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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы. 

Системы автоматического управления сложнейшими объектами и процесса-

ми, интеллектуальные пакеты прикладных программ, системы планирования вы-

числений, системы автоматизированного проектирования – вот далеко не полный 

перечень аппаратных и программных систем, без которых немыслим сейчас науч-

но-технический прогресс.  

Особое место в указанном списке занимают вычислительные системы и дру-

гие специализированные ЭВМ. Взаимоотношения вышеперечисленных систем с 

вычислительной техникой имеют две различные стороны: ЭВМ является основ-

ным инструментом исследований, включая моделирование, и будучи сами слож-

ными системами, выступают важными объектами исследований. 

Проектирование таких систем в настоящее время характеризуется широким 

использованием достижений микроэлектроники. Элементной базой для синтеза 

вычислительных и логических управляющих устройств рассматриваемых систем 

являются интегральные схемы. Стремительное развитие микроэлектроники, про-

являющееся в постоянном совершенствовании и в создании новых элементов ба-

зиса, содержащего микросхемы различной степени интеграции, с одной стороны, 

создаёт благоприятные предпосылки для разработки новых высокопроизводитель-

ных вычислительных и управляющих систем с высокой степенью параллелизма 

обработки данных, а с другой стороны, ставит ряд трудно решаемых проблем пе-

ред разработчиками этой техники. 

Таким образом, приходим к задачам аппаратной реализации булевых функ-

ций, т. е. к задачам синтеза функционально-логических схем в заданных базисах. 

Ситуацию, сложившуюся в этой области, можно охарактеризовать тем, что нет 

способов приемлемой трудоёмкости, позволяющих оптимальным образом синте-

зировать каждую схему. Причиной этому является возрастающая сложность (пло-

щадь кристалла, глубина схемы, число логических элементов, суммарная длина 

проводников между элементами и другие показатели качества) проектируемых си-

стем. 
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Соответствующей вычислительной моделью является формула, реализую-

щая булеву функцию. Булевы функции нашли широкое применение в целом ряде 

различных областей. Сложность используемых на практике функций увеличивает-

ся, в связи с усложнением решаемых задач. Увеличивается число используемых 

переменных, и количество логических операций, которое необходимо выполнить 

для получения значения функции. Но не только функции становятся сложнее, бо-

лее сложными становятся и ЭВМ, на которых выполняется их вычисление. В свя-

зи с совершенствованием ЭВМ, появлением и широким распространением много-

процессорных и многоядерных систем, появилась необходимость в создании алго-

ритмов и программ, которые смогут использовать новые аппаратные возможно-

сти. В алгоритмах, которые дадут существенное преимущество по сравнению с 

классическими, на новых ЭВМ, при вычислении больших функций. 

Алгебра логики имеет большое значение в основаниях математики. Строгое, 

математически точное построение логических исчислений, решение проблемы де-

дукции, аксиоматические системы и доказательство теорем. В то же время быст-

рое развитие вычислительной техники способствует расширению как круга задач, 

решаемых с помощью алгебры логики, так и методов, применяемых для их реше-

ния. Это в первую очередь относится к задачам искусственного интеллекта, реше-

ние которых немыслимо без привлечения методов алгебры логики. 

Стоит отметить, что на практике множество элементарных логических опе-

раций является обязательной частью набора инструкций всех современных мик-

ропроцессоров и соответственно входит в языки программирования. Это является 

одним из важнейших практических приложений методов алгебры логики, изучае-

мых в современной информатике. 

Цель работы. 

Анализ и редукция количества вхождений переменных в реализацию неко-

торого класса симметрических булевых функций, представленных в виде полино-

мов Жегалкина с высокой степенью.  

Для достижения заявленной цели предлагается решение следующих задач: 

1. обзор существующих методов анализа количества вхождении пере-

менных в формулу, реализующую булеву функцию; 
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2. построение метода минимизации показателей качества для некоторого 

класса булевых функций; 

3. разработка алгоритма редукции количества вхождений переменных в 

реализацию произвольной булевой функции в базисе Жегалкина. 

Научная новизна. 

В данной работе проводится редукция количества переменных сформулиро-

ваны и доказаны теоремы дающие аналитические оценки для показателей сложно-

сти булевых функций и схем. Разработан алгоритм редукции количества вхожде-

ний переменных в реализацию произвольной булевой функции в базисе Жегалки-

на. 

Научная и практическая значимость. 

Работа содержит решение актуальных проблем в области дискретного моде-

лирования и построения СБИС. Автором были найдены аналитические оценки 

сложности для полинома Жегалкина Fn−2
(n)

 в базисах G1 и G3, проведены аналити-

ческие исследования вопросов минимизации оценок сложности булевых формул и 

построен программный комплекс автоматической редукции оценки сложности бу-

левых функций. 

Объект исследования. 

Реализация симметрических булевых функций в виде полиномов Жегалкина 

со степенью n − 2. 

Предмет исследования. 

Методы редукции количества вхождений переменных в реализацию булевой 

функции в некотором базисе. 

Положения, выносимые на защиту. 

1. Предложен метод декомпозиции булевых функций, позволяющий аналити-

чески получать верхнюю оценку сложности показателей для представления 

функции в виде полинома большой степени в классе формул, а также – в 

классе схем. 
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2. Данный метод применён для аналитического нахождения ряда оценок для 

полинома Жегалкина строения Fn−2
(n)

 в классах формул и схем из функцио-

нальных элементов. 

3. Сформулированы и доказаны теоремы о верхних границах минимальных 

оценок реализации симметрических булевых функций в виде полиномов 

Жегалкина строения Fn−2
(n)

. 

4. Разработан алгоритм минимизации количества вхождений переменных в ре-

ализацию произвольной булевой функции в виде полинома Жегалкина. 

5. Разработанный алгоритм реализован в виде программного комплекса, полу-

чившего свидетельство о государственной регистрации. 

Степень достоверности полученных результатов подтверждаются прора-

боткой литературных источников по теме диссертации и современной методикой 

исследования, которая соответствует поставленным в работе целям и задачам. 

Научные положения, выводы и рекомендации, сформулированные в диссертации, 

подкреплены убедительными фактическими данными и проведением всего иссле-

дования на математическом уровне строгости.  

Апробация работы.  

Основные результаты работы докладывались на конференциях: 

1. Межвузовская молодёжная научно-практическая конференции «Информа-

ционные и телекоммуникационные технологии» (Ступино, декабрь 2009 г.). 

2. XXXVII международная молодёжная научная конференция «Гагаринские 

чтения» (Москва, апрель 2011 г.). 

3. Международная научно-практическая конференция молодых учёных и педа-

гогов, аспирантов и студентов «Кибернетика: вчера, сегодня, завтра» (Дмит-

ров, декабрь 2011 г.). 

4. Международной научно-технической конференции молодых учёных, аспи-

рантов и студентов «Управление, автоматизация и окружающая среда-2012» 

(Севастополь, март 2012 г.). 

5. XXXVIII международная молодёжная научная конференция «Гагаринские 

чтения» (Москва, апрель 2012 г.). 
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6. I Форум союзного государства вузов инженерно-технического профиля 

(Минск, май 2012 г.). 

7. XXXIX международная молодёжная научная конференция «Гагаринские 

чтения» (Москва, апрель 2013 г.). 

8. XLII международная молодёжная научная конференция «Гагаринские чте-

ния» (Москва, апрель 2016 г.). 

Также полученные в диссертации результаты обсуждались на семинарах, 

проводимых в Московском авиационном институте (национальном исследова-

тельском институте) и Федеральном исследовательском центре  

«Информатика и управление» Российской Академии Наук. 

Связь с плановыми научными исследованиями. Работа выполнена с под-

держкой грантов Российского фонда фундаментальных исследований: 

• № 09-01-90441 А Математические модели правильного мышления. 

• № 13-01-00827 А Математическое моделирование и оптимизация в задачах 

механики упругих систем и полупроводниковых гетероструктур. 

• № 16-01-00425 А Моделирование и управление в неклассических задачах 

теории упругости и гидродинамики. 

Личный вклад автора. 

Все научные результаты, которые выносятся на защиту, получены полно-

стью автором. 

Публикации.  

По теме диссертации получено 1 свидетельство о государственной реги-

страции программы для ЭВМ, а также опубликовано самостоятельно и в соавтор-

стве 14 работ в том числе 3 работы в изданиях, входящих в перечень ведущих 

журналов и изданий, рекомендованных ВАК для публикации основных результа-

тов диссертаций на соискания учёной степени доктора и кандидата наук и  Опуб-

ликованные материалы отражают основное содержание диссертации.  

Структура и объем работы: диссертация состоит из введения, трёх глав, 

заключения, списка литературы (62 наименования) и приложения. Объем работы 

108 страниц, включая 17 рисунков.  
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КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ 

 

Во введении обоснованы актуальность анализа и синтеза дискретных вы-

числительных и управляющих логических устройств обработки информации, 

сформулированы цель и задачи исследований, научная новизна и практическая 

ценность полученных результатов, приведены сведения об использовании, реали-

зации и апробации результатов работы, и структуре диссертации. 

Первая глава диссертации носит вводный характер.  

В начале главы проводится обзор основных исторических этапов развития 

алгебры логики, начиная с Аристотеля. Далее рассматривается зарождение сим-

вольной логики, основы которой заложил Г. Лейбниц, и её дальнейшее развитие в 

трудах Д. Буля, О. Моргана, Ч. Пирса, Д. Венна, Э. Шрёдера. Отмечаются труды 

П. Эренфеста, указавшего на возможность применения аппарата булевой алгебры 

в телефонной связи для описания переключательных цепей, и В. И. Шестакова и 

К. Шеннона, сформулировавших теорию релейно-контактных схем. 

В остальных разделах первой главы рассматривается математический аппа-

рат, на который опираются дальнейшие исследования. Даётся представление о бу-

левых функциях и формулах, полноте и базисах. Приводится математико-

информационное описание булевых функций и даются определения показателей 

сложности реализации. Также описаны оптимизирующие логико-комбинаторные 

преобразования, включающие в себя следующие механизмы: удаление фиктивных 

переменных, эквивалентные преобразования булевых функций, их преобразования 

между базисами. Эти механизмы предоставляют качественные способы реализа-

ции булевых формул для более простого нахождения различных показателей ка-

чества. Также рассматриваются современные проблемы представления полинома 

Жегалкина. 

Во второй главе проводится аналитический анализ методов редукции коли-

чества вхождений переменных в формулу. При этом рассматриваются различные 

варианты оптимизации формул с помощью функциональных уравнений для того, 

чтобы получить более точные оценки. Кроме того, рассматривается представление 
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булевых формул в классе схем и получение оценок уже для этого класса. В завер-

шении наглядно сравниваются полученные оценки. 

Исследуется сложность представления симметрической булевой функции, 

представленной в виде полинома Жегалкина. Булева функция f (n)зависит от пере-

менных из множества X = {x1, … , xn} и задаётся полином Жегалкина  

Fn−2
(n) = K1⊕…⊕Ki⊕…⊕Km, где Ki – монотонная элементарная конъюнкция 

ранга n − 2. 

Формулируются следующие леммы для нахождения показателя качества 

LB (Fn−2
(n) ): 

Лемма 1. Число элементарных конъюнкций Ki есть Cn
n−2 =

n(n−1)

2
=

1

2
n2 −

1

2
n. 

Лемма 2. Число букв в любой элементарной конъюнкции есть (n − 2). 

Таким образом количество букв для формулы данного класса  

LB (Fn−2
(n) ) = (n − 2) (

1

2
n2 −

1

2
n) =

1

2
n3 −

3

2
n2 + n. 

Отсюда выведена следующая теорема. 

Теорема 1. Для функции Fn−2
(n)

 оценка LB (Fn−2
(n) ) ≤

1

2
n3 −

3

2
n2 + n. 

Для полиномов Жегалкина, имеющих в составе только положительно опре-

делённые элементарные конъюнкции количество подформул в формуле, соответ-

ствует количеству знаков действий в соответствующей формуле, следовательно, 

оценка LF (Fn−2
(n) ) находится следующим образом: 

LF (Fn−2
(n) ) = LB (Fn−2

(n) ) − 1 =
1

2
n3 −

3

2
n2 + n − 1. 

Таким образом получается следующая теорема. 

Теорема 2. Для функции Fn−2
(n)

 оценка LF (Fn−2
(n) ) ≤

1

2
n3 −

3

2
n2 + n − 1. 

Для улучшения полученной выше оценки LB (Fn−2
(n) ) применяется следующее 

функциональное уравнение: 

Fn−2
(n) = Fn−2

(n−1)⊕ xn ⋅ Fn−3
(n−1)

. 

Ему соответствует следующее функциональное уравнение для показателя 

качества LB: 
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LB (Fn−2
(n) ) = LB (Fn−2

(n−1)) + 1 + LB (Fn−3
(n−1)). 

Вводится следующая замена: 

un = LB (Fn−2
(n) ),   un−1 = LB (Fn−3

(n−1)). 

Таким образом, получено рекуррентное соотношение 

un − un−1 = LB (Fn−2
(n−1)) + 1. 

При этом LB (Fn−2
(n−1)) оценивается как 

LB (Fn−2
(n−1)) = (n − 2)Cn−1

n−2 = (n − 2)(n − 1) = n2 − 3n + 2, 

и получается следующее разностное уравнение 

un − un−1 = n2 − 3n + 3. 

Начальные условия подсчитываются непосредственно из полинома F2
4.  

При n  =  4: 

F2
4 = x1x2⊕ x1x3⊕x2x3⊕ x1x4⊕x2x4⊕x3x4 = 

= (x1x2⊕x3(x1⊕x2)) ⊕ x4(x1⊕x2⊕x3). 

Количество букв в формуле определяет таким образом начальное условие 

для n  =  4: u4 = LB(F2
4,  G3) = 9. Полученное разностное уравнение и начальное 

условие при n  =  4 позволяют получить его решение в виде рекуррентного соот-

ношения. Для этого составляются конечные разности первого, второго и последу-

ющих порядков до тех пор, пока они не будут нулевыми, то есть не будет получе-

но решение в виде многочлена с неопределёнными коэффициентами. 

  



 11 

n 4 5 6 7 8 

un 9 22 43 74 117 

Δ1  13 21 31 43 

Δ2   8 10 12 

Δ3    2 2 

Δ4     0 

Таб. 1 Конечные разности 

Так как конечные разности четвёртого порядка равны нулю, то, из свойства 

конечных разностей, предполагается решение в виде многочлена третьей степени: 

un = a0n
3 + a1n

2 + a2n + a3. 

Решением полученной системы уравнений будут являться коэффициенты 

многочлена, описывающего оценку количества вхождений переменных в форму-

лу. 

{

343a0 + 49a1 + 7a2 + a3 = 74,
216a0 + 36a1 + 6a2 + a3 = 43,
125a0 + 25a1 + 5a2 + a3 = 22,
64a0 + 16a1 + 4a2 + a3 = 9;

 ⟹ 

{
 
 

 
  a0 = 1

3⁄ ,

a1 = −1,

a2 = 5
3⁄ ,

a3 = −3.  

 

Таким образом получена ещё одна оценка для показателя качества 

LB (Fn−2
(n) ): 

LB2 (Fn−2
(n) ,  G3) =

1

3
n3 − n2 +

5

3
n − 3. 

Отсюда уточнение теоремы 1. 

Теорема 3. Для функции Fn−2
(n)

 оценка LB (Fn−2
(n) ) ≤

1

3
n3 − n2 +

5

3
n − 3. 

Поскольку оценка LB (Fn−2
(n−1)) проведена неоптимальным образом, результат 

для формулы строения Fn−2
(n)

 можно дополнительно улучшить аналогичным мето-

дом. Функциональное уравнение для Fn−2
(n−1)

 выглядит следующим образом: 

Fn−2
(n−1) = Fn−2

(n−2)⊕xn ⋅ Fn−3
(n−2)

. 

Ему соответствует следующее разностное уравнение: 

LB (Fn−2
(n−1)) = LB (Fn−2

(n−2)) + 1 + LB (Fn−3
(n−2)), 
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un = LB (Fn−2
(n−1)),  un−1 = LB (Fn−3

(n−2)), 

LB (Fn−2
(n−2)) = n − 2, 

un − un−1 = LB (Fn−2
(n−2)) + 1 = (n − 2) + 1 = n − 1. 

И начальные условия: 

F2
3 = F2

2⊕x3F1
2 = x1x2⊕x3(x1⊕x2), 

u4 = LB(F2
3) = 5. 

Решение ищется описанным выше методом. 

LB (Fn−2
(n−1),  G3) =

1

2
n2 −

1

2
n − 1. 

Полученная оценка используется для улучшения показателя LB (Fn−2
(n) ): 

LB3 (Fn−2
(n) ,  G3) =

1

6
n3 −

1

6
n − 1. 

В результате можно сформулировать очередную теорему. 

Теорема 4. Для функции Fn−2
(n)

 оценка LB (Fn−2
(n) ) ≤

1

6
n3 −

1

6
n − 1. 

Согласно особенностям строения формулы Fn−2
(n)

 показатель LB на единицу 

превосходит показатель LF. Аналогично теореме 3: 

Теорема 5. Для функции Fn−2
(n)

 оценка LF (Fn−2
(n) ) ≤

1

3
n3 − n2 +

5

3
n − 4. 

Доказательство следует из проведённой минимизации булевых формул с 

помощью функциональной декомпозиции. 

Повышая точность оценки, аналогично доказательству теоремы 4: 

Теорема 6. Для функции Fn−2
(n)

 оценка LF (Fn−2
(n) ) ≤

1

6
n3 −

1

6
n − 2. 

Для оценки схемной реализации функции Fn−2
(n)

 необходимо привести фор-

мулу из базиса G3 = {⊕,∧} в базис G1 = {∧,∨, ¬}. 

Fn−2
(n) = Fn−2

(n−1)⊕ xn ⋅ Fn−3
(n−1) = Fn−2

(n−1) ⋅ xn ⋅ Fn−3
(n−1) ∨ Fn−2

(n−1)xn ⋅ Fn−3
(n−1)

. 

В полученной реализации в базисе G1 для текущей итерации формулы Fn−2
(n−1)

 

и Fn−3
(n−1)

 реализованы неявно, подразумевается, что они представлены в базисе G3, 

а их композиция – в базисе G1. Предполагается, что на каждой следующей итера-



 13 

ции получившиеся подформулы переводятся в базис G1. Данной формуле соответ-

ствует следующая схема: 

 

Рис. 1 Схема 𝑛-й итерации разложения в 𝐺1 

Оценке показателя LS для данной схемы будет соответствовать следующее 

функциональное уравнение: 

LS (Fn−2
(n) ) = LS (Fn−2

(n−1)) + 6 + LS (Fn−3
(n−1)). 

Решая его описанным выше методом, и получив оценку можно сформулиро-

вать следующую теорему. 

Теорема 7. Для функции Fn−2
(n)

 оценка LS (Fn−2
(n) ) ≤

1

6
n3 + 2n2 −

13

6
n − 11. 

Данную оценку возможно улучшить, воспользовавшись ещё одним спосо-

бом представления операции ⊕ в базисе G1. 

Fn−2
(n) = Fn−2

(n−1)⊕ xn ⋅ Fn−3
(n−1) = Fn−2

(n−1) ⋅ xn ⋅ Fn−3
(n−1) (Fn−2

(n−1) ∨ xn ⋅ Fn−3
(n−1)). 

Данная формула представима в виде следующей схемы: 
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Рис. 2 Альтернативная схема 𝑛-й итерации разложения в 𝐺1 

Таким образом происходит уточнение теоремы 7. 

Теорема 8. Для функции Fn−2
(n)

 оценка LS (Fn−2
(n) ) ≤

1

6
n3 +

3

2
n2 −

5

3
n − 11. 

Сравнивая полученные оценки, можно выбрать наилучшие. 

 

Рис. 3 Сравнение показателей качества 𝐿Б 
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Рис. 4 Сравнение показателей качества 𝐿𝐹 

 

 

Рис. 5 Сравнение показателей качества 𝐿𝑆 
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В последней (третьей) главе представлены вопросы автоматизации редук-

ции количества переменных. Подробно приведён алгоритм, на основе которого 

был построен программный комплекс автоматизированной оценки сложности. А 

также были отработаны основные особенности поведения алгоритма на функциях 

с малым числом переменных. 

Для работы алгоритма используется следующее представление функции. 

Пусть X = {x1, … , xj, … , xn} – множество булевых переменных. Произвольная бу-

лева функция f (n)(X) задаётся полиномом Жегалкина: 

F(n) = K1⊕K2⊕…⊕Ki⊕…⊕Km, 

в базисе G3 = {&,⊕ ,0,1}, где  

− n – число переменных, 

− m – длина полинома Жегалкина, 

− Ki – монотонная элементарная конъюнкция (ЭК) ранга ri, i = 1,m, 

− 𝐫 = (r1, r2, … , rm) – вектор рангов полинома Жегалкина. 

Полином Жегалкина F(n) задаётся при помощи матрицы Ki,j размером 

[m × n], представляемой в виде таблицы с числом строк – (m + 1) и столбцов – 

(n + 1). Определяются матрица и таблица следующим образом: в ячейку Ki,j пи-

шется 1, если xj ∈ {Ki}, иначе Ki,j = 0 (i = 1,m, j = 1, n), где под {Ki} понимается 

множество переменных, образующих элементарную конъюнкцию Ki. 

В столбец (i = 1,m, n + 1) записывается ранг элементарной конъюнкции 

Ki, вычисляемый следующим образом: 

ri = ri,n+1 = ∑ Ki,j
n
j=1 . 

Вектор 𝐫 = (r1, … , ri, … , rm) рангов ЭК полинома Жегалкина, упорядочива-

ется для алгоритма один раз отношением “≥”. Получаем r1 ≥ ⋯ ≥ ri ≥ ⋯ ≥ rm. В 

строку (n + 1, j = 1, n), записывается pj – число повторений переменной xj, j =

1, n, в формуле F(n): 

pj = pm+1,j = ∑ Ki,j
m
i=1 . 
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Так получен вектор 𝐩 = (p1, … , pj, … , pn) повторяемости переменных из 

множества X = {x1, … , xj, … , xn} в формуле F(n), т. е. переменная xj, j = 1, n, повто-

ряется в формуле F(n) pi раз. 

В ячейку (m + 1, n + 1) пишется LB = ∑ ri
m
i=1  – число букв в формуле F(n). 

 x1 … xj … xn 𝐫 

K1 0/1 … 0/1 … 0/1 r1 

… … … … … … … 

Km 0/1 … 0/1 … 0/1  rm 

𝐩 p1 … pj … pn LБ 

Таб. 2 Матричное представление полинома 

В основе алгоритма редукции переменных лежит следующее функциональ-

ное уравнение: 

F(n) = (xj ⋅ F1
(n−1)) ⊕ F2

(n−1)
, 

где нижние индексы 1 и 2 – номера соответствующих остаточных подфункций, за-

данных формулами, рассматриваемых на одном множестве X′ = X ∖ {xj}. В алго-

ритме они соответственно записываются как F′ = F1
(n−1)

 и F′′ = F2
(n−1)

. 

В начале определяется максимальная компонента pjmax вектора 𝐩 и её ин-

декс jmax, то есть pjmax = max(p1, … , pj, … , pn), j = 1, n, т. е. максимально повто-

ряющаяся переменная xjmax повторяется pjmax раз. Таких переменных может быть 

несколько, выбираем из них с меньшим номером переменной и меньшим номером 

элементарной конъюнкции Ki, для сохранения порядка рангов. После вынесения 

данной переменной за скобку функция f (n), реализуемая в виде формулы F(n) в 

общем случае, разбивается на две более простые подформулы и две двухместные 

базисные функции, соединяющие подформулы и выделяемую переменную xj, в 

одну формулу. Процесс продолжается, пока все остаточные подформулы не пе-

рейдут в группу реализованных. Так будет получена формула Fс.ф.
(n)

 и оценка 

L
F(Fс.ф.

(n)
,G3)

. 
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Дано: 

F(n) – формула, правильность задания которой при вводе проверяется, 

таблица, содержащая матричное представление формул, 

t1 – счётчик записи в таблицу, содержащую формулы, 

t2 – счётчик чтения из таблицы, содержащей формулы, 

LF – счётчик количества базисных подфункций; 

Шаг 1. {Подготовка начальных данных} 

для исходной формулы F(n) заполняется таб. 2, с векторами 𝐫 и 𝐩, 

выполняется инициализация переменных: 

LF = 0, 

t1 = 0, 

t2 = 0; 

Шаг 2. {Формула является элементарной конъюнкцией} 

если m = 1, то  

начало 

LF = LF + r1 − 1, 

переход к шагу 6 {чтение}; 

конец 

Шаг 3. {Формула является сложением по модулю 2 переменных} 

если r1 = 1, то 

начало 

LF = LF +m− 1, 

переход к шагу 6 {чтение}; 

конец 

Шаг 4. {Определение переменной xjmax} 

pjmax = max(p1, … , pj, … pn),  

Шаг 5. {Запись остаточных подфункций F′ и F′′} 

в таблицу, соответствующую подформуле F′ переносятся только те строки 

из таблицы F, в которых xjmax = 1 и исключаются нулевые столбцы и xjmax, 

вычисляются вектора 𝐫′ и 𝐩′, 
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F′ записывается в таблицу, содержащую все формулы под номером t1, 

t1 = t1 + 1, 

если m′ < m 

начало 

в таблицу, соответствующую подформуле F′′ переносятся только те 

строки из таблицы F, в которых xjmax = 0 и исключаются нулевые 

столбцы и xjmax, 

вычисляются вектора 𝐫′′ и 𝐩′′, 

F′′ записывается в таблицу, содержащую все формулы под номером t1, 

t1 = t1 + 1; 

конец 

Шаг 6. {Чтение} 

t2 = t2 + 1, 

если t2 ≤ t1, работа алгоритма оканчивается, 

из таблицы, содержащей промежуточные подформулы, считывается поли-

ном с номером t2, 

LF(F
(n), G3) = LF + 1. 

Конец алгоритма. 

Результатом работы алгоритма является верхняя оценка сложности, задан-

ной в виде полинома Жегалкина логической функции. 

Во втором разделе третьей главы рассматриваются примеры работы алго-

ритма и частные случаи, обнаруженные при работе программы над функциями с 

малым числом переменных. 

В заключении приведены основные результаты работы. 

✓ Рассмотрены основные методы синтеза логических формул, и соответ-

ствующих схем из функциональных элементов.  

✓ Предложен метод распараллеливающей структурно-функциональной 

декомпозиции булевых функций, позволяющие аналитически полу-

чать верхние оценки сложности показателей для представления функ-

ции – полинома F(n) в классе формул, а также – в классе схем S. 
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✓ Данный метод применён для аналитического нахождения ряда оценок 

для полинома Жегалкина строения Fn−2
(n)

 в классах формул и схем из 

функциональных элементов.  

✓ Выделены частные случаи получения счётных множеств булевых 

функций минимальной сложности LB и LF функции – полинома F(n) (а, 

также для сложности показателя LS для схем S). 

✓ Найдена эффективная реализация вычислительного алгоритма синтеза 

булевых формул на основе приведения их к скобочному виду. 

✓ Проведена рационализация вычислительного алгоритма синтеза схем 

из функциональных элементов на основе операции ветвления некото-

рых их выходов. 

✓ На основании построенного алгоритма написана программа, которая 

была зарегистрирована в РосПатенте. 
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