Рис. 2.23 Рассчитанные значения электронной плотности  для InN 

Следует отметить, что ширины запрещенной зоны во всех случаях оказались 

заниженными в сравнении с экспериментальными значениями, что вообще 

характерно для теоретических расчетов в рамках теории функционала плотности. По 

a) 
 б) 
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этой причине для корректного воспроизведения электронной структуры требуется 

коррекция потенциалов взаимодействия. Поэтому были проведены расчеты 

электронной структуры InN и GaN в решетке вюрцита в рамках приближения 

LDA+U, результаты которых приведены в табл. 2.6. Из нее видно, что 

использование этого приближения позволяет значительно улучшить 

воспроизведение электронной структуры, но при этом приводит к занижению 

величины равновесного параметра решетки для рассматриваемых 

полупроводниковых структур. Так, для InN была получена ширина запрещенной 

зоны 0,79 эВ, а для GaN 3,45 эВ, эти величины близки к экспериментально 

определенным значениям. Таким образом, приближение ЛЭП следует использовать 

для расчетов, в которых необходимо исследовать атомную структуру указанных 

полупроводников, а приближение LDA+U – для расчетов, в которых необходимо 

исследовать их электронную структуру.  

Таблица 2.7 

Рассчитанные значения ширины запрещенной зоны (эВ) для InN и GaN в 

зависимости от величины упругих напряжений 

Структура -2% -1% 0% 

равновесное 

значение 

+1% +2% 

InN 0,93 0,85 0,79 0,69 0,56 

GaN 3,73 3,57 3,45 3,27 3,08 

 

Следующим этапом было моделирование структуры интерфейса InN(0001)-

In/Si(111). При этом InN рассматривался в более стабильной структуре вюрцита со 

структурными параметрами, полученными методом LDA (табл. 2.7). Параметр 

решетки кремния, рассчитанный в рамках этого метода, оказался равным 5,40 Å, что 

хорошо согласуется с экспериментальным значением 5,43 Å [65]. Для 

моделирования интерфейса в статье [65] использовалась периодическая суперячейка 

размерностью 1х1х21, состоявшая из 10 атомных слоев кремния и 11 атомных слоев 

InN. Были рассчитаны энергии адгезии для двух случаев: когда атом индия 

располагался в междоузлии над поверхностью кремния (111) и когда атом индия 
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располагался над поверхностным атомом кремния. Полученные значения составили 

1.68 Дж/м
2
 и 1.61 Дж/м

2
 соответственно. Таким образом, предпочтительным 

является первый вариант расположения атомов, когда атом индия располагается в 

междоузлии над атомом кремния из подповерхностного слоя. 

 

Рис. 2.23 Интерфейс In/Si [65] 

Поскольку период решетки кремния в плоскости (111) (3,82 Å) значительно 

шире периодов решетки InN (3,15 Å) и GaN (3,50 Å), при формировании интерфейса 

возможно возникновение упругих деформаций в структурах полупроводников, 

которые могут приводить к изменению их электронных свойств и, в частности, к 

изменению ширины запрещенной зоны. Поэтому было проведено исследование 

влияния упругих деформаций на электронную структуру InN и GaN в структуре 

вюрцита. Параметр a решеток InN и GaN изменялся в пределах от -2% до +2%, при 

этом параметр c оставался без изменения. Для полученных структур были 

рассчитаны ширины запрещенной зоны, представленные в табл. 2.7. Полученные 

результаты демонстрируют, что небольшое изменение параметра решетки может 

приводить к значительному изменению ширины запрещенной зоны полупроводника, 

причем сжатие приводит к увеличению ширины запрещенной зоны, а растяжение – к 

уменьшению. Так, сжатие решеток InN и GaN на 2% привело к увеличению ширины 

запрещенной зоны на 17% и 8% соответственно, а растяжение решеток InN и GaN на 

2% привело к сужению запрещенной зоны на 29% и 13% соответственно. 

  Проведенные в рамках теории функционала электронной плотности 

первопринципные расчеты показали сильную зависимость величины ширины 

запрещенной зоны таких полупроводников как InN и GaN от параметра решетки 

этих структур. Сжатие решетки приводит к уширению запрещенной зоны, а 

растяжение решетки – к сужению. Кроме того, в работе с помощью 
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первопринципного моделирования была рассчитана структура интерфейса 

InN(0001)-In/Si(111), рис. 2.23. 

  Далее проводилось исследование влияния дефектов внедрения на энергию 

адгезии на интерфейсе InN/Si. С этой целью проводилось моделирование зонной 

структуры гетероперехода  (контакта двух различных полупроводниковых структур) 

в зависимости от атомистической структуры интерфейса с учетом структурных 

дефектов. Были также проведены теоретические расчеты величины энергии адгезии 

монокристаллических пленок InN и GaN на подложке кремния. Расчеты из первых 

принципов проводились в рамках теории функционала плотности с использованием 

базиса плоских волн и PAW-потенциалов для описания межатомного 

взаимодействия. Для теоретического моделирования адгезии пленок GaN и InN на 

поверхности кремния была проведена серия расчетов полных энергий когерентных 

интерфейсов N-полярных нитридов на кремнии: InN(0001)/Si(111) и 

GaN(0001)/Si(111). Структуры в расчетах различались типом прерывания 

поверхности нитрида, граничащей с кремниевой подложкой – азотной или 

металлической, а также взаимным расположением поверхностных атомов подложки 

Si(111) и пленки InN(0001) или GaN(0001). Энергия адгезии рассчитывалась по 

формуле: 

Eад = E(InN/Si) – E(Si) – E(InN),                     (2.92) 

где E(InN/Si) – полная энергия интерфейса InN(0001)/Si(111),  E(Si) – полная энергия 

кремниевой подложки, E(InN) – полная энергия пленки нитрида индия. Для обоих 

соединений (GaN и InN) наиболее сильная связь между подложкой и пленкой 

характерна для структуры, в которой поверхность пленки полупроводника 

прерывается атомом азота, располагающимся непосредственно над поверхностным 

атомом кремния. Рассчитанные энергии адгезии для GaN и InN равны –2,58 Дж/м
–2

 и 

–2,55 Дж/м
–2

 соответственно. При этом рассчитанная длина связи азот – кремний 

составляет 1,81 Å в системе InN/Si и 1,80 Å в системе GaN/Si. 

Структуры InN(GaN) на подложке кремния, свойства которых рассчитывались  

с использованием предсказательного компьютерного моделирования, затем были 

получены в лабораторных условиях. В связи с тем, что экспериментально 

выращенные структуры демонстрируют значительную концентрацию примесей, 

особую важность представляет теоретическое исследование влияния примесных 
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атомов на адгезию пленки и подложки. В связи с этим были проведены расчеты 

влияния интерфейсов одиночных атомов возможных примесей (кислород, углерод) 

на энергию адгезии.  

 

                                                                    а)                               б)  

Рис. 2.24 Схематическое изображение интерфейса InN(0001)/Si(111): а) атом кислорода 

замещает атом азота; б) атом кислорода замещает атом кремния. Желтым изображены 

атомы кремния, серым – алюминия, синим – азота, красным – кислорода [65]. 

Для оценки влияния одиночного атома кислорода на адгезию интерфейса 

InN/Si была использована суперячейка большего размера - 3 × 3 в плоскости XY. 

Проводившиеся ранее расчеты из первых принципов продемонстрировали, что 

кислород в кристаллической структуре InN замещает атом азота. Поэтому в наших 

расчетах один атом кислорода замещал атом азота на границе раздела (рис. 2.24). 

При этом была получена величина энергии адгезии - 2,20 Дж/м
–2
. Кроме того, была 

рассмотрена ситуация, когда атом кислорода замещал атом кремния на границе 

раздела (рис. 2.24). Полученная энергия адгезии оказалась равной - 2,15 Дж/м
–2

. 

Таким образом, наличие кислорода в структуре InN ухудшает связь выращенной 

пленки с кремниевой подложкой. Теоретические данные хорошо согласуются с 

результатами экспериментов по выращиванию данных структур [65]. Таким 

образом, проведенное теоретическое исследование продемонстрировало 

возможность с помощью суперкомпьютерных вычислений оценивать не только 

атомно-кристаллическую структуру и электронные свойства полупроводниковых 

наноструктур, но и изучать  влияние примесных дефектов на величину энергии 

адгезии полупроводниковых пленок на подложке кремния. Полученный 
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теоретический результат может быть использован на практике при выращивании 

стабильных N-полярных нитридов на кремнии. 

2.4 Основные выводы 

 Разработаны методы и средства информационной поддержки решения задачи 

поиска устойчивых кристаллических структур, совместных с заданной химической 

формулой. Даны оптимизационные формулировки для моделей ионно-атомных 

радиусов, атомных радиусов и модели с перекрывающимися радиусами. Построены 

и реализованы эффективные вычислительные алгоритмы, учитывающие свойства 

симметрии и периодичности кристаллов. Создана база данных по Федоровским 

группам симметрии. Разработана процедура обмена данными между системами 

кристаллографического и квантово-механического моделирования. Решены задачи 

расчета равновесного параметра решетки кристаллических структур и их 

электронных свойств. Построены многомасштабные композиции для исследования 

на устойчивость кристаллических структур  кубической симметрии с помощью 

модели ионно-атомных радиусов и квантово-механического моделирования и для 

изучения электронных и структурных свойств тонких пленок  InN и GaN на 

кремниевых подложках. Результаты расчетов верифицированы по 

экспериментальным данным. 
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 ГЛАВА 3 

 МОДЕЛИ УРОВНЯ МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОГО 

МОДЕЛИРОВАНИЯ  И МЕЗОУРОВНЯ  

В связи с интенсивным развитием вычислительной техники для 

моделирования процессов на различных масштабных уровнях все большее 

распространение находит метод дискретных элементов. Он состоит  в представ-

лении исследуемой системы как совокупности взаимодействующих частиц 

(электронов, ионов, атомов, кластеров и т.д.) [1-3]. При этом движение частиц 

подчиняется уравнениям динамики с учетом заданных законов межчастичного 

взаимодействия. 

В третьей главе рассматриваются  динамические модели, основанные на 

методе дискретных элементов, с помощью которых стало возможным  проводить 

исследования, связанные с моделированием кристаллов с протяженными 

дефектами, сложных многокомпонентных слоистых структур, изучать фазовые 

переходы, механизмы трения, процессы разрушения твердых тел и другие 

физические явления. 

   При этом, в расчетах принимают участие от нескольких тысяч до 

нескольких миллионов  атомов,  время измеряется от фемто- до наносекунд. В 

качестве входных данных  используются результаты расчетов, полученные с 

помощью моделей с первого масштабного уровня. В классическом варианте 

(молекулярная динамика) в качестве дискретных элементов выступают атомы и 

молекулы, составляющие материал, а взаимодействие между ними описывается с 

помощью соответствующих потенциалов. 

 Дискретно-элементное моделирование больших систем связано с 

обобщением классического варианта на случай использования в качестве 

дискретных элементов укрупненных частиц, состоящих из кластеров, объединения 

кластеров и т.д.  

3.1 Молекулярно-динамическое моделирование 

Рассмотрим кристалл с заданной химической формулой. Выделим систему из 

n атомов. Пусть кристаллическая структура определена  Федоровской группой 

симметрии и из расчетов, полученных  с помощью  статических моделей, известны 

координаты базисных атомов и метрические характеристики. Применяя квантово-
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механические расчеты, как было показано ранее, можно рассчитать электронную 

плотность,  а на ее основе вычислить значения полной энергии, когезионной 

энергии и другие, связанные с этими величинами, энергетические характеристики 

устойчивой (равновесной) системы. Эти значения используются в ходе 

молекулярно-динамического (МД) моделирования [1,3]. При МД-моделировании 

поведение взаимодействующих атомов системы описывается в рамках 

классической динамики. Их местоположение и скорости  определяются  путем 

интегрирования системы обыкновенных дифференциальных уравнений. При этом 

силы, действующие на атомы,  определяются  межатомным взаимодействием. 

Такой подход применим, когда расстояние между атомами    системы намного 

превышает длину волны де Бройля    [3]:  

           , 

   
 

      
 , 

здесь   – постоянная Планка,    – масса атома,    –постоянная Больцмана, T – 

температура. Как отмечалось ранее, в МД-моделировании принимает участие от 

тысяч до нескольких миллионов атомов. Временной интервал  процесса  

моделирования обычно занимает            сек. При изучении каких-либо 

физических процессов необходимо, чтобы время релаксации исследуемых величин 

было существенно меньше интервала моделирования. 

 Известно, что полная энергия системы       состоит из кинетической энергии 

системы невзаимодействующих атомов и потенциальной энергии, которая зависит 

от их координат и определяется межатомным взаимодействием. Под когезионной 

энергией      понимают энергию, которая необходима для того, чтобы 

разъединить атомы системы, то есть удалить их бесконечно далеко друг от друга. 

При проведении квантово-механических расчетов обычно рассматривают величину 

    , полученную делением      на число N атомов рассматриваемой системы. 

          

здесь,      – полная энергия системы атомов,   – потенциальная энергия,    - 

кинетичеcкая энергия.  

Далее будут построены математические модели, в которых результаты  

квантовомеханического расчета      и      используются для идентификации 
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параметров потенциала межчастичного взаимодействия из условия согласования 

значений энергии, рассчитанных с применением первопринципного и 

молекулярно-динамического подходов. Важно, что при построении 

многомасштабных моделей для расчета атомно-кристаллической структуры 

материалов мы считаем значения этих величин глобальными параметрами, так же 

как плотность упаковки и кристаллографические характеристики системы (группа 

симметрии, параметры ячейки, углы). 

В молекулярной динамике состояние  системы атомов в конкретный момент 

времени   описывается набором их положений и скоростей: 

     =                        ,                             ,          

Известно, что в различных физических системах (атомы, молекулы, кластеры) 

траектория движения каждой частицы обусловлена ее взаимодействием со всеми 

остальными частицами. Cила      , действующая на i-ый атом равна сумме сил, 

возникающих в результате взаимодействия с остальными N-1 атомами системы и 

внешними силами [3].  

                

 

   
   

                         

      
    

 
   
  
 
 

Здесь     – сила, с которой атом i  действует на атом j. 

        
     

 
    

  
 
 
      

   
                   

 
 

            
         

         
  

    - внешняя сила, действующая на i-й атом, зависящая от расстояния и от 

времени,       – внешняя сила, зависящая от скорости движения i-го атома. 

Для молекулярно-динамического описания системы из N атомов необходимо 

задать начальное состояние системы, начальные скорости и температуру, 

последние две характеристики системы взаимосвязаны, так как температура 

системы определяется кинетической энергией ее атомов. В качестве начального 

состояния принимается конфигурация равновесной системы атомов, 

соответствующая минимальному значению внутренней энергии системы. Как было 
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показано в  Главе 2, в рамках предлагаемого подхода такая конфигурация  атомов 

системы определяется в ходе квантово-механических расчетов, с помощью 

которых уточняются значения координат базисных атомов, полученных с 

использованием кристаллографических моделей, таких как модель ионно-атомных 

радиусов или модель Полинга.  

Изменение во времени взаиморасположения N атомов системы в 

молекулярной динамике описывается 6N уравнениями движения Ньютона, а также 

начальными и граничными условиями.  

  

   
  

             

   

  
   , 

здесь            ,    – масса i-того атома.  

В начальный момент времени      задаются координаты        и скорости 

       атомов системы. При моделировании монокристаллического массива (bulk) 

внутри материала, не доходя до поверхности, обычно задают основную 

элементарную ячейку, которую при помощи операций симметрии транслируют во 

всех направлениях, получая таким способом образы атомов основной ячейки и, 

соответственно, вспомогательные ячейки, которые являются образами основной. В 

отличие от МД-моделирования отдельных молекул или нанокластеров, при 

моделировании периодических кристаллических структур, как правило, 

используются специальные условия на границах области. Наибольшее 

распространение получили периодические граничные условия. Благодаря 

периодичности координаты и скорости «образов» атомов вспомогательных ячеек  

соотносятся с координатами и скоростями атомов основной ячейки. Однако при 

изучении поверхностных эффектов в кристаллах следует учитывать образование в 

приповерхностном слое оборванных связей, что накладывает ограничения на 

применение периодической трансляции основной ячейки.   

При МД-моделировании межатомное взаимодействие  обычно выражают 

через потенциальную функцию U(  ,…,  ), которая описывает зависимость 

потенциальной энергии системы из n атомов от их координат   ,…,  . 

Потенциальная энергия N взаимодействующих атомов может быть представлена в 

следующем виде [1,3]: 
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Здесь потенциал U1 учитывает влияние внешнего поля, в котором находится i-ый 

атом, или граничных условий. U2 – парный потенциал, описывающий 

взаимодействие любой пары атомов, зависящее  только от расстояния между i-м и 

j-м атомами, а присутствие других атомов не учитывается. U3 – трехчастичный 

потенциал, описывающий межатомное взаимодействие двух атомов в присутствии 

третьего, который оказывает влияние на это взаимодействие и т.д.  

Наиболее точное описание межатомного взаимодействия дают квантово-

механические расчеты, рассмотренные в предыдущей главе. Такие расчеты обычно 

называют расчетами из первых принципов (ab initio), так как при этом 

используются только базовые постулаты квантовой механики и не вводится  какой-

либо дополнительной информации. Вычисление волновой функции в результате 

решения уравнения Шредингера позволяет определить электронную структуру 

системы (распределение электронов или электронную плотность). Тем самым 

однозначно задаются силы взаимодействия атомов (молекул) в системе. Однако, 

такой подход связан со значительными вычислительными затратами, и его 

применение к большим (более 1000 атомов) системам затруднительно. Поэтому 

широкое распространение в практике математического моделирования получили 

эмпирические и полуэмпирические потенциалы взаимодействия.  

3.2 Потенциалы межатомного взаимодействия 

Обычно, описание межатомного взаимодействия в системе имеет довольно 

сложный вид, так как оно может включать взаимодействия различных типов. К 

основным типам межатомного взаимодействия   относятся ионные, ковалентные, 

металлические и Ван-дер-Ваальсовы взаимодействия. Ионное взаимодействие, как 

принято считать, вызвано смещением валентных электронов от одного атома к 

другому, между которыми возникает электростатическое притяжение. Ковалентное 

взаимодействие возникает при образовании ковалентной химической связи. При 

этом происходит обобщение и концентрирование пары электронов на 

молекулярной орбитали. Металлическая связь возникает при взаимодействии 
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обобществленного электронного газа с ионным остовом кристаллической 

структуры. Ван-дер-Ваальсовы взаимодействия применяют для описания 

межмолекулярных взаимодействий, в ряде  органических соединений и др.  

В некоторых случаях адекватные результаты при описании физических 

явлений  или процессов удается получить с использованием парных потенциалов  

               , где   – расстояние между двумя частицами. В этом случае, сила 

взаимодействия двух частиц определится как: 

             

Парный потенциал строится таким образом, что при приближении друг к 

другу (   ) атомы отталкиваются, при удалении (   ) – притягиваются, причем 

при значительном удалении (      потенциал и сила взаимодействия стремятся к 

нулю. Расстояние  , на котором обращается в ноль первая производная 

потенциала, является равновесным расстоянием между частицами, расстояние  , на 

котором обращается в ноль вторая производная потенциала, является критическим, 

на нем  наступает разрыв межатомной связи. Необходимо отметить, что описанный 

подход к построению потенциала межчастичного взаимодействия применим 

только при описании двухатомной молекулы и при моделировании кристалла, в 

котором учитывается взаимодействие только ближайших соседей. При учете 

влияния атомов следующих координационных сфер, равновесное и критическое 

расстояния изменяются, но для потенциалов, достаточно быстро убывающих с 

расстоянием, эти изменения являются малыми по сравнению с   и  . 

Описание потенциалов, применяющихся при МД-моделировании материалов 

с различным типом химической связи и процессов, связанных с ними, таких как 

потенциал модели твердых сфер [3], Борна-Майера [1], Леннарда-Джонса [4], 

Букингема [1], Морзе [1], а также потенциалы использующиеся в моделях  

погруженного атома [5], Rosato-Guillope-Legrand (RGL) [6,7] и другие, можно 

встретить в многочисленных источниках. Далее  приводится более подробное 

описание потенциалов, описывающих ковалентное взаимодействие. 

Ковалентное взаимодействие 

При молекулярно-динамическом моделировании ковалентных кристаллов, 

таких как кремний и его оксиды, нитрид алюминия,     углеродные наноструктуры,  

применяется  многочастичный потенциал Терсоффа [8-10]. К потенциалам 
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семейства Терсоффа  [8-16], относят потенциалы Бреннера [11], Бреннера-

Терсоффа [11,12], Бреннера II поколения (RЕBO) [13,14], Маруямы [15,16] и 

другие. В отличие от плотно упакованных структур, ковалентные кристаллы 

обычно имеют более разреженную структуру. Например, у кремния в структуре 

алмаза плотность упаковки =0.48. Использование потенциалов семейства 

Терсоффа позволяет учесть особенности ковалентного типа связи, а именно ее 

направленность и прочность, являющиеся следствием того, что химическая связь 

осуществляется парами электронов, локализованных между близко 

расположенными атомами. Обычно ковалентные кристаллы образуются из 

элементов IV и близких к ней групп ТМ. Они состоят из атомов в отличие от 

ионных кристаллов, состоящих из ионов, и молекулярных кристаллов, состоящих 

из молекул. При этом ковалентные кристаллы могут быть цепочечными, 

каркасными и слоистыми.  

Например, применение многочастичных потенциалов для моделирования 

углеродных наноструктур позволяет воспроизвести устойчивые системы, провести 

исследование их транспортных и механических свойств, кроме того, достаточно 

точно моделировать структуры с точечными и протяженными дефектами.  

В то же время при моделировании слоистых структур, таких как слоистые 

перовскитоподобные структуры или графит, необходимо учитывать, что Ван-дер-

Ваальсовы взаимодействия между слоями значительно слабее межатомных 

ковалентных взаимодействий внутри слоя. В связи с этим, при моделировании 

дефектов в таких структурах, как, например, двухслойный графен [17], 

применяются специально разработанные потенциалы Колмогорова-Креспи [18].  

Потенциал Терсоффа 

Рассмотрим потенциал Терсоффа [8-10], хорошо зарекомендовавший себя в 

качестве потенциала межатомного взаимодействия при МД-моделировании 

соединений с ковалентным типом связи. Он позволяет учесть зависимость 

прочности межатомной связи от локального окружения соседних атомов. При этом 

полная энергия системы      и межатомная потенциальная энергия взаимодействия 

       двух атомов i и j в этом случае имеют вид: 
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здесь суммируются значения энергии взаимодействующих пар атомов 

рассматриваемой системы,    .  Для потенциала Терсоффа: 

( ) ( )[ ( ) ( )]ij c ij R ij ij A ijU r f r f r b f r 
 , 

где    и    – потенциалы притяжения и отталкивания между двумя атомами, 

2
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   - гладкая функция отсечения с параметрами   и  , которые выбираются таким 

образом, чтобы включать ближайших соседей: 
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     - параметр, который показывает, как энергия зависит от расположения атома 

относительно соседних атомов. 
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

, 
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. 

Переменные ijr означают расстояния между атомами с номерами i  и j

соответственно, через ijk  обозначен угол, образованный векторами, 
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соединяющими атом i  с атомами j  и k соответственно. Потенциал Терсоффа 

включает 12 параметров, специфичных для моделируемого кристалла: 

  
 
                     

 
    

 
    

 
   

 
    

 
    

  
    

  

    
  
       

При этом, параметры   и      определяются исходя из экспериментально 

полученных геометрических характеристик кристалла. Число параметров 

потенциалов зависят от того, какие пары атомов взаимодействуют и одного или 

разного они сорта (     . Если в рассматриваемой системе представлены атомы 2-

х сортов А и В, тогда для расчета полной энергии конкретной системы необходимо 

определить параметры потенциалов, описывающих три взаимодействия    (А-А, B-

B, A-B).  В этом случае, число параметров, которые необходимо определить 

становится равным 36. 

Кроме того, необходимо заметить,  что при моделировании структурных свойств 

и процессов в полупроводниковых материалах  используют потенциал 

Стиллинжера-Вебера (Stelinger-Veber (SW)) [19], хорошо зарекомендовавший себя 

при изучении соединений с ковалентным типом химической связи.   

В заключение отметим, что с целью снижения вычислительных затрат при 

проведении МД-расчетов используется усечение потенциала межатомного 

взаимодействия, основанное на быстром убывании силы  притяжения с 

увеличением расстояния между атомами [3]. Поэтому на практике вводится радиус 

усечения   , и взаимодействие атомов на расстояниях больших, чем   , не 

учитывается. В сочетании с ячеистой моделью, согласно которой для атомов, 

находящихся в элементарной ячейке, рассматривается взаимодействие только с 

атомами из пограничных с ней ячеек, это позволяет на порядок сократить 

количество вычислений. Таким образом, число операций становится 

пропорциональным количеству атомов в системе. Дальнейшее повышение 

эффективности вычислительного процесса связано с применением технологий 

распараллеливания вычислений. 
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3.3 Параметрическая идентификация потенциалов межатомного 

взаимодействия 

 Важнейшим этапом МД-моделирования является структурная 

идентификация потенциалов межатомного взаимодействия. Она  состоит в подборе 

вида потенциала (определении его структуры), подходящего для описания 

конкретного материала, характеризующегося химическим составом, геометрией и 

типом химической связи. После того, как структура потенциала определена, 

необходимо идентифицировать его параметры. Оптимизационная задача 

параметрической идентификации решается на основе сравнения различных 

физических величин (характеристик кристалла), рассчитанных с помощью данного 

потенциала, и результатов экспериментов, либо квантово-механических расчетов 

[10, 20, 21-23].  Сравнительный анализ обычно проводится с использованием таких 

понятий, как энергия (в том числе        и       ), постоянные решетки,  длина 

межатомной связи, компоненты тензора деформации кристалла, модуль объемного 

растяжения/сжатия, фононные спектры и т.д. 

Главной  целью задачи идентификации параметров потенциала является 

воспроизведение заданных свойств материала при молекулярно-динамическом 

моделировании. В общем случае невозможно воспроизвести все характеристики 

материала. Необходимо сосредоточиться только на ключевых характеристиках, 

таких как, например, температура       и теплота плавления       и их 

зависимости от давления    или теплоемкость       и коэффициент линейного 

расширения       в зависимости от температуры [24]. Кроме того, к важнейшим 

характеристикам  относится энергия связи между атомами в кристалле     , кривая 

Мурнагана [25], характеризующая зависимость       от объема элементарной 

ячейки V0.  

Как отмечалось ранее, при моделировании динамики атомов, необходимо 

воспроизвести  упругие свойства кристалла, выражаемые через его упругие 

константы [26]. Если деформации в кристалле малы, то согласно закону Гука они 

пропорциональны напряжениям: 

    ,                                                          (3.1) 

здесь   – тензор напряжений,   – тензор деформаций,   – тензор упругих констант, 

компоненты которого определяются выражениями: 
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                                                 (3.2) 

          

здесь       – соответствующие компоненты деформации кристалла.  

 В общем случае этот тензор представляет собой симметричную матрицу 

6х6. В силу симметричности из 36 различных упругих постоянных остается в 

наиболее общем случае, который отвечает триклинной решетке Браве, только 21. 

Для кубической решетки Браве, которую представляют собой, например, металлы 

(ГЦК решетка),  число различных констант равно 3 (   ,    ,    ). Оставшиеся 

компоненты тензора либо нулевые, либо совпадают с перечисленными [26]. Для 

гексагональных систем, характерных для оксидов и нитридов металлов, таких как  

      и     существует 5 различных упругих постоянных (   ,    ,    ,    ,    ) 

[26]. 

 Помимо модуля объемного растяжения/сжатия   важную роль с точки 

зрения воспроизведения упругих свойств кристалла играет модуль  сдвига     

Данные характеристики могут быть вычислены через давление, и объем кристалла 

или рассчитаны при помощи значений упругих констант     и     по формулам: 

                                                           (3.3) 

                                                           (3.4) 

 

Постановка задачи параметрической идентификации потенциалов 

межатомного взаимодействия 

  Задача параметрической идентификации состоит в подборе параметров  

потенциала межатомного взаимодействия     
 
    

 
   ,     , таким 

образом, чтобы при молекулярно-динамическом моделировании воспроизводились 

определенные свойств материала. Это осуществляется путем минимизации целевой 

функции (3.5) при фиксированной конфигурации базисных атомов, определяемой 

матрицей          
         

  ,           : 

               
 
   

           
 

   
                                     (3.5) 

                                                                   (3.6) 
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здесь    -эталонное значение  -ой характеристики,     )-значение характеристики, 

полученное в результате расчетов для заданного набора базисных атомов,     -

вектор подбираемых параметров,  -число характристик,   - весовой коэффициент,  

         .   

   
 
                                                    (3.7) 

В задаче (3.5), (3.6) требуется найти набор параметров      , 

минимизирующих значение функции     . Такой набор будет обеспечивать 

минимальное отклонение рассчитанных характеристик материала от эталонных 

значений, полученных с помощью эксперимента или  квантовомеханических 

расчетов в рамках теории функционала электронной плотности [27,28]. Таким 

образом, решив обратную задачу, удается наиболее точно описать свойства 

исследуемого материала с помощью потенциалов с подобранными параметрами.  

Данная задача существенно усложняется при  переходе от однокомпонентных 

(решение данной задачи приводится в работе [22])  к двухкомпонентным и 

многокомпонентным материалам. Это связано с существенным увеличением числа 

оптимизируемых параметров, что приводит к соответствующим усложнениям в 

решении многопараметрической оптимизационной задачи, а также к увеличению 

времени поиска наборов параметров, на которых достигается минимум 

функционала. Необходимо отметить, что за счет усложнения целевой функции при 

введении в нее дополнительных слагаемых, при неизменном  числе атомов в 

химической формуле, можно повысить вероятность однозначности идентификации 

значений параметров потенциалов. Поскольку характерные значения 

идентифицируемых параметров сильно различаются, и исчисляются в разных 

единицах измерений, для обеспечения эффективной работы алгоритма необходимо 

провести их масштабирование. Можно применять линейное масштабирование, где 

коэффициент, на который умножается соответствующий параметр, выбирается 

равным  i 
~

1 ,  где   2/
~

iii     . Здесь значения с подчеркиваниями соответствуют 

границам (априорным) интервалов для искомых параметров. 

 Рассмотрим постановку  задачи идентификации параметров потенциала 

Терсоффа [8-10] для двухкомпонентного материала с ковалентным типом 

химической связи и ГЦК структурой, например, типа флюорита       ((  ,   , 
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  )  ). Необходимо определить  вектор      
 
    

 
   ,            на 

котором достигается минимум функционала: 

        
 
   

           
 

   
    

           
 

   
      

           
 

   
                                                                                                                                      

(3.8) 

 

   

 

   

   

 

Рассмотрим случай, когда     . 

        
           

 

   
      

           
 

   
           

 

     (3.9) 

   
 
                                                      (3.10) 

 

Минимизируемый функционал имеет следующий вид: 

       
       

   
   

             

   
    

       

   
   

          
 

    
    

          
 

    
  

  
          

 

    
          

                                                   (3.11) 

Для решения поставленной задачи необходимо найти: 

        
   

     

Вектор идентифицируемых параметров зависит от числа  типов различных атомов 

в рассматриваемой системе. В данном случае нами рассматривается система, 

состоящая из 2-х видов атомов,  поэтому вектор включает 36 параметров, 

специфичных для моделируемого кристалла (для однокомпонентного соединения 

число идентифицируемых параметров потенциала Терсоффа - 12). В данной задаче 

все расчеты полных энергий      проводятся для кристаллической решетки 

размером 3x3х3 в единицах элементарной ячейки ГЦК структуры. Расчеты 

статические проводятся без релаксации атомных позиций. Атомы располагаются в 

узлах «идеальной»  гранецентрированной кубической решетки (ГЦК) решетки. 

Эталонные значения характеристик берутся из таблиц (экспериментальные 

данные) (                      и из квантовомеханических расчетов (     ). Значения 

характеристик рассчитываются согласно известным формулам с использованием 
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значений полных энергий, полученных с помощью потенциала Терсоффа с 

идентифицируемыми параметрами. В данной задаче в целевую функцию входят 

следующие характеристики: 

                                                         . 

 

Здесь: 

1.    -когезионная энергия.      
    

 
  где -количество атомов в рассматриваемой 

системе (например для ГЦК ячейки              ). 

2.  -постоянная решетки, рассчитывается с использованием уравнения состояния 

Берча-Мурнагана [25].   

 Для определения постоянной решетки а гранецентрированной кубической 

структуры используется формула       , для объемноцентрированной 

кубической       
 

  
, здесь    - расстояние до ближайшего соседа. Оно      

определяется с учетом  радиуса усечения    в конкретном случае.  

Равновесный объем    рассчитывается по формуле: 

    
          . 

Здесь,          -количество ячеек, участвующих в расчетах по      . 

3.   -модуль всестороннего растяжения/сжатия может быть рассчитан с помощью  

Etot.   Для вычисления этого параметра используется матрица деформации, которая 

имеет вид:   

   
     
     
     

 ; 

где   – параметр деформации,    отвечает за равномерное растяжение по трем 

направлениям X, Y, Z кубической решетки. Модуль всестороннего 

растяжения/сжатия имеет вид: 

    
      
   

 
 

   

      
   

 

Полная энергия              вычисляется при разных значениях параметра    

вблизи точки равновесия (V0). Для определения второй производной полученная 

зависимость аппроксимируется полиномом 2-го порядка. 

4.    ,    - константы упругости. 
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С помощью       описывается равномерное растяжение в плоскости XY. В этом 

случае объем кристалла возрастает, матрица деформации записывается в виде: 

      
     
     
   

  

С помощью      описывается растяжение вдоль оси X и сжатие вдоль оси Y. В этом 

случае объем кристалла не меняется, матрица деформации имеет вид: 

      
     
     
   

  

При равномерном  растяжении в плоскости XY вблизи точки равновесия: 

                                    
  

    

 

  
 
      
   

 
      
   

 

 
. 

Здесь     и     - энергии, соответствующие деформированным согласно матрицам 

деформации объемам. 

При растяжении вдоль оси X и сжатии вдоль оси Y вблизи точки равновесия  

                                    
 , 

    

 
  
 
      
   

 
      
   

 

 
   

5.    – константа упругости, называемая постоянной эластичности. 

Матрица деформации сдвига имеет вид: 

      

   
   

  
 

    

 . 

 Вблизи точки равновесия  

                               
 , 

    
 

   
 
      

   
    

Вычисление констант упругости может потребовать достаточно больших 

затрат машинного времени, поскольку оно подразумевает вычисление производных 

от энергии связи по деформациям. Для того чтобы вычислить вторую производную 

со вторым порядком точности, например, по объему нужно вычислить энергию 

связи для трех конфигураций: Ecoh(   + dV), Ecoh(  ), Ecoh(   – dV). Вычисление 

каждой из энергий требует размножения ячейки, а поскольку нужно рассчитать ряд 
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упругих постоянных и делать это на каждом шаге оптимизации, процедура 

вычисления может стать достаточно долгой.  

 В случае необходимости решения более сложной задачи, такой как, 

например, моделирование процессов формирования на поверхности  металлов 

нанокластеров, в целевую функцию необходимо добавить дополнительные 

слагаемые, с такими характеристиками, как     -энергия растворимости примеси 

рода А  в кристалле рода В  или     
   -энергия связи димера А  в поверхностном 

слое В. Пример рассмотрен в п.3.7.3. 

Методы решения задачи параметрической идентификации 

потенциалов межатомного взаимодействия 

Решение задачи (3.5), (3.6) ищется на  множестве Y, являющемся 

параллелепипедом                                      
               , 

границы которого выбираются таким образом, чтобы заведомо содержать 

возможный диапазон изменения параметров   
 
    

 
   . Таким образом, при 

решении поставленной задачи на начальном этапе необходимо определить 

допустимые интервалы поиска параметров потенциала:  
 
  
 
 ,          , где i-общее 

число идентифицируемых параметров. Поскольку минимизируемый функционал 

   
 
    

 
   является сложной функцией с множеством локальных минимумов, 

необходимо применение предварительного поиска начальных приближений, 

который можно провести несколькими способами, например вероятностными 

методами (Монте-Карло) [29] или методами  глобального случайного поиска [30],  

имитации отжига [31], применяя генетические алгоритмы [32] и другими. В 

качестве входных параметров нужно задать число точек (для случайного поиска) 

или размер сетки по каждой переменной (для метода сканирования). Можно 

использовать равномерно-распределенные псевдо-случайные числа по каждой из 

координат в пределах границ параллелепипеда. С помощью данных методов 

генерируются последовательности случайных начальных приближений в 

множестве допустимых значений Y.  

 Предполагая, что в результате первого этапа поиска была найдена точка 

со значениями параметров   
 
    

 
    достаточно близкими к глобальному 

минимуму, можно перейти к следующему этапу поиска. Сгенерировав случайные 
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начальные приближения, распределенные в параллелепипеде  , к ним  

применяются методы локальной оптимизации нулевого порядка, такие как 

алгоритм метода GRS (granular radial search) [20], Нелдера-Мида [33], Хука-Дживса 

[34] и другие. Это связано со сложностью вычисления градиента целевой функции, 

что делает применение методов первого порядка и выше затруднительным. 

Вычислительный эксперимент организуют следующим образом. Первоначально 

рассчитывают значения характеристик кристаллической ячейки, таких как 

      , ,   ,    ,   . Далее генерируют  достаточное число  случайных начальных 

приближений, равномерно распределенных в параллелепипеде  . Далее,  в 

параллельном режиме,  к полученным начальным приближениям применяется 

алгоритм локальной оптимизации. Здесь кратко опишем применяемый в настоящей  

работе метод GRS. Алгоритм метода GRS построен следующим образом [20, 22]. 

Из начальной точки выполняется случайный сдвиг по одному из параметров в 

заданном диапазоне g .  Если удается уменьшить значение целевой функции, то 

вновь найденное значение замещает начальное и выполняется новый сдвиг. 

Начальное значение при этом выбирается случайно в параллелепипеде  . Если 

процент «удачных» сдвигов, приведших к уменьшению значения целевой функции, 

становится меньше заданного порога, то уменьшается гранулярность g . Алгоритм 

останавливается или по превышению верхней границы количества итераций, или 

когда гранулярность становится слишком малой. Из найденных локальных 

минимумов дальнейшей обработке подвергаются только те, значение целевой 

функции в которых не превосходит определенной величины (например, в 

большинстве проведенных расчетов использовалось значение     ). Для таких 

точек производится дополнительная численная проверка условия локального 

минимума. Она  состоит в том, что в окрестности заданного радиуса случайным 

образом выбирается некоторое число точек, в которых вычисляется значение 

целевой функции. Если хотя бы в одной из них значение оказывается меньше, чем 

в предполагаемой точке минимума, то проверка считается не пройденной. 

Количество наборов параметров,  для которых вычисляется целевая функция,  

может быть положено равным 1000. Из них выбираются лишь те, на которых 

выполняется условие, например           , таких может быть несколько. 
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          В ходе решения задачи часто возникает необходимость применения 

дополнительных действий, таких как введение в целевую функцию новых 

слагаемых, фиксация значений «проблемных» параметров потенциала на 

априорных значениях, обоснованных с физической точки зрения и т.д., для борьбы 

с неоднозначностью определяемых параметров. Необходимо отметить, что 

описанные выше процедуры проводятся при   определенном, фиксированном 

положении базисных атомов рассматриваемой кристаллической структуры.  

Вследствие этого, мы не можем быть уверены, что решив задачу параметрической 

идентификации в данной постановке, положения базисных атомов будут 

соответствовать минимуму потенциальной  энергии системы. Получив в первом 

приближении набор параметров, минимизирующих функционал, необходимо 

провести процедуру релаксации. 

Релаксация 

Предположим мы определили параметры  потенциала при заданных 

координатах базисных атомов с помощью представленного ранее  алгоритма 

идентификации. Рассчитаем с помощью потенциала с идентифицированными 

таким образом параметрами полную энергию системы, энергию связи 

взаимодействующих атомов     . Используя потенциал взаимодействия с 

идентифицированными на первом этапе параметрами для каждого атома,   

рассчитаем  силы, действующие на него со стороны всех остальных атомов 

системы. В том случае, если атомы для найденных параметров потенциала 

испытывают значительные смещения от требуемых положений равновесия, либо 

свойства материала сильно от них отклонились, необходимо провести вторичный 

фитинг, корректирующий некоторые из полученных параметров. При новых 

(установившихся в процессе релаксации) значениях координат всех атомов следует 

вновь осуществить параметрическую идентификацию потенциала  и потом снова 

произвести релаксацию - и так до сходимости (в среднеквадратичном смысле) к 

эталонным значениям (минимуму целевой функции). Как в кристаллографических, 

так и в квантово-механических расчетах получаем вложенные циклы.  Во 

внутреннем цикле при заданных координатах проводим идентификацию,  а во 

внешнем изменяем координаты путем решения уравнений движения, описанных 
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выше.   Отличие в том, что  при МД-моделировании координаты меняются 

естественным образом, согласно законам динамики частиц.   Как отмечалось ранее, 

методы МД-моделирования позволяют определять координаты и скорости всех 

атомов системы, поэтому процесс релаксации можно провести, используя 

программные комплексы МД-моделирования (LAMMPS, GULP и др. [35,36]). 

 Возможна альтернативная процедура релаксации - оптимизация по 

координатам атомов, расставляющая частицы в положения, соответствующие 

минимуму суммарной потенциальной энергии системы. Это достигается за счет  

уменьшения (увеличения) объема элементарной ячейки, при этом изменяется 

постоянная решетки.  Варьируя его на           относительно   ,  проводят 

расчеты для         , после чего строится кривая Мурнагана [25] и уточняются 

параметры потенциала. Выделяется  набор параметров с помощью которого 

удается достигнуть глобального минимума полной энергии системы           

(когезионной энергии).  

            
 
    

 
       

         
    

 
      

         
    

 
      

         
    

 
 

            
 
      

         
    

 
      

         
    

 
      

         
    

 
                                                                                                                                                                 

(3.13) 

                                                         (3.14) 

 

Здесь по-прежнему проводится оптимизация параметров потенциала. Однако, 

такой подход дает возможность в целевой функции учесть вклады, даваемые 

различными конфигурациями атомов, и позволяет получить усредненное значение 

набора параметров, не требуя при этом построения итерационного процесса.  

Из-за большой трудоемкости задачи определения глобального минимума 

функционала (3.5) при ее решении необходимо применять параллельные расчеты.  

Процесс получения эталонных значений        связан с квантово-механическими 

расчетами на супер-ЭВМ и проводится с применением параллельных 

вычислительных алгоритмов. Применение  современных технологий 

распараллеливания вычислений, в том числе  расширений языка С++ для 

многопоточного программирования, библиотеки MPI, специальных технологий 

программирования  CUDA [37], Open GL [38], Open ACC [39], а также технологий 

грид-систем, позволяет существенно ускорить процесс генерации начальных 

приближений.  Далее  при реализации локальных оптимизационных алгоритмов 
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также применяются технологии распараллеливания, что позволяет существенно 

ускорить процесс определения наборов  параметров потенциала межатомного 

взаимодействия, минимизирующих целевую функцию (3.5). Проведение процесса 

релаксации (3.13) помимо этого связано с проведением серии 

квантовомеханических расчетов на супер-ЭВМ для расчета эталонных значений  

     
         

          
               

         
          

   .  Кроме того, решение оптимизационной 

задачи, связанное с уточнением значений набора параметров потенциала, при 

помощи которого можно рассчитать        и воспроизвести кривую Мурнагана [25] 

также является вычислительно затратным.  

Конструирование «гибких потенциалов» 

При моделировании сложных слоистых структур или многослойных 

полупроводниковых гетероструктур с применением методов молекулярной 

динамики становится необходимым создавать новые гибридные типы потенциалов. 

Построение так называемых «гибких потенциалов» (flexible potential) 

осуществляется путем введения дополнительного параметра, отвечающего за 

«глубину», и весовых коэффициентов для составных частей потенциала, 

отвечающих за тип химической связи и химический состав материала. При этом 

становится возможным точнее воспроизводить химическую связь, межатомные 

расстояния, силы, действующие в сложных соединениях, таких как, например, 

слоистые перовскиты. Такие подходы могут существенно облегчить 

моделирование процессов выращивания многослойных полупроводниковых 

гетероструктур, в которых помимо межслоевых  различий  по химическим 

составам и рассогласованиям решеток до 10-13 % существуют еще и  

внутрислоевые  рассогласования параметров решетки, зависящие от толщины слоя 

и от близости к границам интерфейса моделируемой области многослойной 

структуры. Так, например,  «гибкий потенциал» для моделирования двухслойной 

структуры графита, может быть сформирован по следующей схеме: 

        
         

                                           (3.15) 

    
       

                                              (3.16) 

                                                          (3.17) 

 Здесь     – «гибкий потенциал» межатомного взаимодействия,     
  ,     

   –

весовые функции, зависящие от «глубины»   , характеризующей зону влияния 
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первого или второго слагаемого, входящего в состав потенциала     ,    (thickness) 

- толщина рассматриваемой структуры. При этом,    -потенциал, описывающий 

Ван-дер-Ваальсово взаимодействие, а    -потенциал, описывающий ковалентный 

тип связи. Аналогичный подход может быть применен и для слоистых 

перовскитов.  

В общем случае для МД-моделирования процессов роста многослойных 

полупроводниковых гетероструктур можно воспользоваться следующей формой 

«гибкого потенциала»: 

         
           

             
                                (3.18) 

     
        

            
                               (3.19) 

      . 

Здесь    ,   ,…,   - потенциалы межатомного взаимодействия для 

соответствующих слоев, причем значения параметров потенциалов должны быть 

идентифицированы  под конкретный химический состав слоя. Решение таких задач 

требует большого объема вычислений.  

Теоретико-множественное описание базовой модели-композиции 

«АТОМНЫЙ КЛАСТЕР-СТАТИКА» (   
 ) 

 

Для начала работы вычислительной модели необходимо задать химическую  

формулу исследуемого материала (информация передается из соответствующего 

экземпляра базовой модели – композиции    
 ). Как было показано выше, она  

задается выражением      
    

 
    

 .  

 Исходя из заданной химической формулы, определяется                                                    

химический состав материала, в том числе: 

-  - число различных сортов атомов в хим. формуле      
    

 
    

 ;  

-   - число атомов  -го сорта  в химической формуле  . 

 Кристаллографическая структура  задается  Федоровской группой 

симметрии   , параметрами  решетки, включая постоянные и углы            ,  

первоначальное значение  плотности упаковки    (передается из экземпляра 

базовой модели -композиции    
 ). 

Определяется   - число базисных атомов в конфигурации     , которое может 

отличаться от числа различных атомов, входящих в химическую формулу, то есть 
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    , так как атомы одного вида могут располагаться в неэквивалентных 

позициях: 

-
   
       

  (позиции Уайкова (Wikoff position) для базисных атомов). 

Задаются (из Банка данных): 

-     
   

   
      

  -радиусы  атомов из химической формулы    
    

 
   
 . 

Определяется с помощью квантово-механических расчетов значение полной 

энергии системы      (когезионной  энергии     ) конфигурации     (передается из 

экземпляра базовой модели -композиции    
 ). 

 В соответствии с  типом химической связи моделируемого вещества 

задается       - вид  потенциала межатомного взаимодействия.  

В зависимости от типа химической связи и от валентности  атомов,  

входящих в химическую формулу,  задаются значения их радиусов  ( 
   
 - радиусы 

атомов   -го сорта (всего   различных)). Так при моделировании ионных 

кристаллов  задаются ионные радиусы в зависимости от входящего в химическую 

формулу типа атома и от его координационного числа в конкретном материале. 

При моделировании металлов и их оксидов задают так называемые металлические 

радиусы, в ковалентных кристаллах- ковалентные радиусы  и так далее. 

  Пусть для трехкомпонентного материала  химическая формула задана 

выражением         
    

 
    

 , здесь       могут принимать значения от 1 до 127 

(по числу элементов в ТМ),  =3. Координаты   базисных атомов (их 

первоначальные значения) задаются или  определяются  из модели-композиции 

   
  или     

 : 

               . 

Для трехкомпонентного материала множество данных: 

               

состоит из подмножества входных данных     и множества  выходных данных 

(внутренних характеристик модели)    . 

 Множество входных данных     можно представить как:     

   

                                
      

   
        
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 Множество выходных данных              -  внутренних 

характеристик модели, состоит из: 

- фазовых переменных     - параметров   
 
    

 
  потенциала межатомного 

взаимодействия     ;  

- данных-свойств      , включая: 

1. Конфигурацию базисных атомов    , соответствующую равновесному 

положению системы. Необходимо отметить, что число базисных атомов   

кристаллической структуры в рамках элементарной ячейки, задаваемой 

Федоровской группой симметрии,  зависит от суммы кратностей позиций Уайкова,  

в которых размещаются  данные атомы, входящие в химическую формулу. Для 

случая, когда в химическую формулу входят  3 базисных атома и     , 

конфигурацию     можно задать матрицей 3  : 

   
  

   
 

     
  

   
 

     
  

   
 

        
  

   
 

  
  

   
 

  
  

   
 

  , 

  
  

   
 

     
  

   
 

     
  

   
 

        
  

   
 

  
  

   
 

  
  

   
 

  , 

  
  

   
 

     
  

   
 

     
  

   
 

        
  

   
 

  
  

   
 

  
  

   
 

  . 

 2. Потенциальную  энергию   конфигурации    (рассчитывается по 

соответствующим формулам).   

  Таким образом 

              

                                
      

   
        

      
        

                                 

 Множество методов обработки данных     , состоит из  моделей и 

алгоритмов:   

                                       . 

 Множество моделей      состоит из: 

- статических моделей (применяются для определения свойств), включая:  

1. расчет потенциальной энергии конфигурации исходя из текущих     

позиций атомов и потенциала взаимодействия; 
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2. расчет констант упругости; 

3. расчет других свойств данной атомной конфигурации. 

-динамических моделей, включая: 

          -Изменение параметров потенциала взаимодействия согласно логике 

оптимизационного алгоритма (минимизация функционала). По окончании 

динамического процесса – получатся итоговые оптимальные значения наборов  

параметров   
 
    

 
   ,      потенциала взаимодействия       (см. (3.5)-

(3.7)). 

Множество алгоритмов    , включая универсальные, применяемые на 

разных масштабных уровнях, такие как  методы оптимизации нулевого порядка 

(Нелдера-Мида, GRS, Хука-Дживса, Монте-Карло,…), конечно-разностные 

методы, методы быстрого автоматического дифференцирования  (БАД) для расчета 

производных потенциала, оптимизационные методы первого порядка.   

Множество событий   и их реализаций по процессам:           
      

     
 

, 

       
          

 ,  . …. 

Множество событий    , связанных с началом и окончанием вычислений в  

различных вычислительных процессах в рамках базовой композиции (их число 

зависит, например, от числа l оптимизируемых  параметров гетероструктуры).  

Множество реализаций событий по процессам  определяется для 

экземпляров базовой композиции БК :    
      

     
 

,        
          

 ,.. 

Множество реализаций методов обработки данных     
 =     

     
 

 

определяется для экземпляров БК в соответствии с конкретной задачей. 

3.4.  Численные  алгоритмы  решения задачи МД-моделирования 

 Потенциалы с идентифицированными параметрами используются  в 

процессе  МД-моделирования, в котором местоположение и скорость 

взаимодействующих атомов системы определяется  путем интегрирования системы 

обыкновенных дифференциальных уравнений, и описывается в рамках 

классической динамики: 

  

   
  

             

   

  
   ,                                                       (3.20)  
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здесь             ,    – масса i-го атома.  

 Система (3.20) состоит из     уравнений. Для начала МД-моделирования 

необходимо задать входные данные, а именно координаты и скорости атомов, 

входящих в конфигурацию, соответствующую устойчивому (равновесному) 

положению системы в начальный момент времени     . Как отмечалось ранее, с 

помощью квантово-механических расчетов возможно определить устойчивое  

положение базисных атомов системы, соответствующее  минимуму     . При 

помощи операций симметрии, «размножая» элементарную ячейку с объемом    

рассчитываются координаты «образов» базисных атомов системы, которые 

совместно с исходными атомами образуют начальную конфигурацию атомов. Она 

описывается  матрицей            , размерностью     ,  компоненты которой 

    
 ,           , являются наборами                            трехмерных 

координат базисных атомов, для данной кристаллической структуры, которые в 

начальный момент времени будут иметь вид: 

    
  =      

       
       

          
        

        
   ,              

Зададим начальные условия.  Считаем, что скорости атомов рассматриваемой 

системы     
        

       
        

                 в начальный момент времени  

      определяются соотношениями (3.21).    

  
   

     

  
   , 

  
   

     

  
   , 

  
   

     

  
                                             (3.21) 

здесь    – температура,   –нормально распределенная случайная величина,     – 

постоянная Больцмана. 

Граничные условия при МД-моделировании определяют внешние силы и 

объем пространства (расчетную область), в которой  рассматривается 

динамический процесс. При МД-моделировании структурных свойств или 

перемещения отдельных молекул или кластеров граничные условия не 

применяются в предположении, что их поведение рассматривается в вакууме [3]. 

При моделировании процессов, проходящих в твердых телах, и их свойств 
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применяются  условия периодичности, которые говорят о том, что делать в случае, 

когда атом в ходе перемещений выходит за границу рассматриваемой области. 

Согласно этим условиям, если атом покидает элементарную ячейку с одной 

стороны, то он возвращается  в нее обратно  с противоположной стороны. Более 

подробно вопрос постановки граничных условий при МД-моделировании 

рассмотрен в [3,40].  

 При решении  задачи Коши для системы дифференциальных уравнений 

первого порядка, разрешенных относительно производной, могут применяться 

различные численные методы. Как правило, в молекулярной динамике 

применяются методы решения задачи (3.20), учитывающие специфику 

динамической системы и особенности структуры правой части дифференциальных 

уравнений, входящих в систему. Методы используют тот факт, что в правые части 

уравнений, описывающих изменение импульса частиц, входят только слагаемые, 

зависящие от координат (потенциальное силовое поле), тогда как в правые части 

уравнений, описывающих изменение координат частиц, входят только скорости. 

Подробный обзор численных методов приведен, например, в монографиях 

[3,40,41]. Здесь приведем методы второго порядка, обеспечивающие компромисс 

между точностью и скоростью вычислений.  

Метод Верле 

 Одним из наиболее распространенных подходов к решению задачи (3.20) 

является схема метода Верле [2]: 

  
       

    
      

        
 

 

   
   

   
   

  
     

      
         

Однако и здесь отчетливо прослеживается идея перешагивания.  По сути 

метод Верле эквивалентен методу с перешагиванием и обладает теми же 

свойствами, но отличается организацией вычислительного процесса. 

 

Метод скоростей Верле 

В методе скоростей Верле [2] все координаты, скорости и ускорения частиц 

вычисляются в моменты времени, кратные временному шагу интегрирования   . 
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Сначала обновляются координаты частиц, затем в новых координатах  

рассчитываются ускорения (силы, действующие на частицы), после чего по 

средним за временной интервал значениям ускорений определяются новые 

скорости частиц:  

  
      

     
  

  
 

   
       

 

 

   
   

   
   

  
      

  
  
 

   
        

    
   
   

   
            

  
   
   

   
   . 

Эта численная схема имеет второй порядок точности и представляется 

оптимальной по соотношению точность – производительность. Она обладает 

большим запасом устойчивости по сравнению с предыдущими схемами, т.к. здесь 

присутствует неявный элемент при вычислении скоростей – скорость на новом 

временном слое рассчитывается из ускорения (силы) на новом слое.  

Как уже отмечалось, важным вопросом является выбор шага по времени. С 

одной стороны, он должен быть достаточно большим, чтобы при приемлемых 

вычислительных затратах в расчете воспроизводилось поведение системы на 

значительных временных отрезках, с другой стороны, важна точность расчета, что 

диктует необходимость измельчения временного шага. Следует также учитывать 

ограничения, накладываемые требованием к устойчивости метода. Обычно шаг по 

времени находится методом проб и ошибок. Одна фемтосекунда – типичная 

пробная оценка шага, которую следует скорректировать с учетом начальной 

энергии и типа используемого потенциала. Часто, в физической системе 

выделяется самая высокая частота колебаний      и шаг по времени выбирается 

из условия        . Выбор шага по времени диктуется, таким образом, 

точностью вычисления колебательного движения. Для вычисления      можно 

использовать следующее выражение [3]:        
 

  

  

  
       

   

, где      

минимальное  расстояние между атомами. При моделировании взаимодействия 

атомов с поверхностью временной шаг, как правило, выбирают таким образом, 

чтобы самый быстрый из выбитых атомов за один шаг перемещался не более, чем 

на 5% межатомного расстояния [3] . 
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Необходимо отметить, что при МД-моделировании в расчетах обычно 

задействовано от нескольких тысяч до миллионов атомов. При таком количестве 

атомов даже вычисление расстояния между ними потребует очень большого 

времени, так как число необходимых операций пропорционально квадрату числа 

атомов. Еще большая часть компьютерного времени уходит на вычисление сил 

взаимодействия между ними. Как отмечалось ранее, для ускорения расчета 

расстояния между атомами и  силы      , действующей на i-ый атом в момент 

времени  , равной сумме сил, возникающих в результате взаимодействия с 

остальными N-1 атомами системы и внешними силами, обычно вводят радиус 

усечения    .  В расчетах суммирование производится по всем соседним атомам, 

находящимся внутри сферы радиус которой равен радиусу     [3,40]. Таким 

образом, удается добиться того, что число операций оказывается 

пропорциональным числу атомов рассматриваемой системы. Данный метод 

допускает эффективное распараллеливание при использовании 

многопроцессорных вычислительных систем. Вся область пространства 

разделяется между процессорами, на каждом шаге интегрирования процессор 

проводит вычисление внутри отведенной ему области с захватом граничных ячеек 

[3, 40]. 

Как отмечалось ранее, молекулярная динамика базируется на  законах 

классической механики.  В то же время, не следует  ожидать, что при оптимизации 

параметров потенциала под отдельные процессы, такие двухмасштабные модели 

помогут универсально изучать различные ситуации, которые классической 

механикой просто не описываются. Утверждать, что потенциал будет иметь 

хорошую переносимость и быть универсальным, т.е. может быть использован для 

моделирования широкого класса задач, будет не корректно. Например,  сложности 

могут возникнуть при МД-моделировании процессов на поверхностях 

наноматериалов, в которых роль квантовых эффектов довольно высока.  

При построении двухмасштабных математических моделей,  с помощью 

которых можно изучать различные динамические процессы, например, 

протекающие на поверхности металлов и другие,  связь МД-модели (базовая 

модель-композиция «АТОМНЫЙ КЛАСТЕР - ДИНАМИКА») и квантово-

механической модели (базовая модель-композиция «КВАНТОВО-
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МЕХАНИЧЕСКАЯ ЯЧЕЙКА») осуществляется  за счет передачи глобальных 

параметров  таких как полная  энергия системы     ,  метрические параметры 

кристаллической ячейки [47] и применения потенциалов, параметры которых 

определены с помощью процедуры идентификации (базовая модель-композиция 

«АТОМНЫЙ КЛАСТЕР- СТАТИКА»). 

 

Теоретико-множественное описание базовой модели-композиции 

«АТОМНЫЙ КЛАСТЕР-ДИНАМИКА» (   
 ) 

 

Для рассматриваемого вещества определяется с помощью квантово-механических 

расчетов значение      - полной энергии системы (передается из экземпляра 

базовой модели – композиции    
 ). 

 В соответствии с  типом химической связи моделируемого вещества и 

основными характеристиками кристаллического строения задается: 

- вид  потенциала межатомного взаимодействия     ; 

-набор параметров   
 
    

 
  определяются из модели-композиции    

   (под 

конкретный хим. состав); 

 -первоначальные координаты    
      

   задаются матрицей      и скорости 

атомов     
      

  , получающихся при помощи размножения координат базисных 

атомов; 

-    – масса i-того атома           . 

Множество данных: 

               

состоит из подмножества входных данных     и множества  выходных данных 

(внутренних характеристик модели)    . 

Множество входных данных    : 
 

                                   
          

        
                     

 
      

 
    

 
   
      

    
      

   

 

Множество выходных данных              -  внутренних характеристик 

модели, состоит из: 
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- фазовых переменных     - координаты    атомов системы: 

                    ;  

скорости атомов   ,             конфигурации; 

- данных - свойств     , включая: 

- Потенциальную  энергию   конфигурации    ; 

-Кинетическую энергию конфигурации (температура); 

-Константы упругости; 

- другие характеристики. 

 Таким образом: 

              

                                
          

        
                          

  
      

                                     

Множество методов обработки данных     , состоит из  моделей и алгоритмов:   

                                       . 

 Множество моделей      состоит из: 

- Статических моделей (применяются для определения свойств), включая:  

1. расчет потенциальной энергии конфигурации исходя из текущих     

позиций атомов и потенциала взаимодействия; 

2.  расчет других свойств рассматриваемой системы; 

    - динамической модели, задаваемой уравнениями молекулярной динамики (3.20). 

  Множество алгоритмов    , включая универсальные, применяемые на 

разных масштабных уровнях, такие как  численные методы решения ОДУ (метод 

скоростей Верле и др.),   методы Монте-Карло, конечно-разностные методы,  

методы быстрого автоматического дифференцирования (БАД) для расчета 

производных потенциала.   

Множество событий   и их реализаций по процессам:           
      

     
 

, 

       
          

 ,  . …. 

Множество событий    , связанных с началом и окончанием вычислений в  

различных вычислительных процессах в рамках базовой композиции.  
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Множество реализаций событий по процессам  определяется для 

экземпляров базовой композиции БК:    
      

     
 

,        
         

 ,..        

Множество реализаций методов обработки данных     
 =     

     
 

 

определяется для экземпляров БК в соответствии с конкретной задачей. 

3.5.Дискретно-элементное моделирование больших систем. 

Как уже отмечалось, возможности прямого молекулярно-динамического 

моделирования ограничены вычислительными ресурсами.  При современном 

уровне развития вычислительной техники МД-моделирование позволяет изучать 

поведение систем, состоящих из десятков и сотен миллионов атомов, что примерно 

соответствует нанометровому диапазону размеров (до 1 мкм) [41-45]. Дискретно-

элементное моделирование больших систем может осуществляться путем 

обобщения классического варианта на случай использования в качестве 

дискретных элементов укрупненных частиц, состоящих из кластеров, объединения 

кластеров и т.д. [46,47].  

Применение метода дискретных элементов возможно на различных 

масштабных уровнях. Характерный для данного семейства методов потенциал  

распараллеливания  вычислений предоставляет возможность высокого 

пространственно-временного разрешения за счет наращивания количества 

дискретных элементов до десятков (сотен) миллионов [46,47].  

Основной сложностью применения дискретно-элементных моделей является 

задание адекватных законов межэлементного взаимодействия.    

Одной из первых реализаций метода применительно к двумерным задачам 

является задание механизма взаимодействия путем размещения между элементами 

двух виртуальных пружин (продольная и поперечная) со своими параметрами 

упругости. Таким образом, задаются продольные и сдвиговые напряжения в 

материале в зависимости от деформаций. При этом параметры упругости могут 

быть оценены по макроскопическому отклику материала на характерные 

воздействия.  Метод был реализован в программном продукте PFC-2D (Particle 

Flow Code in 2 Dimensions) [48].  

Другой весьма популярный подход связан с применением концепции 

клеточных автоматов. В основе этого подхода лежит представление материалов как 

совокупности элементов (клеточных автоматов), меняющих свое состояние в 
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дискретные моменты времени по определенным правилам в зависимости от 

состояния данного элемента и его соседей в предшествующий момент времени. 

Эволюция системы автоматов определяется правилами перехода между 

состояниями, что дает альтернативу описанию процессов с использованием 

дифференциальных уравнений. Важным шагом в развитии данного подхода стало 

создание метода подвижных клеточных автоматов [49]. Его основным отличием 

является способность элементов к пространственному перемещению и введение 

понятия состояния к относительному положению пары автоматов. Это позволило 

применить метод к задачам механики разрушения.  

В последнее время все больший интерес вызывают реализации метода 

дискретных элементов, основанные на применении различных потенциалов  

межчастичного взаимодействия [46]. В этом смысле данный подход аналогичен 

молекулярно-динамическому моделированию с той разницей, что возможен 

произвольный выбор масштабного уровня. В работах [50-52] показана 

перспективность применения такого подхода к исследованию откольной прочности 

материалов.  

Для описания больших объемов дискретные элементы должны представлять 

собой объекты более крупного масштабного уровня (мезоуровня). При этом 

важнейшую роль играет задание адекватных законов межэлементного 

взаимодействия.  Для того чтобы начать вычислительный эксперимент, 

необходимо задать начальное состояние системы, состоящей из дискретных 

частиц. Генерация начальных условий является отдельной задачей, так как 

начальное расположение частиц и их скорости могут существенно влиять на 

результаты вычислительного эксперимента. Задание начальных условий 

происходит на трех масштабных уровнях, которые условно можно назвать макро-, 

мезо- и  микроуровни. На макроскопическом уровне задаются внешняя форма 

объектов моделирования и их макроскопические скорости. На мезоуровне задается 

размер частицы (уровень зерна). На микроуровне задается вид упаковки частиц 

(структура материала, уровень кристаллической решетки) и скорости хаотического 

движения (тепловое движение).  

При дискретно-элементном моделировании макрообъектов на границах 

вычислительной области обычно используют периодические граничные условия. 
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Как уже отмечалось, согласно этим условиям, если частица покидает область с 

одной стороны, то она возвращается обратно с противоположной стороны. Такой 

подход позволяет проводить моделирование макроскопической системы с 

меньшими компьютерными затратами и избежать поверхностных эффектов, 

обусловленных конечным размером вычислительной области. В главе 4 

приводится пример решения прикладной задачи с применением дискретно-

элементного подхода. 

Теоретико – множественное описание  базовой композиции  «ДИСКРЕТНО-

ЭЛЕМЕНТНЫЙ КЛАСТЕР» (   
 ) 

 Поскольку дискретно-элементное моделирование во многом аналогично 

молекулярно-динамическому моделированию, теоретико-множественное описание 

базовой модели-композиции «ДИСКРЕТНО-ЭЛЕМЕНТНЫЙ КЛАСТЕР» (   
 )  

почти не отличается от модели «АТОМНЫЙ КЛАСТЕР-ДИНАМИКА». Отличие 

состоит в дополнительном использовании в качестве входных данных отдельных 

макросвойств  материалов, таких как твердость, предел текучести, скорость звука  

и другие. 

Рассматривается ансамбль из N взаимодействующих между собой частиц 

(дискретных элементов). Частицы могут быть как одного, так и различных 

размеров. В последнем случае задается функция распределения частиц по 

размерам. Распределение частиц в пространстве в начальный момент времени 

соответствует плотноупакованной структуре. В качестве такой структуры могут 

выступать известные регулярные решетки (объемно-центрированная, 

гранецентрированная, гексагональная), но возможно и нерегулярное (случайное) 

расположение элементов. Одним из вариантов является отражение реальной 

кристаллографической структуры материала. В этом случае  задание 

плотноупакованной структуры аналогично тому, как это делается в базовых 

композициях «атомный кластер».  

В качестве исходных данных задаются:   - число элементов,         – масса и 

радиус вектор (начальные координаты)   - ого элемента,           ,  начальные 

скорости  частиц    
      

    вид потенциала межэлементного взаимодействия 

    ; набор параметров потенциала   
 
    

 
  или свойства материала, исходя из 

которых определяются параметры потенциала, например, твердость материала H в 
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задаче высокоскоростного внедрения, параметры, определяющие конкретную 

задачу.  Отметим, что при наличии нескольких сортов дискретных элементов в 

системе, вид потенциалов взаимодействия может быть различным для элементов 

разного сорта. В этом случае задается набор потенциалов со своими группами 

параметров, а также методы описания взаимодействия между разносортными 

элементами.  

 Множество данных: 

               

состоит из подмножества входных данных     и множества выходных данных 

(внутренних характеристик модели)    . 

Множество входных данных    : 

  
                 

      
    

      
          

 
    

 
    

 

 Множество выходных данных              -  внутренних характеристик 

модели состоит из:  

- фазовых переменных   , включающих  координаты и скорости    атомов 

системы:                       ;  

- данных - свойств      , включающих потенциальную энергию   конфигурации, 

макросвойства системы, получаемые с помощью статистической обработки 

информации о дискретных элементах, характеристики исследуемого процесса, 

такие как, например, глубина проникания в задаче высокоскоростного внедрения. 

 Таким образом, 

              

              
      

    
      

          
 
    

 
                      

 Множество методов обработки данных      состоит из  моделей и 

алгоритмов:   

                                       .  

 Множество моделей      состоит из: 

- статических моделей, применяемых для расчета свойств системы, сил, 

действующих на дискретные элементы, 

-динамических моделей, включающих систему уравнений динамики дискретных 

элементов. 
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 Множество алгоритмов    , состоит из универсальных алгоритмов 

использующихся  на нескольких масштабных уровнях, включая: 

- численные методы решения систем ОДУ, такие как метод скоростей Верле, 

статистические методы обработки данных. 

Множество событий и их реализаций по процессам:           
      

     
 

, 

       
         

 , …. 

Множество событий    , связанных с началом и окончанием вычислений в  

различных вычислительных процессах в рамках базовой композиции.  

Множество реализаций событий по процессам  определяется для 

экземпляров базовой композиции БК :    
      

     
 

,        
         

 ,.. 

Множество реализаций методов обработки данных     
 =     

     
 

 

определяется для экземпляров БК в соответствии с конкретной задачей.                             

3.6  Методы статистического моделирования  

  Как отмечалось ранее, молекулярная динамика позволяет моделировать 

системы на временных масштабах порядка фемто-наносекунд. Время проведения 

лабораторных экспериментов измеряется в  секундах, минутах и часах. 

Статистические методы, включая кинетические методы Монте-Карло [1,53,54], 

отнесенные согласно классификации, принятой в данной работе, к четвертому 

уровню (мезомасштаб), дают возможность  адекватно моделировать динамические 

процессы, протекающие в наносистемах.  Кроме того, их  применяют для 

согласования  процессов,  происходящих на различных пространственных (по 

числу атомов) и временных масштабах.     

Методы Монте-Карло - это численные методы решения задач, использующие  

моделирование случайных величин [55]. Этим они принципиально отличаются от 

детерминистких методов, к которым относится молекулярная динамика. В физике 

конденсированного состояния методы Монте-Карло применяются для изучения 

решеточных моделей, позволяющих моделировать перколяцию, магнетизм (модель 

Изинга, модель Поттса [56]), рассчитывать коэффициент диффузии горячих 

электронов в полупроводниках [55].  Сегодня, кинетический метод Монте-Карло 

находит широкое применение для моделирования динамики наносистем, в 

частности для изучения диффузионных процессов на поверхности металлов [54], 

для моделирования процессов роста полупроводниковых гетероструктур [57]  и 
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моделировании процессов формирования собственных радиационных дефектов 

[58]. В качестве входных данных в этих методах используются значения 

активационных барьеров различных процессов, получаемых в ходе молекулярно-

динамических расчетов, либо результаты квантово-механических расчетов. При 

этом для получения требуемой точности нужно довольно большое (10
2
…10

4
) число 

реализаций [54]. 

При моделировании канонического ансамбля (NVT)- статического ансамбля, 

отвечающего системе, которая обменивается с окружающей средой энергией 

(термостатом), но не веществом (число частиц неизменно), сохраняя при этом 

постоянную температуру [3], применяется  алгоритм Метрополиса [59]. В связи с 

тем, что при постоянной температуре энергия не сохраняется, в схему 

моделирования обычно вводят флуктуации в      . Изотермо-изобарический 

ансамбль (NPT)- статистический ансамбль, отвечающий cистеме частиц, в которой 

поддерживается постоянное внешнее давление, а также обменивающейся энергией 

с термостатом и находящейся с ним в тепловом равновесии. При этом число частиц 

в системе считается постоянным, а объём может флуктуировать. 

Для моделирования методом Монте-Карло микроканонического (NVE) 

ансамбля - статического ансамбля макроскопической изолированной системы 

частиц, термодинамическое состояние которой характеризуется постоянными 

значениями энергии, числа частиц  и объемом, используется алгоритм Кройца [60].  

Необходимо отметить, что термодинамические параметры, вычисленные на 

основе расчета микроканонического ансамбля, при достаточно большом числе 

частиц мало отличаются от таковых для NVT или NPT ансамблей. 

В заключение раздела отметим, что в  связи с большой трудоемкостью и 

многогранностью методов вычислительного моделирования наносистем, за 

последние десятилетия были созданы многочисленные пакеты прикладных 

программ [61,62], среди которых TRIM, GAUSSIAN, GAMESS, MOPAC, 

HyperChem,  Accelrys Materials Studio, SIESTA, Materials Explorer, NANOLAB II, 

VASP, ABINIT, GULP, LAMMPS, и другие,  в которых реализованы многие из 

перечисленных выше методов. 

 

https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B0%D0%BD%D1%81%D0%B0%D0%BC%D0%B1%D0%BB%D1%8C
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  3.7 Задачи молекулярно-динамического моделирования эволюционных 

процессов 

 В данном разделе приведены результаты идентификации параметров 

потенциалов межатомного взаимодействия  одно- и двухкомпонентных 

материалов. Представлены результаты, полученные при изучении процессов 

формирования кластеров точечных дефектов в кремнии. Кроме того, приведены 

данные по изучению начальных этапов процесса нитридизации  Si, полученные с 

помощью молекулярно-динамического подхода. Показано, что применение в ходе 

МД-моделирования потенциалов, учитывающих тип химической связи  с 

идентифицированными параметрами, позволяет получить результаты, 

согласующиеся с данными квантовомеханических расчетов.  

 3.7.1  МД-моделирование процессов формирования кластеров точечных 

дефектов  

Механизм изменения и роста кластеров точечных дефектов в расширенные 

{113} дефекты является одним из важных и недостаточно изученных вопросов, 

возникающих в процессе ионной имплантации тяжёлых элементов в 

кристаллический кремний. На сегодняшний день получены экспериментальные 

данные о возможных типах кластеров точечных дефектов в кремнии [63-65]. Кроме 

того, проведено множество теоретических исследований их стабильности, 

трансформации во времени, в том числе при изменении температуры. При этом 

применяют различные подходы. Так, в работах [66,67] теоретическое исследование 

точечных дефектов в кремнии, в том числе расчеты энергии формирования, 

проводили с применением первопринципных расчетов на базе теории функционала 

плотности [27, 28]. В работе [68] процесс миграции точечных дефектов в кремнии 

рассмотрен с применением методов молекулярной динамики в приближении 

сильной связи (tight-binding molecular dynamics (TBMD) simulation method). В 

работах [69,70] были представлены результаты экспериментального исследования, 

проведенного методом просвечивающей электронной микроскопии (ПЭМ) 

высокого разрешения,  отмечено наличие  сложных самоорганизованных 

дефектных структур. Согласно полученным данным,   они сформировались  в 

кристаллическом кремнии  в процессе ионной имплантации атомов Er (с энергией 2 

МэВ при температуре 600 С).   На основании данных ПЭМ и расчётов полученных 
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с использованием программного пакета HyperChem,   было показано [69,70],   что 

данные дефектные структуры представляют собой объединение двух 

расщеплённых межузельных атомов и дивакансии, выстроенных в цепочку в 

плоскости {113}. Первое прямое наблюдение подобной упорядоченной структуры 

дефектных комплексов описано в работах [69,70]. Теоретическое исследование 

причин образования сложных дефектных структур-кластеров точечных дефектов в 

кремнии- и их трансформации во времени является сложной и актуальной задачей. 

В статье  [23] предложен один из возможных подходов к ее решению и 

представлены результаты математического моделирования кластеров точечных 

дефектов в кремнии. Молекулярно-динамическое моделирование кластеров 

точечных дефектов в кремнии выполнялось с применением 

многопараметрического потенциала Терсоффа. Было проведено моделирование 

идеальной структуры кремния, а также структур кремния с различными точечными 

дефектами.  

 Моделирование кластеров точечных дефектов в кремнии 

 Для расчетов упорядоченных кластерных конфигураций вакансий и 

межузельных атомов в  Si применялся многомасштабный подход [23]. Было 

выделено два масштабных уровня (не считая нулевого) - атомно-кристаллический 

и молекулярно-динамический. В рамках теоретико-множественных представлений 

его можно представить с помощью  многомасштабной композиции       

        
                      

        
    

 , 

в которой задействованы следующие экземпляры  базовых моделей-композиций: 

     
        

      
       

    ; 
 

    
        

      
       

    ; 

    
        

      
       

    ;
 

    
        

      
       

    ; 

    
        

      
       

    . 
 

 На рис. 3.7.1 представлена структура многомасштабной композиции для 

расчета  упорядоченных кластерных конфигураций вакансий и межузельных 

атомов в  Si. Указаны экземпляры базовых композиций  и последовательность их 

использования в вычислительном процессе. 
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Рис.3.7.1Многомасштабная композиция для расчета дефектов в Si. 

 

На первом уровне использовались данные по химическому составу и 

атомно-кристаллической структуре Si (структура алмаза), полученные с помощью 

базовой композиции    
  («КРИСТАЛЛОХИМИЧЕСКАЯ ФОРМУЛА»).  Далее 

они использовались в качестве входных данных в  базовой композиции 

   
 («КВАНТОВО-МЕХАНИЧЕСКАЯ ЯЧЕЙКА») при проведении 

первопринципных расчетов в рамках теории функционала электронной плотности с 

использованием программного комплекса VASP [72]. При первопринципном 

моделировании структуры идеального кремния использовали периодическую 

ячейку, состоящую из 64 атомов, размерностью (2 × 2 × 2). Уточнялись атомно-

кристаллическая и электронная структура кремния с дефектами, вычислялась     . 

Для расчетов были задействованы вычислительные ресурсы Межведомственного 

суперкомпьютерного центра РАН и МГУ им. М. В. Ломоносова.  

 На втором масштабном уровне изучались вопросы  изменения во времени 

структуры кремния с дефектами  и с дефектными кластерами. Применялась 

композиция вычислительных моделей, состоящая из базовых композиций    
   

(«АТОМНЫЙ КЛАСТЕР–СТАТИКА»)  и     
  («АТОМНЫЙ КЛАСТЕР – 

ДИНАМИКА»).   Причем, при формировании  входных данных в       
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использовались результаты первопринципных расчетов, полученные с помощью 

базовой композиции    
 . Они использовались как эталонные.  В качестве 

глобального параметра, передающегося с первого масштаба на второй, выступала 

когезионная энергия системы      . 

  Для кремния в качестве потенциала межатомного взаимодействия был 

выбран многочастичный потенциал Терсоффа [8-10], хорошо зарекомендовавший 

себя при решении задач моделирования соединений с ковалентными связями. В 

качестве эталонных значений  были выбраны значения параметров из работы [20]: 

0.42)- 14.25, 113031, 1.46, ,101.25 0.94, 1.48, 1.46, 2.34, (2.36, -6r  

 

Область допустимых значений параметров задавалась  параллелепипедом  из [20]: 

}:{],[ iii

n xRХ          

10)- 0.1, ,10000,10*1  ,10*5 0.1, ,10*5 0.5, 0.5, (0.5, -2-8-8 ,  

)10 50, 200000, 10, 1, 5, 5, 10, 5, 5,( . 

 Начальные приближения выбирались из данной области случайным образом, 

с применением метода Монте-Карло.  

В результате работы двух алгоритмов были получены  200 наборов  

параметров методом Хука-Дживса и 200 наборов параметров методом Granular 

Random Search (GRS). Для  полученных  400 наборов параметров значения целевой 

функции  не превосходило 0.00001.  В табл. 3.7.1 представлены несколько наборов 

идентифицированных параметров потенциала Терсоффа для кремния, полученных 

с использованием программы  [73], в которой реализован алгоритм GRS.  В 

качестве эталонного принималось    значение                эВ (см.[71]), 

полученное в ходе первопринципного моделирования на VASP [72].          

             

          Таблица 3.7.1 

 

 

№ 

n/n 

Iterat

ions e
D  S       c  d  n        

1 1000 2,3725 0,0342 1,5279 2,3380 7497,679 20,3588 1,07506 0,5849 1,41E-
05 

0,3947 

2 2000 2,3725 1,4895 1,4607 2,3436 113068,4 14,2479 0,93885 0,2431 1,25E-
06 

0,1475 

3 2000 2,3726 0,0333 1,5291 2,3381 5088,643 32,5942 0,88495 1,6882 9,38E-
06 

0,4037 

4 1000 2,3726 1,4891 1,4608 2,3435 113033,3 14,247 0,93886 0,4235 1,25E-
06 

0,0957 
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Цветом выделены параметры, которые использовались при МД-

моделировании. Описание параметров, приведенных в табл.3.7.1 представлено в 

Приложении к Главе 3. 

 На рис.3.7.2 и рис. 3.7.3 представлены отклонения рассчитанных значений 

параметров потенциала Терсоффа от эталонных в процентах для метода Хука-

Дживса и для метода Granular Random Search(GRS). Можно увидеть, что метод 

GRS дает лучшие результаты. 

 

        Рис. 3.7.2 Метод Хука Дживса                          Рис. 3.7.3 Метод GRS 

                  (рис. из статьи [71])                                    (рис. из статьи [71]) 

     

Аналогичные расчеты были проведены в ходе  параметрической 

идентификации параметров потенциала Бреннера-Терсоффа  для структуры 

кремния с применением программного кода  [73]. В табл. 3.7.2 представлены два 

набора идентифицированных параметров потенциала Бреннера-Терсоффа  для Si, 

рассчитанных при   значении                эВ (см.[71]), полученном в ходе 

первопринципного моделирования на VASP[72].  

Таблица 3.7.2 

№ 

n/n 
e

D       S  n      c  d    

1 2,3704 2,3432 1,2452 1.4934 0.9411 1.2013 1.0345 11393.25 14,2382 -0.4186 

2 2,3730 2,33641 1,2421 1.4900 0.9426 1.2164 2.4225 113453.7 14.2787 -0,4221 

 

Описание параметров, приведенных в табл.3.7.2 представлено в Приложении 

к Главе 3. Первоначально проводилось МД-моделирование идеального 

монокристалла кремния в структуре алмаза с помощью потенциала Терсоффа с 

оптимально подобранными параметрами, полученными в ходе процедур 
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параметрической идентификации и релаксации системы.  В результате удалось 

воспроизвести данную структуру, она сохраняла стабильность в течении 100000 

временных шагов.  Результаты МД-моделирования совпали с данными 

первопринципных расчетов, полученных программным комплексом VASP [72].  

Кроме того, удалось воспроизвести разрушение структуры кремния при 

повышении температуры системы до температуры плавления. Далее проводилось 

МД-моделирование структуры кремния с дефектами (вакансией,  примесным 

атомом замещения, внедрения, дивакансией и т.д.). Использовались периодические 

ячейки, содержащие 8 атомов, размерностью (1×1×1), и 64 атома, размерностью 

(2×2×2).   

На рис.3.7.4-рис.3.7.5 показаны результаты МД-моделирования кремния с 

дефектами, визуализированные с помощью оригинального программного модуля 

[74], позволяющего выполнять анимацию и рассматривать изменение различных 

дефектов и дефектных кластеров во времени и при  изменениях температуры. 

 

  

Рис. 3.7.4  Дивакансия([23]) 

 

Рис. 3.7.5 Примесный атом 

замещения([23]) 

 

            Поскольку полученные конфигурации в расчёте оказались стабильными и 

не разрушились с течением времени, на основании полученных данных был сделан 

вывод о том, что подобные дефектные структуры являются метастабильными, что 

в свою очередь подтверждается первопринципными расчетами. 
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3.7.2 Молекулярно-динамическое моделирование начальных этапов  

процесса нитридизации поверхности Si(111) в атмосфере NH3 

 Для МД-моделирования процесса взаимодействия кластера  аммиака NH3 с 

поверхностью Si применялся многомасштабный подход. Было выделено два 

масштабных уровня (не считая нулевого уровня) – атомно-кристаллический и 

молекулярно-динамический. В работе многомасштабной композиции  

       
                      

        
         

были задействованы следующие экземпляры  базовых моделей-композиций: 
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На рис. 3.7.6 представлена структура многомасштабной композиции для МД-

моделирования начальных этапов  процесса нитридизации поверхности Si(111) в 

атмосфере NH3. Указаны экземпляры базовых композиций  и последовательность 

их использования в вычислительном процессе. 
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Рис. 3.7.6 Многомасштабная композиция для МД-моделирования начальных этапов  

процесса нитридизации поверхности Si(111) в атмосфере NH3 

 

В работе [71] проведено молекулярно-динамическое (МД) моделирование 

процесса осаждения одиночной молекулы аммиака на поверхность (111) кремния. 

Для решения поставленной задачи применялась процедура параметрической 

идентификации потенциалов межатомного взаимодействия для описываемой 

системы атомов. Для  проведения МД-расчетов в рамках данной работы  было 

разработано программное обеспечение, позволяющее осуществлять оптимизацию 

геометрии исследуемых структур, а также визуализировать получаемые 

результаты.   

 Для верификации результатов МД-моделирования проводились квантово-

механические расчеты  на высокопроизводительных вычислительных ресурсах 

МСЦ РАН. Расчеты показали, что полученные в результате оптимизационных 

процедур значения параметров потенциалов межатомного взаимодействия, 

позволяют строить потенциалы,   пригодные для использования в дальнейших 

расчетах по моделированию процесса адсорбции молекулы аммиака на 
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поверхности кремния. В частности, с их помощью  корректно воспроизводятся 

 результаты первопринципного моделирования взаимодействия адатома азота с 

поверхностью кремния и  энергетика процесса адсорбции. Кроме того, с помощью 

 потенциала Терсоффа со значениями параметров, полученными в результате 

параметрической идентификации, удалось   смоделировать  положение с 

наименьшей полной энергией, соответствующее наиболее энергетически 

предпочтительному размещению адатома азота при адсорбции.  

Прежде всего, была  проведена параметрическая идентификация потенциалов, 

выбранных для описания межатомного взаимодействия в рамках молекулярно-

динамических расчетов. В качестве систем, структурные и энергетические свойства 

которых использовались при определении параметров потенциалов, были выбраны 

молекула NH3 и монокристалл кремния. Эталонные значения указанных свойств, 

использовавшиеся в записи целевой функции, минимизируемой в процессе 

параметрической идентификации, были получены в результате первопринципных 

расчетов в рамках теории функционала плотности. Выбранные после процесса 

идентификации с применением базовой композиции    
  параметры потенциалов 

для каждой из атомных систем приведены в табл.  3.7.3 и табл. 3.7.4 . 

          Таблица 3.7.3 

Параметры потенциала Леннарда-Джонса для молекулы 

аммиака (   ) 

                    

1.65 *       1.65 *       7.4 *      3.4 *      

        

          Таблица 3.7.4  

Параметры потенциала Терсоффа для кремния (Si) 

                         

2.367 2.3283 1.2629 0.0124 2.6353 5.86  10
-6 1.202 112974 14.281 0.7220 2.367 

 

В ходе моделирования процесса адсорбции аммиака на поверхности кремния  

была построена кристаллическая решетка кремния. Расчетная ячейка состояла из 

415 атомов. Поверхность моделировалась путем удаления части атомных слоев из 

ячейки. Таким образом,   атомы на верхней и на нижней поверхностях ячейки 
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оказались разделены слоем вакуума. Значение температуры, при которой 

осуществлялся численный эксперимент, было выбрано равным 273К.  

Прежде всего была проведена релаксация межатомных расстояний в двух 

исследуемых структурах: кристаллической решетке кремния и молекуле NH3 

(рис.3.7.7).  Значение постоянной решетки кремния составило 0,54 нм, что близко к 

известным экспериментальным данным. Для молекулы аммиака были рассчитаны 

расстояния между  атомами азота и водорода - 0,09 нм, а также между атомами 

водорода - 0,15 нм. Углы между атомами составили 107 градусов, это согласуются 

с известными из литературных источников данными. 

        

                 а)                              б)       

 

Рис.3.7.7 а) Ячейка кремния, б) молекула аммиака  [71] 

 

 С целью параметрической идентификации потенциала для описания 

молекулы аммиака на поверхности кремния прежде всего были проведены расчеты 

из первых принципов энергии адсорбции одиночного атома азота в различных 

высокосимметричных позициях на поверхности кремния (111). Полные энергии 

систем, полученные в этих расчетах, использовались в качестве эталонных 

значений при записи целевой функции. В результате был получен набор 

параметров потенциала, удовлетворяющий минимуму целевой функции (табл.3.7.5, 

табл.3.7.6 ([71])). Молекулярно-динамические расчеты атомов азота в тех же 

позициях адсорбции на поверхности кремния продемонстрировали, что 

полученный потенциал корректно описывает результаты первопринципного 

моделирования взаимодействия адатома азота с поверхностью кремния и 

воспроизводит энергетику процесса адсорбции. В частности, положение с 

наименьшей полной энергией, соответствующее наиболее энергетически 

предпочтительному размещению адатома азота при адсорбции удалось 
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воспроизвести с помощью полученного потенциала. Таким образом, полученный 

потенциал пригоден для использования в дальнейших расчетах с целью 

моделирования адсорбции молекулы аммиака на поверхности кремния.   

            

           Таблица 3.7.5 

 

          Таблица 3.7.6 

Параметры потенциала Терсоффа для системы Si-N (продолжение Табл.3.7.5) 

  Si-N   Si-Si   Si-N   Si-Si   Si-Si-N   Si-Si-Si   Si-Si-N   Si-Si-Si   Si-N   Si-Si 

0.000003129 0.000001246 1.4652 1.4598 31193.63 80322.595
 

16.3541 28.8887 -1.2756 -0.423876 

С использованием полученного потенциала были проведены предварительные 

расчеты, моделирующие поведение молекулы аммиака на поверхности Si(111). 

Молекула аммиака размещалась над поверхностью кремния  в середине 

вакуумного слоя. Молекуле придавалась начальная скорость, направленная  

перпендикулярно к поверхности подложки (см. рис.3.7.8).  

 

Рис.3.7.8 Изображение исследуемой ячейки. Молекула аммиака  

расположена над поверхностью кремния (111)(рис. из статьи [71]) 

 

Параметры потенциала Терсоффа для системы Si-N 

   Si    N   Si   N   Si   N    Si-N    Si-Si   Si-N   Si-Si 

2.2646 1.8293 1.1894 1.6704 11.94 1.0001 0.9004 2.8178 0.7902 0.8996
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При достижении поверхности молекула аммиака начинает диссоциировать. При 

этом атом азота адсорбируется на поверхности кремния, атомы водорода покидают 

поверхность. Данный предварительный результат согласуется с ожидаемым 

поведением азота на поверхности, поскольку адсорбция атомов азота должна 

предшествовать образованию нитридного соединения в поверхностном слое 

подложки [71]. Такой подход согласуется с данными, приводимыми в работе [75]. 

В дальнейшем для усовершенствования модели и более полного описания первых 

этапов процесса нитридизации планируется, во-первых, провести определение 

параметров потенциалов Терсоффа для описания всех взаимодействующих 

компонент (Si, N, H), во-вторых, увеличить концентрации молекул аммиака в 

системе. 

Следует отметить, что разработанное в рамках данной работы программное 

обеспечение [71] позволяет визуализировать каждый расчетный шаг, таким 

образом формируется фильм, демонстрирующий динамику описываемых 

процессов. 

3.7.3 Определение  оптимальных параметров  потенциала для модели Rosato-

Guillope-Legrand (RGL) по экспериментальным данным и результатам 

квантово-механических расчетов 

Рассмотрим задачу параметрической идентификации потенциала  Rosato-

Guillope-Legrand (RGL) [6,7,76], применяемого при МД-моделировании  

устойчивой системы         , где     - металлы,       - поверхность металла 

 .  

Полная  энергия  системы атомов моделируемого материала в рамках МД-

подхода рассчитывается по формуле [1]: 

     
 

 
     

 

   

 

   

   
 

 
       

 

   

 

   

    

    

здесь суммируются значения энергии взаимодействующих пар атомов 

рассматриваемой системы.  Для потенциала RGL: 
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здесь      -  полная энергия системы,   
      и   

      - потенциалы отвечающие за 

энергию отталкивания и притяжения i-того атома, которые рассчитываются 

согласно приведенным формулам,       расстояние между i-м и j- м атомами,  

 
 
   

 ,  
 
   

 ,  
 
   

 
  
 
                 

 - параметры потенциалов, 

которые зависят от того какие пары атомов взаимодействуют и одного или разного 

они сорта (     . Как отмечалось  ранее вектор идентифицируемых параметров, 

зависит от  вида потенциала (в нашем случае RGL) и от числа различных видов 

атомов в рассматриваемой системе. В данном случае, нами рассматривается 

система, состоящая из 2-х видов атомов,  поэтому вектор включает 18 параметров, 

специфичных для моделируемого кристалла (для однокомпонентного соединения 

число идентифицируемых параметров потенциала RGL равно 6). Расчеты полной 

энергии проводятся для кристаллической решетки размером 3×3×3 в единицах 

элементарной ячейки ГЦК. Все расчеты проводятся без релаксации атомных 

позиций. Атомы располагаются в узлах идеальной ГЦК-решетки.  

Определим  вектор  параметров потенциала RGL     
 
    

 
   ,     , здесь 

     , на котором достигается минимум функционала (3.22). Для решения задачи 

идентификации, необходимо: 

               
 
   

           
 

   
    

           
 

   
      

           
 

   
                                                                                             

(3.22) 

   
 
     . 

Рассмотрим случай, когда     . 
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Минимизируемый функционал имеет следующий вид: 

       
       

   
   

          
 

   
    

      
 

   
     

     
       

    
 

    
    

       

   .                                                                                                                                                      

Для решения поставленной задачи, необходимо найти:                . 

Так как мы рассматриваем систему, состоящую из 2-х видов атомов, в данном 

случае вектор     
 
    

 
  состоит из 18 параметров и имеет следующий вид: 

  

    
 ,    

     
     

     
     

 ,   
  ,  

     
      ,            ,                   ). 

 Значения характеристик–                                    

                                         
             

  ,  рассчитываются 

согласно известным формулам, с использованием значений полных энергий, 

полученных с помощью потенциала RGL с идентифицируемыми параметрами. 

 Здесь:  

1.   -постоянная гранецентрированной кубической решетки металла. Для ее 

расчета используется формула        , здесь   - расстояние до ближайшего 

соседа. Радиус усечения    определяется с учетом  , позволяет определить 

число атомов, взаимодействие между которыми  необходимо учесть в 

расчетах.  

           

   - равновесный объем, определяется по формуле. 

                , 

Здесь          -количество ячеек, участвующих в расчетах по       

2.      - когезионная энергия системы, отнесенная к числу атомов 

моделируемой совокупности атомов (удельная энергия) 
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здесь   – количество атомов в рассматриваемой системе (для ГЦК ячейки 

              ). 

3.   -модуль объемной упругости (всестороннего растяжения/сжатия) 

  
 

   

    
   

  

может быть вычислен с помощью  Etot.   Для вычисления этого параметра 

используется матрица деформации, которая имеет вид:   

   
     
     
     

 ; 

                      – константы упругости, вычисляются согласно формулам: 

    
 

  

 
      
   

 
      
   

 

 
 

    
 

  

 
      
   

 
      
   

 

 
 

    
 

  

      
   

 

Для вычисления этих параметров были использованы матрицы деформации, 

которые имеют следующий вид: 

      
     
     
   

  

      
     
     
   

  

      

   
   

  
 

    

 ; 

7.      - энергия растворимости примеси рода А  в кристалле рода В: 

      
          

      
 , 

 здесь: 

    – полная энергия кристаллической решетки В с примесью 

замещения А; 
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   – полная энергия кристаллической решетки В; 

    
  – когезионная энергия А; 

    
  – когезионная энергия В. 

 8.     
   – энергия связи димера А  в поверхностном слое В: 

              
                                           

          – полная энергия структуры поверхности с димером А  в 

верхнем слое; 

             – полная энергия структуры поверхности с одним 

атомом А в верхнем слое; 

      – полная энергия структуры поверхности; 

9.     
   – энергия связи димера А на поверхности В: 

               
                                           

          – полная энергия структуры поверхности с димером А  над 

верхним слоем; 

             – полная энергия структуры поверхности с одним 

атомом А над верхним слоем; 

      – полная энергия структуры поверхности. 

         Эталонные значения берутся из таблиц (экспериментальные данные) 

(                      и из квантовомеханических расчетов (                
         

   ). 

Поскольку характерные значения идентифицируемых параметров сильно 

различаются, для обеспечения эффективной работы алгоритма необходимо 

провести масштабирование, которое получается делением квадрата разности 

рассчитываемого и эталонного  значения  на квадрат соответствующего эталонного 

значения. 

Решение ищется на  множестве Х, состоящем из  всех допустимых значений 

искомых параметров, где      
 
    

  
    – вектор подбираемых параметров 

для рассматриваемого случая. 

 Параллелепипед                        
 
           для 

определения начальных приближений выбирается таким образом, чтобы заведомо 

содержать возможные значения параметров. Поскольку минимизируемый 

функционал    
 
    

 
   является сложной функцией с множеством локальных 
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минимумов, необходимо применение предварительного поиска начальной точки, 

который можно провести несколькими способами. 

     Для решения поставленной задачи  на начальном этапе необходимо 

определить  допустимые интервалы поиска параметров потенциала:    
 
  
 
 ,  

          , здесь    - общее число идентифицируемых параметров. Это можно сделать 

различными способами. Для нахождения точки со значениями параметров 

  
 
    

 
 , достаточно близкими к глобальному минимуму, используются методы 

глобальной оптимизации, такие как метод Монте-Карло, метод сканирования, 

имитации отжига и т.д. Далее, найденная  точка используется в качестве начальной 

для более точного поиска локального минимума, например, методом градиентного 

спуска с адаптивным выбором шага, GRS [20], Нелдера – Мида и других.  

Для решения задачи МД-моделирования устойчивой системы         , где 

    - металлы,        - поверхность металла   с применением потенциала RGL 

может быть использована многомасштабная композиция, представленная на рис. 

3.7.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Рис. 3.7.9 Многомасштабная композиция для задачи МД-моделирования устойчивой 

системы          
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3.8 Основные выводы  

  Разработаны методы и средства информационной поддержки решения задач  

молекулярно-динамического моделирования и параметрической идентификации 

потенциалов межатомного взаимодействия.  

 Разработана схема построения «гибких потенциалов», позволяющая 

создавать новые гибридные типы потенциалов межатомного взаимодействия, 

необходимые для МД-моделировании сложных слоистых структур, многослойных 

полупроводниковых гетероструктур и процессов их роста в случаях, когда 

применение известных потенциалов межатомного взаимодействия не дает 

адекватных результатов.  

  Разработана многомасштабная композиция и  решена задача моделирования 

кристаллической структуры Si с точечными и отдельными протяженными 

дефектами, включая    расчет  упорядоченных кластерных конфигураций вакансий 

и межузельных атомов в  Si. Представлены результаты расчетов конфигураций. 

 Разработана многомасштабная композиция и на ее основе решена задача  

МД-моделирования начальных этапов  процесса нитридизации поверхности Si(111) 

в атмосфере NH3. Представлены результаты параметрического анализа потенциала 

Леннарда-Джонса молекулы аммиака, потенциала Терсоффа применительно к 

однокомпонентным кристаллам с ковалентным типом химической связи, для 

поверхности Si и структур SiN. 

 Разработана многомасштабная композиция и на ее основе решена задача  для 

МД-моделирования устойчивой системы          с помощью потенциала RGL.  
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Приложение к ГЛАВЕ 3 

Обозначение переменных, используемых в формулах и табл. 3.7.1-3.7.6. 

De – параметр потенциала Терсоффа, Бреннера-Терсоффа (еВ);  

De Si  – параметр потенциала Терсоффа, (еВ); 

De N  – параметр потенциала Терсоффа, (еВ); 

γ – параметр потенциала Терсоффа, Бреннера-Терсоффа  (безразмерный); 

γ Si-N – параметр потенциала Терсоффа, (безразмерный); 

γ Si-Si – параметр потенциала Терсоффа, (безразмерный); 

Re – параметр потенциала Терсоффа, Бреннера-Терсоффа (Å); 

Re Si-N – параметр потенциала Терсоффа, (Å); 

Re Si-Si – параметр потенциала Терсоффа, (Å); 

λ – параметр потенциала Терсоффа, Бреннера-Терсоффа (Å); 

λ Si-N – параметр потенциала Терсоффа, (Å); 

λ Si-Si– параметр потенциала Терсоффа, (Å); 

β – параметр потенциала Терсоффа, Бреннера-Терсоффа (Å); 

β Si – параметр потенциала Терсоффа, (Å); 

β N – параметр потенциала Терсоффа, (Å); 

c – параметр потенциала Терсоффа, Бреннера-Терсоффа (безразмерный); 

c Si-Si-N – параметр потенциала Терсоффа, (безразмерный); 

c Si-Si-Si – параметр потенциала Терсоффа, (безразмерный); 

S – параметр потенциала Терсоффа, Бреннера-Терсоффа (безразмерный); 

S Si – параметр потенциала Терсоффа, (безразмерный); 

S N – параметр потенциала Терсоффа, (безразмерный); 

d – параметр потенциала Терсоффа, (безразмерный); 

d Si-Si-N – параметр потенциала Терсоффа, (безразмерный); 

d Si-Si-Si – параметр потенциала Терсоффа, (безразмерный); 

n – параметр потенциала Терсоффа, Бреннера-Терсоффа (безразмерный); 

n Si-N – параметр потенциала Терсоффа, (безразмерный); 



196 

 

n Si-Si – параметр потенциала Терсоффа, (безразмерный); 

h – параметр потенциала Терсоффа, Бреннера-Терсоффа (безразмерный); 

h Si-N – параметр потенциала Терсоффа, (безразмерный); 

h Si-Si – параметр потенциала Терсоффа, (безразмерный); 

R – параметр потенциала Терсоффа, (м); 

d - параметр потенциала Терсоффа, Бреннера-Терсоффа (м); 

ξ H-H – параметр потенциала Леннарда-Джонса, (еВ); 

ξ N-H – параметр потенциала Леннарда-Джонса, (еВ); 

σ H-H – параметр потенциала Леннарда-Джонса, (Å); 

σ N-H – параметр потенциала Леннарда-Джонса, (Å). 
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ГЛАВА  4  

МНОГОМАСШТАБНОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА 

ВЫСОКОСКОРОСТНОГО ВЗАИМОДЕЙСТВИЯ УДАРНИКА  C 

ПРЕГРАДОЙ  

В данном разделе  представлена  дискретно-элементная модель для 

многомасштабного моделирования высокоскоростного внедрения ударника в 

преграду. Модель основана на представлении ударника и преграды совокупностью 

плотно упакованных взаимодействующих частиц. Представлена многомасштабная  

композиция, передающая вычислительную сущность математической модели, 

описывающей рассматриваемые процессы. На основе сравнения результатов 

компьютерного моделирования с экспериментальными данными 

идентифицирована зависимость энергии межчастичной связи от динамической 

твердости материалов. Этой проблеме посвящены статьи [2-4].  

 4.1 Постановка задачи высокоскоростного внедрения ударника в 

преграду. Многомасштабная композиция. 

Как говорилось в Главе 3, в методе дискретных элементов 

взаимодействующие тела моделируются совокупностями взаимодействующих 

между собой частиц (дискретных элементов).  Уравнения динамики  дискретных  

элементов следующие:  

  

   
  

             

   

  
   ,                                                       (4.1)  

Здесь    – масса i-го элемента           ,       - радиус вектор, характеризующий 

положение элемента в пространстве,      – вектор скорости элемента,             - 

сила, действующая на элемент с номером  , равная сумме сил, обусловленных 

взаимодействием с остальными элементами, а также внешними силами.  

Рассмотрение ведется в рамках модели парного взаимодействия,  которое 

описывается с помощью потенциала     , где   – расстояние между дискретными 

элементами (частицами). Сила взаимодействия определяется как        
     

  
. 
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Используется следующая форма записи потенциала Леннарда-Джонса: 

 

           
 

 
 
  

   
 

 
 
 

 ,      
   

 
  

 

 
 
  

  
 

 
 
 

 ,  

где   – энергия связи,   - длина связи (расстояние, на котором обращается в ноль 

сила взаимодействия). Для описания взаимодействия между разнородными 

элементами реализован алгоритм, в котором используются комбинаторные правила 

[5]. Согласно такому подходу выражения для энергии и дины связи записываются в 

следующем виде: 

BAAB DDD  ; 
2

BA
AB

aa
a


 . 

Для интегрирования системы уравнений движения взаимодействующих 

частиц используется метод скоростей Верле второго порядка точности. Как было 

отмечено в главе 3. данная  численная схема представляется оптимальной по 

соотношению точность-производительность.  К особенностям схемы относится то, 

что, все координаты, скорости и ускорения частиц вычисляются в моменты 

времени, кратные временному шагу интегрирования k , причем  сначала 

обновляются координаты частиц, затем в новых координатах  рассчитываются 

ускорения (силы, действующие на частицы), после чего по средним за временной 

интервал значениям ускорений определяются новые скорости частиц. В алгоритме 

присутствует неявный элемент при вычислении скоростей (скорость на новом 

временном слое рассчитывается  из ускорения (силы) на новом слое). 

  
      

     
  

  
 

   
       

 

 

   
   

   
   

  
      

  
  
 

   
        

   

 

   
   

   
            

 

 

   
   

   
    

Как отмечалось ранее,   данный численный алгоритм обладает хорошим 

запасом устойчивости по сравнению с другими известными методами.    
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 При проведении расчетов используется усечение потенциала межчастичного 

взаимодействия, основанное на быстром убывании силы притяжения с расстоянием 

между частицами.  В сочетании с ячеистой моделью, согласно которой  для частиц, 

находящихся в некоторой ячейке, рассматривается взаимодействие только с 

частицами из пограничных с ней ячеек, это позволяет на порядок сократить 

количество вычислений. Таким образом, число операций становится 

пропорциональным количеству дискретных элементов в системе. Дальнейшее 

повышение эффективности вычислительного процесса связано с применением 

технологий распараллеливания вычислений.  В настоящей работе использовалось 

распараллеливание на графических процессорах. Различные аспекты такого 

подхода применительно к решению задач рассматриваемого класса описаны в [3]. 

Разработанная компьютерная модель оснащена средствами трехмерной 

визуализации и анимации результатов, что позволяет получать детальные 

пространственно-временные картины процесса взаимодействия ударника и 

преграды. 

  Вычислительная сущность математической модели, описывающей процесс 

высокоскоростного взаимодействия ударника и преграды,  может быть 

представлена с помощью  многомасштабной композиции:  

         
                                           

          

    
      

 
    

      

  

Здесь   ,   ,   ,    – обозначают химические элементы из таблицы Менделеева,  

   
     

 
 и       

      
  -химические формулы материалов ударника и преграды.    В 

         

    
      

 
    

      

 задействованы следующие экземпляры базовых композиций: 
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 На рис. 4.1 представлена структура многомасштабной композиции 

         

    
      

 
    

      
, передающая вычислительную сущность математической 

модели, описывающей процессы высокоскоростного взаимодействия ударника  

и преграды. Указаны экземпляры базовых композиций  и последовательность 

их использования в вычислительном процессе. 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 4.1 Многомасштабная композиция для  дискретно-элементного 

моделирования процесса внедрения ударника в преграду. 
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4.2 Идентификация энергии межэлементной связи по экспериментальным 

данным 

Как следует из приведенных выражений, для моделирования взаимодействия 

ударника с преградой необходимо сначала определить энергии связи между 

элементами. 

С целью идентификации использовались экспериментальные данные [1] по 

внедрению металлических шаров в массивные преграды, изготовленные из тех же, 

что и шары, материалов.   

Эксперименты, проведенные в широком диапазоне скоростей 

взаимодействия ударника и преграды для различных металлов, позволили 

установить универсальную связь между итоговой глубиной внедрения h , 

отнесенной к диаметру шара d , и безразмерным параметром 
H

v
B

2
 ,  - 

плотность материала, H - динамическая твердость, v - скорость ударника в момент 

соударения.  

Рассмотрены ударники и преграды, изготовленные из алюминия, меди и 

мягкой стали. Свойства материалов задавались согласно данным из  [1]: алюминий 

-  плотность - 2700 кг/м
3
, динамическая твердость - 26 кгс/мм

2
; медь -  плотность - 

8900 кг/м
3
, динамическая твердость - 65 кгс/мм

2
;
  

сталь - плотность - 7850 кг/м
3
, 

динамическая твердость - 167 кгс/мм
2
. Таким образом, определяющие глубину 

внедрения характеристики материалов (плотность и динамическая твердость) 

варьировались в достаточно широких диапазонах. Диаметр шаров в соответствии с 

данными [1] принимался равным  9.4 мм, однако, необходимо  отметить, что 

согласно проведенным вычислительным экспериментам глубина внедрения, 

отнесенная к диаметру шара, довольно слабо зависит от размера шара. Преграда 

представляла собой массивную пластину, размеры которой примерно на порядок 

превышали размер шара.  Скорость ударника варьировалась в диапазоне 500 – 2500 

м/c, что соответствует для рассмотренных материалов дозвуковому диапазону.  

Как отмечалось выше, согласно дискретно-элементному подходу ударник и 

преграда представляются совокупностью взаимодействующих дискретных 

элементов (частиц).  В расчетах использовались частицы одинакового размера для 

ударника и преграды.  Согласно проведенным вычислительным экспериментам 
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оптимальное с позиций «точность расчета – вычислительные затраты» количество 

моделирующих частиц для  ударника составляет порядка 10
4
, для преграды – около 

5*10
6
.  

В начальный момент времени (до соударения) ударник и преграда 

представляются плотно упакованными структурами, для чего используются  

кубические гранецентрированные решетки. Это позволяет, исходя из количества 

моделирующих частиц N  и объемa объекта SV , определить равновесное 

расстояние между частицами a  [6]: 

3/1

0

1










NV

V
a S


, 

здесь 0V - безразмерный объем плотноупакованной  элементарной ячейки, 

рассчитанный для единичного расстояния между ближайшими частицами. Для 

гранецентрированной кубической решетки 0V = 2/2 ,   - коэффициент 

плотности упаковки,  - коэффициент, характеризующий изменение равновесного 

расстояния между частицами в плотной упаковке в результате взаимодействия с 

частицами следующих координационных сфер, для гранецентрированной 

кубической решетки  = 0.98, что соответствует взаимодействию с потенциалом 

Леннарда-Джонса при радиусе усечения a1.2 .  Таким образом, один из двух 

параметров потенциала Леннарда-Джонса определен. Более сложным является 

определение второго параметра – энергии межэлементного взаимодействия. В 

настоящей работе осуществлялась идентификация этого параметра по 

экспериментальным данным. При этом использовался следующий подход. Для 

каждого из материалов подбиралась энергия взаимодействия для одной скорости 

взаимодействия ударника и преграды. После этого с определенной таким образом 

энергией межэлементного взаимодействия просчитывался весь скоростной 

диапазон, и результаты сопоставлялись с экспериментальной кривой.  

  Результаты проведенных расчетов представлены на рис. 4.2 - 4.5. На рис. 4.2 

[2,3] показан ход (временная развертка) процесса внедрения медного шара в 

медную преграду. Скорость ударника в момент соударения равнялась 1000 м/с.  С 

течением времени, когда глубина внедрения перестает меняться, это значение 

принимается в качестве итогового значения. Более наглядно процесс установления 
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проиллюстрирован на рис. 4.3, где показаны зависимости глубины внедрения от 

времени для различных материалов. Здесь скорости взаимодействия ударника и 

преграды для различных вариантов одинаковы и равны 1500 м/с. На рис. 4.4 

представлены зависимости итоговой глубины внедрения от безразмерной скорости 

взаимодействия B  для различных материалов. Здесь расчетные данные 

представлены маркерами, а сплошной кривой показана аппроксимация 

экспериментальных результатов [1]. Видно, что при такой обработке результаты 

вычислительных экспериментов ложатся практически на одну кривую, причем  эта 

кривая достаточно близка к экспериментальной кривой. С увеличением скорости 

взаимодействия ударника и преграды наблюдается небольшое превышение 

расчетной глубины внедрения над экспериментальными значениями. Как уже 

отмечалось, расчетные кривые на рис. 4.4 получены для значений энергии 

межэлементного взаимодействия, идентифицированных по экспериментальным 

данным для одной скорости взаимодействия ударника и преграды. Эти значения 

энергии показаны на рис. 4.5 в зависимости от динамической твердости 

материалов. Здесь наряду с рассмотренными алюминием, медью и сталью 

представлен дюралюминий, обладающий по данным [1] практически такой же 

динамической твердостью, как и медь (67 кгс/мм
2
), и плотностью, близкой к 

плотности алюминия (2800 кг/м
3
). Отчетливо прослеживается практически 

линейный характер  рассматриваемой зависимости. Это позволяет определять 

энергию взаимодействия исходя из размера элементов и динамической твердости 

материала. Таким образом, дискретно-элементная модель учитывает все три 

параметра, входящие в безразмерный комплекс 
H

v
B

2
 , что позволяет с 

удовлетворительной точностью описать процесс внедрения ударника в преграду в 

рассматриваемом диапазоне скоростей взаимодействия (500 – 2500 м/c).  
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Рис. 4.2 Взаимодействие шара с преградой. Временная развертка процесса. 
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Рис.4.4 Зависимости итоговой глубины внедрения от безразмерной скорости 

взаимодействия для различных материалов. 1 – алюминий, 2 – медь, 3 – сталь, 4 

– дюралюминий, 5 – экспериментальная кривая.[1, 2] 
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Рис.4.3 Зависимости глубины внедрения от времени для различных 

материалов. 1- алюминий, 2 – медь, 3 – сталь [2]. 
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Рис.4.5 Зависимость энергии межэлементной связи от динамической 

твердости.[2] 

 

Следует отметить, что полученная зависимость качественно согласуется с 

предлагаемой в [2] квадратичной зависимостью энергии взаимодействия от 

скорости распространения длинных продольных волн в материале с: 

2

2

2

1

vk

c
mE 











.    Здесь    - безразмерный коэффициент, равный отношению 

скорости распространения длинных продольных волн для рассматриваемой 

упаковки частиц,  к скорости длинных волн в одномерной цепочке,  vk  - 

коэффициент  динамичности, равный 6 для потенциала Леннарда-Джонса.  

Важным моментом здесь является относительная консервативность величины 
H

c2
 

для различных металлов. Однако, количественно полученные в результате 

идентификации значения энергии межэлементного взаимодействия оказываются 

существенно ниже, что, по-видимому, связано с нелинейными эффектами, ярко 

проявляющимися при внедрении ударника в преграду. 
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Таким образом, на основе сравнения результатов компьютерного 

моделирования с экспериментальными данными идентифицирована зависимость 

энергии межчастичной связи от динамической твердости материалов. Эта 

зависимость носит линейный характер. Использование построенной таким образом 

дискретно - элементной модели позволяет достаточно точно описать процесс 

внедрения ударника в преграду в диапазоне скоростей взаимодействия 500 - 2500 

м/c.  

4.3 Валидация дискретно-элементной модели высокоскоростного 

внедрения на экспериментальных данных 

В предыдущем разделе проводилось сравнение результатов компьютерного 

моделирования с экспериментальными данными по внедрению металлических 

шаров в массивные преграды, изготовленных из тех же  материалов. Была  

идентифицирована зависимость энергии межчастичной связи от динамической 

твердости материалов. Эта информация далее  используется для сравнительного 

анализа расчетных и экспериментальных данных в широком диапазоне 

определяющих параметров. В экспериментах варьируются плотность и твердость  

ударника и преграды, форма и характерные размеры ударника, толщина преграды, 

угол соударения, скорость ударника. 

I. Эксперименты [1] 

Как уже отмечалось,  для определения параметров потенциала 

взаимодействия между частицами сортов А и B в настоящей работе используются 

следующие комбинаторные правила  

BAAB DDD  ; 
2

BA
AB

aa
a


 . 

 Валидация такого подхода проводилась с использованием результатов 

экспериментов по внедрению металлических цилиндров в массивные преграды, 

изготовленные из материалов, отличных от материалов ударника [1]. Рассмотрены 

два варианта: 

1). Ударник из мягкой стали, преграда из дюралюминия, скорость ударника – 1380 

м/c. Характеристики материалов следующие [1]: ударник – плотность 7850 кг/м
3
, 

динамическая твердость 167 кгс/мм
2
 , преграда - плотность 2800 кг/м

3
, 

динамическая твердость 67 кгс/мм
2
.   



208 

 

2). Ударник из отожженной меди, преграда из алюминия, скорость ударника – 870 

м/c. Характеристики материалов следующие [1]: ударник – плотность 8900 кг/м
3
, 

динамическая твердость 65 кгс/мм
2
 , преграда - плотность 2700 кг/м

3
, динамическая 

твердость 26 кгс/мм
2
. 

Отличительной особенностью этих вариантов является, то, что безразмерные 

параметры, характеризующие глубину проникания, в обеих сериях опытов имели 

одинаковые значения. Это обстоятельство приводило к идентичным 

пространственно-временным картинам внедрения, что должно воспроизводиться  в 

компьютерном моделировании.  

На рис.4.6 представлено сравнение рентгенограммы цилиндрического 

ударника из мягкой стали, внедряющегося в преграду из дюралюминия со 

скоростью 1380 м/c, приведенные в [1], и временная развертка процесса внедрения 

ударника в преграду, полученная в вычислительном эксперименте на основе 

дискретно-элементной модели.  
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На рис.4.7 приведены временные зависимости относительных глубин 

внедрения ударника в преграду, полученные в натурном и вычислительном 

экспериментах. Видно, что расчетная глубина проникновения ударника в преграду 

в целом хорошо согласуется с экспериментальными данными. Важно, что 

результаты расчетов практически совпадают для обоих вариантов (сплошная и 

штриховая кривые), что полностью соответствует экспериментальным данным.  
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Рис.4.7 Временные зависимости Относительной глубины внедрения ударника в 

преграду. Маркированная кривая  – экспериментальные данные, сплошная и 

штриховая кривые – результаты компьютерного моделирования. 
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II. Эксперименты [4] 

 Рассматривается следующий набор экспериментальных данных АО НИМИ 

[4]. 

 Свойства материалов: ударник -  плотность - 7800 кг/м
3
, предел текучести - 

240 МПа, твёрдость по Бринеллю = 125. Преграда: плотность=7860 кг/см
3
, предел 

текучести=1,5 Гпа, твёрдость по Бринеллю (HB)- 440. Геометрическая схема 

ударника представлена на рис.4.8. 

 

 

Рис.4.8 Конфигурация ударника [4]. 

 

Геометрические параметры ударника следующие: L=52мм, lT=26мм, dЭ=16мм, 

dT=12мм. 

Толщина преграды варьировалась в диапазоне 5 – 50 мм.  

Скорость ударника в момент столкновения с преградой полагалась равной 2200 

м/c. Столкновение происходило по нормали к поверхности преграды. 

Кроме того, анализировались варианты пробития ударником двух 

последовательно расположенных разнесенных в пространстве преград.  

Рассмотрим результаты численного моделирования в сравнении с 

экспериментальными данными. На рисунках, расположенных далее показаны 
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экспериментальные рентгенограммы (слева, монохромные изображения) и 

полученные численно разрезы (справа, цветные изображения) в соответствующие 

моменты времени.   

На рис. 4.9 представлен вариант относительно тонкой преграды – толщиной 

10 мм. Показаны картины, наблюдаемые в моменты подлета ударника к преграде и 

сразу после пробития. Важно отметить, что получено хорошее согласование 

расчетных и экспериментальных данных как в плане разлета выбитого из преграды 

материала, так и касательно формы ударника после прохождения преграды. При 

этом  некоторые визуальные различия обусловлены различным характером 

изображения - объемным для экспериментальных рентгенограмм и плоскостным 

для численных разрезов. Это, однако, не снижает наглядности приводимых 

иллюстраций. 

 

 

Рис.4.9 Пробитие ударником преграды толщиной 10 мм [4]. 
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Рис.4.10, 4.11 соответствуют вариантам преграды средней толщины. Видно, 

что для толщины преграды 20 мм (рис.4.10), остаточная  после пробития формы 

ударника, полученной  в ходе численного  моделирования,   хорошо согласуется с 

наблюдаемой на рентгенограмме (кадр 3). Это относится и к эволюции формы 

преграды в области прохождения ударника. При увеличении толщины преграды до 

30 мм (рис. 4.11) ударник по-прежнему пробивает преграду, однако при этом 

практически утрачивает цельность, распадаясь на относительно мелкие частицы. 

Этот эффект также хорошо воспроизводится в вычислительном эксперименте.  

 

 

 

 

 

Рис.4.10 Пробитие ударником преграды толщиной 20 мм [4]. 
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Рис.4.11 Пробитие ударником преграды толщиной 30 мм [4]. 

 

Рис. 4.12 – 4.14 соответствуют варианту толстой преграды (толщина 45 мм), 

которая не пробивается насквозь ударником. На рис. 4.12 показан вид сверху. Здесь 

слева, как и ранее, представлена экспериментальная картина, а справа – 

аналогичное изображение, полученное с помощью численного моделирования 

(монохромное изображение с градиентным разрешением). Видно как качественное, 

так и количественное (поперечный размер кратера, см. линейку на рисунке), 

согласование экспериментальной и вычислительной «картин». На рис. 4.13 показан 

вид снизу, а на рис. 4.14 вид сбоку нижней части преграды (здесь результаты 

численного моделирования визуализируются с использованием сферических 

частиц). Здесь также наблюдается хорошее согласование расчетных и 

экспериментальных результатов. 
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Рис.5.12 Пробитие ударником преграды толщиной 45 мм. Вид сверху [4]. 

 

 

Рис.4.13 Пробитие ударником преграды толщиной 45 мм. Вид снизу[4]. 
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Рис.4.14 Пробитие ударником преграды толщиной 45 мм. Вид нижней части 

преграды сбоку [4]. 

 

 

Далее рассматриваются варианты пробивания ударником двух 

разнесенных в пространстве преград. На рис. 4.15 толщина преград – 5мм, а 

на рис. 4.16 – 10 мм. Видно, что в первом случае сохраняется определенная 

цельность ударника даже после пробития второй преграды, тогда как при 

повышении толщины преград потенциал ударника на этом исчерпывается.  
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Рис.4.15 Пробитие ударником преграды двух разнесенных преград 

толщиной 5 мм [4]. 

 

 

Рис.4.16 Пробитие ударником двух разнесенных преград толщиной 10 

мм [4]. 
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Таким образом, были рассмотрены  тонкие преграды, пробиваемые с 

сохранением цельности деформируемого ударника, преграды средней толщины, 

пробиваемые с практически полной фрагментацией ударника на выходе из 

преграды, а также непробиваемые насквозь преграды. Сравнительный анализ 

экспериментальных и расчетных данных показал достаточно высокую точность 

дискретно-элементного моделирования для широкого диапазона толщин преград 

рассматриваемого класса.   

III.Эксперименты [7] 

В настоящем разделе расширен диапазон  определяющих параметров, 

включающих плотность и твердость  ударника и преграды, характерный размер и 

удлинение ударника, толщину преграды, угол соударения, скорость ударника. 

В качестве основного источника экспериментальных данных был взят отчет 

[7]. Всего было рассчитано 32 варианта. Для каждого варианта известны 

геометрические характеристики ударника (длина и диаметр основания, все 

ударники имели цилиндрическую форму), плотность и твердость ударника, 

плотность, твердость и толщина преграды, угол соударения, а также скорость 

ударника, начиная с которой достигается полное пробитие преграды.  

Экспериментальные данные (рассчитанные варианты) разбиты на две 

группы. В первую группу включены 20 вариантов (1.1 - 1.20) (см. табл.4.1) из [7], 

характерные сравнительно малыми размерами ударника. Вторую группу 

составляют 12 вариантов (2.1 - 2.12) из [3], в которых размеры ударника были 

больше.  

Поскольку в [7] для каждого эксперимента приведены толщина преграды и 

скорость ударника, при которой преграда пробивается насквозь, для каждого 

варианта из первых двух групп проводилось по два расчета - со скоростью 

ударника на 10% меньшей скорости, приведенной в отчете, и со скоростью 

ударника на 10% большей, чем приведенная в отчете. Если в вычислительных 

экспериментах для меньшей скорости полного пробития преграды не наблюдалось, 

а для большей скорости достигалось полное пробитие, то согласование расчетных 

и экспериментальных данных считалось удовлетворительным. 
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Результаты сравнительного анализа расчетных и экспериментальных данных 

по первой группе вариантов сведены в табл.4.1. Здесь знаки «+» и «-» - говорят, что 

на выбранной скорости преграда была пробита и не пробита соответственно. 

Таблица 4.1. 

 Ударник (плотность 19.15 г/см
3
, 

твердость 226 HB) 

 

Преграда (плотность 

7.86 г/ см
3
) 

Скорость 

ударника 

Э
к
сп

ер
и

м

ен
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Д
и

ам
етр

 

М
м
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и

н
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м
м
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го

л
 

 Т
о

л
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м

 

Т
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ёр
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о
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ь
 

(H
B

) 

-1
0
0

 м
/с 

О
ж

и
д

аем

ая
 

м
/с 

+
1

0
0

 м
/с 

1.1 6.35 

 

25.4 

 

0 

 

19.05 

 

381 

 

- 

 

919 

 

+ 

1.2 6.35 

 

25.4 

 

0 

 

22.23 

 

409 

 

- 

 

1082 

 

+ 

1.3 6.35 

 

25.4 

 

0 

 

31.75 

 

344 

 

- 

 

1213 

 

- 

1.4 4.06 

 

49.4 

 

0 

 

22.23 

 

409 

 

- 

 

975 

 

+ 

1.5 5.08 

 

62.99 

 

0 

 

29.21 

 

353 

 

- 

 

943 

 

+ 

1.6 3.81 

 

76.2 

 

0 

 

31.75 

 

344 

 

- 

 

989 

 

- 

1.7 3.81 

 

76.2 

 

0 

 

31.75  

 

400  

 

- 

 

1036 

 

- 

1.8 2.79 

 

81.28 

 

0 

 

31.75 

 

344 

 

- 

 

1067 

 

- 

1.9 6.35 

 

25.4 

 

30 

 

22.23 

 

409 

 

- 

 

1161 

 

+ 

1.10 5.08 

 

62.99 

 

30 

 

29.21 

 

353 

 

- 

 

1055 

 

+ 

1.11 6.35 

 

25.4 

 

45 

 

22.23 

 

409 

 

- 

 

1321 

 

+ 

1.12 4.06 

 

49.4 

 

45 

 

22.23 

 

409 

 

- 

 

1271 

 

+ 

1.13 3.81 

 

76.2 

 

45 

 

22.23 

 

409 

 

- 

 

1012 

 

+ 

1.14 2.79 

 

81.28 

 

45 

 

12.7 

 

381 

 

+ 

 

1165 

 

+ 

1.15 6.35 

 

25.4 

 

60 

 

12.7 

 

344 

 

- 

 

1032 

 

+ 
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1.16 6.35 

 

25.4 

 

60 

 

12.7 

 

353 

 

- 

 

1097 

 

+ 

1.17 6.35 

 

25.4 

 

60 

 

19.05 

 

353 

 

- 

 

1372 

 

- 

1.18 5.08 

 

62.99 

 

60 

 

13.21 

 

344 

 

- 

 

922 

 

+ 

1.19 3.81 

 

76.2 

 

60 

 

19.05 

 

371 

 

- 

 

1100 

 

+ 

1.20 2.79 

 

81.28 

 

60 

 

19.05 

 

390 

 

- 

 

1202 

 

+ 

 

Из таблицы видно, что в 15 из 20 вариантов первой группы наблюдается  

хорошее согласование результатов расчетов с экспериментальными данными - 

определенная в расчетах скорость ударника, при которой осуществляется пробой 

преграды,  лежит в пределах 10% от реальной.  В 5 вариантах расхождение с 

экспериментальными данными превысило 10 %. В вариантах с толстой преградой 

(толщиной 31.75мм) в рассматриваемом диапазоне скоростей ударника в расчетах 

не достигнуто полного пробоя. В варианте 1.14 наблюдается полное проникание 

при скорости ударника, ниже зафиксированной в экспериментах на 10%, при этом 

порядка трети ударника осталось не израсходовано, выделить какой-то 

специфический параметр, который на это повлиял затруднительно, так как по 

отдельности и эксперименты с таким ударником и с такой преградой хорошо 

описываются  используемой моделью. 

 В таблице 4.2 представлены результаты сравнения для второй группы 

экспериментов.  
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           Таблица 4.2. 

 Ударник, угол вхождения 60
0
 Преграда(плотн

. 7.86 г/см
3 
) 

Скорость ударника 
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B

) 

-3
0
0

м
/с 

-1
5
0

 м
/с 

О
ж

и
д

аем
ая 

м
/с 

+
1

5
0

 м
/с 

+
3

0
0

 м
/с 

2.1 25.91 

 

518.2 

 

14.6 

 

800 

 

101.6 

 

258 

 

- 

 

+ 1094 

 

+  

2.2 15.42 

 

303.8 

 

17 

 

286 

 

101.6 

 

258 

 

+ 

 

+ 1585 

 

+  

2.3 13.69 

 

406.15 

 

7.8 

 

654 

 

101.6 

 

258 

  

- 1884 

 

+  

2.4 19.89 

 

391.67 

 

7.8 

 

654 

 

101.6 

 

258 

  

- 1697 

 

+  

2.5 12.95 

 

259.1 

 

14.2 

 

800 

 

101.6 

 

258 

  

- 1609 

 

+  

2.6 12.95 

 

259.1 

 

14.2 

 

800 

 

127 

 

258 

  

- 2062 

 

- + 

2.7 12.95 

 

259.1 

 

14.2 

 

800 

 

152.4 

 

247 

  

- 2085 

 

- - 

2.8 11.28 

 

338.3 

 

14.2 

 

800 

 

101.6 

 

258 

  

- 1701 

 

+  

2.9 16.26 

 

325.1 

 

14.2 

 

800 

 

101.6 

 

258 

 

- 

 

+ 1489 

 

+  

2.10 16.26 

 

325.1 

 

14.2 

 

800 

 

127 

 

258 

 

- 

 

+ 1803 

 

+  

2.11 16.26 

 

325.1 

 

14.2 

 

800 

 

152.4 

 

247 

  

- 1919 

 

+  

2.12 14.12 

 

423.7 

 

14.2 

 

800 

 

101.6 

 

258 

 

- 

 

+ 1399 

 

+  

 

 Видно, что в 5 из 12 вариантов первой группы наблюдается  согласование 

результатов расчетов с экспериментальными данными по скорости ударника, при 

которой осуществляется пробой преграды, в пределах 10%, в 5 вариантах - в 

пределах 20%. В эксперименте 2.7 вновь присутствует проблема с пробитием очень 

толстой преграды, однако в эксперименте 2.11, с такой же толщиной преграды, 

подобный эффект не наблюдается. Имеется один вариант (2.2), в котором 
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расчетная скорость ударника, необходимая для пробоя преграды, ниже 

экспериментальной более, чем на 20 %.  

 В целом по результатам сравнительного анализа расчетных и 

экспериментальных данных можно сделать вывод о достаточно высокой точности 

дискретно-элементного моделирования в широком диапазоне определяющих 

параметров. 

4.4 Эффект пластического расклинивания преграды 

Рассмотрим взаимодействие ударников, изготовленных из композиционных 

материалов, со стальной преградой. В качестве такого материала возьмем сплав, 

основными составляющими которого являются тантал (основа) и вольфрам (2,5 %). 

Поскольку в литературе имеются различные сведения по  твердости материала, 

рассмотрим два варианта -  с более высокой твердостью, соответствующей 

стандартным данным по твердостям компонентов, и с более низкой - 160 НV. 

Временные развертки процесса внедрения приведены на рис. 4.17, рис. 4.18.  Здесь 

толщина преграды – 80 мм, остальные характеристики аналогичны указанным 

выше. Важно учесть существующее различие в степени деформирования ударника. 

В первом варианте энергия связи между элементами выше в силу более высокой 

твердости, ударник держится более компактно. Во втором варианте энергия связи 

ниже, ударник более пластичен, в какой-то момент (кадр 4 на рис. 4.17) контактная 

поверхность становится почти плоской. При этом происходит процесс, подобный 

расклиниванию преграды, сопровождающийся ослаблением межэлементных связей 

в области под ударником, куда впоследствии проникает ударник, принимая ярко 

выраженную клиновидную (коническую) форму (кадры 5, 6 на рис. 4.17). В 

результате глубина внедрения во втором варианте выше, видно, что преграда почти 

пробивается. Таким образом, в проведенных вычислительных экспериментах 

обнаружен эффект «пластического» расклинивания.  
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Рис.4.17 Внедрение танталового ударника в преграду. «Стандартная» твердость. 
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Рис. 4.18 Внедрение танталового ударника в преграду.  
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Отметим, что данный эффект наблюдается и для других материалов и форм 

ударника. В качестве иллюстрации приведем результаты вычислительных 

экспериментов по внедрению вольфрамового и уранового шаров в стальную 

преграду. В данном случае плотности материалов близки, но пластические 

свойства различны – вольфрам обладает меньшей пластичностью, что в 

используемой математической модели выражается в более сильной связи между 

элементами.  

 Результаты численного моделирования в виде временных разверток 

представлены на рис.4.19, 5.20. Видно, что в первом случае (вольфрамовый шар) 

ударник в течение всего процесса сохраняет более компактную форму, при этом 

преграда окончательно не пробивается (кадры 5, 6 на рис.4.19). 

 Во втором случае (урановый шар) ударник деформируется в большей 

степени и вновь наблюдается эффект расклинивания преграды, что на 

заключительной стадии приводит к принятию ударником клиновидной 

(конической) формы, в результате преграда пробивается насквозь (кадры 5, 6 на 

рис.4.20).  

 

 

 

 

 

 

 

 

 

 

 

 

 



225 

 

  

  

  

Рис. 4.19 Внедрение вольфрамового шара в преграду. 
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Рис. 4.20 Внедрение уранового шара в преграду. 
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По результатам экспериментальных данных можно сделать вывод о том, что 

при одинаковых исходных данных ударник с более пластичным материалом 

(урановый шар) должен обладать большей пробивной способностью чем ударник, 

изготовленный из менее пластичного материала (вольфрамовый шар). Такой 

теоретический вывод,  качественно согласуется с экспериментальными данными. 

Таким образом, в результате вычислительных экспериментов обнаружен эффект 

«пластического» расклинивания,  что открывает перспективы оптимизации состава 

и структуры композиционных материалов, используемых для изготовления 

ударника. 

4.5 Основные выводы 

Рассмотрены вопросы применения дискретно-элементной модели, 

основанной на представлении ударника и преграды совокупностью плотно 

упакованных частиц, к задаче высокоскоростного внедрения.  

Использование технологий распараллеливания вычислений на графических 

процессорах в сочетании со средствами трехмерной визуализации и анимации 

результатов позволило получить детальные пространственно-временные картины 

процесса внедрения.   

На основе сравнения результатов компьютерного моделирования с 

экспериментальными данными идентифицирована зависимость энергии 

межчастичной связи от динамической твердости материалов. Показано, что эта 

зависимость носит линейный характер. Использование построенной таким образом 

дискретно - элементной модели позволяет достаточно точно описать процесс 

внедрения ударника в преграду в диапазоне скоростей взаимодействия 500 – 2500 

м/c.  

Проведен сравнительный анализ расчетных и экспериментальных данных в 

широком диапазоне определяющих параметров. Варьировались плотность и 

твердость  ударника и преграды, форма и характерные размеры ударника, толщина 

преграды, угол соударения, скорость ударника. Сравнительный анализ показал 

достаточно высокую точность дискретно-элементного моделирования для 

различных вариантов - для тонких преград, пробиваемых с сохранением цельности 

деформируемого ударника, для преград средней толщины, пробиваемых с 
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практически полной фрагментацией ударника на выходе из преграды, а также для 

непробиваемых насквозь преград.  

В ходе вычислительных экспериментов обнаружен эффект «пластического» 

расклинивания, что открывает перспективы оптимизации состава и структуры 

композиционных материалов, используемых для изготовления ударника. 
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ГЛАВА 5 

Многомасштабные математические модели  в наноэлектронике 

Одной из современных тенденций развития высокочастотной 

полупроводниковой техники является стремление к достижению максимальных 

концентраций носителей заряда при максимально возможной их подвижности [1]. 

Традиционный путь создания в полупроводниках зон с заданным типом носителей 

заряда связан с легированием соответствующих областей  донорными или 

акцепторными примесями. При этом повышение концентрации образующихся 

свободных носителей заряда приводит к снижению их подвижности вследствие 

усиления кулоновского рассеяния на ионизированных примесных центрах. Таким 

образом, стремление к достижению высокой концентрации носителей заряда 

вступает в противоречие с достижением высокой подвижности. Использование 

многослойных полупроводниковых гетероструктур позволяет отделить области 

формирования носителей заряда от зоны, где осуществляется их перенос. Это 

достигается созданием потенциальных барьеров, ограничивающих движение 

носителей заряда в одном или более направлениях.  

Различают структуры с квантовым ограничением за счет внешнего и 

внутреннего электрического поля [1].  

В качестве примера систем первого типа можно привести  МОП 

(металл/окисел/полупроводник) структуры полевых транзисторов.  Типичная МОП 

структура состоит из монокристаллической кремниевой подложки с p-типом 

проводимости, слоя диоксида кремния и верхнего металлического электрода 

(затвора). Положительное смещение, приложенное к затвору, отделенному от 

полупроводника диэлектрическим слоем, притягивает электроны, обедняя 

приповерхностный слой полупроводника дырками.  По мере увеличения внешнего 

напряжения  в приповерхностном слое полупроводника образуется тонкий слой, 

обогащенный электронами, который называется инверсионным слоем в связи 

изменением типа носителей в полупроводнике. Таким образом, образуется 

квантовый колодец, стенки которого формируются границей 

диэлектрик/полупроводник и электрическим полем, прижимающим электроны к 

этой границе. Движение электронов ограничивается в направлении, нормальном к 

гетерогранице. В связи с малой шириной колодца (толщиной инверсного слоя) 



230 
 

состояние и подвижность электронов в нем могут быть описаны в терминах  

двумерного электронного газа.  

Ярким примером систем с квантовым ограничением за счет внутреннего 

электрического поля являются модуляционно-легированные структуры. Они 

образуются полупроводниками с различной шириной запрещенной зоны. При этом 

в полупроводник с большей шириной запрещенной зоны обычно вводится 

донорная примесь. Электроны донорных атомов вследствие тепловой активации  

переходят в соседнюю область с более низкой  потенциальной энергией, где 

оказываются захваченными в приграничной области, поскольку, потеряв энергию, 

не способны преодолеть потенциальный барьер. Они индуцируют 

электростатический потенциал, который наряду с притяжением  положительно 

заряженными ионами примеси, прижимает их к гетерогранице. Таким образом, в 

окрестности гетерограницы в полупроводнике с меньшей шириной запрещенной 

зоны (узкозонный слой) образуется квантовый колодец для электронов шириной 

порядка нескольких нанометров. Движение электронов в направлении, нормальном 

к гетерогранице, ограничено, энергетические уровни квантованы. При этом 

электроны на этих уровнях могут свободно двигаться в плоскости гетерограницы. 

Образуется двумерный электронный газ. Один из широко распространенных 

вариантов модуляционно-легированной структуры – комбинация легированного 

слоя AlGaAs (барьерный слой с большей шириной запрещенной зоны) и 

нелегированного слоя GaAs (слой с меньшей шириной запрещенной зоны). Такая 

структура обеспечивает высокую подвижность носителей, но слоевая 

концентрация электронов при этом сравнительно невысока – до 5*10
11

 см
-2

.   

Весьма перспективными с точки зрения повышения концентрации и 

подвижности носителей заряда являются структуры с наличием поверхностного 

заряда на гетерогранице. Примером может служить система AlGaN/GaN 

(кристаллическая структура вюрцита). Возникающий вследствие спонтанной и 

пьезоэлектрической поляризации вюрцитных структур поверхностный заряд на 

интерфейсе создает условия для образования квантового колодца с близким к 

треугольному профилем потенциала. Ситуация очень похожа на описанную выше 

для модуляционно-легированных структур, но здесь нет необходимости в 

легировании (хотя оно возможно), т.е. практически исключается механизм 
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рассеяния носителей на примесных центрах. Подробный анализ таких структур 

приведен в работе [2]. Достигаемый уровень концентрации носителей в ДЭГ – 

порядка 10
13

 см
-2

.  

Для проектирования и оптимизации современных полупроводниковых 

гетероструктур большое значение имеет разработка математических моделей и 

методов, отражающих квантово-механический  характер поведения носителей 

заряда.   

В настоящей работе реализована следующая схема многомасштабного 

моделирования полупроводниковых гетероструктур.  

 

Выделены три основных масштабных уровня. Описание системы на 

атомарном уровне осуществляется с использованием кристаллографической 

информации [3] и квантово-механической модели, в основе которой лежит теория 

функционала электронной плотности [4,5]. Квантово-механическое моделирование 

позволяет определить зонную структуру и базовые свойства гетеросистемы, 

выявить поляризационные эффекты и рассчитать плотности зарядов на 

интерфейсах между слоями [6]. Полученная информация передается в модель 

наномасштабного уровня, где используется для расчета распределения носителей 

заряда в гетероструктуре. На данном уровне также используется квантово-

механическое описание, математическая модель представляет собой систему 
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уравнений Шрёдингера и Пуассона [7]. Полученные в результате решения этих 

уравнений данные о волновых функциях и распределении плотности носителей 

заряда поперек слоистой структуры поступают в модель следующего масштабного 

уровня, где осуществляется расчет подвижности носителей заряда в продольном 

направлении. При этом учитывается широкий спектр механизмов рассеяния 

электронов – рассеяние на оптических и акустических фононах, шероховатостях 

гетерограницы, на заряженных центрах и дислокациях, пьезоэлектрическое 

рассеяние [8,9]. Сравнение результатов расчетов с экспериментальными данными 

показало достаточно высокую точность моделирования как в плане расчета 

концентрации носителей в двумерном электронном газе, так и касательно 

подвижности электронов. Разработанные методы и средства численного 

моделирования позволяют оперативно проводить многовариантный анализ  

многослойных наноразмерных полупроводниковых структур, что создает основу 

для решения ряда оптимизационных задач, актуальных для современной СВЧ-

электроники [10]. 

5.1Моделирование распределения носителей заряда  в полупроводниковых 

наноструктурах 

В данном разделе основное внимание уделено вопросам численного 

моделирования полупроводниковых гетероструктур на наномасштабном уровне. 

На этом  уровне локальные вычислительные процедуры, служащие для решения 

уравнений Шрёдингера и Пуассона, объединены глобальным итерационным 

процессом, направленным на согласование решений. Принципиальным моментом 

является сильная взаимосвязь уравнений, характерная для рассматриваемого класса 

задач, что приводит к проблеме сходимости глобальных  итераций. В особой мере 

эта проблема проявляется для вюрцитных структур, когда на гетероинтерфейсах 

появляется мощный локализованный источник заряда.  

5.1.1 Математическая модель 

Типичная схема наноразмерной полупроводниковой гетероструктуры 

представлена на рис.5.1, заимствованном из работы [11].  
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Рис.5.1 Многослойная полупроводниковая гетероструктура [11]. 

 

Показана гетероструктура, выращенная в Институте физики 

полупроводников СО РАН на основе нитрида галлия и тройных растворов [11]. 

Наличие слоев, выполненных из полупроводников с различной шириной 

запрещенной зоны, в сочетании с поляризационными эффектами обеспечивает 

создание в окрестности гетерограницы в слое с меньшей шириной запрещенной 

зоны (GaN) квантового колодца для электронов шириной порядка нескольких 

нанометров. Движение электронов в направлении, нормальном к гетерогранице, 

ограничено, энергетические уровни квантованы. При этом электроны на этих 

уровнях могут свободно двигаться в плоскости гетерограницы. Образуется 

двумерный электронный газ (схематично область образования двумерного 

электронного газа показана точками на рис.5.1).  

Математическая модель, описывающая распределение электронов в таких 

структурах, представляет собой систему уравнений Шрёдингера и Пуассона 

[12,13]. Отметим, что в полупроводниковых приборах движение носителей заряда 

может ограничиваться не только в одном (двумерный электронный газ), но и в двух 

(квантовая нить), а также в трех (квантовая точка) направлениях [1]. Как правило, 

это достигается приложением напряжения в соответствующих зонах. Таким 

образом, в общем случае задача моделирования полупроводниковых 
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гетероструктур ставится в пространственной постановке. Математическая модель 

имеет вид: 

 EEe
m

c  )()
1

(
2 *

2
                            (5.1) 
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Здесь iE  и )(ri  - энергетические уровни и соответствующие им волновые 

функции, )(rn - электронная плотность, – постоянная Планка, e   – заряд 

электрона, *m  - эффективная масса электрона, FE  - положение уровня Ферми, 

)(r - электростатический потенциал, Ad NN ,  - концентрации донорной и 

акцепторной примесей, l  - плотности зарядов на интерфейсах,   - дельта 

функция, lz - местоположения интерфейсов,   - диэлектрическая постоянная 

материала, cE  - сдвиг зоны проводимости материала, Bk  - постоянная 

Больцмана, T - температура. В модели (1) - (4) отражен тот факт, что значения *m

,   и cE  могут меняться от слоя к слою. При этом температура в гетероструктуре 

предполагается постоянной. 

 При записи уравнений (5.1) - (5.4) выделено направление поперек слоев 

(координата  z ), что отражает послойный рост структуры и зависимость ряда 

характеристик только этой координаты.  

 Задача (5.1) – (5.4) решается, как правило, в прямоугольной области   

(пример двумерной области представлен на рис. 5.1), что характерно для 

большинства полупроводниковых устройств. Постановка условий на границе   

области   отражает специфику функционирования гетероструктуры.  Область   в 

расчетах обычно значительно больше области, где реализуется квантовое 

ограничение, так что справедливым является постановка однородного условия 

Дирихле для волновой функции на границах - 0


 . Для электростатического 
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потенциала в зависимости от условий функционирования гетероструктуры на 

различных участках границы могут задаваться как значения приложенных 

напряжений (граничные условия Дирихле, g 


), так и значения 

напряженности электрического поля (граничные условия Неймана, gf








, где 








 - производная по нормали к границе). Первый вариант характерен, например, 

для задач, в которых квантовые ограничения достигаются за счет внешнего 

электрического поля (квантовые нити в двумерном случае и квантовые точки в 

трехмерном случае), а также в зонах контакта полупроводника с металлами.  

Второй вариант часто используется на границе со стороны подложки, где задается 

нулевое значение напряженности (однородное условие Неймана). 

Решение спектральной задачи (5.1) (уравнение Шрёдингера) зависит от 

электростатического потенциала   , распределение которого в структуре  )(r  

определяется уравнением Пуассона (5.2).  При этом в правую часть уравнения 

Пуассона входит электронная плотность )(rn , которая, в свою очередь, 

определяется энергетическими уровнями iE  и волновыми функциями )(ri  

согласно статистике Ферми-Дирака (5.3), (5.4). Задача, таким образом, имеет ярко 

выраженный сопряженный характер. 

Самосогласованное решение этой системы дает искомые энергетические 

уровни iE  и соответствующие им волновые функции )(ri ,  профиль 

потенциальной ямы )(rV , а также распределение электронной плотности в 

гетероструктуре )(rn . 

Далее покажем, как в математической модели отражены основные факторы, 

влияющие на возникновение выделенных каналов переноса носителей в 

окрестности гетерограницы.  

Выражение для потенциальной энергии электрона в уравнении (5.1) 

cEeV    включает величину сдвига зоны проводимости 

полупроводниковых материалов cE , что обусловливает создание потенциального 

барьера, удерживающего электроны в квантовом колодце.  
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Для полупроводников с кристаллической структурой сфалерита важнейшим 

фактором является концентрация доноров в барьерном слое DN , входящая в 

правую часть уравнения Пуассона. Для полупроводников с вюрцитной 

кристаллической структурой определяющую роль играют поляризационные 

эффекты и связанные с ними поверхностные заряды на гетерограницах. Этот 

фактор представлен в математической модели слагаемым  
l

ll zz )(  в 

уравнении Пуассона. Здесь двумерный электронный газ возникает даже без 

введения доноров в барьерный слой. Эффекты спонтанной и пьезоэлектрической 

поляризации описываются квантово-механическими моделями на атомарном 

уровне, что  позволяет получить плотности поверхностного заряда на интерфейсах 

[6]. 

Кроме того, на распределение электронной плотности в слоистой 

гетероструктуре влияют толщины и расположение слоев, а также другие 

параметры математической модели.  

Многие задачи расчета и оптимизации слоистых полупроводниковых 

структур решаются в пространственно-одномерной постановке, позволяющей 

определить основные характеристики двумерного электронного газа. 

Математическая модель в этом случае выглядит следующим образом:  
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 Необходимо отметить, что сложности, связанные со сходимостью 

глобальных итераций для получения самосогласованного решения уравнений 

Шрёдингера и Пуассона, отчетливо проявляются при решении задачи в 
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одномерной постановке. Поэтому анализ, проводимый в настоящей работе, 

базируется на этой модели.  

Остановимся подробнее на постановке граничных условий. 

 На границах системы (z=0, z=L, где L – общая толщина слоистой структуры) 

должны выполняться условия равенства нулю волновых функций: 

0)0(  , 0)( L . 

На левой границе (z=0), как правило, задается потенциальный барьер b , 

образующийся в приконтактном слое полупроводника, граничащего с металлом 

(барьер Шоттки). Кроме того, возможно задание смещения s  вследствие 

приложенного напряжения. На правой границе (z=L) поведение потенциала 

определяется положением зоны проводимости соответствующего материала 

относительно уровня Ферми. В большинстве случаев естественным условием здесь 

представляется отсутствие электрического поля. Таким образом, граничные 

условия для уравнения Пуассона имеют вид:  

sb  )0( , 0)(  L . 

 5.1.2 Вычислительные алгоритмы 

Как отмечалось выше, сопряженный характер задачи обусловливает 

необходимость итерационного согласования решений уравнений Шрёдингера и 

Пуассона. С этой целью локальные вычислительные процедуры, служащие для 

решения уравнений, объединены глобальным итерационным циклом. 

Вычислительный процесс можно схематично представить следующим образом.  

В результате выполнения очередной итерации имеется распределение  

электронной плотности в системе )()(
r

kn .  

С использованием этой информации решается уравнение Пуассона: 

  

l
ll

k
AD

k zznNNe )()()( )()1(   

Полученное распределение потенциала в системе 
)1( k применяется при 

последующем решении уравнения Шрёдингера: 
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В результате получаются значимые (вносящие вклад в повышение 

концентрации носителей) уровни энергии и соответствующие им волновые 

функции 
)1()1( ,  k

i
k

iE  . 

После этого с использованием статистики Ферми – Дирака рассчитывается 

новое распределение электронной плотности в системе: 
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Для рассматриваемого класса задач характерна сильная взаимосвязь 

уравнений, что приводит к проблеме сходимости последовательных приближений. 

Для достижения сходимости возможно использование нижней релаксации: 

)()1()1( )1( kkk nnn   
, 

где 
)1( kn - итоговое распределение электронной плотности на данной итерации. 

При этом, согласно вычислительным экспериментам, проведенным для 

широкого класса полупроводниковых гетероструктур, приходится использовать 

очень малый параметр релаксации   (типичный уровень значений параметра   - 

0.025), что существенно сказывается на скорости сходимости глобальных 

итераций. В ряде задач удается построить алгоритм с адаптивным релаксационным 

параметром, однако трудно добиться универсальности такого подхода. 

Необходимо отметить, что подобные сложности, связанные с моделированием 

структур сфалеритного типа отмечались в работе [14]. Положение существенно 

осложняется при рассмотрении полупроводников с вюрцитной кристаллической 

структурой, когда появляются заряды, локализованные на гетерограницах.  

В настоящей работе для решения данного класса задач применяется подход, 

основанный на локальной аппроксимации неявной зависимости электронной 

плотности от потенциала [14]. Этот подход хорошо зарекомендовал себя при  

моделировании распределения носителей заряда в  гетероструктурах сфалеритного 

типа [15,16]. Аппроксимационное выражение для электронной плотности получено 

с использованием теории возмущений и  имеет следующий вид: 
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            (5.5) 
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где 
)(k  - потенциал, полученный на предыдущей глобальной итерации.  

Так как использование зависимости (5.5) позволяет существенно повысить 

эффективность вычислительных алгоритмов, приведем здесь схему ее вывода.  

Рассмотрим приращение потенциала 
)(k  .  Ему соответствует 

приращение электронной плотности n , обусловленное изменением волновых 

функций i и энергетических уровней iE : 
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B
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
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В линейном приближении  n  имеет вид: 

)exp1ln(2
exp1

exp2
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i
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Согласно линейной теории возмущений [17] 

),( iii eE   ,  
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dvijij  ),( . 

С учетом симметричности второго слагаемого по индексам выражение для 

приращения электронной плотности примет вид: 
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Свойство ортонормированности волновых функций дает 

),(),( iiiiij
ij

j  


, что приводит к следующему выражению: 

 



i i

i
i

B F

F

Tk

Ae
n

exp1

exp2
. 

Это позволяет получить искомую аппроксимацию зависимости электронной 

плотности от потенциала: 



240 
 




 











 
 

i i

i
i

Bi B

iF
i

k

F

F

Tk

Ae

Tk

EE
Annn

exp1

exp
)exp(1ln)( 22)(

 

 











 


i B

iF
i

Tk

eEE
A )exp(1ln2 

 . 

Использование такого подхода приводит к модифицированному уравнению 

Пуассона с явно заданным нелинейным слагаемым )(n : 

 
l

llAD zznNNe )())(()(  . 

Для решения модифицированного уравнения Пуассона эффективным 

приемом является  линеаризация (метод Ньютона) [18]: 

  )( p
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Здесь индекс (p) указывает на функцию, полученную на предыдущей локальной 

итерации. 

Для решения уравнений Шрёдингера и Пуассона в настоящей работе 

применяются конечно-разностные методы. Аппроксимация производных с 

использованием центрально-разностных отношений позволяет свести задачу на 

каждой глобальной итерации к решению спектральной задачи для симметричной 

разреженной матрицы ленточной структуры (дискретный аналог уравнения 

Шрёдингера) и к решению системы  алгебраических уравнений (дискретный аналог 

уравнения Пуассона). Учитывая, что размерности матриц могут быть достаточно 

велики в связи с необходимостью должного разрешения относительно тонкого 

слоя, содержащего двумерный электронный газ, а также то, что вычисления 

многократно повторяются в итерационном процессе, важным требованием к 

алгоритмам является экономичность вычислений.  Наибольшие вычислительные 

затраты связаны с решением дискретного аналога уравнения Шрёдингера. В этой 

связи  существенную роль играет учет особенностей расположения значимых 

энергетических уровней. Согласно статистике Ферми-Дирака вклад в повышение 

концентрации носителей в двумерном электронном газе вносят электроны, 
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находящиеся  на нижних энергетических уровнях. Информация о нижней границе 

поступает из решения уравнения Пуассона на текущей глобальной итерации:  

)(min )()(
r

kk
i VE  . Верхний уровень может быть оценен с использованием 

зависимости (5.4). Здесь принципиально то, что в силу особенностей 

распределения Ферми-Дирака количество электронов, обладающих энергией, 

превышающей уровень Ферми более, чем на kbT, убывает практически 

экспоненциально. Такая локализация позволяет использовать экономичные методы 

поиска собственных значений в сочетании с обратными итерациями для 

определения сеточных волновых функций.  

5.1.3 Вычислительные эксперименты 

Сначала рассмотрим вариант, когда полупроводниковые материалы имеют 

кристаллическую структуру сфалерита. В качестве примера возьмем трехслойную 

гетероструктуру Al0.3GaN/GaN/Al0.3GaN [19]. Толщины слоев следующие – 

барьерный слой Al0.3GaN – 15,2 нм, слой GaN – 8 нм, слой  Al0.3GaN – 30 нм. 

Остальные исходные данные следующие [19]. Диэлектрические проницаемости 

материалов равны 8.9 0  для GaN и 8.5 0  для Al0.3GaN, где 0 - электрическая 

постоянная. Эффективные массы электрона принимались равными 0.228 0m  для 

обоих материалов ( 0m  - масса покоя электрона). Сдвиг зоны проводимости cE  

полагался равным 0.63 эВ. Потенциал на внешней поверхности гетероструктуры 

определялся из условия 1)0(  e  эВ (отсчет энергии ведется от уровня Ферми). 

Как уже отмечалось, в случае сфалеритной кристаллической структуры 

создание надлежащих потенциальных барьеров осуществляется с использованием 

легирования барьерного слоя донорной примесью. В рассматриваемом варианте 

объемная концентрация примеси равна 6*10
18

 см
-3

. Здесь и далее в этом разделе 

задача решается в одномерной постановке. 

На рис.5.2 приведены распределения по толщине гетероструктуры 

потенциальной энергии (рис. 5.2а, кривая 1, отнесена к левой шкале), электронной 

плотности (рис. 5.2а, кривая 2, отнесена к правой шкале) и волновых функций (рис. 

5.2б, нумерация кривых соответствует возрастанию энергетических уровней от 

самого нижнего). На рис.5.2а отчетливо видны изгиб на кривой потенциальной 

энергии вследствие легирования барьерного слоя и потенциальная яма в слое GaN, 
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что приводит к образованию локализованной зоны повышенной концентрации 

электронов (двумерный электронный газ). Суммарная концентрация электронов в 

ДЭГ равна 3*10
12

 см
-2

. Полученные результаты хорошо согласуются с данными, 

приведенными в статье [19].  
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Рис.5.2  а – Распределение потенциальной энергии (1, левая шкала)  и 

электронной плотности (2, правая шкала) по толщине гетероструктуры, 

б – волновые функции, соответствующие трем низшим энергетическим 

уровням. Вариант кристаллической структуры сфалерита [7]. 
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Рис.5.3 Сходимость глобальных итераций. 1 – метод последовательной 

нижней релаксации, 2 – аппроксимация нелинейной зависимости 

электронной плотности от потенциала. Вариант кристаллической 

структуры сфалерита [7]. 

 

На рис.5.3 проиллюстрирована сходимость глобальных итераций для 

рассматриваемого варианта. Здесь кривая 1 соответствует  методу 

последовательных приближений с нижней релаксацией, кривая 2 – локальной 

аппроксимации зависимости электронной плотности от потенциала (нижняя 

релаксация не требуется). В качестве погрешности рассматривалась разность 

между наименьшими энергетическими уровнями (минимальное собственное 

значение для уравнения Шрёдингера), полученными на смежных итерациях. 

Видно, что ускорение сходимости в последнем случае значительное. В сочетании с 

линеаризацией уравнения Пуассона данный подход позволяет, таким образом, 

существенно сократить вычислительные затраты. Отметим, что выбор в качестве 

величины, характеризующей погрешность, разности между наименьшими 

энергетическими уровнями обусловлен тем, что согласно многочисленным 

вычислительным экспериментам сходимость по наименьшим значениям энергии, 

практически гарантирует сходимость по другим возможным критериям, так как 
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электроны, обладающие такой энергией, вносят решающий вклад в распределение 

электронной плотности, что в конечном итоге отражается и на распределении 

электростатического потенциала. 

Перейдем к полупроводниковым материалам с вюрцитной кристаллической 

структурой. Рассмотрим двухслойный вариант Al0.3GaN/GaN (толщина слоя 

Al0.3GaN 30 нм), хорошо изученный экспериментально и теоретически [2].  Здесь и 

далее исходные данные для расчетов определялись по аппроксимационным 

зависимостям [2]: 

0)28.1003.0()(   xxAlGaN , 

))0()((7.0)( ggc ExExE  , 

)1(42.313.6)( xxxEg  , 

84.03.1  xe b , 

где x - мольная доля алюминия в сплаве AlGaN. Использовалось граничное 

условие для потенциала b )0( . 

На рис.5.4 представлены распределения потенциальной энергии и 

электронной плотности по толщине гетероструктуры, а также волновые функции. 

Нумерация кривых аналогична рис.5.2. Здесь профиль потенциальной ямы и 

образование двумерного электронного газа обусловлены наличием поверхностного 

заряда на гетерогранице. Плотность заряда согласно проведенным ab initio 

квантово-механическим расчетам [6] равна 1.34*10
13 

e Кл/см
2
. Полученная в 

данном варианте суммарная концентрация электронов в ДЭГ равна 1.14*10
13

 см
-2

, 

что существенно выше, чем аналогичная величина для материалов с 

кристаллической структурой сфалерита. 
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Рис. 5.4 а – Распределение потенциальной энергии (1, левая шкала)  и 

электронной плотности (2, правая шкала) по толщине гетероструктуры, 

б – волновые функции, соответствующие трем низшим энергетическим 

уровням. Вариант кристаллической структуры вюрцита[7]. 

 

Рис.5.5 иллюстрирует сходимость глобальных итераций (нумерация кривых 

аналогична рис. 5.3).  

a 

б 
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Рис. 5.5. Сходимость глобальных итераций. 1 – метод последовательной 

нижней релаксации, 2 – аппроксимация нелинейной зависимости 

электронной плотности от потенциала. Вариант кристаллической 

структуры вюрцита [7]. 

 

Видно, что по сравнению с вариантом кристаллической структуры сфалерита 

сходимость последовательных приближений в данном случае замедляется. 

Использование аппроксимации нелинейной зависимости электронной плотности от 

потенциала позволяет существенно (в рассмотренном случае практически на 

порядок) ускорить сходимость глобальных итераций.  

На рис.5.6 представлены зависимости суммарной концентрации электронов в 

ДЭГ от содержания Al в слое AlxGaN. Здесь величина концентрации отнесена к 

значению 10
-13

 см
-2

. Сплошная  кривая соответствует результатам численного 

моделирования, маркеры – аппроксимации экспериментальных данных [2]. Видно, 

что расчетные и экспериментальные результаты хорошо согласуются. 
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Рис. 5.6 Зависимость суммарной концентрации электронов в двумерном 

электронном газе от концентрации Al в барьерном слое. Сплошная кривая – 

численное решение, маркеры – аппроксимация экспериментальных данных [2]. 

 

В заключение, на рис. 5.7, приведем результаты расчета многослойной 

структуры, представленной на рис. 5.1. Нумерация кривых здесь аналогична рис. 

5.2а, 5.4а. В данной структуре слой GaN на поверхности барьерного слоя 

предотвращает его окисление. Роль тонкого слой AlN можно проследить на рис.5.7. 

Видно небольшое различие в распределении концентрации носителей в 

окрестности гетероинтерфейса на рис. 5.4а и 5.7. Наличие прослойки AlN приводит 

к менее выраженному прониканию электронов в барьерный слой, что способствует 

более высокой подвижности электронов в ДЭГ. При этом различие в суммарных 

концентрациях электронов незначительно. 
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Рис.5.7 Распределение потенциальной энергии (1, левая шкала)  и 

электронной плотности (2, правая шкала) поперек  многослойной 

гетероструктуры [11]. 

 

Таким образом, разработанные методы и средства численного 

моделирования позволяют оперативно проводить многовариантный анализ  

многослойных наноразмерных гетероструктур с учетом поляризационных 

эффектов. В сочетании с возможностью моделирования подвижности носителей 

заряда в таких структурах (см. далее п.5.2) это создает основу для решения ряда 

оптимизационных задач, актуальных для современной СВЧ-электроники. К таким 

задачам можно отнести синтез гетероструктур, обеспечивающих максимальную 

концентрацию при максимальной подвижности носителей (максимальную 

проводимость), обратные задачи по определению недоступных в прямом 

измерении характеристик выращенных гетероструктур на основе 

экспериментальных данных по концентрации и подвижности носителей в 

двумерном электронном газе.   

 5.1.4 Приближенная модель расчета концентрации носителей в 

гетероструктуре AlGaN/GaN 

Для приближенного расчета волновых функций электронов в потенциальной 

яме в окрестности интерфейса полупроводниковой гетероструктуры можно 
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использовать приближение Фанга-Ховарда [20], в котором волновая функция 

записывается в виде:  

     2exp2
213 bzzbz  , 

где b – нормировочная константа, а z – расстояние от барьера. Здесь принять, что в 

барьерном слое z<0, в буферном слое – z>0. Хорошей аппроксимацией 

пространственного распределения потенциала в окрестности интерфейса является 

треугольный профиль. Для треугольной потенциальной ямы константа b может 

быть записана в виде: 

31
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33
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




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здесь m
*
 - эффективная масса носителей заряда, Ns – концентрация электронов в 

ДЭГ.  

Как видно из приведенных формул, приближенный расчет волновой 

функции требует знания концентрации электронов в двумерном электронном газе. 

Эта величина также может быть рассчитана приближенно. Рассмотрим вариант 

такого расчета применительно к гетерогранице между барьерным и узкозонным 

слоями (например, AlGaN и GaN) с ненулевой поверхностной плотностью заряда 

(вюрцитная структура) [2]: 
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где   - плотность связанных зарядов на интерфейсе (данная величина получена из 

первопринципных расчетов), 21,   -  диэлектрические проницаемости слоев,  

21, dd  - толщины слоев, EF – положение уровня Ферми по отношению к краю 

зоны проводимости узкозонного слоя, 1e  - высота барьера Шоттки, CE1 - разрыв 

зон проводимости между слоями,  - проникновение края зоны проводимости 

ниже уровня Ферми на гетерогранице.  

 Последняя величина может быть приближенно определена следующим 

образом:  

sN
m

E
*
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где 0E   - нижний уровень зоны проводимости, 

3/2

*
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Два последних выражения и формула для концентрации электронов в ДЭГ 

образуют систему нелинейных уравнений, которая решается методом 

последовательных приближений.                                                                                         

5.2 Моделирование подвижности электронов в полупроводниковых 

гетероструктурах 

В предыдущем разделе были рассмотрены вопросы численного 

моделирования распределения носителей заряда в наноразмерных 

полупроводниковых гетероструктурах. Благодаря наличию потенциальных 

барьеров, ограничивается движение электронов в поперечном (нормальном к 

гетероинтерфейсам) направлении и формируется локализованная в окрестности 

интерфейса область повышенной электронной плотности - двумерный 

электронный газ (ДЭГ). Информация о концентрации электронов в ДЭГ, уровнях 

энергии и волновых функциях, особенностях гетероинтерфейса используется для 

моделирования переноса носителей заряда в плоскости, параллельной слоям 

гетероструктуры. 

Динамика электронов при этом определяется, с одной стороны,  

электрическим полем, создаваемым внешним воздействием со стороны электродов 

полупроводникового прибора (традиционно, это источник, сток и управляющий 

затвор), а также неоднородностью распределения самих носителей заряда, а с 

другой стороны, рассеянием электронов вследствие взаимодействия с колебаниями 

решетки, примесными центрами, дефектами решетки и др.    

Применительно к рассматриваемым в настоящей работе гетероструктурам 

принципиальными являются следующие механизмы рассеяния: рассеяние на 

акустических и полярных оптических фононах (колебаниях решетки), рассеяние на 

неоднородностях сплава, на дислокациях и на шероховатостях гетерограницы, 

пьезоэлектрическое рассеяние, рассеяние на заряженных центрах, локализованных 

в барьерном слое. При сильных электрических полях существенную роль играет 

также междолинное рассеяние, определяемое спецификой зонной структуры 

полупроводниковых материалов. В результате рассеяния меняются направление 
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движения (волнового вектора), а в случае неупругого взаимодействия и энергия 

(модуль волнового вектора) электрона. 

 5.2.1. Модели динамики электронов в полупроводниках 

При моделировании динамики двумерного электронного газа электроны 

обычно рассматриваются как классические частицы. Такое приближение 

справедливо, если длина свободного пробега электрона значительно меньше 

размера структуры в продольном направлении. В противном случае перенос 

носителей заряда может протекать без их рассеяния (баллистический транспорт) и 

могут стать существенными интерференционные эффекты [1, 21].  

Наиболее полное описание динамики электронов в квазиклассическом  

приближении возможно с использованием кинетического уравнения Больцмана 

[12, 22]: 


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




. 

Здесь ),,( tf kr  - зависящая от времени функция распределения электронов по 

координатам  и импульсам ( kp  ),  v  - скорость, ),( trF  - внешняя сила, 

действующая на электроны, ),( kkW - вероятность перехода из состояния k  в 

состояние k  (предполагается, что имеет место кратковременное взаимодействие, 

которое не вызывает изменения координат электрона), интеграл столкновений 

берется  по объему зоны Бриллюэна.  

В общем случае уравнение Больцмана должно решаться совместно с 

уравнениями Шредингера и Пуассона (см. предыдущий раздел), дающими 

распределение потенциала (и, следовательно, силы rF ) в системе. Однако, 

часто при расчете динамики электронов квантованием их энергетического спектра 

в поперечном направлении пренебрегают, в результате чего задача сводится к 

совместному решению уравнений Больцмана и Пуассона.  

Одним из мощных инструментов решения уравнения Больцмана является 

метод Монте-Карло. 

Согласно этому методу рассматривается движение и рассеяние отдельных 

электронов с последующим осреднением параметров по  ансамблю и вычислением 

функции распределения. С точки зрения согласования динамики электронов и 
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электрического поля, описываемого уравнением Пуассона, такой подход 

соответствует комбинации частица - сетка [23].  

Описание движения электронов в полупроводнике осуществляется на основе 

информации о зонной структуре, определяющей соотношение между энергией 

электрона и волновым вектором )(kE . Эта информация может быть получена с 

помощью первопринципных квантово-механических расчетов (моделирование на 

атомарном уровне). 

Уравнения движения электрона имеют следующий вид [23]: 

E
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. 

Первое уравнение отражает тот факт, что электрон движется с групповой 

скоростью волнового пакета, второе уравнение выражает закон изменения 

импульса. 

 Данные уравнения могут быть преобразованы к виду, традиционному для 

описания динамики классических частиц: 
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где  
*M - эффективная масса электрона, которая представляется тензором второго 

ранга: 
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 Из последнего выражения видно, что эффективная масса электрона 

пропорциональна кривизне энергетической поверхности в k-пространстве и 

отражает квантово-механическое воздействие полупроводящей среды на движение 

электрона.  

 Как правило, большая часть электронов располагается около минимальных 

уровней  энергии в каждой энергетической зоне. В таких случаях,  функция )(kE  
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может быть приближена квадратичной. Тогда эффективная масса электрона 

становится постоянной величиной: 
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В последнем случае энергия электрона может рассматриваться как классическая 

кинетическая энергия: 
22
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E k . 

 Вдали от минимума энергетической зоны параболическое приближение 

теряет точность, однако возможно использование следующих аппроксимаций, 

учитывающих эффект непараболичности [23]: 
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где gE - расстояние между валентной зоной и зоной проводимости в 

энергетическом пространстве (ширина запрещенной зоны). При этом скорость 

электрона связана с волновым вектором следующим образом: 

)21(* Em 
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. 

Движение частицы периодически прерывается элементарными актами 

рассеяния, в результате которых мгновенно меняется направление движения 

(направление волнового вектора) и, при неупругих взаимодействиях, энергия 

(модуль волнового вектора) электрона. 

Каждый механизм рассеяния характеризуется вероятностью рассеяния, 

зависящей от энергии электрона, и правилом изменения волнового вектора в 

результате рассеяния.  

Логику метода Монте-Карло можно описать следующим образом. Зная 

энергию электрона в текущий момент времени и полную вероятность рассеяния, 

можно определить время свободного пробега электрона, динамика которого 

описывается приведенными выше уравнениями. Далее на основе соответствующих 

вероятностей выбирается конкретный механизм рассеяния и разыгрывается 

элементарный акт рассеяния - вычисляется новое значение энергии, модуль нового 
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волнового вектора и, исходя из индикатрисы рассеяния, выбирается новое 

направление волнового вектора.  

Интенсивность рассеяния выражается следующим образом [12, 24]: 

))()(())(,(
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krkk , 

где sV  - рассеивающий потенциал, дельта-функция выражает закон сохранения 

энергии, w - поглощенная (верхний знак) или выделенная (нижний знак) в 

процессе рассеяния энергия.  

 Конкретные выражения для интенсивности различных видов рассеяния 

электронов в гетероструктурах будут приведены ниже. 

 Наряду с полным описанием динамики носителей заряда на основе 

уравнения Больцмана в практике математического моделирования используются и 

более простые («гидродинамические») модели, вытекающие из общего 

кинетического уравнения.  

Наиболее простым подходом является использование уравнения 

неразрывности носителей заряда: 

0
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n
, 

Здесь n  - концентрация электронов, Q  - поток электронов, состоящий из 

дрейфовой и диффузионной составляющих: 

nDnQ  v  

Скорость электронов связана с потенциалом электрического поля 

следующим образом: 

v , 

где   - подвижность электронов, при определении которой интегрально 

учитываются различные виды рассеяния, ее ограничивающие. Для вычисления 

коэффициента диффузии D  обычно используется соотношение  Эйнштейна: 

e

Tk
D B , где, как и ранее Bk  - постоянная Больцмана, T - температура, e   – 

заряд электрона.  
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 Уравнение неразрывности дополняется уравнением Пуассона для 

распределения электростатического потенциала )(r : 

))()()(()( rrr nNNe AD   , 

где Ad NN ,  - концентрации донорной и акцепторной примесей,   - 

диэлектрическая постоянная материала.  

 В слабых электрических полях подвижность практически постоянна, 

дрейфовая скорость электронов пропорциональна напряженности электрического 

поля   (закон Ома). При усилении электрического поля энергия электронов 

возрастает и становится существенным эффект рассеяния электронов из 

центральной в сателлитные долины, где эффективная масса электрона существенно 

выше. В результате подвижность значительно уменьшается. 

 Самосогласованное решение уравнений неразрывности и Пуассона 

описывает динамику электронов в системе. Недостатком этой модели является 

пренебрежение временами релаксации импульса и энергии (считается, что скорость 

подстраивается к электрическому полю мгновенно v ). Такое ограничение 

может быть существенным при моделировании наноразмерных структур, когда 

время релаксации становится соизмеримым с характерными временами динамики 

электрона в системе. С целью учета этих эффектов применяются 

модифицированные гидродинамические модели, включающие, наряду с 

уравнениями неразрывности и Пуассона, уравнения переноса импульса и энергии 

хаотического движения (температуры) электронов [23]:  
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Здесь v  , e  - времена релаксации импульса и энергии, sw  - тепловая энергия 

решетки  Tkw Bs
2

3
 .  

 «Гидродинамические» уравнения часто записывают для каждой из 

неэквивалентных долин, различающихся эффективной массой электрона. 

Применительно к рассматриваемым гетероструктурам ряд важных результатов был 
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получен с использованием квазидвумерной  модели [25], которая включает 

одномерные (вдоль доминирующего продольного направления) 

«гидродинамические» уравнения для узкозонного и широкозонного материалов с 

источниковыми слагаемыми, описывающими обмен между слоями.  Такой подход 

позволяет достаточно экономично учитывать поперечный пространственный 

перенос носителей заряда в гетероструктурах.  

 В следующем разделе  рассматривается один из ключевых вопросов 

моделирования динамики носителей заряда в полупроводниковых 

гетероструктурах, связанный  с определением коэффициента подвижности. Будут 

изучаться наиболее перспективные на сегодняшний день структуры AlGaN/GaN. 

 5.2.2 Расчет подвижности электронов в гетероструктурах. 

Как уже отмечалось, при расчете подвижности необходимо учитывать 

различные механизмы рассеяния, такие как рассеяние на акустических и полярных 

оптических фононах (колебаниях решетки), рассеяние на неоднородностях сплава, 

на дислокациях и на шероховатостях гетерограницы, пьезоэлектрическое 

рассеяние, рассеяние на заряженных центрах, локализованных в барьерном слое.  

Наиболее простой подход основан на использовании понятия времени 

релаксации, т.е. времени установления равновесного состояния после прекращения 

действия внешних полей. Так как установление равновесного состояния 

происходит за счет столкновений и при этом достаточно нескольких соударений, 

то время релаксации примерно соответствует времени свободного пробега 

электрона.  

Суммарное время релаксации τ, определяющее подвижность электронов, 

определяется по правилу Матиссена: 


i

l 11 , 

где l  – время релаксации по импульсу для l-го механизма рассеяния. Подвижность 

электронов выражается через время релаксации следующим образом: 

*me  . 

 Обоснование такого подхода дается, например, в [11]. В гетероструктурах 

AlGaN/GaN концентрация эектронов в двумерном электронном газе достигает 

значений  порядка Ns = 10
13

 см
-2

 (см. предыдущий раздел). ДЭГ является, таким 
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образом, вырожденным вплоть до комнатных температур, так как выполняется 

условие 2* TkmN bs  . Для таких концентраций ДЭГ энергия Ферми 

значительно превышает величину тепловой энергии Tkb . Так как в вырожденном 

электронном газе рассеиваются только те электроны, энергия которых отличается 

от энергии Ферми не более чем на Tkb , то можно считать, что энергия 

рассеивающихся электронов одинакова и время релаксации по импульсу не зависит 

от энергии. Это обусловливает справедливость приведенных выражений для 

подвижности.  

В приближенных моделях данного класса используется следующая 

информация, поступающая из расчета распределения электронов в 

гетероструктуре: концентрация электронов в ДЭГ и параметр b, входящий в 

аппроксимационное выражение для волновой функции      2exp2
213 bzzbz   

(функция Фанга-Ховарда, см. гл.1, 0z , здесь и далее в этом разделе 0z  

соответствует границе барьерного и активного слоев). Для его определения можно 

использовать формулу 

31
2*

2

33










s

sNem
b






. Самосогласованное решение 

уравнений Шредингера и Пуассона (см. предыдущий раздел) показало, что 

функция Фанга-Ховарда очень хорошо согласуется с вычисленной главной 

волновой функцией (при условии использования в выражении для параметра b 

вычисленной концентрации Ns). Это свидетельствует об обоснованности 

применяемого подхода. 

Выражения для определения времени релаксации, соответствующего  

каждому из механизма рассеяния (в системе СГС) приведены ниже согласно работе 

[11].  

 5.2.3 Механизмы рассеяния 

     Рассеяние на акустических фононах 

 

Время релаксации электронов при рассеянии на акустических фононах 

вычисляется на основе теории деформационного потенциала: 
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    



 0

2

3

2*

cos1
16

31
dqS

c

Tbkam

L

bC

DP 
, 

где ca  - константа потенциала деформации, cL – продольная постоянная упругости, 

 2sin2 Fkq   - изменение волнового вектора электрона при рассеянии, 

sF Nk 2  - модуль вектора Ферми, S(q) - экранирующий множитель: 

 
 

 3
22

8

398

qb

qbqbb
qq

q
qS

s





 , 

22*2 ss emq  . 

   Рассеяние на полярных оптических фононах  

Интенсивность рассеяния электронов на полярных оптических фононах 

существенно зависит от температуры. При низких температурах вкладом этого 

механизма рассеяния можно пренебречь, тогда как при комнатной температуре он 

является доминирующим и в значительной мере определяет итоговую подвижность 

электронов. 

Рассеяние на оптических фононах не является упругим, поэтому 

приближение времени релаксации в этом случае является несправедливым. 

Однако, если энергия оптических фононов 0  значительно превышает тепловую 

энергию Tkb  (для GaN 0  = 90.5 мэВ), то в качестве времени релаксации для 

вычисления подвижности можно брать характерное время поглощения фонона: 

 
 

y

yk

kNGme

PO





exp1
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121
2

0
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 30
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kbkbb
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


  - форм-фактор, 

TkmNy Bs
*2 , 0

* 111     - приведенная диэлектрическая 
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проницаемость,   и 0  - высокочастотная и статическая диэлектрические 

проницаемости, соответственно.  

        Пьезоэлектрическое рассеяние 

 В полупроводниках, обладающих пьезоэлектрическими свойствами, 

продольные акустические фононы приводят к появлению пьезоэлектрического 

потенциала, который рассеивает носители заряда. Выражение для времени 

релаксации при пьезоэлектрическом рассеянии имеет вид [11]: 

TLPE 

111
 , 

здесь  

   







 0
,
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,
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dqfqqS

k

Tk
TL

TLB

TL 
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13

4 2

*
2

14
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m
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
 , 

h14 –компонента пьезоэлектрического тензора и cL - поперечная компонента 

тензора упругости, fL(q), fT(q) – безразмерные форм-факторы для продольных и 

поперечных фононов: 

 
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.                           

       Рассеяние на удаленных заряженных центрах 

 Как отмечалось ранее, для гетероструктур рассматриваемого класса 

характерно отделение области повышенной концентрации электронов (двумерного 

газа) от области легирования. Это позволяет избежать прямого рассеяния на 

заряженных центрах и способствует повышению подвижности. Однако, в случае 

легирования барьерного слоя возможно рассеяние электронов  на ионизированных 

донорах в барьере.  Время релаксации при рассеянии на удаленных 

заряженных центрах описывается выражением: 
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где N(z) – описывает распределение легирующей примеси (для заряда на 

гетерогранице N(z)=N0(0)), F(q,z) – форм-фактор. Выражение для форм-фактора 

при z0 (барьерный слой) имеет вид: 

 
 

 zq
qb

b
zqF 


 exp,

3

3

. 

Для z>0 возможны два варианта: 
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    Рассеяние на дислокациях 

Вследствие значительного рассогласования постоянных решеток AlGaN и 

GaN с подложкой (сапфиром), плотность дислокаций Ndisl, проходящих через ДЭГ, 

может достигать величины 10
10

 см
-2

. Время релаксации при рассеянии на 

дислокациях описывается выражением: 

 




 





 0
2223

22*21

sFs

dislL

disl qq

d

k

Nem


, 

где kF – модуль волнового вектора на поверхности Ферми и ρL – линейная 

плотность заряда дислокации. Если все акцепторные состояния на дислокации 

заполнены, то 0ceL  , где c0 – постоянная решетки GaN в направлении (0001).  

   Рассеяние на неоднородностях сплава 

 В твердом растворе AlGaN вследствие случайного характера распределения 

бинарных компонент AlN и GaN мольный состав х может случайно меняться по 

образцу. Так как ширина запрещенной зоны Eg зависит от мольной концентрации 

алюминия х, то появляется случайная модуляция Eg, что приводит к рассеянию 

носителей заряда. В исследуемых гетероструктурах рассеиваются только те 

электроны, которые проникают в AlGaN вследствие конечной высоты 
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потенциального барьера. Аппроксимация волновой функции формулой Фанга-

Ховарда в этом случае неприменима, так как она получена для бесконечно 

высокого потенциального барьера. Поэтому для расчета времени релаксации 

отдельно находится часть волновой функции электронов  z' , проникающая в 

барьер. Время релаксации находится из выражения: 

 
 


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0 4
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2* )(11
dzz

Exxm c
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, 

где cE  - потенциал рассеяния, равный разности запрещенных зон AlN и GaN,  - 

объем элементарной ячейки, x – мольная доля Al в барьере.  Часть волновой 

функции, приходящаяся на барьерный слой AlGaN может быть приближенно 

описана следующим выражением: 
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   Рассеяние на шероховатостях гетерограницы 

 Наличие шероховатости гетерограницы приводит к изменению ширины 

квантовой ямы, и, следовательно, к изменению положения энергетических 

уровней. Данная флуктуация потенциала приводит к рассеянию носителей заряда. 

Вклад этого механизма рассеяния сильно зависит от технологического 

совершенства гетероструктур. Время релаксации при рассеянии на шероховатостях 

гетерограницы определяется выражением: 
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где  - размер шероховатости,  - корреляционная длина между неровностями. 

Ниже на рис. 5.8, 5.9 приведены результаты сравнения расчетных и 

экспериментальных данных для гетероструктуры, приведенной на рис. 5.1. 

Используемые в  расчетах параметры материала AlxGa1-xN задавались согласно 

[11]. Они  приведены в таблице 5.1. 
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          Таблица 5.1.    

Параметры, использованные в  расчетах концентрации и подвижности 

Высокочастотная 

диэлектрическая проницаемость 
47.5  

Низкочастотная диэлектрическая 

проницаемость 
4.10 s  

Энергия продольных оптических 

фононов, мэВ 
5.900   

Плотность, г/см 1.6  

Скорость акустических фононов, 

см/с 

51059.6 u  

Пьезоэлектрическая постоянная, 

SGSV/см 
300105 7

14 h  

Деформационный потенциал, эВ 2.9Ca  

Постоянная упругости, Дин/см
2
 121066.2 Lc , 11102.6 Tc  

Объем единичной ячейки, см
3
 231028.2 

 

Ширина запрещенной зоны, эВ     )1(42.3113.6 xxxxxEg   

Эффективная масса электрона 
0

* 22.0 mm   

 

На рисунках представлены зависимости подвижности от концентрации 

носителей в ДЭГ при различных температурах (рис. 5.8 а, б) и зависимость 

подвижности от температуры при концентрации 10
13

 см
-2 

(рис. 5.9). Ясно, что здесь 

необходимо применение подгоночных процедур, поскольку ряд параметров 

(например, концентрация дислокаций, данные по шероховатости интерфейса) не 

поддаются прямому измерению. Однако применение фитинга в одной точке (при 

одной температуре и концентрации)  позволяет достаточно точно воспроизвести 

экспериментальные зависимости в исследуемом диапазоне температур и 

концентраций. 
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Рис. 5.8.а Зависимость подвижности от 

концентарции при температуре 300 К. 

Рис.5.8. б Зависимость подвижности от 

концентарции при температуре 77 К. 
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Рис. 5.9 Зависимость подвижности  от 

температуры. 

 

5.3 Некоторые задачи оптимизации полупроводниковых наноструктур 

Выходные характеристики гетероструктурных полупроводниковых СВЧ 

устройств определяются многообразием факторов, отражающих как 

конструктивные, так и технологические особенности изготовления 

гетероструктуры. При этом чрезвычайно важен выбор оптимальных параметров, 

определяющих основные электрофизические характеристики структуры – 

концентрацию и подвижность носителей заряда в каналах двумерного 

электронного газа (ДЭГ) [26].  
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Вопросам математического моделирования таких структур рассмотрены в 

предыдущих п.5.1, п.5.2.  

В [27] были представлены результаты многовариантного компьютерного 

анализа плотности и подвижности электронов в наноразмерных нитридных 

гетероструктурах AlGaN/GaN [28-30]. Вычислительные эксперименты позволили 

определить зависимости концентрации и подвижности электронов от мольного 

содержания алюминия в барьерном слое, от толщины барьерного слоя, а также 

ряда других характеристик.  В ряде случаев построение таких зависимостей дает 

возможность определить оптимальные с точки зрения концентрации и 

подвижности носителей параметры гетероструктуры. Однако часто возникают 

задачи, когда необходимо применение аппарата теории оптимизации. К таким 

задачам относятся, в частности, обратные задачи по определению недоступных в 

прямом измерении характеристик выращенных гетероструктур на основе 

экспериментальных данных по концентрации и подвижности носителей в 

двумерном электронном газе. Другой класс задач связан с определением 

оптимального легирования барьерного слоя, состоящего из ряда подслоев. Такие 

задачи можно классифицировать как задачи оптимального управления. Этот класс 

задач рассматривается в настоящем разделе.   

 5.3.1 Постановка задачи оптимизации   

    Математическая модель, описывающая распределение электронов в 

наноразмерных полупроводниковых гетероструктурах подробно описана в п.5.1. 

Здесь для придания цельности материалу приведем основные уравнения в 

одномерной постановке, которая используется далее в оптимизационной задаче:  

)()()()
)(

1
(

2 *

2

zEzzV
dz

d

zmdz

d






         (5.6) 





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l
ll zzznzue

dz

d
z
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d

1

)())()(())(( 


                 (5.7) 

)()()( zEzezV c                   (5.8) 





I

i

ii znzzn
1

2 )())(()(          (5.9) 
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*

Tk

EEzm
Tkzn

B

iF
Bi





       (5.10) 

Здесь iE  и )(zi  - энергетические уровни и соответствующие им волновые 

функции, I - количество значимых с точки зрения вклада в сумму (5.9) 

энергетических уровней, )(zn - электронная плотность, – постоянная Планка, e   

– заряд электрона, *m  - эффективная масса электрона, FE  - положение уровня 

Ферми, )(z - электростатический потенциал,  l  - плотности зарядов на 

интерфейсах,   - дельта функция, lz - местоположения интерфейсов, M - число 

гетероинтерфейсов с наличием нескомпенсированного заряда,   - диэлектрическая 

постоянная материала, cE  - сдвиг зоны проводимости материала, Bk  - 

постоянная Больцмана, T - температура. Функция )(zu описывает распределение 

легирующих примесей в системе, )(zu = )()( zNzN Ad  , где )(),( zNzN Ad  - 

концентрации донорной и акцепторной примесей. Эта функция в дальнейшем 

будет рассматриваться как функция управления. В модели (5.6) - (5.7) отражен тот 

факт, что значения *m ,   и cE  могут меняться от слоя к слою, т.е. функции 

)(* zm , )(z ,  )(zEc  принадлежат классу кусочно-постоянных функций. При 

этом температура в гетероструктуре предполагается постоянной.  

На границах системы (z=0, z=L, где L – общая толщина слоистой структуры) 

должны выполняться условия равенства нулю волновых функций: 

0)0(  , 0)( L                                              (5.11) 

На левой границе (z=0), задается потенциальный барьер b , образующийся в 

приконтактном слое полупроводника, граничащего с металлом (барьер Шоттки). 

Кроме того, возможно задание смещения s  вследствие приложенного 

напряжения. На правой границе (z=L) естественным условием является отсутствие 

электрического поля. Таким образом, граничные условия для уравнения Пуассона 

имеют вид:  

sb  )0( , 0)(  L                                              (5.12) 

Перейдем к формулировке задачи оптимизации. Наиболее важным 

показателем эффективности гетероструктуры является концентрация электронов в 
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канале двумерного электронного газа 
L

dzznN
0

)( .  Как показано в п.3, эта 

величина во многом является определяющей и для подвижности электронов. Хотя 

с ее увеличением подвижность, как правило, падает, однако произведение 

концентрации и подвижности (проводимость) возрастает (см. п.3), что определяет 

стремление к повышению  N . Необходимо отметить, что излишнее повышение 

концентрации может сопровождаться и негативными эффектами [26]. Поэтому 

разумным компромиссом обычно является задание желаемого уровня 

концентрации электронов  
*N . Основным управляющим фактором, 

воздействующим на величину 
*N , является концентрация доноров в барьерном 

слое – области, расположенной слева от  канала двумерного электронного газа 

(рис. 5.1),  bzz 0 , bz - толшина барьерного слоя, Lzb   . 

При этом естественным является желание уменьшить средний уровень 

легирования (или суммарную ионизацию) барьерного слоя, чтобы избежать 

излишнего рассеяния электронов на удаленных заряженных центрах. Таким 

образом, минимизируемый функционал можно записать в виде: 

22* ))(())(()(   dzzuwNdzznuJ ,           (5.13) 

где w - весовой параметр. Здесь и далее пределы интегрирования опущены, так как 

всегда подразумевается интегрирование по всей области.  

Могут существовать технологические ограничения по легированию отдельных 

слоев при выращивании гетероструктуры, что отражается в ограничениях на 

функцию управления: 

  )()(0 zzu  .                     (5.14) 

Здесь левое ограничение означает, что рассматривается только донорное 

легирование. Это связано с тем,  что именно такое легирование способствует 

повышению концентрации электронов в двумерном электронном газе. Кроме того, 

при стремлении к достижению максимально высокой концентрации электронов 

(высокое значение 
*N ) может стать существенным ограничение на состояние 

системы: 

 ,0)(  fEzV bzz  .        (5.15) 
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Данное ограничение позволяет избежать образования параллельного канала 

проводимости в барьерном слое ( bzz  ). 

 Таким образом, задача нахождения распределения легирующей примеси в 

барьерном слое, обеспечивающего заданную концентрацию электронов в канале 

ДЭГ (проводимости) поставлена. Ясно, что во многих случаях решение такой 

задачи не является единственным – заданной концентрации электронов могут 

соответствовать различные варианты легирования. В этом случае проектировщику 

гетероструктуры могут быть представлены на выбор различные варианты. При 

этом выбор существенно сужается за счет введенных ограничений и влияния 

второго слагаемого функционала.     

 5.3.2 Вычислительные алгоритмы 

Для решения задачи (5.6) - (5.10) эффективными являются градиентные 

методы. 

Остановимся на вопросе определения градиента функционала. Здесь 

принципиальным моментом является установленная ранее связь между 

приращениями  электронной плотности и потенциала (см. [7,14]): 

)()()( zzRzn   ,          







i

B

iF

B

iF

i

Tk

EE

Tk

EE

z
ezm

zR

)exp(1

)exp(

)(
)(

)( 2

2

*




       (5.16) 

Применение выражения (5.16) существенно упрощает процедуру определения 

градиента функционала. Вывод этих формул   подробно приведен в [7]. 

 Следуя традиционной схеме вариационного исчисления, домножим 

уравнение (5.7) на множитель Лагранжа )(zp , проинтегрируем результат по 

толщине гетероструктуры и прибавим к функционалу (5.13): 

dzzzznzue
dz

d
z

dz

d
zp

dzzuwNdzznuJ

l
ll







))())()(())((()(

))(())(()( 22*





            (5.17) 

Вариация функционала (5.17) выглядит следующим образом: 
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dzznzue
dz

d
z

dz

d
zp

dzzuwUdzznNNJ

))()(())((()(

)(2)()(2 *















,                     (5.18) 

где  dzzuU )( .  

Проинтегрируем слагаемое dz
dz

d
z

dz

d
zp ))((()(


  дважды по частям. С учетом 

граничных условий (5.12) получим: 

)()()()0()0()0())(())((()( LLL
dz

dp

dz

d
pdz

dz

dp
z

dz

d
dz

dz

d
z

dz

d
zp 





    

Тогда (5.18) примет вид: 
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или с учетом выражения (5.16): 

)()()()0()0()0())()()(()())((

)(2)()()(2 *

LLL
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dp
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d
pdzzzRzuezp
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Составим систему уравнений для определения )(zp  так, чтобы занулить все 

слагаемые, не содержащие u : 

 0))((2)()())(( *  NNzRzpzeR
dz

dp
z

dz

d
                   (5.19) 

0)0( p , 0Lz
dz

dp
                   (5.20) 

В результате получим следующее выражение для вариации функционала: 

dzzuwUezpdzzuwUdzzuezpJ )()2)(()(2)()(                (5.21) 

Отсюда определяется искомый градиент функционала:  

wUezpJ 2)(  .                                 (5.22) 

Отметим, что такой подход позволил построить сравнительно простую задачу 

(5.19)-(5.20) для определения функции )(zp . Таким образом, при определении 

градиента функционала удается избежать решения наиболее вычислительно 

затратной спектральной задачи. Это позволяет построить эффективные алгоритмы 

оптимизации, основанные на градиентных методах. В частности, результаты, 
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представленные в следующем разделе, были получены с использованием 

простейшего метода градиентного спуска. Учет ограничений в настоящей работе 

проводился с использованием проекции решения на каждой итерации на 

подпространство ограничений.  

Подробнее опишем методику вычисления оптимального шага спуска. 

Согласно логике точного линейного поиска шаг выбирается из условия 

минимизации нового значения функционала.  

Пусть на некотором шаге оптимизационного процесса определена функция 

)(zu , направление дальнейшего спуска )(zu  и требуется вычислить шаг в этом 

направлении из условия ))()((min zuzuJ 


 .  

Не ограничивая общности, будем рассматривать следующий функционал 

2*))(()(   NdzznuJ . Запишем функционал в виде 

2*)))((( NdzuunJ   и, удерживая линейные слагаемые, получим 

2*2* ))))(((())))((( NdznunNdzunJ    

Дифференцирование по   дает 





ndzNdznun

J



))))((((2 *

 

Отсюда, приравнивая производную нулю, получаем выражение для 

определения шага спуска: 






ndz

dzznN






))((*

.         (5.23) 

Выше была отмечена связь между приращениями n  и  : 

)()()( zzRzn   . Таким образом, достаточно получить уравнение для 

определения  . Оно может быть получено с использованием линейной теории 

чувствительности. Запишем уравнение (5.7) с учетом приращений u ,  : 

 




M

l
ll zzRnuue

dz

d

dz

d

1

)()()
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( 


 .                                   

Вычитая уравнение (2), получим уравнение, связывающее приращения: 

)()( 


 Rue
dz

d

dz

d
 .                            (5.24) 
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Данное уравнение дополняется  граничными условиями: 

0)0(  , 0)(  L                                   (5.25) 

Таким образом, для нахождения приращения )(z  по известному 

приращению )(zu , и соответственно, для определения шага спуска согласно  

(5.23), требуется решить задачу (5.24)-(5.25), аналогичную по типу задаче (5.19)-

(5.20) для  нахождения градиента функционала.  В результате на каждом шаге 

оптимизационного процесса, осуществляемого с использованием градиентных 

методов,  решаются три задачи - прямая задача (5.6)-(5.10) для нахождения 

значения функционала, сопряженная задача  (5.19)-(5.20) для нахождения 

градиента функционала и  задача чувствительности (5.24)-(5.25) для нахождения 

шага спуска.                                     

5.3.3 Результаты расчетов 

 В качестве примера рассмотрим гетероструктуру  Al0.25GaN/GaN с 

суммарной толщиной барьерного слоя Al0.25GaN  30 нм. Для иллюстрации влияния 

легирующих добавок приведем варианты нелегированного и равномерного 

легированного донорной примесью барьерного слоя. Исходные данные для 

расчетов следующие.  

 Эффективные массы электрона принимались равными 0.228 0m  для обоих 

материалов ( 0m  - масса покоя электрона).  Плотность заряда на гетероинтерфейсе 

Al0.25GaN/GaN, определенная из квантово-механического расчета на атомарном 

уровне, равна 1.08*10
13

e Кл/см
2
. Необходимо отметить, что здесь рассматривается 

задача с одним каналом двумерного электронного газа, или, другими словами, с 

одним гетероинтерфейсом, на котором образуется нескомпенсированный заряд                

( 1M ).
 
Остальные данные определялись по аппроксимационным зависимостям 

[2]: 

0)28.1003.0()(   xxAlGaN , 

))0()((7.0)( ggc ExExE  , 

)1(42.313.6)( xxxEg  , 

84.03.1  xe b , 
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здесь 0 - электрическая постоянная x - мольная доля алюминия в сплаве AlGaN. 

Использовалось граничное условие для потенциала b )0( . 

 Результаты расчетов приведены на рис. 5.10.  
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Рис. 5.10. Распределение потенциальной энергии (левая шкала)  и 

электронной плотности (правая шкала) по толщине гетероструктуры для 

случаев нелегированного (штриховые кривые 1, 3) и легированного 

(сплошные кривые 2, 4) барьерного слоя [27]. 

 

Здесь показаны распределения по толщине гетероструктуры потенциальной 

энергии (кривые 1,2 отнесены к левой шкале) и электронной плотности (кривые 3,4 

отнесены к правой шкале). Штриховые кривые соответствуют нелегированному 

барьерному слою, сплошные – легированному донорами с постоянной 

концентрацией 2.61*10
18

 см
-3

. Отметим, что это максимально допустимая 

концентрация, при которой удовлетворяется ограничение (10). Видно, что во 

втором случае профиль потенциальной энергии приобретает характерный изгиб и 

повышается электронная плотность. В результате слоевая концентрация 

электронов в двумерном электронном газе N возрастает с 8.3*10
12

 до 1.27*10
13

 см
2
. 

 Перейдем к результатам решения задач оптимизации. Пусть требуется 

обеспечить концентрацию электронов в ДЭГ 
*N = 1.1 *10

13
 см

-2
. Решение будем 

искать в классе кусочно-постоянных функций, что соответствует  технологии 

2 

1 

1

2 

4

2 
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изготовления слоистых структур. Рассмотрим барьерный слой, состоящий из пяти 

подслоев. Для наглядности все свойства слоев за исключением легирования будем 

считать одинаковыми, включая их толщины. Наложим следующие ограничения.  

1810*5.20  mu см
-3

, m=1,..4,  05 u . 

Последнее ограничение означает запрет на легирование непосредственно 

прилегающего к каналу ДЭГ слоя. Это довольно распространённое ограничение, 

которое диктуется необходимостью уменьшить рассеяние на неодноростях сплава. 

Такие подслои обычно называются спейсерами.  

Результаты решения этой задачи представлены на рис. 5.11.  Здесь 

штриховая кривая (правая шкала 1) иллюстрирует полученное в результате 

оптимизации распределение легирующей примеси по подслоям барьерного слоя 

ddd nznzx /)()(   (концентрация примеси отнесена к значению dn = 5*10
18

 см
-3

), 

маркированная кривая (отнесена к левой шкале) показывает профиль 

потенциальной энергии, а сплошная кривая (отнесена к правой шкале 2) 

демонстрирует распределение электронной плотности в гетероструктуре 

(плотность отнесена к значению 10
20

 см
-3

).  
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Рис.5.11 Распределение оптимальной концентрации доноров (штриховая кривая 

1, правая шкала 1), потенциальной энергии (маркированная кривая 2, левая 

шкала) и  электронной плотности (сплошная кривая 3, правая шкала 2) по 

толщине гетероструктуры [27]. 

1 

2 3 
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Далее рассмотрим несколько видоизменную задачу. Снимем ограничения на 

подслои 1-4, но при этом усилим влияние второго слагаемого в минимизируемом 

функционале, т.е. попытаемся достигнуть заданной концентрации электронов при 

минимальной суммарной ионизации барьерного слоя. Результаты решения 

показаны на рис. 5.12. Обозначения аналогичны рис. 5.11. Видно, что наиболее 

выгодным оказывается максимальное легирование слоя 3. При этом суммарная 

ионизация барьерного слоя U во втором варианте оказывается существенно ниже, 

чем при относительно равномерном легировании.  
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Рис. 5.12 Распределение оптимальной концентрации доноров 

(штриховая кривая 1, правая шкала 1), потенциальной энергии 

(маркированная кривая 2, левая шкала) и  электронной плотности 

(сплошная кривая 3, правая шкала 2) по толщине гетероструктуры [27]. 

Этот результат согласуется с современной тенденцией к переходу от 

однородного профиля легирования к планарному  -легированию в технологиях 

изготовления полевых транзисторов [1, 26].  

Таким образом, разработанные средства математического моделирования и 

оптимизации могут применяться в технологиях изготовления полевых 

транзисторов. Представленные в работе подходы создают условия для 

автоматизированного проектирования таких структур.                                                               

1 

2 

3 
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5.4 Теоретико-множественное представление трехуровневой модели 

распределения носителей заряда в полупроводниковых гетероструктурах  

  В данном пункте представлена структура многомасштабной композиции для 

трехуровневой модели распределения носителей заряда  в двухслойной 

полупроводниковой гетероструктуре AlvGa1-vN/GaN. Концептуально в физико-

математической модели выделено три основных масштабных уровня Для более 

детального описания в структуру МК  введены дополнительные уровни.                                                                                                                                            

 На рис. 5.13 представлена структура многомасштабной композиции для 

расчета  концентрации и подвижности носителей заряда в двухслойной 

полупроводниковой гетероструктуре AlvGa1-vN/GaN  с учетом  механизмов 

рассеяния электронов. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис.5.13 Структура многомасштабной композиции для расчета свойств 

гетероструктуры AlvGa1-vN/GaN
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Теоретико-множественное описание базовой модели-композиции 

«ГЕТЕРОСТРУКТУРА» (   
 ) 

 Рассматривается полупроводниковая наногетероструктура с заданной 

последовательностью слоев и их  числом, толщинами и химическим составом. 

 Множество данных: 

               

состоит из подмножества входных данных     и множества  выходных данных 

(внутренних характеристик модели)    . 

Множество входных данных      включает следующую информацию: 

Суммарное число  слоев  в гетероструктуре; 

-По каждому слою: 

    -толщина;  

    -химический состав слоя и его кристаллографические характеристики, в том 

числе: 

         - хим. формула       
    

 
    

 : 

         -  (число различных сортов атомов в хим. формуле      
    

 
    

 );  

          -   (число атомов  -го сорта  в химической формуле  ); 

          -  (Федоровская группа симметрии); 

          - (число базисных атомов в конфигурации     ); 

          -
   

       
  (позиции Уайкова для базисных атомов);                                                                                     

- Свойства слоев (определяются из соответствующей модели-композиции  «СЛОЙ» 

(  
  )); 

-Потенциал на внешней границе; 

-Шероховатости гетероинтерфейсов; 

-другое.  

Множество  выходных данных (внутренних характеристик модели)    , 

состоит из: 

Фазовых переменных       
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 -параметры, по которым может проводиться оптимизация материала 

 (характеристик) слоя        
 
    

 
  (например уровни  легирования 

слоев). 

Данные свойства   : 

              -Электронная плотность                                                                                                                   

     -Концентрация электронов в выделенных каналах;                                                    

     -Подвижность электронов. 

Множество методов обработки данных     , состоит из  моделей и алгоритмов:  

                                       . 

Множество моделей      состоит из: 

    - статические: 

     -расчет подвижности электронов; 

             -расчет концентрации электронов в выделенных каналах  (двумерный 

электронный газ). 

 

    – динамические: 

 Изменение оптимизируемых параметров (уровни легирования слоев) 

согласно логике оптимизационного алгоритма (минимизация функционала).  

 

Множество алгоритмов    , включая: 

    -подмножество алгоритмов используемых только на   -м уровне масштаба 

(локальные): Специальные численные алгоритмы получения  самосогласованного 

решения  уравнений Шредингера-Пуассона. 

            - подмножество алгоритмов используемых  на нескольких уровнях         

(универсальные): методы решения спектральных задач, включая   QR-алгоритм и 

др., методы решения уравнения Пуассона 

 Множество событий  и их реализаций по процессам:           
      

     
 

, 

       
           

  . …. 

Множество событий    , связанных с началом или окончанием вычислительного 

процесса. 

Множество реализаций событий по процессам  определяется для экземпляров 

базовой композиции БК:    
      

     
 

,        
         

 ,.. 
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Множество реализаций методов обработки данных     
 =     

     
 

 

определяется для экземпляров БК в соответствии с конкретной задачей. 

Теоретико-множественное описание базовой модели-композиции 

«Статистический ансамбль» (   
 ) 

 Рассматривается статистический ансамбль модельных электронов, 

движущихся в электрическом поле, создаваемым разностью электростатического 

потенциала на электродах, смещением потенциала на затворе, а также самими 

носителями заряда. Непрерывное движение электронов чередуется с актами 

рассеяния, обусловленными различными механизмами с вероятностями рассеяния, 

зависящими от энергии носителей.  

Множество данных: 

               

состоит из подмножества входных данных     и множества  выходных данных 

(внутренних характеристик модели)    . 

Множество входных данных включает следующую информацию: 

Зонная структура, выражаемая зависимостью энергии электрона от волнового 

вектора     . Как отмечалось выше, наличие такой зависимости позволяет 

определить эффективную массу электрона, что упрощает расчет динамики 

носителей заряда в системе.  Информация о зонной структуре поступает с уровня 

квантово-механического моделирования (первопринципные расчеты).  

Равновесное распределение электронов по пространству и по энергетическим 

уровням,                 , где   - номер энергетического уровня,    - количество 

учитываемых энергетических уровней. 

Интенсивности различных видов рассеяния электронов,      , m=1,…,nm, где m - 

номер механизма рассеяния, nm - количество учитываемых механизмов рассеяния. 

Информация о равновесном распределении электронов в системе и об 

интенсивностях рассеяния электронов поступает с уровня расчета 

гетероструктуры. 

Индикатрисы рассеяния для различных механизмов рассеяния      ,   - угол 

между волновыми векторами электрона до и после акта рассеяния 
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Значения электростатического потенциала на границах области (электродах и 

затворе)       . 

Множество выходных данных             - внутренних характеристик 

модели, состоит из: 

- фазовых переменных   , включающих координаты и импульсы (скорости)   

электронов статистического ансамбля: 

                      ;  

- данных - свойств      , включающих установившееся распределение электронов в 

системе        распределение электростатического потенциала в системе        

значения электрического тока на электродах   . 

Множество методов обработки данных     , состоит из  моделей и алгоритмов:   

                                       . 

Множество моделей      состоит из: 

- статических моделей, включая: - модель для расчета электрического поля по 

текущему распределению электронов в системе (уравнение Пуассона); 

- модель для расчета электрического тока на электродах;- динамической модели, 

задаваемой уравнениями динамики модельных электронов и моделями 

элементарных актов рассеяния. 

Множество алгоритмов    , включает алгоритмы статистической обработки 

данных о текущих позициях модельных электронов, алгоритмы моделирования 

случайных величин с заданными распределениями вероятности, алгоритмы расчета 

электрического поля исходя из текущих позиций модельных электронов, 

алгоритмы расчета электрического тока на электродах. 

Множество событий  и их реализаций по процессам:           
      

     
 

, 

       
         

 ,… 

Множество событий    , связанных наступлением актов рассеяния модельных 

электронов. 

Множество реализаций событий по процессам  определяется для экземпляров 

базовой композиции БК:    
      

     
 

,        
         

 ,.. 

Множество реализаций методов обработки данных     
 =     

     
 

 

определяется для экземпляров БК в соответствии с конкретной задачей. 
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5.5  Основные выводы 

 Разработана схема многомасштабного моделирования наноразмерных 

полупроводниковых гетероструктур с учетом эффектов спонтанной и 

пьезоэлектрической поляризации, объединяющая квантово-механические расчеты 

на атомарном уровне для получения плотности зарядов на гетероинтерфейсах, 

расчет электронной плотности в гетероструктруре на основе самосогласованнного 

решения уравнений Шрёдингера и Пуассона, а также расчет подвижности 

электронов в двумерном электронном газе с учетом различных механизмов 

рассеяния. С целью ускорения вычислительного процесса при расчете электронной 

плотности в гетероструктуре применен подход, основанный на аппроксимации 

нелинейной зависимости электронной плотности от потенциала в сочетании с 

линеаризацией уравнения Пуассона. Показана эффективность данного подхода в 

задачах рассматриваемого класса. Сравнение результатов расчетов с 

экспериментальными данными показало достаточно высокую точность 

моделирования как в плане расчета концентрации носителей в двумерном 

электронном газе, так и касательно подвижности электронов.                              

 Разработан эффективный вычислительный алгоритм решения задачи 

оптимального легирования полупроводниковых гетероструктур, основанный на  

построении сопряженной задачи для вычисления градиента целевого функционала. 

Полученные в ходе вычислительных экспериментов результаты согласуются с 

современной тенденцией к переходу от однородного профиля легирования к 

планарному  -легированию в технологиях изготовления полевых транзисторов. 
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ГЛАВА 6 

Информационная поддержка интеграционной платформы  многомасштабного 

моделирования 

  Решение современных многомасштабных проблем в связи со своей 

огромной ресурсоемкостью требует постоянного увеличения вычислительных  

возможностей аппаратных средств и обновления высокоэффективных  

программных решений. Технология многомасштабного моделирования 

предполагает применение распределенных вычислений на 

высокопроизводительных программных комплексах. Поиск эффективных решений 

в области материаловедения существенно зависит от возможности за ограниченное 

время провести многофакторный анализ  атомно-кристаллических и квантовых 

свойств создаваемых материалов. Кроме того, без верификации полученных 

результатов предсказательного моделирования   по экспериментальным данным не 

представляется возможным создавать адекватные многомасштабные модели, 

отражающие сущность реальных многомасштабных процессов. В связи с этим, 

важным фактором при практической реализации представленных в 

диссертационной работе   подходов является разработка многокомпонентных 

интегрированных программных комплексов. 

     Решение многомасштабных прикладных  задач предполагает проведение 

вычислительных экспериментов со сложным комбинированием различных 

инструментальных средств и вычислительных модулей, которые в больших 

распределенных системах [1], традиционно называются ресурсами. Эффективное 

управление ресурсами диктует повышенные требования к  информационному 

контенту - динамически изменяющимся и взаимодействующим с 

вычислительными модулями наборам данных. Данная проблема характеризуется: 

 сложностью постановок задач и подходов к их решению; 

 многообразием методов и средств моделирования; 

 объемами данных и неоднородностью их типов и свойств; 

 особенностями подготовки информационного контента и разнообразием 

методик обработки полученных результатов. 
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          Проблемно-ориентированные информационно-вычислительные 

программные средства обычно охватывают лишь ограниченный круг прикладных 

задач предметной области [2,3] из-за ряда объективных и субъективных факторов, 

ограничивающих их применение и использование. Для проектирования и 

реализации систем  информационной поддержки вычислительных экспериментов 

необходимо: 

 сформировать слой формального описания взаимодействующих компонентов 

системы; 

 наличие развитой интеграционной платформы, т.е. технологической основы для 

построения и исследования многоуровневых цепочек из тех или иных 

приложений, обеспеченных необходимыми потоками данных; 

 достижение гибкости архитектурного решения при изменяющихся требованиях, 

как по качеству реализуемой стратегии моделирования, так и по количеству 

загружаемых и сохраняемых данных; 

 учитывать требования к изменяющимся системным и аппаратным средствам 

реализации вычислительного процесса; 

 иметь в виду наличие вариативных инструментов реализации сценариев и 

диспетчеризации вычислительных, интерфейсных и информационных 

составляющих в рамках децентрализованной, распределенной по гетерогенным 

узлам системы. 

 В  большинстве концептов бизнес приложений, таких как логистика, 

финансы, производство, в сервисной поддержке научных вычислительных 

экспериментов, известный принцип максимальной автоматизации не очень 

популярен. Причина этому  - человеческий фактор, т.е. основная роль 

исследователя. Поэтому перед разработчиками средств информационной 

поддержки и реализации интеграционной основы будущей системы стоит задача 

предоставить специалистам в предметной области удобный, понятный, гибкий и 

масштабируемый набор инструментов для подготовки, выполнения и анализа 

различных по сложности и времени выполнения заданий. 
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 6.1 Принципы создания  информационной поддержки интеграционных 

систем для многомасштабного моделирования физических явлений и 

процессов 

 В настоящее время достаточно часто встречаются исследования [4-7], в 

которых формальная спецификация информационных объектов предметной 

области  формулируется в терминах конечно - множественных представлений, 

которые, в частности, могут быть реализованы посредством доменных моделей - 

конечных наборов (множеств) данных с поддержкой операций по их обработке. В 

первой Главе диссертации представлены новые понятия и определения, 

применяемые для описания информационной технологии многомасштабного 

моделирования.  Вводится понятие базовая модель-композиция, для описания 

которой применяется теоретико-множественный аппарат [5,6]. При решении 

конкретных задач с помощью данной технологии, из базовых моделей-композиций 

составляются многомасштабные композиции (МК) - информационные  аналоги  

многомасштабных моделей (примеры представлены в Главах 1-5), передающие 

содержание многомасштабных вычислительных процессов.  В данной Главе 

показано как   на базе МK строятся сложные иерархические программные системы, 

применяемые для решения  задач многомасштабного моделирования  физических 

явлений и процессов.  

 При построении интеграционных систем информационного обеспечения 

многомасштабного моделирования применялся гибридный подход  к хранению 

данных (используются реляционные и документно-ориентированные базы данных). 

Принимая во внимание, что  согласно разработанной технологии БК и 

экземпляры БК могут быть представлены в виде таблиц, можно считать, 

что  базовая модель-композиция представляет собой базовый класс в модели 

предметной области. Соответственно экземпляры БК представляются объектами 

классов-наследников БК  в объектно-ориентированном языке программирования 

[8] и хранятся в виде документов (см. Глава 1 табл.1.1) в документно-

ориентированной базе данных [8,9]. Следуя такой логике МК можно представить 

как коллекцию, состоящую из сгруппированных документов с 
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иерархической  структурой, отражающей последовательность присоединения 

документов (экземпляров БК).  

Посредством этих классов осуществляется взаимодействие  моделей с 

конкретной реализацией алгоритма в вычислительном модуле.  Они состоят из 

типизированной и нетипизированной частей: 

- типизированная часть (определяемая атрибутным составом базовой 

композиции) отвечает за стыковку БК в многомасштабной  композиции. Стыковка 

реализуется посредством сценариев; 

- не типизированная часть содержит специфичные для реализации алгоритма 

и вычислительного модуля параметры и данные, которые не используются другими 

БК в сценарии многомасштабной композиции. 

Необходимо отметить, что среди известных типов баз данных, применяемых  

для хранения данных вычислительных экспериментов,  наиболее подходящей 

является документная. Для использования нормализированных и требующих 

соблюдения строгой целостности данных  более удобной является классическая 

реляционная база данных. Особенностью данной  работы является  применение 

гибридного подхода к манипулированию данными, подробно описанного в статье 

[9] и книге [10] при котором  в одной информационной системе используются 

несколько типов баз данных (документные и реляционные). В данной работе 

применяется гибридное хранение данных. Как отмечалось ранее,  БК  хранятся в 

виде документов в  документно-ориентированной базе данных [8,9], а справочные 

данные, необходимые для выполнения вычислительных экспериментов хранятся в 

реляционной базе данных. При этом связь между экземплярами  БК в МК 

реляционная,  с отнесением к соответствующему масштабу.   

Таким образом,   система информационной поддержки задачи 

компьютерного моделирования физических процессов интегрирует в 

универсальную платформу, соответствующую МК. 
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6.2Архитектура системы информационной поддержки 

многомасштабного моделирования 

 Архитектура системы информационной поддержки многомасштабного 

моделирования в ресурсоемких приложениях компьютерного моделирования 

физических процессов должна соответствовать функциональным требованиям 

предметной области и во многом базироваться на представлениях, исходящих от 

постановки задачи, ее физического смысла и математического подхода к ее 

решению [2-4].  

Основные базовые принципы, на которых строится архитектура системы 

многомасштабного моделирования, представленная  в данной работе следующая: 

 доменное представление взаимосвязанных вычислительных, 

информационных и управляющих программных компонент; 

 формализации и унификации сценариев всех стадий вычислительных 

экспериментов. 

Такой подход позволяет не только интегрировать различные приложения 

предметной области в единую канву вычислительного процесса, но и обеспечивает 

возможности для построения вариативных цепочек решения поставленных задач, 

обеспечивая тем самым многоуровневый подход в компьютерном моделировании 

сложных физических процессов предметной области. За основу описания 

архитектурных решений системы многомасштабного моделирования берется 

абстрактная форма взаимодействующих слоев, с помощью которых передаются 

основные положения реализованного подхода. 

В логической модели интеграционной платформы выделяется три слоя:  

 представление информации; 

 логика управления и обработки событий; 

 хранение. 

 Слои образуют строгую иерархию: слой логики взаимодействует со слоями 

хранения и представления. Слои иллюстрируют взаимодействие как программных 

компонент, так и пользователей системы, наделенных различными полномочиями 
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и функциональными возможностями. На практике слои распределяются на 

несколько параллельных процессов, выполняемых на различных узлах сети 

(серверах, вычислителях и клиентских АРМах). Опишем слои более подробно. 

 Слой представления информации 

 обеспечивает интерфейс с пользователем. При этом, взаимодействие с 

пользователями системы происходит посредством различных форм. Выдача 

результатов вычислительных экспериментов - посредством цифровых или 

графических отчетов. Данный слой реализован в WPF на языке разметки 

XAML[8]. 

 Слой логики управления и обработки событий является связующим. 

 Он определяет функциональность и работоспособность системы в целом. 

Программные компоненты распределены по сети (графические и скалярные 

вычислители, сервера СУБД, ресурсы Супер-ЭВМ и др.) и могут 

использоваться многократно в формируемых цепочках многоуровневого 

моделирования конкретных прикладных задач, создавая тем самым сложные 

распределенные приложения.  

 Слой хранения  данных 

обеспечивает физическое хранение, добавление, модификацию и выборку 

данных. На данный слой также возлагаются функции  предварительной 

верификации и валидации данных, а также проверки их целостности и 

непротиворечивости.               

В целом, архитектура платформы интеграции приложений конкретной 

предметной области соответствует классической 3-х звенной архитектуре [11], 

основными элементами которой являются сервера БД, сервер (кластер) 

приложений и клиентская часть. Главная особенность реализации – попытка 

максимального упрощения (управлением) клиент-серверного взаимодействия, 

распределение вычислительных модулей по узлам сети (исходя из их требований к 

ресурсам), разделение фаз подготовки данных, оперативного мониторинга счета и 

обработки результатов вычислительных экспериментов. При этом сервер БД 

занимается только  информационным контентом, осуществляя операции 

сохранения, добавления, модификации и поддержки непротиворечивости данных. 
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Все звенья распределенной архитектуры интеграционной платформы логически 

связаны между собой и соединены высокоскоростным сетевым сегментом. В 

основе  описания архитектурных решений системы многоуровневого 

моделирования принята абстрактная форма взаимодействующих слоев 

представлений от общего к частному, которая более детально представлены на рис. 

6.1. 

Слой представления  описаний и спецификаций 

…….
Язык 

описаний 1
Язык 
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…….
CPU GPU
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Рис. 6.1 Уровни абстракции 

В основе архитектуры (рис.6.1) лежит абстрактный слой концептуальных 

представлений вычислительных модулей системы (см. ниже). В данном подходе, 

как отмечалось ранее, вычислительный модуль  состоит из типизированной части – 

таблицы БК (хранится в документной форме, определяемом атрибутным составом 

базовой композиции) и не типизированной части, содержащей специфичные 

параметры и данные, которые не используются другими БК в сценарии 

многомасштабной композиции. Данное требование определяет как стратегию 

интеграции приложений, так и расширение круга решаемых задач, т.е. спектра 

исследований. Основной задачей концептуального представления является 

описание отдельно взятого вычислительного модуля в контексте его последующего 

использования как элемента архитектуры системы для реализации 
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многомасштабной вычислительной модели инструментальными средствами 

интеграционной платформы. Оно объединяет наиболее общие (без деталей 

реализации) и максимально независимые свойства модуля, которые на логическом 

уровне могут отображаться, с одной стороны,  на машинно- ориентированную 

реализацию, с другой стороны - работать под управлением различных 

интерфейсов. Одному вычислительному модулю может быть поставлено в 

соответствие несколько различных интерфейсов его использования и 

технологических настроек на тот или иной аппаратный вычислитель. Стыковка 

программных модулей проходит непосредственно через типизированные части, 

при этом задействуются сценарии (далее будет дано их подробное описание). 

Абстракции внешнего представления определяются множеством 

интерфейсов максимально приближенных к понятийному базису исследователей. В 

силу различной специфики могут быть выбраны варианты пакетного, диалогового, 

ручного или полуавтоматического взаимодействия пользователей системы с 

различными приложениями в рамках платформенной стратегии интеграции. Это 

оказывается достаточно удобно, например, для сочетания рабочих прототипов 

модулей параллельной отладки и внесения изменений с многочасовыми 

параметрическими расчетами на графических процессорах или кластерных 

архитектурах. Диалоговый интерфейс является предпочтительным в случаях 

проведения исследовательских расчетов с часто варьируемыми параметрами 

(например оптимизационных), пакетный режим, помимо отладки, применяется в 

случаях подключения стандартных библиотек (например VASP), удаленного 

расчета на высокопроизводительных ЭВМ или для выполнения серий однотипных 

расчетов с незначительной вариацией параметров. 

Языковый абстрактный слой (рис.6.1) соответствует представлениям, 

выражающим тот или иной интерфейс. С одним интерфейсом могут быть связаны 

несколько языковых представлений. Они подразделяются на внутренние и 

внешние.  

К внутренним относятся, прежде всего, наборы шаблонов 

интеграции(таблицы БК) согласно правилам платформы. Такие шаблоны 

позволяют  унифицировать операции ввода/вывода, загрузки данных из базы, 
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обработку, визуализацию и сохранение результатов расчетов, т.е. сделать работу с 

вычислительными модулями  более удобной и быстрой.  Такой подход позволяет 

обеспечить возможность включения в контур системы новых вычислительных 

модулей и реализовать связь вычислительных модулей по управлению и данным в 

процессе многоуровневого моделирования. Внутренними являются также и стили 

пользовательского интерфейса и шаблоны описания локальных параметров 

ввода/вывода. В качестве базового языка разметки экранных форм используется 

XAML, поддерживаемый технологией WPF, а стилем пользовательского языка 

ввода/ вывода – буферный обмен строго форматированным текстовым контентом. 

Единого стиля или языка графической визуализации в системе нет, 

поддерживаются различные пользовательские предпочтения (HTML 5, Microsoft 

XNA, OpenGL и др.).  

 К внешним спецификациям относятся форматы импортируемых в систему 

файлов с данными из сторонних программных средств. Например, таких как 

Material Design, Material Studio, пакет Digimat,  программный комплекс конечно-

элементных расчётов Femap с NX.Nastran, российский комплекс для проведения 

прочностных расчетов FydeSys  и другие.  Также распространенные в предметной 

области стандарты типа cif или форматы пакета VASP [4-6]. Для распознавания, 

разбора и загрузки данных из фалов стандартных внешних спецификаций в 

рамках платформы используются парсеры. 

Слой физических представлений (рис.6.1) тесно связан с вычислительными 

ресурсами локального или удаленного позиционирования, а также с разнообразием 

современных вычислительных архитектур. Так простые задачи исследователь 

может решать на локальном вычислителе (ПК или ноутбук) с ограниченными 

объемами оперативной памяти и производительности CPU. Реализован вариант 

CUDA-локализации отдельных вычислительных модулей, хорошо 

распараллеливаемых на матричных операциях, в вычислительную среду 

графических процессоров (GPU). Предусмотрен также запуск вычислительного 

процесса на удаленных высокопроизводительных серверах, включая кластерные 

или GRID-архитектуры, а также с использованием вычислительных возможностей 

пакета VASP. 
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Таким образом, информационная поддержка задачи многомасштабного 

компьютерного моделирования физических явлений и процессов интегрирует в 

универсальную платформу соответствующую МК.  

В контексте формализации представлений доменной модели, описаний 

вычислительного модуля и общей архитектуры системы информационной 

поддержки интеграционной платформы многомасштабного моделирования 

разработана и реализована соответствующая программно-компонентная оболочка 

рис. 6.2.  

 

Рис. 6.2 Интеграционная оболочка информационно- вычислительной системы 

На верхнем уровне (рис. 6.2) показана реализация абстрактных слоев 

внешних  и физических представлений (интерфейсов и профилей запуска см. рис. 

6.1), в центре архитектуры адаптер вычислительного модуля, соответствующий 

концептуальному представлению (источнику концептуальных требований рис.6.1), 

дополненный семантикой сценариев и моделями данных. 

Интеграционная оболочка универсальна, т.е. предназначена для 

обслуживания всех доступных модулей информационной системы  со своими 

адаптерами. Она обеспечивает общий пользовательский интерфейс, поддерживает 

специфичные для окружения настройки запуска, сервисы работы с базой данных и 

метаданными, а также позволяет моделировать сценарии запуска нескольких 

модулей последовательно или параллельно. 
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6.3 Информационное наполнение интеграционной платформы 

  Информационное наполнение интеграционной платформы составляет 

фундамент всей системы, так как содержит входные данные для вычислительных 

модулей, описания моделей (метаданные), промежуточные параметры расчетов и 

результаты вычислительных экспериментов. Таким образом, в схеме базы данных 

системы могут быть выделены три основные группы информационных объектов: 

1. Справочники – содержат редко изменяющийся набор данных. 

2. Дескрипторы моделей данных – описания требований вычислительных 

модулей по набору необходимых и достаточных входных данных, а также 

схемы управления многошаговыми алгоритмами с порядком следования 

операций и функциональными ограничениями вычислительных цепочек для 

многомасштабного моделирования. 

3. Числовые массивы - промежуточные расчетные данные, наборы данных 

параметрического обмена  для многомасштабного моделирования, а также 

числовые и графические результаты расчетов. 

В отличие от  первых двух групп информационных объектов БД системы,  

которые хранят и обрабатывают (выбирают, фильтруют, загружают) относительно 

небольшие массивы  данных, третья группа содержит и манипулирует 

значительными объемами числовой информации, которые необходимо хранить для 

графической визуализации результатов расчетов, а также для их пост-

процессорного анализа специалистами предметной области. При этом, заранее не 

известен тип, количество и размер этих элементов. Стиль их компоновки и 

агрегации является свободным для последующего использования, в том числе для 

наглядного графического изображения динамики исследуемых процессов. В 

результате использование статического табличного представления для их хранения 

представляется весьма затруднительным и трудоемким. 

Другой особенностью больших массивов информационного контента в 

системах многомасштабного моделирования является их разнотипность. При этом 

наборы данных, используемые расчетными модулями в качестве входных и 

выходных параметров, могут быть типизированы как целыми, так и 

вещественными числами с фиксированной или плавающей точкой, содержать 
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отдельные символы или символьные строки, а также записи и другие более 

сложные структуры данных. 

       6.4 Применение гибридной технологии хранения данных                                                   

 Как было отмечено ранее, при создании интеграционных систем 

информационного обеспечения многомасштабного моделирования   в данной 

работе  применялась гибридная технология [3]. Она  совмещает хранение и 

манипулирование относительно небольшими объемами данных в рамках 

реляционной свободно распространяемой СУБД с использованием свободно 

лицензируемых программных систем, поддерживающих агрегированное хранение 

и манипулирование большими объемами массивов данных. Кроме того, базовая 

технология интеграции и модификации расчетных модулей в систему 

унифицирована с целью сокращения временных затрат как для авторов 

приложений, так и для системных архитекторов.  

 6.4.1 Сравнительный анализ реляционного и документного подхода к 

хранению данных 

 Основные отличия подходов к хранению данных в реляционных и 

документно-ориентированных СУБД: 

1. Формат хранения данных. В реляционных моделях, удовлетворяющих как 

минимум первой нормальной форме, на пересечении строки и столбца таблицы 

не допускается хранения более одного значения. Таким образом, глубоко 

вложенные структуры данных моделируются в виде множества отношений 

(таблиц), связанными внешними ключами. В документно-ориентированных 

базах данных, используется формат JSON или XML, которые естественным 

образом позволяют хранить объекты произвольной вложенности в одном 

документе. MongoDB использует компактный формат хранения BSON 

(двоичный вариант java script object notation), позволяющих хранить объекты, 

массивы, ассоциативные массивы произвольной вложенности. 

2. Строгая типизация схемы хранения данных реляционной модели не 

позволяет быстро адаптироваться под новые вычислительные модули и их 

быстро меняющиеся версии. Документные базы данных не обеспечивают 

строгой типизации, позволяя хранить документы произвольного вида, причем 
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за проверку типов и формата данных отвечает доменная модель предметной 

области, размещенная на сервере приложений, что дает возможность 

разработчику модели определить необходимый уровень типизации. Например, 

сделать общую часть модели типизированной на уровне платформы, а другую 

часть – на уровне конкретных версий модулей. 

3. Из-за отсутствия схемы данных, в документных базах данных нет контроля за 

соблюдением ссылочной целостности, что часто мотивирует разработчиков к 

денормализации данных при проектировании документного хранилища. При 

этом, контроль за ссылочной целостностью также ложится на сервер 

приложений. 

4. Скорость работы типовых операций сохранения и выборки объектов 

сложной структуры  по первичному ключу или индексированному полю в 

реляционной модели требует большого количества соединений (Join) таблиц, и, 

как следствие, требует серьезных ресурсов сервера и может выполняться 

достаточно долго. Для документной базы данных, сохранение и выборка 

документа по идентификатору является наиболее быстрой операцией, которая 

выполняется с минимальными затратами. 

5. Высокая скорость разработки логики записи и чтения в документной базе 

данных обуславливается тем, что схема данных  определяется в доменной 

модели предметной области и  нет необходимости менять модель базы данных 

и поддерживать преобразование объектной модели в модель хранения и 

обратно, как в случае с реляционной моделью. 

6. Транзакции в документных базах данных гарантируют атомарность операции 

только над одним документом. Таким образом, не выполняются свойства ACID 

при изменении данных в нескольких документах. В реляционных базах данных 

в рамках одной базы данных или даже нескольких (используя распределенные 

транзакции) можно распространить транзакцию на множество обновлений 

данных в различных таблицах. Однако, в нашем случае, для платформы 

транзакционное поведение не является критичным и указанный недостаток 

устраняется правильным проектированием структуры документа. 

7. Масштабирование по данным является  одним из важных преимуществ 

документных баз данных. Оно дает возможность настроить репликацию 
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(автоматическое копирование данных между узлами кластера) и шардинг 

(распределение большого объема данных между узлами для использования 

дополнительного дискового пространства и ускорения записи/чтения данных). 

В реляционных СУБД репликация, как и установка РСУБД в кластере 

реализуется достаточно сложно и часто доступна только в дополнительных 

платных опциях. По мере накопления экспериментальных данных, или 

необходимости репликации на географически распределенные узлы кластера 

необходимость в масштабировании платформы будет возрастать.  

В табл. 1 рассмотрены основные отличия в терминологии реляционной и 

документной СУБД (на примере SQL Server и MongoDB). 

            Таблица 6.1 

Сравнение терминологии реляционной и документной СУБД 

Реляционная 

СУБД (SQL Server) 

Документная 

СУБД MongoDB 

Экземпляр SQL Server Экземпляр (процесс MongoDB) 

База данных SQL Server База данных MongoDB 

Таблица Коллекция 

Строка таблицы Документ коллекции 

Колонка таблицы Поле в документе 

Первичный ключ таблицы Поле _id в документе 

Внешний ключ в таблице Поле типа DBRef, не гарантирует 

целостности 

 

 6.4.2 Преимущества и недостатки гибридного подхода к хранению 

данных 

 Описанные выше преимущества и недостатки документного и реляционного  

подходов к хранению данных показывают, что  в зависимости от типовых операций 

с данными,   в одних случаях выгоднее применять реляционную  СУБД, а в других 

- документную. Таким образом, вариант гибридного решения для хранения данных 

в  информационных системах  многомасштабного моделирования физических 

процессов представляется оптимальным. 
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Рассмотрим типы данных, используемые в информационной системе: 

1. Для справочной информации характерны небольшие объемы хранимой 

информации, достаточно стабильная структура, редкие изменения данных. 

Типовые запросы для большей части справочников – выборка списка значений, 

поиск по атрибутам, выборка по внешним ключам. Поддержание ссылочной 

целостности между справочниками достаточно важно. Согласно описанным 

выше свойствам, для такого рода данных лучше всего подходит реляционная 

модель. 

2. Для экспериментальных данных (входные и выходные данные 

вычислительных экспериментов), характерны достаточно большие объемы 

информации. Структуры данных сильно отличаются от модуля к модулю и 

между версиями одного модуля. Типовыми являются такие запросы как 

сохранение и чтение данных вычислительного эксперимента целиком. Причем, 

запросы по отдельным атрибутам используются редко. Для хранения данных 

такого рода лучше всего подходит документная модель. При этом, в качестве 

документа выступают данные вычислительного эксперимента. К  недостаткам 

относится то, что входные параметры эксперимента часто содержат ссылки на 

справочники, которые в данном случае придется поддерживать на уровне 

логики сервера приложений. На практике, в экспериментальные данные лучше 

включать полное содержимое тех справочных элементов, которые были 

использованы для расчета, а  не ссылку (идентификатор ID). Это дает полную 

информацию для формирования отчета по эксперименту в дальнейшем 

(фиксируются все данные, использованные на входе).                                                   

 В результате, используя гибридное хранилище, можно  получить 

преимущества обоих подходов для различных типов данных. Однако,  у 

гибридного хранения есть и следующие недостатки: 

1. Использование двух СУБД вместо одной усложняет  в целом техническое 

обслуживание серверной части платформы (установку, настройку, резервное 

копирование, мониторинг). 

2. Требует использование дополнительных аппаратных ресурсов (оперативная 

память, диск) для двух СУБД. 
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 Из альтернатив использования двух СУБД для гибридного хранилища, 

можно рассмотреть возможность использования одной СУБД с возможностью 

хранить документы в колонке реляционной таблицы в виде JSON или XML. В этом 

случае описанные выше недостатки отсутствуют, но к сожалению, теряются 

многие преимущества документной базы данных. Например, могут появиться  

ограничения на  возможности запросов по содержимому документа. В настоящее 

время, функциональность документных баз данных намного шире и стабильнее, 

скорость работы с документами выше, так как они оптимизированы именно под 

работу с документами, в то время как для реляционных СУБД эта 

функциональность не является основной. 

 Документно-ориентированные СУБД 

 Перечислим некоторые документно-ориентированные СУБД: 

CouchDB (http://couchdb.apache.org/)–свободно-распространяемая СУБД с 

открытыми исходными кодами 

MongoDB (https://www.mongodb.com)–СУБД с открытыми исходными кодами, 

распространяемая по лицензии GNU AGPL 

Amazon DynamoDB (https://aws.amazon.com/ru/dynamodb)–СУБД для 

использования в облаке Amazon Web Services. 

 СУБД MongoDB, является лидером по уровню популярности среди 

описанных выше вариантов. MongoDB - кроссплатформенная, что позволяет 

разрабатывать, а также  развертывать систему и на ОС Windows и на Linux 

платформе. Причем, развитый инструментарий (наличие драйверов и инструментов 

для работы с СУБД) позволяет удобно администрировать и работать с данными. 

  Схема документной базы данных 

 При проектировании схемы данных использовались следующие принципы:  

1. Строгая типизация части модели предметной области, которая является 

общей для всех модулей. 

2. Выделение динамической части модели предметной области, специфичной 

для конкретного адаптера вычислительного модуля. 

http://couchdb.apache.org/
https://www.mongodb.com/
https://aws.amazon.com/ru/dynamodb
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3. Расчеты каждого вычислительного модуля хранятся в отдельной коллекции 

документов для удобства поддержки и управления данными. Это позволяет 

делать резервное копирование, экспорт-импорт данных, в перспективе 

настраивать партиционирование/шардинг данных для масштабирования 

подсистемы хранения данных по отдельным модулям. 

4. Хранение метаданных о вычислительных экспериментах отдельно от 

расчетов для обеспечения стабильной производительности большинства 

сценариев использования, в которых не требуется загружать данные 

вычислительного эксперимента полностью. 

   Для хранения данных вычислительных экспериментов, предложена следующая 

схема, проиллюстрированная на рис. 6.3. 

База данных Crystal (MongoDB)

Схема хранения данных в 
документной БД

Project

Элементами коллекции являются «проекты» - 
метаданные вычислительных экспериментов, 
логически связанных одним исследованием

audit

Информация о дате и пользователе, 

который последний изменял данные
1 – 1

Dictionary

Элементы коллекации являются 
предметно-специфичными 

справочниками системы

 Коллекция с 

оперативными данными

Коллекция со 

справочными данными

items

Список вычислительных 
экспериментов, входящих в проект1 - N

audit

Информация о дате и пользователе, 

который последний изменял данные

experimentDataRef

Ссылка на данные вычислительного 

эксперимента

1 – 0..1

1 – 1

User

Элементами коллекции являются 

пользователи информационной системы

ExpData_<Module Name>

Элементами коллекции 
являются данные 

вычислительного эксперимента

1 – 1

audit

Информация о дате и пользователе, 

который последний изменял данные

1 –1
data

Данные вычислительного 
эксперимента, вложенная структура 

зависит от конкретного модуля

Элементы данных могут ссылаться на справочники

Объект, вложенный в 

документ коллекции

условные обозначения:

 

Рис. 6.3. Схема хранения данных в документной БД 

 На рис. 6.4 изображена действующая система информационной поддержки 

интеграционной платформы многомасштабного моделирования физических 

процессов и систем. 
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Рис. 6.4 Архитектура интеграционной платформы 

Архитектура интеграционной платформы включает: 

1. Сервер приложений - кроссплатформенная Java Virtual Machine версии 8 c 

встроенным легковесным сервером приложений Jetty; 

2. Язык программирования серверной платформы на Java 8/Kotlin; 

3. Фреймворк инверсии управления Spring Framework (как часть платформы 

Spring Boot); 

4. Для REST-сервисов используется библиотека Spark. Применяется формат 

данных и протокол REST сервисов. Незначительные изменения протокола 

связаны с его унификацией; 

5. Небольшие изменения на стороне клиента были вызваны незначительными 

изменениями протокола REST; 

6. СУБД MongoDB. 

 В данном варианте все бинарные файлы расчетных модулей размещены на 

сервере и скачиваются на клиента при первом обращении. Это дает 

возможность,  не включая их в дистрибутив клиента, быстрее обновлять модули 

без пересборки клиента и защищать бинарные файлы модулей от 

несанкционированного доступа. 
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 Основные выводы 

             Разработаны теоретические основы формирования интеграционных систем 

для информационной поддержки многомасштабного моделирования, 

сформулированы базовые принципы построения архитектуры системы, 

включающие доменное представление взаимосвязанных вычислительных, 

информационных и управляющих программных компонент, формализацию и 

унификацию сценариев всех стадий вычислительных экспериментов. Такой подход 

позволяет не только интегрировать различные приложения предметной области в 

единую канву вычислительного процесса, но и обеспечивает возможности для 

построения вариативных цепочек решения поставленных задач.  

             Создана  кроссплатформенная,  расширяемая интеграционная система, 

предназначенная для  решения задач многомасштабного моделирования на  

высокопроизводительных программных комплексах. Для представления данных в 

разработанной системе применена гибридная технология, основанная на сочетании 

различных типов баз данных - документных и реляционных. Такое представление 

данных наилучшим образом отражает логику модельно-ориентированного подхода 

к многомасштабному моделированию. 

Применение  представленных в диссертационной работе  подходов  дает 

возможность автоматизировать процесс построения многомасштабных 

математических  моделей и создавать на их базе современные  программные 

комплексы, позволяющие  решать  широкий класс прикладных задач.  
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Заключение 

 

 В диссертации получены следующие основные результаты. 

 Сформулированы основные принципы применения модельно-ориентированного 

подхода к построению программных систем многомасштабного моделирования. 

Физико-математическим  моделям, отнесенным к соответствующим масштабным 

уровням, поставлены  в соответствие информационные структуры - базовые модели-

композиции (композиционные объекты), служащие основой для построения композиций 

и многомасштабных композиций – вычислительных аналогов многомасштабных 

моделей сложных систем. Для описания базовых моделей-композиций и технологии 

построения многомасштабных композиций применен теоретико-множественный 

аппарат, позволяющий передать вычислительную сущность  соответствующих 

математических моделей. 

 Разработаны теоретические основы формирования интеграционных систем для 

информационной поддержки многомасштабного моделирования, сформулированы 

базовые принципы построения архитектуры системы, включающие доменное 

представление взаимосвязанных вычислительных, информационных и управляющих 

программных компонент, формализацию и унификацию сценариев всех стадий 

вычислительных экспериментов. Такой подход позволяет не только интегрировать 

различные приложения предметной области в единую канву вычислительного процесса, 

но и обеспечивает возможности для построения вариативных цепочек решения 

поставленных задач.  

 Создана  кроссплатформенная,  расширяемая интеграционная система, 

предназначенная для  решения задач многомасштабного моделирования на  

высокопроизводительных программных комплексах. Для представления данных в 

разработанной системе применена гибридная технология, основанная на сочетании 

различных типов баз данных - документных и реляционных. Такое представление 

данных наилучшим образом отражает логику модельно-ориентированного подхода к 

многомасштабному моделированию. 

 Разработаны методы и средства информационной поддержки решения задачи 

поиска устойчивых кристаллических структур, совместных с заданной химической 
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формулой. Даны оптимизационные формулировки для моделей ионно-атомных 

радиусов, атомных радиусов и модели с перекрывающимися радиусами. Построены и 

реализованы эффективные вычислительные алгоритмы, учитывающие свойства 

симметрии и периодичности кристаллов. Создана база данных по Федоровским группам 

симметрии. Разработана процедура обмена данными между системами 

кристаллографического и квантово-механического моделирования. 

 Разработаны методы и средства информационной поддержки решения задачи  

молекулярно-динамического моделирования и параметрической идентификации 

потенциалов межатомного взаимодействия.  

 Разработана схема построения «гибких потенциалов», позволяющая создавать 

новые гибридные типы потенциалов межатомного взаимодействия, необходимых для 

МД-моделировании сложных слоистых структур, многослойных полупроводниковых 

гетероструктур и процессов их роста в случаях, когда применение известных 

потенциалов межатомного взаимодействия не дает адекватных результатов.  

  Разработана многомасштабная композиция и  решена задача моделирования 

кристаллической структуры Si с точечными и отдельными протяженными дефектами, 

включая    расчет  упорядоченных кластерных конфигураций вакансий и межузельных 

атомов в  Si. Результаты расчетов показали хорошее согласование с 

экспериментальными данными. 

 Разработана многомасштабная композиция и на ее основе решена задача  МД-

моделирования начальных этапов  процесса нитридизации поверхности Si(111) в 

атмосфере NH3. Представлены результаты параметрической  идентификации потенциала 

Леннарда-Джонса для  молекулы аммиака, потенциала Терсоффа применительно к 

однокомпонентным кристаллам с ковалентным типом химической связи, для 

поверхности Si и структур SiN. Разработана многомасштабная композиция и на ее 

основе решена задача  для МД-моделирования устойчивой системы         , А и В – 

металлы,  с помощью потенциала Rosato-Guillope-Legrand (RGL). 

 Разработана схема многомасштабного моделирования наноразмерных 

полупроводниковых гетероструктур с учетом эффектов спонтанной и 

пьезоэлектрической поляризации, объединяющая квантово-механические расчеты на 
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атомарном уровне для получения плотности зарядов на гетероинтерфейсах, расчет 

электронной плотности в гетероструктуре на основе самосогласованного решения 

уравнений Шрёдингера и Пуассона, а также расчет подвижности электронов в 

двумерном электронном газе с учетом различных механизмов рассеяния. С целью 

ускорения вычислительного процесса при расчете электронной плотности в 

гетероструктуре применен подход, основанный на аппроксимации нелинейной 

зависимости электронной плотности от потенциала в сочетании с линеаризацией 

уравнения Пуассона. Показана эффективность данного подхода в задачах 

рассматриваемого класса. Сравнение результатов расчетов с экспериментальными 

данными показало достаточно высокую точность моделирования как в плане расчета 

концентрации носителей в двумерном электронном газе, так и касательно подвижности 

электронов. 

 Разработан эффективный вычислительный алгоритм решения задачи 

оптимального легирования полупроводниковых гетероструктур, основанный на  

построении сопряженной задачи для вычисления градиента целевого функционала. 

Полученные в ходе вычислительных экспериментов результаты согласуются с 

современной тенденцией к переходу от однородного профиля легирования к 

планарному  -легированию в технологиях изготовления полевых транзисторов. 

 Разработана дискретно-элементная вычислительная модель высокоскоростного 

внедрения. Осуществлена идентификация зависимости энергии межчастичной связи от 

динамической твердости материалов. Сравнительный анализ расчетных и 

экспериментальных данных в широком диапазоне определяющих параметров показал 

достаточно высокую точность дискретно-элементного моделирования для различных 

вариантов - для тонких, пробиваемых с сохранением цельности деформируемого 

ударника  преград, для преград средней толщины, пробиваемых с практически полной 

фрагментацией ударника на выходе из преграды, а также для непробиваемых насквозь 

преград.  
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Приложение  

 

 

 

 

 

 

 

 

 

 

 

 

 

Базовая композиция « АТОМ     
  
» (   

 
)  

№ Название и обозначение множеств  структурных элементов,  подмножеств Состав 

1 
 

Множество данных 

     
    - множество входных данных название и номер элемента из ТМ 

(например,  Au(золото)-    ).  
 

,                

              
–множество 

выходных 
данных(внутренние 

характеристики) 

Фазовые переменные       Нет 

Данные свойства            

   

масса атома, заряд ядра, радиус атома 

  (ионный, атомный, металлический 

или др.), электронная структура, 

другие табличные данные, 

характеризующие конкретный 
элемент из ТМ.   

2. 

               

               

Множество методов 

обработки данных 

(модели и алгоритмы): 

    –множество 

моделей     

   -подмножество 

статических моделей 

Нет 

    - подмножество 
динамических  моделей   

Нет 

    -множество 

алгоритмов  

   - подмножество 
алгоритмов исп. только 

на   -м уровне масштаба 

(локальные)   

Нет 

 

3. Множество событий     

Нет 

4. Множество реализаций методов обработки данных     
 =     

  
   

 
 

Нет 
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Базовая модель-композиция «КРИСТАЛЛОХИМИЧЕСКАЯ ФОРМУЛА» (   
 )  

№ Название и обозначение множеств  

структурных элементов,  подмножеств 

Состав 

1 

 

Множество 

данных      

    - множество входных 

данных 

 

                        

         
      

        
   

-Химический состав материала и его кристаллографические 

характеристики, в том числе: 

     - хим. формула       
    

 
     

 : 

     -  (число различных сортов атомов в хим. формуле      
    

 
     

 );  

       -   (число атомов  -го сорта  в химической формуле  ); 

     -  (Федоровская группа симметрии); 

     - (число базисных атомов); 

     -    
         

  (позиции Уайкова для базисных атомов); 

 -свойства атомов  -го сорта, входящих в  (определяются из 

соответствующей модели-композиции    
 
), в том числе:  

             
   
 - радиусы атомов   -го сорта (всего   различных). 

 

    

          
–множ. 

выходн. 

данных 

(внутрен. 
характ.) 

Фазовые 

переменные    

                                                                

Массив координат     базисных атомов конфигурации                                 

(3 размерность, номер атома) 

 
Данные 

свойства            

   

              

2. 

               

Множество 

методов обработки 

данных (модели и 

алгоритмы): 

    –
множ. 

моделей     

    -
подмножество 

статических 

моделей 

Формулы для вычисления                      

    - 

подмножество 

динамических  

моделей   

Оптимизация  
 Изменение координат атомов согласно логике решения минимаксной 

задачи. По окончании динамического процесса - итоговые координаты  

          и соответствующие им значения (см.множество реализаций 

методов обработки данных). 

    -

множ. 
алгорит. 

   - 

подмножество 

алгоритмов 

исп. только на 

  -м уровне 

масштаба 

(локальные)   

Специальные модификации метода покоординатного спуска, 

переменных направлений и т.д. с учетом перемещений по 
периодической решетке с заданными ограничениями.  

          - 

подмножество 

алгоритмов 

исп.  на 

нескольких 

уровнях         
(универс.)  

Метод Монте-Карло 

3. 

Множество событий   и их реализаций по 

процессам:          
  

   

 
 

 

1.    
 - события, связанные с вычислениями по внутреннему 

итерационному циклу     

2.    
 - события, связанные с вычислениями по внешнему итерационному 

циклу     

4. 

Множество реализаций методов обработки данных 

    
 =     

  
   

 
      (заполняется для экземпляров) 

 

заполняется для экземпляров БК 
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Базовая модель-композиция « КВАНТОВО-МЕХАНИЧЕСКАЯ ЯЧЕЙКА» (   
 )  

№ Название и обозначение множеств  структурных 

элементов,  подмножеств 

Состав 

1 

 
Множество данных         -множество входных 

данных 

 

                   
                      

        
     

            

-Химический состав материала и его кристаллографические характеристики, 

 в том числе: 

     - хим. формула       
    

 
     

 : 

     -  (число различных сортов атомов в хим. формуле      
    

 
     

 );  

            -    (число атомов  -го сорта  в химической формуле  ); 

     -  (Федоровская группа симметрии); 

     - (число базисных атомов в конфигурации     ); 

     - 
   
         

  (позиции Уайкова для базисных атомов); 

 -свойства атомов  -го сорта, входящих в  (определяются из 

соответствующей модели-композиции    
 
), в том числе:  

 - 
   
 - радиусы атомов   -го сорта (всего   различных); 

-                        
-  -число атомов участвующих в расчете; 

-сверхлегкие потенциалы для каждого типа атомов из хим. формулы          

. 

    

          
–множ. 

вых. 

данных 

(внутр. 

характ.) 

Фазовые 

переменные    

   
                     

Координаты   базисных атомов  

 

Данные 

свойства            

   

-Итоговые значения электронной плотности, параметров кр.решетки 

           ; 

-полная  энергия       конфигурации    ; 

-константы упругости; 

-поляризация; 

-энергетические барьеры,..  

2. 

              

                          

Множество методов 

обработки данных 

(модели и алгоритмы): 

    –
множ. 

моделей     

    -
подмножество 

статических 

моделей 

Методы расчета свойств, указанных выше 

 

    - 
подмножество 

динамических  

моделей   

Оптимизация 

Изменение координат атомов согласно логике решения  задачи минимизации 

потенциальной энергии. По окончании динамического процесса - итоговые 

координаты           и соответствующие им значения (см.множество 
реализаций методов обработки данных). 

    -

множ. 

алгор. 

    -  

подмножество 

алгоритмов 

исп. только на 

  -м уровне 

масштаба 

(локальные)   

Специальные алгоритмы 

           - 
подмножество 

алгоритмов 

исп.  на 

нескольких 

уровнях         
(универсальны

е)  

Оптимизационные методы решения задачи минимизации функционала. 

Методы Монте-Карло 

3. 
Множество событий          

  
   

 
 

 

1.    
 - события, связанные с вычислениями по внутреннему итерационному 

циклу     

2.    
 - события, связанные с вычислениями по внешнему итерационному 

циклу     

 

4. 
Множество реализаций методов обработки данных 

    
 =     

  
   

 
   

заполняется для экземпляров БК 
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Базовая модель-композиция «АТОМНЫЙ КЛАСТЕР- СТАТИКА» (   
 )  

№ Название и обозначение множеств  

структурных элементов,  подмножеств 

Состав 

1 

 

Множество данных 

                 
    -  множество 
входных данных 

 

                               
       

   

         
      

        
                    

-Химический состав материала и его кристаллографические характеристики, в 

том числе: 

       - хим. формула       
    

 
    

 ; 

       -  (число различных сортов атомов в хим. формуле      
    

 
    

 );  

        -   (число атомов  -го сорта  в химической формуле  ). 

-  (Федоровская группа симметрии); 

- (число базисных атомов в конфигурации     ); 

-    
        

  (позиции Уайкова для базисных атомов); 

-свойства атомов  -го сорта, входящих в  (определяются  из соответствующей 

модели-композиции    
 
), в том числе:  

   
   

 - радиусы атомов   -го сорта(всего   различных); 

-координаты   базисных атомов (начальные значения задаются или  определяются  

из модели-композиции    
  или     

 
); 

               ; 
-полная энергия системы атомов     ; 
-полная энергия  и темы атомов     ; 
-потенциал взаимодействия  (задается функциональная зависимость,  в 

соответствии с  типом химической связи моделируемого вещества)     . 
Множество входных данных:  

    

          
 

Фазовые 

перемен.    

   

Параметры   
 
       потенциала взаимодействия      

Данные 

свойства            

   

-потенциальная энергия     конфигурации    ; 

-константы упругости; 

-другие данные.  

2. 

               

Множество 

методов обработки 

данных (модели и 

алгоритмы): 

    –

множ. 

моделей     

   - статит. Статистические (определение свойств): 

-расчет потенциальной энергии конфигурации исходя из текущих позиций атомов 

и потенциала взаимодействия; 

-расчет констант упругости; 

           -другое. 

    – 

динамич.  

Изменение параметров потенциала взаимодействия согласно логике 

оптимизационного алгоритма (минимизация функционала). По окончании 

динамического процесса - итоговые оптимальные значения наборов  параметров 

  
 
    

 
  потенциала взаимодействия       

    -

множ. 

алгоритм

. 

   - 

лок.алгор.   
 - 

           - 

унив.алгор  

Методы оптимизации нулевого порядка (Нелдера-Мида, GRS, Хука-Дживса, 

Монте-Карло, …),  конечно-разностный метод  для расчета производных.  БАД 

(для расчета производных ), оптимизационные методы первого порядка   

3. 

Множество событий   и их реализаций по 

процессам:           
      

     
 

 

 

       
          

 ,  . …. 
Множество событий, связанных с вычислениями по различным итерационным 

циклам для различных итерационных процессов ( в зависимости от числа l 

оптимизируемых  параметров гетероструктуры).  

 

4. 
Множество реализаций методов обработки 

данных     
 =     

     
 

 

      заполняется для экземпляров БК 
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Базовая модель-композиция «АТОМНЫЙ КЛАСТЕР-ДИНАМИКА» (   
 )  

№ Название и обозначение множеств  

структурных элементов,  подмножеств 

Состав 

 
1 

 

Множество 

данных      

    -  множество входных 

данных 

 

      
 
    

 
   

-Химический состав материала и его кристаллографические характеристики, в том 

числе: 

       - хим. формула       
    

 
    

 ; 

       -  (число различных сортов атомов в хим. формуле      
    

 
    

 );  

        -   (число атомов  -го сорта  в химической формуле  ). 

-  (Федоровская группа симметрии); 

- (число базисных атомов в конфигурации     ); 

- 
   

        
  (позиции Уайкова для базисных атомов). 

-свойства атомов  -го сорта, входящих в  (определяются  из соответствующей 

модели-композиции    
 
), в том числе:  

 - 
   

 - радиусы атомов   -го сорта(всего   различных). 

-координаты   базисных атомов (начальные значения задаются или  определяются  

из модели-композиции    
  или     

 ) 

   
      

  ; 
-полная энергия системы атомов     ; 
-вид потенциала взаимодействия  (задается функциональная зависимость,  в 

соответствии с  типом химической связи моделируемого вещества)      ; 
-набор параметров   

 
       определяются из модели-композиции    

 (под 

конкретный хим. состав); 

-скорости атомов     
      

  . 
Множество входных данных     : 

 

    
                               

          
        

              
      

    
      

 , 

 

    

          
–множ.  

вых.данны

х(внутренн

ие 

характерис

тики) 

Фазовые 

переменны

е                               

-координаты   атомов системы (начальные значения задаются или  определяется  из 

модели-композиции    
  или     

 ), скорости атомов конфигурации; 

Данные 

свойства            

   

-потенциальная  энергия системы из N атомов; 

-кинетическая энергия конфигурации (температура); 

-константы упругости; 

-другие .. 

 

2. 

    

           

Множество 

методов 

обработки 

данных 

(модели и 

алгоритмы): 

    –

множ. 

моделей     

   - 

статич.  

1.расчет потенциальной энергии конфигурации исходя из   текущих     

позиций атомов и потенциала взаимодействия; 

2. расчет свойств по заданным формулам; 

                  3. другое… 

    – 

динамич.  

- динамическая модель, задаваемая уравнениями молекулярной динамики 

    -множ. 

алгоритм. 

   -  

лок.алгор.   
 - 

            -
унив.алгор

.  

универсальные алгоритмы, применяемые на разных масштабных уровнях, такие как  

численные методы решения ОДУ (метод скоростей Верле и др.),   методы Монте-

Карло, конечно-разностные методы,  методы быстрого автоматического 

дифференцирования (БАД) для расчета производных потенциала.   

 

3. 

Множество событий   и их реализаций по 

процессам:         
     

 
 

 

   - множ. событий, связанных с началом и окончанием вычислений в разл. 

процессах 

    
     

 
-мн-во реализаций событий по процессам определяется для экземпляров 

базовой композиции БК :    
      

     
 

,        
          

 ,.. 

4. 
Множество реализаций методов обработки 

данных     
 =     

     
 

 

      заполняется для экземпляров БК 
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Базовая модель-композиция «НАНОРАЗМЕРНЫЙ СЛОЙ» (   
 )  

№ Название и обозначение множеств  структурных элементов,  

подмножеств 

Состав 

1 

 

Множество данных 

     

    -  множество входных данных 

 

                        
         

      
        

                 

Химический состав материала и его кристаллографические 

характеристики, в том числе: 

     - хим. формула       
    

 
    

 : 

     -  (число различных сортов атомов в хим. формуле   

   
    

 
    

 );  

           -   (число атомов  -го сорта  в химической формуле  ); 

    -  (Федоровская группа симметрии); 

   - (число базисных атомов в конфигурации     ); 

   - 
   
        

  (позиции Уайкова для базисных атомов); 

-свойства атомов  -го сорта, входящих в  (определяются из 

соответствующей модели-композиции    
 
), в том числе:  

             
   
 - радиусы атомов   -го сорта(всего   различных) ; 

-потенциалы взаимодействия  (задается функциональная 

зависимость, например, для сверхлегких) Ф(       Ф     ; 
 

 

              
–множ. 

выходн. 

данных(внут. 

характер.) 

Фазовые 

переменные       

                     

-координаты   базисных атомов (начальные значения задаются 

или наследуются из модели-композиции    
  или     

 
) 

 

Данные свойства            

   
      –электронная структура по каждому типу атомов, 

наследуется из соответствующей модели-композиции    
 
; 

потенциальная энергия конфигурации    ; 

константы упругости; 

поляризация; 

энергетические барьеры. 

 

2. 

              

                          

Множество методов 

обработки данных 

(модели и алгоритмы): 

    –

множество 

моделей     

   - статические  Статистические (определение свойств слоя): 

-расчет констант упругости; 

-расчет поляризации; 

-расчет энергетических барьеров (ширина запрещенной зоны, и 

т.д.), другое. 

    - 
динамические  

- 

    -

множество 

алгоритмов  

   - 

подмножество 

алгоритмов исп. 

только на   -м 

уровне масштаба 

(локальные)   

 - 

          - 
подмножество 

алгоритмов исп.  

на нескольких 

уровнях         
(универсальные)  

- 

3. 

Множество событий   и их реализаций по процессам: 

          
  

   

 
 

 

       
 ,          

 ,  . …. 
Множество событий, связанных с вычислениями по различным 

итерационным циклам для различных итерационных процессов                

( в зависимости от числа l оптимизируемых  параметров 

гетероструктуры).  

 

4. 
Множество реализаций методов обработки данных 

    
 =     

  
   

 
 

      заполняется для экземпляров БК 
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Базовая модель-композиция « ГЕТЕРОИНТЕРФЕЙС» (   
 )  

№ Название и обозначение множеств  структурных элементов,  

подмножеств 

Состав 

1 

 

Множество данных 

     

    -  множество входных данных 

 

--Нижний  слой (обозначение, номер), верхний слой 

(обозначение, номер) м/д которыми рассчитывается 

гетероинтерфейс; 

-По каждому слою: 

    -толщина;  

    -химический состав слоя и его кристаллографические 

характеристики, в том числе: 

   - хим. формула       
    

 
    

 : 

         -  (число различных сортов атомов в хим. формуле   

   
    

 
    

 );  

          -   (число атомов  -го сорта  в химической формуле  ); 

    -  (Федоровская группа симметрии); 

   - (число базисных атомов в конфигурации     ); 

   - 
   
        

  (позиции Уайкова для базисных атомов); 

-Свойства слоев (определяются  из соответствующей модели-

композиции  «СЛОЙ» (   
 
)); 

-Потенциал на внешней границе; 

-Температура. 

 

              
–множ. вых. 

данных(внутр. 

характер.) 

Фазовые 

переменные       

-параметры, по которым может проводиться оптимизация 

материала (характеристик) слоя        
 
    

 
 ; 

 -уровень легирования слоя. 

 

Данные свойства            

   

-параметры гетероинтерфейсов; 

-шероховатости гетероинтерфейсов. 

 

2. 

              
                          

Множество методов 

обработки данных 

(модели и алгоритмы): 

    –множ. 
моделей     

   - статические  -расчет параметров на гетероинерфейсах. 

 

    - 

динамические  

- 

    -

множ.алгор.  

   - 

подмножество 

алгоритмов исп. 

только на   -м 

уровне масштаба 

(локальные)   

- 

          - 

подмножество 

алгоритмов исп.  

на нескольких 

уровнях         
(универсальные)  

- 

3. 

Множество событий   и их реализаций по процессам: 

        
      

  
   

 
 

 

       
 ,          

 ,  . …. 
Множество событий, связанных с вычислениями по различным 

итерационным циклам для различных итерационных процессов (в 

зависимости от числа l оптимизируемых  параметров 

гетероструктуры) .  

 

4. 
Множество реализаций методов обработки данных 

    
 =     

  
   

 
      (заполняется для экземпляров) 

заполняется для экземпляров БК 
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Базовая модель-композиция «ПРИПОВЕРХНОСТНЫЙ СЛОЙ»(   
 ) 

 

№ Название и обозначение множеств  структурных элементов,  

подмножеств 

Состав 

1 

 

Множество данных 

     

    -  множество входных данных 

 

                        
         

      
        

                 

Химический состав материала и его кристаллографические 

характеристики, в том числе: 

     - хим. формула       
    

 
    

 : 

     -  (число различных сортов атомов в хим. формуле   

   
    

 
    

 );  

           -   (число атомов  -го сорта  в химической формуле  ); 

    -  (Федоровская группа симметрии); 

   - (число базисных атомов в конфигурации     ); 

   - 
   
        

  (позиции Уайкова для базисных атомов); 

-свойства атомов  -го сорта, входящих в  (определяются из 

соответствующей модели-композиции    
 
), в том числе:  

             
   
 - радиусы атомов   -го сорта(всего   различных) ; 

-потенциалы взаимодействия  (задается функциональная 

зависимость, например, для сверхлегких) Ф(       Ф     ; 
-толщина (число элементарных ячеек); 

 

 

              
–множ. 

выходн. 

данных(внут. 

характер.) 

Фазовые 

переменные       

                     

-координаты   базисных атомов (начальные значения задаются 

или наследуются из модели-композиции    
  или     

 
) 

 

Данные свойства            

   
      –электронная структура по каждому типу атомов, 

наследуется из соответствующей модели-композиции    
 
; 

потенциальная энергия конфигурации    ; 

константы упругости; 

поляризация; 

энергетические барьеры; 

max и min значение отклонений(в процентах) метрических 

параметров решетки от аналогичных параметров в  bulk. 

 

2. 

              

                          

Множество методов 

обработки данных 

(модели и алгоритмы): 

    –

множество 

моделей     

   - статические  Статистические (определение свойств слоя): 

-расчет констант упругости; 

-расчет поляризации; 

-расчет энергетических барьеров (ширина запрещенной зоны, и 

т.д.),  расчет max и min значение отклонений(в процентах) 

метрических параметров решетки , другое. 

    - 
динамические  

- 

    -

множество 

алгоритмов  

   - алгор. 

 исп. только на 

  -м уровне 

масштаба 

(локальные)   

 - 

          -  
алгор. исп.  на 

нескольких 

уровнях         
(универсальные)  

- 

3. 
Множество событий   и их реализаций по процессам: 

          
  

   

 
 

       
 ,          

 ,  . …. 
Множество событий, связанных с вычислениями по различным 

итерационным циклам для различных итерационных процессов ( 

в зависимости от числа l оптимизируемых  параметров 

гетероструктуры).  

4. 
Множество реализаций методов обработки данных 

    
 =     

  
   

 
 

      заполняется для экземпляров БК 
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Базовая модель-композиция « СТАТИСТИЧЕСКИЙ АНСАМБЛЬ » (   
 )  

№ Название и обозначение множеств  структурных элементов,  

подмножеств 

Состав 

1 

 

Множество данных 

     

    -  множество входных данных 

 

-Зонная структура, выражаемая зависимостью энергии электрона от 

волнового вектора     . 
 -Равновесное распределение электронов по пространству и по 

энергетическим уровням,                 , где   - номер 

энергетического уровня,    - количество учитываемых 

энергетических уровней. 

-Интенсивности различных видов рассеяния электронов,      , 
m=1,…,nm, где m - номер механизма рассеяния, nm - количество 

учитываемых механизмов рассеяния. 

-Информацию о равновесном распределении электронов в системе 

и об интенсивностях рассеяния электронов поступает с уровня 

расчета гетероструктуры. 

-Индикатрисы рассеяния для различных механизмов 

рассеяния      ,   - угол между волновыми векторами электрона 

до и после акта рассеяния 

-Значения электростатического потенциала на границах области 

(электродах и затворе)       . 
 

    

          
–множ. 

выходн. 

данных 

(внутр. 

характ.) 

Фазовые 

переменные       

                       

-координаты и импульсы  (скорости)   электронов 

 статистического ансамбля : 

Данные свойства            

   

-установившееся распределение электронов в системе        ------

распределение электростатического потенциала в системе        

значения электрического тока на электродах   .  

2. 

               

Множество методов 

обработки данных 

(модели и алгоритмы): 

    –

множ. 

моделей     

   - статические  - модель для расчета электрического поля по текущему 

распределению  электронов в системе (уравнение Пуассона);                                                                              

- модель для расчета электрического тока на электродах 

    - динамические  динамическая модели, задаваемая уравнениями динамики 

модельных электронов и моделями элементарных актов рассеяния. 

 

    - 

множ. 

алгоритм. 

   - подмножество 

алгоритмов исп. 

только на   -м 

уровне масштаба 

(локальные)   

- алгоритмы статистической обработки данных о текущих позициях 

модельных электронов;  

-алгоритмы  расчета электрического поля исходя из текущих 

позиций модельных электронов,  алгоритмы расчета 

электрического тока на электродах. 

 

           - 
подмножество 

алгоритмов исп.  

на нескольких 

уровнях         
(универсальные)  

Множество универсальных алгоритмов для моделирования 

случайных величин с заданными распределениями вероятности 

3. 
    

  
   

 
 

Множество событий   и их реализаций по процессам:      

       
 ,          

 ,  . …. 

Множество событий, связанных с вычислениями по различным 

итерационным циклам для различных итерационных процессов ( в 

зависимости от числа l оптимизируемых  параметров 

гетероструктуры) .  

 

4. 
Множество реализаций методов обработки данных 

    
 =     

  
   

 
      (заполняется для экземпляров) 

заполняется для экземпляров БК 
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Базовая модель-композиция « ГЕТЕРОСТРУКТУРА» (   
 )  

№ Название и обозначение множеств  структурных элементов,  

подмножеств 

Состав 

1 

 

Множество данных 

     

    -  множество входных данных 

 

-Суммарное число  слоев  в гетероструктуре; 

-По каждому слою: 

    -толщина;  

    -химический состав слоя и его кристаллографические 

характеристики, в том числе: 

   - хим. формула       
    

 
    

 : 

         -  (число различных сортов атомов в хим. формуле   

   
    

 
    

 );  

          -   (число атомов  -го сорта  в химической формуле  ); 

    -  (Федоровская группа симметрии); 

   - (число базисных атомов в конфигурации     ); 

   - 
   
        

  (позиции Уайкова для базисных атомов); 

-Свойства слоев (определяются из соответствующей модели-

композиции  «СЛОЙ» (   
 
)); 

-Потенциал на внешней границе; 

-Шероховатости гетероинтерфейсов; 

-Температура. 

 

    

          
–множ. 

выходн. 

данных 

(внутр. 

характ.) 

Фазовые 

переменные       

-параметры, по которым может проводиться оптимизация 

материала (характеристик) слоя        
 
    

 
 : 

 -уровень легирования слоя 

 

Данные свойства            

   

-Электронная плотность; 

-концентрация электронов в выделенных каналах; 

-подвижность электронов. 

 

2. 

               

Множество методов 

обработки данных 

(модели и алгоритмы): 

    –
множ. 

моделей     

   - статические  -расчет концентрации электронов в выделенных каналах 

(двумерный электронный газ); 

         -расчет подвижности электронов. 

    - динамические  Изменение оптимизируемых параметров (уровни легирования 

слоев) согласно логике оптимизационного алгоритма(минимизация 

функционала). По окончании динамического процесса- итоговые 

значения уровней легирования слоев  

    - 
множ. 

алгоритм. 

   - подмножество 
алгоритмов исп. 

только на   -м 

уровне масштаба 

(локальные)   

Специальные численные алгоритмы  получения 
самосогласованного решения  уравнений Шредингера –Пуассона 

           - 
подмножество 

алгоритмов исп.  

на нескольких 

уровнях         
(универсальные)  

методы решения спектральных задач, включая   QR-алгоритм и др., 

методы решения уравнения Пуассона 

3. 
    

  
   

 
 

Множество событий   и их реализаций по процессам:      

       
 ,          

 ,  . …. 
Множество событий, связанных с вычислениями по различным 

итерационным циклам для различных итерационных процессов ( в 

зависимости от числа l оптимизируемых  параметров 

гетероструктуры) .  

 

4. 
Множество реализаций методов обработки данных 

    
 =     

  
   

 
      (заполняется для экземпляров) 

заполняется для экземпляров БК 
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№ Название и обозначение множеств  

структурных элементов,  подмножеств 

Состав 

1 

 

Множество 

данных      

    -  множество входных 

данных 

 

В соответствии с химической формулой, структурой и типом химической связи 

для каждого из моделируемых материалов задаются: 

-начальные координаты частиц   
      

  

-скорости  частиц    
      

  ; 
- вид  потенциала межатомного взаимодействия     ; 
-набор параметров   

 
       определяются из модели-композиции    

   (под 

конкретный хим. состав); 

 -отдельные макросвойства каждого материала, такие как: пластичность (мерой 

пластичности являются относительное удлинение δ и относительное сужение ψ), 

предел текучести σт.р≈σт.с., твердость (H — hardness),скорость звука в материале, 

геометрия тел и т.д. 

-для ударника –скорость    

                 
      

    
      

          
 
    

 
    

    

          
–множество 

выходных 

данных(внут

ренние 

характеристи

ки) 

Фазовые 

переменные    

   

                       

Данные 

свойства            

   

      включают потенциальную энергию   конфигурации, макросвойства 

системы, получаемые с помощью статистической обработки информации о 

дискретных элементах, характеристики исследуемого процесса, такие как, 

например, глубина проникания в задаче высокоскоростного внедрения. 

 

2. 

    

           

Множество 

методов 

обработки 

данных 

(модели и 

алгоритмы): 

 

    –
множество 

моделей     

   - статист.. - статические модели, применяемые для расчета свойств системы   и сил, 

действующих на дискретные элементы 

 

    – 

динамич. 

-динамические модели, включающие систему уравнений динамики дискретных 

элементов. 

 

    -

множество 

алгоритмов  

  - 

подмножеств

о алгоритмов 

исп. только 

на   -м 

уровне 

масштаба 

(локальные)   

 - 

          - 
подмножеств

о алгоритмов 

исп.  на 

неск.уровнях

         
(универс.)  

 универсальные алгоритмы , применяемые на разных масштабных уровнях, такие 

как  численные методы решения ОДУ (методы скоростей Верле, конечно-

разностный,…).   Монте-Карло, конечно-разностный метод  для расчета 

производных.  БАД (для расчета производных), оптимизационные методы 

первого порядка.   

 

3. 

Множество событий   и их реализаций по 

процессам:         
  

   

    
 

 

       связанных с началом и окончанием вычислений в  различных 

вычислительных процессах в рамках базовой композиции (их число зависит, 

например, от числа l оптимизируемых  параметров).  

Множество реализаций событий по процессам  определяется для экземпляров 

базовой композиции БК:    
      

     
 

,        
         

 ,..  

4. 
Множество реализаций методов обработки 

данных     
 =     

  
   

 
 

      заполняется для экземпляров БК 


