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Общая характеристика работы

Актуальность темы исследования. В задачах анализа текста (Natural Language

Processing, NLP) часто возникает необходимость представления слов или сегментов текста

векторами низкой размерности, отражающими их семантику. Если два близких по смыслу

слова удается представить близкими векторами, то такие представления затем могут эффек­

тивно использоваться для широкого класса задач NLP, в частности, для задач информацион­

ного поиска, классификации, категоризации и суммаризции текстов, анализа тональности,

определения границ именованных сущностей, разрешения омонимии, генерации ответов в

диалоговых системах.

Подходы векторного представления слов активно развиваются в последние годы (Mikolov

и др., 2013; Pennington и др., 2014; Bojanowski и др., 2017; Peters и др., 2018). Постоянно

расширяется спектр их приложений, и улучшается качество предсказания семантической

близости слов. Однако признаковые описания слов в большинстве случаев представляют со­

бой «черный ящик»: координаты вектора не удается интерпретировать как определенные

аспекты смысла. Это затрудняет применение данных моделей в системах разведочного ин­

формационного поиска и других приложениях, где важна не только оценка близости, но и

ее объяснение для пользователя.

В большинстве методов строятся плотные векторы низкой размерности, причем каждое

слово представляется набором фиксированного числа признаков. Это противоречит гипотезе

об экономном хранении (Murphy и др., 2012), согласно которой человеческий мозг представ­

ляет более специфичные концепты большим числом характеристик, а более общие — мень­

шим. Проводя параллели с когнитивными науками, векторные представления должны быть

сильно разреженными, а их компоненты должны соответствовать отдельным семантическим

признакам кодируемого понятия.

В данной работе исследуется применимость вероятностного тематического моделирова­

ния для получения таких представлений. Тематическая модель позволяет представить слова

и документы вероятностными распределениями на множестве тем. При этом ставятся вопро­

сы об интерпретируемости и различности тем, разреженности полученных распределений,

устойчивости модели к шуму в данных и случайности начальных приближений. Эти вопро­

сы являются открытыми в области тематического моделирования и представляют отдельный

интерес.

Степень разработанности темы исследования. Дистрибутивная гипотеза, утвер­

ждающая что смысл слова можно определить по его контекстам, была предложена в 1950-х
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годах (Harris, 1954; Firth, 1957). Модели векторного представления слов, основанные на ча­

стотных распределениях слов в контекстах, развиваются на протяжении последних десятиле­

тий и хорошо изучены. Одними из первых таких моделей можно считать работы 1990-х годов

Latent Semantic Analysis, LSA (Deerwester и др., 1990) и Hyperspace Analogue to Language,

HAL (Lund, Burgess, 1996). Эти модели позволяют представлять слова векторами в неко­

тором низкоразмерном пространстве, так что семантически близкие слова имеют близкие

вектора. Для оценивания моделей существуют составленные вручную наборы пар слов с

экспертными оценками близости. Подробный обзор представлен в (Turney, Pantel, 2010).

Недавно большую популярность получили модели обучаемых векторных представлений

слов, в частности, семейство моделей word2vec (Mikolov и др., 2013). Эта архитектура воз­

никла как результат упрощения глубоких нейросетевых моделей языка. Она содержит один

скрытый слой, не содержит нелинейных преобразований и может интерпретироваться как

матричное разложение PMI-частот слов в контекстах (Levy и др., 2015). Недавно предложен­

ная модель GloVe (Pennington и др., 2014) также решает задачу матричного разложения,

но с другим оптимизационным критерием. Таким образом, модели обучаемых векторных

представлений слов (word embeddings) можно считать, скорее, новым витком развития хоро­

шо изученных подходов, нежели революционно новыми идеями в данной области. При этом

важным недостатком является отсутствие интерпретируемости компонент построенных век­

торов.

Вероятностное тематическое моделирование развивалось параллельно с данными под­

ходами, начиная с модели вероятностного латентного семантического анализа (Probabilistic

Latent Semantic Analysis, PLSA), которая была предложена в 1999 году (Hofmann, 1999).

Эта модель позволяет осуществлять мягкую би-кластеризацию слов и документов по темам.

Каждая тема при этом описывается вероятностным распределением на множестве слов. Как

правило, темы являются хорошо интерпретируемыми, т.е. эксперт можно понять, о чем дан­

ная тема, посмотрев на список наиболее вероятных слов.

Наиболее популярной тематической моделью является латентное размещение Дирихле

(Latent Dirichlet Allocation, LDA), в которой дополнительно предполагается, что параметры

модели имеют априорное распределение Дирихле (Blei и др., 2003). Эта модель позициони­

руется как способ получать разреженные тематические распределения, однако на практике

достигаемой разреженности часто оказывается недостаточно. На больших корпусах текстов

модели PLSA и LDA показывают сопоставимое качество (Masada и др., 2008). Позднее были

построены сотни расширений LDA, и предложены алгоритмы их обучения в рамках байесов­

ского подхода (Daud и др., 2010; Blei, 2012). Важной проблемой этой линии исследований
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остается сложность вывода алгоритмов обучения для новых моделей, а также сложность

комбинирования моделей и дополнительных требований, таких как иерархии тем, учет мета­

данных, отказ от гипотезы мешка слов.

Альтернативный подход аддитивной регуляризации тематических моделей (АРТМ) пред­

лагается в работе (Воронцов, 2014) и развивается в данном диссертационном исследовании.

АРТМ позволяет строить тематические модели, оптимизирующие заданный набор критери­

ев. В частности, ставится вопрос о возможности повышения различности и разреженности

тем без существенного ухудшения основного критерия правдоподобия.

Применимость подхода вероятностного тематического моделирования к задаче опреде­

ления семантической близости слов является мало изученной. Как правило, в статьях иссле­

дуется модель LDA, которая показывает на этой задаче низкое качество. В данном иссле­

довании устанавливаются взаимосвязи между тематическими моделями и моделями дистри­

бутивной семантики. Разрабатываемый подход аддитивной регуляризации расширяется для

решения задач семантической близости.

Цели и задачи диссертационной работы. Цель диссертационного исследования –

разработка методов построения интерпретируемых разреженных векторных представлений

текста, применимых в задачах определения семантической близости.

Для достижения данной цели в диссертации решаются следующие задачи.

1. Обобщение известных алгоритмов тематического моделирования. Построение разре­

женных тематических векторных представлений.

2. Повышение различности и интерпретируемости тем с помощью регуляризации в рамках

подхода АРТМ. Разработка методики оценивания различности и интерпретируемости.

3. Построение интерпретируемых разреженных тематических представлений слов и сег­

ментов текста на основе моделирования со-встречаемости слов в локальных контекстах.

4. Построение единого векторного пространства для сущностей различных модальностей

(авторы, даты и другие мета-данные документов).

Научная новизна. В данной работе объединяются преимущества вероятностного тема­

тического моделирования и моделей векторного представления слов на основе их совместной

встречаемости. Это позволяет строить векторное пространство с интерпретируемыми размер­

ностями, с помощью которого успешно решается задача определения семантической близо­

сти слов или сегментов текста. Разрабатывается подход аддитивной регуляризации тематиче­

ских моделей, позволяющий легко встраивать новые требования, мотивированные лингвисти­
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ческими предположениями или специфичными свойствами конечных приложений. Удается

добиться повышения разреженности, различности и интерпретируемости векторных пред­

ставлений текста, а также построить векторные представления мета-данных документов.

Теоретическая и практическая значимость. Развивается подход аддитивной регу­

ляризации тематических моделей, и предлагается комбинация регуляризаторов, позволяю­

щая достичь высокой разреженности, различности и интерпретируемости предметных тем.

Данные свойства тематических моделей важны в задачах разведочного поиска, навигации

по коллекциям научных статей, категоризации и суммаризации документов.

Предлагается формализация дистрибутивной гипотезы в рамках подхода АРТМ. В обу­

чении моделей используется информация о совместной встречаемости слов. Это позволяет

уйти от гипотезы о представлении документа в виде «мешка слов», являющейся одним из

самых критикуемых допущений в тематическом моделировании. Предлагается алгоритм по­

строения единого векторного пространства для слов, сегментов текста и мета-данных доку­

мента, в котором сохраняется свойство интерпретируемости компонент.

Примером применения интерпретируемых семантических векторных представлений слов

является задача автоматического пополнения ключевых слов в заданных категориях при по­

строении системы показов рекламы. Расширение на данные других модальностей применимо

в рекомендательных системах, анализе социальных сетей, анализе транзакционных данных

и других приложениях.

Методология и методы исследования. В работе использованы методы теории веро­

ятностей, оптимизации, теории машинного обучения и компьютерной лингвистики. Экспери­

ментальное исследование проводится на языках C++ и Python с использованием библиотек

NLTK, Gensim, BigARTM и удовлетворяет принципам воспроизводимости результатов.

Положения, выносимые на защиту:

1. Предложен обобщенный EM-алгоритм, позволяющий комбинировать известные тема­

тические модели, обеспечивая контроль перплексии, робастности и разреженности.

2. В рамках подхода аддитивной регуляризации предложена тематическая модель фоно­

вых и предметных тем, обладающих свойствами различности, интерпретируемости и

высокой разреженности.

3. Предложен алгоритм построения тематических векторных представлений, сохраняю­

щих информацию о семантической близости слов и обладающих интерпретируемыми

компонентами.
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4. С помощью подхода аддитивной регуляризации тематических моделей алгоритм по­

строения векторных представлений слов обобщен на случай мультимодальных данных

и сегментированного текста.

Степень достоверности и апробация результатов. Достоверность результатов обес­

печивается математическими доказательствами теорем и серией подробно описанных вычис­

лительных экспериментов на реальных текстовых коллекциях. Основные результаты диссер­

тации докладывались на следующих конференциях и семинарах:

1. Семинар Ассоциации по компьютерной лингвистики BlackBoxNLP: Analyzing and

interpreting neural networks for NLP, октябрь 2018, Брюссель, Бельгия (стендовый доклад).

2. 7-ая международная конференция по анализу изображений, социальных сетей и тек­

стов (AIST), июль 2018, Москва (устное выступление).

3. Семинар группы Томаса Хофманна, Высшая Техническая Школа Цюриха (ETH

Zurich), ноябрь 2017, Цюрих (приглашенный доклад).

4. Конференция AINL: Artificial Intelligence and Natural Language, сентябрь 2017, Санкт­

Петергбург (устное выступление).

5. Семинар Ассоциации по компьютерной лингвистики RepL4NLP: 2nd Workshop on

Representation Learning for NLP, август 2017, Ванкувер, Канада (стендовый доклад).

6. Семинар группы Криса Биманна по языковым технологиям, Технический Универси­

тет Дармштадта (TU Darmstadt), июль 2016, Дармштадт, Германия (приглашенный доклад).

7. Научный семинар по анализу текстов в компании Google, июнь 2016, Цюрих, Швей­

цария (приглашенный доклад).

8. Конференция школы Яндекса Machine Learning: Prospects and Applications, октябрь

2015, Берлин, Германия (стендовый доклад).

9. Научный семинар в компании Microsoft Research Cambridge, апрель 2015, Кэмбридж,

Великобритания (приглашенный доклад).

10. 3-ий международный симпозиум On Learning And Data Sciences (SLDS), апрель 2015,

Лондон, Великобритания (устное выступление).

11. Российская летняя школа по информационному поиску (RuSSIR), август 2014, Ниж­

ний Новгород (стендовый доклад).

12. Международная конференция по компьютерной лингвистике «Диалог», июнь 2014,

Москва (устное выступление).

13. XXI Международная научная конференция студентов, аспирантов и молодых ученых

«Ломоносов-2014», апрель 2014, Москва (устное выступление).
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14. 16-ая Всероссийская конференция «Математические методы распознавания образов»

(ММРО), сентябрь 2013, Казань (устное выступление).

15. 35-ая Европейская конференция по информационному поиску (ECIR), март 2013,

Москва (стендовый доклад).

Публикации. Результаты диссертации опубликованы в 12 печатных работах, из них 7

в изданиях, рекомендованных ВАК для публикации основных научных результатов диссер­

таций на соискание ученой степени кандидата наук. Работы [1–6] индексируются в базе меж­

дународного цитирований Scopus [1–6], работа [7] опубликована в русскоязычном журнале,

входящем в перечень ВАК, работа [8] опубликована в рецензируемом научном журнале, ра­

боты [9–12] являются тезисами докладов.

Личный вклад автора. Подход аддитивной регуляризации тематических моделей раз­

рабатывался в соавторстве с Воронцовым К.В. [1, 4–6]. Основные положения, выносимые на

защиту, являются персональным вкладом автора в опубликованные работы. Результаты по

комбинированию тематического моделирования с моделями дистрибутивной семантики по­

лучены автором лично, за исключением некоторых экспериментов, проведенных совместно

с Поповым А.С. [3].

Структура и объем диссертации. Диссертация состоит из введения, двух обзорных

глав, трех глав с результатами проведенного исследования, заключения и библиографии.

Общий объем диссертации 147 страниц, из них 131 страница текста, включая 15 рисунков и

12 таблиц. Библиография включает 143 наименования на 16 страницах.

Содержание работы

Во Введении обоснована актуальность диссертационной работы, сформулирована цель

и аргументирована научная новизна исследований, представлены выносимые на защиту на­

учные положения.

В первой главе приводится обзор основных принципов дистрибутивной семантики.

Дистрибутивная семантика (distributional semantics) изучает способы определения семан­

тической близости слов на основе их распределения в большом корпусе текстов. Рассмат­

ривается общая схема обработки текста для получения оценок близости слов, и подробно

изучается ее ключевой компонент – математические методы построения низкоразмерных

векторов слов. В частности, приводится вывод модели неотрицательных разреженных пред­

ставлений NNSE (Murphy и др., 2012), тематической модели коротких текстов WNTM (Zuo

и др., 2014), модели глобальных векторов GloVe (Pennington и др., 2014), моделей CBOW,
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Skip-Gram и Skip-Gram Negative Sampling (SGNS) (Mikolov и др., 2013).

Все методы излагаются в едином формализме и в большинстве случаев могут тракто­

ваться как матричное разложение вида:

𝐹𝑊×𝑊 ≈ Φ𝑊×𝑇 · Θ𝑇×𝑊 , (1)

где матрица 𝐹 содержит статистики встречаемости слов в контекстах, а матрицы Φ и Θ

содержат параметры модели. Строки матрицы Φ являются векторными представлениями

слов, а столбцы матрицы Θ – векторными представлениями контекстов. Рассматривается

симметричный случай, при котором словарь слов и контекстов совпадает и имеет размер 𝑊 .

Размерность векторных представлений 𝑇 является гиперпараметром модели и обычно при­

нимает значение порядка 100.

Методы построения векторных представлений различаются типом подсчитываемых ста­

тистик 𝐹 , оптимизируемым функционалом при низкоранговом матричном разложении, до­

полнительными ограничениями на параметры, методом оптимизации. При систематичном

анализе становится ясно, что методы, пришедшие из различных областей (языковое модели­

рование, тематическое моделирование, глубокие нейронные сети) обладают схожей структу­

рой. Это понимание позволяет прийти к гибридным подходам пятой главы.

Вторая глава содержит обзор классических тематических моделей и алгоритмов их

обучения. Введем некоторые обозначения.

Пусть 𝐷 — множество (коллекция) текстовых документов, 𝑊 — множество (словарь)

всех употребляемых в них слов, 𝑇 — множество тем. Каждый документ 𝑑 ∈ 𝐷 представляет

собой последовательность 𝑛𝑑 терминов (𝑤1, . . . , 𝑤𝑛𝑑
) из словаря 𝑊 . Предполагается, что су­

ществует конечное множество тем 𝑇 , и каждое употребление слова 𝑤 в каждом документе 𝑑

связано с некоторой (скрытой) темой 𝑡 ∈ 𝑇 . Таким образом, коллекция документов рассмат­

ривается как случайная и независимая выборка троек (𝑤𝑖, 𝑑𝑖, 𝑡𝑖), 𝑖 = 1, . . . , 𝑛 из дискретного

распределения 𝑝(𝑤, 𝑑, 𝑡) на конечном множестве 𝑊 ×𝐷 × 𝑇 .

Гипотеза независимости или «мешка слов» позволяет перейти к компактному пред­

ставлению документа как подмножества 𝑑 ⊂ 𝑊 , в котором каждому элементу 𝑤 ∈ 𝑑 по­

ставлено в соответствие число 𝑛𝑑𝑤 вхождений термина 𝑤 в документ 𝑑. Гипотеза условной

независимости позволяет сформулировать вероятностную модель порождения коллекции 𝐷

по известным вероятностным распределениям 𝑝(𝑡 | 𝑑) и 𝑝(𝑤 | 𝑡):

𝑝(𝑤 | 𝑑) =
∑︁
𝑡∈𝑇

𝑝(𝑤 | 𝑡) 𝑝(𝑡 | 𝑑). (2)

Построение тематической модели — это обратная задача: по известной коллекции 𝐷
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требуется восстановить породившие её 𝑝(𝑡 | 𝑑) и 𝑝(𝑤 | 𝑡). Обычно число тем |𝑇 | много меньше

|𝐷| и |𝑊 |, и задача сводится к поиску приближённого представления заданной матрицы

частот

𝐹 =
(︀
𝑝𝑤𝑑

)︀
𝑊×𝐷

, 𝑝𝑤𝑑 = 𝑝(𝑤 | 𝑑) = 𝑛𝑑𝑤

𝑛𝑑
,

в виде произведения 𝐹 ≈ ΦΘ двух неизвестных матриц меньшего размера — матрицы тер­

минов тем Φ и матрицы тем документов Θ:

Φ = (𝜑𝑤𝑡)𝑊×𝑇 , 𝜑𝑤𝑡 = 𝑝(𝑤 | 𝑡), 𝜑𝑡 = (𝜑𝑤𝑡)𝑤∈𝑊 ;

Θ = (𝜃𝑡𝑑)𝑇×𝐷, 𝜃𝑡𝑑 = 𝑝(𝑡 | 𝑑), 𝜃𝑑 = (𝜃𝑡𝑑)𝑡∈𝑇 .

Матрицы 𝐹,Φ,Θ являются стохастическими, то есть имеют неотрицательные нормирован­

ные столбцы, представляющие дискретные распределения.

В вероятностном латентном семантическом анализе PLSA (Hofmann, 1999) для по­

строения модели (2) максимизируется логарифм правдоподобия при ограничениях норми­

ровки и неотрицательности:

𝐿(Φ,Θ) = ln
∏︁
𝑑∈𝐷

∏︁
𝑤∈𝑑

𝑝(𝑤 | 𝑑)𝑛𝑑𝑤 =
∑︁
𝑑∈𝐷

∑︁
𝑤∈𝑑

𝑛𝑑𝑤 ln
∑︁
𝑡∈𝑇

𝜑𝑤𝑡𝜃𝑡𝑑 → max
Φ,Θ

; (3)

∑︁
𝑤∈𝑊

𝜑𝑤𝑡 = 1, 𝜑𝑤𝑡 > 0;
∑︁
𝑡∈𝑇

𝜃𝑡𝑑 = 1, 𝜃𝑡𝑑 > 0. (4)

Модель латентного размещения Дирихле LDA (Blei и др., 2003) является расширением

модели PLSA и делает дополнительное предположение о том, что столбцы матриц Φ, Θ

имеют априорное распределение Дирихле.

Для обучения модели LDA используются методы байесовского подхода, при этом их

детали в литературе по тематическому моделированию часто опускаются. В данной работе

приводится описание EM-алгоритма в общем виде (Dempster и др., 1977), его применение для

максимизации правдоподобия в модели PLSA и максимизации апостериорной вероятности в

модели LDA. Для модели LDA рассматриваются два альтернативных способа обучения: вари­

ационный вывод и сэмплирование Гиббса. Показывается взаимосвязь формул вариационного

вывода в модели LDA с формулами E-шага обучения PLSA. Далее в работе рассматриваются

ограничения байесовского подхода и предлагается альтернативный метод аддитивной регу­

ляризации тематических моделей.

В третьей главе описанные схемы обучения моделей PLSA и LDA сопоставляются на

уровне алгоритмов. Вводится обобщённое семейство EM-подобных методов и рассматривают­

ся эвристики регуляризации, сэмплирования, частого обновления параметров, робастности

относительно шума и фона. Все они могут включаться независимо друг от друга в любых

сочетаниях, порождая как известные модели PLSA, LDA, SWB, так и новые.
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Наиболее распространённым внутренним критерием качества тематической модели яв­

ляется перплексия (perplexity). Это мера несоответствия или «удивлённости» модели 𝑝(𝑤 | 𝑑)

словам 𝑤, наблюдаемым в документах 𝑑. Перплексия определяется через логарифм правдо­

подобия (чем меньше, тем лучше) и подсчитывается по контрольной выборке документов.

В экспериментах на двух текстовых коллекциях были получены следующие выводы.

1. Робастные алгоритмы с разреживанием являются лучшими по критерию контроль­

ной перплексии. Такие модели не требует введения априорных распределений Дирихле.

2. Контрольная перплексия LDA лучше, чем у PLSA не потому, что PLSA переобучает­

ся, а потому, что LDA завышает оценки вероятности редких слов. При корректном сравнении

на больших коллекциях перплексии PLSA и LDA практически не различаются.

3. Сэмплирование Гиббса может интерпретироваться как эвристика разреживания рас­

пределения тем на E-шаге EM-алгоритма и использоваться не только в модели LDA, но и

в модели PLSA. Вместо него может быть также использована предлагаемая эвристика эко­

номного сэмплирования.

4. Принудительное разреживание в робастных моделях PLSA путём обнуления неболь­

шой доли наименьших вероятностей позволяет получать до 99% нулей в распределениях без

ухудшения контрольной перплексии.

Результаты данной главы опубликованы в работах [2, 7], [8].

В четвертой главе эти результаты обобщаются в рамках подхода аддитивной регу­

ляризации тематических моделей (АРТМ) (Воронцов, 2014). Это приложение классической

теории регуляризации некорректно поставленных задач (Тихонов и Арсенин, 1977) к темати­

ческому моделированию. Обычно построение тематической модели сводится к задаче стоха­

стического матричного разложения. В общем случае она имеет бесконечно много решений,

то есть является некорректно поставленной. Для её регуляризации к логарифму правдо­

подобия добавляются штрафные слагаемые, формализующие дополнительные требования

к модели. В частности, разрабатывается модель предметных и фоновых тем, позволяющая

разделить специфичные термины предметных областей и фоновую лексику.

В разделе 4.1 вводится подход аддитивной регуляризации тематических моделей. Ло­

гарифм правдоподобия (3) в модели PLSA зависит только от произведения ΦΘ, которое опре­

делено с точностью до линейного преобразования: ΦΘ = (Φ𝑆)(𝑆−1Θ), при условии, что мат­

рицы Φ′ = Φ𝑆 и Θ′ = 𝑆−1Θ также стохастические. Выбор преобразования 𝑆 в EM-подобных

алгоритмах никак не контролируется и зависит от случайного начального приближения. По­

этому наряду с правдоподобием (3) предлагается максимизировать 𝑟 дополнительных кри­
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териев 𝑅𝑖(Φ,Θ), 𝑖 = 1, . . . , 𝑟, называемых регуляризаторами:

𝑅(Φ,Θ) =
𝑟∑︁

𝑖=1

𝜏𝑖𝑅𝑖(Φ,Θ), 𝐿(Φ,Θ) + 𝑅(Φ,Θ) → max
Φ,Θ

; (5)

∑︁
𝑤∈𝑊

𝜑𝑤𝑡 = 1, 𝜑𝑤𝑡 > 0;
∑︁
𝑡∈𝑇

𝜃𝑡𝑑 = 1, 𝜃𝑡𝑑 > 0, (6)

где 𝜏𝑖 — неотрицательные коэффициенты регуляризации, отвечающие за баланс требований

в задаче многокритериальной оптимизации. В работе [5] доказана теорема о необходимых

условиях локального экстремума задачи (5), (6), позволяющая обучать данную модель с по­

мощью регуляризованного EM-алгоритма.

В разделе 4.2 рассматривается применение подхода АРТМ для повышения интерпре­

тируемости тем [4]. Интерпретируемость тематической модели является плохо формализу­

емым требованием. Содержательно оно означает, что по спискам наиболее частотных слов

и документов темы эксперт может понять, о чём эта тема, и дать ей адекватное название.

В данной работе предлагается новый подход к формализации данного понятия. Предполага­

ется, что интерпретируемая тема должна содержать лексическое ядро (kernel) — множество

слов, характерных для определённой предметной области, которые с большой вероятностью

употребляются в данной теме и практически не употребляются в других темах. Множество

тем разбивается на два подмножества, 𝑇 = 𝑆 ⊔𝐵: предметные темы 𝑆 и фоновые темы 𝐵.

Предметные темы 𝑡 ∈ 𝑆 содержат термины предметных областей. Их распределения

𝑝(𝑤 | 𝑡) разрежены и существенно различны (декоррелированы). Распределения 𝑝(𝑑 | 𝑡) так­

же разрежены, так как каждая предметная тема присутствует в относительно небольшой

доле документов. Фоновые темы 𝑡 ∈ 𝐵 содержат слова общей лексики, которых не должно

быть в предметных темах. Их распределения 𝑝(𝑤 | 𝑡) и 𝑝(𝑑 | 𝑡) сглажены, так как эти слова

присутствуют в большинстве документов. Тематическую модель с фоновыми темами можно

рассматривать как обобщение робастных моделей (Chemudugunta и др., 2006; Потапенко и

Воронцов, 2013), в которых использовалось только одно фоновое распределение.

Для обеспечения описываемой структуры матриц Φ и Θ предлагается комбинация из пя­

ти регуляризаторов: сглаживание фоновых тем в матрицах Φ и Θ, разреживание предметных

тем в матрицах Φ и Θ, и декоррелирование предметных тем в матрице Φ:

𝑅(Φ,Θ) = − 𝛽0

∑︁
𝑡∈𝑆

∑︁
𝑤∈𝑊

𝛽𝑤 ln𝜑𝑤𝑡 − 𝛼0

∑︁
𝑑∈𝐷

∑︁
𝑡∈𝑆

𝛼𝑡 ln 𝜃𝑡𝑑

+ 𝛽1

∑︁
𝑡∈𝐵

∑︁
𝑤∈𝑊

𝛽𝑤 ln𝜑𝑤𝑡 + 𝛼1

∑︁
𝑑∈𝐷

∑︁
𝑡∈𝐵

𝛼𝑡 ln 𝜃𝑡𝑑

− 𝛾
∑︁
𝑡∈𝑇

∑︁
𝑠∈𝑇∖𝑡

∑︁
𝑤∈𝑊

𝜑𝑤𝑡𝜑𝑤𝑠 → max
Φ,Θ

.
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Рис. 1. Серый: PLSA. Чёрный: сглаживание,

разреживание. Увеличивается разреженность

(sparsity), чистота ядер тем (purity), размер ядер

(kernel size), доля фоновых слов (background) при

небольшом ухудшении перплексии (perplexity).
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Рис. 2. Серый: PLSA. Чёрный: сглаживание, раз­

реживание, декоррелирование. Улучшается коге­

рентность тем (coherence), подсчитанная по 10 и

100 наиболее вероятным словам в темах, а также

контастность ядер тем (contrast).

В качестве фоновых распределений 𝛼, 𝛽 можно брать равномерные распределения. Коэффи­

циенты регуляризации 𝛼0, 𝛼1, 𝛽0, 𝛽1, 𝛾 отвечают за баланс требований к модели и являются

настраиваемыми гипепараметрами.

В проведенных экспериментах (Рис. 1, 2) помимо перплексии оцениваются критерии раз­

реженности и интерпретируемости тематической модели. Общепринятой численной оценкой

интерпретируемости, не требующей привлечения асессоров, является когерентность (Mimno

и др., 2011; Newman и др., 2010). В данной работе когерентность оценивается по спискам

наиболее вероятных слов в темах, а также по ядрам тем. Также вводятся новые меры интер­

претируемости, основанные на понятии ядра темы: размер, чистота и контрастность ядер.
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Основной вывод экспериментов заключается в том, что комбинирование регуляриза­

торов позволяет улучшить все критерии качества при незначительном ухудшении перплек­

сии. Разреживание обнуляет до 96% элементов матрицы Φ и до 87% элементов матрицы Θ.

Декорреляция повышает когерентность тем. Сглаживание фоновых тем помогает очистить

предметные темы от слов общей лексики. Также повышаются критерии чистоты и контраст­

ности ядер тем. Все эти улучшения сопровождаются незначительной потерей перплексии,

что согласуется с выводами из (Chang и др., 2009) о том, что модели, имеющие лучшую

перплексию, часто демонстрируют худшую интерпретируемость. В основном тексте работы

приведено детальное описание всех используемых критериев качества, а также показаны

примеры тем для стандартной модели PLSA и предложенной модели ARTM.

В разделе 4.3 предлагается регуляризатор разреживания распределения тем в коллек­

ции 𝑝(𝑡) =
∑︀

𝑑 𝑝(𝑑)𝜃𝑡𝑑 для постепенного отбора тем. Максимизируется дивергенциия Куль­

бака-Лейблера между 𝑝(𝑡) и равномерным распределением на множестве тем:

𝑅(Θ) = −𝜏
𝑛

|𝑇 |
∑︁
𝑡∈𝑇

ln
∑︁
𝑑∈𝐷

𝑝(𝑑)𝜃𝑡𝑑 → max
Θ

.

В экспериментах на реальных данных демонстрируется возможность встраивания но­

вого регуляризатора в рассмотренную ранее модель с разреженными и различными пред­

метными темами, а также вырабатываются рекомендации по настраиванию коэффициентов

регуляризации [6].

В пятой главе предлагается алгоритм построения вероятностных тематических пред­

ставлений слов (Probabilistic Word Embeddings, PWE), которые решают задачу определения

семантической близости на уровне модели SGNS, ставшей стандартным выбором для этой

задачи. Кроме того, удается добиться интерпретируемости и разреженности, что невозможно

в большинстве других моделей. Материалы данной главы опубликованы в [3].

Для формализации дистрибутивной гипотезы в рамках вероятностного тематического

моделирования будем для каждого слова 𝑤𝑖 в корпусе текстов предсказывать слова 𝑤𝑗 из

локальной окрестности 𝐻𝑖 с помощью смеси тем:

𝑝(𝑤𝑗|𝑤𝑖) =
∑︁
𝑡∈𝑇

𝑝(𝑤𝑗|𝑡)𝑝(𝑡|𝑤𝑖) =
∑︁
𝑡∈𝑇

𝜑𝑤𝑗𝑡𝜃𝑡𝑤𝑖
=

⟨︀
𝜑𝑤𝑗

, 𝜃𝑤𝑖

⟩︀
, (7)

где 𝑖 = 1, . . . , 𝑁 индексирует позиции слов в корпусе, 𝐻𝑖 содержит левые и правые контексты

позиции 𝑖, 𝜑𝑤𝑗
— вектор слова 𝑤𝑗, 𝜃𝑤𝑖

— вектор слова-контекста 𝑤𝑖.

Сделаем предположения о независимости слов внутри каждой окрестности, а также о

независимости окрестностей. Тогда можно записать следующую задачу максимизации регу­
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ляризованного логарифма правдоподобия:
𝑁∑︁
𝑖=1

∑︁
𝑗∈𝐻𝑖

ln
∑︁
𝑡∈𝑇

𝜑𝑤𝑗𝑡𝜃𝑡𝑤𝑖
+ 𝑅(Φ,Θ) → max

Φ,Θ
; (8)

∑︁
𝑢∈𝑊

𝜑𝑢𝑡 = 1, 𝜑𝑢𝑡 > 0;
∑︁
𝑡∈𝑇

𝜃𝑡𝑣 = 1, 𝜃𝑡𝑣 > 0. (9)

Введем оператор norm, который преобразует произвольный заданный вектор (𝑥𝑖)𝑖∈𝐼 в

вектор вероятностей (𝑝𝑖)𝑖∈𝐼 дискретного распределения с помощью обнуления отрицательных

элементов и последующей нормировки:

𝑝𝑖 = norm
𝑖∈𝐼

(𝑥𝑖) =
max{𝑥𝑖, 0}∑︀

𝑖∈𝐼
max{𝑥𝑖, 0}

Если 𝑥𝑖 6 0 для всех 𝑖 ∈ 𝐼, то результатом оператора norm по определению считается нуле­

вой вектор. Обозначим через 𝑛𝑣𝑢 агрегированный счетчик совместной встречаемости слов в

локальных окрестностях 𝐻𝑖, 𝑖 = 1, . . . , 𝑁 . В разделе 5.1 доказана следующая теорема.

Теорема 3. Пусть функция 𝑅(Φ,Θ) непрерывно дифференцируема. Тогда точка (Φ,Θ) ло­

кального экстремума задачи (8)-(9) удовлетворяет системе уравнений со вспомогательны­

ми переменными 𝑝𝑡𝑣𝑢 = 𝑝(𝑡|𝑣, 𝑢):

𝑝𝑡𝑣𝑢 =
𝜑𝑢𝑡𝜃𝑡𝑣∑︀

𝑠∈𝑇
𝜑𝑢𝑠𝜃𝑠𝑣

; (10)

𝜑𝑢𝑡 = norm
𝑢∈𝑊

(︂
𝑛𝑢𝑡 + 𝜑𝑢𝑡

𝜕𝑅

𝜕𝜑𝑢𝑡

)︂
; 𝑛𝑢𝑡 =

∑︀
𝑣∈𝑊

𝑛𝑣𝑢𝑝𝑡𝑣𝑢; (11)

𝜃𝑡𝑣 = norm
𝑡∈𝑇

(︂
𝑛𝑡𝑣 + 𝜃𝑡𝑣

𝜕𝑅

𝜕𝜃𝑡𝑣

)︂
; 𝑛𝑡𝑣 =

∑︀
𝑢∈𝑊

𝑛𝑣𝑢𝑝𝑡𝑣𝑢, (12)

за исключением нулевых столбцов Φ, Θ в решении данной системы.

Решение системы уравнений (10)–(12) методом простых итераций соответствует регуля­

ризованному EM-алгоритму. Нулевые столбцы матриц Φ, Θ в решении соответствуют вырож­

денным темам и документам, которые исключаются из модели. На практике это происходит

редко и может говорить о необходимости понижения коэффициентов регуляризации.

В данной работе предлагается онлайновая версия EM-алгоритма, позволяющая избегать

хранения матрицы Θ, а также сокращать число проходов по коллекции за счет более частого

обновления параметров Φ.

Устанавливается связь предложенной модели с другими моделями векторных представ­

лений (Таблица 1). Ключевое отличие модели PWE от популярной модели Skip-Gram заклю­

чается в использовании смеси распределений (7) вместо нормировки скалярного произведе­

ния с помощью операции softmax:

𝑝(𝑢|𝑣) = softmax ⟨𝜑𝑢, 𝜃𝑣⟩ =
exp ⟨𝜑𝑢, 𝜃𝑣⟩∑︀
𝑤 exp ⟨𝜑𝑤, 𝜃𝑣⟩

. (13)
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Таблица 1. Сопоставление походов по типу данных (слова-слова или слова-документы) и типу веро­

ятностной модели (softmax или вероятностная смесь распределений).

слова-слова слова-документы

softmax word2vec (Skip-Gram) doc2vec (DBOW)

смесь распределений PWE PLSA

В разделах 5.2 и 5.3 проводятся эксперименты на коллекции англоязычных статей Ви­

кипедии. Для получения оценок близости слов сравниваются несколько способов, из которых

наилучшим оказывается скалярное произведение векторов слов, составленных из условных

вероятностей 𝜑𝐵
𝑤𝑡 = 𝑝(𝑡|𝑤). Качество определения семантической близости оценивается на

стандартных тестовых наборах пар слов с экспертными оценками близости (WordSim-353,

SimLex-999 и др.). В проведенных экспериментах демонстрируется качество, сопоставимое с

моделью SGNS, а также ряд преимуществ предлагаемого подхода:

1. интерпретируемость компонент векторных представлений слов (Рис. 3);

2. высокая разреженность представлений (до 93%) без ухудшения качества модели;

3. подключение дополнительных регуляризаторов для учета специфичных требований.

Примером специфичных требований к модели может быть учет дополнительных дан­

ных, таких как время, категория, автор, или любая другая информация, доступная для до­

кумента. Будем называть такую мета-информацию дополнительными модальностями, при

этом базовой модальностью будем считать текст.

В разделе 5.4 предлагается алгоритм построения единого векторного пространства для

токенов различных модальностей, основанный на подходе мультимодального тематического

моделирования (Vorontsov и др., 2015). Для этого рассматривается следующая оптимизаци­

онная задача: ∑︁
𝑚∈𝑀

𝜆𝑚

∑︁
𝑣∈𝑊 0

∑︁
𝑢∈𝑊𝑚

𝑛𝑣𝑢 ln
∑︁
𝑡∈𝑇

𝜑𝑢𝑡𝜃𝑡𝑣 + 𝑅(Φ,Θ) → max
Φ,Θ

; (14)

∀𝑢, 𝑡 𝜑𝑢𝑡 > 0;
∑︁

𝑢∈𝑊𝑚

𝜑𝑢𝑡 = 1, ∀𝑚 ∈ 𝑀 ; (15)

∀𝑡, 𝑣 𝜃𝑡𝑣 > 0;
∑︁
𝑡∈𝑇

𝜃𝑡𝑣 = 1. (16)

где 𝜆𝑚 > 0 — веса модальностей, 𝑊𝑚 — словари модальностей; 𝑚 = 0 соответствует базо­

вой модальности текста; 𝑛𝑣𝑢 — локальная со-встречаемость токенов, если токен 𝑢 ∈ 𝑊 0, и

документная со-встречаемость иначе.

В такой модели матрица параметров Φ разбивается на блоки по словарям различных

модальностей, и нормировка производится в рамках каждого отдельного блока. Таким обра­
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Рис. 3. Количественная оценка интер­

претируемости (когерентность по спис­

кам топ-слов в компонентах).

Рис. 4. Качество предсказания близости

в тройках статей ArXiv для нескольких

размерностей векторного пространства.

зом, каждая тема описывается несколькими альтернативными распределениями. Матрица Θ

сохраняет прежнюю размерность и интерпретацию. Учет дополнительных модальностей не

противоречит введению регуляризаторов разреживания и любых других. Обучение произво­

дится с помощью модификации EM-алгоритма, что обосновывается следующей теоремой.

Теорема 4. Пусть функция 𝑅(Φ,Θ) непрерывно дифференцируема. Тогда точка (Φ,Θ) ло­

кального экстремума задачи (14)-(16) удовлетворяет системе уравнений со вспомогатель­

ными переменными 𝑝𝑡𝑣𝑢 = 𝑝(𝑡|𝑣, 𝑢):

𝑝𝑡𝑣𝑢 = norm
𝑡∈𝑇

(︀
𝜑𝑢𝑡𝜃𝑡𝑣

)︀
; (17)

𝜑𝑢𝑡 = norm
𝑢∈𝑊𝑚

(︂
𝑛𝑢𝑡 + 𝜑𝑢𝑡

𝜕𝑅

𝜕𝜑𝑢𝑡

)︂
; 𝑛𝑢𝑡 =

∑︁
𝑣∈𝑊 0

𝑛𝑣𝑢𝑝𝑡𝑣𝑢; (18)

𝜃𝑡𝑣 = norm
𝑡∈𝑇

(︂
𝑛𝑡𝑣 + 𝜃𝑡𝑣

𝜕𝑅

𝜕𝜃𝑡𝑣

)︂
; 𝑛𝑡𝑣 =

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑊𝑚

𝜆𝑚𝑛𝑣𝑢𝑝𝑡𝑣𝑢. (19)

за исключением нулевых столбцов Φ, Θ в решении данной системы.

В эксперименте на мультимодальной коллекции русскоязычных новостей Lenta.ru бы­

ло продемонстрировано улучшение качества определения семантической близости слов при

включении в модель модальностей времени и категорий (Таблица 2). Более того, даже базо­

вая версия предлагаемой модели PWE превзошла подходы SGNS и СBOW, которые стали

стандартными инструментами для таких задач. Детали предобработки коллекции, обучения

моделей и тестовых выборок (столбцы таблицы) представлены в тексте работы.

Предлагаемый подход позволяет оценивать не только близости слов, но и близости сущ­

ностей различных модальностей. Например, ближайшими словами к дате 2016-02-29 (вру­

чение «Оскара») оказываются слова статуэтка, кинонаграда, номинироваться.
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Таблица 2. Корреляция Спирмена на задачах близости. Модели обучены на русскоязычном мульти­

модальном корпусе Lenta.ru. Учет меток времени и категорий улучшает качество векторов слов.

WordSim-Sim WordSim-Rel MC RG HJ SimLex-999

SGNS 0.630 0.530 0.377 0.415 0.567 0.243

CBOW 0.625 0.513 0.403 0.370 0.551 0.170

PWE 0.649 0.565 0.605 0.594 0.604 0.123

Multi-PWE 0.682 0.580 0.607 0.584 0.611 0.144

В разделе 5.5 обсуждается связь предложенной модели с тематическими моделями

коротких текстов Word Network Topic Model, WNTM (Zuo и др., 2014) и Biterm Topic Model,

BTM (Yan и др., 2013). Доказывается теорема об эквивалентности моделей WNTM и BTM

при определенной инициализации параметров.

Введем обозначение для матрицы условных вероятностей, полученных из матрицы Φ

по формуле Байеса:

Φ𝐵 = (𝜑𝐵
𝑤𝑡), 𝜑𝐵

𝑤𝑡 = 𝑝(𝑡|𝑤) =
𝑝(𝑤|𝑡)𝑝(𝑡)

𝑝(𝑤)
=

𝜑𝑤𝑡𝑝(𝑡)

𝑝(𝑤)
(20)

Теорема 5. Если при инициализации модели WNTM положить Θ = Φ𝐵, то данная связь

матриц Φ и Θ сохраняется в течение EM-итераций, а полученная модификация WNTM в

точности совпадает с моделью BTM.

Данное утверждение подтверждается в эксперименте. Демонстрируется одинаковое ка­

чество моделей WNTM и BTM, несмотря на сокращение числа параметров вдвое. Анало­

гичное связывание векторных представлений слов и контекстов применяется в литературе

для языковых моделей (Press и др., 2016; Inan и др., 2016). Однако в стандартных моделях

векторных представлений слов (SGNS, GloVe) этого не происходит.

В разделе 5.6 предлагается алгоритм построения тематических векторных представ­

лений текстовых фрагментов, в частности, отдельных предложений или целых документов.

Ставится задача определения семантической близости документов. Качество оценивается на

контрольной выборке триплетов статей arXiv, для которых эти близости известны (Dai и

др, 2015). В проведенном эксперименте (Рис. 4) подход аддитивной регуляризации темати­

ческих моделей (ARTM) превосходит модель doc2vec (DBOW), являющуюся стандартным

расширением модели word2vec для задачи определения близости документов.

В заключении перечисляются основные результаты работы.

Предложено семейство EM-алгоритмов, включающее как известные, так и новые ал­

горитмы обучения тематических моделей. Исследованы опции разреживания, робастности,
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регуляризации и сэмплирования. В рамках подхода аддитивной регуляризации тематических

моделей предложен набор из пяти регуляризаторов, повышающий интерпретируемость, раз­

реженность и различность предметных тем модели. Предложен разреживающий регуляриза­

тор отбора тем. Выработаны рекомендации по настраиванию коэффициентов регуляризации.

Предложен алгоритм построения тематических представлений PWE, которые позволя­

ют определять семантическую близость слов и при этом являются интерпретируемыми. Про­

демонстрировано применение подхода аддитивной регуляризации для повышения разрежен­

ности представлений слов, а также для построения единого векторного пространства для

сущностей различных модальностей (слова, время, категории). Подход обобщен на случай

сегментированного текста. В экспериментах получено качество, сопоставимое или превосхо­

дящее стандартные подходы семейства word2vec.

Стоит заметить, что в модели PWE не используется информация о частях слова (мор­

фемах или буквенных 𝑛-граммах). Использование такой информации может повышать ка­

чество, как показано в последних работах по векторным представлениям слов (Bojanowski и

др., 2017). Другое направление недавних исследований связано с обучением контексто-зави­

симых представлений слов. Модель ELMo (Peters и др., 2018) превосходит другие модели

на большом числе прикладных задач. Расширение разрабатываемого подхода тематических

векторных представлений слов для учета частей слов и слов контекста представляется пер­

спективной темой дальнейшего исследования.
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