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Введение

Современные достижения в области науки и техники основываются

на использовании прямо и косвенным образом различных информацион-

ных систем (интеллектуальных, кибернетических, поисковых аналитиче-

ских автоматизированных и др.).

В таких системах нуждается образование, здравоохранение, космос, эко-

номика, энергетика, робототехника, транспорт, промышленность и др. Для

всех таких систем можно сказать, что они обладают некоторыми общими

проблемами. Центральное место в них занимают устройства логического

управления (управляющие сигналы двоичные) и обработки информации,

входящие в состав специализированных и универсальных ЭВМ и продол-

жающиеся совершенствоваться.

Булевы функции нашли широкое применение в целом ряде различных

областей. Сложность используемых на практике функций увеличивается, в

связи с усложнением решаемых задач. Увеличивается число используемых

переменных, и количество логических операций которое необходимо выпол-

нить для получения значения функции. Но не только функции становятся

сложнее, более сложными становятся и ЭВМ, на которых выполняется их

вычисление. В связи с совершенствованием ЭВМ, появлением и широким

распространением многопроцессорных и многоядерных систем, появилась

необходимость в создании алгоритмов и программ, которые смогут исполь-

зовать новые аппаратные возможности. В алгоритмах, которые дадут су-

щественное преимущество по сравнению с классическими, на новых ЭВМ,

при вычислении больших функций.

Алгебра логики имеет большое значение в основаниях математики. Стро-
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гое, математически точное построение логических исчислений, решение

проблемы дедукции, аксиоматические системы и доказательство теорем.

В то же время быстрое развитие вычислительной техники способствует

расширению как круга задач, решаемых с помощью алгебры логики, так

и методов, применяемых для их решения. Это в первую очередь относит-

ся к задачам искусственного интеллекта, решение которых немыслимо без

привлечения методов алгебры логики.

Стоит отметить, что на практике множество элементарных логических

операций является обязательной частью набора инструкций всех современ-

ных микропроцессоров и соответственно входит в языки программирова-

ния. Это является одним из важнейших практических приложений методов

алгебры логики, изучаемых в современной информатике.

В диссертации рассматриваются алгоритмы вычисления булевой функ-

ции в базисах G1 = {∨,∧,¬}и G3 = {∧,⊕, 1}, что позволяет говорить о

вычислении произвольной булевой функции, т. к. любая булева функция

может быть представлена в виде полинома Жегалкина, т. е. в базисе G3.

Особое внимание уделяется анализу представления булевой функции в

виде полинома Жегалкина, а точнее анализу показателей качества соответ-

ствующих функций. Поиск минимальных оценок исследуемых показателей

качества позволяет провести редукцию количества вхождений переменных

в булевую функцию, принадлежащую определённому классу симметриче-

ских полиномов Жегалкина.

Диссертация состоит из введения, трёх глав, заключения, списка лите-

ратуры и приложения.

В начале первой главы освещается история развития алгебры логики.
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Вторая часть первой главы посвящена математическому аппарату, на ко-

торый опираются дальнейшие исследования. Даётся представление о ба-

зисах, формулах и схемах. В частности описаны оптимизирующие логико-

комбинаторные преобразования, включающие в себя следующие механиз-

мы: удаление фиктивных переменных, эквивалентные преобразования бу-

левых функций, их преобразования между базисами. Эти механизмы предо-

ставляют качественные способы реализации булевых формул для более

простого нахождения различных показателей качества. Завершается глава

историческим обзором основных проблем минимизации булевых функций

и их представлений. Также рассматриваются современные проблемы пред-

ставления полинома Жегалкина.

Во второй главе рассматриваются методы, позволяющие оценить слож-

ность булевых формул с помощью показателей качества. При этом рас-

сматриваются различные варианты оптимизации формул для того, чтобы

получить более точные оценки. Кроме того рассматривается представление

булевых формул в классе схем и получение оценок уже для этого класса.

В завершении наглядно сравниваются полученные оценки.

В последней главе представлены вопросы автоматизации редукции ко-

личества переменных и поиска оценок качества булевых формул. Был по-

дробно приведён алгоритм, на основе которого был построен программный

комплекс автоматизированной оценки сложности. А также были отрабо-

таны основные особенности поведения алгоритма на функциях с малым

числом переменных. В качестве языка программирования, на котором реа-

лизованы алгоритмы, был выбран язык C#. Данный выбор обусловлен сле-

дующими преимуществами: хорошая поддержка многопоточности, парал-
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лельных вычислений, сетевого программирования, высокая скорость вы-

полнения, высокая скорость разработки. В последнем разделе приведены

примеры работы программы.
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Глава 1

История возникновения, становления и развития

математической логики, математический аппарат,

решаемые задачи

1.1 История создания и развития алгебры логики

Логика (др. греч λoγική — «наука о правильном мышлении», «искус-

ство рассуждения» от λóγoζ –— «речь», «рассуждение», «мысль») — это

наука правильно рассуждать, наука о формах, методах и законах челове-

ческого мышления.

Главная задача логики состоит в том, чтобы выявить, какие способы

рассуждений правильные, а какие нет. Т.е. определить, как прийти к выво-

ду из предпосылок (правильное рассуждение) и получить истинное знание

о предмете размышления.

Основоположником логики считают древнегреческого мыслителя Ари-

стотеля (384 - 322 гг. до н. э.). В своём труде «Первая аналитика» он рас-

сматривает правила вывода одних высказываний из других. Именно Ари-

стотель подверг анализу человеческое мышление, такие его формы, как по-
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нятие, суждение, умозаключение, и рассмотрел мышление со стороны его

строения и структуры. Так возникла формальная логика – наука, изуча-

ющая логические операции и правила человеческого мышления, имеющая

дело не с содержанием понятий, а только с их формой. Формальная логика

занимается выводом нового знания на основе ранее известного, применяя

законы и правила мышления.

В течение долгого времени логика оставалась скорее философским ин-

струментом. Но в XVII веке появилась идея разделения логики и есте-

ственного языка. Готфрид Вильгельм Лейбниц (1646 - 1716 гг.) в рабо-

те «Искусство комбинаторики» предложил использовать математическую

символику в логике и при построении логических исчислений, тем самым

заложив основы символической логики.

Но логика, разработанная Аристотелем преобладала до середины XIX

века, когда началась алгебраизация логики. Идеи применения символиче-

ского метода к логике впервые высказаны Джорджем Булем (1815 - 1864

гг.) в статье «Математический анализ логики» (1847). В 1854 году он опуб-

ликовал трактат «Исследование законов мышления, на которых основыва-

ются математические теории логики и вероятности». Независимо от него

исследованием логики занимался Огастес де Морган (1806 - 1871 гг.) в сво-

ей работе «Формальная логика», опубликованной в 1847 году, он изложил

элементы логики высказываний и основы алгебры отношений.

Идеи Буля послужили началу попыток создания логических вычисли-

тельных машин. В 1866 году Уильям Стенли Джевонс создал «Логическое

фортепиано» — машина, позволяющая механически выводить заключения

из поставленных посылок. Также его «Элементарные уроки логики» стали

10



наиболее читаемым учебником по логике на английском языке.

Дальнейшим развитием алгебры отношений в частности и символиче-

ской логики в целом занимался Чарльз Сандерс Пирс (1839 - 1914 гг.). Он

же в 1880 году в первой главе «Простейшей математики» дал определение

«Булиановская алгебра».

Совершенствованием символической логики занимался и Джонн Венн

(1834 - 1923 гг.). Важнейшей его работой в данной области является «Сим-

волическая логика» (1894). Основной задачей он считал создание языка

для записи процесса логического исчисления. В настоящее время его име-

нем названы диаграммы, используемые наглядного отображения логиче-

ских выражений и решения логических задач.

Идеи Буля получили своё продолжение в трудах Эрнста Шрёдера (1841

- 1902 гг.). Он разработал полную систему аксиом логического исчисления

— того, что впоследствии станет булевой алгеброй. Ему же принадлежат

термины «логическое исчисление» и «исчисление высказываний». Первый

труд «Операционная схема логического исчисления» вышел в 1877 году.

Итог свой работы Шрёдер подвёл трёхтомником «Алгебра логики», выхо-

дившем с 1890 по 1905 гг.

В это же время в конце XIX — начале XX веков алгебра логики стала

инструментом для аксиоматической формализации различных основопола-

гающих разделов математики, таких как арифметика, геометрия и матема-

тический анализ. Работающий в конце 1880-х над аксиоматикой арифмети-

ки Джузеппе Пеано (1858 - 1932 гг.) создал удобную систему обозначений,

закрепившуюся в современной алгебре логики.

В начале XX века Пауль Эренфест (1880 - 1933 гг.) указал на возмож-
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ность применения аппарата булевой алгебры в телефонной связи для опи-

сания переключательных цепей. В 1938-1940 г. почти одновременно появи-

лись работы советского ученого Шестакова, американского ученого Шен-

нона и японских ученых Накасимы и Хакадзавы о применении алгебры

логики в цифровой технике. Аппарат алгебры логики играет важную роль

в развитии современной микропроцессорной техники: он используется в

проектировании аппаратных вычислительных средств, в разработке всех

языков программирования и в конструировании дискретных устройств ав-

томатики.

1.2 Математический аппарат для синтеза логических

формул

1.2.1 Булевы функции и реализующие их формулы

Булевой функцией, или функцией алгебры логики f (x1, . . . , xn) ( f (n))

от n переменных называется функция, аргументы и значения которой опре-

делены на множестве {0, 1}. Для задания такой функции достаточно ука-

зать, какое значение функции соответствует каждому из наборов значений

переменных функции. Легко подсчитать, что число функций от n пере-

менных соответствует количеству наборов и равняется 2n. Стандартным

способом задания булевых функций является их запись в виде таблицы,

где в первых n столбцах выписаны значения аргументов функции, а в по-

следнем — значения функции при соответствующих значениях аргументов.
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x1 . . . xn−1 xn f (x1, . . . , xn−1, xn)

0 . . . 0 0 f (0, . . . , 0, 0)

0 . . . 0 1 f (0, . . . , 0, 1)

0 . . . 1 0 f (0, . . . , 1, 0)

. . . . . . . . .

1 . . . 1 1 f (1, . . . , 1, 1)

Определение. Булева функция f (x1, . . . , xi−1, xi, xi+1, . . . , xn) суще-

ственно зависит от аргумента xi, если существуют такие значения

α1, . . . , αi−1, αi+1, . . . , αn переменных x1, . . . , xi−1, xi+1, . . . , xn, что

f (α1, . . . , αi−1, 0, αi+1, . . . , αn) 6= f (α1, . . . , αi−1, 1, αi+1, . . . , αn) .

В этом случае переменная xi называется существенной. Если для на всех

наборах значений переменных x1, . . . , xi−1, xi+1, . . . , xn

f (x1, . . . , xi−1, 0, xi+1, . . . , xn) = f (x1, . . . , xi−1, 1, xi+1, . . . , xn) ,

то переменная xi называется фиктивной или несущественной.

Пусть функция f (x1, . . . , xn) несущественно зависит от переменной xi.

После удаления из таблицы истинности всех строк вида x1, . . . , xi−1, 1, xi+1, . . . , xn

и столбца для аргумента xi, полученная таблица будет определять функ-

цию g (x1, . . . , xi−1, xi+1, . . . , xn) такую, что

g (x1, . . . , xi−1, xi+1, . . . , xn) = f (x1, . . . , xi−1, 0, xi+1, . . . , xn) .

В таком случае говорится, что функция g получена из функции f уда-
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лением фиктивной переменной xi. Также можно сказать, что функция f

получена из функции g добавлением фиктивной переменной xi.

Определение. Булевы функции f и g называются равными, если они

могут быть получены одна из другой удалением и/или добавлением фик-

тивных переменных.

Определение. Булева функция f(x1, . . . , xn) называется симметри-

ческой если для любой подстановки





1 . . . n

i1 . . . in



 выполняется равенство

f (x1, . . . , xn) = f (xi1, . . . , xin) .

Определение. Понятие формулы, реализующей булеву функцию зада-

ётся по индукции. Пусть задано некоторое множество функций

G = {f1 (x1, . . . xn1
) , f2 (x1, . . . xn2

) , . . . , fs (x1, . . . xnk
) , . . .}

1. Каждая функция fi (x1, . . . xn1
) из G называется формулой над G.

2. Если Aj1, . . . , Ajm — переменные, или формулы над G, тогда F =

= fi (Aj1, . . . , Ajm) — формула над G. Aj1, . . . , Ajm называются под-

формулами формулы F .

Формулы, реализующие равные функции называются эквивалентными.

Функция f , представляемая формулой F называется суперпозицией

над множеством G. Последовательное применение суперпозиций базисных

функций и определяет строение формулы и можно сказать является фор-

мулой.

Всего существует 22
2

= 16 функций от двух переменных. В таблице
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приведены вектора значений бинарных функций, и соответствующие им

формулы.

x1 x2 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0

x
1
·x

2

x
1
→

x
2

x
1

x
2
→

x
1

x
2

x
1
⊕

x
2

x
1
∨
x
2

x
1
↓
x
2

x
1
∼

x
2 x
2

x
2
→

x
1 x
1

x
1
→

x
2

x
1
|
x
2 1

1.2.2 Полные системы булевых функций и базисы. По-

казатели качества

Определение. Система булевых функций G = {f1, . . . , fn} называется

полной, если любая функция алгебры логики выражается формулой над

G.

Определение. Система булевых функций G = {f1, . . . , fn} называет-

ся базисом, если она полна, но при удалении любой из функций данной

системы, она перестаёт быть полной.

Но в общем случае базисом называют любую полную систему функций.

Так базисом называют G1 = {∨,∧,¬}

Функции алгебры логики могут представляться в виде формул над раз-

личными базисами. И даже в одном и том же базисе иметь различные пред-

ставления. В связи с этим возникает проблема сравнения и выбора наибо-

лее подходящей реализации. Для этого вводятся оценки, характеризующие
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сложность реализации в виде формулы, удовлетворяющие аксиомам неот-

рицательности, монотонности, выпуклости и инвариантности [55].

Таких характеристик можно выделить достаточно много. Наиболее ча-

сто встречающиеся из них:

• LБ(F ) — число символов переменных, встречающихся в записи фор-

мулы F .

• LK(F ) — число элементарных конъюнкций, входящих в формулу F .

• LF (F ) — число базисных функций в формуле F .

• Dep(F ) — глубина формулы F (максимальный уровень вложенности

суперпозиции базисных функций)

• LS(f, G) — число функциональных (логических) элементов в схеме

S;

Показатель качества реализации функции f в базисе G определяется

как минимум из всех реализаций функции в виде формулы в данном базисе:

L(f, G) = min
i

(Li(Fi)) .

1.2.3 Методы минимизации

Между собой показатели качества имеют сложные связи. Один из глав-

ных показателей — LБ. Уменьшение показателя LБ влечет уменьшение ––

LF и LS. От показателя LБ разным образом зависят остальные из пере-

численных выше показателей. При этом минимизация одного показателя
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качества может приводить к уменьшению или к возрастанию другого пока-

зателя (других). Например, минимизация LБ приводит к минимизации LF

и может приводить к уменьшению, или оставлять без изменения, или уве-

личивать глубину Dep(F ) суперпозиционной формулы F . В таких случаях

рекомендуется устанавливать приоритет показателей.

Первым этапом минимизации булевой функции исключаются фиктив-

ные переменные, не влияющие на значения функции. Основной этап ми-

нимизации происходит выражением булевой функции через суперпозицию

более простых функций. При этом происходит редукция количества вхож-

дений переменных скобочной суперпозиционной формулы.

Определение. Представление булевой функции y = f(X) в виде су-

перпозиции функций f1, f2, . . ., fk и f0, называется её декомпозицией, при-

чем

y = f0(X0 ∪ Z), z1 = f1(X1), . . . , zk = fk(Xk),

где f0 — внешняя функция суперпозиции, k > 1, Z = {z1, . . . , zk} и Xi 6= ∅,

i = 1, . . . , k.

Декомпозиция функции преследует две цели: декомпозиция как пред-

ставление функции в виде суперпозиции базисных функций и декомпози-

ция как представление функции в виде суперпозиции меньших размерно-

стей.

Одним из способов минимизации может служить проведение эквива-

лентных преобразований над формулой, и переход к новому базису.
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1.2.4 Полиномы Жегалкина

Определение. Элементарной конъюнкцией ранга n называется конъ-

юнкция n переменных вида xσ1

1 · . . . ·xσn
n . Монотонной элементарной конъ-

юнкцией называется положительно определённая элементарная конъюнк-

ция x1 · . . . · xn.Константа 1 является элементарной конъюнкцией ранга 0.

Определение. Полиномом Жегалкина или алгебраической нормаль-

ной формой называется сумма по модулю 2 попарно различных монотон-

ных элементарных конъюнкций. Пустой полином, т. е. не содержащий ни

одной конъюнкции выражается константой 0. Канонический вид полинома

Жегалкина:
∑

i1,...,ik

αi1...ikxi1 . . . xik ,

где αi1...ik ∈ {0, 1} — двоичный коэффициент разложения в полином Же-

галкина. Максимальный ранг элементарной конъюнкции с неравным нулю

коэффициентом называется степенью полинома.

Теорема Жегалкина. Каждая булева функция может быть выраже-

на при помощи полинома по модулю 2 (полинома Жегалкина) и притом

единственным образом.

Пусть произвольная булева функция f (n) задается полиномом Жегал-

кина F (n) = K1 ⊕ . . .⊕Ki ⊕ . . .⊕Km, i = 1, m, где Ki –– монотонная эле-

ментарная конъюнкция ранга ri, причем r1 > . . . > ri > . . . > rm, i = 1, m.

В каноническом полиноме Жегалкина его элементарные конъюнкции рас-

положены в соответствии с порядком “>”, определенным для их рангов.

Вектор r = (r1, . . . , ri, . . . , rm) задает строение полинома Жегалкина F (n).

Также для полинома определяется вектор p = (p1, . . . , pj, . . . , pn) повторя-
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емости переменных из множества X в формуле F (n), т. е. переменная xj,

j = 1, n, повторяется pj раз в формуле F (n).

Функциональное уравнение декомпозиции полинома Жегалкина имеет

вид

F (n) =
((

xjF
(n−1)
0

)

⊕ F
(n−1)
1

)

, (1.2.1)

где нижние индексы 0 и 1 – номера соответствующих остаточных функций,

рассматриваемых на одном множестве X ′ = X \ {xj}.

1.3 Обзор проблемы нахождения минимальных оце-

нок

Минимизация формул, реализующих функции, по тем или иным пока-

зателям качества диктуется необходимостью совершенствования аппарата

алгебры логики, находящего практическое применение в таких областях,

как схемотехника, теория управления, криптография и других.

Вопросы конструирования булевых формул, минимальных по своим

показателям возникли одновременно с началом применения логических

функций для проектирования вычислительных и управляющих устройств.

Трудоемкость получения оптимального по какому-либо показателю реше-

ния является является сложностью алгоритма переборного характера [2, 3,

4, 32, 33, 56, 57]. Это привело к отказу от стандартных подходов постановки

задачи и ее решения.Основным стал асимптотический подход, основываю-

щийся на функции Шеннона [53]. Используя его, О.Б. Лупанов [32, 33]

первым разработал метод и получил асимптотическую оценку числа эле-

ментов схемы, реализующей булеву функцию.
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В работах Ю. И. Журавлева, С. В. Яблонского и Д. А. Поспелова пред-

ложено ограничить трудоемкость синтеза и искать алгоритмы, приводящие

к схемам наилучшего качества в ограниченном классе. В этих же работах

показано, что в классе алгоритмов, заметно отличающихся по трудоемко-

сти от переборных, далеко не всегда удается получить решение, сколько-

нибудь близкое к оптимальному [26, 27, 56].

Интересны и вопросы как и насколько может измениться сложность

при переходе из одного базиса в другой [2, 3]. Приводятся примеры, когда

одна функция в некотором базисе имеет меньшие значения показателей

сложности по сравнению с другим базисом, другая же функция, наоборот.

Как было показано в дальнейшем, поиск оптимального решения стоит

осуществлять в отдельных счётных классах булевых функций [7, 8].

Тем не менее поиски способа уменьшения асимптотической сложности

продолжаются до сих пор. Так в работах [58, 59, 60] оценивается мульти-

пликативная сложность функции для базиса Жегалкина. До сих пор ин-

тересны вопросы связи между различными функционалами качества [61].

Также описываются различные способы применения полиномов Жегалки-

на для построения логических устройств [40, 62]

1.4 Обзор современных проблем

1.4.1 Представление полинома Жегалкина в виде ги-

перграфа

Гиперграфом Н называется пара H = (V, E), где V — множество эле-

ментов, называемых узлами или вершинами, а E — множество непустых
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подмножеств V , называемых гиперребрами или просто ребрами гипергра-

фа [5, 29].

В то время как ребра графа являются парами вершин, гиперребра —

произвольными наборами вершин и поэтому могут содержать произволь-

ное количество этих самых вершин [9].

Тем не менее, часто желательно изучать гиперграфы, где все гиперреб-

ра имеют одинаковую мощность. Такие гиперграфы называются комплек-

сами [9].

Рассмотрим представление полинома Жегалкина, в виде гиперграфа.

Пусть дана произвольная булева функция, задаваемая полиномом Же-

галкина F (n) = K1 ⊕ . . . ⊕ Ki ⊕ . . . ⊕ Km, i = 1, m, где Ki — монотонная

элементарная конъюнкция (ЭК) ранга ri, причем r1 > . . . > ri > . . . > rm,

i = 1, m. Тогда можно провести следующие связи:

1. вершины vi гиперграфаH соответствуют переменным xi булевой функ-

ции, где i = 1, n;

2. гиперрёбра ej гиперграфа H соответствуют конъюнкциям Kj булевой

функции, где i = 1, m.

Отдельно стоит рассмотреть конъюнкцию с нулевым рангом, то есть тож-

дественную 1. В этом случае гиперребро e∅ должно быть пустым, что не

противоречит понятию гиперграфа, так как гиперрёбро может содержать

любое количество вершин.

Для нахождения значения булевой функции нужно ввести понятия бу-

левого значения вершины и булевого веса гиперребра.
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Булевое значение вершины bd(vi) задаётся следующим образом:

bw(vi) =















0, xi — ложь;

1, xi — истина.

Булевый вес гиперребра bw(ej) можно задать, как произведение бу-

левых значений, входящих в гиперребро вершин:

bw(ej) =
∏

k

bd(vk), ∀vk ∈ ej .

Для пустого гиперребра булевый вес bw(e∅) положим равным 1.

Значение функции F (n) можно определить следующим образом:

F (n) =















ложь,
(

∑m
j=1 ej

)

mod 2 = 0;

истина,
(

∑m
j=1 ej

)

mod 2 = 1;

Отдельно стоит отметить представление в виде гиперграфов симмет-

ричных полиномов Жегалкина. Они отличаются от обычных полиномов

Жегалкина, тем что все конъюнкции внутри полинома имеют одинаковый

ранг. Таким образом гиперграф в виде которого симметричный полином

Жегалкина можно представить содержит гиперрёбра с одной и той же раз-

мерностью. Отсюда следует, что такой гиперграф является k-комплексом,

где k на единицу меньше ранга конъюнкции полинома Жегалкина. Сле-

довательно мы можем рассмотреть представление полинома Жегалкина в

более узкий класс гиперграфов — k-комплексы.

Определим кратко k-комплексы:
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Для множества вершин U(n), где n ≥ 2, и k ∈ Z, 0 ≤ k ≤ n− 1, через

Sk+1(n) =
{{

ui1, . . . , uik+1

}

: uij ∈ U(n), uip 6= uiq при p 6= q
}

обозначим множество всех (k+1)-элементных подмножеств из U(n). Пара

множеств
{

U(n), Sk+1
}

, где Sk+1 ⊆ Sk+1(n), которую обозначим

Gk = Gk
(

U(n), Sk+1 = Sk+1
(

Gk
))

,

называется k-комплексом [35].

Мощность множества M обозначим |M |. Очевидно, что

∣

∣Sk+1(n)
∣

∣ = Ck+1
n .

Также легко заметить, что:

а) Для 0-комплекса G0 = G0
(

U(n), S1
)

имеет место равенство S1 =

= S1(n).

б) Пусть Γk(n) =
{

Gk
(

U(n), Sk+1
)}

— множество всех k-комплексов с

вершинами U(n). Применяя терминологию теории графов, будем полагать,

что каждый 0-комплекс — это вполне несвязный k-комплекс (n ≥ k+1) для

любого k ≥ 1: G0
(

U(n), S1
)

∈ Γk(n) (будем полагать, что G0
(

U(n), S1
)

=

= Gk (U(n), ∅) при k ≥ 1).

В топологии элементы из Sk+1(n) называются k-мерными симплекса-

ми [1]. В частности, вершины из U(n) = S1(n) называются 0-мерными

симплексами. Элементы из S2(n) в теории графов называются рёбрами.

Для k-комплекса Gk
(

U(n), Sk+1
)

вершины ui1, . . . , uim, где 2 ≤ m ≤ k+
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1, называются смежными, если они принадлежат некоторому симплексу из

Sk+1. Симплекс
{

ui1, . . . , uik+1

}

из Sk+1 называется инцидентным каждой

вершине uij , 1 ≤ j ≤ k + 1, а каждая из вершин uij , 1 ≤ j ≤ k + 1,

называется инцидентной симплексу
{

ui1, . . . , uik+1

}

[37].

Теперь возьмём произвольный k-мерный симплекс
{

ui1, . . . , uik+1

}

из

Sk+1 и m ∈ Z, 1 ≤ m ≤ k. Любое m-элементное подмножество вершин

{ui1, . . . , uim} из множества
{

ui1, . . . , uik+1

}

является (m − 1)-мерным сим-

плексом. В топологии симплекс {ui1, . . . , uim} называется гранью симплекса
{

ui1, . . . , uik+1

}

. Для таких комплексов верно следующее:

а) Множество k-комплексов Γk(n) =
{

Gk
(

U(n), Sk+1
)}

есть подмно-

жество всех k-мерных комплексов с множеством вершин U(n): в отличие

от произвольного k-мерного комплекса любой k-комплекс Gk обладает до-

полнительным свойством: каждый m-мерный симплекс, где 1 ≤ m ≤ k,

этого комплекса есть грань некоторого k-мерного симплекса k-комплекса

Gk (такие комплексы в топологии относятся к классу полных комплексов

[1]).

Отметим, что определение k-комплекса допускает существование в k-

комплексе изолированных вершин (то есть k-комплекс может иметь 0-

мерные симплексы, не являющиеся гранями симплексов большой размер-

ности).

б) Любой k-комплекс Gk, не содержащий изолированные вершины, на-

зывается локально k-мерным комплексом [1].

Следует отметить, что в случае, например, симметрического полинома

Жегалкина третьей степени мы можем представить его в виде полного 2-

комплекса [21].
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Таким же образом можно приставить симметрический полином Жегал-

кина второй степени в виде полного ненаправленного графа.
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Глава 2

Оценки качества булевых функций на основе

алгебраической декомпозиции

Математическое моделирование в научном и техническом мире все боль-

ше становится компьютерным моделированием с постоянно расширяющи-

мися интеллектуальными свойствами технических (аппаратурных) средств.

При этом сохраняется потребность в совершенствовании математического

аппарата (различных разделов дискретной математики). Поэтому в дан-

ной главе отрабатывается техника получения различных оценок показа-

телей сложности на основе рекуррентных соотношений (функциональных

уравнений).

2.1 Аналитическое определение оценок сложности.

Применим метод функциональных уравнений для реализации булевых

функций f (n) в базисе G3 суперпозиционной формулой F
(n)
с.ф. и получения

при этом верхней оценки сложности LF .

Каждое применение функционального уравнения (1.2.1) порождает не

более двух базисных функций из G3 и не более двух остаточных функций
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(

F
(n−1)
0 и F

(n−1)
1

)

. Используя последовательно уравнение (1.2.1) и сумми-

руя значения сложности LF , выводим верхнюю оценку показателя слож-

ности LF для общего случая.

Таким образом, при реализации произвольной булевой функции f (n) ∈

∈ P
(n)
2 в базисе G3 [23] верхняя оценка показателя сложности LF уточнена

как

LF (F
(n)
с.ф., G3) = (5/4) · 2n–2 (2.1.1)

Погрешность полученной оценки (2.1.1) может быть большой. Тогда

как имеются классы симметрических булевых функций, задаваемых эле-

ментарными симметрическими полиномами Жегалкина F
(n)
i , где n — чис-

ло переменных, i — степень полинома, для которых показатели сложности

минимальны или получены другие аналитические оценки. Так, для поли-

номов F
(n)
1 (класс линейных функций — “⊕”) и F

(n)
n (класс “&”) показатели

сложности LF его минимального представления изучены ранее [45, 46, 47].

Например,

Lmin
F

(

F
(n)
1 , G3

)

= Lmin
F

(

F (n)
n , G3

)

= n− 1,

LF (F
(n)
2 , G3) = (n2 + n− 4)/2 LF (F

(n)
3 , G3) = (n3 − n− 12)/6

и другие [22, 45, 46, 47, 48, 49, 50]. При этом, используя теорему об условии

полноты системы булевых функций, можно получать оценки LF сложности

представления функций в других базисах.

Рекуррентное соотношение (1.2.1) фактически есть упрощенный алго-

ритм декомпозиции булевых функций,который будет уточнён в главе 4.

Его основные операции: для формулы F (n) получить переменную xj, мак-

симально повторяющуюся в формуле F (n); преобразовать формулу F (n) к
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виду (1.2.1), получая остаточные функции F
(n−1)
0 и F

(n−1)
1 ; записать фор-

мулы F
(n−1)
0 и F

(n−1)
1 в специальную таблицу, из которой затем выбираем

формулы для последующих шагов алгоритма. Каждый шаг, начиная с пер-

вого, позволяет исключать одну переменную.

Приведем пример моделирования синтеза формул на основе рекуррент-

ного соотношения (1.2.1).

П р и м е р 1. Функция f (7) задается в базисе G3 полиномом F (7) =

= x1x2x3x4 ⊕ x1x2x5 ⊕ x1x6 ⊕ x7, строения r = (4, 3, 2, 1). Представим её в

классе скобочных формул, минимизируя показатель сложности LF .

Выполним эквивалентные преобразования формулы F (7) в соответствии

с ФУ (1.2.1).

F (7) = x1x2x3x4 ⊕ x1x2x5 ⊕ x1x6 ⊕ x7 =

= x1(x2x3x4 ⊕ x2x5 ⊕ x6)⊕ x7 =

= x1(x2(x3x4 ⊕ x5)⊕ x6)⊕ x7 =

= x1(x2((x3x4)⊕ x5)⊕ x6)⊕ x7) = F
(7)
с.ф..

В результате декомпозиции функции f (7) в базисе G3 получается беспо-

вторная скобочная формула F (7)
с.ф., с минимальной сложностьюLmin

F

(

F
(7)
с.ф.

)

=

= 6.

2.2 Верхние оценки для класса БФ F
(n)
n−2

На основании (1.2.1) подробно рассмотрим нахождение ряда оценок по-

казателей качества для отдельного класса симметрических БФ F
(n)
n−2. Дан-

ный класс характеризуется следующим строением: каждая конъюнкция Ki
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содержит n− 2 переменных.

2.2.1 Показатель качества LБ

Исследуем сложность представления элементарного симметрического

полинома Жегалкина F
(n)
n−2 в базисе G3. Для этого разложим функцию

F
(n)
n−2:

F
(n)
n−2 = F

(n−1)
n−2 ⊕ xn · F

(n−1)
n−3 .

Воспользуемся следующим леммами для нахождения показателя качества

LБ

(

F
(n)
n−2

)

:

Лемма 1. Число элементарных конъюнкций Ki есть

Cn−2
n = C2

n =
n(n− 1)

2
=

1

2
n2 −

1

2
n.

Лемма 2. Число букв в любой элементарной конъюнкции есть (n− 2).

Исходя из лемм, получаем, что количество букв для формулы данного

класса

LБ

(

F
(n)
n−2

)

= (n− 2)

(

1

2
n2 −

1

2
n

)

=
1

2
n3 −

3

2
n2 + n.

Отсюда можем перейти к следующей теореме.

Теорема 1. Для функции F
(n)
n−2 оценка LБ

(

F
(n)
n−2

)

не превосходит 1
2n

3−

− 3
2
n2 + n.

Обозначим найденное ограничение как

LБ1

(

F
(n)
n−2, G3

)

=
1

2
n3 −

3

2
n2 + n.
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2.2.2 Показатель качества LF

Теперь рассмотрим другой показатель качества: количество подформул

в формуле

F
(n)
n−2 = F

(n−1)
n−2 ⊕ xn · F

(n−1)
n−3 .

Количество подформул в формуле соответствует количеству знаков дей-

ствий в соответствующей формуле. Это значит, что для полиномов Же-

галкина, имеющих в составе только положительно определённые элемен-

тарные конъюнкции оценку LF

(

F
(n)
n−2

)

можно найти следующим образом:

LF

(

F
(n)
n−2

)

= LБ

(

F
(n)
n−2

)

− 1 = (n− 2)Cn−2
n − 1 =

=
1

2
(n− 2)(n− 1)n− 1 =

1

2
n3 −

3

2
n2 + n− 1.

Отсюда можем получить следующую теорему.

Теорема 2. Для функции F
(n)
n−2 оценка LF

(

F
(n)
n−2

)

не превосходит 1
2
n3−

− 3
2n

2 + n− 1.

Обозначим найденное ограничение как

LF 1

(

F
(n)
n−2, G3

)

=
1

2
n3 −

3

2
n2 + n− 1.

2.3 Минимизация полученных оценок

Основной целью данной части работы является минимизация оценок

показателей качества функции F
(n)
n−2. Для этого воспользуемся методом
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функциональных уравнений и методом конечных разностей

2.3.1 Показатель качества LБ

(

F
(n)
n−2, G3

)

Применим метод функциональных уравнений для улучшения получен-

ной выше оценки LБ

(

F
(n)
n−2

)

:

F
(n)
n−2 = F

(n−1)
n−2 ⊕ xn · F

(n−1)
n−3 . (2.3.1)

Функциональному уравнению (2.3.1) соответствует следующее функци-

ональное уравнение для показателя качества LБ:

LБ

(

F
(n)
n−2

)

= LБ

(

F
(n−1)
n−2

)

+ 1 + LБ

(

F
(n−1)
n−3

)

.

Произведем следующую замену:

un = LБ

(

F
(n)
n−2

)

, un−1 = LБ

(

F
(n−1)
n−3

)

.

Таким образом, мы получили рекуррентное соотношение

un − un−1 = LБ

(

F
(n−1)
n−2

)

+ 1 (2.3.2)

B (2.3.2) LБ

(

F
(n−1)
n−2

)

оценим как

LБ

(

F
(n−1)
n−2

)

= (n− 2)Cn−2
n−1 = (n− 2)(n− 1) = n2 − 3n+ 2,
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получая следующее разностное уравнение

un − un−1 = n2 − 3n+ 3.

Начальные условия подсчитываем непосредственно из полинома F 4
2 .

При n = 4:

F 4
2 = x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1x4 ⊕ x2x4 ⊕ x3x4. (2.3.3)

Преобразуем формулу (2.3.3), получая:

F 4
2 = (x1x2 ⊕ x3(x1 ⊕ x2))⊕ x4(x1 ⊕ x2 ⊕ x3). (2.3.4)

Считаем количество букв в формуле (2.3.4). Получаем таким образом

начальное условие для n = 4: u4 = LБ

(

F 4
2 , G3

)

= 9.

Полученное разностное уравнение (2.3.2) и начальное условие при n = 4

позволяют получить его решение в виде рекуррентного соотношения [6].

Для этого составляем конечные разности первого, второго и последующих

порядков до тех пор, пока они не будут нулевыми, то есть не будет получено

решение в виде многочлена с неопределёнными коффициентами

n 4 5 6 7 8

un 9 22 43 74 117

∆1 13 21 31 43

∆2 8 10 12

∆3 2 2

∆4 0
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Так как конечные разности четвёртого порядка равны нулю, то, из свой-

ства конечных разностей, мы предполагаем решение в виде многочлена

третьей степени:

un = a0n
3 + a1n

2 + a2n+ a3. (2.3.5)

Полученную систему уравнений будем решать по методу Гаусса.



































343a0+ 49a1+ 7a2+ a3 = 74

216a0+ 36a1+ 6a2+ a3 = 43

125a0+ 25a1+ 5a2+ a3 = 22

64a0+ 16a1+ 4a2+ a3 = 9



































3a0 = 1

15a0+ a1 = 4

61a0+ 9a1+ a2 = 13

64a0+ 16a1+ 4a2+ a3 = 9



































3a0 = 1

a1 = −1

3a2 = 5

a3 = −3
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Из последней системы найдем коэффициенты для многочлена (2.3.5)

a0 =
1

3
,

a1 = −1,

a2 =
5

3
,

a3 = −3.

Таким образом мы получили ещё одну оценку для показателя качества

LБ

(

F
(n)
n−2

)

:

LБ2

(

F
(n)
n−2, G3

)

=
1

3
n3 − n2 +

5

3
n− 3.

Отсюда получаем следующую уточнение теоремы 1.

Теорема 3. Для функции F
(n)
n−2 оценка LБ

(

F
(n)
n−2

)

не превосходит 1
3n

3−

− n2 + 5
3n− 3.

Показатель качества LБ3

(

F
(n−1)
n−2

)

Проведем ещё одну минимизацию показателя LБ.

F
(n)
n−2 = F

(n−1)
n−2 ⊕ xn · F

(n−1)
n−3

LБ

(

F
(n)
n−2

)

= LБ

(

F
(n−1)
n−2

)

+ 1 + LБ

(

F
(n−1)
n−3

)

un − un−1 = LБ

(

F
(n−1)
n−2

)

+ 1.

Рассмотрим LБ

(

F
(n−1)
n−2

)

. Улучшим последнее полученное значение по-

казателя LБ

(

F
(n)
n−2

)

за счёт получения более точной оценки рекуррентного
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соотношения 2.3.2. Запишем функциональное уравнение для F
(n−1)
n−2 :

F
(n−1)
n−2 = F

(n−2)
n−2 ⊕ xn · F

(n−2)
n−3 .

Ему будет соответствовать следующее разностное уравнение:

LБ

(

F
(n−1)
n−2

)

= LБ

(

F
(n−2)
n−2

)

+ 1 + LБ

(

F
(n−2)
n−3

)

,

un = LБ

(

F
(n−1)
n−2

)

, un−1 = LБ

(

F
(n−2)
n−3

)

,

LБ

(

F
(n−2)
n−2

)

= n− 2,

un − un−1 = LБ

(

F
(n−2)
n−2

)

+ 1 = (n− 2) + 1 = n− 1.

Подсчитаем начальные условия непосредственно из полинома F 3
2 :

F 3
2 = F 2

2 ⊕ x3F
2
1 = x1x2 ⊕ x3(x1 ⊕ x2).

u4 = LБ

(

F 3
2

)

= 5

Составим сеточную функцию

n 4 5 6 7

un 5 9 14 20

∆1 4 5 6

∆2 1 1

∆3 0

Предполагаем решение в виде многочлена второй степени

un = a0n
2 + a1n+ a2.
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





















36a0+ 6a1+ a2 = 14

25a0+ 5a1+ a2 = 9

16a0+ 4a1+ a2 = 5























2a0 = 1

9a0+ a1 = 4

9a0+ 3a1+ a2 = 5























2a0 = 1

2a1 = −1

a2 = −1

a0 =
1

2
,

a1 = −
1

2
,

a2 = −1.

Решив систему уравнений, получаем следующую оценку:

LБ

(

F
(n−1)
n−2 , G3

)

=
1

2
n2 −

1

2
n− 1.

Возвращаемся к исходному уравнению для показателя качества

LБ

(

F
(n)
n−2

)

. Подставим полученную оценку в уравнение (2.3.2), которое

приобретает следующий вид:

un − un−1 = LБ

(

F
(n−1)
n−2

)

=
1

2
n2 −

1

2
n− 1 + 1 =

1

2
n(n− 1).
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Для составления сеточной функции воспользуемся уже найденными на-

чальными условиями (u4 = 9):

n 4 5 6 7 8

un 9 19 34 55 83

∆1 10 15 21 28

∆2 5 6 7

∆3 1 1

∆4 0

Отсюда можно определить общий вид решения:

un = a0n
3 + a1n

2 + a2n+ a3.



































343a0+ 49a1+ 7a2+ a3 = 55

216a0+ 36a1+ 6a2+ a3 = 34

125a0+ 25a1+ 5a2+ a3 = 19

64a0+ 16a1+ 4a2+ a3 = 9



































6a0 = 1

30a0+ 2a1 = 5

61a0+ 9a1+ a2 = 10

64a0+ 16a1+ 4a2+ a3 = 9



































6a0 = 1

a1 = 0

6a2 = −1

a3 = −1
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a0 =
1

6
,

a1 = 0,

a2 = −
1

6
,

a3 = −1.

Таким образом мы получили третью оценку показателя LБ:

LБ3

(

F
(n)
n−2, G3

)

=
1

6
n3 −

1

6
n− 1,

а также получаем ещё одно уточнение теоремы 1.

Теорема 4. Для функции F
(n)
n−2 оценка LБ

(

F
(n)
n−2

)

не превосходит 1
6n

3−

− 1
6n− 1.

2.3.2 Показатель качества LF

(

F
(n)
n−2, G3

)

Показатель качества LF 2

(

F
(n)
n−2,

)

F
(n)
n−2 = F

(n−1)
n−2 ⊕ xn · F

(n−1)
n−3 .

Данному функциональному уравнению соответствует следующая схема

для n-го элемента:
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and

xn F
(n−1)
n−3

xor

F
(n−1)
n−2

F
(n)
n−2

По данной схеме составляется функциональное уравнение для показа-

теля качества LF :

LF

(

F
(n)
n−2

)

= LF

(

F
(n−1)
n−2

)

+ 2 + LF

(

F
(n−1)
n−3

)

.

Разностные уравнения получаем так же, как в предыдущем разделе:

un = LF

(

F
(n)
n−2

)

, un−1 = LF

(

F
(n−1)
n−3

)

,

un = un−1 + LF

(

F
(n−1)
n−2

)

+ 2, (2.3.6)

LF

(

F
(n−1)
n−2

)

= (n− 2)Cn−2
n−1 − 1 = (n− 2)(n− 1)− 1 = n2 − 3n+ 1.

un − un−1 = n2 − 3n+ 3. (2.3.7)

Подсчитаем начальные условия. По полученной суперпозиционной фор-

муле F 4
2 восстанавливаем схему из функциональных элементов без ветвле-

ния.
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xor xorand

xor

x1 x2 x3

and

x4

and

x1 x2 x3x1 x2

xor

xor

F 4
2

Количество подформул в формуле соответствует количеству базисных

функциональных элементов в схеме. Т. о. для n = 4 получаем начальные

условия u4 = 8.

На основе разностного уравнения (2.3.7) составим сеточную функцию

n 4 5 6 7 8 9

un 8 21 42 73 116 173

∆1 13 21 31 43 57

∆2 8 10 12 14

∆3 2 2 2

∆4 0 0

Решение будем искать в следующем виде:

un = a0n
3 + a1n

2 + a2n+ a3.
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

































343a0+ 49a1+ 7a2+ a3 = 73

216a0+ 36a1+ 6a2+ a3 = 42

125a0+ 25a1+ 5a2+ a3 = 21

64a0+ 16a1+ 4a2+ a3 = 8



































3a0 = 1

15a0+ a1 = 4

61a0+ 9a1+ a2 = 13

64a0+ 16a1+ 4a2+ a3 = 8



































3a0 = 1

a1 = −1

3a2 = 5

a3 = −4

a0 =
1

3
,

a1 = −1,

a2 =
5

3
,

a3 = −4.

В итоге мы нашли оценку для показателя качества LF :

LF 2

(

F
(n)
n−2, G3

)

=
1

3
n3 − n2 +

5

3
n− 4,

что позволяет уточнить теорему 1.
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Теорема 5. Для функции F
(n)
n−2 оценка LF

(

F
(n)
n−2

)

не превосходит 1
3n

3−

− n2 + 5
3n− 4.

Показатель качества LF 3

(

F
(n)
n−2

)

Найдём показатель LF

(

F
(n−1)
n−2

)

для получения более точной оценки

разностного уравнения (2.3.6). Для этого разложим F
(n−1)
n−2

F
(n−1)
n−2 = F

(n−2)
n−2 ⊕ xn · F

(n−2)
n−3 .

На основе данной формулы составим схему:

and

xn F
(n−2)
n−3

xor

F
(n−2)
n−2

F
(n−1)
n−2

И функциональное уравнение для LF

(

F
(n−1)
n−2

)

:

LF

(

F
(n−1)
n−2

)

= LF

(

F
(n−2)
n−2

)

+ 2 + LF

(

F
(n−2)
n−3

)

.

Воспользуемся следующей заменой:

un = LF

(

F
(n−1)
n−2

)

, un−1 = LF

(

F
(n−2)
n−3

)

.

LF

(

F
(n−2)
n−2

)

можно подсчитать непосредственно из формулы. Получаем
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простой случай:

F n−2
n−2 = x1 · x2 · . . . · xn−2.

LF

(

F
(n−1)
n−1

)

= n− 3.

Т. о. мы получаем разное уравнение

un − un−1 = LF

(

F
(n−1)
n−2

)

+ 2 = (n− 3) + 2 = n− 1.

При n = 4 мы получаем полином F 3
2 = F 2

2 ⊕ x3F
2
1 = x1x2 ⊕ x3(x1 ⊕ x2).

Построим схему с ветвлением, соответствующую данной формуле:

xorand

and

x1 x2 x3x1 x2

xor

F 3
2

Из данной схемы подсчитываем начальные условия: u4 = 4. Теперь

составим сеточную функцию.

n 4 5 6 7

un 4 8 13 19

∆1 4 5 6

∆2 1 1

∆3 0

Т. к. конечные разности имеют третий порядок, то решение будем ис-
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кать в виде полинома второй степени.

un = a0n
2 + a1n+ a2.























36a0+ 6a1+ a2 = 13

25a0+ 5a1+ a2 = 8

16a0+ 4a1+ a2 = 4























2a0 = 1

9a0+ a1 = 4

16a0+ 4a1+ a2 = 4























2a0 = 1

2a1 = −1

a2 = −2

a0 =
1

2
,

a1 = −
1

2
,

a2 = −2.

Мы получили оценку для полинома Жегалкина

LF

(

F
(n−1)
n−2 , G3

)

=
1

2
n2 −

1

2
n− 2.

44



Возвращаемся к исходному уравнению для показателя качества

LF

(

F
(n)
n−2

)

. Полученную оценку подставим в разностное уравнение 2.3.6:

un − un−1 =
1

2
n2 −

1

2
n− 2 + 2 =

1

2
n(n− 1).

Используя начальные данные, полученные раннее, составим сеточную

функцию.

n 4 5 6 7 8

un 8 18 33 54 82

∆1 10 15 21 28

∆2 5 6 7

∆3 1 1

∆4 0

un = a0n
3 + a1n

2 + a2n+ a3.



































343a0+ 49a1+ 7a2+ a3 = 54

216a0+ 36a1+ 6a2+ a3 = 33

125a0+ 25a1+ 5a2+ a3 = 18

64a0+ 16a1+ 4a2+ a3 = 8



































6a0 = 1

30a0+ 2a1 = 5

61a0+ 9a1+ a2 = 10

64a0+ 16a1+ 4a2+ a3 = 8
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

































6a0 = 1

a1 = 0

6a2 = −1

a3 = −2

a0 =
1

6
,

a1 = 0,

a2 = −
1

6
,

a3 = −2.

Отсюда получаем

LF 3

(

F
(n)
n−2, G3

)

=
1

6
n3 −

1

6
n− 2.

Теперь можем ещё раз уточнить теорему 2.

Теорема 6. Для функции F
(n)
n−2 оценка LF

(

F
(n)
n−2

)

не превосходит 1
6n

3−

− 1
6
n− 2.

2.4 Реализация в классе схем

2.4.1 Показатель качества LS

(

F
(n)
n−2, G1

)

Оценка LS

Исследуем сложность представления элементарного симметрического

полинома Жегалкина F (n)
n−2, построив формулу в базисеG1, на основе базиса
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G3:

F
(n)
n−2 = F

(n−1)
n−2 ⊕ xn · F

(n−1)
n−3 = (2.4.1)

= F
(n−1)
n−2 xnF

(n−1)
n−3 ∨ F

(n−1)
n−2 xnF

(n−1)
n−3 .

Получаем реализацию полинома Жегалкина в базисе G1 для текущей

итерации. На данном этапе формулы F
(n−1)
n−2 и F

(n−1)
n−3 реализованы неявно,

подразумевается, что они представлены в базисе G3, а их композиция —

в базисе G1. Мы предполагаем, что на каждой следующей итерации полу-

чившиеся подформулы переводим в базис G1 и строим для них соответ-

ствующую схему.

Формула (2.4.1) реализуется в виде следующей схемы:

or

and

not not

and

and

F
(n)
n−2

F
(n−1)
n−2

xn F
(n−1)
n−3

Это общая схема, для произвольной итерации. Т. к. присутствует ветв-
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ление выходов, она частично оптимизирована. При подсчете числа элемен-

тов в схеме, мы видим, что в исходной формуле присутствуют одинаковые

подформулы. В этом случае мы можем минимизировать число элементов

в схеме следующим образом: реализуя некоторую, повторяющуюся далее

подформулу, мы выполняем ветвление ее выхода, и, в дальнейшем, ее опус-

каем.

Из формулы (2.4.1) получаем функциональное уравнение для показа-

теля качества LS - числа элементов в схеме:

LS

(

F
(n)
n−2

)

= LS

(

F
(n−1)
n−2

)

+ 6 + LS

(

F
(n−1)
n−3

)

.

А также разностное уравнение

un = LS

(

F
(n)
n−2

)

, un−1 = LS

(

F
(n−1)
n−3

)

,

un = un−1 + LS

(

F
(n−1)
n−2

)

+ 6. (2.4.2)

Нам неизвестен показатель LS

(

F
(n−1)
n−2

)

, поэтому найдем его:

F
(n−1)
n−2 = F

(n−2)
n−2 ⊕ xn−1 · F

(n−2)
n−3 =

= F
(n−2)
n−2 xnF

(n−2)
n−3 ∨ F

(n−2)
n−2 xn−1F

(n−2)
n−3 ;

LS

(

F
(n−1)
n−2

)

= LS

(

F
(n−2)
n−2

)

+ 6 + LS

(

F
(n−2)
n−3

)

,

un = LS

(

F
(n−1)
n−2

)

, un−1 = LS

(

F
(n−2)
n−3

)

.

Число элементов в схеме соответствует числу символов операций в фор-
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муле:

F
(n−2)
n−2 = x1 · x2 · . . . · xn−2.

Очевидно, что LS

(

F
(n−2)
n−2

)

= n− 3, получаем следующее разностное урав-

нение:

un − un−1 = (n− 3) + 6 = n+ 3. (2.4.3)

Подсчитаем начальные условия для n = 2:

F
(2)
1 = x1 ⊕ x2 = x1x2 ∨ x1x2,

u2 = LS

(

F
(2)
1

)

= 5.

На основе разностного уравнения (2.4.3) получаем для показателя ка-

чества LS

(

F
(n)
n−1

)

сеточную функцию, представленную в таблице:

n 3 4 5 6

un 5 12 20 29

∆1 7 8 9

∆2 1 1

∆3 0

Будем искать решение в виде: un = a0n
2 + a1n+ a2.























25a0+ 5a1+ a2 = 20

16a0+ 4a1+ a2 = 12

9a0+ 3a1+ a2 = 5
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





















2a0 = 1

7a0+ a1 = 7

9a0+ 3a1+ a2 = 5























2a0 = 1

2a1 = 7

a2 = −10

a0 =
1

2
,

a1 =
7

2
,

a2 = −10.

Решив систему уравнений, получим значение для показателя качества

LS

(

F
(n−1)
n−2 , G1

)

=
1

2
n2 +

7

2
n− 10.

Подставив получившееся значение в формулу (2.4.2), выведем следую-

щее разностное уравнение:

un − un−1 =
1

2
n2 +

7

2
n− 10 + 6 =

1

2
n2 +

7

2
n− 4. (2.4.4)

Подсчитаем начальные условия для n = 4, на основе соответствущей

схемы:

50



x1 x2 x3 x4

or

and and

not not

and

andand

and

and and

andand

and

or

or

or

not

not not
not

not not

F
(2)
2

F
(2)
1

F
(3)
1

F
(3)
2

F
(4)
2

На основе начальных данных u4 = 23, и разностной схемы (2.4.4), со-

ставим таблицу:
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n 4 5 6 7 8

un 23 49 84 129 185

∆1 26 35 46 56

∆2 9 10 11

∆3 1 1

∆4 0

Решение будем искать в виде: un = a0n
3 + a1n

2 + a2n+ a3.



































343a0+ 49a1+ 7a2+ a3 = 120

216a0+ 36a1+ 6a2+ a3 = 79

125a0+ 25a1+ 5a2+ a3 = 47

64a0+ 16a1+ 4a2+ a3 = 23



































6a0 = 1

15a0+ a1 = 4

61a0+ 9a1+ a2 = 24

64a0+ 16a1+ 4a2+ a3 = 23



































6a0 = 1

2a1 = 3

3a2 = 1

a3 = −13
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a0 =
1

6
,

a1 = 2,

a2 = −
13

6
,

a3 = −11.

Решив систему уравнений, получаем:

LS1

(

F
(n)
n−2, G1

)

=
1

6
n3 + 2n2 −

13

6
n− 11.

Соответственно, приходим к теореме.

Теорема 7. Для функции F
(n)
n−2 оценка LS

(

F
(n)
n−2

)

не превосходит 1
6n

3+

2n2 − 13
6 n− 11.

Улучшение оценки LS

Для улучшения оценки воспользуемся ещё одним способом представ-

ления операции ⊕ в базисе G1: x1 ⊕ x2 = x1x2(x1 ∨ x2). Данная формула

содержит меньшее количество знаков действий, а значит соответствующая

схема будет иметь меньшее количество функциональных элементов, что

позволит улучшить оценку.

F
(n)
n−2 = F

(n−1)
n−2 ⊕ xn · F

(n−1)
n−3 =

= F
(n−1)
n−2 xnF

(n−1)
n−3

(

F
(n−1)
n−2 ∨ xnF

(n−1)
n−3

)

.

Данная формула представима в виде следующей схемы:
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and

F
(n)
n−2

F
(n−1)
n−2

xn F
(n−1)
n−3

and

not

or

and

На основе схемы строим функциональное уравнение для показателя ка-

чества LS:

LS

(

F
(n)
n−2

)

= LS

(

F
(n−1)
n−2

)

+ 5 + LS

(

F
(n−1)
n−3

)

,

un = LS

(

F
(n)
n−2

)

, LS

(

F
(n−1)
n−3

)

.

Произведя замену, мы получили разностное уравнение

un = un−1 + LS

(

F
(n−1)
n−2

)

+ 5. (2.4.5)

Для вычисления данного уравнения необходимо получить оценку поли-

54



нома F
(n−1)
n−2 :

F
(n−1)
n−2 = F

(n−2)
n−2 ⊕ xn−1 · F

(n−2)
n−3 =

= F
(n−2)
n−2 xn−1F

(n−2)
n−3

(

F
(n−2)
n−2 ∨ xn−1F

(n−2)
n−3

)

.

Составим функциональное уравнение для показателя качества LS:

LS

(

F
(n−1)
n−2

)

= LS

(

F
(n−2)
n−2

)

+ 5 + LS

(

F
(n−2)
n−3

)

,

un = LS

(

F
(n−1)
n−2

)

, LS

(

F
(n−2)
n−3

)

.

F
(n−2)
n−2 = x1 · x2 · . . . · xn−2. (2.4.6)

Т. к. формуле (2.4.6) соответствует схема без ветвления, то количество

элементов в схеме равно количеству символов операций в формуле, т. е.

LS

(

F
(n−1)
n−1

)

= n− 3.

Строим разностное уравнение:

un − un−1 = (n− 3) + 5 = n+ 2.

Подсчитаем начальные условия, представив полином F
(2)
1 следующим

образом

F
(2)
1 = x1 ⊕ x2 = x1x2(x1 ∨ x2).

Мы получили u3 = LS

(

F
(2)
1

)

= 4.

По полученным данным строим сеточную функцию
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n 3 4 5 6

un 4 10 17 25

∆1 6 7 8

∆2 1 1

∆3 0

Решение ищем в виде многочлена un = a0n
2 + a1n + a2, по которому

составляем систему уравнений.























25a0+ 5a1+ a2 = 17

16a0+ 4a1+ a2 = 10

9a0+ 3a1+ a2 = 4























2a0 = 1

7a0+ a1 = 6

9a0+ 3a1+ a2 = 4























2a0 = 1

2a1 = 5

a2 = −8

Из полученной системы уравнений посчитаем коэффициенты

a0 =
1

2
,

a1 =
5

2
,

a2 = −8.
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Мы получили оценку для полинома:

LS

(

F
(n−1)
n−2 , G1

)

=
1

2
n2 +

5

2
n− 8.

Подставим её в разностное уравнение (2.4.5)

un − un−1 =
1

2
n2 +

5

2
n− 8 + 5 =

1

2
n2 +

5

2
n− 3.

Подчитаем начальные условия, для чего составим схему полинома F
(4)
2 ,

с учётом ветвления выходов.
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andor

not

and

and or

not

and

and

and

or

not

and

or and

not

and

x4x3x2x1

F
(2)
2

F
(2)
1

F
(3)
1

F
(3)
2

F
(4)
2

Из схемы получаем u4 = 17.

По начальным данным и разностному уравнению составим сеточную
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функцию:

n 4 5 6 7 8

un 17 39 69 108 157

∆1 22 30 39 49

∆2 8 9 10

∆3 1 1

∆4 0

Будем искать решение в виде полинома третьей степени:

un = a0n
3 + a1n

2 + a2n+ a3.



































343a0+ 49a1+ 7a2+ a3 = 108

216a0+ 36a1+ 6a2+ a3 = 69

125a0+ 25a1+ 5a2+ a3 = 39

64a0+ 16a1+ 4a2+ a3 = 17



































6a0 = 1

15a0+ a1 = 4

61a0+ 9a1+ a2 = 22

64a0+ 16a1+ 4a2+ a3 = 17



































6a0 = 1

2a1 = 3

3a2 = −5

a3 = −11
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a0 =
1

6
,

a1 =
3

2
,

a2 = −
5

3
,

a3 = −11.

Решив систему и получив коэффициенты, мы нашли следующую оценку

для показателя качества LS:

LS2

(

F
(n)
n−2, G1

)

=
1

6
n3 +

3

2
n2 −

5

3
n− 11.

Таким образом получаем уточнение теоремы 7.

Теорема 8. Для функции F
(n)
n−2 оценка LS

(

F
(n)
n−2

)

не превосходит 1
6n

3+

3
2n

2 − 5
3n− 11.

2.5 Сравнение результатов

2.5.1 Сравнение оценок LБ

Сравним найденные оценки показателя LБ:

LБ1

(

F
(n)
n−2, G3

)

=
1

2
n3 −

3

2
n2 + n,

LБ2

(

F
(n)
n−2, G3

)

=
1

3
n3 − n2 +

5

3
n− 3,

LБ3

(

F
(n)
n−2, G3

)

=
1

6
n3 −

1

6
n− 1

60



и оценку, полученную в работе [16] —

LБ4

(

F
(n)
n−2, G3

)

=
1

8
n4 −

3

4
n3 +

11

8
n2 +

1

4
n+ 2.

Как видно, оценки LБ1, LБ2 и LБ3, полученные в данной работе, на

порядок меньше предыдущей оценки (LБ4). Отразим полученные оценки

на графике.

Легко заметить, что удалось значительно уменьшить показатель каче-

ства LБ

(

F
(n)
n−2

)

(и это проверяется аналитически). Минимальная, из полу-

ченных оценок: LБ3

(

F
(n)
n−2, G3

)

= 1
6
n3 − 1

6
n− 1.
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Сравнение оценок LF

Сравним все полученные оценки:

LF 1

(

F
(n)
n−2, G3

)

=
1

2
n3 −

3

2
n2 + n− 1,

LF 2

(

F
(n)
n−2, G3

)

=
1

3
n3 − n2 +

5

3
n− 4,

LF 3

(

F
(n)
n−2, G3

)

=
1

6
n3 −

1

6
n− 2

и оценку, полученную в работе [16]

LF 4

(

F
(n)
n−2, G3

)

=
1

8
n4 −

3

4
n3 +

11

8
n2 +

1

4
n+ 1.
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LF 4

LF 1
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LF 3
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Для n = 4 оценки LF 2, LF 3 и LF 4 одинаковы и меньше оценки LF 1,

т.к. была проведена оптимизация начальных условий. Рассмотрим кусок

графика с увеличением:

0

20

40

60

80

100

120

4 5 6 7

LF 4

LF 1

LF 2

LF 3

Для n = 5 оценки LF 2 и LF 4 совпадают. Минимальной, в данной точке,

является оценка LF 3, максимальной — LF 1. Для n = 6 — LF 3 < LF 2 <

LF 4 < LF 1. Для n > 7 оценка LF 4 становится наибольшей.
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2.5.2 Сравнение оценок LS

Сравним полученные оценки показателя LS

LS1

(

F
(n)
n−2, G1

)

=
1

6
n3 + 2n2 −

13

6
n− 11,

LS2

(

F
(n)
n−2, G1

)

=
1

6
n3 +

3

2
n2 −

5

3
n− 11.

Данные оценки различаются незначительно. Для наглядного сравнения

отразим полученные оценки на графике.

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340

4 5 6 7 8 9 10

LS1

LS2

Как видно из графика, произошло некоторое улучшение показателя LS.
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Глава 3

Вычислительный метод определения оценки

сложности.

В данной главе метод алгебраической декомпозиции применяется для

автоматизации получения оценок любой функции в базисе Жегалкина. В

результате формализации метода, использованного в предыдущей главе

был разработан алгоритм, позволяющий это сделать. Также в главе рас-

сматриваются особенности реализации данного алгоритма на практике и

возникающие при этом особые случаи. В результате работы алгоритма про-

исходит не только вычисление оценок произвольной булевой функции, но

и ее минимизация. Основные моменты разработки алгоритма были доло-

жены на конференции «Гагаринские чтения» [15].

3.1 Разработка алгоритма

Аналитическое нахождение показателя качества для булевых функций

возможно путем декомпозиции этих функций в определенном базисе. При

выполнении алгоритма применяется ФУ (1.2.1). В общем виде данная фор-
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мула выглядит следующим образом:

F (n) = xjF
(n−1)
1 ⊕ F

(n−1)
2 (3.1.1)

Данное разложение возможно для любой булевой функции в базисе Же-

галкина. Составим алгоритм для упрощения произвольной функции и на-

хождения её показателей качества.

1. Оптимальным для данного разложения будет выбор с максимальным

значением повторений xj в формуле.

2. После нахождения такого xj, мы выносим его из всех конъюнкций,

в которых оно встречается. Эти конъюнкции, с исключенным запи-

шутся в первую остаточную подформулу. Те конъюнкции, в которых

xj не встречалось, запишутся во вторую остаточную подформулу.

3. После выделения двух остаточных подформул к каждой из них мож-

но применить то же разложение (3.1.1).

4. Алгоритм будет рекурсивным: разложение на подформулы будет про-

должаться, пока все формулы не перейдут в разряд реализованных

(т. е. в остаточных не останутся только базисные функции).

3.1.1 Используемые обозначения

Пусть X = {x1, x2, . . . , xj, . . . , xn} — множество булевых переменных.

Произвольная булева функция f (n)(X) задается полиномом Жегалкина

F (n) = K1 ⊕K2 ⊕ . . .⊕Ki ⊕ . . .⊕Km в базисе G3 = {&,⊕, 0, 1}, где
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• n — число переменных,

• m —- длина полинома Жегалкина,

• Ki —- монотонная элементарная конъюнкция (ЭК) ранга ri, i = 1, m,

• r = (r1, r2, . . . , rm) —- вектор рангов полинома Жегалкина.

• K ′
i — монотонная ЭК (элементарная конъюнкция) ранга r′i, i = 1, m′,

• r′ — строение полинома Жегалкина F ′ уже упорядоченного вектора.

x1 . . . xj . . . xn r

K1 0/1 0/1 0/1 r1
. . .
Km 0/1 0/1 0/1 rm
p p1 . . . pj . . . pj LБ

Таблица 3.1: Таблица, задающая полином Жегалкина

Полином Жегалкина F (n) задаётся при помощи матрицы Ki,j (таблица

3.1) размером [m × n], представляемой в виде таблицы с числом строк —

(m+1) и столбцов — (n+1). Определяются матрица и таблица следующим

образом: в ячейку Ki,j пишется 1, если xj ∈ {Ki}, иначе Ki,j = 0 (i = 1, m,

j = 1, n), где под {Ki} понимаем множество переменных, образующих ЭК

Ki.

В столбец (i = 1, m, n+1) записывается ранг элементарной конъюнкции

Ki, вычисляемый следующим образом:

ri = ri,n+1 =

n
∑

j=1

Ki,j

67



Вектор r = (r1, . . . , ri, . . . , rm) рангов ЭК полинома Жегалкина, упорядо-

чивается для алгоритма один раз отношением “ > ”. Получаем r1 > . . . >

ri > . . . > rm. [10-13, 41]

В строку (n + 1, j = 1, n), записывается pj — число повторений пере-

менной xj, j = 1, n, в формуле F (n):

pj = pm+1,j =
m
∑

i=1

Ki,j.

Так мы получаем вектор p = (p1, p2, . . . , pi, . . . , pn) повторяемости пе-

ременных из множества X = {x1, . . . , xj, . . . , xn} в формуле F (n), т. е. пе-

ременная xi, j = 1, n, повторяется в формуле F (n) число pi раз.

В ячейку (m+1, n+1) пишется LБ =
∑m

i=1 ri — число букв в формуле

F (n) (это вспомогательный параметр).

Для решения задачи нами применяется функциональное уравнение (ФУ)

F (n) =
((

xiF
(n−1)
1

)

⊕ F
(n−1)
2

)

, (3.1.2)

где нижние индексы 1 и 2 — номера соответствующих остаточных функ-

ций, рассматриваемых на одном множестве X ′ = X \ {xi}. Будем их в

алгоритме записывать соответственно как F ′ = F (n−1),1 и F ′′ = F (n−1),2.

На основе частично упорядоченного отношением “>” множества рангов ri

ЭК Ki, i = (1, m), извлекаем pj соответствующих ЭК, и из них выносим за

скобки переменную xj, получая с тем же порядком полином F ′, длиной pj.

Оставшееся частично упорядоченное множество ЭК (на основе их рангов)

определяет с тем же порядком полином F ′′, длиной m− pj.

• t1 = 1, 2, . . . — начало и продолжение записи функций F ′ и F ′′, а так
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n′ или n′′ m′ или m′′ F ′ или F ′′ LF

n′ = n− 1 m′ = pjmax F ′ LF = LF + 1

n′′ = n′ m′′ = m = m′ F ′′ LF = LF + 1

. . . . . . . . . . . .

Таблица 3.2: Декомпозиция и запись результатов (1-я и 2-я строки и т. д.).

же номер последней записанной функции в табл. 3.2;

• t2 = 1, 2, . . . — начало и продолжение чтения таблицы 3.2, а так же

номер последней прочитанной функции.

• jmax —- индекс переменной xjmax с максимальным числом pjmax

повторений в табл. 3.1. Таких переменных может быть несколько,

выбираем из них с меньшим номером переменной и меньшим номером

ЭК, для сохранения порядка рангов ЭК Ki. Табл. 3.1 упрощается

после каждого применения ФУ (3.1.2).

Как следует из (3.1.2), реализуемая функция f (n) –– формула F (n) (и

получаемые остаточные), в общем случае, разбивается на две более простые

по сравнению с ней и две двухместные, базисные, соединяющие первые

функции и выделяемую переменную xj, в одну формулу, записываемые в

таблицу. Процесс продолжается, пока все остаточные функции на основе

декомпозиции не перейдут в группу реализованных или пока выполняется

условие t2 < t1. Так будет получена формула F
(n)
с.ф. и оценка LF (F

(n)
с.ф., G3).

Приведём таблицу 3.3 для функции F
(7)
с.ф. из примера 1 раздела 3.1

Вначале, по мере выполнения алгоритма, число остаточных функций,

как правило, удваивается, а сами функции упрощаются. При этом число
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№ Аргумент 1 Аргумент 2 Функция Логический элемент

1 x3 x4 g&,1 g&,1

2 g&,1 x5 g⊕,1 G⊕,1

3 x2 g⊕,1 g&,2 g&,2

4 g&,2 x6 g⊕,2 G⊕,2

5 x1 g⊕,2 g&,3 g&,3

6 g&,3 x7 g⊕,3 G⊕,3

Таблица 3.3: Результат работы алгоритма для F
(7)
с.ф. из раздела 3.1.

базисных функций, соединяющих их в одну формулу, увеличивается.

Обсуждаемый алгоритм на основе ФУ (3.1.2) относится к алгоритмам

градиентного типа. Он позволяет строить формулу F
(n)
с.ф., реализующую

функцию f (n), возможно, с минимальным значением показателя LF за чис-

ло шагов j, j = 1, n.

3.1.2 Алгоритм

Построим алгоритм определения значения верхней оценки показателя

сложности LF . Для каких-то классов функций оценки будут минимальны-

ми.

Дано:

n, m, F (n) — {задана правильная формула, при вводе проверяется}

Шаг 1. Подготовка начальных данных.

Для исходной формулы F (n) нужно заполнить таблицу 3.1, получая векто-

ры r и p, т. е. правый столбец (i = 1, m, n+1), и нижнюю строку (m+1, j =

= 1, n). Теперь выполним инициализацию: LF = 0, t1 = 0, t2 = 0.
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Шаг 2.

Если m = 1, то

Начало LF = LF + r1 − 1,

Переход к шагу 6 {чтение}

Конец

Шаг 3.

Если r1 = 1, то

Начало LF = LF +m− 1,

Переход к шагу 6 {чтение}

Конец

Шаг 4.

Найдём pjmax = max(p1, p2, . . . , pj, . . . pn), где j = 1, n, и соответствующее

xjmax равное jmax. Отметим, что в общем случае pjmax 6= jmax.

Шаг 5. {Запись.}

Теперь применим ФУ (3.1.1) и определим первую остаточную функцию

F ′ = F1.

По xi табл. 3.1 нужно выбрать номера ЭК, содержащие переменную

xjmax, число которых равно pjmax, и сложить (виртуально) эти ЭК, исклю-

чая переменную xjmax, по модулю 2.

Фактически мы переписываем ЭК из табл. 3.1 в новую табл. 3.1, сохра-

няя порядок и исключая переменную xjmax. Этим мы получаем полином

Жегалкина F ′, а также подсчитываем векторы r и p.

После этого вычислияем: n′ = n − 1 — число переменных полинома

Жегалкина F ′,

m = pj — длину полинома Жегалкина F ′, и увеличиваем t1: t1 = t1+1.
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В строку с номером t1 табл.2 запишем n′, m′, F ′.

Отсюда нам необходимо определить вторую остаточную функцию F ′′ =

= F2 полинома Жегалкина из табл. 3.1.

Для этого по табл. 3.1 выберем номера ЭК, не содержащие переменную

xjmax, и сложим (виртуально) эти ЭК, по модулю 2.

Проще говоря переписываем ЭК из табл. 3.1 в новую табл. 3.1, сохраняя

порядок. Потом подсчитываем векторы r и p и получаем полином Жегал-

кина F ′′ (F2).

Далее вычисляем: n′′ = n′ — число переменных полинома Жегалкина

F ′′,

m′′ = m−m′ = m−pj — длину полинома Жегалкина F ′′, и увеличиваем

t1: t1 = t1 + 1.

В строку с номером t1 табл. 3.2 пишем n′′, m′′, F ′′

И так далее . . .

Шаг 6. {Чтение.}

Сначала вычислим t2 = t2 + 1.

Для результатов здесь используется табл. 3.2, в которую с начала ра-

боты записываем не более двух полиномов Жегалкина F ′ и F ′′, и затем,

пока они имеются, из нее (табл.2) считываем по одному полиному.

LF (F
(n), G3) = LF + 1.

Шаг 7.

Если t2 6 t1, то переход к шагу 3.2.

КОНЕЦ.

В результате работы алгоритма мы получаем верхнюю оценку сложно-

сти заданной в виде полинома Жегалкина логической функции.
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3.2 Программная реализация

3.2.1 Пример работы программы

Запуск программы:

Минимизируемую функцию можно ввести в текстовое поле, или загру-

зить из текстового файла. При этом для удобства ввода переменные запи-

сываются в виде xn, знак умножения опускается, а под знаком ”+” подра-

зумевается сложение по модулю 2 ”⊕”.

Результат работы программы:
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Выводятся: количество букв в исходной формуле, количество подфор-

мул в минимизированной формуле, время работы алгоритма и количество

совершенных операций

При желании можно показать разложение введённой формулы на под-

формулы:
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Полученное разложение возможно сохранить в файл.

3.2.2 Примеры работы алгоритма

Разберем алгоритм на основе следующего примера:

F (3) = x1x2x3 ⊕ x1x4 ⊕ x5.

Для начала представим данный полином в виде таблицы (матрицы):

x1 x2 x3 x4 x5 p

K1 1 1 1 0 0 3

K2 1 0 0 1 0 2

K3 0 0 0 0 1 1

r 2 1 1 1 1 6

Запишем получившуюся матрицу в табл. 3.2, и установим начальные

t1 = 1 и t2 = 1.

Для начального прохода установим счётчик LF = 0.

Теперь найдём переменную с максимальным рангом. Очевидно, что в

данной таблице максимальный ранг имеет переменная x1.

Отсюда легко видеть, что разложение функции F (3) принимает вид:

F (5) = x1 (x2x3 ⊕ x4)⊕ x5.

Таким образом получим две остаточные функции:

F1 = x2x3 ⊕ x4, F2 = x5.
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Следовательно нам нужно увеличить счётчик подфункций LF = LF+2,

а также счётчик записи t1: t1 = t1 + 2.

Теперь из матрицы мы выбираем те строки, в которых элемент x1 =

= 1, и копируем их в новую таблицу, исключая столбец с элементом x1.

Аналогично мы выбираем сроки с элементом x1 = 0, и копируем их во

вторую таблицу. Эти таблицы соответствуют функциям F1 и F2:

x2 x3 x4 x5 p

K1 1 1 0 0 2

K2 0 0 1 0 1

r 1 1 1 0 3

(3.2.1)

x2 x3 x4 x5 p

K1 0 0 0 1 1

r 0 0 0 1 1

(3.2.2)

В полученных таблицах (3.2.1) и (3.2.2) исключим элементы с рангом

ri = 0 и получим новые таблицы:

x2 x3 x4 p

K1 1 1 0 2

K2 0 0 1 1

r 1 1 1 3

(3.2.3)

x5 p

K1 1 1

r 1 1
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Следовательно, нам нужно увеличить счётчик чтения t2 = t2+1, таким

образом он стал равным 2.

Аналогично предыдущему действию мы считываем функцию с индек-

сом t2 = 2 из табл. 2. Теперь текущая функция имеет вид (3.2.3):

F1 = x2x3 ⊕ x4.

Далее эта функция раскладывается на подфункции описанным ранее спо-

собом.

Чтение из таблицы продолжается, пока значение счётчика t2 не пре-

высит значение t1. При этом текущее значение LF является количеством

подфункций в минимизированной формуле. Вид этой формулы легко вос-

станавливается из табл. 2.

3.2.3 Частные случаи

Пример 1. Рассмотрим случай, когда количество конъюнкций m = 1.

В этом случае формула представляет перемножение переменных.

F (n) = x1x2 . . . xn.

Т.к. количество подфункций на единицу меньше количества переменных,

то в таком случае можно считать, что

LF = n− 1.
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Если в виде формулы данный случай не представляет особых сложностей,

то в виде схемы может быть несколько вариантов размещения элементов.

Пусть

F (7) = x1x2x3x4x5x6x7.

Тогда возможны два случая:

1й случай:

and

and

and

and

and

and

F (7) = ((((((x1x2)x3) x4)x5) x6) x7) . (3.2.4)

2й случай:
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and

and and and

and

and

F (7) = (((x1x2) (x3x4)) (x5x6)x7) . (3.2.5)

Как видно, в первом случае формула имеет глубину DepF = 6, тогда как во

втором DepF = 3. Очевидно, что параллельная декомпозиция будет иметь

преимущества по скорости быстродействия. Для облегчения вычислений

и большей скорости работы алгоритма используется формула (3.2.4), но

при выводе выходных данных используется форма (3.2.5). Она облегчает

восприятие.

Пример 2. Вторым особенным случаем является вариант, когда xjmax =

= 1. Т.к. максимальный ранг переменной, а, следовательно, и все ранги

равны , значит формула состоит из переменных, сложенных по модулю 2

F (n) = x1 ⊕ x2 ⊕ . . .⊕ xn.

Разбирается данный случай аналогично примеру 1

F (5) = ((((x1 ⊕ x2)⊕ x3)⊕ x4)⊕ x5) .

F (5) = (((x1 ⊕ x2)⊕ (x3 ⊕ x4))⊕ x5) .
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Пример 3. Пусть

F (2) = x1 ⊕ x1x2. (3.2.6)

Если вынести в данном примере переменную с максимальным рангом за

скобки, то мы получим следующее:

F (2) = x1 (1⊕ x2) .

Это никак не влияет на количество знаков действий. Следовательно, фор-

мулу (3.2.6) можно не раскладывать, а только учесть количество подфор-

мул.

Теперь рассмотрим те случаи, когда при разложении отсутствует одна

из подформул.

F (n) = xjmaxF
(n−1),1 ⊕ F (n−1),2.

Пример 4. Пусть

F (n) = xjmax ⊕ F (n−1),2.

В данном случае очевидно, что переменная xjmax имеет количество по-

вторений pjmax = 1, иначе существовала бы подформула F (n−1),1. Но значит

и остальные переменные в таком случае повторяются всего один раз. Мож-

но привести подобный пример.

F (4) = x1 ⊕ x2x3x4. (3.2.7)

Для того, чтобы избежать подобной ситуации в алгоритме выполняется
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первоначальное упорядочивание по количеству переменных в конъюнкци-

ях. Т.о. пример (3.2.7) приобретёт следующий вид

F (4) = x2x3x4 ⊕ x1,

где максимальный ранг будет иметь переменная. Следовательно, един-

ственный возможный вид формулы в таком случае

F (4) = x1 ⊕ x2 ⊕ x3 ⊕ x4.

Данный вид формулы разбирается в примере 2.

Пример 5. Рассмотрим последний случай, когда

F (n) = xjmaxF
(n−1),1.

Пусть

F (4) = x1x2 ⊕ x1x3 ⊕ x1x4 = x1 (x2 ⊕ x3 ⊕ x4) .

В данном случае мы просто учитываем, что появляется всего одна остаточ-

ная подформула, а, следовательно, мы увеличиваем счётчик записи всего

на единицу t1 = t1 + 1.
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Заключение

Итак в работе достигнуты следующие результаты:

• Рассмотрены основные методы синтеза логических формул, и соот-

ветствующих схем из функциональных элементов.

• Предложен метод распараллеливающей структурно-функциональной

декомпозиции булевых функций, позволяющие аналитически полу-

чать верхнюю оценку сложности показателя LF для представления

функции — полинома F (n) в классе формул,а также — в классе схем

S.

• Данный метод применён для аналитического нахождения ряда оце-

нок для полинома Жегалкина строения F
(n)
n−2 в классах формул и схем

из функциональных элементов.

• Выделены частные случаи получения счетных множеств булевых функ-

ций минимальной сложности LF функции — полинома F (n) (а, также

для сложности показателя LS для схем S).

• Найдена эффективная реализация вычислительного алгоритма син-

теза булевых формул на основе приведения их к скобочному виду.

• Проведена рационализация вычислительного алгоритма синтеза схем

из функциональных элементов на основе операции ветвления некото-

рых их выходов.

• На основании построенного алгоритма написана программа, которая

была зарегистрирована в РосПатенте [24].
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Следующим шагом может быть распространение метода на другие клас-

сы формул, представленных в базисе G3. Кроме того не менее важным

представляется получение представления полученных результатов в клас-

се схем.
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Приложение

Ниже представлен код программы, реализующей описанный выше ме-

тод алгебраической декомпозиции.

1 using System ;

using System . Text ;

3 using System .Windows . Forms ;

using System . IO ;

5

7 namespace WindowsFormsApplication1

{

9 public p a r t i a l class Pol inomia l : Form

{

11 public Pol inomia l ( )

{

13 In i t i a l i z eComponent ( ) ;

Width = 910 ;

15 Height = 600 ;

17 openFD . I n i t i a l D i r e c t o r y = saveFD . I n i t i a l D i r e c t o r y = Di re c to ry .

GetCurrentDirectory ( ) ;

}

19

private void SaveToFile ( s t r i n g path )

21 {

StreamWriter sw = new StreamWriter ( path , false , Encoding . Defau l t ) ;

23 sw . WriteLine ( textFormula . Text ) ;

sw . Close ( ) ;

25 }

27 private void SaveResult ( s t r i n g f i l e )

{

29 StreamWriter sw = new StreamWriter ( f i l e , false , Encoding . Defau l t ) ;

sw . WriteLine ( textBoxResult . Text ) ;
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31 sw . Close ( ) ;

}

33

private void loadToolStripMenuItem_Click ( ob j e c t sender , EventArgs e )

35 {

i f (openFD. ShowDialog ( ) == Dia logResu l t .OK)

37 {

s t r i n g path = openFD. FileName ;

39 StreamReader s r = new StreamReader ( path , Encoding . Defau l t ) ;

textFormula . Text = s r . ReadLine ( ) ;

41 s r . Close ( ) ;

saveFD . FileName = path ;

43 openFD. FileName = "" ;

}

45 }

47 private void saveToolStripMenuItem_Click( ob j e c t sender , EventArgs e )

{

49 s t r i n g path = saveFD . FileName ;

i f ( path == "" )

51 saveAsToolStripMenuItem_Click ( saveAsToolStripMenuItem , nu l l ) ;

else

53 SaveToFile ( path ) ;

}

55

private void newToolStripMenuItem_Click( ob j e c t sender , EventArgs e )

57 {

textFormula . Clear ( ) ;

59 saveFD . FileName = "" ;

}

61

private void saveAsToolStripMenuItem_Click ( ob j e c t sender , EventArgs e )

63 {

i f ( saveFD . ShowDialog ( ) == Dia logResu l t .OK)

65 {
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s t r i n g path = saveFD . FileName ;

67 SaveToFile ( path ) ;

}

69 }

71 private void buttonGo_Click ( ob j e c t sender , EventArgs e )

{

73 int i ;

ZhPolinom pl ;

75 pl = new ZhPolinom ( ) ;

int s t a r t = Environment . TickCount ;

77 pl . LoadFromString ( textFormula . Text ) ;

t ex tResu l t . Text = "LFрез ( ) ␣=␣" + pl . IndexOfQualityLF ( ) ;

79 t ex tLB in i t . Text = "БLисх ( ) ␣=␣" + Convert . ToString ( p l . LBinit ) ;

int tt ime = Environment . TickCount s t a r t ;

81 textTime . Text = "Время␣работы : ␣" + Convert . ToString ( tt ime ) + "␣мс" ;

textNop . Text = "Количество␣операций␣␣=␣" + Convert . ToString ( p l .Nop) ;

83 i f ( checkBoxShowResult . Checked )

{

85 textBoxResult . Text = "" ;

Width = 1220 ;

87 textBoxResult . V i s i b l e = true ;

buttonSaveResult . V i s i b l e = true ;

89 SaveResultToolStripMenuItem . Enabled = true ;

for ( i = 0 ; i < pl . s i z e ; i++)

91 {

textBoxResult . Text += "F" + Convert . ToString ( i ) + "␣=␣" +

pl . PrintF ( i ) + Environment . NewLine ;

93 }

}

95 }

97 private void ExitToolStripMenuItem_Click( ob j e c t sender , EventArgs e )

{

99 this . Close ( ) ;
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}

101

private void checkBoxShowResult_CheckedChanged ( ob je c t sender ,

EventArgs e )

103 {

i f ( ! checkBoxShowResult . Checked )

105 {

textBoxResult . V i s i b l e = fa l se ;

107 buttonSaveResult . V i s i b l e = fa l se ;

SaveResultToolStripMenuItem . Enabled = fa l se ;

109 Width = 910 ;

}

111 }

113 private void SaveResultToolStripMenuItem_Click ( ob j e c t sender ,

EventArgs e )

{

115 i f ( saveFD . ShowDialog ( ) == Dia logResu l t .OK)

{

117 SaveResult ( saveFD . FileName ) ;

}

119 }

121 private void buttonSaveResult_Click ( ob j e c t sender , EventArgs e )

{

123 SaveResultToolStripMenuItem_Click ( SaveResultToolStripMenuItem ,

nu l l ) ;

}

125

}

127

129 class ZhPolinom

{

131 private s t r i n g polinom ;
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private System . Co l l e c t i o n s . ArrayLis t sz ;

133 private System . Co l l e c t i o n s . ArrayLis t a r rva r ;

public long Nop ;

135 public int LBinit ;

137 private System . Co l l e c t i o n s . ArrayLis t tb = new System . Co l l e c t i o n s .

ArrayLis t ( ) ;

int countK , countvar ;

139 int [ , ] t a b l e ;

public int s i z e ;

141

public ZhPolinom ( )

143 {

polinom = "x_1␣x_2␣x_4␣\\ oplus ␣x_1␣x_2␣x_3␣\\ oplus ␣x_1␣x_3␣x_4␣\\

oplus ␣x_2␣x_3␣\0" ;

145 }

147 private int AnalyzeStr ing ( )

{

149 System . Co l l e c t i o n s . ArrayLis t arrK ;

int i , j , tmp , pos ;

151 char ch ;

s t r i n g xj , k i = "" , s t r ;

153

countK = 0 ;

155 a r rva r = new System . Co l l e c t i o n s . ArrayLis t ( ) ;

arrK = new System . Co l l e c t i o n s . ArrayLis t ( ) ;

157

for ( i = 0 ; i < polinom . Length ; i++)

159 {

ch = polinom [ i ] ;

161 switch ( ch )

{

163 case ’ ␣ ’ : break ;

case ’ x ’ :
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165 {

xj = "x" ;

167 i++; //

LBinit++;

169 ch = polinom [ i ] ;

while ( ( ch >= ’ 0 ’ ) && ( ch <= ’ 9 ’ ) )

171 {

xj = xj + ch ;

173 i++;

ch = polinom [ i ] ;

175 }

177 i f ( a r rva r . Count == 0) a r rva r .Add( x j ) ;

else

179 {

tmp = 0 ;

181 for ( j = 0 ; j < ar rva r . Count ; j++)

{

183 s t r = ( s t r i n g ) a r rva r [ j ] ;

i f ( x j . Contains ( s t r ) ) tmp++;

185 }

i f ( tmp == 0) a r rva r .Add( x j ) ;

187 }

k i = k i + xj ;

189 i ;

break ;

191 }

case ’+ ’ :

193 {

countK++;

195 arrK .Add( k i ) ;

k i = "" ;

197 break ;

}

199 case ’ \0 ’ :
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{

201 countK++;

arrK .Add( k i ) ;

203 k i = "" ;

break ;

205 }

default :

207 {

return 1 ;

209 }

}

211 }

213 s t r i n g [ ] K = ( s t r i n g [ ] ) arrK . ToArray ( typeo f ( s t r i n g ) ) ;

s t r i n g [ ] var = ( s t r i n g [ ] ) a r rva r . ToArray ( typeo f ( s t r i n g ) ) ;

215

countvar = var . Length ;

217 t a b l e = new int [ countK + 1 , countvar + 1 ] ;

Nop++;

219 for ( i = 0 ; i < countK ; i++)

{

221 tmp = 0 ;

for ( j = 0 ; j < countvar ; j++)

223 {

Nop++;

225 pos = K[ i ] . IndexOf ( var [ j ] ) ;

i f ( ( pos >= 0)

227 t a b l e [ i , j ] = 1 ;

else

229 t a b l e [ i , j ] = 0 ;

tmp += tab l e [ i , j ] ;

231 }

tab l e [ i , countvar ] = tmp ;

233 Nop++;

}
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235

for ( j = 0 ; j < countvar ; j++)

237 {

tmp = 0 ;

239 for ( i = 0 ; i < countK ; i++)

{

241 tmp += tab l e [ i , j ] ;

Nop++;

243 }

tab l e [ countK , j ] = tmp ;

245 Nop++;

}

247 t a b l e [ countK , countvar ] = var . Length ;

tb .Add( t ab l e ) ;

249

return 0 ;

251 }

253 public long IndexOfQualityLF ( )

{

255

long LF;

257 int i , j , k1 , k2 , tmp ;

int t1 , t2 ;

259 int maxrg ;

int xmax , jmax ;

261 int [ , ] tbwr1 , tbwr2 , tbr ;

int [ ] szwr1 ;

263 int [ ] szwr2 ;

int [ ] s z r = new int [ 6 ] ;

265

AnalyzeStr ing ( ) ;

267 sz = new System . Co l l e c t i o n s . ArrayLis t ( ) ;

t1 = t2 = 0 ;

269 LF = 0 ;
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maxrg = 0 ;

271 szwr1 = new int [ 6 ] ;

szwr1 [ 0 ] = countK ;

273 szwr1 [ 1 ] = countvar ;

szwr1 [ 2 ] = szwr1 [ 3 ] = szwr1 [ 4 ] = szwr1 [ 5 ] = 1 ;

275 sz .Add( szwr1 ) ;

277 while ( t2 <= t1 )

{

279 tmp = 0 ;

s z r = ( int [ ] ) s z [ t2 ] ;

281 tbr = ( int [ , ] ) tb [ t2 ] ;

while (tmp < s z r [ 1 ] )

283 {

i f ( tbr [ s z r [ 0 ] , tmp ] == 0)

285 {

tbr [ s z r [ 0 ] , s z r [ 1 ] ] ;

287 }

tmp++;

289 }

for ( i = 0 ; i < s z r [ 0 ] ; i++)

291 {

i f ( tbr [ i , s z r [ 1 ] ] == 0) tbr [ s z r [ 0 ] , s z r [ 1 ] ]++;

293 }

295 xmax = jmax = 0 ;

for ( j = 0 ; j < s z r [ 1 ] ; j++)

297 {

i f (xmax < tbr [ s z r [ 0 ] , j ] )

299 {

Nop++;

301 xmax = tbr [ s z r [ 0 ] , j ] ;

jmax = j ;

303 }

}
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305 s z r [ 2 ] = jmax ;

307 maxrg = 0 ;

for ( i = 0 ; i < s z r [ 0 ] ; i++)

309 {

i f (maxrg < tbr [ i , s z r [ 1 ] ] )

311 {

Nop++;

313 maxrg = tbr [ i , s z r [ 1 ] ] ;

}

315 }

317 i f ( s z r [ 0 ] == 1)

{

319 Nop++;

LF += maxrg 1 ;

321 t2++;

continue ;

323 }

325 i f (maxrg == 1)

{

327 Nop++;

LF += tbr [ s z r [ 0 ] , s z r [ 1 ] ] 1 ;

329 t2++;

continue ;

331 }

333 t1++;

s z r [ 4 ] = t1 ;

335 szwr1 = new int [ 6 ] ;

szwr1 [ 1 ] = ( s z r [ 1 ] 1) ;

337 szwr1 [ 0 ] = xmax ;

szwr1 [ 2 ] = szwr1 [ 4 ] = szwr1 [ 5 ] = 1 ;

339 szwr1 [ 3 ] = t2 ;
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sz .Add( szwr1 ) ;

341 tbwr1 = new int [ szwr1 [ 0 ] + 1 , szwr1 [ 1 ] + 1 ] ;

tb .Add( tbwr1 ) ;

343 LF++;

345 szwr2 = new int [ 6 ] ;

szwr2 [ 1 ] = ( s z r [ 1 ] 1) ;

347 szwr2 [ 0 ] = s z r [ 0 ] xmax ;

szwr2 [ 2 ] = szwr2 [ 4 ] = szwr2 [ 5 ] = 1 ;

349 szwr2 [ 3 ] = t2 ;

tbwr2 = new int [ szwr2 [ 0 ] + 1 , szwr2 [ 1 ] + 1 ] ;

351 i f ( szwr2 [ 0 ] > 0)

{

353 t1++;

s z r [ 5 ] = t1 ;

355 sz .Add( szwr2 ) ;

tb .Add( tbwr2 ) ;

357 LF++;

}

359

k1 = k2 = 0 ;

361 i f ( szwr2 [ 0 ] > 0)

{

363 for ( i = 0 ; i < s z r [ 0 ] ; i++)

{

365 i f ( tbr [ i , jmax ] == 1)

{

367 tmp = 0 ;

for ( j = 0 ; j < jmax ; j++)

369 {

tbwr1 [ k1 , j ] = tbr [ i , j ] ;

371 tmp += tbwr1 [ k1 , j ] ;

Nop++;

373 }

for ( j = jmax + 1 ; j < s z r [ 1 ] ; j++)
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375 {

tbwr1 [ k1 , j 1 ] = tbr [ i , j ] ;

377 tmp += tbwr1 [ k1 , j 1 ] ;

Nop++;

379 }

tbwr1 [ k1 , szwr1 [ 1 ] ] = tmp ;

381 Nop++;

k1++;

383 }

else

385 {

tmp = 0 ;

387 for ( j = 0 ; j < jmax ; j++)

{

389 tbwr2 [ k2 , j ] = tbr [ i , j ] ;

tmp += tbwr2 [ k2 , j ] ;

391 Nop++;

}

393 for ( j = jmax + 1 ; j < s z r [ 1 ] ; j++)

{

395 tbwr2 [ k2 , j 1 ] = tbr [ i , j ] ;

tmp += tbwr2 [ k2 , j 1 ] ;

397 Nop++;

}

399 tbwr2 [ k2 , szwr2 [ 1 ] ] = tmp ;

Nop++;

401 k2++;

}

403 }

405 for ( j = 0 ; j < szwr1 [ 1 ] ; j++)

{

407 tmp = 0 ;

for ( i = 0 ; i < szwr1 [ 0 ] ; i++)

409 {
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tmp += tbwr1 [ i , j ] ;

411 Nop++;

}

413 tbwr1 [ szwr1 [ 0 ] , j ] = tmp ;

Nop++;

415 }

for ( j = 0 ; j < szwr2 [ 1 ] ; j++)

417 {

tmp = 0 ;

419 for ( i = 0 ; i < szwr2 [ 0 ] ; i++)

{

421 tmp += tbwr2 [ i , j ] ;

Nop++;

423 }

tbwr2 [ szwr2 [ 0 ] , j ] = tmp ;

425 Nop++;

}

427 tbwr1 [ szwr1 [ 0 ] , szwr1 [ 1 ] ] = tbwr2 [ szwr2 [ 0 ] , szwr2 [ 1 ] ] =

s z r [ 1 ] 1 ;

}

429 else

{

431 for ( i = 0 ; i < s z r [ 0 ] ; i++)

{

433 tmp = 0 ;

for ( j = 0 ; j < jmax ; j++)

435 {

tbwr1 [ i , j ] = tbr [ i , j ] ;

437 tmp += tbwr1 [ i , j ] ;

Nop++;

439 }

for ( j = jmax + 1 ; j < s z r [ 1 ] ; j++)

441 {

tbwr1 [ i , j 1 ] = tbr [ i , j ] ;

443 tmp += tbwr1 [ i , j 1 ] ;
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Nop++;

445 }

tbwr1 [ i , szwr1 [ 1 ] ] = tmp ;

447 Nop++;

}

449 for ( j = 0 ; j < szwr1 [ 1 ] ; j++)

{

451 tmp = 0 ;

for ( i = 0 ; i < szwr1 [ 0 ] ; i++)

453 {

tmp += tbwr1 [ i , j ] ;

455 Nop++;

}

457 tbwr1 [ szwr1 [ 0 ] , j ] = tmp ;

Nop++;

459 }

tbwr1 [ szwr1 [ 0 ] , szwr1 [ 1 ] ] = s z r [ 1 ] 1 ;

461 }

t2++;

463

}

465

s i z e = tb . Count ;

467 return LF;

}

469

public int LoadFromString ( s t r i n g plnm)

471 {

polinom = plnm + ’ \0 ’ ;

473

return 0 ;

475 }

477 public s t r i n g PrintF ( int indx )

{
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479 int [ ] s z f = new int [ 2 ] ;

s z f = ( int [ ] ) s z [ indx ] ;

481 int [ , ] tb f = new int [ s z f [ 0 ] + 1 , s z f [ 1 ] + 1 ] ;

tb f = ( int [ , ] ) tb [ indx ] ;

483 s t r i n g func = "" ;

int i , j ;

485 s t r i n g [ ] var = ( s t r i n g [ ] ) a r rva r . ToArray ( typeo f ( s t r i n g ) ) ;

System . Co l l e c t i o n s . ArrayLis t exvar = new System . Co l l e c t i o n s .

ArrayLis t ( ) ;

487 System . Co l l e c t i o n s . ArrayLis t va r f = new System . Co l l e c t i o n s .

ArrayLis t ( var ) ;

int tmp=0;

489

tmp = ( ( int [ ] ) s z [ indx ] ) [ 3 ] ;

491 while ( tmp >= 0)

{

493 exvar .Add( ( ( int [ ] ) s z [ tmp ] ) [ 2 ] ) ;

tmp = ( ( int [ ] ) s z [ tmp ] ) [ 3 ] ;

495 }

497 for ( j = 0 ; j < exvar . Count ; j++)

{

499 va r f . RemoveAt( ( int ) exvar [ j ] ) ;

}

501

i f ( indx > 0)

503 {

for ( i = 0 ; i < s z f [ 0 ] ; i++)

505 {

for ( j = 0 ; j < s z f [ 1 ] ; j++)

507 {

i f ( tb f [ i , j ] == 1) func = func + "␣" + ( s t r i n g ) va r f [ j

] + "␣" ;

509 }

i f ( tb f [ i , s z f [ 1 ] ] == 0) func += "␣1␣" ;
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511 i f ( i < s z f [ 0 ] 1) func += "␣+␣" ;

}

513 }

515 i f ( s z f [ 4 ] > 0)

{

517 i f ( indx > 0) func += "␣=␣" ;

func += var f [ s z f [ 2 ] ] + "␣F" + s z f [ 4 ] ;

519 i f ( s z f [ 5 ] >= 0)

{

521 func += "␣+␣F" + s z f [ 5 ] ;

}

523 }

525 return func ;

}

527

}

529 }
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