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Введение

Актуальность темы исследования. В задачах анализа текста (Natural

Language Processing, NLP) часто возникает необходимость представления слов

или сегментов текста векторами низкой размерности, отражающими их семан­

тику. Если два близких по смыслу слова удается представить близкими век­

торами, то такие представления затем могут эффективно использоваться для

широкого класса задач NLP, в частности, для задач информационного поиска,

классификации, категоризации и суммаризции текстов, анализа тональности,

определения границ именованных сущностей, разрешения омонимии, генерации

ответов в диалоговых системах.

Подходы векторного представления слов активно развиваются в последние

годы [1–4]. Постоянно расширяется спектр их приложений, и улучшается каче­

ство предсказания семантической близости слов. Однако признаковые описания

слов в большинстве случаев представляют собой «черный ящик»: координаты

вектора не удается интерпретировать как определенные аспекты смысла. Это

затрудняет применение данных моделей в системах разведочного информаци­

онного поиска и других приложениях, где важна не только оценка близости, но

и ее объяснение для пользователя.

В большинстве методов строятся плотные вектора низкой размерности, та­

ким образом, что каждое слово представляется набором фиксированного числа

признаков. Это противоречит гипотезе об экономном хранении, согласно ко­

торой человеческий мозг представляет более специфичные концепты большим

числом характеристик, а более общие – меньшим [5, 6]. Проводя параллели с

когнитивными науками, векторные представления должны быть сильно разре­

женными, а их компоненты должны соответствовать отдельным семантическим

признакам кодируемого понятия.

В данной работе исследуется применимость вероятностного тематического

моделирования для получения таких представлений. Тематическая модель поз­
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воляет представить слова и документы вероятностными распределениями на

множестве тем. При этом ставятся вопросы об интерпретируемости и различ­

ности тем, разреженности полученных распределений, устойчивости модели к

шуму в данных и случайности начальных приближений. Эти вопросы являются

открытыми в области тематического моделирования и представляют отдельный

интерес.

Степень разработанности темы исследования. Дистрибутивная ги­

потеза, утверждающая что смысл слова можно определить по его контекстам,

была предложена в 1950-х годах [7, 8]. Модели векторного представления слов,

основанные на частотных распределениях слов в контекстах, развиваются на

протяжении последних десятилетий и хорошо изучены. Одними из первых ра­

бот можно считать модели 1990-х годов латентного семантического анализа

(Latent Semantic Analysis, LSA) [9] и семантической памяти (Hyperspace Analogue

to Language, HAL) [10]. Эти модели позволяют представлять слова векторами в

некотором низкоразмерном пространстве, так что семантически близкие слова

имеют близкие вектора [11]. Для оценивания моделей существуют составленные

вручную наборы пар слов с экспертными оценками близости.

Недавно большую популярность получили модели обучаемых векторных

представлений слов, в частности, семейство моделей word2vec [1], предложен­

ное Томасом Миколовым в 2013 году. Эта архитектура возникла как результат

упрощения глубоких нейросетевых моделей языка. Она содержит один скрытый

слой, не содержит нелинейных преобразований и может интерпретироваться

как матричное разложение PMI-частот слов в контекстах [12]. Недавно пред­

ложенная модель GloVe [2] также решает задачу матричного разложения, но с

другим оптимизационным критерием. Таким образом, модели обучаемых век­

торных представлений слов (word embeddings) можно считать, скорее, новым

витком развития хорошо изученных подходов, нежели революционно новыми

технологиями в данной области.

Обе группы методов обладают рядом недостатков, среди которых можно
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назвать отсутствие интерпретируемости компонент построенных векторов.

Вероятностное тематическое моделирование развивалось параллельно, на­

чиная с модели вероятностного латентного семантического анализа (Probabilistic

Latent Semantic Analysis, PLSA), которая была предложена Томасом Хофман­

ном в 1999 году [13]. Эта модель позволяет осуществлять мягкую би-кластери­

зацию слов и документов по темам. Каждая тема при этом описывается веро­

ятностным распределением на множестве слов. Как правило, темы являются

хорошо интерпретируемыми, т.е. эксперт можно понять, о чем данная тема,

посмотрев на список наиболее вероятных слов.

Наиболее известной тематической моделью является латентное размеще­

ние Дирихле (Latent Dirichlet Allocation, LDA), в которой дополнительно пред­

полагается, что параметры модели имеют априорное распределение Дирихле [14].

Эта модель позиционируется авторами как способ получать разреженные тема­

тические распределения, однако на практике достигаемой разреженности часто

оказывается недостаточно. На больших корпусах текстов модели PLSA и LDA

показывают сопоставимое качество [15–17]. Позднее были построены сотни рас­

ширений LDA, и предложены алгоритмы их обучения в рамках байесовского

подхода [18, 19]. Важной проблемой этой линии исследований остается слож­

ность вывода алгоритмов обучения для новых моделей, а также сложность

комбинирования моделей и дополнительных требований, таких как иерархии

тем, учет мета-данных, отказ от гипотезы мешка слов.

Альтернативный подход аддитивной регуляризации тематических моделей

(АРТМ) предлагается в работе [20] и развивается в данном диссертационном

исследовании. АРТМ позволяет строить тематические модели, оптимизирую­

щие заданный набор критериев. В частности, ставится вопрос о возможности

повышения различности и разреженности тем без существенного ухудшения

основного критерия правдоподобия.

Применимость подхода вероятностного тематического моделирования к за­

даче определения семантической близости слов является мало изученной. Как
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правило, в статьях исследуется модель LDA, которая показывает на этой задаче

низкое качество. В данном исследовании устанавливаются взаимосвязи между

тематическими моделями и моделями дистрибутивной семантики. Разрабаты­

ваемый подход аддитивной регуляризации расширяется для решения задач се­

мантической близости слов и для обработки мультимодальных данных.

Цели и задачи диссертационной работы. Цель диссертационного ис­

следования – разработка методов построения интерпретируемых разреженных

векторных представлений текста, применимых в задачах определения семанти­

ческой близости.

Для достижения данной цели в диссертации решаются следующие задачи.

1. Обобщение известных алгоритмов тематического моделирования. Постро­

ение разреженных тематических векторных представлений.

2. Повышение различности и интерпретируемости тем с помощью регуляри­

зации в рамках подхода АРТМ. Разработка методики оценивания различ­

ности и интерпретируемости.

3. Построение интерпретируемых разреженных тематических представлений

слов и сегментов текста на основе моделирования со-встречаемости слов

в локальных контекстах.

4. Построение единого векторного пространства для токенов различных мо­

дальностей (авторы, даты и другие мета-данные документов).

Научная новизна. Объединяются преимущества вероятностного темати­

ческого моделирования и моделей векторного представления слов на основе их

совместной встречаемости. Это позволяет построить векторное пространство

с интерпретируемыми размерностями, с помощью которого успешно решается

задача определения семантической близости слов или сегментов текста. Разра­

батывается подход аддитивной регуляризации тематических моделей, позволя­
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ющий встраивать новые требования, мотивированные лингвистическими пред­

положениями или специфичными свойствами конечных приложений.

Теоретическая и практическая значимость. Предлагается аддитивно

регуляризованная тематическая модель, позволяющая достичь высокой разре­

женности, различности и интерпретируемости предметных тем. Данные свой­

ства тематических моделей важны в задачах разведочного поиска, навигации

по коллекциям научных статей, категоризации и суммаризации документов.

Предлагается формализация дистрибутивной гипотезы в рамках подхода

АРТМ. В обучении моделей используется информация о совместной встречае­

мости слов. Это позволяет уйти от гипотезы о представлении документа в виде

«мешка слов», являющейся одним из самых критикуемых допущений в темати­

ческом моделировании. Предлагается алгоритм построения единого векторного

пространства для слов, сегментов текста и мета-данных документа, в котором

сохраняется свойство интерпретируемости компонент.

Примером применения интерпретируемых семантических векторных пред­

ставлений слов является задача автоматического пополнения ключевых слов в

заданных категориях при построении системы показов рекламы. Расширение на

данные других модальностей применимо в рекомендательных системах, анали­

зе социальных сетей, анализе транзакционных данных и других приложениях.

Методология и методы исследования. В работе использованы методы

теории вероятностей, оптимизации, теории машинного обучения и компьютер­

ной лингвистики. Экспериментальное исследование проводится на языках C++

и Python с использованием библиотек NLTK, Gensim, BigARTM и удовлетворя­

ет принципам воспроизводимости результатов.

Положения, выносимые на защиту:

∙ Предложен обобщенный EM-алгоритм, позволяющий комбинировать из­

вестные тематические модели, обеспечивая контроль перплексии, робаст­

ности и разреженности.
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∙ В рамках подхода аддитивной регуляризации предложена тематическая

модель фоновых и предметных тем, обладающих свойствами различности,

интерпретируемости и высокой разреженности.

∙ Предложен алгоритм построения тематических векторных представлений,

сохраняющих информацию о семантической близости слов и обладающих

интерпретируемыми компонентами.

∙ С помощью подхода аддитивной регуляризации тематических моделей

алгоритм построения векторных представлений слов обобщен на случай

мультимодальных данных и сегментированного текста.

Степень достоверности и апробация результатов. Достоверность ре­

зультатов обеспечивается математическими доказательствами теорем и серией

подробно описанных вычислительных экспериментов на реальных текстовых

коллекциях. Основные результаты диссертации докладывались на следующих

конференциях и семинарах:

1. BlackboxNLP: Analyzing and interpreting neural networks for NLP (co-located

with EMNLP), октябрь 2018, Брюссель (постер).

2. 7th International Conference - Analysis of Images, Social networks and Texts

(AIST), Москва, июль 2018.

3. Доклад в группе Томаса Хофманна, ETH Zurich, ноябрь 2017.

4. Artificial Intelligence and Natural Language (AINL), Санкт-Петергбург, сен­

тябрь 2017.

5. 2nd Workshop on Representation Learning for NLP (co-located with ACL),

август 2017, Ванкувер (постер).

6. Доклад в группе Криса Биманна по языковым технологиям, Технический

Университет Дармштадта, июль 2016.
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7. Доклад на семинаре по анализу текстов в Google, Цюрих, июнь 2016.

8. Yandex School Conference “Machine Learning: Prospects and Applications”,

октябрь 2015, Берлин (постер).

9. Доклад на семинаре в Microsoft Research Cambridge, апрель 2015.

10. The Third International Symposium On Learning And Data Sciences (SLDS),

Лондон, апрель 2015.

11. Школа Russian Summer School on Information Retrieval, август 2014, Ниж­

ний Новгород (постер).

12. The 35-th European Conference on Information Retrieval (ECIR), Москва,

март 2013 (постер).

13. Международная конференция по компьютерной лингвистике “Диалог”,

Москва, июнь 2014.

14. XXI Международная научная конференция студентов, аспирантов и мо­

лодых ученых “Ломоносов-2014”, Москва, 2014.

15. 16-ая Всероссийская конференция “Математические методы распознава­

ния образов” (ММРО), Казань, 2013.

Публикации. Материалы диссертации опубликованы в 12 печатных ра­

ботах, из них 6 статей индексируются в базе Scopus [21–26], еще одна [27] опуб­

ликована в журнале, входящем в перечень ВАК. Работа [28] опубликована в

рецензируемом научном журнале, работа [29] представлена на воркшопе меж­

дународной конференции EMNLP, работы [30–32] являются тезисами докладов.

Еще одна статья [33] принята в печать (Scopus).

Личный вклад автора. Подход аддитивной регуляризации тематиче­

ских моделей разрабатывался в соавторстве с Воронцовым К.В. [21, 23–25]. Ос­

новные положения, выносимые на защиту, являются личным вкладом автора
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в опубликованные работы. Результаты по комбинированию тематического мо­

делирования с моделями дистрибутивной семантики, представленные в пятой

главе, получены автором лично, за исключением некоторых экспериментов, про­

веденных совместно с Поповым А.С. [26].

Структура и объем диссертации. Диссертация состоит из введения,

двух обзорных глав, трех глав с результатами проведенного исследования, за­

ключения и библиографии. Общий объем диссертации 147 страниц, из них 131

страница текста, включая 15 рисунков и 12 таблиц. Библиография включает

143 наименования на 16 страницах.

Краткое содержание по главам. В главе 1 приводятся основные прин­

ципы дистрибутивной семантики и типы семантической близости слов. Подроб­

но рассматриваются математические модели, позволяющие произвести переход

от корпусных частот к низкоразмерным семантическим векторным представ­

лениям текста. При систематичном анализе становится ясно, что методы, при­

шедшие из различных областей (языковое моделирование, тематическое моде­

лирование, матричные разложения, глубокие нейронные сети) обладают очень

схожей структурой. Это понимание позволяет построить гибридные подходы,

описанные в главе 5.

Глава 2 содержит обзор классических тематических моделей и алгоритмов

их обучения. Особенно подробно рассматриваются байесовские методы, широ­

ко распространенные в литературе по тематическому моделированию. В част­

ности, описывается три способа обучения тематической модели LDA. Далее в

работе обсуждаются сложности байесовского подхода и развивается альтерна­

тивный подход – аддитивная регуляризация тематических моделей.

В главе 3 рассматривается ряд эвристик, применимых к базовой тематиче­

ской модели PLSA. Исследуются различные модификации EM-алгоритма, ис­

пользуемого для ее обучения. В результате удается построить набор моделей,

комбинирующих свойства разреженности тематических распределений, робаст­

ности к шуму в данных и экономного сэмплирования.
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В главе 4 эти результаты обобщаются в рамках подхода аддитивной регу­

ляризации. Рассматривается проблема неединственности стохастического мат­

ричного разложения, и вводятся дополнительные критерии оптимизации. Раз­

рабатывается модель предметных и фоновых тем, позволяющая разделить спе­

цифичные термины от фоновой лексики и тем самым повысить интерпретиру­

емость, различность и разреженность тем.

В главе 5 предлагается алгоритм построения семантических представлений

текста на основе разработанного аппарата аддитивной регуляризации темати­

ческих моделей. В результате удается построить тематические представления

слов, сопоставимые по качеству на задачах определения семантической близо­

сти слов со стандартными нейросетевыми моделями семейства word2vec. При

этом в экспериментах демонстрируются преимущества предлагаемого подхода:

интерпретируемость компонент векторов, высокая разреженность, возможность

дополнительной регуляризации. Помимо слов в единое векторное пространство

погружаются сущности дополнительных модальностей: метки времени, катего­

рии и другие метаданные, связанные с документами. На задаче предсказания

семантической близости документов предложенный метод превосходит модель

doc2vec — стандартное расширение модели wod2vec для документов.
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Глава 1

Дистрибутивная семантика

Дистрибутивная семантика (distributional semantics) изучает способы

определения семантической близости слов на основе их распределения в боль­

шом корпусе текстов. В основе лежит дистрибутивная гипотеза, утверждаю­

щая, что слова со схожим распределением контекстов имеют схожие смыслы:

“You shall know the word by the company it keeps.” [7, 8]. Под контекстом могут

пониматься соседи слова в окне фиксированной ширины или более сложные

синтаксические конструкции [34].

В данной главе рассматриваются различные типы семантической близо­

сти слов. Приводится общая схема обработки текста для получения оценок бли­

зости, и подробно рассматривается ее ключевой компонент – математические

модели построения низкоразмерных векторов слов. Все модели излагаются в

едином формализме без разделения на частотные (count-based) и предсказыва­

ющие (predictive), принятого во многих обзорах. В результате удается выделить

общие принципы и придти к гибридным моделям (глава 5).

1.1. Типы семантической близости слов

В компьютерной лингвистике два слова называются семантически близ­

кими (semantically similar), если они имеют общий гипероним (родительскую

категорию, дословно с греческого - “сверх-имя”). Например, машина и велоси­

пед близки, потому что оба являются транспортным средством [35]. Такой тип

отношения между словами иногда также называют таксономической близо­

стью [11]. Семантическая близость является частным случаем семантической

связанности (semantic relatedness) слов [36]. Семантически связанными называ­

ют слова, находящиеся в отношении меронимии (отношение часть-целое: колесо

и машина), гипонимии (родо-видовое отношение: машина и транспорт), синони­
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мии (кружка и чашка), антонимии (горячий и холодный). Также сюда могут

включаться слова, которые связаны синтаксическими конструкциями или про­

сто часто встречаются совместно (пчела и мед).

В приложениях важно уметь отличать семантическую близость слов от

других типов семантической связанности. При этом точное определение семан­

тической близости может варьироваться в зависимости от постановки приклад­

ной задачи. Например, для автоматизации колл-центра в банке важно исклю­

чить антонимы (открыть-закрыть вклад) из понятия близких слов. В то же

время, для системы автоматического пополнения ключевых слов по категории

«действия со вкладом», данные слова могут считаться близкими. При этом в

обоих случаях семантически связанные слова «открыть» и «вклад» близкими

считаться не должны.

Для определения типа близости слов полезно заметить, что существует

два принципиально различных типа совместной встречаемости слов в корпу­

се [37]. Если два слова часто встречаются в тексте рядом, будем называть их син­

тагматически ассоциированными (syntagmatic associates). Пример: «открыть»

и «вклад». Если два слова взаимозаменяемы в одних и тех же контекстах,

будем называть их парадигматически параллельными (paradigmatic parallels).

Пример: «открыть» и «закрыть» (оба слова встречаются в контексте слова

«вклад»). Также говорят, что синтагматически ассоциированные слова имеют

высокую совстречаемость первого порядка (или просто совстречаемость), а па­

радигматически паралаллельные слова – высокую совстречаемость второго

порядка (близость векторов, составленных из совстречаемостей первого поряд­

ка со всеми словами словаря). Как правило, нас будет интересовать совстре­

чаемость второго порядка, т.к. именно она позволяет выделять семантически

близкие слова.

При этом стоит отметить, что разные авторы не придерживаются единой

терминологии. Например, в известной выборке пар слов с экспертными оценка­

ми близости WordSim353 [38] семантическая близость слов противопоставляет­
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Рис. 1.1. Схема терминов о семантической связанности слов.

ся семантической связанности, а не является ее частным случаем. На рис. (1.1)

представлена диаграмма, соответствующая такому подходу. При этом разделе­

ние типов отношений на семантически близкие и связанные также варьируется.

Так, в выборке WordSim353 антонимы считаются семантически близкими, что

противоречит доминирующему в литературе подходу.

В когнитивных науках семантическую связанность слов принято называть

атрибутивной близостью (attributional similarity). Помимо нее, изучается так

называемся близость отношений (relational similarity). Она подробно рассмат­

ривается в статье [39] 1998 года. В этом понятии участвуют уже не отдель­

ные слова, а отношения слов, например, высокую близость будут иметь пары

«кот:мяукать» и «собака:лаять». Такой тип близости в 2013 году был сильно

популяризирован статьями Миколова [1, 40], где предлагалось решать задачу

аналогий. В этой задаче нужно угадать четвертое слово по трем данным, напри­

мер: (мужчина:женщина, король:?; Россия:Москва, Франция:?). Была разрабо­

тана программа word2vec, которая успешно предсказывала четвертое слово на

подготовленном наборе аналогий. Также, метод хорошо решал задачу близости

слов. В ней оценивалась корреляция между экспертными оценками атрибутив­

ной близости слов и предсказаниями модели.

Интересной представляется дискуссия о том, возможно ли сведение близо­

сти отношений к атрибутивной близости слов. Например, можно наивно пред­

положить, что пара Россия:Москва и Франция:Париж имеет высокую близость

отношений, т.к. Париж и Франция, Париж и Москва имеют высокую атрибу­
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тивную близость, в то время как Париж и Россия – низкую. Согласно экспе­

риментам [41, 42], близость отношений не сводится к атрибутивной близости

слов. Это также соответствует пониманию из когнитивных наук о том, что за­

дача аналогий является на порядки более сложной, чем задача близости, даже

для людей. Тем не менее, в статье [43] теоретически показано, что в семействе

моделей word2vec [1] такое сведение происходит.

1.2. Этапы обработки: от корпуса к смыслам

Модели векторного представления слов (Vector Space Models of Semantics,

VSM) используют частоты в корпусе, чтобы представить каждое слово некото­

рым вектором, отражающим его смысл [44]. Ожидается, что слова, представ­

ленные близкими векторами, будут близки по смыслу. Такие модели изучаются

на протяжении последних нескольких десятилетий и подробно описаны в обзо­

ре [11]. Можно выделить несколько ключевых этапов при их построении.

1. Лингвистическая предобработка. На первичном этапе анализа текста,

как правило, производится токенизация, нормализация, аннотирование [45]. То­

кенизация включает в себя разбиение текста на токены, корректную обработку

пунктуации. Нормализация заключается в приведении текста к нижнему реги­

стру, а также лемматизации или стемминге. При лемматизации каждое слово

приводится к нормальной форме, в то время как при стемминге слово усе­

кается до его основы. Из определений ясно, что лемматизация является более

сложным процессом, поэтому часто приводит к лучшему качеству, но и боль­

шим временным затратам. Аннотирование – это необязательный этап, которой

может включать в себя присвоение каждому слову аннотаций, таких как часть

речи, грамматическая роль в предложении, тип именованной сущности, и т.д.
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2. Построение частотной матрицы. На данном этапе строится матрица,

строки которой соответствуют словам в словаре, а столбцы — контекстам. Эле­

ментами матрицы являются счетчики 𝑛𝑢𝑣, которые показывают, сколько раз

определенное слово 𝑢 встретилось в определенном контексте 𝑣. Понятие кон­

текста может быть определено несколькими способами. В простейшем случае

контекстами будем считать все слова, расположенные в тексте не далее, чем

на ℎ позиций от заданного, т.е. в окне фиксированного радиуса ℎ. Таким об­

разом, рассматриваемая частотная матрица будет квадратной симметричной

матрицей счетчиков совместной встречаемости слов. Это наиболее распростра­

ненный случай, рассматриваемый в литературе.

В более сложном случае в определении контекста может участвовать син­

таксическая структура предложения, например, контекстами можно считать:

∙ глаголы в конструкциях типа субъект-глагол и глагол-объект [46];

∙ одно существительное влево и одно существительное вправо для главного

существительного в предложении [47];

∙ все прилагательные, зависящие от данного существительного [48].

Больше деталей о синтаксических контекстах можно найти в работе [49].

Однако работа [50] показывает, что в случае достаточно большого корпуса ме­

тоды без учета синтаксиса способны достичь сопоставимого качества.

В задачах, требующих векторного описания документов, на данном этапе

может строиться матрица частот слов в документах.

3. Частотное взвешивание. Важной проблемой частотной матрицы, по­

строенной на предыдущем этапе, является несбалансированность между ред­

кими и частыми словами. Например, строка, соответствующая союзу «и» будет

содержать счетчики на порядки большие, чем строка, соответствующая ред­

кому термину «симметрия». Поэтому простые счетчики совместной встречае­

мости некоторым образом штрафуют с учетом отдельной встречаемости слов.
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Для матриц слова-документы обычно используют TF-IDF (Term Frequency -

Inverted Document Frequency), где в качестве штрафа выступает логарифм до­

кументной частоты слова (числа документов, в которых оно встречается хотя

бы раз). Для матриц слова-слова часто подсчитывают поточечную взаимную

информацию (Pointwise Mutual Information):

PMI(𝑢, 𝑣) = log
𝑝(𝑢, 𝑣)

𝑝(𝑢)𝑝(𝑣)
,

где 𝑝(𝑢, 𝑣) – эмпирическая вероятность встретить два слова в окне фиксиро­

ванной ширины, а 𝑝(𝑢) и 𝑝(𝑣) – эмпирические вероятности встретить 𝑢 и 𝑣 в

корпусе.

PMI успешно штрафует слишком частотные слова, однако имеет ряд недо­

статков. Во-первых, этот подход выводит в топ слишком редкие слова, во-вто­

рых, значения не определены для слов, которые ни разу не встретились вместе.

В работе [51] предлагается решить обе проблемы введением положительной

поточечной взаимной информации (positive Pointwise Mutual Information):

pPMI(𝑢, 𝑣) = max(0,PMI(𝑢, 𝑣))

Эта простая эвристика зануления отрицательных значений хорошо работает на

практике.

4. Понижение размерности. В матрице, составленной на предыдущем эта­

пе, каждое слово представлено длинным разреженным вектором некоторых

счетчиков. Аналогично представлены контексты или документы. Такое пред­

ставление содержит шум, кроме того, работа с длинными разреженными векто­

рами (например, их сравнение) может быть неэффективна. Поэтому важным

этапом является переход к плотным векторам в пространстве меньшей размер­

ности.

Одним из наиболее простых и классических методов является сингуляр­

ное разложение (SVD), при этом выбираются строки и столбцы, соответствую­

щие первым 𝑘 сингулярным значениям. В результате строится аппроксимация
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исходной матрицы ранга 𝑘, которая является наилучшей в смысле квадратич­

ной нормы. Применение такого разложения к TF-IDF матрице слова-докумен­

ты приводит к методу латентного семантического анализа (LSA). Он широко

используется в анализе текстов для описания документов в низкоразмерном

признаковом пространстве. Существует также огромное число альтернативных

методов, применяемых на данном этапе.

5. Использование построенных векторов. В результате предыдущих ша­

гов мы смогли представить некоторые единицы языка (слова, контексты, доку­

менты) векторами низкой размерности. При этом предполагается, что эти век­

тора сохраняют семантику. Например, близкие по смыслу слова имеют близкие

представления в построенном векторном пространстве.

Существует множество способов оценить близость слов через близость

строк матрицы слова-контексты. В работе [51] сравниваются некоторые попу­

лярные подходы: косинусная близость, евклидово расстояние, метрика Манхэт­

тена, расстояние Бхаттачарья, расстояние Хеллингера, дивергенция Кульбака­

Лейблера. По результатам четырех различных задач косинусная близость пока­

зала наилучшие результаты.

Помимо использования векторов напрямую для оценки близости опреде­

ленных слов, построенные представления могут использоваться как признако­

вые описания и подаваться на вход алгоритмам машинного обучения. Напри­

мер, для классификации текстов, кластеризации слов или выражений, построе­

ния онтологий предметных областей, информационного и разведочного поиска.

Далее мы подробно рассмотрим возможные математические модели, воз­

никающие на этапах 3 и 4.
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1.3. Математические модели векторных представлений

В литературе предложено большое число моделей, которые позволяют по­

лучить векторные представления слов. Некоторые их них, например, языковые

модели, решают задачу генерации текста и получают векторные представления

как побочный продукт. Другие, например, тематические модели, вообще редко

рассматриваются в контексте дистрибутивной семантики. Цель данного разде­

ла – систематическое изложение большого числа методов и демонстрация их

тесной взаимосвязи. Будем обращать внимание на следующие ключевые компо­

ненты: тип подсчитываемых статистик по корпусу, оптимизационная задача и

ограничения на параметры, численный метод оптимизации.

Введем некоторые обозначения. Пусть 𝑊 – размер словаря, 𝑇 – размер­

ность скрытого слоя или, другими словами, число компонент вектора. Мы так­

же будем использовать 𝑊 и 𝑇 , чтобы обозначать сами множества слов и ком­

понент соответственно. Большинство моделей в данном разделе будут парамет­

ризированы двумя матрицами: Φ𝑊×𝑇 и Θ𝑇×𝑊 . Через 𝜑𝑤 будем обозначать век­

тор-строку для слова 𝑤, аналогично, через 𝜃𝑤 – вектор-столбец для слова 𝑤.

При этом мы предполагаем симметричный случай, при котором словарь кон­

текстов совпадает со словарем слов. Таким образом, имеем задачу построения

матричного разложения вида:

𝐹𝑊×𝑊 ≈ Φ𝑊×𝑇 ·Θ𝑇×𝑊 , (1.1)

где матрица 𝐹 содержит статистики совместной встречаемости слов, найденные

по корпусу, а матрицы Φ и Θ — настраиваемые параметры модели (векторные

представления слов и контекстов). Краткое резюме рассматриваемых в этой

главе моделей приведено в таблице 1.1.

Модель неотрицательных разреженных представлений. Модель Non­

negative Sparse Embeddings (NNSE, 2012) [6] основана на технике Non-Negative
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Таблица 1.1. Низкоранговое матричное разложение для получения представлений слов.

NNSE

данные

критерий

условия

метод

𝐹𝑢𝑣 = max(0, log 𝑛𝑢𝑣𝑛
𝑛𝑢𝑛𝑣

) или результат SVD∑︀
𝑢

(︀
‖𝑓𝑢 − 𝜑𝑢Θ‖2 + ‖𝜑𝑢‖1

)︀
→ minΦ,Θ

𝜑𝑢𝑡 > 0,∀𝑢 ∈ 𝑊, 𝑡 ∈ 𝑇 𝜃𝑡𝜃
𝑇
𝑡 6 1,∀𝑡 ∈ 𝑇

Онлайновый алгоритм из [52]

WNTM

данные

критерий

условия

метод

𝐹𝑢𝑣 = 𝑛𝑢𝑣

𝑛𝑣
= 𝑝(𝑢|𝑣)∑︀

𝑣∈𝑊 𝑛𝑣 KL
(︀
𝑝(𝑢|𝑣)

⃒⃒⃒⃒
⟨𝜑𝑢𝜃𝑣⟩

)︀
→ min

Φ,Θ

𝜑𝑢𝑡 > 0,
∑︀

𝑢 𝜑𝑢𝑡 = 1; 𝜃𝑡𝑣 > 0,
∑︀

𝑡 𝜃𝑡𝑣 = 1

Сэмплирование Гиббса

SGNS

данные

критерий

условия

метод

𝐹𝑢𝑣 = log 𝑛𝑢𝑣𝑛
𝑛𝑢𝑛𝑣

− log 𝑘∑︀
𝑢

∑︀
𝑣 𝑛𝑢𝑣 log 𝜎 (⟨𝜑𝑢𝜃𝑣⟩) + 𝑘E𝑣 log 𝜎 (−⟨𝜑𝑢𝜃𝑣⟩) → maxΦ,Θ

Без ограничений

SGD (по корпусу)

GloVe

данные

критерий

условия

метод

𝐹𝑢𝑣 = log 𝑛𝑢𝑣∑︀
𝑣

∑︀
𝑢 𝑓(𝑛𝑢𝑣)

(︀
⟨𝜑𝑢𝜃𝑣⟩+ 𝑏𝑢 + 𝑏̃𝑣 − log 𝑛𝑢𝑣

)︀2 → minΦ,Θ,𝑏,𝑏̃

Без ограничений

AdaGrad (по элементам 𝐹 )

Sparse Coding [53] и позволяет строить неотрицательные разреженные представ­

ления слов с помощью решения следующей оптимизационной задачи:∑︁
𝑢∈𝑊

(︀
‖𝑓𝑢 − 𝜑𝑢Θ‖2 + ‖𝜑𝑢‖1

)︀
→ min

Φ,Θ
; (1.2)

𝜑𝑢𝑡 > 0, ∀𝑢 ∈ 𝑊, 𝑡 ∈ 𝑇 𝜃𝑡 𝜃
𝑇
𝑡 6 1, ∀𝑡 ∈ 𝑇, (1.3)

где 𝑓𝑢 — строка раскладываемой матрицы 𝐹 , 𝜑𝑢 — строка матрицы Φ.

Эта модель реализует подход обучения справочника (dictionary learning).

Строки матрицы Θ задают новый базис и интерпретируются как «записи спра­

вочника». Предполагается, что они имеют ограниченную 𝐿2-норму. Каждое сло­

во представляется в виде смеси таких записей. Веса смеси для слова 𝑢 опреде­

ляются строкой 𝜑𝑢, причем вводится ограничение неотрицательности весов, и

минимизируется 𝐿1-норма для достижения разреженности. Строки матрицы

Φ, полученные в результате обучения модели, предлагается использовать как

векторные представления слов в прикладных задачах.

В данном методе непринципиально, как получена исходная матрица 𝐹 .
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Это могут быть pPMI-счетчики совместной встречаемости слов, частоты слов в

документах или результат применения к такого рода данным усеченного SVD­

разложения. В случае SVD, матрица 𝐹 будет несимметричной, каждая строка

будет представлять слово в виде 𝑘-мерного вектора. Записи справочника будут

также 𝑘-мерными. Всего будет 𝑇 записей, но каждое слово будет представлять­

ся смесью небольшого числа записей в силу разреженности матрицы Φ.

Модель обучается онлайновым алгоритмом из [52].

Тематическая модель сети слов. Word Network Topic Model, WNTM [54]

была предложена как тематическая модель для коротких текстов, преодоле­

вающая проблему чрезмерной разреженности исходных данных. В отличие от

традиционных тематических моделей, которые будут рассмотрены в следующей

главе, исходные данные собираются не в виде частотной матрицы слова-доку­

менты, а в виде частотной матрицы слова-контексты, где в роли контекстов вы­

ступают слова из скользящего окна фиксированной ширины. Таким образом,

эта модель использует для обучения те же данные, что и другие модели данной

главы, и тоже производит некоторое низкоразмерное матричное разложение.

Тем не менее, эта модель никогда не рассматривалась как способ построения

векторных представлений слов. Подробнее мы вернемся к этому вопросу в гла­

ве 5. Здесь же приведем формальную постановку оптимизационной задачи:∑︁
𝑣∈𝑊

∑︁
𝑢∈𝑊

𝑛𝑢𝑣 ln ⟨𝜑𝑢, 𝜃𝑣⟩ → max
Φ,Θ

, (1.4)

𝜑𝑢𝑡 > 0;
∑︁
𝑢∈𝑊

𝜑𝑢𝑡 = 1; 𝜃𝑡𝑣 > 0;
∑︁
𝑡∈𝑇

𝜃𝑡𝑣 = 1. (1.5)

Cтолбцы матриц 𝜃𝑣 и 𝜑𝑡 в данной модели являются дискретными вероятност­

ными распределениями, на которые накладываются ограничения неотрицатель­

ности и нормировки. Дополнительно предполагается, что они имеют априор­

ное распределение Дирихле. Это усложняет задачу (1.4), которая записана для

аналога модели WNTM без учета априорных распределений. Обучение модели

WNTM производится с помощью сэмплирования Гиббса.
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Задача (1.4) эквивалентна разложению матрицы 𝐹 = (𝐹𝑢𝑣)
𝑊×𝑊 , составлен­

ной из эмпирических распределений 𝑝(𝑢|𝑣), по взвешенной сумме дивергенций

Кульбака-Лейблера:

𝐹𝑢𝑣 =
𝑛𝑢𝑣
𝑛𝑣

= 𝑝(𝑢|𝑣);
∑︁
𝑣∈𝑊

𝑛𝑣 KL
(︀
𝑝(𝑢|𝑣)

⃒⃒⃒⃒
⟨𝜑𝑢, 𝜃𝑣⟩

)︀
→ max

Φ,Θ
. (1.6)

Нейросетевые языковые модели. Рассмотрим задачу языкового модели­

рования, а именно предсказания слова 𝑢 по предшествующим 𝑛 словам 𝑣1:𝑛. Эта

задача традиционно решалась марковскими моделями со сглаживанием. В 2003

году была предложена вероятностная нейросетевая модель (Neural Probabilistic

Language Model, NPLM) [55], ставшая классической в этой области. В ряде по­

следующих работ ее архитектура упрощалась, а в 2013 было предложено семей­

ство моделей word2vec [1, 56], которые в терминах нейронных сетей содержат

только один скрытый слой и не содержат нелинейных преобразований. Этот

подход оказался очень удачным для обучения векторных представлений слов.

Языковое моделирование в последующие годы ушло в сторону рекуррентных

нейронных сетей и их различных модификаций. Приведем краткий обзор язы­

ковых нейросетевых моделей, исторически важных для обучения векторных

представлений.

Вероятностная нейросетевая модель языка. Модель NPLM [55] в про­

цессе предсказания слова 𝑢 по предшествующим словам 𝑣1:𝑛 обучает матрицу

векторных представлений Θ размерности 𝑇 ×𝑊 . Предсказания осуществляют­

ся по формуле:

𝑝(𝑢|𝑣1:𝑛) = softmax(𝑏+𝑊𝑥+ 𝑈th(𝑑+𝐻𝑥)), (1.7)

где 𝑥 – это вектор размерности 𝑛𝑇 × 1, составленный из векторных представ­

лений контекстов 𝜃𝑣𝑖, 𝑖 = 1 . . . 𝑛. Все остальные вектора и матрицы 𝑏, 𝑊 , 𝑈 , 𝑑,

𝐻 – это параметры нейронной сети. Преобразование softmax переводит произ­

вольный вещественный вектор в нормированный неотрицательный вектор той
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же размерности (в нашем случае, 𝑊 × 1):

softmax(𝑧) =
exp 𝑧𝑘∑︀
𝑘 exp 𝑧𝑘

. (1.8)

Недостатком модели является огромное число параметров и долгое обучение.

Лог-билинейная языковая модель. Модель изначально предложена как

языковая модель и лишь позднее использована как способ обучения векторных

представлений слов. Она гораздо проще модели NPLM [55] и потому лучше

применима на практике:

𝑝(𝑢|𝑣1:𝑛) =
exp (𝜑𝑢

∑︀𝑛
𝑖=1𝐶𝑖𝜃𝑣𝑖 + 𝑏𝑢)∑︀

𝑤∈𝑊 exp (𝜑𝑤
∑︀𝑛

𝑖=1𝐶𝑖𝜃𝑣𝑖 + 𝑏𝑤)
. (1.9)

Матрицы Φ и Θ содержат векторные представления слов и контекстов. Допол­

нительно для каждого слова 𝑢 учитывается скалярный сдвиг 𝑏𝑢. Матрицы 𝐶𝑖

содержат веса, специфичные для позиции 𝑖, т.е. коэффициенты векторов кон­

текстов зависят от расстояния до предсказываемого слова. Формула (1.9) имеет

прозрачную интерпретацию. Предсказываемое слово 𝑢 имеет большую вероят­

ность, если его вектор близок к агрегированному вектору контекстов в смысле

скалярного произведения. Для получения вероятностей применяется softmax:

𝑝(𝑢|𝑣1:𝑛) = softmax (𝜑𝑢𝜃𝑣1:𝑛 + 𝑏𝑢) , 𝜃𝑣1:𝑛 =
𝑛∑︁

𝑖=1

𝐶𝑖𝜃𝑣𝑖. (1.10)

Модель называется лог-билинейной (Log-Bilinear Language Model, LBL),

т.к. линейна по векторам слов и контекстов после взятия логарифма. В случае

предсказаний по одному слову, модель принимает вид:

𝑝(𝑢|𝑣) = softmax(𝜑𝑢𝐶𝜃𝑣 + 𝑏𝑢). (1.11)

Модель Skip-Gram [1], которая будет рассмотрена далее, упрощает эту формулу

еще сильнее, избавляясь от матрицы весов 𝐶 и вектора сдвига 𝑏𝑢.
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Иерархическая лог-билинейная языковая модель. Рассмотренная лог­

билинейная модель обучается по-прежнему долго. Одна из причин – необходи­

мость подсчитывать softmax для каждого предсказываемого слова. Иерархиче­

ская лог-билинейная модель [57] обходит эту проблему с помощью иерархиче­

ского софтмакса.

Все слова словаря организуются в некоторое сбалансированное бинарное

дерево, в листьях которого находятся слова. Оно может быть построено слу­

чайным образом или объединять в под-деревья слова, близкие по смыслу. И

листовые, и не листовые вершины получают некоторые векторные описания

𝜑𝑛𝑜𝑑𝑒 и сдвиги 𝑏𝑛𝑜𝑑𝑒, которые настраиваются в ходе обучения модели.

Каждое слово кодируется как путь от корня к соответствующей вершине,

т.е. бинарным кодом, где каждая цифра равна 1 в случае решения пойти в

левое поддерево и 0 в случае решения пойти в правое поддерево. Тогда вероят­

ность слова можно представить как произведение вероятностей всех бинарных

решений вдоль пути Path𝑢 от вершины 𝑢 до корня дерева:

𝑝(𝑢|𝑣1:𝑛) =
∏︁

node∈Path(𝑢)

𝜎(𝜑node𝜃𝑣1:𝑛 + 𝑏node), (1.12)

Здесь каждая вероятность моделируется сигмоидой, а значит быстро вычисли­

ма. Нетрудно показать, что это корректная вероятностная модель, обеспечи­

вающая нормировку и неотрицательность распределений. Представления 𝜑𝑛𝑜𝑑𝑒

для листовых вершин можно использовать в качестве векторных представлений

слов.

Модели CBOW и Skip-Gram. Следующим шагом упрощения языковых мо­

делей, позволившим обработать данные больших объемов и получить высокое

качество векторных представлений слов, стало семейство моделей word2vec [56].

Принято выделять две архитектуры и считать их в некотором смысле про­

тивоположными. В одной происходит предсказание слова по его окрестности

(CBOW), в другой – предсказание окрестности по слову (Skip-Gram). Распи­
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шем эти модели более подробно, чтобы увидеть, насколько они, на самом деле,

близки.

Будем обозначать через 𝐻𝑖 множество индексов из окрестности позиции 𝑖,

не включая 𝑖. Под окрестностью будем понимать окно фиксированной шири­

ны ℎ, так что 𝐻𝑖 содержит 2ℎ индексов: 𝐻𝑖 = {𝑖− ℎ, . . . , 𝑖− 1, 𝑖+ 1, . . . , 𝑖+ ℎ}.

Через 𝑤𝑖 будем обозначать слово на позиции 𝑖 в корпусе, где нумерация сквоз­

ная от 1 до суммарной длины текстов 𝑁 .

При введенных обозначениях модель Skip-Gram имеет следующий вид:

𝑝(𝑤𝑖−ℎ, . . . , 𝑤𝑖+ℎ|𝑤𝑖) =
∏︁
𝑗∈𝐻𝑖

𝑝(𝑤𝑗|𝑤𝑖) =

∏︁
𝑗∈𝐻𝑖

exp
⟨︀
𝜑𝑤𝑗

, 𝜃𝑤𝑖

⟩︀∑︀
𝑤 exp ⟨𝜑𝑤, 𝜃𝑤𝑖

⟩
=

1

𝑍𝑖

∏︁
𝑗∈𝐻𝑖

exp
⟨︀
𝜑𝑤𝑗

, 𝜃𝑤𝑖

⟩︀
. (1.13)

Для каждой словопозиции в корпусе моделируются слова в скользящем

окне, при этом предполагается их независимость.

Модель CBOW, напротив, моделирует центральное слово для каждого

скользящего окна контекстов и имеет вид:

𝑝(𝑤𝑖|𝑤𝑖−ℎ, . . . , 𝑤𝑖+ℎ) =
exp

⟨
𝜑𝑤𝑖

,
∑︀

𝑗∈𝐻𝑖
𝜃𝑤𝑗

⟩
∑︀

𝑤 exp
⟨
𝜑𝑤,
∑︀

𝑗∈𝐻𝑖
𝜃𝑤𝑗

⟩ =
1

𝑍 ′
𝑖

∏︁
𝑗∈𝐻𝑖

exp
⟨︀
𝜑𝑤𝑖

, 𝜃𝑤𝑗

⟩︀
. (1.14)

Модели CBOW и Skip-Gram, как и другие, параметризированы двумя мат­

рицами векторных представлений. Их могут называть входными и выходными

векторами, подчеркивая, на каком слое нейронной сети они используются. Так­

же их могут называть векторами слов и векторами контекстов, подчеркивая,

что каждое слово в тексте можно рассматривать и как слово, и как контекст

для соседних слов. К сожалению, понятие контекст сильно перегружено. В

литературе контекстом называют также всю окрестность данной словопозиции

(скользящее окно). Таким образом, создается неверное впечатление, что модели

хранят вектора, относящиеся сразу к группам слов.

Для оптимизации обеих моделей используется подход максимизации прав­

доподобия, где правдоподобие является произведением выражений (1.13) или
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(1.14) по позициям в корпусе 𝑖. Таким образом, на уровне формул модели от­

личаются только нормировочными константами (т.к. моделируют вероятности

в разных пространствах). На уровне алгоритма оптимизации, стохастический

градиентный спуск организован по-разному: в случае модели Skip-Gram пере­

бираются отдельные пары (𝑤𝑖, 𝑐𝑗), а в случае модели CBOW – более сложные

объекты (𝑤𝑖, 𝑐𝑖−ℎ, . . . 𝑐𝑖+ℎ).

Согласно Миколову1, модель Skip-gram лучше применима для редких слов

и маленьких корпусов, однако в [34] показано обратное.

Модель SGNS. Один из подходов, используемых на практике для обучения

модели Skip-Gram, это негативное сэмплировние (negative sampling). Оно поз­

воляет избежать вычисления нормировочных констант в (1.13) и таким образом

эффективно обучаться на больших коллекциях. Стоит заметить, что с этим под­

ходом существенно меняется оптимизируемый функционал и постановка задачи

в целом, поэтому можно говорить о SGNS (Skip-Gram Negative Sampling) как

об отдельной модели.

Решается задача бинарной классификации: по данной паре (слово 𝑢, кон­

текст 𝑣) необходимо определить, встречаются ли они в корпусе совместно. На­

помним, что под контекстом понимается слово из словаря, а под совместной

встречаемостью – окно фиксированной ширины. Модель параметризована ве­

щественными матрицами Φ и Θ. Обучение заключается в оптимизации следу­

ющего функционала:∑︁
𝑢∈𝑊

∑︁
𝑣∈𝑊

𝑛𝑢𝑣
[︀
log 𝜎 ⟨𝜑𝑢, 𝜃𝑣⟩+ 𝑘 E𝑣 log 𝜎 (−⟨𝜑𝑢, 𝜃𝑣⟩)

]︀
→ max

Φ,Θ
. (1.15)

Этот функционал можно интерпретировать как логистическую функцию по­

терь для бинарной классификации. Первое слагаемое отвечает за положитель­

ные примеры со-встречаемости слов, которые мы наблюдаем в корпусе. Второе

слагаемое на практике означает сэмплирование случайных контекстов, обеспе­
1 https://code.google.com/archive/p/word2vec/
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чивая отрицательные примеры:

E𝑣 log 𝜎 (−⟨𝜑𝑢, 𝜃𝑣⟩) ≈
1

𝑘

𝑘∑︁
𝑠=1

log 𝜎 (−⟨𝜑𝑢, 𝜃𝑣𝑠⟩) , (1.16)

где 𝑣𝑠 ∼ 𝑝(𝑣)3/4 — это слова, сэмплируемые из распределения слов в корпусе,

возведенного в степень 𝜏 = 3
4 , в результате чего распределение слов становится

ближе к равномерному. Оставив в стороне дискуссию о чисто эвристическом

выборе коэффициента 𝜏 , обратим внимание на другую деталь исходной реали­

зации модели [1]. Параметр 𝑘, отвечающий в (1.15) за баланс между положи­

тельными и отрицательными примерами, выбран равным параметру 𝑘 из (1.16),

отвечающим за точность приближения математического ожидания. Таким об­

разом, на каждую положительную пару (𝑢, 𝑣) приходится 𝑘 отрицательных пар

(𝑢, 𝑣𝑠). Связанность двух различных по смыслу параметров может приводить

к неожиданным артефактам, в частности, в [58] обсуждается странная геомет­

рия полученного векторного пространства. Слова и контексты проецируются

в узкие конусы, направленные в противоположные стороны, что может быть

связано с преобладанием отрицательных примеров в обучении. В модели GloVe,

описание которой будет представлено ниже, такого не происходит.

С точки зрения численного метода, оптимизация в модели SGNS осуществ­

ляется одной из модификаций стохастического градиентного спуска. При этом

обучение происходит онлайновым проходом по корпусу текстов. Таким обра­

зом, не требуется ни хранение матрицы совместной встречаемости слов, ни ее

предварительный подсчет по корпусу.

Модель SGNS как матричное разложение. В работе [59] показано, что

оптимизация функционала (1.15) соответствует разложению матрицы 𝐹 сме­

щенных PMI-оценок пар слов (shifted PMI, sPMI):

𝐹𝑢𝑣 = log
𝑝(𝑢, 𝑣)

𝑝(𝑢)𝑝(𝑣)
− log 𝑘 = log

𝑛𝑢𝑣𝑛

𝑛𝑢𝑛𝑣
− log 𝑘, (1.17)
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где 𝑘 – это гиперпараметр (например, 10), а вероятности приближены частот­

ными оценками по корпусу. Несмотря на их простой интуитивный смысл, на

практике они могут подсчитываться по-разному. Приведем процедуру из [59],

которой мы будем придерживаться. Для каждой словопозиции в исходном кор­

пусе выпишем все пары, в которых она участвует. При ширине окна ℎ получится

2ℎ пар (для словопозиций на краях корпуса – меньше). Обозначим за 𝑛 общее

число пар, за 𝑛𝑢𝑣 число пар (𝑢, 𝑣), за 𝑛𝑢 число пар, на первом месте у которых

стоит 𝑢, и наконец, за 𝑛𝑣 число пар на втором месте у которых стоит 𝑣. За­

метим, что так как каждая реальная совстречаемость двух слов в окне будет

выписана дважды, как (𝑢, 𝑣) и как (𝑣, 𝑢), то полученные счетчики симметрич­

ны: 𝑛𝑢𝑣 = 𝑛𝑣𝑢; а определение 𝑛𝑢 совпадает с определением 𝑛𝑣 и равно любой из

сумм: 𝑛𝑢 =
∑︀

𝑣 𝑛𝑢𝑣 =
∑︀

𝑣 𝑛𝑣𝑢.

Вернемся к интерпретации SGNS как матричного разложения. Строго го­

воря, в работе [59] показано лишь следующее: функционал (1.15) достигает

своего оптимума, когда скалярное произведение ⟨𝜑𝑢, 𝜃𝑣⟩ равно значению 𝐹𝑢𝑣.

Однако из-за низкой размерности векторов это значение не может быть до­

стигнуто в точности для всех пар. При этом не очевидно, что происходит в

окрестности точки оптимума. Другими словами, остается открытым вопрос о

том, какая функция расстояния между ⟨𝜑𝑢, 𝜃𝑣⟩ и sPMI(𝑢, 𝑣) минимизируется в

модели SGNS.

Одно из возможных объяснений дано в [60]. Рассмотрим подробнее, из

какого распределения сгенерированы пары в функционале (1.15). Можно пред­

ставить следующий процесс. Сначала с некоторой априорной вероятностью вы­

бирается класс: положительный или отрицательный. В данном случае, вероят­

ность положительного класса 𝛼 = 1
1+𝑘 . Затем используются следующие частот­

ные вероятности в классах:

𝑝(𝑢, 𝑣|+) =
𝑛𝑢𝑣
𝑛

; 𝑝(𝑢, 𝑣|−) =
𝑛𝑢
𝑛

𝑛𝑣
𝑛
. (1.18)

Применим формулу Байеса аналогично тому, как это происходит в опти­
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мальных байесовских классификаторах, и получим формулу для апостериорной

вероятности классов:

𝑝(+|𝑢, 𝑣) = 𝑝(+)𝑝(𝑢, 𝑣|+)

𝑝(𝑢, 𝑣)
=

1
𝑘+1

𝑛𝑢𝑣

𝑛
1

𝑘+1
𝑛𝑢𝑣

𝑛 + 𝑘
𝑘+1

𝑛𝑢𝑛𝑣

𝑛𝑛

=
1

1 + 𝑘𝑛𝑢𝑛𝑣

𝑛𝑢𝑣𝑛

. (1.19)

Теперь заметим, что если выразить получившуюся вероятность с помощью

сигмоиды 𝜎(𝑥) = 1
1+𝑒−𝑥 , то получим в точности формулу sPMI:

𝑝(+|𝑢, 𝑣) = 𝜎
(︁
ln
𝑛𝑢𝑣𝑛

𝑛𝑢𝑛𝑣
− ln 𝑘

)︁
. (1.20)

Таким образом, задачу (1.15) можно понимать как максимизацию логариф­

ма правдоподобия по выборке пар с бинарными ответами, распределенными

согласно (1.20). Или, эквивалентно, как минимизацию дивергенции Кульбака­

Лейблера между распределениями:

KL(𝜎(sPMI(𝑢, 𝑣))
⃒⃒⃒⃒
𝜎(⟨𝜑𝑢, 𝜃𝑣⟩)) → min

Φ,Θ
. (1.21)

До сих пор мы опускали степень 3/4 в распределении контекстов. Если

ее вернуть, то придем к модифицированной формуле PMI: ln 𝑝(𝑢,𝑣)
𝑝(𝑢)𝑝(𝑣)3/4

. В [12]

показано, что такая модификация предпочтительна во многих задачах.

Модель GloVe. Стенфордовская модель глобальных векторов GloVe [2] сра­

зу была предложена как низкоранговое матричное разложение. По корпусу тек­

стов строится матрица 𝐹 = (𝐹𝑢𝑣)
𝑊×𝑊 логарифмов частот совместной встреча­

емости слов:

𝐹𝑢𝑣 = log 𝑛𝑢𝑣.

В разложении используется взвешенная квадратичная функция потерь:

∑︁
𝑣∈𝑊

∑︁
𝑢∈𝑊

𝑓(𝑛𝑢𝑣)
(︀
⟨𝜑𝑢, 𝜃𝑣⟩+ 𝑏𝑢 + 𝑏̃𝑣 − log 𝑛𝑢𝑣

)︀2 → min
Φ,Θ,𝑏,𝑏′

. (1.22)

Дополнительных ограничений нет, матрицы Φ и Θ содержат любые веществен­

ные значения. Кроме того, появляются дополнительные параметры модели: век­

тора сдвига 𝑏𝑢 и 𝑏̃𝑣. Интересно, что аналогичные параметры есть в матричных
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разложениях для рекомендательных систем, где они называются базовыми пре­

дикторами. Функция весов 𝑓(𝑛𝑢𝑣) монотонно невозрастающая, принимает зна­

чение 0 для нулевых счетчиков и штрафует слишком большие счетчики таким

образом, чтобы модель не перенастраивалась на них.

Параметры модели настраиваются стохастическим градиентным спуском

(методом AdaGrad) по элементам входной матрицы. Таким образом, одним объ­

ектом является агрегированная по корпусу совстречаемость двух слов, в то

время как в предыдущей SGNS модели одним объектом являлось конкретное

вхождение двух слов в текст.

1.4. Замечания о терминологии

Из-за быстрого развития области, многие английские термины несут в себе

непереводимую отсылку ко времени появления подхода или к научной шко­

ле. Например, модели векторного представления слов (Vector Space Models)

плавно сменились другими моделями векторного представления слов (Word

Embeddings). При этом в обоих случаях решается задача представления слова

некоторым низкоразмерным вектором, который отражает его семантику. Пер­

вый термин приходит из компьютерной лингвистики и ассоциируется с клас­

сическими методами, например, преобразованием SVD, примененным к мат­

рице поточечной взаимной информации. Второй термин возник в результате

развития глубоких нейронных сетей и необходимости представлять объекты

произвольной природы (слова, картинки, сигналы) в виде векторов на входном

слое. Подходы этой группы получили широкое распространение в последние го­

ды [1–4]. Термин ембединг (embedding) дословно означает погружение объекта

в линейное векторное пространство.

Интересно обратить внимание и на другие терминологические особенно­

сти. Например, два созвучных термина distributional vector representations и

distributed vector representations обозначают практически противоположные под­
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ходы [61]. Первый подход восходит к дистрибутивной гипотезе, предложенной

в 1950-ых годах [7, 8] и сводится к построению разреженных высокоразмер­

ных векторов. Второй подход был предложен Хинтоном в 1986 году [62] и стал

популярен в языковом моделировании благодаря статье Бенжо 2003 года [55].

Опишем оба подхода более детально.

Дистрибутиваня гипотеза (distributional hypothesis) происходит от слова

distribution и полагает, что смысл слова полностью определяется частотным

распределением слов в объединении всего его контекстов. Представим каждое

слово вектором из нулей с единственной единицей, соответствующей индексу

слова в словаре. В таком случае, каждое слово является уникальной независи­

мой сущностью. Информация о его смысле накапливается из его контекстов.

Однако эта информация никаким образом не переиспользуется для семантиче­

ски близких слов. Это является большой проблемой, особенно при обучении

векторных представлений для редких слов.

Для преодоления этого ограничения были предложены так называемые

распределенные (distributed) представления. Это плотные векторы низкой раз­

мерности, у которых каждая компонента отвечает за некоторый (возможно,

неинтерпретируемый) признак. Слова и признаки находятся в отношении мно­

го ко многим, т.е. знание о смысле слова распределено между всеми компонента­

ми вектора. Как правило, такие векторы обучаются как параметры некоторой

сложной модели, например, нейронной сети, решающей задачу языкового моде­

лирования. При таком подходе информация о со-встречаемости накапливается

для слов совместно, и смысл более редких слов может уточняться с помощью

знания о смысле их частотных синонимов.

Несмотря на различность подходов, они тесно связаны. Так, в статье [59]

показано, что векторные представления word2vec можно интерпретировать как

результат разложения матрицы частотных корпусных оценок. Здесь логично

упомянуть еще об одной паре терминов. В литературе часто противопоставля­

ются частотные (count-based) и предсказательные (predictive) модели. В ста­
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тье [63] с говорящим названием “Don’t count! Predict.” показано, что методы,

основанные на обучении векторов (например, CBOW) существенно превосходят

более старые подходы, основанные на разложении матриц частот или других

простых статистик. Однако после детального анализа и тщательного подбора

гиперпараметров для обоих классов моделей это было опровергнуто [12].

В данной работе мы рассматриваем все упомянутые классы методов и не

проводим столь жесткой классификации, т.к. для некоторых моделей она была

бы слишком субъективна.
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Глава 2

Вероятностное тематическое моделирование

Рассматриваются две наиболее популярные тематические модели, а также

способы их обучения. Модель вероятностного латентного семантического анали­

за (Probabilistic Latent Semantic Analysis, PLSA) [13] является одной из первых

и классических работ в этой области. Модель латентного размещения Дирихле

(Latent Dirichlet Allocation, LDA) [14] является расширением модели PLSA; для

ее обучения используются методы байесовского подхода, при этом их детали в

литературе по тематическому моделированию часто опускаются.

В данной главе приводится описание EM-алгоритма в общем виде, его при­

менение для максимизации правдоподобия в модели PLSA и максимизации апо­

стериорной вероятности в модели LDA. Для модели LDA также рассматривают­

ся два альтернативных способа обучения: вариационный вывод и сэмплирова­

ние Гиббса. Обсуждается взаимосвязь формул вариационного вывода в модели

LDA с формулами E-шага обучения PLSA.

Обзорный материал данной главы используется в экспериментах в главе 3,

в результате которых выводятся гибридные схемы обучения, позволяющие сов­

мещать полезные свойства известных алгоритмов. В главе 4 рассматриваются

ограничения байесовского подхода и предлагается альтернативный метод адди­

тивной регуляризации тематических моделей.

2.1. Задача тематического моделирования

Тематическое моделирование (topic modeling) — одно из современных при­

ложений машинного обучения к анализу текстов, активно развивающееся с кон­

ца 90-х годов. Вероятностная тематическая модель (ВТМ) коллекции тексто­

вых документов определяет каждую тему как дискретное распределение на мно­

жестве терминов, каждый документ — как дискретное распределение на множе­
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стве тем. Предполагается, что коллекция документов — это последовательность

терминов, выбранных случайно и независимо из смеси таких распределений,

и ставится задача восстановления компонент смеси по выборке.

Вероятностная «мягкая» кластеризация документов и терминов по класте­

рам-темам обходит проблемы синонимии и омонимии слов, возникающие при

обычной «жёсткой» кластеризации. Синонимы, появляющиеся в схожих кон­

текстах, с большой вероятностью попадают в одну тему. Омонимы, употребляе­

мые в разных контекстах, распределяются между несколькими темами пропор­

ционально частоте их употребления.

ВТМ применяются для выявления трендов в научных публикациях и но­

востных потоках [64, 65], классификации и категоризации документов [66] и изоб­

ражений [67, 68], семантического информационного поиска [69], в том числе

многоязычного [70], тегирования веб-страниц [71], и других приложениях. ВТМ

могут учитывать тематическую иерархию [72], динамику изменения тем во вре­

мени и связи слов в предложениях [73], связи между документами через автор­

ство или ссылки, внутреннюю структуру документов, различные особенности

языка.

Многочисленные разновидности ВТМ описаны в обзоре [18]. Большинство

моделей являются модификациями модели латентного размещения Дирихле

LDA [74]. Открытой проблемой является сочетание разнородных требований

в рамках одной модели. В частности, для обработки больших коллекций науч­

ных публикаций нужна модель, одновременно иерархическая, динамическая,

мультиязычная, 𝑛-граммная, разреженная, робастная, инкрементная, с частич­

ным обучением, и это далеко не полный список требований. Байесовские модели

оказываются слишком сложны для совмещения в них более 2–3 требований.
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2.2. Вероятностный латентный семантический анализ

Введем некоторые обозначения. Пусть дана коллекция 𝐷 документов, где

каждый документ — это последовательность слов. Будем использовать сквоз­

ную индексацию словопозиций: 𝑖 = 1, . . . , 𝑁 , где 𝑁 — длина всей коллекции

(суммарная длина документов). Про каждую позицию 𝑖 известно, что она вхо­

дит в определенный документ 𝑑𝑖 и содержит определенное слово 𝑤𝑖. Введем

обозначение для этой пары 𝑥𝑖 = (𝑤𝑖, 𝑑𝑖) и объединим все пары в совокупность

наблюдаемых переменных 𝑋.

Предполагается, что есть некоторый набор тем {1, . . . , 𝑇}, и с каждой сло­

вопозицией в документе связана ровно одна тема 𝑡𝑖 из этого набора. обозначим

через 𝑍 темы всех словопозиций в коллекции. Это скрытые переменные, зна­

чения которых необходимо восстановить. Число тем 𝑇 считается гиперпарамет­

ром и фиксируется заранее.

Будем моделировать совместную вероятность скрытых и наблюдаемых пе­

ременных 𝑝(𝑋,𝑍), при этом сделаем два допущения:

1. Гипотеза мешка слов: порядок слов в документах не важен. Все слово­

позиции независимы.

2. Гипотеза условной независимости: вероятность слова при условии те­

мы не зависит от документа: 𝑝(𝑤𝑖|𝑡𝑖, 𝑑𝑖) = 𝑝(𝑤𝑖|𝑡𝑖).

С учетом второй гипотезы для каждой словопозиции можно записать:

𝑝(𝑥𝑖, 𝑡𝑖) ≡ 𝑝(𝑤𝑖, 𝑑𝑖, 𝑡𝑖) = 𝑝(𝑤𝑖|𝑡𝑖, 𝑑𝑖)𝑝(𝑡𝑖|𝑑𝑖) = 𝑝(𝑤𝑖|𝑡𝑖)𝑝(𝑡𝑖|𝑑𝑖). (2.1)

Параметрами модели являются две матрицы вероятностных распределе­

ний. Матрица Φ содержит дискретные распределения на множестве слов для

каждой темы: 𝜑𝑤𝑡 = 𝑝(𝑤|𝑡). Матрица Θ содержит вероятностные распределения

на множестве тем для каждого документа: 𝜃𝑡𝑑 = 𝑝(𝑡|𝑑).

Модель вероятностного латентного семантического анализа (Probabilistic
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Latent Semantic Analysis, PLSA) [75] имеет следующий вид:

𝑝(𝑋,𝑍|Φ,Θ) =
𝑁∏︁
𝑖=1

𝑝(𝑥𝑖, 𝑡𝑖|Φ,Θ) =
𝑁∏︁
𝑖=1

𝑝(𝑑𝑖)𝜑𝑤𝑖𝑡𝑖𝜃𝑡𝑖𝑑𝑖. (2.2)

Заметим, что сомножители 𝑝(𝑑𝑖) не содержат настраиваемых параметров, по­

этому не будут играть роли при обучении модели.

2.2.1. Метод максимума правдоподобия

Для обучения модели PLSA, т.е. настройки параметров Φ и Θ, воспользу­

емся методом максимума правдоподобия. В случае, когда наблюдаемыми пере­

менными являются не только слова в документах 𝑋, но и их темы 𝑍, можно

сразу же записать:

logℒ(Φ,Θ) = log 𝑝(𝑋,𝑍|Φ,Θ) =
𝑁∑︁
𝑖=1

(log 𝜑𝑤𝑖𝑡𝑖 + log 𝜃𝑡𝑖𝑑𝑖) + const → max
Φ,Θ

. (2.3)

При этом необходимо учесть дополнительные ограничения на Φ и Θ, т.к.

их столбцы образуют дискретные распределения:

∀𝑤, 𝑡 𝜑𝑤𝑡 > 0,
𝑊∑︁
𝑤=1

𝜑𝑤𝑡 = 1; (2.4)

∀𝑡, 𝑑 𝜃𝑡𝑑 > 0,
𝑇∑︁
𝑡=1

𝜃𝑡𝑑 = 1. (2.5)

Ограничения неотрицательности выполнятся автоматически. Для учета

ограничений нормировки воспользуемся методом множителей Лагранжа:

𝑁∑︁
𝑖=1

(log 𝜑𝑤𝑖𝑡𝑖 + log 𝜃𝑡𝑖𝑑𝑖)−
𝑇∑︁
𝑡=1

𝜆𝑡

(︃
𝑊∑︁
𝑤=1

𝜑𝑤𝑡 − 1

)︃
−

𝐷∑︁
𝑑=1

𝜇𝑑

(︃
𝑇∑︁
𝑡=1

𝜃𝑡𝑑 − 1

)︃
→ max

Φ,Θ
.

Возьмем производную по элементу 𝜑𝑤𝑡 матрицы Φ и приравняем ее нулю:

1

𝜑𝑤𝑡

𝑁∑︁
𝑖=1

[𝑤𝑖 = 𝑤][𝑡𝑖 = 𝑡]− 𝜆𝑡 = 0. (2.6)

Здесь квадратные скобки обозначают индикатор: 1, если выражение внут­

ри скобок истинно, и 0 иначе. Таким образом,
∑︀𝑁

𝑖=1[𝑤𝑖 = 𝑤][𝑡𝑖 = 𝑡] – это число
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раз, когда в коллекции встретилось слово 𝑤, отнесенное к теме 𝑡. Обозначим

эту величину за 𝑛𝑤𝑡:

𝑛𝑤𝑡 = 𝜆𝑡𝜑𝑤𝑡 ∀𝑤 = 1, . . . ,𝑊 ⇒
𝑊∑︁
𝑤=1

𝑛𝑤𝑡 =
𝑊∑︁
𝑤=1

𝜆𝑡𝜑𝑤𝑡, ⇒
𝑊∑︁
𝑤=1

𝑛𝑤𝑡 = 𝜆𝑡.

Тогда искомая оценка:

𝜑𝑤𝑡 =
𝑛𝑤𝑡∑︀𝑊
𝑤=1 𝑛𝑤𝑡

.

Получился хорошо интерпретируемый результат: частотная оценка веро­

ятности слова 𝑤 в теме 𝑡 — отношение числа раз, когда тема 𝑡 связывалась со

словом 𝑤, к общему числу появлений темы 𝑡 в коллекции.

Совершенно аналогичный результат можно получить для параметров 𝜃𝑡𝑑:

𝜃𝑡𝑑 =
𝑛𝑡𝑑∑︀𝑇
𝑡=1 𝑛𝑡𝑑

,

где 𝑛𝑡𝑑 =
∑︀𝑁

𝑖=1[𝑡𝑖 = 𝑡][𝑑𝑖 = 𝑑].

Однако в реальности переменные 𝑍 — это скрытые переменные, которые

не известны. Таким образом, при обучении PLSA ставится следующая задача:

𝑝(𝑋|Φ,Θ) =
∑︁
𝑍

𝑝(𝑋,𝑍|Φ,Θ) → max
Φ,Θ

. (2.7)

Такую задачу называют максимизацией неполного правдоподобия, т.к. из

функции правдоподобия выведены скрытые переменные 𝑍. Чтобы их вывести,

производится суммирование по всем возможным значениям набора перемен­

ных 𝑍. Так как таких значений экспоненциальное число, то напрямую приме­

нить метод максимизации правдоподобия не удается, и вместо него использует­

ся EM-алгоритм. Подробное описание можно найти в книге [76].

2.2.2. EM-алгоритм для максимизации неполного правдоподобия

EM-алгоритм в общем виде. Запишем задачу максимизации неполного

правдоподобия для вероятностной модели, в которой есть некоторые наблюда­
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емые переменные 𝑋, скрытые переменные 𝑍 и параметры Ω:

log 𝑝(𝑋|Ω) → max
Ω

.

Пусть 𝑞(𝑍) — произвольное распределение. Справедлива следующая це­

почка равенств:

log 𝑝(𝑋|Ω) =
∫
𝑞(𝑍) log 𝑝(𝑋|Ω)𝑑𝑍 =∫

𝑞(𝑍) log
𝑝(𝑋,𝑍|Ω)
𝑝(𝑍|𝑋,Ω)

𝑑𝑍 =

∫
𝑞(𝑍) log

𝑝(𝑋,𝑍|Ω)
𝑞(𝑍)

𝑞(𝑍)

𝑝(𝑍|𝑋,Ω)
𝑑𝑍 =∫

𝑞(𝑍) log 𝑝(𝑋,𝑍|Ω)𝑑𝑍 −
∫
𝑞(𝑍) log 𝑞(𝑍)𝑑𝑍⏟  ⏞  

𝐿(𝑞,Ω)

+

∫
𝑞(𝑍) log

𝑞(𝑍)

𝑝(𝑍|𝑋,Ω)
𝑑𝑍⏟  ⏞  

KL(𝑞(𝑍)||𝑝(𝑍|𝑋,Ω))

. (2.8)

Дивергенция Кульбака-Лейблера KL(𝑞(𝑍)||𝑝(𝑍|𝑋,Ω)) оценивает расстоя­

ние между двумя распределениями. Дивергенция Кульбака-Лейблера неотрица­

тельна, несимметрична и равна нулю тогда и только тогда, когда распределения

совпадают.

В силу неотрицательности KL(𝑞(𝑍)||𝑝(𝑍|𝑋,Ω)) слагаемое 𝐿(𝑞,Ω) являет­

ся нижней оценкой на величину log 𝑝(𝑋|Ω). От максимизации log 𝑝(𝑋|Ω) по Ω

предлагается перейти к максимизации нижней границы 𝐿(𝑞,Ω) по 𝑞 и Ω. Такая

постановка в общем случае может давать приближенный ответ, однако оказы­

вается существенно более простой. Основная идея EM-алгоритма заключается

в том, чтобы итеративно повторять два шага:

1. 𝐿(𝑞,Ω) → max
𝑞

;

2. 𝐿(𝑞,Ω) → max
Ω

.

На первом шаге максимизация 𝐿(𝑞,Ω) по 𝑞 эквивалентна минимизации

KL(𝑞(𝑍)||𝑝(𝑍|𝑋,Ω)), т.к. их сумма log 𝑝(𝑋|Ω) от 𝑞 не зависит. Из свойств ди­

вергенции Кульбака-Лейблера следует, что минимум равен 0 и достигается при

𝑞(𝑍) = 𝑝(𝑍|𝑋,Ω). Поэтому если удается выписать аналитически распределе­

ние 𝑝(𝑍|𝑋,Ω), то именно его и нужно взять в качестве 𝑞, при этом нижняя

оценка 𝐿(𝑞,Ω) будет являться точной нижней оценкой.
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Рассмотрим теперь второй шаг:∫
𝑞(𝑍) log 𝑝(𝑋,𝑍|Ω)𝑑𝑍 −

∫
𝑞(𝑍) log 𝑞(𝑍)𝑑𝑍 → max

Ω
⇔

⇔
∫
𝑞(𝑍) log 𝑝(𝑋,𝑍|Ω)𝑑𝑍 → max

Ω
, (2.9)

т.к. второе слагаемое не зависит от Ω. Первое слагаемое соответствует матема­

тическому ожиданию:∫
𝑞(𝑍) log 𝑝(𝑋,𝑍|Ω)𝑑𝑍 = E𝑞(𝑍) log 𝑝(𝑋,𝑍|Ω).

Таким образом, EM-алгоритм заключается в чередовании двух типов ша­

гов: E-шаг (Expectation) соответствует подготовке к вычислению математиче­

ского ожидания, M-шаг (Maximization) – максимизации математического ожи­

дания логарифма правдоподобия по параметрам.

∙ E-шаг: KL(𝑞(𝑍)||𝑝(𝑍|𝑋,Ω)) → min
𝑞(𝑍)

⇔ 𝑞(𝑍) = 𝑝(𝑍|𝑋,Ω);

∙ M-шаг: E𝑞(𝑍) log 𝑝(𝑋,𝑍|Ω) → max
Ω

.

Заметим, что из описанной процедуры следует следующее утверждение о

сходимости EM-алгоритма.

Утверждение 1. Последовательность значений параметров, получаемых в

ходе итераций EM-алгоритма, дает неубывающую последовательность значе­

ний величины 𝐿(𝑞,Ω), являющейся нижней оценкой логарифма правдоподобия

модели log 𝑝(𝑋|Ω).

Применение EM-алгоритма для обучения PLSA. Решим задачу (2.7),

действуя согласно общей схеме. На E-шаге необходимо оценить распределение

скрытых переменных при условии наблюдаемых переменных и параметров:

𝑝(𝑍|𝑋,Φ,Θ). Т.к. словопозиции независимы, то сразу перейдем к отдельным

вероятностям:

𝑝(𝑍|𝑋,Φ,Θ) =
𝑁∏︁
𝑖=1

𝑝(𝑡𝑖|𝑥𝑖,Φ,Θ).
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Чтобы найти эти вероятности, воспользуемся формулой Байеса и для крат­

кости записи опустим Φ и Θ после черты:

𝑝(𝑡𝑖|𝑥𝑖) ≡ 𝑝(𝑡𝑖|𝑤𝑖, 𝑑𝑖) =
𝑝(𝑤𝑖|𝑡𝑖, 𝑑𝑖)𝑝(𝑡𝑖|𝑑𝑖)∑︀𝑇
𝑡=1 𝑝(𝑤𝑖|𝑡, 𝑑𝑖)𝑝(𝑡|𝑑𝑖)

=
𝜑𝑤𝑖𝑡𝑖𝜃𝑡𝑖𝑑𝑖∑︀𝑇
𝑡=1 𝜑𝑤𝑖𝑡𝜃𝑡𝑑𝑖

. (2.10)

Теперь запишем выражение, которое нужно максимизировать на M-шаге:

E𝑝(𝑍|𝑋,Φ,Θ) log 𝑝(𝑋,𝑍|Φ,Θ) =
𝑁∑︁
𝑖=1

E𝑝(𝑡𝑖|𝑥𝑖,Φ,Θ) (log 𝜑𝑥𝑖𝑡𝑖 + log 𝜃𝑡𝑖𝑑𝑖) + const → max
Φ,Θ

.

Мы учли, что 𝑞(𝑍) = 𝑝(𝑍|𝑋,Φ,Θ), и пронесли математическое ожидание внутрь

суммы в силу независимости словопозиций. Теперь распишем по определению:

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑝(𝑡𝑖 = 𝑡|𝑥𝑖,Φ,Θ) (log 𝜑𝑤𝑖𝑡 + log 𝜃𝑡𝑑𝑖) + const → max
Φ,Θ

. (2.11)

Эта задача очень похожа на задачу (2.3), сформулированную в предполо­

жении известных тем 𝑍. Если записать функцию Лагранжа для учета ограни­

чений нормировки и взять производную по одному элементу 𝜑𝑤𝑡, то получим:

1

𝜑𝑤𝑡

𝑁∑︁
𝑖=1

[𝑤𝑖 = 𝑤]𝑝(𝑡𝑖 = 𝑡)− 𝜆𝑡 = 0.

Здесь
∑︀𝑁

𝑖=1[𝑤𝑖 = 𝑤]𝑝(𝑡𝑖 = 𝑡) аналогично выражению в (2.6) интерпретиру­

ется как число раз, когда слово 𝑤 было отнесено к теме 𝑡. Однако если рань­

ше мы это число знали точно, то теперь вместо индикаторов тем появляются

вероятности, посчитанные на Е-шаге. Таким образом, это наилучшая оценка

интересующей нас величины. Обозначим ее как и прежде за 𝑛𝑤𝑡. Аналогично

получим оценки 𝑛𝑡𝑑 для документов. Тогда итоговые формулы M-шага будут

иметь вид:

𝜑𝑤𝑡 =
𝑛𝑤𝑡∑︀𝑊
𝑤=1 𝑛𝑤𝑡

; 𝜃𝑡𝑑 =
𝑛𝑡𝑑∑︀𝑇
𝑡=1 𝑛𝑡𝑑

(2.12)

Итак, итерационно повторяя формулы (2.10) и (2.12), мы оценим парамет­

ры Φ и Θ, т.е. обучим модель PLSA с помощью EM-алгоритма.
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2.3. Латентное размещение Дирихле

Априорные распределения в общем случае. В байесовском подходе вве­

дение априорных распределений 𝑝(Ω|𝛼) — это способ учесть предположения

о возможных значениях параметров Ω до каких-либо наблюдений. Здесь 𝛼 —

это новый гиперпараметр модели. Наблюдаемые переменные уточняют наши

представления о значении параметров Ω:

𝑝(Ω|𝑋,𝛼)⏟  ⏞  
posterior

=
𝑝(Ω, 𝑋|𝛼)
𝑝(𝑋|𝛼)

∝ 𝑝(Ω, 𝑋|𝛼) = 𝑝(𝑋|Ω, 𝛼)⏟  ⏞  
likelihood

𝑝(Ω|𝛼)⏟  ⏞  
prior

. (2.13)

Таким образом, значение параметров Ω имеет большую апостериорную ве­

роятность, если оно одновременно хорошо вписывается в априорные предполо­

жения (prior) и хорошо описывает результаты реальных наблюдений (likelihood,

правдоподобие).

Максимизация апостериорной вероятности. Одним из возможных спо­

собов оценивания параметров модели, имеющих заданные априорные распреде­

ления, является максимизация апостериорной вероятности:

log 𝑝(Ω|𝑋,𝛼) = log 𝑝(𝑋|Ω, 𝛼) + log 𝑝(Ω|𝛼) → max
Ω

. (2.14)

Вернемся к общей схеме EM-алгоритма и учтем априорное распределе­

ние 𝑝(Ω). Тогда разложение будет выглядеть следующим образом:

log 𝑝(𝑋|Ω, 𝛼) + log 𝑝(Ω|𝛼) = 𝐿(𝑞,Ω) + KL(𝑞(𝑍)||𝑝(𝑍|𝑋,Ω, 𝛼)) + log 𝑝(Ω|𝛼),

где 𝐿(𝑞,Ω) введено в (2.8).

Как и прежде, учтем неотрицательность дивергенции Кульбака-Лейбера

и перейдем к максимизации нижней оценки логарифма апостериорной вероят­

ности:

𝐿(𝑞,Ω) + log 𝑝(Ω|𝛼) → max
𝑞,Ω

. (2.15)

Введем обозначение 𝑅(Ω) = log 𝑝(Ω|𝛼) и выпишем итерации EM-алгорит­

ма для задачи (2.15):
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∙ E-шаг остается без изменения, т.к. log 𝑝(Ω) не зависит от 𝑞:

KL(𝑞(𝑍)||𝑝(𝑍|𝑋,Ω, 𝛼)) → min
𝑞(𝑍)

⇔ 𝑞(𝑍) = 𝑝(𝑍|𝑋,Ω, 𝛼). (2.16)

∙ M-шаг содержит оценки параметров Ω, найденные из условия:

E𝑞(𝑍) log 𝑝(𝑋,𝑍|Ω, 𝛼) +𝑅(Ω) → max
Ω

. (2.17)

Утверждение 2. Последовательность значений параметров, получаемых в

результате итераций EM-алгоритма (2.16), (2.17), дает неубывающую по­

следовательность значений нижней оценки логарифма апостериорной веро­

ятности (2.14).

Заметим, что при выводе EM-алгоритма мы нигде не пользовались тем

фактом, что дополнительное слагаемое 𝑅(Ω) = log 𝑝(Ω) имеет вероятностную

интерпретацию логарифма априорного распределения. Следовательно, рассуж­

дения останутся справедливы для задачи максимизации регуляризованного прав­

доподобия:

log 𝑝(𝑋|Ω, 𝛼) +𝑅(Ω) → max
Ω
, (2.18)

где 𝑅(Ω) — произвольная дифференцируемая функция.

Утверждение 3. Последовательность значений параметров, получаемых в

результате итераций EM-алгоритма (2.16), (2.17) с произвольной дифферен­

цируемой функцией 𝑅(Ω), дает неубывающую последовательность значений

нижней оценки логарифма регуляризованного правдоподобия (2.18).

Последнее утверждение обосновывает сходимость EM-алгоритма для ад­

дитивно регуляризованных тематических моделей, предлагаемых в главе 4.

Априорные распределения в модели LDA. Модель латентного размеще­

ния Дирихле (Latent Durichlet Allocation, LDA) [14] отличается от PLSA введе­

нием априорных распределений Дирихле на параметры Φ и Θ.
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Рассмотрим вектор 𝜃 = (𝜃1, . . . , 𝜃𝐾) такой, что 𝜃𝑘 > 0, ∀𝑘 = 1, . . . , 𝐾 и∑︀𝐾
𝑘=1 𝜃𝑘 = 1. То есть это вектор, задающий вероятности 𝐾 возможных исхо­

дов некоторой дискретной случайной величины. Распределение Дирихле — это

непрерывное вероятностное распределение на симплексе:

Dir(𝜃|𝛼) =
∏︀𝐾

𝑘=1 Γ(𝛼𝑘)

Γ
(︁∑︀𝐾

𝑘=1 𝛼𝑘

)︁ 𝐾∏︁
𝑘=1

𝜃𝛼𝑘−1
𝑘 , 𝛼𝑘 > 0, ∀𝑘 = 1, . . . , 𝐾,

где 𝛼 = (𝛼1, . . . , 𝛼𝐾) — параметры. Важное свойство распределения Дирихле

заключается в том, что если 𝛼𝑘 < 1, ∀𝑘 = 1, . . . , 𝐾, то наиболее вероятными

будут разреженные вектора 𝜃, в которых лишь несколько значений существенно

отличны от нуля. При этом заметим, что остальные значения не будут нулевым,

а будут положительными, хотя и близкими к нулю величинами. Также нам

понадобятся еще несколько свойств:

1. Математическое ожидание: E𝜃𝑘 = 𝛼𝑘∑︀𝐾
𝑖=1 𝛼𝑖

.

2. Мода (точка максимума вероятности): 𝜃𝑀𝑃
𝑘 = 𝛼𝑘−1∑︀𝐾

𝑖=1 𝛼𝑖−𝐾
.

3. Математическое ожидание логарифма: E ln 𝜃𝑘 = 𝜓(𝛼𝑘)− 𝜓
(︁∑︀𝐾

𝑖=1 𝛼𝑖

)︁
,

где 𝜓(𝑥) = Γ′(𝑥)
Γ(𝑥) – дигамма-функция.

При 𝑥 > 1 справедливо приближение: exp(𝜓(𝑥)) ≈ 𝑥− 1
2 .

В модели LDA предполагается, что вероятности слов для каждой темы 𝜑𝑡

имеют априорное распределение Дирихле с вектор-параметром 𝛽. Аналогично,

вероятности тем для каждого документа 𝜃𝑑 имеют априорное распределение

Дирихле с вектор-параметром 𝛼:

𝜑𝑡 ∼ Dir(𝜑𝑡|𝛽), ∀𝑡 = 1, . . . , 𝑇 ; 𝜃𝑑 ∼ Dir(𝜃𝑑|𝛼), ∀𝑑 = 1, . . . , 𝐷.

Одна из основных мотиваций такой модели — разреживающее свойство

распределения Дирихле: в реальности каждый документ содержит лишь неболь­
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шое число тем, а каждая тема описывается лишь небольшим числом слов. За­

пишем совместную вероятность, задающую модель LDA:

𝑝(𝑋,𝑍,Φ,Θ|𝛼, 𝛽) =
𝑁∏︁
𝑖=1

𝑝(𝑑𝑖)𝜑𝑤𝑖𝑡𝑖𝜃𝑡𝑖𝑑𝑖

𝐷∏︁
𝑑=1

Dir(𝜃𝑑|𝛼)
𝑇∏︁
𝑡=1

Dir(𝜑𝑡|𝛽). (2.19)

Если сравнить это выражение с аналогичным для PLSA (2.2), то заме­

тим, что наборы переменных Φ и Θ переместились налево от черты, т.е. те­

перь оценивается их совместная вероятность с наблюдаемыми переменными 𝑋

и скрытыми 𝑍. В частности, это означает, что теперь мы можем зафиксировать

некоторые 𝛼 и 𝛽 и сгенерировать 𝑋, 𝑍, Φ и Θ согласно (2.19). Кроме того, те­

перь мы можем считать Φ и Θ скрытыми переменными (как и темы 𝑍), а 𝛼 и

𝛽 — параметрами модели.

За счет усложнения модели появляется несколько различных сценариев

оценивания матриц параметров Φ и Θ. В PLSA практически единственным

разумным сценарием была максимизация неполного правдоподобия. Далее мы

рассмотрим три алгоритма обучения модели LDA:

∙ максимизация апостериорной вероятности (MAP: maximum a posteriori

probability);

∙ вариационный байесовский вывод (VB: Variational Bayes);

∙ сэмплирование Гиббса (CGS: Collapsed Gibbs Sampling).

Они строятся по-разному, но приводят к близким оценкам. В литературе

также используются их различные модификации [77].

2.3.1. Метод максимума апостериорной вероятности

Этот метод является наиболее близким аналогом максимизации неполно­

го правдоподобия в модели PLSA. Как следует из названия, необходимо найти

значения параметров, в которых достигается максимум апостериорной вероят­

ности 𝑝(Φ,Θ|𝑋,𝛼, 𝛽). Переписывая задачу (2.14) в обозначениях модели LDA,
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получаем:

log 𝑝(𝑋|Φ,Θ, 𝛼, 𝛽) + log 𝑝(Θ|𝛼) + log 𝑝(Φ|𝛽)⏟  ⏞  
𝑅(Φ,Θ)

→ max
Φ,Θ

. (2.20)

Данная задача может быть решена с помощью EM-алгоритма (2.16), (2.17).

Таким образом, в алгоритме LDA-MAP сохраняется E-шаг из алгоритма PLSA­

EM, а на M-шаге максимизируется выражение:

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑝(𝑡𝑖 = 𝑡|𝑥𝑖,Φ,Θ) (log 𝜑𝑤𝑖𝑡 + log 𝜃𝑡𝑑𝑖)+

+
𝐷∑︁
𝑑=1

𝑇∑︁
𝑡=1

(𝛼𝑡 − 1) log 𝜃𝑡𝑑 +
𝑇∑︁
𝑡=1

𝑊∑︁
𝑤=1

(𝛽𝑤 − 1) log 𝜑𝑤𝑡 → max
Φ,Θ

. (2.21)

при условиях неотрицательности и нормировки (2.4). Если записать функцию

Лагранжа и взять производную по одному элементу 𝜑𝑤𝑡, то получим:

1

𝜑𝑤𝑡

(︃
𝑁∑︁
𝑖=1

[𝑤𝑖 = 𝑤]𝑝(𝑡𝑖 = 𝑡) + 𝛽𝑤 − 1

)︃
− 𝜆𝑡 = 0.

Отсюда, аналогично уже разобранным случаям:

𝑛𝑤𝑡+𝛽𝑤−1 = 𝜆𝑡𝜑𝑤𝑡 ⇒
𝑊∑︁
𝑤=1

(𝑛𝑤𝑡+𝛽𝑤−1) =
𝑊∑︁
𝑤=1

𝜆𝑡𝜑𝑤𝑡 ⇒
𝑊∑︁
𝑤=1

(𝑛𝑤𝑡+𝛽𝑤−1) = 𝜆𝑡.

Искомая оценка:

𝜑𝑤𝑡 =
𝑛𝑤𝑡 + 𝛽𝑤 − 1∑︀𝑊

𝑤=1(𝑛𝑤𝑡 + 𝛽𝑤 − 1)
. (2.22)

Заметим, что в этот раз условия неотрицательности автоматически не вы­

полняются, и возможна ситуация, когда 𝑛𝑤𝑡+𝛽𝑤−1 < 0. Таким образом, форму­

ла (2.22) корректна для значений 𝛽𝑤 > 1. Можно показать, что при корректном

учете ограничений-неравенств 𝜑𝑤𝑡 > 0, 𝜃𝑡𝑑 > 0 отрицательные значения заме­

няются на нули, и итоговые формулы M-шага имеют вид:

𝜑𝑤𝑡 =
(𝑛𝑤𝑡 + 𝛽𝑤 − 1)+∑︀𝑊
𝑤=1(𝑛𝑤𝑡 + 𝛽𝑤 − 1)+

; 𝜃𝑡𝑑 =
(𝑛𝑡𝑑 + 𝛼𝑡 − 1)+∑︀𝑇
𝑡=1(𝑛𝑡𝑑 + 𝛼𝑡 − 1)+

. (2.23)

В результате, при маленьких значениях счетчиков 𝑛𝑤𝑡 или 𝑛𝑡𝑑 соответ­

ствующие вероятности обнулятся, таким образом, сработает разреживающее
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свойство априорного распределения Дирихле. Тем не менее, на практике этих

обнулений может оказаться недостаточно.

2.3.2. Вариационный байесовский вывод

Приведем другой подход к оцениванию матриц Φ и Θ в модели LDA,

заданной совместным вероятностным распределением 𝑝(𝑋,𝑍,Φ,Θ|𝛼, 𝛽). Поста­

вим задачу максимизации неполного правдоподобия, т.е. максимизации вероят­

ности наблюдаемых данных при условии параметров модели: 𝑝(𝑋|𝛼, 𝛽) → max
𝛼,𝛽

.

Такая постановка неудобна тем, что интересующие нас матрицы Φ и Θ пропали,

а максимизация осуществляется по гиперпараметрам модели.

Тем не менее, распишем EM-алгоритм для этой задачи:

∙ E-шаг: KL(𝑞(𝑍,Φ,Θ)||𝑝(𝑍,Φ,Θ|𝑋,𝛼, 𝛽)) → min
𝑞
;

∙ M-шаг: E𝑞(𝑍,Φ,Θ) 𝑝(𝑋,𝑍,Φ,Θ|𝛼, 𝛽) → max
𝛼,𝛽

.

Чтобы получить нулевую дивергенцию Кульбака-Лейблера на E-шаге, необ­

ходимо вычислить совместное распределение трех групп скрытых переменных:

𝑝(𝑍,Φ,Θ|𝑋,𝛼, 𝛽). К сожалению, сделать это аналитически не удается. Введем

дополнительные упрощающие предположения, и в этих предположениях при­

ближенно оценим искомое распределение. А именно, предположим, что группы

переменных взаимно независимы, т.е. будем искать распределение 𝑞 в виде:

𝑞(𝑍,Φ,Θ) ≈
𝑁∏︁
𝑖=1

𝑞(𝑡𝑖)
𝑇∏︁
𝑡=1

𝑞(𝜑𝑡)
𝐷∏︁
𝑑=1

𝑞(𝜃𝑑). (2.24)

Это можно интерпретировать как минимизацию KL-дивергенции по 𝑞 на

множестве допустимых распределений 𝑞, в данном случае, на множестве рас­

пределений вида (2.24). При такой постановке KL-дивергенция может оказаться

ненулевой, а нижняя оценка 𝐿(𝑞, 𝛼, 𝛽) — неточной оценкой log 𝑝(𝑋|𝛼, 𝛽). Ито­

говые оценки параметров будут также неточными. Данный прием называется

приближенным байесовским выводом.
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Итак, теперь задача формулируется так:

KL

(︃
𝑁∏︁
𝑖=1

𝑞(𝑡𝑖)
𝑇∏︁
𝑡=1

𝑞(𝜑𝑡)
𝐷∏︁
𝑑=1

𝑞(𝜃𝑑) || 𝑝(𝑍,Φ,Θ|𝑋,𝛼, 𝛽)

)︃
→ min

𝑞(𝑡𝑑𝑖),𝑞(𝜑𝑡),𝑞(𝜃𝑑)
. (2.25)

Она решается итерационным процессом, который на каждом шаге оцени­

вает очередной фактор 𝑞𝑗 по всем остальным факторам 𝑞∖𝑗:

log 𝑞𝑗 ∝ E𝑞∖𝑗 log 𝑝(𝑋,𝑍,Φ,Θ|𝛼, 𝛽). (2.26)

Доказательство этого утверждения можно найти, например, в [78].

Распишем формулы байесовского вывода для оценки распределений 𝑍, Φ

и Θ. Начнем с 𝑞(𝜃𝑑) для некоторого документа 𝑑. В последующих выкладках нас

будет интересовать только зависимость от 𝜃𝑑, все остальные члены будем опус­

кать. Они повлияют только на нормировочную константу, которую мы найдем

отдельно.

log 𝑞(𝜃𝑑) ∝ E∖𝑞(𝜃𝑑) log 𝑝(𝑋,𝑍,Φ,Θ|𝛼, 𝛽) ∝

∝ E∖𝑞(𝜃𝑑)

𝑁∑︁
𝑖=1

(log 𝜑𝑤𝑖𝑡𝑖 + log 𝜃𝑡𝑖𝑑𝑖) +
𝐷∑︁
𝑑=1

log Dir(𝜃𝑑|𝛼) +
𝑇∑︁
𝑡=1

log Dir(𝜑𝑡|𝛽) ∝

∝ E∖𝑞(𝜃𝑑)

𝑁∑︁
𝑖=1

[𝑑𝑖 = 𝑑] log 𝜃𝑡𝑖𝑑 + logDir(𝜃𝑑|𝛼).

Раскроем математическое ожидание и распишем плотность распределения

Дирихле, опуская его нормировочную константу:

log 𝑞(𝜃𝑑) ∝
𝑁∑︁
𝑖=1

E𝑞(𝑡𝑖)[𝑑𝑖 = 𝑑] log 𝜃𝑡𝑖𝑑 + logDir(𝜃𝑑|𝛼) ∝

∝
𝑁∑︁
𝑖=1

[𝑑𝑖 = 𝑑]
𝑇∑︁
𝑡=1

𝑞(𝑡𝑖 = 𝑡) log 𝜃𝑡𝑑 +
𝑇∑︁
𝑡=1

(𝛼𝑡 − 1) log 𝜃𝑡𝑑 ∝

∝
𝑇∑︁
𝑡=1

(︃
𝑁∑︁
𝑖=1

[𝑑𝑖 = 𝑑]𝑞(𝑡𝑖 = 𝑡) + 𝛼𝑡 − 1

)︃
log 𝜃𝑡𝑑.
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Проанализируем это выражение как функцию от 𝜃𝑡𝑑. Можно заметить, что

с точностью до константы оно совпадает с распределением Дирихле:

𝜃𝑑 ∼ Dir(𝜃𝑑|𝛾); 𝛾𝑡 =
𝑁∑︁
𝑖=1

[𝑑𝑖 = 𝑑]𝑞(𝑡𝑖 = 𝑡) + 𝛼𝑡. (2.27)

То, что мы получили зависимость от 𝜃𝑡𝑑, соответствующую известному рас­

пределению, позволяет не вычислять нормировочную константу. Сделать это

напрямую часто бывает невозможно. Если апостериорное распределение лежит

в том же семействе, что и априорное распределение, то говорят, что априорное

распределение является сопряженным к функции правдоподобия. Вспоминая

представление апостериорного распределения через функцию правдоподобия и

априорное распределение 𝑝(Θ|𝑋,𝛼, 𝛽) ∝ 𝑝(𝑋|𝛼, 𝛽)𝑝(Θ|𝛼), можно перефразиро­

вать определение так: априорное распределение образует сопряженную пару с

функцией правдоподобия, если при их перемножении получается распределе­

ние из того же семейства. В нашем случае правдоподобие является мультино­

миальным распределением. Распределение Дирихле является сопряженным к

мультиномиальному. Отчасти именно этим мотивирован его выбор в модели

LDA.

Остановимся теперь подробнее на результате (2.27). Это оценка апостери­

орного распределения параметров 𝜃𝑑. В отличие от метода максимума апосте­

риорной вероятности получено распределение целиком, а не точечная оценка.

С одной стороны, появилось больше информации об оцениваемых параметрах.

С другой стороны, в большинстве случаев нас по-прежнему интересует одно

значение 𝜃𝑑. Чтобы его получить, можно подсчитать какую-либо статистику

распределения (2.27), например, математическое ожидание. Для распределения

Дирихле получим:

E 𝜃𝑡𝑑 =
𝛾𝑡∑︀𝑇
𝑡=1 𝛾𝑡

.

Следуя введенным ранее обозначениям,

E 𝜃𝑡𝑑 =
𝑛𝑡𝑑 + 𝛼𝑡∑︀𝑇

𝑡=1(𝑛𝑡𝑑 + 𝛼𝑡)
.
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Вместо математического ожидания можно взять моду, тогда

𝜃𝑀𝑃
𝑡𝑑 =

𝛾𝑡 − 1∑︀𝑇
𝑡=1(𝛾𝑡 − 1)

=
𝑛𝑡𝑑 + 𝛼𝑡 − 1∑︀𝑇

𝑡=1(𝑛𝑡𝑑 + 𝛼𝑡 − 1)
.

Такая оценка в точности соответствует оценкам (2.23), полученными дру­

гим методом, но также из соображений максимизации апостериорного распре­

деления на 𝜃𝑑.

Однако взятие точечных оценок остается за рамками байесовского вывода,

который заключается в итеративном пересчете всех 𝑞𝑗 с помощью текущих зна­

чений остальных 𝑞∖𝑗 согласно (2.26). Нетрудно показать, что 𝑞(𝜑𝑡) вычисляются

аналогичным образом:

𝜑𝑡 ∼ Dir(𝜑𝑡|𝜆); 𝜆𝑤 =
𝑁∑︁
𝑖=1

[𝑤𝑖 = 𝑤]𝑞(𝑡𝑖 = 𝑡) + 𝛽𝑤. (2.28)

Остается вывести формулы для log 𝑞(𝑡𝑖 = 𝑡|𝑤𝑖 = 𝑤, 𝑑𝑖 = 𝑑):

E∖𝑞(𝑡𝑖) log 𝑝(𝑋,𝑍,Φ,Θ|𝛼, 𝛽) ∝ E𝑞(𝜑𝑡) log 𝜑𝑤𝑡 + E𝑞(𝜃𝑑) log 𝜃𝑡𝑑 ∝

∝ 𝜓(𝑛𝑤𝑡 + 𝛽𝑤)− 𝜓

(︃
𝑊∑︁
𝑤=1

(𝑛𝑤𝑡 + 𝛽𝑤)

)︃
+ 𝜓(𝑛𝑡𝑑 + 𝛼𝑡)− 𝜓

(︃
𝑇∑︁
𝑡=1

(𝑛𝑡𝑑 + 𝛼𝑡)

)︃
.

(2.29)

Чтобы проинтерпретировать полученный результат, перейдем от логариф­

ма к вероятности и воспользуемся известным приближением для экспонент ди­

гамма-функций:

𝑞(𝑡𝑑𝑖 = 𝑡|𝑤𝑖 = 𝑤, 𝑑𝑖 = 𝑑) ∝ 𝑛𝑤𝑡 + 𝛽𝑤 − 0.5∑︀𝑊
𝑤=1(𝑛𝑤𝑡 + 𝛽𝑤)− 0.5

𝑛𝑡𝑑 + 𝛼𝑡 − 0.5∑︀𝑇
𝑡=1(𝑛𝑡𝑑 + 𝛼𝑡)− 0.5

≈ 𝜑𝑤𝑡 𝜃𝑡𝑑

Таким образом, приближенно выражение (2.29) соответствует формулам

пересчета распределения тем в PLSA-MLE и LDA-MAP.

Итак, байесовский вывод дает приближенные оценки распределения скры­

тых переменных на E-шаге EM-алгоритма. М-шаг заключается в нахождении

оценок максимума правдоподобия для гиперпараметров 𝛼 и 𝛽. На практике он

часто опускается, а 𝛼 и 𝛽 фиксируются. Рекомендации по оптимизации гипер­

параметров можно найти в [79].
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2.3.3. Сэмплирование Гиббса

Collapsed Gibbs Sampling — еще один часто используемый алгоритм обуче­

ния модели LDA. В нем приближенно оценивается распределение 𝑝(𝑍|𝑋,𝛼, 𝛽),

затем вычисляются матрицы Φ и Θ из принципа максимума правдоподобия.

Первый шаг (collapsing) заключается в том, чтобы проинтегрировать сов­

местное распределение по Φ и Θ:

𝑝(𝑍|𝑋,𝛼, 𝛽) =
∫
𝑝(𝑋,𝑍,Φ,Θ|𝛼, 𝛽)𝑑Φ𝑑Θ. (2.30)

Это удается сделать аналитически за счет того, что интеграл представля­

ется в виде произведения двух интегралов, по Φ и по Θ:

𝑝(𝑋,𝑍|𝛼, 𝛽) =
∫ 𝑁∏︁

𝑖=1

𝜃𝑡𝑖𝑑𝑖

𝐷∏︁
𝑑=1

Dir(𝜃𝑑|𝛼)𝑑Θ⏟  ⏞  
𝐼1

∫ 𝑁∏︁
𝑖=1

𝜑𝑤𝑖𝑡𝑖

𝑇∏︁
𝑡=1

Dir(𝜑𝑡|𝛽)𝑑Φ⏟  ⏞  
𝐼2

. (2.31)

Распишем интеграл по Θ; по Φ все будет аналогично.

𝐼1 =
𝐷∏︁
𝑑=1

∫ 𝑁∏︁
𝑖=1

[𝑑𝑖 = 𝑑]
𝑇∏︁
𝑡=1

𝜃
[𝑡𝑖=𝑡]
𝑡𝑑 Dir(𝜃𝑑|𝛼)𝑑𝜃𝑑 =

=

⎛⎝Γ
(︁∑︀𝑇

𝑡=1 𝛼𝑡

)︁
∏︀𝑇

𝑡=1 Γ(𝛼𝑡)

⎞⎠𝐷
𝐷∏︁
𝑑=1

∫ 𝑇∏︁
𝑡=1

𝜃

𝑁∑︀
𝑖=1

[𝑑𝑖=𝑑][𝑡𝑖=𝑡]+𝛼𝑡−1

𝑡𝑑 𝑑𝜃𝑑.

Под знаком каждого интеграла стоит распределение Дирихле без учета норми­

ровочной константы, параметры которого:

𝛼̃𝑡𝑑 =
𝑁∑︁
𝑖=1

[𝑑𝑖 = 𝑑][𝑡𝑖 = 𝑡] + 𝛼𝑡, 𝑡 = 1, . . . , 𝑇.

Следовательно, окончательно получаем:

𝐼1 =

(︃
Γ(
∑︀𝑇

𝑡=1 𝛼𝑡)∏︀𝑇
𝑡=1 Γ(𝛼𝑡)

)︃𝐷 𝐷∏︁
𝑑=1

∏︀𝑇
𝑡=1 Γ(𝛼̃𝑡𝑑)

Γ
(︁∑︀𝑇

𝑡=1 𝛼̃𝑡𝑑

)︁ . (2.32)
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Таким образом, получено распределение 𝑝(𝑋,𝑍|𝛼, 𝛽). Чтобы получить из

него распределение тем, воспользуемся формулой Байеса:

𝑝(𝑍|𝑋,𝛼, 𝛽) = 𝑝(𝑋,𝑍|𝛼, 𝛽)∑︀
𝑍

𝑝(𝑋,𝑍|𝛼, 𝛽)
.

В знаменателе стоит сумма по всем наборам 𝑍, которую невозможно найти

аналитически. Поэтому возникает задача приближенного оценивания парамет­

ров Φ и Θ по выборке, сгенерированной из распределения 𝑝(𝑍|𝑋,𝛼, 𝛽). Сэм­

плирование Гиббса принадлежит семейству методов Монте-Карло на марков­

ских цепях (Markov Chain Monte Carlo, MCMC) и служит для эффективной

генерации выборки из многомерного распределения, известного с точностью

до нормировочной константы. Согласно нему, нужно запустить итерационный

процесс, который на каждом шаге генерирует точку 𝑡𝑖 из одномерного распре­

деления 𝑝(𝑡𝑖|𝑋,𝑍∖𝑖, 𝛼, 𝛽), где 𝑍∖𝑖 – текущие темы всех словопозиций кроме 𝑖-ой.

Тогда через некоторое время процесс сойдется к генерации точек из искомого

распределения 𝑝(𝑍|𝑋,𝛼, 𝛽). Доказательство этого факта можно найти, напри­

мер, в [78].

Чтобы выписать распределение 𝑝(𝑡𝑗|𝑋,𝑍∖𝑗, 𝛼, 𝛽) для фиксированной пози­

ции 𝑗 в документе 𝑑𝑗, нужно взять уже известное нам совместное распределе­

ние 𝑝(𝑋,𝑍|𝛼, 𝛽) = 𝐼1𝐼2, оставить только члены, зависящие от 𝑡𝑗, и нормировать

получившуюся зависимость. Поскольку это одномерное дискретное распределе­

ние, то в данном случае нормировка не является проблемой. Снова сократим

выкладки вдвое и будем расписывать только сомножитель 𝐼1. Выделим из всех

сумм отдельно слагаемые, содержащие 𝑡𝑗:

𝐼1 = const

𝑇∏︀
𝑡=1

Γ

(︃
𝑁∑︀

𝑖=1,𝑖̸=𝑗

[𝑑𝑖 = 𝑑𝑗][𝑡𝑖 = 𝑡] + [𝑡𝑗 = 𝑡] + 𝛼𝑡

)︃

Γ

(︃
𝑇∑︀
𝑡=1

𝑁∑︀
𝑖=1,𝑖̸=𝑗

[𝑑𝑖 = 𝑑𝑗][𝑡𝑖 = 𝑡] + 𝛼𝑡 + 1

)︃ .

В знаменателе мы воспользовались тождеством
∑︀𝑇

𝑡=1[𝑡𝑗 = 𝑡] = 1. Введем
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обозначения для громоздких счетчиков:

𝑛
∖𝑗
𝑡𝑑 =

𝑁∑︁
𝑖=1,𝑖 ̸=𝑗

[𝑑𝑖 = 𝑑][𝑡𝑖 = 𝑡].

Это число слов в документе 𝑑, связанных с темой 𝑡, без учета слова на 𝑗-ой по­

зиции. В числителе условие [𝑡𝑗 = 𝑡] при всех темах 𝑡 ̸= 𝑡𝑗 равно 0, и его можно

не учитывать. При 𝑡 = 𝑡𝑗 оно равно 1. Воспользуемся свойством гамма-функ­

ции Γ(𝑥+ 1) = 𝑥Γ(𝑥):

𝐼1 = 𝑐𝑜𝑛𝑠𝑡

(︁
𝑛
∖𝑗
𝑡𝑗𝑑𝑗

+ 𝛼𝑡𝑗

)︁ 𝑇∏︀
𝑡=1

Γ
(︁
𝑛
∖𝑗
𝑑𝑗𝑡

+ 𝛼𝑡

)︁
(︂

𝑇∑︀
𝑡=1

𝑛
∖𝑗
𝑡𝑑𝑗

+ 𝛼𝑡

)︂
Γ

(︂
𝑇∑︀
𝑡=1

𝑛
∖𝑗
𝑡𝑑𝑗

+ 𝛼𝑡

)︂ .
Здесь все оставшиеся гамма-функции не зависят от 𝑡𝑗, поэтому их можно

опустить в счет нормировочной константы. Проделывая то же самое для 𝐼2 в

итоге получаем:

𝑝(𝑡𝑗|𝑋,𝑍∖𝑗, 𝛼, 𝛽) ∝

(︁
𝑛
∖𝑗
𝑑𝑗𝑡𝑗

+ 𝛼𝑡𝑗

)︁
𝑇∑︀
𝑡=1

(︁
𝑛
∖𝑗
𝑡𝑑𝑗

+ 𝛼𝑡

)︁
(︁
𝑛
∖𝑗
𝑤𝑗𝑡𝑗 + 𝛽𝑤𝑗

)︁
𝑊∑︀
𝑤=1

(︁
𝑛
∖𝑗
𝑤𝑡𝑗 + 𝛽𝑤

)︁
.

(2.33)

Итак, получено распределение тем. Предположим, мы сделали 𝑆 сэмплов.

Тогда оценить распределения 𝜑𝑤𝑡 и 𝜃𝑡𝑑 можно по формулам:

𝜃𝑡𝑑 =
𝑛𝑡𝑑 + 𝛼𝑡∑︀𝑇

𝑡=1(𝑛𝑡𝑑 + 𝛼𝑡)
, 𝜑𝑤𝑡 =

𝑛𝑤𝑡 + 𝛽𝑤∑︀𝑊
𝑤=1(𝑛𝑤𝑡 + 𝛽𝑤)

(2.34)

где

𝑛𝑤𝑡 =
𝑁∑︁
𝑖=1

[𝑤𝑖 = 𝑤]
𝑆∑︁

𝑠=1

1

𝑆
[𝑡𝑠𝑖 = 𝑡], 𝑛𝑡𝑑 =

𝑁∑︁
𝑖=1

[𝑑𝑖 = 𝑑]
𝑆∑︁

𝑠=1

1

𝑆
[𝑡𝑠𝑖 = 𝑡]. (2.35)

Эти оценки можно трактовать как промежуточный вариант между случа­

ем, когда известны темы каждой словопозиции, и случаем, когда известно ана­

литическое распределение тем. Здесь известны 𝑆 сэмплов, которые усредняются
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для оценивания числа сопоставлений слова 𝑤 теме 𝑡 или темы 𝑡 документу 𝑑.

Для больших коллекций достаточно полагать 𝑆 = 1.

В случае 𝑆 = 1 заметим, что дроби в (2.33) почти совпадают с оценками

𝜃𝑡𝑑 и 𝜑𝑤𝑡 в (2.34), поэтому на практике Φ и Θ не хранятся, а пересчитываются

налету из счетчиков. Единственная разница заключается в исключении одной

позиции в корпусе при подсчете счетчиков. Это важное требование из теории

MCMC, необходимое для сходимости. Однако в случае тематического модели­

рования оно оказывается не столь существенным, и распределения сходятся,

даже если его нарушить. Эксперименты приведены в следующем разделе.
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Глава 3

Схемы обучения тематических моделей

В данной главе предлагается обобщённое семейство EM-подобных методов

и рассматриваются эвристики регуляризации, сэмплирования, частого обновле­

ния параметров, робастности относительно шума и фона. Все они могут вклю­

чаться независимо друг от друга в любых сочетаниях, порождая как известные

модели (PLSA, LDA, SWB), так и новые. Изучаются различные режимы обуче­

ния моделей и формулируются рекомендации по выбору эвристик.

3.1. Обобщенное семейство EM-подобных алгоритмов

В данном разделе излагается ряд модификаций EM-алгоритма, который

интерпретируется как численный метод решения системы уравнений. Рассмат­

риваются эвристики частого обновления параметров, сэмплирования и регуля­

ризации Дирихле.

Обозначения и предположения. Пусть 𝐷 — множество (коллекция) тек­

стовых документов, 𝑊 — множество (словарь) всех употребляемых в них тер­

минов, 𝑇 — множество тем. Каждый документ 𝑑 ∈ 𝐷 представляет собой по­

следовательность 𝑛𝑑 терминов (𝑤1, . . . , 𝑤𝑛𝑑
) из словаря 𝑊 . Коллекция докумен­

тов рассматривается как случайная и независимая выборка троек (𝑤𝑖, 𝑑𝑖, 𝑡𝑖),

𝑖 = 1, . . . , 𝑛 из дискретного распределения 𝑝(𝑤, 𝑑, 𝑡) на конечном множестве

𝑊 ×𝐷 × 𝑇 .

Гипотеза независимости или «мешка слов» позволяет перейти к компакт­

ному представлению документа как подмножества 𝑑 ⊂ 𝑊 , в котором каждому

элементу 𝑤 ∈ 𝑑 поставлено в соответствие число 𝑛𝑑𝑤 вхождений термина 𝑤

в документ 𝑑. Гипотеза условной независимости позволяет сформулировать



56

вероятностную модель порождения коллекции 𝐷 по известным 𝑝(𝑡 | 𝑑) и 𝑝(𝑤 | 𝑡):

𝑝(𝑤 | 𝑑) =
∑︁
𝑡∈𝑇

𝑝(𝑤 | 𝑡) 𝑝(𝑡 | 𝑑). (3.1)

Построение тематической модели — это обратная задача: по известной кол­

лекции𝐷 требуется восстановить породившие её 𝑝(𝑡 | 𝑑) и 𝑝(𝑤 | 𝑡). Обычно число

тем |𝑇 | много меньше |𝐷| и |𝑊 |, и задача сводится к поиску приближённого

представления заданной матрицы частот

𝐹 =
(︀
𝑝𝑤𝑑
)︀
𝑊×𝐷

, 𝑝𝑤𝑑 = 𝑝(𝑤 | 𝑑) = 𝑛𝑑𝑤

𝑛𝑑
,

в виде произведения 𝐹 ≈ ΦΘ двух неизвестных матриц меньшего размера —

матрицы терминов тем Φ и матрицы тем документов Θ:

Φ = (𝜑𝑤𝑡)𝑊×𝑇 , 𝜑𝑤𝑡 = 𝑝(𝑤 | 𝑡), 𝜑𝑡 = (𝜑𝑤𝑡)𝑤∈𝑊 ;

Θ = (𝜃𝑡𝑑)𝑇×𝐷, 𝜃𝑡𝑑 = 𝑝(𝑡 | 𝑑), 𝜃𝑑 = (𝜃𝑡𝑑)𝑡∈𝑇 .

Матрицы 𝐹,Φ,Θ являются стохастическими, то есть имеют неотрицательные

нормированные столбцы, представляющие дискретные распределения.

Оценка качества моделей. Наиболее распространённым внутренним крите­

рием является перплексия (perplexity), используемая для оценивания моделей

языка в компьютерной лингвистике. Это мера несоответствия или «удивлён­

ности» модели 𝑝(𝑤 | 𝑑) токенам 𝑤, наблюдаемым в документах 𝑑. Перплексия

определяется через лог-правдоподобие (чем меньше, тем лучше):

𝒫(𝐷′) = exp

(︂
−1

𝑛

∑︁
𝑑∈𝐷′

∑︁
𝑤∈𝑑′′

𝑛𝑑𝑤 ln 𝑝(𝑤 | 𝑑)
)︂
. (3.2)

Обычно коллекцию разделяют на обучающую𝐷 и контрольную𝐷′ случай­

ным образом в пропорции 9 : 1 [74]. Параметры 𝜑𝑤𝑡 оцениваются по обучающей

выборке. Каждый документ 𝑑 контрольной коллекции 𝐷′ случайным образом

делится на две половины, 𝑑′ и 𝑑′′. Параметры 𝜃𝑡𝑑 оцениваются по 𝑑′. Перплексия

вычисляется по 𝑑′′.
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На графиках данной главы приводится зависимость перплексии от номера

итерации обучения (одна итерация — это один проход по коллекции). Число

итераций 40; число тем |𝑇 | = 100. Вопрос выбора числа тем дополнительно

исследуется в четвертой главе и в работе [25].

Рациональный EM-алгоритм для модели PLSA. Во введенных обозна­

чениях запишем задачу максимизации логарифма правдоподобия при ограни­

чениях нормировки и неотрицательности для модели PLSA (2.2):

𝐿(Φ,Θ) = ln
∏︁
𝑑∈𝐷

∏︁
𝑤∈𝑑

𝑝(𝑤 | 𝑑)𝑛𝑑𝑤 =
∑︁
𝑑∈𝐷

∑︁
𝑤∈𝑑

𝑛𝑑𝑤 ln
∑︁
𝑡∈𝑇

𝜑𝑤𝑡𝜃𝑡𝑑 → max
Φ,Θ

; (3.3)

∑︁
𝑤∈𝑊

𝜑𝑤𝑡 = 1, 𝜑𝑤𝑡 > 0;
∑︁
𝑡∈𝑇

𝜃𝑡𝑑 = 1, 𝜃𝑡𝑑 > 0. (3.4)

Теорема 1. Точка (Φ,Θ) локального экстремума задачи (3.3), (3.4) удовлетво­

ряет системе уравнений со вспомогательными переменными 𝑝𝑡𝑑𝑤:

𝑝𝑡𝑑𝑤 =
𝜑𝑤𝑡𝜃𝑡𝑑∑︀
𝑠∈𝑇 𝜑𝑤𝑠𝜃𝑠𝑑

; (3.5)

𝜑𝑤𝑡 =
𝑛𝑤𝑡
𝑛𝑡
, 𝑛𝑤𝑡 =

∑︁
𝑑∈𝐷

𝑛𝑑𝑤𝑝𝑡𝑑𝑤, 𝑛𝑡 =
∑︁
𝑤∈𝑊

𝑛𝑤𝑡; (3.6)

𝜃𝑡𝑑 =
𝑛𝑡𝑑
𝑛𝑑
, 𝑛𝑡𝑑 =

∑︁
𝑤∈𝑑

𝑛𝑑𝑤𝑝𝑡𝑑𝑤, 𝑛𝑑 =
∑︁
𝑡∈𝑇

𝑛𝑡𝑑. (3.7)

Доказательство следует из условий Каруша–Куна–Таккера. В следующей

главе будет сформулировано и доказано более общее утверждение.

Система уравнений (3.5)–(3.7) может быть решена различными численны­

ми методами. В частности, метод простых итераций приводит к ЕМ-алгоритму,

который чаще всего используется на практике. В Алгоритме 1 EM-итерации

организованы так, чтобы E-шаг вычислялся внутри M-шага. Это позволяет из­

бежать хранения трёхмерного массива 𝑝𝑡𝑑𝑤, содержащего оценки вероятностей

тем для всех слововхождений коллекции.

Заметим, что согласно шагам 5–8, если 𝜃𝑡𝑑 = 0 (тема 𝑡 не представлена

в документе 𝑑) или если 𝜑𝑤𝑡 = 0 (термин 𝑤 не относится к теме 𝑡), то нулевое
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Алгоритм 1 EM-алгоритм для тематической модели PLSA.
Вход: коллекция документов𝐷, число тем |𝑇 |, начальные приближения Θ и Φ;

Выход: распределения Θ и Φ;
1: повторять

2: обнулить 𝑛̂𝑤𝑡, 𝑛̂𝑑𝑡, 𝑛̂𝑡 для всех 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊 , 𝑡 ∈ 𝑇 ;

3: для всех 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑑

4: 𝑍 :=
∑︀
𝑡∈𝑇

𝜑𝑤𝑡𝜃𝑡𝑑;

5: для всех 𝑡 ∈ 𝑇 таких, что 𝜑𝑤𝑡𝜃𝑡𝑑 > 0

6: увеличить 𝑛̂𝑤𝑡, 𝑛̂𝑑𝑡, 𝑛̂𝑡 на 𝛿 = 𝑛𝑑𝑤𝜑𝑤𝑡𝜃𝑡𝑑/𝑍;

7: 𝜑𝑤𝑡 := 𝑛̂𝑤𝑡/𝑛̂𝑡 для всех 𝑤 ∈ 𝑊 , 𝑡 ∈ 𝑇 ;

8: 𝜃𝑡𝑑 := 𝑛̂𝑑𝑡/𝑛𝑑 для всех 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇 ;

9: пока Θ и Φ не стабилизируются.

значение будет сохраняться на протяжении всех итераций. И, наоборот, если все

значения 𝜃𝑡𝑑, 𝜑𝑤𝑡 были положительны в начальном приближении, то они так

и останутся положительными. Таким образом, PLSA не позволяет находить

оптимальную структуру разреженности распределений и требует задавать её

через начальное приближение.

Частое обновление параметров. В ЕМ-алгоритме нет необходимости очень

точно решать задачу максимизации правдоподобия на каждом M-шаге. Доста­

точно сместиться в направлении максимума и затем выполнить E-шаг. Мо­

дификация ЕМ-алгоритма, при которой Е-шаг выполняется чаще, называет­

ся обобщённым ЕМ-алгоритмом (generalized EM-algorithm, GEM). Для него

справедливы те же доказательства сходимости, что и для основного варианта

ЕМ-алгоритма [80].

Обобщённый ЕМ-алгоритм в случае PLSA сводится к более частому обнов­

лению параметров 𝜃𝑡𝑑 и 𝜑𝑤𝑡 по значениям счётчиков 𝑛̂𝑤𝑡 и 𝑛̂𝑑𝑡. В Алгоритме 1 это

происходит после каждого просмотра всей коллекции. На больших коллекциях

более частые обновления должны повышать скорость сходимости. Обновления
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Алгоритм 2 Обобщённый EM-алгоритм для тематической модели PLSA.
Вход: коллекция документов𝐷, число тем |𝑇 |, начальные приближения Θ и Φ;

Выход: распределения Θ и Φ;

1: обнулить 𝑛̂𝑤𝑡, 𝑛̂𝑑𝑡, 𝑛̂𝑡, 𝑛̂𝑑, 𝑛𝑑𝑤𝑡 для всех 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊 , 𝑡 ∈ 𝑇 ;

2: повторять

3: для всех 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑑

4: 𝑍 :=
∑︀
𝑡∈𝑇

𝜑𝑤𝑡𝜃𝑡𝑑;

5: для всех 𝑡 ∈ 𝑇 таких, что 𝑛𝑑𝑤𝑡 > 0 или 𝜑𝑤𝑡𝜃𝑡𝑑 > 0

6: 𝛿 := 𝑛𝑑𝑤𝜑𝑤𝑡𝜃𝑡𝑑/𝑍;

7: увеличить 𝑛̂𝑤𝑡, 𝑛̂𝑑𝑡, 𝑛̂𝑡, 𝑛̂𝑑 на (𝛿 − 𝑛𝑑𝑤𝑡);

8: 𝑛𝑑𝑤𝑡 := 𝛿;

9: если не первая итерация и пора обновить параметры Φ, Θ то

10: 𝜑𝑤𝑡 := 𝑛̂𝑤𝑡/𝑛̂𝑡 для всех 𝑤 ∈ 𝑊 , 𝑡 ∈ 𝑇 таких, что 𝑛̂𝑤𝑡 изменился;

11: 𝜃𝑡𝑑 := 𝑛̂𝑑𝑡/𝑛̂𝑑 для всех 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇 таких, что 𝑛̂𝑑𝑡 изменился;

12: пока Θ и Φ не стабилизируются.

можно делать после каждой пары (𝑑, 𝑤) или после заданного числа пар (𝑑, 𝑤)

или после каждого документа. Далее будет показано, что частые обновления

ускоряют сходимость.

В Алгоритме 2 выбор условия обновления на шаге 9 оставлен на усмотре­

ние разработчика, при этом на первой итерации частые обновления не делают­

ся, чтобы в счётчиках накопилась информация по всей коллекции. В противном

случае оценки параметров 𝜃𝑡𝑑 и 𝜑𝑤𝑡 по начальному фрагменту выборки могут

оказаться хуже начального приближения. Начиная со второй итерации, для

каждой пары (𝑑, 𝑤) из счётчиков 𝑛̂𝑤𝑡 и 𝑛̂𝑑𝑡 вычитается 𝑛𝑑𝑤𝑡 — то самое значе­

ние 𝛿, которое было к ним прибавлено при обработке пары (𝑑, 𝑤) на предыду­

щей итерации. Таким образом, счётчики 𝑛̂𝑤𝑡 и 𝑛̂𝑑𝑡 всегда содержат актуальное

значение, сформированное при последнем просмотре всей коллекции.
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Сэмплирование. В Алгоритме 2 для каждой пары (𝑑, 𝑤) хранится весь мас­

сив значений 𝑛𝑑𝑤𝑡, 𝑡 ∈ 𝑇 . Даже при небольшом числе тем такой расход памя­

ти на хранение каждой пары (𝑑, 𝑤) может оказаться неприемлемым. В то же

время, согласно гипотезе разреженности, вхождение термина 𝑤 в документ 𝑑

связано, скорее всего, с небольшим числом тем. Эксперименты показывают, что

тривиальное отбрасывание близких к нулю значений 𝑛𝑑𝑤𝑡 на каждом шаге мо­

жет приводить к накоплению большой систематической ошибки и смещению

модели.

В таком случае лучше использовать сэмплирование — для каждой па­

ры (𝑑, 𝑤) генерировать 𝑠 случайных тем 𝑡𝑑𝑤𝑖, 𝑖 = 1, . . . , 𝑠, из распределения

𝑝(𝑡 | 𝑑, 𝑤) = 𝑝𝑡𝑑𝑤 = 𝜑𝑤𝑡𝜃𝑡𝑑. Тогда число ненулевых значений 𝑛𝑑𝑤𝑡 будет невелико,

и в то же время оценки будут несмещёнными. Сэмплирование можно рассмат­

ривать как замену условного распределения 𝑝(𝑡|𝑑, 𝑤) его эмпирической оценкой

по сгенерированной случайной выборке длины 𝑠:

𝑝(𝑡 | 𝑑, 𝑤) = 1

𝑠

𝑠∑︁
𝑖=1

[︀
𝑡𝑑𝑤𝑖 = 𝑡

]︀
. (3.8)

Сэмплирование в Алгоритме 2 реализуется путём трёх модификаций:

1) перед шагом 5 сэмплируется 𝑠 тем 𝑡 = 𝑡𝑑𝑤𝑖, 𝑖 = 1, . . . , 𝑠 из 𝑝(𝑡 | 𝑑, 𝑤);

2) на шаге 5 цикл по всем темам заменяется циклом по 𝑡 = 𝑡𝑑𝑤𝑖, 𝑖 = 1, . . . , 𝑠;

3) на шаге 6 вычисляется 𝛿 := 𝑛𝑑𝑤/𝑠.

Таким образом, в обычном PLSA 𝑛𝑑𝑤 вхождений термина 𝑤 в документ 𝑑

распределяются между |𝑇 | темами пропорционально вероятностям 𝑝(𝑡 | 𝑑, 𝑤),

тогда как при сэмплировании задействуется не более 𝑠 тем. Далее в эксперимен­

тах мы будем сравнивать эти опции и обозначать P (proportional) и S (sampling).

Сэмплирование Гиббса для модели LDA [81] во многом аналогично сэм­

плированию в модифицированном Алгоритме 2. PLSA-GEM с сэмплированием

(модифицированный Алгоритм 2) и LDA-GS (Алгоритм 3) имеют несколько

отличий, но только одно из них оказывается существенным с точки зрения ка­

чества модели.
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Алгоритм 3 Сэмплирование Гиббса LDA-GS.
Вход: коллекция 𝐷, число тем |𝑇 |, начальные приближения Θ и Φ, гиперпа­

раметры 𝛼, 𝛽;

Выход: распределения Θ и Φ;

1: обнулить 𝑛̂𝑤𝑡, 𝑛̂𝑑𝑡, 𝑛̂𝑡, ∀𝑑 ∈ 𝐷, ∀𝑤 ∈ 𝑊 , ∀𝑡 ∈ 𝑇 ;

2: повторять

3: для всех 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑑, 𝑖 = 1, . . . , 𝑛𝑑𝑤

4: если не первый проход коллекции то

5: 𝑡 := 𝑡𝑑𝑤𝑖; уменьшить 𝑛̂𝑤𝑡, 𝑛̂𝑑𝑡, 𝑛̂𝑡 на 1;

6: вычислить 𝜑𝑤𝑡, 𝜃𝑡𝑑 согласно (3.9);

7: сэмплировать 𝑡𝑑𝑤𝑖 из 𝑝(𝑡 | 𝑑, 𝑤) ∝ 𝜑𝑤𝑡𝜃𝑡𝑑;

8: 𝑡 := 𝑡𝑑𝑤𝑖; увеличить 𝑛̂𝑤𝑡, 𝑛̂𝑑𝑡, 𝑛̂𝑡 на 1;

9: пока Θ и Φ не стабилизируются.

10: обновить 𝜑𝑤𝑡, 𝜃𝑡𝑑, ∀𝑑 ∈ 𝐷, ∀𝑤 ∈ 𝑊 , ∀𝑡 ∈ 𝑇 ;

1. В LDA-GS жёстко фиксируется параметр 𝑠 = 𝑛𝑑𝑤. Однако гипотеза раз­

реженности предполагает, что появление термина 𝑤 в документе 𝑑 вряд ли

может быть связано с большим числом тем. В наших экспериментах 𝑠 = 5 тем

оказалось достаточно, но одной темы явно мало, см. рис. 3.2. Эта эвристика, на­

званная экономным сэмплированием [27], сокращает затраты времени и памяти

в тех случаях, когда средняя по коллекции величина 𝑛𝑑𝑤 превышает 𝑠.

В эксперименте проверялась также гипотеза, что число тем, связанных

с парой (𝑑, 𝑤), не должно превышать числа употреблений данного слова 𝑛𝑑𝑤.

Для этого производилось сэмплирование min{𝑠, 𝑛𝑑𝑤} тем, однако результаты

для этой эвристики немного хуже, чем при сэмплировании ровно 𝑠 тем.

2. В LDA-GS параметры 𝜑𝑤𝑡 и 𝜃𝑡𝑑 обновляются предельно часто — после об­

работки каждого вхождения термина 𝑤 в документ 𝑑. В LDA-SEM обновления

могут производиться с любой частотой. Эксперименты показывают, что частота

обновления влияет на скорость сходимости, но почти не влияет на значение кон­
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трольной перплексии в конце итераций, рис. 3.3. По результатам эксперимента

можно рекомендовать обновления после каждого термина или после каждого

вхождения термина, как в LDA-GS.

3. В LDA-GS перед сэмплированием счётчики уменьшаются на единицу.

Тем самым при оценивании распределений не учитывается 𝑖-е вхождение терми­

на 𝑤 в документ 𝑑, для которого сэмплируется тема 𝑡𝑑𝑤𝑖. Из теории следует, что

эта особенность исключительно важна [82]. Однако в экспериментах с коллекци­

ями достаточно больших размеров оказывается, что она не влияет на качество

модели — кривые «термин 1 раз» и «термин 1 раз (GS)» на рис. 3.3 практи­

чески совпадают. Можно одновременно уменьшать счётчики для старой темы

и увеличивать для новой, как в Алгоритме 2.

4. Единственным существенным различием, влияющим на качество моде­

ли, является применение байесовской регуляризации в LDA, которая подробнее

рассматривается в следующем параграфе. Различие заключается только в фор­

мулах частотных оценок условных вероятностей: в PLSA используются несме­

щённые оценки максимального правдоподобия (3.6)–(3.7), в LDA — байесовские

сглаженные оценки (3.9).

Таким образом, LDA-GS отличается от PLSA-EM тремя эвристиками: ча­

стым обновлением параметров, сэмплированием и регуляризацией. Эти эври­

стики не связаны друг с другом и могут применяться в любых сочетаниях.

Регуляризация. Тематическая модель LDA [74] основана на разложении (3.1)

при дополнительном предположении, что векторы документов 𝜃𝑑 ∈ R|𝑇 | и векто­

ры тем 𝜑𝑡 ∈ R|𝑊 | порождаются распределениями Дирихле с гиперпараметрами

𝛼 = (𝛼𝑡) ∈ R|𝑇 | и 𝛽 = (𝛽𝑤) ∈ R|𝑊 | соответственно. Известно несколько способов

оценивания параметров Θ и Φ в модели LDA, отличающиеся, главным образом,

формулой сглаживания частотных оценок вероятностей. Сравнение шести наи­

более известных способов в [77] показало, что оптимизация гиперпараметров

практически нивелирует различия между ними. В данной работе используются
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Рис. 3.1. Регуляризация даёт преимуще­

ство только когда в контроле есть новые

термины (метод CVB0 — это PLSA-GEM

с регуляризацией но без сэмплирования).
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Рис. 3.2. При экономном сэмплировании

пяти тем для каждой пары (𝑑, 𝑤) перплек­

сия не хуже, чем при сэмплировании 𝑛𝑑𝑤

тем. Но 1-3 тем не достаточно.

следующие оценки [81, 82]:

𝜑𝑤𝑡 =
𝑛̂𝑤𝑡 + 𝛽𝑤
𝑛̂𝑡 + 𝛽0

, 𝛽0 =
∑︀
𝑤∈𝑊

𝛽𝑤; 𝜃𝑡𝑑 =
𝑛̂𝑑𝑡 + 𝛼𝑡

𝑛𝑑 + 𝛼0
, 𝛼0 =

∑︀
𝑡∈𝑇

𝛼𝑡. (3.9)

Известно, что LDA обеспечивает существенно меньшие значения контроль­

ной перплексии, чем PLSA [74]. По аналогии с задачами классификации и ре­

грессии отсюда был сделан стандартный вывод, что модель PLSA имеет слиш­

ком много параметров 𝜃𝑡𝑑, 𝜑𝑤𝑡, на которые не накладывается никаких ограниче­

ний, потому возникает переобучение, а в модели LDA эти оценки более устой­

чивы благодаря байесовской регуляризации, поэтому эффективная сложность

модели меньше, и переобучение меньше.

Однако возможна и иная интерпретация этих экспериментов. Оптималь­

ные значения гиперпараметров 𝛼 и 𝛽 в LDA обычно близки к нулю и могут

повлиять только на частотные оценки тем, редких в документе, и терминов,

редких в теме. Полезность таких оценок для выявления тематики представля­

ется сомнительной. Контрольная перплексия лучше у LDA только потому, что

новым терминам, которых не было в обучающей коллекции, назначаются «чуть

более адекватные» априорные оценки вероятностей 𝜑𝑤𝑡 = 𝛽𝑤/𝛽0.

Эта гипотеза была подтверждена в нашем эксперименте. Если коллекцию
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Рис. 3.3. Частое обновление параметров ускоряет сходимость (приведен результат для обоб­

щенного EM-алгоритма с сэмплированием и регуляризацией). Варианты обновлений: после

каждого прохода коллекции, после каждого документа, после каждого термина (𝑑, 𝑤) по всем

𝑛𝑑𝑤 его вхождениям, после каждого вхождения термина, GS — с предварительным умень­

шением счётчиков как в алгоритме сэмплирования Гиббса. Коллекции: RuDis, NIPS. Число

тем |𝑇 | = 100. Параметры регуляризации: 𝛼𝑡 = 0.5, 𝛽𝑤 = 0.01.

разбить на обучающую и контрольную так, чтобы в контрольных документах

новых терминов не было, то регуляризация не даёт никакого выигрыша, и пер­

плексии PLSA и LDA практически совпадают, см. рис. 3.1. Этот результат со­

гласуется с распространённым мнением, что для больших коллекций нет суще­

ственных различий в качестве моделей PLSA и LDA [15–17].

Данные для обучения моделей. Численные эксперименты данной главы

проведены на двух коллекциях, доступных на странице «Коллекции докумен­

тов для тематического моделирования»1. В ходе предварительной обработки

отбрасывались стоп-слова, для русского языка проводилась лемматизация.

Коллекция RuDis содержит |𝐷| = 2000 авторефератов диссертаций на рус­

ском языке; суммарная длина 𝑛 ≈ 8.7 · 106, объём словаря |𝑊 | ≈ 3 · 104. Кон­
1 На вики-ресурсе www.MachineLearning.ru
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трольная коллекция 𝐷′ состоит из 200 авторефератов.

Коллекция NIPS содержит |𝐷| = 1566 текстов статей научной конферен­

ции Neural Information Processing Systems на английском языке; суммарная дли­

на 𝑛 ≈ 2.3·106, объём словаря |𝑊 | ≈ 1.3·104. Контрольная коллекция𝐷′ состоит

из 174 документов.

3.2. Робастные и разреженные тематические модели

Предположение, что редкие и новые термины бесполезны для тематиче­

ской модели, приводит к робастным моделям. Нетривиальным и неожиданным

результатом сравнения робастных и неробастных версий моделей PLSA и LDA

оказывается то, что робастные модели не нуждаются в регуляризации.

Робастная тематическая модель. Формализуем предположение о том, что

лишь некоторые слова в текстах относятся к каким-либо темам, с помощью

вероятностной смеси трёх компонент — тематической, шумовой и фоновой:

𝑝(𝑤 | 𝑑) = 𝑍𝑑𝑤 + 𝛾𝜋𝑑𝑤 + 𝜀𝜋𝑤
1 + 𝛾 + 𝜀

; 𝑍𝑑𝑤 =
∑︁
𝑡∈𝑇

𝜑𝑤𝑡𝜃𝑡𝑑. (3.10)

Шумовая компонента 𝜋𝑑𝑤 ≡ 𝑝ш(𝑤 | 𝑑) — это слова, специфичные для кон­

кретного документа 𝑑, либо редкие термины, относящиеся к темам, слабо пред­

ставленным в данной коллекции. Отнесение шумовых слов к темам загрязня­

ет распределения 𝜑𝑤𝑡 = 𝑝(𝑤 | 𝑡), увеличивает перплексию и искажает тематиче­

скую модель.

Фоновая компонента 𝜋𝑤 ≡ 𝑝ф(𝑤) — это общеупотребительные слова, в част­

ности, стоп-слова, не отброшенные на стадии предварительной обработки. Фо­

новые слова имеют значимые вероятности во многих темах и только мешают

различать темы.

Тематическая компонента 𝑍𝑑𝑤 совпадает с моделью PLSA. Если она пло­

хо объясняет избыточную частоту слова в документе, то слово относится к шу­
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му или фону. Параметры 𝛾 и 𝜀, ограничивающие долю таких слов, связаны

с априорными вероятностями тематической, шумовой и фоновой компонент,

равными 1
1+𝛾+𝜀 ,

𝛾
1+𝛾+𝜀 ,

𝜀
1+𝛾+𝜀 соответственно.

Похожая модель SWB (special words with background) на основе LDA и сэм­

плирования Гиббса предлагалась в [83]. В данной работе робастность рассматри­

вается как ещё одна эвристика, дополняющая обобщённую модель PLSA/LDA,

и экспериментально исследуются её сочетания с другими эвристиками.

Задача максимизации правдоподобия (3.3) для модели (3.10) решена в [27].

По аналогии со стандартным ЕМ-алгоритмом, на E-шаге для каждой пары

(𝑑, 𝑤) вычисляются по формуле Байеса условные вероятности тем 𝑝𝑡𝑑𝑤 = 𝑝(𝑡 | 𝑑, 𝑤),

𝑝𝑡𝑑𝑤 =
𝜑𝑤𝑡𝜃𝑡𝑑

𝑍𝑑𝑤 + 𝛾𝜋𝑑𝑤 + 𝜀𝜋𝑤
, 𝑡 ∈ 𝑇, (3.11)

а также условные вероятности того, что слово 𝑤 является шумом 𝐻𝑑𝑤 и фо­

ном 𝐻 ′
𝑑𝑤:

𝐻𝑑𝑤 =
𝛾𝜋𝑑𝑤

𝑍𝑑𝑤 + 𝛾𝜋𝑑𝑤 + 𝜀𝜋𝑤
; 𝐻 ′

𝑑𝑤 =
𝜀𝜋𝑤

𝑍𝑑𝑤 + 𝛾𝜋𝑑𝑤 + 𝜀𝜋𝑤
. (3.12)

На M-шаге переменные 𝜃𝑡𝑑 и 𝜑𝑤𝑡 вычисляются по прежним формулам

(3.6) и (3.7) с единственным отличием, что 𝑝𝑡𝑑𝑤 вычисляются по новой форму­

ле (3.11). Переменные 𝜋𝑑𝑤 и 𝜋𝑤 вычисляются как частотные оценки условных

вероятностей шума и фона:

𝜋𝑑𝑤 =
𝜈𝑑𝑤
𝜈𝑑
, 𝜈𝑑𝑤 = 𝑛𝑑𝑤𝐻𝑑𝑤, 𝜈𝑑 =

∑︀
𝑤∈𝑑

𝜈𝑑𝑤,

𝜋𝑤 =
𝜈 ′𝑤
𝜈 ′
, 𝜈 ′𝑤 =

∑︀
𝑑∈𝐷

𝑛𝑑𝑤𝐻
′
𝑑𝑤, 𝜈 ′ =

∑︀
𝑤∈𝑊

𝜈 ′𝑤,

где 𝜈𝑑 и 𝜈 ′ — оценки числа шумовых слов в документе 𝑑 и фоновых слов

во всей коллекции. Эти формулы для 𝜋𝑑𝑤 и 𝜋𝑤 называются мультипликатив­

ным М-шагом. Они порождают ту же проблему разреженности, что и перемен­

ные 𝜑𝑤𝑡 и 𝜃𝑡𝑑: если в начальном приближении значение 𝜋𝑑𝑤 или 𝜋𝑤 не равно

нулю, то оно так и останется ненулевым.
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Таблица 3.1. Контрольная перплексия P и оценки апостериорной вероятности шума 𝑝ш и фо­

на 𝑝ф при различных значениях 𝛾 и 𝜀 (после 40 итераций, |𝑇 | = 100).

RuDis, 𝜀 = 0.01: RuDis, 𝛾 = 0.3: NIPS, 𝜀 = 0.01: NIPS, 𝛾 = 0.3:

𝛾 P 𝑝ш

0 1540 0.000

0.001 1434 0.026

0.01 1277 0.090

0.05 1076 0.196

0.1 974 0.266

0.3 805 0.413

0.5 750 0.498

𝜀 P 𝑝ф

0 797 0.000

0.01 794 0.006

0.05 798 0.027

0.1 809 0.049

0.2 823 0.086

0.3 841 0.116

0.5 870 0.165

𝛾 P 𝑝ш

0 2001 0.000

0.001 1763 0.044

0.01 1381 0.152

0.05 991 0.296

0.1 818 0.377

0.3 604 0.527

0.5 525 0.598

𝜀 P 𝑝ф

0 598 0.000

0.01 596 0.005

0.05 605 0.023

0.1 613 0.043

0.2 630 0.079

0.3 640 0.109

0.5 668 0.157

Формула аддитивного М-шага, полученная в [27] из условий Куна–Таккера

задачи (3.3), приводит к автоматическому выбору структуры разреженности

матрицы (𝜋𝑑𝑤)𝐷×𝑊 :

𝜋𝑑𝑤 =

(︂
𝑛𝑑𝑤
𝜈𝑑

− 𝑍𝑑𝑤 + 𝜀𝜋𝑤
𝛾

)︂
+

. (3.13)

Эта формула имеет прозрачную интерпретацию: если термин 𝑤 в докумен­

те 𝑑 встречается существенно чаще, чем предсказывают тематическая и фоно­

вая компоненты модели, то его появление объясняется особенностями данного

документа, и тогда 𝜋𝑑𝑤 > 0.

Обучение робастной модели осуществляется с помощью Алгоритма 4. Ре­

гуляризация вводится заменой частотных оценок (3.6)–(3.7) параметров 𝜑𝑤𝑡,

𝜃𝑡𝑑 на шагах 5, 6, 15 сглаженными оценками (3.9). Сэмплирование вводится

заменой распределения 𝐻̃𝑑𝑤 его эмпирической оценкой, аналогичной (3.8), при

вычислении переменных 𝛿т, 𝛿ш, 𝛿ф (шаги 11, 12, 13).

Зависимость перплексии от параметров 𝛾 и 𝜀, как правило, монотонная,

причём параметр 𝛾 гораздо сильнее влияет на перплексию, чем 𝜀, см. таблицу 3.1.

С ростом 𝛾 перплексия уменьшается, так как компонента шума близка к уни­

граммной модели документа, 𝜋𝑑𝑤 ≈ 𝑛𝑑𝑤/𝑛𝑑, которая наиболее точно предска­
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Рис. 3.4. Зависимость контрольной перплексии от числа итераций для всевозможных сочета­

ний эвристик: D — регуляризация Дирихле (𝛼𝑡 = 0.5, 𝛽𝑤 = 0.01); R — робастность (𝛾 = 0.3,

𝜀 = 0.01); S — сэмплирование (𝑠 = 𝑛𝑑𝑤), P — пропорциональное распределение; |𝑇 | = 100.

Тонкие кривые без точек — перплексия обучающей выборки.

зывает вероятности слов 𝑝(𝑤 | 𝑑), однако не является тематической. С ростом 𝜀

перплексия увеличивается, так как компонента фона близка к униграммной

модели коллекции, 𝜋𝑤 ≈ 𝑛𝑤/𝑛, которая хуже предсказывает вероятности слов

𝑝(𝑤 | 𝑑), чем тематическая модель. Оценки апостериорных вероятностей шума

𝑝ш = 𝜈/𝑛 и фона 𝑝ф = 𝜈 ′/𝑛 также зависят от 𝛾 и 𝜀 монотонно. Следователь­

но, оптимальные значения параметров 𝛾 и 𝜀 должны определяться по внешним

критериям качества той прикладной задачи, для решения которой строится

тематическая модель.

Наиболее важным выводом исследования робастной модели стало то, что

она справляется с переобучение более эффективно, чем регуляризация Дирих­

ле, и не нуждается в дальнейшей регуляризации (см. рис. 3.5).

Комбинирование сэмплирования, регуляризации и робастности. Эв­

ристики сэмплирования/пропорционального распределения (S/P), регуляриза­

ции Дирихле (D) и робастности (R) могут рассматриваться независимо и образо­
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вывать 8 различных алгоритмов. Сочетание SD соответствует LDA-GS. Сочета­

ние P соответствует PLSA-EM. Сочетание SDR соответствует SWB-GS. Однако

возможны и другие новые гибридные модели.

Сравнение всех восьми алгоритмов представлено на рис. 3.4. Оно позволяет

сделать следующие выводы:

1) для обеих задач робастные алгоритмы существенно превосходят неробаст­

ные и гораздо меньше переобучаются;

2) сэмплирование (3.8) немного хуже пропорционального учета всех эле­

ментов распределения 𝑝𝑡𝑑𝑤;

3) сэмплирование без сглаживания может приводить к увеличению пер­

плексии.

Величина переобучения (разность перплексии на обучающей и контроль­

ной выборке) больше зависит от задачи, чем от алгоритма. Сравнение перплек­

сии различных алгоритмов на обучении приводит к тем же качественным выво­

дам, что и сравнение перплексии на контроле. Это приводит к выводу о том, что

в данном случае для сравнения алгоритмов не нужна столь сложная методика

разделения контрольных документов для вычисления перплексии; достаточно

вычислять перплексию только на обучающей выборке.

Упрощённая робастная модель. Недостатком предыдущей модели явля­

ется необходимость подбирать параметры 𝛾, 𝜀 и хранить параметры 𝜋𝑑𝑤, число

которых сопоставимо с размером коллекции. В качестве альтернативы рассмот­

рим упрощённую робастную модель, в которой фоновая компонента отсутству­

ет, а шумовая компонента 𝜋𝑑𝑤 включается только когда 𝑍𝑑𝑤 = 0, то есть когда

термин 𝑤 в документе 𝑑 не является тематическим:

𝑝(𝑤 | 𝑑) = 𝜈𝑑𝑍𝑑𝑤 +
[︀
𝑍𝑑𝑤=0

]︀
𝜋𝑑𝑤, (3.14)

где параметр 𝜈𝑑 определяется из условия нормировки
∑︀
𝑤∈𝑊

𝑝(𝑤 | 𝑑) = 1.

Максимизация правдоподобия (3.3) снова приводит к частотным оценкам



70

условных вероятностей (3.6)–(3.7), но теперь 𝑝𝑡𝑑𝑤 и 𝑛̂𝑑𝑤𝑡 оцениваются только по

тематическим терминам:

𝑛̂𝑑𝑤𝑡 =
[︀
𝑍𝑑𝑤>0

]︀
𝑛𝑑𝑤𝑝𝑡𝑑𝑤.

Оптимальное значение 𝜋𝑑𝑤 достаточно определять только для тех (𝑑, 𝑤),

при которых 𝑍𝑑𝑤 = 0. Оно также выражается аналитически и совпадает с несме­

щённой частотной оценкой условной вероятности 𝑝(𝑤 | 𝑑), называемой также

униграммной оценкой:

𝜋𝑑𝑤 = 𝑛𝑑𝑤/𝑛𝑑.

Нормировочный множитель 𝜈𝑑 равен доле тематических терминов в доку­

менте:

𝜈𝑑 =
∑︁
𝑤∈𝑊

[︀
𝑍𝑑𝑤>0

]︀
𝜋𝑑𝑤 =

1

𝑛𝑑

∑︁
𝑤∈𝑑

[︀
𝑍𝑑𝑤>0

]︀
𝑛𝑑𝑤.

Заметим, что параметры 𝜋𝑑𝑤 и 𝜈𝑑 не нужны для вычисления тематической

компоненты модели — матриц Φ и Θ, но могут понадобиться при вычислении

перплексии (3.2), которая непосредственно зависит от 𝑝(𝑤 | 𝑑).

Упрощённая робастная модель не требует дополнительных затрат памяти

или времени. Поэтому в дальнейшем она будет использоваться во всех случаях,

за исключением робастной модели (3.10), когда возможно обнуление тематиче­

ской компоненты 𝑍𝑑𝑤.

Эвристики разреживания. Гипотеза разреженности предполагает, что кол­

лекция порождается дискретными распределениями 𝜑𝑤𝑡 = 𝑝(𝑤 | 𝑡) и 𝜃𝑡𝑑 = 𝑝(𝑡 | 𝑑),

в которых подавляющее большинство вероятностей равны нулю. Следствием

этого является также и разреженность распределений 𝑝𝑡𝑑𝑤 = 𝑝(𝑡 | 𝑑, 𝑤). Обнуле­

ние значительной доли вероятностей 𝜑𝑤𝑡 и 𝜃𝑡𝑑 позволяет ускорить EM-алгоритм

и хранить тематическую модель в более сжатом виде, открывая возможности

для обработки очень больших коллекций.

Модель PLSA не оптимизирует структуру разреженности распределений

и требует задавать её через начальное приближение. Отдельные значения 𝜑𝑤𝑡
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Рис. 3.6. При разреживании доля нулевых

𝜑𝑤𝑡 и 𝜃𝑡𝑑 (отложена по правой оси) уве­

личивается при монотонном уменьшении

перплексии.

и 𝜃𝑡𝑑 могут в ходе итераций сами собой приближаться к нулю, но, как правило,

их доля недостаточна для получения выигрыша в производительности.

Модель LDA также не является разреженной — априорные распределения

Дирихле запрещают вероятностям 𝜑𝑤𝑡 и 𝜃𝑡𝑑 и гиперпараметрам 𝛽𝑤 и 𝛼𝑡 при­

нимать нулевые значения. При стремлении гиперпараметров к нулю распреде­

ления Дирихле порождают векторы 𝜑𝑡 и 𝜃𝑑, компоненты которых стремятся

к нулю, но никогда не обращаются в нуль.

Известные подходы к разреживанию LDA требуют введения дополнитель­

ных параметров и усложнения EM-алгоритма. В [84] предлагается хранить не

сами значения 𝜑𝑤𝑡 и 𝜃𝑡𝑑, а только их разности с фоновыми распределениями.

В [85] предполагается, что каждая тема описывается распределением Дирих­

ле на подмножестве слов, заданном бинарными переменными 𝑏𝑤𝑡 из распреде­

ления Бернулли. Сглаженность и разреженность регулируется независимо па­

раметрами распределения Дирихле и распределения Бернулли. Недостатком

данной модели является большое число дополнительных скрытых переменных,

которые усложняют обучение. В [86] вводится распределение псевдо-Дирихле,

которое строится путём расширения области определения распределения Дири­
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хле и имеет ограниченную плотность, в то время как распределение Дирихле не

ограничено в случае 𝛼 < 1, что и приводит к запрету нулевых значений 𝜑𝑤𝑡 и 𝜃𝑡𝑑.

В данной работе исследуются различные стратегии принудительного раз­

реживания, когда в конце каждой итерации (полного прохода всей коллек­

ции 𝐷) обнуляется некоторое количество наименьших значений 𝜑𝑤𝑡 и 𝜃𝑡𝑑.

Робастные модели допускают разреженность тематической компоненты

модели и одновременно исключают ситуацию бесконечной перплексии, так как

нулевое значение 𝑍𝑑𝑤 компенсируется ненулевым значением шумовой компонен­

ты 𝑝ш(𝑤 | 𝑑). Чем больше 𝛾, тем более разреженной может быть тематическая

компонента модели. В первом эксперименте с робастным PLSA на каждой ите­

рации принудительно обнулялись 5% наименьших значений 𝜃𝑡𝑑 и 𝜑𝑤𝑡. При этом

разреженность матриц Θ и Φ достигала порядка 90% без существенной потери

качества модели (рис. 3.6).

Далее исследовались следующие стратегии разреживания.

Простая стратегия: в каждом из распределений 𝜑𝑡, 𝜃𝑑 обнуляется задан­

ная доля 𝑟 наименьших ненулевых значений. После обнуления производится пе­

ренормировка распределений. Число обнуляемых значений сокращается от ите­

рации к итерации, поскольку доля берётся от числа ненулевых значений. Об­

нуления прекращаются, когда в распределении остаётся ⌊𝑟−1⌋ ненулевых зна­

чений. Недостатком этой стратегии является стремление к выравниванию до­

ли ненулевых значений во всех распределениях, что представляется довольно

странным ограничением.

Сложная стратегия устраняет этот недостаток. В каждом из распреде­

лений 𝜑𝑡, 𝜃𝑑 обнуляется максимальное число наименьших значений, так, чтобы

оно не превышало 𝑟|𝑊 | и 𝑟|𝑇 | соответственно, и сумма обнуляемых значений

не превышала заданного порога 𝑅𝜑 или 𝑅𝜃 для распределений 𝜑𝑡 или 𝜃𝑑 соот­

ветственно. В экспериментах эта стратегия показала лучшие результаты.

Разреживания включаются, начиная с итерации 𝑖0, чтобы в распределени­

ях правильно выделились малые вероятности, и делаются не на каждой итера­
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ции, чтобы модель успевала восстановить адекватность. В экспериментах раз­

реживания включались на итерациях с номерами 𝑖 = 𝑖0 + 𝑘𝛿, 𝑘 = 1, 2, . . . , где

𝑖0 и 𝛿 — параметры стратегии разреживания.

Разреживание может приводить к обнулению распределения 𝑝(𝑡 | 𝑑, 𝑤), то­

гда термин 𝑤 интерпретируется как нетематический для документа 𝑑. Поэтому

разреживание применяется совместно с робастной моделью (3.10), либо с упро­

щённой робастной моделью (3.14).

Результаты экспериментов приведены на рис. 3.7, 3.8.

При совмещении упрощённой робастной модели, сэмплирования и разре­

живания достигается наименьшая перплексия и одновременно наибольшая раз­

реженность матрицы Φ — до 99.4% для RuDis и 99.6% для NIPS, рис. 3.7.

В робастных алгоритмах с шумом и фоном разреживание почти не влияет

на перплексию и позволяет достигать сопоставимой разреженности, рис. 3.8.

Под «агрессивным» разреживанием понимается уменьшение 𝛿 до 1 или

уменьшение 𝑖0 до 1 или применение сложной стратегии, когда доля обнуляе­

мых значений не уменьшается с итерациями. При агрессивном разреживании

или при использовании стохастического EM-алгоритма возможно разрежива­

ние распределений 𝜑𝑡 до 99%. При числе тем 𝑇 = 100 это означает, что каждый

термин в среднем относится только к одной теме.

3.3. Обсуждение и выводы

Описан широкий класс методов тематического моделирования на базе обоб­

щённого EM-алгоритма и эвристик сглаживания, сэмплирования, частого об­

новления параметров, робастности и разреживания, которые могут сочетаться

в различных комбинациях. В экспериментах на двух текстовых коллекциях по­

лучены следующие выводы.

1. Робастные алгоритмы с разреживанием являются лучшими по крите­

рию контрольной перплексии и не требует введения априорных распределений
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Дирихле.

2. Контрольная перплексия LDA лучше, чем у PLSA не потому, что PLSA

переобучается, а потому, что LDA завышает оценки вероятности редких слов.

При корректном сравнении на больших коллекциях перплексии PLSA и LDA

практически не различаются.

3. Принудительное разреживание в робастных моделях PLSA позволяет

обнулять до 99% параметров без ухудшения контрольной перплексии.

4. Упрощённая робастная модель с разреживанием, в отличие от моде­

ли с фоном и шумом, чётко выделяет в документах нетематические термины,

не требует хранения параметров 𝜋𝑑𝑤, не требует задания параметров 𝛾 и 𝜀,

и почти не увеличивает объём вычислений.

5. Наряду с сэмплированием Гиббса возможны и другие стратегии разре­

живания распределений 𝑝(𝑡 | 𝑑, 𝑤), в частности, сэмплирование небольшого фик­

сированного числа 𝑠 тем и постепенное разреживание путём обнуления неболь­

шой доли наименьших вероятностей.

6. На достаточно больших коллекциях (106 терминов и более) обучающая

и контрольная перплексия ведут себя практически одинаково и приводят к оди­

наковым качественным выводам. Таким образом, нет необходимости вычислять

контрольную перплексию.

Результаты данной главы опубликованы в работах [22], [27], [28].
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Алгоритм 4 Робастный PLSA-GEM.
Вход: коллекция 𝐷, число тем |𝑇 |, начальные приближения Θ, Φ, параметры

𝛾, 𝜀;

Выход: распределения Φ, Θ, Π;

1: инициализировать ∀𝑑 ∈ 𝐷, ∀𝑤 ∈ 𝑊 , ∀𝑡 ∈ 𝑇 :

𝑛̂𝑤𝑡, 𝑛̂𝑑𝑡, 𝑛̂𝑡, 𝑛̂𝑑, 𝑛𝑑𝑤𝑡, 𝜈𝑑𝑤, 𝜈𝑑, 𝜈, 𝜈 ′𝑑𝑤, 𝜈 ′𝑤, 𝜈 ′ := 0;

𝜋𝑑𝑤 := 𝑛𝑑𝑤/𝑛𝑑; 𝜋𝑤 := 𝑛𝑤/𝑛;

2: повторять

3: для всех 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑑

4: если не первый проход коллекции то

5: 𝜑𝑤𝑡 := 𝑛̂𝑤𝑡/𝑛̂𝑡; ∀𝑡 ∈ 𝑇 ;

6: 𝜃𝑡𝑑 := 𝑛̂𝑑𝑡/𝑛̂𝑑; ∀𝑡 ∈ 𝑇 ;

7: 𝜋𝑤 := 𝜈 ′𝑤/𝜈
′;

8: 𝜋𝑑𝑤 := (𝑛𝑑𝑤/𝜈𝑑 − 𝑍𝑑𝑤/𝛾 − 𝜀𝜋𝑤/𝛾)+;

9: 𝑍 := 𝑍𝑑𝑤 + 𝛾𝜋𝑑𝑤 + 𝜀𝜋𝑤;

10: для всех 𝑡 ∈ 𝑇 : 𝑛𝑑𝑤𝑡 > 0 или 𝜑𝑤𝑡𝜃𝑡𝑑 > 0

11: 𝛿т := 𝑛𝑑𝑤𝜑𝑤𝑡𝜃𝑡𝑑/𝑍; увеличить 𝑛̂𝑤𝑡, 𝑛̂𝑑𝑡, 𝑛̂𝑡, 𝑛̂𝑑 на (𝛿т−𝑛𝑑𝑤𝑡); 𝑛𝑑𝑤𝑡 := 𝛿т;

12: 𝛿ш := 𝑛𝑑𝑤𝛾𝜋𝑑𝑤/𝑍; увеличить 𝜈𝑑, 𝜈 на (𝛿ш − 𝜈𝑑𝑤); 𝜈𝑑𝑤 := 𝛿ш;

13: 𝛿ф := 𝑛𝑑𝑤𝜀𝜋𝑤/𝑍; увеличить 𝜈 ′𝑤, 𝜈 ′ на (𝛿ф − 𝜈 ′𝑑𝑤); 𝜈
′
𝑑𝑤 := 𝛿ф;

14: пока Φ, Θ, Π не стабилизируются.

15: обновить 𝜑𝑤𝑡, 𝜃𝑡𝑑, 𝜋𝑤, 𝜋𝑑𝑤 для всех 𝑑, 𝑤, 𝑡;
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Рис. 3.7. Зависимость перплексии (∘) и разреженности матриц Φ (△) и Θ (△) от числа итера­

ций для EM-алгоритма c сэмплированием и без при различных параметрах разреживания,

обозначаемых 𝑖0:𝛿:𝑟, th:𝑅𝜃, ph:𝑅𝜑. Число тем |𝑇 | = 100.
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Рис. 3.8. Зависимость перплексии (∘) и разреженности матриц Φ (△) и Θ (△) от числа итера­

ций робастного EM-алгоритма с сэмплированием и без с параметрами робастности 𝛾 = 0.3,

𝜀 = 0.01 и параметрами разреживания 𝑖0:𝛿:𝑟, th:𝑅𝜃, ph:𝑅𝜑. Число тем |𝑇 | = 100.
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Глава 4

Аддитивная регуляризация тематических

моделей

В данной главе рассматривается альтернатива байесовскому подходу в ве­

роятностном тематическом моделировании — аддитивная регуляризация те­

матических моделей (Additive Regularization of Topic Models, ARTM) [20]. Это

приложение классической теории регуляризации некорректно поставленных за­

дач [87] к тематическому моделированию. Обычно построение тематической

модели сводится к задаче стохастического матричного разложения. В общем

случае она имеет бесконечно много решений, то есть является некорректно по­

ставленной. Для её регуляризации к логарифму правдоподобия добавляются

штрафные слагаемые, формализующие дополнительные требования к модели.

В частности, предлагается модель предметных и фоновых тем, позволяющая

увеличивать интерпретируемость тем с помощью комбинации трех регуляриза­

торов, воздействующих на блоки матриц Φ и Θ. Предлагается методика мно­

гокритериального оценивания качества модели и экспериментального подбора

оптимальной траектории регуляризации.

ARTM имеет несколько принципиальных отличий от байесовского подхо­

да, который в настоящее время является основным в вероятностном темати­

ческом моделировании. Во-первых, не ставится задача построения чисто веро­

ятностной модели порождения текста. Многие лингвистические ограничения

легче формализуются с помощью оптимизационных критериев, чем через апри­

орные распределения. Распределение Дирихле утрачивает роль «главного ре­

гуляризатора» и уступает место разнообразным проблемно-ориентированным

регуляризаторам. Во-вторых, вместо байесовского вывода используется более

простой подход — регуляризованный ЕМ-алгоритм. Построение многоцелевых

тематических моделей [88] существенно упрощается благодаря аддитивности
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регуляризаторов. Добавление регуляризатора требует его дифференцирования

по параметрам и небольшой модификации M-шага в готовом EM-подобном ал­

горитме.

ARTM отличается также и от ранее предлагавшихся методов регуляриза­

ции [86, 89–91]. В каждом из них использовался какой-либо конкретный регу­

ляризатор: KL-дивергенция, распределение Дирихле, 𝐿1- или 𝐿2-норма.

В данной главе предлагаются общие методы регуляризации многоцелевых

тематических моделей и описывается набор регуляризаторов, полезных для ре­

шения прикладных задач.

В разделе 4.1 вводится аддитивная регуляризация тематических моделей,

и обосновывается формула регуляризованного M-шага. Рассматриваются регу­

ляризаторы для сглаживания, разреживания, частичного обучения, декоррели­

рования, улучшения когерентности.

В разделе 4.2 иллюстрируется применение ARTM для улучшения интер­

претируемости тематической модели. Рассматривается проблема комбинирова­

ния регуляризаторов и вводится понятие траектории регуляризации. Экспери­

менты показывают, что комбинирование регуляризаторов приводит к улучше­

нию тематической модели по совокупности критериев.

В разделе 4.3 предлагается регуляризатор автоматического отбора тем. Ис­

следуется качество его работы на синтетичесих и реальных данных, а также в

комбинации с ранее рассмотренными регуляризаторами повышения интерпре­

тируемости.

В разделе 4.4 приводится обсуждение результатов и основные выводы.

4.1. Подход аддитивной регуляризации

Правдоподобие (3.3) зависит только от произведения ΦΘ, которое опреде­

лено с точностью до линейного преобразования: ΦΘ = (Φ𝑆)(𝑆−1Θ), при усло­

вии, что матрицы Φ′ = Φ𝑆 и Θ′ = 𝑆−1Θ также стохастические. Выбор преоб­
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разования 𝑆 в EM-подобных алгоритмах никак не контролируется и зависит

от случайного начального приближения.

Допустим, что наряду с правдоподобием (3.3) требуется максимизировать

ещё 𝑟 критериев𝑅𝑖(Φ,Θ), 𝑖 = 1, . . . , 𝑟, называемых регуляризаторами [87]. Для

многокритериальной оптимизации будем максимизировать линейную комбина­

цию критериев 𝐿(Φ,Θ) и 𝑅𝑖(Φ,Θ) с неотрицательными коэффициентами регу­

ляризации 𝜏𝑖:

𝑅(Φ,Θ) =
𝑟∑︁

𝑖=1

𝜏𝑖𝑅𝑖(Φ,Θ), 𝐿(Φ,Θ) +𝑅(Φ,Θ) → max
Φ,Θ

; (4.1)∑︁
𝑤∈𝑊

𝜑𝑤𝑡 = 1, 𝜑𝑤𝑡 > 0;
∑︁
𝑡∈𝑇

𝜃𝑡𝑑 = 1, 𝜃𝑡𝑑 > 0. (4.2)

Введем оператор norm, который преобразует произвольный заданный век­

тор (𝑥𝑖)𝑖∈𝐼 в вектор вероятностей (𝑝𝑖)𝑖∈𝐼 дискретного распределения с помощью

обнуления отрицательных элементов и последующей нормировки:

𝑝𝑖 = norm
𝑖∈𝐼

(𝑥𝑖) =
max{𝑥𝑖, 0}∑︀

𝑖∈𝐼
max{𝑥𝑖, 0}

.

Если 𝑥𝑖 6 0 для всех 𝑖 ∈ 𝐼, то результатом оператора norm по определению

считается нулевой вектор.

В работе [24] доказана теорема о необходимых условиях локального экс­

тремума задачи (4.1), (4.2).

Теорема 2. Пусть функция 𝑅(Φ,Θ) непрерывно дифференцируема. Тогда точ­

ка (Φ,Θ) локального экстремума задачи (4.1), (4.2), удовлетворяет системе

уравнений со вспомогательными переменными 𝑝𝑡𝑑𝑤 = 𝑝(𝑡|𝑑, 𝑤):

𝑝𝑡𝑑𝑤 =
𝜑𝑤𝑡𝜃𝑡𝑑∑︀
𝑠∈𝑇 𝜑𝑤𝑠𝜃𝑠𝑑

; (4.3)

𝜑𝑤𝑡 = norm
𝑤∈𝑊

(︂
𝑛𝑤𝑡 + 𝜑𝑤𝑡

𝜕𝑅

𝜕𝜑𝑤𝑡

)︂
; 𝑛𝑤𝑡 =

∑︁
𝑑∈𝐷

𝑛𝑑𝑤𝑝𝑡𝑑𝑤; (4.4)

𝜃𝑡𝑑 = norm
𝑡∈𝑇

(︂
𝑛𝑡𝑑 + 𝜃𝑡𝑑

𝜕𝑅

𝜕𝜃𝑡𝑑

)︂
; 𝑛𝑡𝑑 =

∑︁
𝑤∈𝑑

𝑛𝑑𝑤𝑝𝑡𝑑𝑤. (4.5)

за исключением нулевых столбцов Φ, Θ в решении данной системы.
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Доказательство. Выведем уравнения (4.4) для 𝜑𝑤𝑡. Уравнения (4.5) для 𝜃𝑡𝑑

выводятся аналогично.

Запишем необходимые условия локального экстремума Каруша-Куна-Так­

кера для задачи (4.1), (4.2):∑︁
𝑑∈𝐷

𝑛𝑑𝑤
𝜃𝑡𝑑

𝑝(𝑤 | 𝑑)
+

𝜕𝑅

𝜕𝜑𝑤𝑡⏟  ⏞  
𝑋𝑤𝑡

= 𝜆𝑡 − 𝜆𝑤𝑡; 𝜆𝑤𝑡 > 0; 𝜆𝑤𝑡𝜑𝑤𝑡 = 0; (4.6)

где 𝜆𝑡 and 𝜆𝑤𝑡 — множители Лагранжа для ограничений нормировки и неот­

рицательности соответственно. Умножим обе части первого равенства на 𝜑𝑤𝑡 и

выделим вспомогательные переменные 𝑝𝑡𝑑𝑤:

𝜑𝑤𝑡𝜆𝑡 = 𝜑𝑤𝑡𝑋𝑤𝑡 =
∑︁
𝑑∈𝐷

𝑛𝑑𝑤𝑝𝑡𝑑𝑤 + 𝜑𝑤𝑡
𝜕𝑅

𝜕𝜑𝑤𝑡
= 𝑛𝑤𝑡 + 𝜑𝑤𝑡

𝜕𝑅

𝜕𝜑𝑤𝑡
. (4.7)

Фиксируем некоторую тему 𝑡. Если для всех 𝑤 ∈ 𝑊 значение 𝑋𝑤𝑡 6 0,

то будем считать такую тему вырожденной и исключим ее из модели, положив

𝜑𝑤𝑡 = 0, ∀𝑤 ∈ 𝑊 .

Иначе существует слово 𝑢 такое, что значение 𝑋𝑢𝑡 > 0. Далее рассмотрим

два случая для некоторого слова 𝑤 ∈ 𝑊 . Если 𝑋𝑤𝑡 6 0, то 𝜆𝑤𝑡 = 𝜆𝑡−𝑋𝑤𝑡 > 0, и

из условия дополняющей нежесткости 𝜑𝑤𝑡 = 0. Если 𝑋𝑤𝑡 > 0, то из (4.7) имеем

𝜑𝑤𝑡𝜆𝑡 = 𝜑𝑤𝑡𝑋𝑤𝑡. Объединяя два случая, запишем:

𝜑𝑤𝑡𝜆𝑡 = max

(︂
0, 𝑛𝑤𝑡 + 𝜑𝑤𝑡

𝜕𝑅

𝜕𝜑𝑤𝑡

)︂
. (4.8)

Просуммируем обе части уравнения по всем словам 𝑤 ∈ 𝑊 :

𝜆𝑡 =
∑︁
𝑤∈𝑊

max

(︂
0, 𝑛𝑤𝑡 + 𝜑𝑤𝑡

𝜕𝑅

𝜕𝜑𝑤𝑡

)︂
. (4.9)

Наконец, получим формулу M-шага (4.4), выражая 𝜑𝑤𝑡 из (4.8) и (4.9).

Решение системы уравнений (4.3)–(4.5) методом простых итераций соответ­

ствует регуляризованному EM-алгоритму. В нём сохраняется E-шаг (3.5), а фор­

мулы M-шага заменяются регуляризованными уравнениями (4.4)–(4.5). Таким



82

образом, EM-алгоритм для обучения регуляризованной модели может быть реа­

лизован путём незначительной модификации любого EM-подобного алгоритма.

В частности, в Алгоритме 1 достаточно заменить шаги 7 и 8 в соответствии

с уравнениями (4.4)–(4.5).

Замечание о вырожденности. Будем называть тему 𝑡 вырожденной, если

𝑛𝑤𝑡 + 𝜑𝑤𝑡
𝜕𝑅

𝜕𝜑𝑤𝑡
6 0 для всех 𝑤 ∈ 𝑊.

Уравнение (4.4) даёт в этом случае нулевой вектор, который не удовлетворяет

требованию нормировки, не является условным распределением 𝜑𝑤𝑡 = 𝑝(𝑤 | 𝑡),

и формально не может являться решением задачи (4.1), (4.2). Поэтому вырож­

денную тему приходится исключать из модели. Сокращение числа тем может

быть желательным побочным эффектом регуляризации.

Аналогично, будем называть документ 𝑑 вырожденным, если

𝑛𝑡𝑑 + 𝜃𝑡𝑑
𝜕𝑅

𝜕𝜃𝑡𝑑
6 0 для всех 𝑡 ∈ 𝑇.

Вырожденность документа может означать, что модель не в состоянии его опи­

сать, например, если он слишком короткий или не соответствует тематике кол­

лекции. Вырожденный документ фактически исключается из коллекции.

Вырожденность является следствием чрезмерного разреживающего воз­

действия регуляризатора 𝑅 на параметры модели. На практике вырожденность

возникает довольно редко. Если вырожденность нежелательна, то её можно из­

бежать путём уменьшения коэффициента регуляризации. При постепенном его

уменьшении наступает момент, когда условие вырожденности темы перестаёт

выполняться хотя бы для одного терма (или, соответственно, условие вырож­

денности документа перестаёт выполняться хотя бы для одной темы), и нулевой

столбец в матрице решения переходит в ненулевой, удовлетворяющий необхо­

димым условиям экстремума по теореме 2.
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Примеры регуляризаторов. Далее пересматриваются тематические моде­

ли, ранее разработанные в рамках байесовского подхода. Для каждой из них

удаётся найти соответствующий регуляризатор, который по Теореме 2 приводит

к тому же самому или очень похожему алгоритму обучения модели. По срав­

нению с байесовским подходом, ARTM радикально упрощает вывод алгоритма

и позволяет комбинировать регуляризаторы в произвольных сочетаниях.

Мы будем использовать дивергенцию Кульбака–Лейблера (относительную

энтропию) как меру различия двух дискретных распределений (𝑝𝑖)
𝑛
𝑖=1 и (𝑞𝑖)

𝑛
𝑖=1:

KL(𝑝‖𝑞) ≡ KL𝑖(𝑝𝑖‖𝑞𝑖) =
𝑛∑︁

𝑖=1

𝑝𝑖 ln
𝑝𝑖
𝑞𝑖
.

Минимизация KL-дивергенции эквивалентна максимизации правдоподобия мо­

дели распределения 𝑞 по эмпирическому распределению 𝑝.

Сглаживающий регуляризатор и модель LDA. Потребуем, чтобы рас­

пределения 𝜑𝑡 и 𝜃𝑑 были близки по дивергенции Кульбака–Лейблера к заданным

распределениям 𝛽 = (𝛽𝑤)𝑤∈𝑊 и 𝛼 = (𝛼𝑡)𝑡∈𝑇 соответственно:∑︁
𝑡∈𝑇

KL𝑤(𝛽𝑤‖𝜑𝑤𝑡) → min
Φ
,

∑︁
𝑑∈𝐷

KL𝑡(𝛼𝑡‖𝜃𝑡𝑑) → min
Θ
.

Складывая два функционала с коэффициентами 𝛽0, 𝛼0 и удаляя из суммы кон­

станты, получим регуляризатор

𝑅(Φ,Θ) = 𝛽0
∑︁
𝑡∈𝑇

∑︁
𝑤∈𝑊

𝛽𝑤 ln𝜑𝑤𝑡 + 𝛼0

∑︁
𝑑∈𝐷

∑︁
𝑡∈𝑇

𝛼𝑡 ln 𝜃𝑡𝑑 → max .

Применение общих формул (4.4) и (4.5) даёт то же выражение для M-шага (3.9),

что и модель LDA:

𝜑𝑤𝑡 = norm
𝑤∈𝑊

(︀
𝑛𝑤𝑡 + 𝛽0𝛽𝑤

)︀
, 𝜃𝑡𝑑 = norm

𝑡∈𝑇

(︀
𝑛𝑡𝑑 + 𝛼0𝛼𝑡

)︀
,

если в качестве гиперпараметров взять дискретные распределения 𝛽 и 𝛼, умно­

женные на коэффициенты регуляризации: (𝛽0𝛽𝑡)𝑡∈𝑇 , (𝛼0𝛼𝑤)𝑤∈𝑊 .

Интерпретация регуляризатора через KL-дивергенцию представляется не

менее естественной, чем через априорное распределение Дирихле.



84

Разреживающий регуляризатор. Предположим, что каждый документ

и каждый термин связан с небольшим числом тем. Тогда среди вероятностей

𝜑𝑤𝑡 и 𝜃𝑡𝑑 должно быть много нулевых. При построении тематических моделей

больших коллекций с большим числом тем сильная разреженность матриц Φ,Θ

помогает сократить затраты памяти и времени.

Чем сильнее разрежено распределение, тем меньше его энтропия. Макси­

мальной энтропией обладает равномерное распределение. Поэтому будем макси­

мизировать KL-дивергенцию между модельными распределениями 𝜑𝑡, 𝜃𝑑 и за­

данными распределениями 𝛽 = (𝛽𝑤)𝑤∈𝑊 , 𝛼 = (𝛼𝑡)𝑡∈𝑇 , например, равномерны­

ми:

𝑅(Φ,Θ) = −𝛽0
∑︁
𝑡∈𝑇

∑︁
𝑤∈𝑊

𝛽𝑤 ln𝜑𝑤𝑡 − 𝛼0

∑︁
𝑑∈𝐷

∑︁
𝑡∈𝑇

𝛼𝑡 ln 𝜃𝑡𝑑 → max . (4.10)

Формулы M-шага, согласно (4.4) и (4.5), отличаются от сглаживающего

регуляризатора знаком параметра и приводят к разреживанию распределений:

𝜑𝑤𝑡 = norm
𝑤∈𝑊

(︀
𝑛𝑤𝑡 − 𝛽0𝛽𝑤

)︀
, 𝜃𝑡𝑑 = norm

𝑡∈𝑇

(︀
𝑛𝑡𝑑 − 𝛼0𝛼𝑡

)︀
.

Идея энтропийной регуляризации была предложена в динамической тема­

тической модели PLSA для разреживания распределений тем во времени при

обработке видеопотоков [92]. В данной задаче документами являются видеоза­

писи, терминами — признаки на изображениях, темами — появление определён­

ного объекта в течение определённого времени, например, проезд автомобиля.

Однако возможность применения этой же техники для разреживания распре­

делений 𝜑𝑡 и 𝜃𝑑 осталась незамеченной.

Многие исследования, направленные на разреживание модели LDA, приво­

дят к чрезмерно сложным конструкциям [84–86, 93, 94], поскольку существует

внутреннее противоречие между требованием разреженности и свойством рас­

пределения Дирихле не допускать нулевых вероятностей. Наш подход к разре­

живанию представляется более простым и естественным. Заметим также, что
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сглаживание и разреживание описываются одинаково, если не вводить ограни­

чений на знаки параметров 𝛽𝑤, 𝛼𝑡.

Сглаживающий регуляризатор для частичного обучения. Для улуч­

шения интерпретируемости тематической модели могут задаваться обучающие

данные для части документов или части тем.

Пусть для документов 𝑑 ∈ 𝐷0 известно, что они относятся к темам 𝑇𝑑 ⊂ 𝑇 ,

для тем 𝑡 ∈ 𝑇0 известно, что к ним относятся термины 𝑊𝑡 ⊂ 𝑊 . Введём регуля­

ризатор, минимизирующий сумму KL-дивергенций между 𝜑𝑤𝑡 и равномерными

распределениями на подмножествах терминов 𝛽𝑤𝑡 = 1
|𝑊𝑡| [𝑤 ∈ 𝑊𝑡], а также меж­

ду 𝜃𝑡𝑑 и равномерными распределениями на подмножествах тем 𝛼𝑡𝑑 =
1

|𝑇𝑑| [𝑡 ∈ 𝑇𝑑]:

𝑅(Φ,Θ) = 𝛽0
∑︁
𝑡∈𝑇0

∑︁
𝑤∈𝑊

𝛽𝑤𝑡 ln𝜑𝑤𝑡 + 𝛼0

∑︁
𝑑∈𝐷0

∑︁
𝑡∈𝑇

𝛼𝑡𝑑 ln 𝜃𝑡𝑑 → max .

Формулы M-шага, согласно (4.4) и (4.5), принимают вид

𝜑𝑤𝑡 = norm
𝑤∈𝑊

(︀
𝑛𝑤𝑡 + 𝛽0𝛽𝑤𝑡

)︀
[𝑡 ∈ 𝑇0];

𝜃𝑡𝑑 = norm
𝑡∈𝑇

(︀
𝑛𝑡𝑑 + 𝛼0𝛼𝑡𝑑

)︀
[𝑑 ∈ 𝐷0].

Это тоже вариант сглаживания, и ещё одно обобщение LDA, но теперь век­

торы 𝛽, 𝛼 различны для распределений 𝜑𝑡, 𝜃𝑑 и зависят от обучающих данных.

Декоррелирующий регуляризатор для тем. Считается, что повышение

различности тем улучшает интерпретируемость модели [95]. Регуляризатор, ми­

нимизирующий ковариации между вектор-столбцами 𝜑𝑡, 𝜑𝑠,

𝑅(Φ) = −𝛾
∑︁
𝑡∈𝑇

∑︁
𝑠∈𝑇∖𝑡

∑︁
𝑤∈𝑊

𝜑𝑤𝑡𝜑𝑤𝑠 → max,

приводит к формуле M-шага

𝜑𝑤𝑡 = norm
𝑤∈𝑊

(︁
𝑛𝑤𝑡 − 𝛾𝜑𝑤𝑡

∑︁
𝑠∈𝑇∖𝑡

𝜑𝑤𝑠

)︁
.
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Согласно этой формуле, вероятности 𝜑𝑤𝑡 наиболее значимых тем слова 𝑤

в ходе итераций становятся ещё больше. Вероятности менее значимых тем по­

степенно уменьшаются и могут обращаться в нуль. Таким образом, данный

регуляризатор также является разреживающим. Кроме того, он обладает до­

полнительным полезным свойством группировать стоп-слова в отдельные те­

мы [95].

Максимизация когерентности. Тема называется когерентной, если терми­

ны, наиболее частые в данной теме, неслучайно часто совместно встречаются

рядом в документах коллекции [96, 97]. Когерентность может оцениваться как

по самой коллекции 𝐷 [98], так и по сторонней коллекции, например, по Вики­

педии [99]. Средняя когерентность тем считается хорошей мерой интерпретиру­

емости тематической модели [97].

Пусть заданы оценки совместной встречаемости 𝐶𝑤𝑣 = 𝑝(𝑤 | 𝑣) для пар тер­

минов (𝑤, 𝑣) ∈ 𝑊 2. Обычно 𝐶𝑤𝑣 оценивают как долю документов, содержащих

термин 𝑣, в которых термин 𝑤 встречается не далее чем через 10 слов от 𝑣.

Запишем по формуле полной вероятности условную вероятность 𝑝(𝑤 | 𝑡)

через условные вероятности 𝜑𝑣𝑡 = 𝑝(𝑣 | 𝑡) всех терминов 𝑣, когерентных с 𝑤:

𝑝(𝑤 | 𝑡) =
∑︁

𝑣∈𝑊∖𝑤

𝐶𝑤𝑣𝜑𝑣𝑡 =
∑︁

𝑣∈𝑊∖𝑤

𝐶𝑤𝑣𝑛𝑣𝑡
𝑛𝑡

.

Введём регуляризатор, требующий, чтобы оценка 𝑝(𝑤 | 𝑡) была согласована

с тематической моделью, то есть близка к 𝜑𝑤𝑡 по KL-дивергенции:

𝑅(Φ) = 𝜏
∑︁
𝑡∈𝑇

𝑛𝑡
∑︁
𝑤∈𝑊

𝑝(𝑤 | 𝑡) ln𝜑𝑤𝑡 → max .

Формула M-шага, согласно (4.4), принимает вид

𝜑𝑤𝑡 = norm
𝑤∈𝑊

(︁
𝑛𝑤𝑡 + 𝜏

∑︁
𝑣∈𝑊∖𝑤

𝐶𝑤𝑣𝑛𝑣𝑡

)︁
.

Эта же формула предлагалась в [98] для модели LDA и алгоритма сэмпли­

рования Гиббса, с более сложным обоснованием через обобщённую урновую
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схему Пойя, и более сложной эвристической оценкой 𝐶𝑤𝑣.

В работе [99] предлагалось использовать другой регуляризатор:

𝑅(Φ) = 𝜏
∑︁
𝑡∈𝑇

ln
∑︁

𝑢,𝑣∈𝑊

𝐶𝑢𝑣𝜑𝑢𝑡𝜑𝑣𝑡 → max,

и другую оценку совместной встречаемости 𝐶𝑢𝑣 = 𝑁𝑢𝑣

[︀
PMI(𝑢, 𝑣) > 0

]︀
, где𝑁𝑢𝑣 —

число документов, в которых термины 𝑢, 𝑣 хотя бы один раз встречаются ря­

дом (не далее, чем через 10 слов), PMI(𝑢, 𝑣) = ln |𝐷|𝑁𝑢𝑣

𝑁𝑢𝑁𝑣
— поточечная взаимная

информация (pointwise mutual information), 𝑁𝑢 — число документов, в которых

термин 𝑢 встречается хотя бы один раз.

Таким образом, в литературе пока отсутствует единый подход к оптимиза­

ции когерентности. Известные подходы легко формализуются в рамках ARTM

и не требуют введения априорных распределений Дирихле.

4.2. Разреженность и интерпретируемость тем

Интерпретируемость тематической модели является плохо формализуемым

требованием. Содержательно оно означает, что по спискам наиболее частотных

слов и документов темы эксперт может понять, о чём эта тема, и дать ей адек­

ватное название. Свойство интерпретируемости важно в информационно-поис­

ковых системах для систематизации и визуализации результатов тематического

поиска или категоризации документов.

Большинство существующих методов оценивания интерпретируемости ос­

новано на привлечении экспертов-асессоров. В [100] экспертам предлагалось

непосредственно оценивать полезность тем по трёхбалльной шкале. В методе

интрузий [101] для каждой найденной темы составляется список из 10 наибо­

лее частотных слов, в который внедряется одно случайное слово. Тема счита­

ется интерпретируемой, если подавляющее большинство экспертов правильно

указывают лишнее слово. Экспертные подходы необходимы на стадии исследо­

ваний, но они затрудняют автоматическое построение тематических моделей.
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В серии работ [96, 96, 98, 100] удалось найти величину, которая вычисляется

по коллекции автоматически и хорошо коррелирует с экспертными оценками

интерпретируемости. Это когерентность (coherence), оценивающая, насколько

часто наиболее вероятные слова темы встречаются рядом в документах данной

коллекции или во внешней политематической коллекции, такой, как Википедия.

Когерентность на сегодняшний день остается основной мерой интерпретируемо­

сти тематических моделей, вычисляемой автоматически.

В данной работе предлагается другой подход к формализации понятия ин­

терпретируемости и вводятся дополнительные меры интерпретируемости, так­

же не требующие привлечения асессоров. Предполагается, что интерпретируе­

мая тема должна содержать лексическое ядро — множество слов, характерных

для определённой предметной области, которые часто употребляются рядом

в документах, с большой вероятностью употребляются в данной теме и практи­

чески не употребляются в других темах. Отсюда следует, что из бесконечного

множества стохастических матричных разложений 𝐹 ≈ ΦΘ нас больше всего

интересуют те, в которых матрицы Φ и Θ обладают следующей структурой

разреженности. Множество тем разбивается на два подмножества, 𝑇 = 𝑆 ⊔ 𝐵:

предметные темы 𝑆 и фоновые темы 𝐵.

Предметные темы 𝑡 ∈ 𝑆 содержат термины предметных областей. Их рас­

пределения 𝑝(𝑤 | 𝑡) разрежены и существенно различны (декоррелированы).

Распределения 𝑝(𝑑 | 𝑡) также разрежены, так как каждая предметная тема при­

сутствует в относительно небольшой доле документов.

Фоновые темы 𝑡 ∈ 𝐵 содержат слова общей лексики, которых не должно

быть в предметных темах. Их распределения 𝑝(𝑤 | 𝑡) и 𝑝(𝑑 | 𝑡) сглажены, так

как эти слова присутствуют в большинстве документов. Тематическую модель

с фоновыми темами можно рассматривать как обобщение робастных моделей,

рассмотренных в третьей главе, в которых использовалось только одно фоновое

распределение.
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Комбинирование регуляризаторов. Для обеспечения требуемой структу­

ры разреженности матриц Φ и Θ с предметными и фоновыми темами предла­

гается комбинация из пяти регуляризаторов: сглаживание фоновых тем в мат­

рицах Φ и Θ, разреживание предметных тем в матрицах Φ и Θ, и декоррелиро­

вание предметных тем в матрице Φ:

𝑅(Φ,Θ) =− 𝛽0
∑︁
𝑡∈𝑆

∑︁
𝑤∈𝑊

𝛽𝑤 ln𝜑𝑤𝑡 − 𝛼0

∑︁
𝑑∈𝐷

∑︁
𝑡∈𝑆

𝛼𝑡 ln 𝜃𝑡𝑑

+ 𝛽1
∑︁
𝑡∈𝐵

∑︁
𝑤∈𝑊

𝛽𝑤 ln𝜑𝑤𝑡 + 𝛼1

∑︁
𝑑∈𝐷

∑︁
𝑡∈𝐵

𝛼𝑡 ln 𝜃𝑡𝑑

− 𝛾
∑︁
𝑡∈𝑇

∑︁
𝑠∈𝑇∖𝑡

∑︁
𝑤∈𝑊

𝜑𝑤𝑡𝜑𝑤𝑠 → max .

где в качестве фонового распределения 𝛽 можно брать либо равномерное рас­

пределение, либо частоты слов в коллекции 𝛽𝑤 = 𝑛𝑤/𝑛; в качестве 𝛼 естественно

использовать равномерное распределение. Формулы M-шага для комбинирован­

ной модели выписываются согласно (4.4), (4.5):

𝜑𝑤𝑡 = norm
𝑤∈𝑊

(︁
𝑛𝑤𝑡 − 𝛽0 𝛽𝑤[𝑡∈𝑆]⏟  ⏞  

разреживание
предметных

тем

+ 𝛽1 𝛽𝑤[𝑡∈𝐵]⏟  ⏞  
сглаживание

фоновых
тем

− 𝛾 [𝑡∈𝑆] 𝜑𝑤𝑡
∑︁
𝑠∈𝑆∖𝑡

𝜑𝑤𝑠⏟  ⏞  
декоррелирование

)︁
;

𝜃𝑡𝑑 = norm
𝑡∈𝑇

(︁
𝑛𝑡𝑑 − 𝛼0 𝛼𝑡[𝑡∈𝑆]⏟  ⏞  

разреживание
предметных

тем

+ 𝛼1 𝛼𝑡[𝑡∈𝐵]⏟  ⏞  
сглаживание

фоновых
тем

)︁
.

Траектории регуляризации. При линейном комбинировании регуляриза­

торов 𝑅𝑖 возникает проблема выбора вектора коэффициентов 𝜏 = (𝜏𝑖)
𝑟
𝑖=1. Эф­

фективный способ их оптимизации применяется в эластичных сетях (elastic net)

для задач регрессии и классификации [102], однако он подходит только для ком­

бинирования 𝐿1 и 𝐿2-регуляризаторов. В тематическом моделировании разно­

образие регуляризаторов гораздо больше. При чрезмерно больших значениях

коэффициентов некоторые регуляризаторы могут конфликтовать друг с дру­

гом, ухудшать сходимость или приводить к вырождению модели. С другой сто­

роны, при чрезмерно низких значениях коэффициентов регуляризаторы могут
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утраичивать свое влияние на модель. В теории решения некорректно постав­

ленных обратных задач [87] известно, что для достижения множества решений

коэффициенты регуляризации должны в ходе итераций сходиться к нулю. Од­

нако оптимальный темп этой сходимости существенно зависит от конкретной

задачи, и на практике его приходится подбирать экспериментально.

Будем называть траекторией регуляризатора функцию его коэффициен­

та регуляризации от номера итерации. Будем подбирать траектории регуляриза­

торов экспериментальным путём, анализируя их влияние на критерии качества

модели в ходе итераций.

Измерение качества модели. Поскольку задача построения тематической

модели является многокритериальной, то и измерение качества модели долж­

но вестись по совокупности критериев. Не претендуя на полноту, перечислим

критерии, которые мы использовали в наших экспериментах.

Контрольная перплексия P(𝐷′, 𝑝𝐷) вычисляется по контрольной выбор­

ке документов 𝐷′ для модели 𝑝𝐷, построенной по обучающей выборке докумен­

тов 𝐷, не пересекающейся с 𝐷′. В наших экспериментах использовалось случай­

ное разбиение коллекции в пропорции |𝐷| : |𝐷′| = 9 : 1. Каждый контрольный

документ 𝑑 разбивался случайным образом на две половины: по первой оце­

нивались параметры 𝜃𝑑, по второй вычислялась перплексия. Если во второй

половине оказывались термины, которых не было в обучающей коллекции 𝐷,

то они игнорировались. Параметры 𝜑𝑡 оценивались только по обучающей кол­

лекции.

Разреженность модели измерялась долей SΦ и SΘ нулевых элементов,

соответствующих предметным темам в матрицах Φ и Θ,

Доля фоновых слов во всей коллекции

B =
1

𝑛

∑︁
𝑑∈𝐷

∑︁
𝑤∈𝑑

∑︁
𝑡∈𝐵

𝑛𝑑𝑤𝑝(𝑡 | 𝑑, 𝑤)

принимает значения от 0 до 1. Значения, близкие к 0, говорят о том, что мо­
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дель не способна отделять слова общей лексики от специальной терминологии.

Значения, близкие к 1, свидетельствуют о вырождении тематической модели,

например, в результате чрезмерного разреживания.

Интерпретируемость тематической модели оценивалась несколькими кри­

териями. Определим ядро 𝑊𝑡 темы 𝑡 как множество терминов, которые имеют

высокую условную вероятность 𝑝(𝑡 |𝑤) = 𝜑𝑤𝑡
𝑛𝑡

𝑛𝑤
для данной темы:

𝑊𝑡 =
{︀
𝑤 ∈ 𝑊

⃒⃒
𝑝(𝑡 |𝑤) > 0.25

}︀
.

По ядру определим три показателя интерпретируемости темы 𝑡:

pur𝑡 =
∑︀

𝑤∈𝑊𝑡

𝑝(𝑤 | 𝑡) — чистота темы (чем выше, тем лучше);

con𝑡 =
1

|𝑊𝑡|
∑︀

𝑤∈𝑊𝑡

𝑝(𝑡 |𝑤) — контрастность темы (чем выше, тем лучше);

ker𝑡 = |𝑊𝑡| — размер ядра (ориентировочный оптимум |𝑊 |
|𝑇 | ).

Когерентность темы 𝑡 измерялась как средняя поточечная взаимная

информация по всем парам 𝑘 наиболее вероятных слов темы 𝑡 [96]:

C 𝑘
𝑡 =

2

𝑘(𝑘 − 1)

𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖

PMI(𝑤𝑖, 𝑤𝑗),

где 𝑤𝑖 — 𝑖-й термин в порядке убывания 𝜑𝑤𝑡. Число 𝑘 в большинстве работ

полагают равным 10. Интересно оценить когерентность более глубоко, поэтому

мы вычисляли ещё две оценки когерентности модели: при 𝑘 = 100 и по ядрам

тем.

Показатели когерентности, размера ядра, чистоты и контрастности модели

определим как средние по всем предметным темам 𝑡 ∈ 𝑆.

Исходные данные. Эксперименты проводились на коллекции NIPS, которая

содержит |𝐷| = 1566 текстов статей научной конференции Neural Information

Processing Systems на английском языке. Суммарная длина коллекции 𝑛 ≈

2.3 · 106 слов. Объём словаря |𝑊 | ≈ 1.3 · 104. Контрольная коллекция 𝐷′ со­

держит 174 документа. Предварительная обработка текстов включала приведе­
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ние к нижнему регистру, удаление пунктуации, удаление стоп-слов с помощью

библиотеки BOW toolkit [103].

Результаты экспериментов. Во всех экспериментах фиксировалось число

тем |𝑇 | = 100, из них фоновых тем |𝐵| = 10, число итераций 40.

В таблице 4.1 приводятся результаты сравнения тематических моделей.

Первые две строки соответствуют стандартным моделям PLSA и LDA, осталь­

ные строки — регуляризованным моделям ARTM. Первые три колонки задают

комбинации регуляризаторов сглаживания, разреживания и декоррелирования.

Остальные колонки соответствуют введённым выше критериям качества.

Для оценивания LDA использовался регуляризованный EM-алгоритм с па­

раметрами сглаживания 𝛼 = 0.5, 𝛽 = 0.01, соответствующими симметричному

распределению Дирихле.

Для сглаживания фоновых тем использовались равномерные распределе­

ния при коэффициентах регуляризации 𝛼 = 0.8, 𝛽 = 0.1.

Для разреживания предметных тем в столбцах матрицы Φ использовалось

одно из двух распределений: равномерное 𝛽𝑤 = 1
|𝑊 | или фоновое 𝛽𝑤 = 𝑛𝑤

𝑛 .

Основной вывод заключается в том, что комбинирование регуляризаторов

позволяет улучшить все критерии качества при незначительном ухудшении пер­

плексии. Разреживание обнуляет до 96% элементов матрицы Φ и до 87% эле­

ментов матрицы Θ. Декоррелирование повышает чистоту и когерентность тем.

Сглаживание фоновых тем помогает им очистить предметные темы от слов

общей лексики. Все эти улучшения сопровождаются незначительной потерей

перплексии, что согласуется с наблюдениями и выводами из [101] о том, что

модели, имеющие лучшую перплексию, то есть лучше предсказывающие появ­

ление слов в документах, часто демонстрируют худшую интерпретируемость

латентных тем.

Для мониторинга процесса построения модели и подбора траекторий регу­

ляризации строились графики зависимости показателей качества модели от но­
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Таблица 4.1. Сравнение регуляризованных тематических моделей со сглаживанием (Sm),

разреживанием (Sp) по равномерному (u) или фоновому (b) распределению и декоррелиро­

ванием (Dc). Критерии: P — контрольная перплексия, B — доля фоновых слов в коллекции,

SΦ и SΘ — разреженность матриц Φ и Θ, con — контрастность, pur — чистота, ker — размер

ядра, C ker — когерентность ядра, C 10 и C 100 — когерентность 10 и 100 наиболее вероятных

слов. Выделены лучшие значения в каждой колонке.

Sm Sp Dc P B SΦ SΘ con pur ker C ker C 10 C 100

− − − 1923 0.00 0.000 0.000 0.43 0.14 100 0.84 0.25 0.17

+ − − 1902 0.00 0.000 0.000 0.42 0.12 82 0.93 0.26 0.17

− u − 2114 0.24 0.957 0.867 0.53 0.20 71 0.91 0.25 0.18

− b − 2507 0.51 0.957 0.867 0.46 0.56 151 0.71 0.60 0.58

− − + 2025 0.57 0.561 0.000 0.46 0.38 109 0.82 0.94 0.56

+ u − 1961 0.25 0.957 0.867 0.51 0.20 64 0.97 0.26 0.18

+ b − 2025 0.49 0.957 0.867 0.45 0.52 128 0.77 0.55 0.55

+ − + 1985 0.59 0.582 0.000 0.46 0.39 97 0.87 0.93 0.57

+ u + 2010 0.73 0.980 0.867 0.56 0.73 78 0.94 0.94 0.62

+ b + 2026 0.80 0.979 0.867 0.52 0.89 111 0.81 0.96 0.83

мера итерации. На рис. 4.1–4.2 модель PLSA без регуляризаторов (серые линии)

сравнивается с регуляризованной моделью ARTM (чёрные линии). Критерии

качества откладываются на трёх графиках по вертикальным осям: на верхнем

графике по левой оси — контрольная перплексия P , по правой оси — разре­

женности матриц SΦ и SΘ и доля фоновых слов B; на среднем графике по

левой оси — размер ядра ker, по правой оси — контрастность con и чистота pur;

на нижнем графике по левой оси — когерентности C ker, C 10 и C 100. Такие графи­

ки дают понимание эффектов каждого регуляризатора в отдельности и в ком­

бинации с остальными.

Интересно отметить, что критерии качества могут существенно изменять­

ся после достижения сходимости правдоподобия модели, то есть при неизменной

перплексии или при незначительном её ухудшении.

Рис. 4.1 показывает совокупное влияние разреживания предметных тем

(по фоновому распределению 𝛽𝑤) и сглаживания фоновых тем. В частности,

видно, что модель PLSA не разреживает матрицы Φ и Θ и даёт очень низкую
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Рис. 4.1. Серый: PLSA. Чёрный: сгла­

живание, разреживание. Увеличивается

разреженность (sparsity) и чистота тем

(purity) при небольшом ухудшении перплек­

сии (perplexity).

2 000

2 200

2 400

2 600

2 800

3 000

3 200

3 400

3 600

3 800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

perplexity sparsity, background

 perplexity  Phi  Theta  background

0

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

kernel size purity, contrast

 size  contrast  purity

0 5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

coherence

 kernel  top-10  top-100

Рис. 4.2. Серый: PLSA. Чёрный: сглажива­

ние, разреживание, декоррелирование. Улуч­

шается когерентность (coherence) по спискам

top-10 и top-100 слов в темах, чистота и кон­

трастность.

чистоту тем. Рис. 4.2 позволяет увидеть дополнительные эффекты декоррели­

рования. В частности, видно, что декоррелирование увеличивает чистоту и ко­

герентность тем, очищает темы от слов общей лексики, при этом доля фоновых

слов во всей коллекции достигает почти 80%.

По результатам экспериментов можно дать следующие рекомендации по

выбору траекторий регуляризации. Коэффициенты регуляризации для разре­

живания предметных тем рекомендуется включить только после того, как ите­

рационный процесс начал сходиться и определились близкие к нулю элементы
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Таблица 4.2. Сравнение тем в моделях PLSA и ARTM, предметные темы.

PLSA, тема 50 ARTM, тема 50

face face

images faces

faces facial

recognition cottrell

set pentland

image gesture

based lane

hme emotion

facial person

representation steering

view appearance

figure baluja

model setpoint

experts camera

network tracking

human pose

expert pomerleau

space mouth

examples darrell

system lighting

PLSA, тема 32 ARTM, тема 32

query mlp

set query

queries queries

data cart

algorithm documents

learning retrieval

documents relevant

number document

performance rank

words sampling

mlp instances

cart splits

values collection

cluster gibbs

experiments sex

results ranking

relevant ordering

retrieval recursive

classification text

algorithms axis

матриц Φ и Θ. Более раннее или более резкое разреживание может ухудшать

перплексию. Мы включали разреживание, начиная с 10-й итерации, обнуляя на

каждой итерации 8% ненулевых значений в каждом векторе 𝜃𝑑 и 10% в каждом

векторе 𝜑𝑡.

Декоррелирование предметных тем включалось с первой итерации, коэф­

фициент регуляризации был выбран постоянным и наибольшим, при котором

ещё не происходило существенного увеличения перплексии, для данной коллек­

ции было подобрано значение 𝛾 = 2 · 105.

Сглаживание фоновых тем также оказалось лучше включать с первой ите­

рации, не меняя коэффициент регуляризации в ходе итераций.
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Таблица 4.3. Сравнение тем в моделях PLSA и ARTM, фоновая тема.

PLSA, тема 2 PLSA, тема 55 ARTM, тема 2

model music estimator

prediction rules music

series note musical

neural representation notes

models neural mozer

data events melody

estimation net composition

time set bach

function time chorales

method musical melodic

nonlinear figure jackknife

based network cooperative

point notes subnet

points input gem

estimator melody melodies

parameters structure icl

error harmony tonal

algorithm tau accent

estimate pitch augmented

linear temporal piece

ARTM, фон

model

data

models

parameters

noise

neural

mixture

prediction

set

gaussian

likelihood

networks

test

figure

training

performance

network

number

input

results

Качественный анализ интерпретируемости тем. Интересно проанали­

зировать подробнее словарный состав тем. В таблицах 4.2-4.3 представлены по

20 наиболее вероятных слов в некоторых темах базовой модели PLSA и предла­

гаемой регуляризованной модели. Слова упорядочены по убыванию вероятно­

стей 𝑛𝑤𝑡. Тематические термины, вошедшие в ядро темы, выделены жирным.

В данной коллекции темы интерпретируются как задачи, подходы, методы, от­

вечающие тематике научной конференции NIPS.

Первое наблюдение состоит в том, что выделенные слова (ядра тем) явля­

ются определяющими для темы, в то время как по остальным словам понять

тему гораздо труднее. Например, тема 50 посвящена распознаванию лиц. Для

модели PLSA в ядре оказываются слова с корнем face (лицо). Остальные слова

— recognition (распознавание), representation (представление), figure (рисунок),
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model (модель) и т.д. — могут относиться ко многим другим темам конференции

NIPS. Сравнение PLSA и регуляризованной модели показывает, что в ARTM

слова с корнем face получают наибольшие вероятности. Среди наиболее вероят­

ных слов темы также появляется гораздо больше слов ядра: Cottrell, Pentland

(фамилии двух ученых, занимающихся распознаванием лиц), gesture (жестику­

ляция), lane (морщина), emotion (эмоции) и т.д. Аналогичные выводы можно

сделать по теме 32, посвященной задаче ранжирования в информационном по­

иске, и по большинству других тем.

Модели строились из одного и того же начального приближения, поэтому в

большинстве случаев темы с одинаковыми номерами похожи друг на друга. Это

позволило избежать сложностей сопоставления тем в двух моделях (например,

с помощью венгерского алгоритма). Не совсем так происходит с темой 2. В мо­

дели ARTM она посвящена обработке музыкальных сигналов. В модели PLSA

тема состоит из слов model (модель), prediction (предсказание), series (серия),

neural (нейронный), data (данные) и других слов, нейтральных для коллекции

NIPS и не позволяющих интерпретировать тему. Единственная тема в PLSA,

содержащая в топе слова music (музыка) или melody (мелодия) – это тема 55.

Тем не менее, она снова содержит много общеупотребительных слов коллекции,

затрудняющих интерпретацию. Соответствующая тема в модели ARTM свобод­

на от таких слов и целиком состоит из предметных терминов, относящихся к

анализу музыки.

В таблице 4.3 представлена одна из фоновых тем, выделенных моделью

ARTM. Все фоновые темы содержат термины, широко употребляемые во всей

коллекции NIPS. При этом в некоторых фоновых темах доминируют слова, име­

ющие отношение к классификации, в некоторых – к вероятностным моделям,

в некоторых – к нейронным сетям, и т. д.



98

4.3. Автоматический отбор тем

Для постепенного отбора тем предлагается инициализировать модель боль­

шим число тем, а затем воздействовать регуляризатором разреживания рас­

пределения 𝑝(𝑡) =
∑︀

𝑑 𝑝(𝑑)𝜃𝑡𝑑, максимизируя дивергенцию Кульбака-Лейблера

между 𝑝(𝑡) и равномерным распределением на темах:

𝑅(Θ) = −𝜏 𝑛

|𝑇 |
∑︁
𝑡∈𝑇

ln
∑︁
𝑑∈𝐷

𝑝(𝑑)𝜃𝑡𝑑 → max .

Встраивание этого регуляризатора в модель согласно теореме 2 приводит

к следующим формулам M-шага:

𝜃𝑡𝑑 = norm
𝑡∈𝑇

(︁
𝑛𝑡𝑑 − 𝜏

𝑛

|𝑇 |
𝑛𝑑
𝑛𝑡
𝜃𝑡𝑑

)︁
.

Если заменить 𝜃𝑡𝑑 несмещенной оценкой 𝑛𝑡𝑑

𝑛𝑑
, получим разреживание строк

матрицы Θ:

𝜃𝑡𝑑 = norm
𝑡∈𝑇

(︁
𝑛𝑡𝑑 − 𝜏

𝑛𝑡𝑑 𝑛

|𝑇 |𝑛𝑡

)︁
.

Если счетчик 𝑛𝑡 в знаменателе мал, то все элементы строки получат нуле­

вое значение, а соответствующая тема 𝑡 будет выведена из модели.

Эксперименты. В работе [25] представлены результаты экспериментов на

синтетических данных, демонстрирующие корректное восстановление числа тем

в данных с помощью предложенного регуляризатора отбора тем. В эксперимен­

тах на реальных данных демонстрируется возможность встраивания нового ре­

гуляризатора в рассмотренную ранее модель с разреженными и различными

предметными темами. На графиках 4.3 и 4.4 представлена зависимость введен­

ных ранее метрик качества от итераций обучения моделей. Для регуляризован­

ной модели осуществляется сглаживание фоновых тем с параметрами |𝑆| = 10,

𝛼𝑡 = 0.8, 𝛽𝑤 = 0.1. Одновременно с этим производится разреживание, декор­

релирование и отбор предметных тем. Коэффициент декоррелирования растет

линейно в течение первых 60 итераций до максимального значения 𝛾 = 200000,
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Рис. 4.3. Стандартная тематическая модель LDA.
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Рис. 4.4. ARTM c регуляризаторами разреживания, декоррелирования и отбора тем.

не разрушающего модель. Отбор тем с коэффициентом 𝜏 = 0.3 включается

после 15 итераций, чтобы избежать отбора среди почти случайных и похожих

тем на ранних итерациях обучения. Отбор тем и декоррелирование применя­

ются через итерацию, т.к. их совместное воздействие может приводить к неже­

лательным эффектам. На графике отображены замеры качества после итера­

ций декоррелирования. Разреживание подключается с 40 итерации с постепенно

возрастающими коэффициентами, так что 2% элементов Θ и 9% элементов Φ

зануляются на каждой итерации. В результате удается построить последова­

тельность моделей с уменьшающимся числом тем, при этом предметные темы

сильно разреженны и интерпретируемы, что видно из сравнения показателей

чистоты, контрастности и когерентности с показателями модели LDA.
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4.4. Обсуждение и выводы

Развивается полу-вероятностный подход к моделированию тематики тек­

стовых коллекций — аддитивная регуляризация тематических моделей [21,

24], основанный на максимизации взвешенной суммы критериев регуляриза­

ции. Построение тематической модели рассматривается как задача многокри­

териальной оптимизации, которая сводится к однокритериальной задаче путём

скаляризации критериев. Для решения оптимизационной задачи используется

регуляризованный ЕМ-алгоритм, в который можно подставлять любые регуля­

ризаторы или их линейные комбинации.

Формализуется понятие интерпретируемости тематической модели и пред­

лагается модель фоновых и предметных тем [23]. В данной модели комбиниру­

ются регуляризаторы разреживания, сглаживания и деккоррелирования, что

приводит к очищению предметных тем от слов общей лексики и повышению

их различности. Демонстрируется улучшение набора критериев качества моде­

ли (когерентность тем, чистота и контрастность ядер тем, разреженность) при

несущественном ухудшении перплексии модели.

Предлагается разреживающий регуляризатор отбора незначимых тем [25].

Его работа исследуется в комбинации с регуляризаторами сглаживания, разре­

живания и декоррелирования. В рамках одного цикла обучения строится набор

моделей с постепенно сокращающимся числом тем и повышающейся разрежен­

ностью распределений. Выбор модели может быть обусловлен внешними кри­

териями качества, описывающими требования конечного приложения.
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Глава 5

Тематические векторные модели семантики

В главе 1 были рассмотрены модели, решающие задачу определения семан­

тической близости слов. Тематическое моделирование обычно считается непри­

годным для данной цели. Однако в литературе эксперименты чаще всего про­

водятся только с тематической моделью LDA, которая действительно не позво­

ляет обучить качественные векторные представления слов.

В данной главе с помощью тематического моделирования строятся вектор­

ные представления слов, которые решают задачу определения семантической

близости на уровне модели SGNS, ставшей стандартным выбором для этой за­

дачи. Кроме того, удается добиться интерпретируемости и разреженности, что

невозможно в большинстве других моделей. Слова с максимальной вероятно­

стью внутри каждой компоненты объединяются в темы, которые человек может

проинтерпретировать и поименовать. С помощью аддитивной регуляризации

тематической модели достигается дополнительная разреженность векторных

представлений.

Построение тематических представлений отдельных слов обобщается на

произвольные сегменты текста, в частности, предложения и документы. Кроме

того, учитываются мета-данные, связанные с документами, такие как автор, ка­

тегория, временная метка и другие. Предлагается алгоритм построения единого

векторного пространства, где расстояния между данными различной природы

хорошо интерпретируются. Например, ближайшими к временной метке «9 мая»

оказываются слова военной тематики.

Возникает возможность вводить в модель дополнительные требования и

строить векторные представления текста, удовлетворяющие специфичным тре­

бованиям прикладных задач.
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5.1. Тематические векторные представления слов

Согласно дистрибутивной гипотезе смысл слова определяется распределе­

нием над множеством слов, совместно встречающихся с ним в локальных кон­

текстах (на практике, в скользящем окне фиксированной ширины). Эта гипо­

теза противоречит гипотезе о представлении документа в виде «мешка слов»,

широко используемой в вероятностном тематическом моделировании. Таким

образом, в стандартных моделях информация о локальных со-встречаемостях

слов теряется, что приводит к низкому качеству предсказания семантической

близости слов.

Для формализации дистрибутивной гипотезы в рамках вероятностного те­

матического моделирования будем для каждого слова 𝑤𝑖 в корпусе текстов пред­

сказывать слова 𝑤𝑗 из локальной окрестности 𝐻𝑖 с помощью смеси тем:

𝑝(𝑤𝑗|𝑤𝑖) =
∑︁
𝑡∈𝑇

𝑝(𝑤𝑗|𝑡)𝑝(𝑡|𝑤𝑖) =
∑︁
𝑡∈𝑇

𝜑𝑤𝑗𝑡𝜃𝑡𝑤𝑖
. (5.1)

Сделаем предположения о независимости слов внутри каждой окрестно­

сти, а также о независимости окрестностей. Тогда можно записать следующую

задачу максимизации правдоподобия по корпусу:

𝑁∑︁
𝑖=1

∑︁
𝑗∈𝐻𝑖

ln
∑︁
𝑡∈𝑇

𝜑𝑤𝑗𝑡𝜃𝑡𝑤𝑖
+𝑅(Φ,Θ) → max

Φ,Θ
(5.2)

∀𝑢, 𝑡 𝜑𝑢𝑡 > 0;
∑︁
𝑢∈𝑊

𝜑𝑢𝑡 = 1; (5.3)

∀𝑡, 𝑣 𝜃𝑡𝑣 > 0;
∑︁
𝑡∈𝑇

𝜃𝑡𝑣 = 1. (5.4)

Обучение модели возможно с помощью итераций EM-алгоритма. Обозна­

чим через 𝑛𝑣𝑢 агрегированный счетчик совместной встречаемости слов в ло­

кальных окрестностях 𝐻𝑖, 𝑖 = 1, . . . , 𝑁 . Докажем следующую теорему.

Теорема 3. Пусть функция 𝑅(Φ,Θ) непрерывно дифференцируема. Тогда точ­

ка (Φ,Θ) локального экстремума задачи (5.2)-(5.4) удовлетворяет системе
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уравнений со вспомогательными переменными 𝑝𝑡𝑣𝑢 = 𝑝(𝑡|𝑣, 𝑢):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑝𝑡𝑣𝑢 =
𝜑𝑢𝑡𝜃𝑡𝑣∑︀

𝑠∈𝑇
𝜑𝑢𝑠𝜃𝑠𝑣

;

𝜑𝑢𝑡 = norm
𝑢∈𝑊

(︂
𝑛𝑢𝑡 + 𝜑𝑢𝑡

𝜕𝑅

𝜕𝜑𝑢𝑡

)︂
; 𝑛𝑢𝑡 =

∑︀
𝑣∈𝑊

𝑛𝑣𝑢𝑝𝑡𝑣𝑢;

𝜃𝑡𝑣 = norm
𝑡∈𝑇

(︂
𝑛𝑡𝑣 + 𝜃𝑡𝑣

𝜕𝑅

𝜕𝜃𝑡𝑣

)︂
; 𝑛𝑡𝑣 =

∑︀
𝑢∈𝑊

𝑛𝑣𝑢𝑝𝑡𝑣𝑢,

за исключением нулевых столбцов Φ, Θ в решении данной системы.

Доказательство. Введем понятие контейнера, порожденного словом 𝑣:

𝐶(𝑣) = ∪𝑖:𝑤𝑖=𝑣𝐻𝑖, ∀𝑣 ∈ 𝑊, (5.5)

где объединение понимается в смысле мульти-множества, индексация 𝑖 сквоз­

ная по корпусу, 𝐻𝑖 содержит слова из окна некоторой ширины для позиции 𝑖.

Таким образом, каждый контейнер 𝐶(𝑣) является мешком слов, составленным

из локальных окрестностей всех вхождений слова 𝑣 в корпус, причем частота

слов 𝑢 ∈ 𝑊 определяется счетчиками 𝑛𝑣𝑢.

Перегруппируем слагаемые в логарифме правдоподобия:
𝑁∑︁
𝑖=1

∑︁
𝑗∈𝐻𝑖

ln 𝑝(𝑤𝑗 |𝑤𝑖) =
∑︁
𝑣∈𝑊

∑︁
𝑢∈𝑊

𝑛𝑣𝑢 ln 𝑝(𝑢 | 𝑣). (5.6)

Заметим, что выражение (5.6) совпадает с правдоподобием модели PLSA, при­

мененной к описанному корпусу контейнеров. Таким образом, для доказатель­

ства теоремы достаточно повторить рассуждения из теоремы 2, где вместо до­

кументов рассматривать контейнеры.

Полученная модель названа вероятностными тематическими представле­

ниями слов (Probabilistic Word Embeddings, PWE) и впервые предложена авто­

ром данной работы в [26].

Заметим, что модель PWE похожа на тематическую модель коротких тек­

стов WNTM, описанную в главе 1. Однако в модели WNTM используются апри­

орные распределения Дирихле на параметры, а обучение производится с помо­

щью сэмплирования Гиббса. Кроме того, модель WNTM не рассматривалась
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как способ обучения векторных представлений слов и не исследовалась в зада­

чах определения семантической близости. Также не устанавливалась ее связь с

моделью Skip-Gram, изложенная в следующем параграфе.

Связь с другими моделями. Предлагаемая модель PWE использует для

обучения ту же информацию о локальной со-встречаемости слов, что и мно­

гие векторные модели семантики, в частности, модель Skip-Gram, которая уже

обсуждалась в главе 1. Так, правдоподобие в обеих моделях имеет вид (5.6).

Ключевое и единственное различие между моделями Skip-Gram и PWE заклю­

чается в способе параметризации отдельных вероятностей.

Параметры тематической модели PWE удовлетворяют ограничениям неот­

рицительности и нормировки, т.е. являются вероятностными распределениями.

Поэтому каждая вероятность слова в контексте представляется вероятностной

смесью распределений:

𝑝(𝑢|𝑣) = ⟨𝜑𝑢, 𝜃𝑣⟩ , (5.7)

где 𝜑𝑢 = (𝜑𝑢𝑡)𝑡∈𝑇 — вектор слова 𝑢, 𝜃𝑣 = (𝜃𝑡𝑣)𝑡∈𝑇 — вектор контекста 𝑣.

Модель Skip-Gram, напротив, обучается без ограничений на параметры, и

каждая вероятность моделируется с помощью функции softmax:

𝑝(𝑢|𝑣) = softmax ⟨𝜑𝑢, 𝜃𝑣⟩ =
exp ⟨𝜑𝑢, 𝜃𝑣⟩∑︀

𝑤∈𝑊 exp ⟨𝜑𝑤, 𝜃𝑣⟩
. (5.8)

Подсчет знаменателя, т.е. нормировка распределения, несет вычислительные

трудности, поэтому на практике ее избегают.

Таблица 5.1 подытоживает сравнение моделей. В ней логичным образом

появляется еще одна модель, известная как модель doc2vec, — расширение мо­

дели word2vec для документов. В терминологии оригинальной статьи это архи­

тектура DBOW модели paragraph2vec [1]. Как и модель PLSA, она моделирует

вероятности слов в документах и использует счетчики встречаемости слов в

документах при обучении. Как и модель Skip-Gram, каждая вероятность моде­
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слова-слова слова-документы

softmax word2vec (Skip-Gram) doc2vec (DBOW)

смесь распределений PWE PLSA

Таблица 5.1. Сопоставление походов по типу данных (слова-слова или слова-документы) и

типу вероятностной модели (softmax или вероятностная смесь распределений).

лируется через softmax:

𝑝(𝑤|𝑑) = softmax ⟨𝜑𝑤, 𝜃𝑑⟩ . (5.9)

Модель параметризована матрицами Φ𝑊×𝑇 и Θ𝑇×𝐷, на которые не накладыва­

ется никаких дополнительных ограничений.

Итак, существует два независимых аспекта моделирования:

1) тип со-встречаемостей: «слова-слова» или «слова-документы»;

2) параметризация вероятностей: смесь распределений или softmax.

Опция моделирования со-встречаемостей «слова-слова» с помощью веро­

ятностной смеси распределений остается в литературе мало исследованной и

исследуется нами далее в этой главе.

EM-алгоритм для модели PWE. Предложенная модель вероятностных те­

матических представлений слов может быть обучена стандартной схемой EM­

алгоритма 1. На вход поступает коллекция контейнеров 𝐶(𝑣), 𝑣 ∈ 𝑊 . На выхо­

де строятся матрицы слов Φ и контейнеров (контекстов) Θ. Недостатком дан­

ного алгоритма является необходимость хранить матрицу Θ, а также долгая

сходимость. Это связано с тем, что обновления параметров производятся раз в

коллекцию, таким образом необходимы десятки эпох (проходов по коллекции).

Альтернативой может быть онлайновая версия EM-алгоритма, предложен­

ная в [104] для модели LDA. Ее особенность заключается во внутреннем цикле

по каждому документу до сходимости 𝜃𝑑, что позволяет избежать хранения

матрицы Θ. В данной работе мы предлагаем онлайновый алгоритм обучения
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Алгоритм 5 Online EM-алгоритм для модели PWE.
Вход: коллекция контейнеров 𝐶(𝑣), ∀𝑣 ∈ 𝑊 ; число тем |𝑇 |; коэффициент 𝜌;

Выход: векторные представления слов Φ𝐵;
1: повторять

2: инициализировать матрицу Φ случайно;

3: обнулить 𝑛𝑢𝑡 := 0, 𝑛𝑏𝑎𝑡𝑐ℎ𝑢𝑡 := 0, ∀𝑢 ∈ 𝑊 , ∀𝑡 ∈ 𝑇 ;

4: для всех 𝑣 ∈ 𝑊

5: инициализировать вектор 𝜃𝑣 случайно;

6: обнулить 𝑛𝑡𝑣 := 0, ∀𝑡 ∈ 𝑇 ;

7: повторять

8: для всех 𝑢 ∈ 𝐶(𝑣)

9: 𝑝𝑡𝑣𝑢 := norm
𝑡∈𝑇

(𝜑𝑢𝑡𝜃𝑡𝑣), ∀𝑡 ∈ 𝑇 ;

10: накопить 𝑛𝑡𝑣 := 𝑛𝑡𝑣 + 𝑛𝑣𝑢𝑝𝑡𝑣𝑢, ∀𝑡 ∈ 𝑇 ;

11: обновить 𝜃𝑡𝑣 := norm
𝑡∈𝑇

(︁
𝑛𝑡𝑣 + 𝜃𝑡𝑣

𝜕𝑅
𝜕𝜃𝑡𝑑

)︁
;

12: пока вектор контекста 𝜃𝑣 не стабилизируется;

13: накопить 𝑛𝑏𝑎𝑡𝑐ℎ𝑢𝑡 := 𝑛𝑏𝑎𝑡𝑐ℎ𝑢𝑡 + 𝑛𝑣𝑢𝑝𝑡𝑣𝑢, ∀𝑢 ∈ 𝐶(𝑣), ∀𝑡 ∈ 𝑇 ;

14: если обработан пакет контейнеров, то

15: обновить 𝑛𝑢𝑡 := 𝜌 𝑛𝑢𝑡+𝑛
𝑏𝑎𝑡𝑐ℎ
𝑢𝑡 ; 𝜑𝑢𝑡 := norm

𝑢∈𝑊

(︁
𝑛𝑢𝑡 + 𝜑𝑢𝑡

𝜕𝑅
𝜕𝜑𝑢𝑡

)︁
; 𝑛𝑏𝑎𝑡𝑐ℎ𝑢𝑡 := 0;

16: пока Φ не стабилизируются;

17: вернуть Φ𝐵 = (𝜑𝐵𝑡𝑢), где 𝜑𝐵𝑡𝑢 := norm
𝑡∈𝑇

(︁
𝑛𝑢𝑡 + 𝜑𝑢𝑡

𝜕𝑅
𝜕𝜑𝑢𝑡

)︁
.

модели PWE (см. Алгоритм 5). Коллекция делится на пакеты, и обновления

происходят после обработки каждого пакета. Коэффициент 𝜌 усреднения гло­

бальных счетчиков 𝑛𝑢𝑡 и счетчиков последнего пакета является гиперпарамет­

ром и подбирается в экспериментах. Как правило, для сходимости Φ достаточно

от 1 до 3 проходов по коллекции в зависимости от размеров коллекции. Алго­

ритм возвращает векторные представления слов 𝜑𝐵𝑢 = (𝜑𝐵𝑡𝑢)𝑡∈𝑇 , 𝜑𝐵𝑡𝑢 = 𝑝(𝑡|𝑢),

которые являются вероятностными распределениям на множестве тем 𝑇 . За­

метим, что такие вектора можно получить из матрицы Φ, применив форму­
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лу Байеса. Для получения оценок близости слов в экспериментах следующего

раздела сравнивается несколько способов, из которых наилучшим оказывается

скалярное произведение обученных векторов.

5.2. Задачи семантической близости и аналогий слов

Оценивание качества на задаче близости. Основное свойство, полезное

для приложений, – близость похожих слов в векторном пространстве представ­

лений. Как уже отмечалось в главе 1, существуют различные подходы к тому,

какие слова считать похожими, и это сильно затрудняет оценивание качества

моделей. Тем не менее, известно несколько стандартных датасетов, на которых

сравнивается качество векторных представлений слов. Каждый такой датасет

состоит из списка пар слов с экспертными оценками близости по некоторой

шкале. Модель считается хорошей, если она присваивает парам слов такие оцен­

ки близости, что ранжирование списка получается схожим с экспертным. Что­

бы это проверить, как правило, подсчитывается корреляция Спирмена. Среди

стандартных датасетов можно назвать WordSim353 [105], разделенный на се­

мантически близкие и связанные пары слов [38], MEN [106], SimLex-999 [107] и

Mechanical Turk [108].

В дальнейших экспериментах предлагаемая модель сравнивается с моде­

лью SGNS, для которой оценки близости слов находятся с помощью косинусно­

го расстояния в построенном векторном пространстве. Стандартное решение в

случае тематического моделирования — это получение векторов 𝑝(𝑡|𝑤) с помо­

щью модели LDA и подсчет расстояния Хеллингера между ними [6]. Как видно

из таблицы 5.2, такой подход существенно проигрывает модели SGNS. Наше

дальнейшее исследование нацелено на преодоление этого различия в качестве.

Детали предобработки данных. В экспериментах использовалась версия

англоязычной Википедии 2016-01-13. Предобработка проводилась скриптами
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из [12], чтобы гарантировать одинаковые условия для обучения SGNS и темати­

ческих представлений слов. Была проведена фильтрация словаря: удалены 25

наиболее популярных слов, сохранены следующие 100000, удалены пары слов,

которые встретились совместно менее 5 раз. Эксперименты проводились для

ширины окна 2, 5 и 10. Здесь приводятся результаты только для ширины ок­

на 5, так как выводы для других значений аналогичны. Для всех моделей ис­

пользовался прием выравнивания частотности слов, активно использующийся

при обучении модели SGNS, однако не применявшийся ранее для тематическо­

го моделирования. Он заключается в исключении из корпуса слововхождений

(subsampling) с вероятностью:

𝑝remove(𝑢) = 1−
√︂

𝜏

𝑝(𝑢)
. (5.10)

Коэффициент 𝜏 = 10−5 был выбран согласно стандартным рекомендациям.

По нашим наблюдениям этот прием незначительно улучшает интерпретируе­

мость тем за счет их очищения от частотных слов общей лексики.

Взвешивание слов внутри скользящего окна согласно их расстоянию до

целевого слова не дает существенных преимуществ.

Задача близости. Результаты проведенных экспериментов представлены в

таблице 5.2. Предлагаемая модель представлений PWE существенно превосхо­

дит качество тематической модели LDA и выходит на сопоставимое качество

с моделью SGNS, которая является одним из стандартных методов решения

задачи близости слов.

По сравнению с моделью LDA первого существенного прироста качества

удается добиться, если перейти от моделирования частот 𝑛𝑤𝑑 слов в документах

к частотам 𝑛𝑢𝑣 со-встречаемости слов, как было описано в предыдущем разделе.

Следующим важным вопросом становится способ подсчета близости век­

торов в пространстве вероятностных представлений слов. Были протестирова­

ны следующие варианты: расстояние Хеллингера, дивергенция Кульбака-Лей­
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Таблица 5.2. Корреляция Спирмена на задачах близости слов. Варьируются следующие ха­

рактеристики. Раскладываемые статистики (Data): 𝑛𝑤𝑑 — встречаемости слов в докумен­

тах, 𝑛𝑢𝑣 — со-встречаемости слов, 𝑛𝑢𝑣/𝑛𝑣 — нормированные со-встречаемости, s/pPMI —

shifted/positive PMI. Схемы итераций (Optimization): offline — 30 оффлайновых итераций

без хранения Θ, mixed — 2 онлайновых и 30 оффлайновых итераций, online — 6 итераций.

Расстояния в пространстве ембедингов (Metric): cos - косинусное расстояние, hel — расстоя­

ние Хеллингера, dot — скалярное произведение.

Model Data Optimization Metric
WordSim

Sim.

WordSim

Rel.
WordSim Bruni MEN SimLex-999

SGNS sPMI SGD cos 0.752 0.632 0.666 0.745 0.384

LDA 𝑛𝑤𝑑 online EM hel 0.530 0.455 0.474 0.583 0.220

LDA 𝑛𝑤𝑑 online EM dot 0.580 0.516 0.532 0.599 0.230

PWE 𝑛𝑢𝑣 offline EM dot 0.709 0.635 0.654 0.658 0.240

PWE 𝑛𝑢𝑣/𝑛𝑣 offline EM dot 0.642 0.580 0.576 0.679 0.262

PWE pPMI offline EM dot 0.701 0.615 0.647 0.707 0.276

PWE 𝑛𝑢𝑣 mixed EM dot 0.723 0.675 0.682 0.672 0.263

PWE 𝑛𝑢𝑣 online EM dot 0.718 0.673 0.685 0.669 0.263

блера, косинусное расстояние, скалярное произведение векторов. Несмотря на

интуитивное предположение о том, что в данной задаче подходят расстояния,

предназначенные для вероятностных распределений, наилучшее качество по­

казало скалярное произведение. Вероятностные представления слов при этом

были получены из матрицы параметров Φ по правилу Байеса.

В следующем эксперименте исследовались различные схемы итерацион­

ного процесса. Был предложен онлайновый EM-алгоритм для модели PWE,

аналогичный алгоритму online-LDA [109], в котором матрица Φ обновляется

инкрементально, а матрица Θ не хранится и каждый раз инициализируется

случайно. Детали его реализации представлены в алгоритме 5. Он превзошел

по качеству стандартный оффлайновый алгоритм 1 для коллекции контейнеров

𝐶(𝑣), а также оффлайновый алгоритм без хранения матрицы Θ. Дальнейшего

прироста качества удалось добиться при комбинированном подходе (mixed в таб­

лице 5.2), где сначала осуществляется несколько онлайновых, а затем несколько
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оффлайновых проходов.

Помимо этого, были исследованы различные оценки со-встречаемости, на­

пример, нормированные счетчики 𝑛𝑢𝑣/𝑛𝑣. Заметим, что это эквивалентно мат­

ричному разложению эмпирических вероятностей 𝑝(𝑢|𝑣) по невзвешенной сум­

ме дивергенций Кульбака-Лейблера. На качестве векторных представлений та­

кая эвристика сказалась отрицательно. Прироста на некоторых тестовых вы­

борках удалось добиться при разложении pPMI-матрицы.

Задача аналогий. Задача аналогий или relational similarity уже обсужда­

лась в главе 1. Утверждается, что для пар отношений слов 𝑎 : 𝑎′ и 𝑏 : 𝑏′

справедливо 𝑏− 𝑎+ 𝑎′ ≈ 𝑏′ в векторном пространстве. Например, если предста­

вить слова «король», «королева», «мужчина», «женщина» векторами модели

SGNS, то ближайший вектор для арифметического выражения «король - муж­

чина + женщина» будет соответствовать слову «королева». Именно благодаря

этому примеру модель word2vec стала широко известна. Однако стоит сделать

несколько оговорок.

В примере выше ближайшим словом, на самом деле, является «король».

В оригинальной статье [1] из поиска удалялись три слова, по которым получен

вектор. В более поздней статье [110] показано, что такой эффект затрагивает

до 90% примеров (в зависимости от категории аналогий). При этом после уда­

ления исходных векторов из поиска модель, действительно, достигает точности

0.7 на задаче предсказания четвертого слова в примере. Это явление требует

объяснений.

В [110] показано, что точность модели высока лишь на тех примерах, у

которых векторы для слов 𝑏 и 𝑏′ близки в пространстве. Это приводит к пред­

положению о том, что оригинальные выборки четверок слов для тестирования

моделей не покрывают все разнообразие аналогий, а содержат примеры, про­

стые для векторных моделей семантики.

Семантический датасет [56], на котором производилось тестирование моде­
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ли word2vec содержит лишь несколько категорий аналогий: страны и столицы,

страны и валюты, профессии и пол. Чтобы превзойти ограничения исходного

датасета, был предложен более полный датасет BATS (The Bigger Analogies Test

Set) [111], разделенный на множество категорий. Качество задачи аналогий на

нем оказалось существенно ниже.

Авторы [112] далее сопоставляют вычитание и сложение векторов word2vec

с простым подходом, который находит ближайшего соседа для вектора одного

из исходных слов. Этот подход проигрывает на специфичных категориях ана­

логий из [56], однако не уступает в качестве на расширенном наборе аналогий

BATS. Таким образом, свойство контролируемого изменения смысла слова при

произведении арифметических операций в построенном векторном простран­

стве оказывается не столь важным.

В связи с отсутствием приемлемой методологии оценки качества, а также

неясной практической значимостью задачи аналогий, мы не включаем в данную

работу сравнение методов по этому критерию.

5.3. Интерпретируемость и разреженность компонент

В предыдущем разделе было показано, что предложенный алгоритм по­

строения вероятностных тематических представлений слов позволяет решать

задачу близости. Рассмотрим дополнительные свойства полученных представ­

лений, которыми не обладают стандартные SGNS вектора.

Интерпретируемость компонент. Важным вопросом при обучении вектор­

ных представлений слов становится интрерпретируемость. Можно ли говорить,

что компоненты вектора соответствуют «атомам смысла», т.е. каким-либо се­

мантическим признакам? Правда ли, что есть компонента, по которой все слова,

относящиеся к мужскому полу, имеют большое значение, а все слова, относя­

щиеся к женскому, — маленькое?
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Таблица 5.3. Интерпретируемость компонент PWE и SGNS векторов.

PWE SGNS

art arbitration game avg transports rana

painting ban games hearth recon walnut

museum requests video soc grumman rashid

painters arbitrators gameplay protector convoys malek

gallery noticeboard multiplayer decomposition piloted aziz

sculpture block puzzle whip stealth khalid

painter administrators mario stochastic flotilla yemeni

exhibition arbcom nintendo sewer convoy andalusian

portraits sanctions player splinter supersonic bien

drawings mediation gaming accessory bomber gcc

Классические SGNS вектора таким свойством не обладают. Это видно из

таблицы 5.3. Каждая колонка соответствует некоторой компоненте. Выведены

10 слов с наибольшим значением. При этом неясно, по какому семантическому

признаку они объединены. Существуют подходы, позволяющие повышать ин­

терпретируемость части компонент векторов SGNS с помощью ортогональных

преобразований матриц [113].

Тематические модели сразу же выделяют темы как семантически связан­

ные группы слов. Поскольку в модели PWE именно темы являются компонен­

тами векторов, то компоненты также приобретают интерпретируемость, и им

можно дать названия. Например, в таблице 5.3 первая тема о художниках, вто­

рая о юристах, третья о видео-играх.

Визуальное сопоставление списков слов субъективно и не раз подвергалось

критике в литературе. Возможная альтернатива — это привлечение асессоров

для оценивания по сценарию word intrusion (найди лишнее слово). В такой по­

становке в список наиболее вероятных слов темы примешивают одно случайное

слово. Считается, что чем точнее эксперты находят это слово, тем более интер­

претируемой была исходная тема. Мы воспользуемся автоматически вычисляе­

мой мерой интерпретируемости — когерентностью. В [114, 115] было показано,

что когерентность лучше других альтернативных мер интерпретируемости кор­
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релирует с экспертными оценками, при этом не требует привлечения асессоров.

Согласно [116] когерентностью темы будем считать усредненное значение PMI

по всем парам топ-слов темы:

𝒞(𝑡) = 2

𝑘(𝑘 − 1)

∑︁
(𝑤𝑖,𝑤𝑗)∈Top𝑘

PMI(𝑤𝑖, 𝑤𝑗), (5.11)

где Top𝑘 – это множество 𝑘 наиболее вероятных слов темы (компоненты). Ко­

герентность модели получается усреднением когерентностей тем. В литературе

предлагались и другие оценки когерентности, например, в [115] вместо PMI ис­

пользуются логарифмы вероятностей, а в [117] более сложные оценки дистрибу­

тивной семантики. Многие подходы сопоставлены в обзоре [118]. Несмотря на

свою популярность в тематическом моделировании, когерентность почти не ис­

пользуется в литературе по векторным представлениям слов. Тем не менее, она

использовалась авторами модели неотрицательных разреженных представле­

ний слов (Non-Negative Sparse Embeddings, NNSE) [6], а также авторами модели

онлайновых интерпретируемых представлений слов (Online Interpretable Word

Embeddings, OIWE) [119]. Мы также будем оценивать интерпретируемость век­

торных представлений именно по этой методике.

Замеры когерентности для моделей представлены на Рисунке 5.1. Для

предлагаемой тематической модели PWE и стандартной тематической модели

LDA сортировка слов в компоненте осуществляется по вероятностям 𝑝(𝑤|𝑡). Для

модели SGNS были протестированы два различных подхода: сортировка по ис­

ходным значениям и сортировка по вероятностям. Для получения вероятностей

мы применяем softmax к каждой вектор-строке матрицы Φ, а затем по правилу

Байеса переходим от вероятностей 𝑝(𝑡|𝑤) к вероятностям 𝑝(𝑤|𝑡). Первый вари­

ант исходных значений можно также трактовать как softmax, примененный к

каждому вектор-столбцу исходной матрицы.

По графику видно, что модель PWE превосходит по когерентности стан­

дартную тематическую модель LDA и модель SGNS.
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Рис. 5.1. Количественная оценка интерпретируемости: PMI-когерентность по спискам топ-10

и топ-100 слов в компонентах. Предлагаемая модель PWE превосходит другие подходы.

Разреженность компонент. Построение векторных представлений слов с

помощью тематического моделирования позволяет подключить разрабатывае­

мый подход аддитивной регуляризации и учесть дополнительные требования

к модели. В частности, чтобы увеличить разреженность векторных представ­

лений, к модели (5.2) был добавлен разреживающий регуляризатор (4.10), ос­

нованный на максимизации дивергенции Кульбака-Лейблера между искомыми

тематическими распределениями и равномерным распределением. В результа­

те эксперимента были получены вектора, содержащие 93% нулей и показавшие

такое же качество на задачах близости, как и неразреженные вектора (см. он­

лайновый EM-алгоритм в таблице 5.2).

5.4. Векторные представления мультимодальных данных

Часто вместе с документами известна дополнительная информация, напри­

мер, авторы, даты, категории и т.д. Учет такой информации может улучшать

векторное описание слов и документов, а также расширять область примени­

мости методов. В частности, в рекомендательных системах возникает необхо­

димость оценки семантической близости между товарами и покупателями; в

рекламе — между объявлениями и пользователями; в анализе транзакционных



115

данных — между клиентами и категориями покупок. При этом, как правило,

доступны большие объемы текстовых данных, описывающие каждую из взаи­

модействующих сущностей.

Такого рода данные могут быть включены в векторные модели семантики с

помощью подхода аддитивной регуляризации тематических моделей. Будем на­

зывать типы доступной мета-информации дополнительными модальностями,

при этом базовой модальностью будем считать текст. Далее мы предлагаем ал­

горитм построения единого векторного пространства для элементов (токенов)

всех модальностей.

Пусть дана коллекция, где для каждого документа 𝑑 дополнительно из­

вестны токены модальностей 𝑚 ∈ 𝑀 . Пусть 𝑚 = 0 соответствует базовой мо­

дальности слов. Напомним, что для построения вероятностных представлений

PWE составлялась коллекция контейнеров, где каждый контейнер порождался

некоторым словом-контекстом 𝑣 ∈ 𝑊 0 и содержал объединение слов из окрест­

ностей всех вхождений 𝑣 в корпус. Другими словами, учитывались счетчики

𝑛𝑣𝑢 локальной со-встречаемости слов 𝑢 ∈ 𝑊 0 и 𝑣 ∈ 𝑊 0 в скользящем окне

фиксированной ширины.

Пополним контейнер 𝑣 токеном 𝑤 новой модальности 𝑚, если он приписан

какому-либо документу, где встречается слово 𝑣. Более точно, для 𝑣 ∈ 𝑊 0 и

𝑤 ∈ 𝑊𝑚, 𝑚 ̸= 0, подсчитаем документную со-встречаемость:

𝑛𝑣𝑤 =
∑︁
𝑑:𝑤∈𝑑

𝑛𝑑𝑣,

где 𝑛𝑑𝑣 — частота слова 𝑣 в документе 𝑑.

Таким образом, взаимодействия слов, как и прежде, определяются счет­

чиками локальной со-встречаемости, а взаимодействия слов c токенами других

модальностей определяются счетчиками документной со-встречаемости. Каж­

дый контейнер при этом порождается словом, но содержит токены всех модаль­

ностей.

Для обучения модели будем оптимизировать взвешенную сумму слагае­
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мых, каждое из которых является правдоподобием, записанным относительно

соответствующей модальности. Аналогичный подход был предложен в [120] для

включения дополнительных модальностей в модель PLSA.

Рассмотрим задачу:∑︁
𝑚∈𝑀

𝜆𝑚
∑︁
𝑣∈𝑊 0

∑︁
𝑢∈𝑊𝑚

𝑛𝑣𝑢 ln
∑︁
𝑡∈𝑇

𝜑𝑢𝑡𝜃𝑡𝑣 +𝑅(Φ,Θ) → max
Φ,Θ

; (5.12)

∀𝑢, 𝑡 𝜑𝑢𝑡 > 0;
∑︁

𝑢∈𝑊𝑚

𝜑𝑢𝑡 = 1, ∀𝑚 ∈𝑀 ; (5.13)

∀𝑡, 𝑣 𝜃𝑡𝑣 > 0;
∑︁
𝑡∈𝑇

𝜃𝑡𝑣 = 1. (5.14)

где 𝜆𝑚 > 0 — веса модальностей, 𝑊𝑚 — словари модальностей; 𝑚 = 0 соот­

ветствует базовой модальности слов; 𝑛𝑣𝑢 — локальная со-встречаемость, если

𝑢 ∈ 𝑊 0, и документная со-встречаемость иначе.

В такой модели матрица параметров Φ разбивается на блоки по слова­

рям различных модальностей, и нормировка производится в рамках каждо­

го отдельного блока. Таким образом, каждая тема описывается несколькими

альтернативными распределениями. Матрица Θ сохраняет прежнюю размер­

ность и интерпретацию. Возможна модель, в которой токены дополнительных

модальностей также порождают свои контейнеры. Это восстанавливает симмет­

ричность раскладываемой матрицы и расширяет матрицу Θ, которая в таком

случае содержит вектор-столбцы для токенов всех модальностей.

Учет дополнительных модальностей не противоречит введению регуляри­

заторов разреживания и любых других. Обучение по-прежнему производится

EM-алгоритмом с регуляризованными формулами M-шага.

Теорема 4. Пусть функция 𝑅(Φ,Θ) непрерывно дифференцируема. Тогда точ­

ка (Φ,Θ) локального экстремума задачи (5.12)-(5.14) удовлетворяет системе
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уравнений со вспомогательными переменными 𝑝𝑡𝑣𝑢 = 𝑝(𝑡|𝑣, 𝑢):

𝑝𝑡𝑣𝑢 = norm
𝑡∈𝑇

(︀
𝜑𝑢𝑡𝜃𝑡𝑣

)︀
; (5.15)

𝜑𝑢𝑡 = norm
𝑢∈𝑊𝑚

(︂
𝑛𝑢𝑡 + 𝜑𝑢𝑡

𝜕𝑅

𝜕𝜑𝑢𝑡

)︂
; 𝑛𝑢𝑡 =

∑︁
𝑣∈𝑊 0

𝑛𝑣𝑢𝑝𝑡𝑣𝑢; (5.16)

𝜃𝑡𝑣 = norm
𝑡∈𝑇

(︂
𝑛𝑡𝑣 + 𝜃𝑡𝑣

𝜕𝑅

𝜕𝜃𝑡𝑣

)︂
; 𝑛𝑡𝑣 =

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑊𝑚

𝜆𝑚𝑛𝑣𝑢𝑝𝑡𝑣𝑢. (5.17)

за исключением нулевых столбцов Φ, Θ в решении данной системы.

Доказательство. По параметрам Φ задача распадается на независимые для

каждой модальности. Поэтому вывод формул M-шага (5.16) аналогичен рас­

смотренному в теореме 2 с учетом того, что вместо документов 𝑑 используются

контейнеры 𝑣.

Выведем формулы для параметров Θ. Запишем необходимые условия ло­

кального экстремума по теореме Каруша–Куна–Таккера:∑︁
𝑚∈𝑀

𝜆𝑚
∑︁

𝑢∈𝑊𝑚

𝑛𝑣𝑢
𝜑𝑢𝑡

𝑝(𝑢|𝑣)
+
𝜕𝑅

𝜕𝜃𝑡𝑣⏟  ⏞  
𝑋𝑡𝑣

= 𝜇𝑣 − 𝜇𝑡𝑣; 𝜇𝑡𝑣 > 0; 𝜇𝑡𝑣𝜃𝑡𝑣 = 0; (5.18)

где множители Лагранжа 𝜇𝑣 и 𝜇𝑡𝑣 соответствует ограничениям нормировки и

неотрицательности соответственно. Домножим обе части равенства на 𝜃𝑡𝑣 и вы­

делим вспомогательные переменные 𝑝𝑡𝑣𝑢:

𝜃𝑡𝑣𝜇𝑣 = 𝜃𝑡𝑣𝑋𝑡𝑣 =
∑︁
𝑚∈𝑀

𝜆𝑚
∑︁

𝑢∈𝑊𝑚

𝑛𝑣𝑢𝑝𝑡𝑣𝑢 + 𝜃𝑡𝑣
𝜕𝑅

𝜕𝜃𝑡𝑣
= 𝑛𝑡𝑣 + 𝜃𝑡𝑣

𝜕𝑅

𝜕𝜃𝑡𝑣
. (5.19)

Фиксируем некоторый контейнер 𝑣. Если для всех 𝑡 ∈ 𝑇 значение 𝑋𝑡𝑣 6 0,

то будем считать такой контейнер вырожденным и исключим его из модели,

положив 𝜃𝑡𝑣 = 0, ∀𝑡 ∈ 𝑇 .

Иначе существует тема 𝑠 такая, что значение 𝑋𝑠𝑣 > 0. Далее рассмотрим

два случая для некоторой темы 𝑡 ∈ 𝑇 . Если 𝑋𝑡𝑣 6 0, то 𝜇𝑡𝑣 = 𝜇𝑣 −𝑋𝑡𝑣 > 0, и

из условия дополняющей нежесткости 𝜃𝑡𝑣 = 0. Если 𝑋𝑡𝑣 > 0, то из (5.19) имеем

𝜃𝑡𝑣𝜇𝑣 = 𝜃𝑡𝑣𝑋𝑡𝑣. Объединяя два случая, запишем:
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Таблица 5.4. Корреляция Спирмена на задачах близости. Модели обучена на русскоязычном

мультимодальном корпусе Lenta.ru. Учет меток времени и категорий улучшает качество.

Model WordSim Sim WordSim Rel MC RG HJ SimLex

SGNS 0.630 0.530 0.377 0.415 0.567 0.243

CBOW 0.625 0.513 0.403 0.370 0.551 0.170

PWE 0.649 0.565 0.605 0.594 0.604 0.123

Multi-PWE 0.682 0.58 0.607 0.584 0.611 0.144

𝜃𝑡𝑣𝜇𝑣 = max

(︂
0, 𝑛𝑣𝑢 + 𝜃𝑡𝑣

𝜕𝑅

𝜕𝜃𝑡𝑣

)︂
. (5.20)

Суммируя левую и правую часть по 𝑡, получаем выражение для 𝜇𝑣:

𝜇𝑣 =
∑︁
𝑡∈𝑇

max

(︂
0, 𝑛𝑣𝑢 + 𝜃𝑡𝑣

𝜕𝑅

𝜕𝜃𝑡𝑣

)︂
. (5.21)

Подставляя его обратно в (5.20), получаем формулу M-шага (5.17).

Эксперимент на новостной коллекции Lenta.ru. В проведенном экспери­

менте рассматривалась коллекция новостного сайта на русском языке Lenta.ru.

Она содержит 100033 новостей общим объемом 10050714 токенов. Дополнитель­

но, известны временные метки документов (825 уникальных), категории (22

уникальных) и под-категории (97 уникальных). Размер словаря – 54963 слов.

При предобработке коллекции для обучения вероятностных представлений ис­

пользовалось окно ширины 5 и прием выравнивания частот слов (5.10).

Для оценивания качества использовался набор данных HJ [121] с эксперт­

ными оценками 398 пар слов, которые являются переводами на русский сле­

дующих наборов данных: MC [122], RG [123] и WordSim353 [105]. Также мы

использовали перевод набора данных SimLex-999 [124].

Таблица 5.4 показывает, что вероятностные представления слов PWE пре­

восходят модель SGNS на большинстве датасетов даже без использования до­

полнительных модальностей времени и категорий. Возможной причиной низ­

кого качества модели SGNS является размер корпуса. Мы также пробовали
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использовать модель CBOW [1], следуя общей рекомендации использовать эту

архитектуру для небольших данных, однако ее качество оказалось еще ниже.

В этом и других экспериментах мы замечаем, что тематическое моделирование

требует данные меньших объемов для получения качественных представлений,

чем модели семейства word2vec.

С использованием дополнительных модальностей качество улучшается (см.

Multi-PWE в таблице 5.4). Интересно, что метки времени и категорий способ­

ствуют более точным оценкам близости слов (базовой модальности). Далее мы

рассматриваем два различных режима. В первом модальности используются

только как токены (несимметричный случай), а во втором еще и порождают

свои контейнеры (симметричный случай). Близости слов оказываются лучше в

несимметричном подходе, а близости между токенами различных модальностей

выигрывают от симметризации. В таблице 5.5 приведено несколько примеров

временных меток и ближайших к ним слов. Результаты очень хорошо интер­

претируются: первая колонка соответствует выходу фильма «Звездные войны»,

вторая – премии Оскар, а третья – Дню Победы.

Таким образом, введение модальностей в рамках аддитивной регуляриза­

ции позволяет не только улучшить качество представлений слов, но и получить

осмысленные близости между токенами различных модальностей. Результаты

данного раздела опубликованы в [26].

5.5. О связывании векторов слов и контекстов

Матрица слов и матрица контекстов. Интересным наблюдением являет­

ся то, что во всех рассмотренных моделях квадратная матрица раскладывается

в произведение в двух не связанных друг с другом матриц:

𝐹𝑊×𝑊 ≈ Φ𝑊×𝑇 Θ𝑇×𝑊 . (5.22)

В литературе по векторным представлениям слов принято называть первую
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Таблица 5.5. Ближайшие слова к датам в векторном пространстве модели PWE.

2015-12-18

Премьера Звездных Войн

2016-02-29

Вручение Оскара

2015-05-09

День Победы

джедай статуэтка великий

ситх кинонаграда годовщина

фетт номинироваться летие

энакин кинопремия нормандия

чубакка Линклейтер парад

киносага Оскар демонстрация

хэмилл Бёрдмен шествие

кэрри удостоиться Владимир

приквел award празднование

соло критики концентрационный

пробуждение отрочество освенцим

бойега оператор марш

трилогия Любецки фотопортрет

абрамс режиссёр труженник

матрицу матрицей слов, а вторую – матрицей контекстов, подчеркивая различ­

ные роли одних и тех же элементов словаря 𝑊 . Возникает вопрос, нельзя ли

уменьшить пространство параметров, положив:

Θ = Φ𝑇 ; 𝐹 ≈ ΦΦ𝑇 . (5.23)

С этим вопросом связано несколько аргументов. Во-первых, в ряде задач

все же возникает потребность раскладывать неквадратную матрицу 𝐹 , когда

множество слов и множество контекстов не совпадают. Например, в качестве

контекста может выступать пара (слово, сдвиг относительно другого слова).

Так, в работе [125] такой подход показывал высокое качество. Тем не менее, в

подавляющем большинстве задач исходная матрица квадратная.

Во-вторых, с лингвистической точки зрения понятия слова и контекста

различны даже для квадратной матрицы. Вектор слова 𝑤 должен отражать

особенности употребления самого слова, в то время как вектор контекста 𝑤

должен отражать особенности употребления других слов рядом с ним. Тем не

менее, на практике это различие стирается. Так, в моделях GloVe и SGNS успеш­
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ной эвристикой оказывается усреднение двух векторов: 1
2(𝜑𝑤+𝜃𝑤). Именно такое

представление слова дает наилучшее качество в прикладных задачах.

В-третьих, разложение вида (5.23) возможно только для неотрицательно

определенной матрицы 𝐹 .

Неединственность решения. Важной проблемой задачи матричного разло­

жения является неединственность решения:

𝐹 ≈ ΦΘ = (Φ𝑆) (𝑆−1Θ) = Φ′Θ′, (5.24)

для любой невырожденной матрицы 𝑆. Таким образом, при одном и том же

значении оптимизируемого функционала мы можем получать различные мат­

рицы. Особенно важно, что для подсчета близости слов обычно используется

скалярное произведение строк матрицы Φ, которое также изменится в случае

использования матрицы Φ′.

Рассмотрим теперь случай поиска разложения в виде (5.23):

𝐹 ≈ ΦΦ𝑇 = (Φ𝑆) (𝑆−1Φ𝑇 ) = (Φ𝑆) (Φ𝑆)𝑇 = Φ′Φ′𝑇 . (5.25)

В этом случае матрица 𝑆 должна быть ортогональной, а значит, скалярные

произведения строк матрицы Φ не изменятся. Таким образом, связывание па­

раметров обеспечивает единственность разложения в смысле оценок близости

слов.

Аналогичное связывание входных и выходных представлений слов приме­

няется в языковых моделях [126, 127]. Однако в стандартных моделях вектор­

ных представлений слов (word2vec, GloVe) этого не происходит.

Связывание параметров в тематических моделях. Рассмотрим тема­

тическую модель битермов (Biterm Topic Model, BTM) [128]. Она была пред­

ложена для моделирования корпусов коротких текстов и превзошла на таких

данных стандартный подход с использованием LDA. В модели BTM моделиру­

ется совместное распределение слов 𝑢 и контекстов 𝑣 как взвешенное скалярное
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произведение двух строк матрицы Φ:

𝑝(𝑢, 𝑣) =
∑︁
𝑡∈𝑇

𝜑𝑢𝑡𝜑𝑣𝑡𝜋𝑡, (5.26)

где 𝜋 — вектор, задающий распределение на темах и не зависящий от контекста.

Словари слов и контекстов совпадают.

В данной модели, так же как и в модели WNTM, дополнительно использу­

ются априорные распределения Дирихле. Далее будем это опускать и рассмат­

ривать аналоги обеих моделей без регуляризации.

Введем обозначение для матрицы условных вероятностей, полученных из

матрицы Φ по формуле Байеса:

Φ𝐵 = (𝜑𝐵𝑡𝑤), 𝜑𝐵𝑡𝑤 = 𝑝(𝑡|𝑤) = 𝑝(𝑤|𝑡)𝑝(𝑡)
𝑝(𝑤)

=
𝜑𝑤𝑡𝑝(𝑡)

𝑝(𝑤)
. (5.27)

Теорема 5. Если при инициализации модели WNTM положить Θ = Φ𝐵, то

данная связь матриц Φ и Θ сохраняется в течение EM-итераций, а получен­

ная модификация WNTM в точности совпадает с моделью BTM.

Доказательство. Выпишем формулы EM-алгоритма для модели WNTM:

∙ E-шаг:

𝑝(𝑡|𝑣, 𝑢) = 𝜑𝑢𝑡𝜃𝑡𝑣∑︀
𝑡 𝜑𝑢𝑡𝜃𝑡𝑣

; (5.28)

∙ M-шаг:

𝜑𝑢𝑡 =
𝑛𝑢𝑡
𝑛𝑡

; 𝑛𝑢𝑡 =
∑︁
𝑣∈𝑊

𝑛𝑣𝑢𝑝(𝑡|𝑣, 𝑢); 𝑛𝑡 =
∑︁
𝑢∈𝑊

𝑛𝑢𝑡; (5.29)

𝜃𝑡𝑣 =
𝑛𝑡𝑣
𝑛𝑣

; 𝑛𝑡𝑣 =
∑︁
𝑢∈𝑊

𝑛𝑣𝑢𝑝(𝑡|𝑣, 𝑢); 𝑛𝑣 =
∑︁
𝑡∈𝑇

𝑛𝑡𝑣. (5.30)

Если функция 𝑝(𝑡|𝑣, 𝑢) симметрична относительно аргументов 𝑢 и 𝑣, то

матрицы счетчиков 𝑛𝑢𝑡 и 𝑛𝑡𝑣 совпадают с точностью до транспонирования, а

матрицы Φ и Θ отличаются транспонированием и нормировкой:

𝜃𝑡𝑣 =
𝑛𝑡𝑣
𝑛𝑣

=
𝑛𝑣𝑡𝑛𝑡
𝑛𝑡𝑛𝑣

= 𝜑𝑣𝑡
𝑛𝑡
𝑛𝑣
. (5.31)
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Таблица 5.6. Корреляция Спирмена для WNTM и BTM на задачах близости слов.

Model WS-353 Sim WS-353 Rel WS-353
SimLex

Hill et al.

MEN

Bruni et. al

RareWords

Luong et al.

Radinsky

M. Turk

BTM 0.68 0.59 0.61 0.24 0.65 0.32 0.54

WNTM 0.67 0.58 0.60 0.24 0.66 0.33 0.55

В таком случае очередной итеративный пересчет по формуле (5.28) снова при­

ведет к симметричной 𝑝(𝑡|𝑣, 𝑢).

Инициализируем матрицу Θ согласно (5.31). Соотношение (5.31) будет ин­

вариантом итерационного процесса. Рассмотрим, как при этом изменится веро­

ятностная генеративная модель WNTM:

𝑝(𝑢|𝑣) =
∑︁
𝑡∈𝑇

𝜑𝑢𝑡𝜃𝑡𝑣 =
∑︁
𝑡

𝜑𝑢𝑡𝜑𝑣𝑡
𝑛𝑡
𝑛𝑣
. (5.32)

По определению условной вероятности запишем:

𝑝(𝑢, 𝑣) = 𝑝(𝑢|𝑣)𝑝(𝑣) =
∑︁
𝑡∈𝑇

𝜑𝑢𝑡𝜑𝑣𝑡
𝑛𝑡
𝑛𝑣

𝑛𝑣
𝑛

=
∑︁
𝑡

𝜑𝑢𝑡𝜑𝑣𝑡𝜋𝑡; 𝜋𝑡 =
𝑛𝑡
𝑛
. (5.33)

Мы пришли в точности к формуле (5.26), определяющей модель BTM.

Эксперименты. Модели WNTM и BTM были реализованы в библиотеке

BigARTM [129]. Сравнение проводилось на задаче близости слов по стандарт­

ным тестовым наборам. Обучение моделей производилось на англоязычной Ви­

кипедии. По результатам в Таблице 5.6 видно, что качество моделей практи­

чески не отличается. При этом число параметров в модели BTM в два раза

меньше, чем в модели WNTM. Это интересный результат, который показывает,

что в данном случае выгодно производить связывание параметров модели.

5.6. Представления предложений и документов

Помимо представления слов в семантическом пространстве низкой размер­

ности, часто возникает задача представления более длинных фрагментов тек­

ста, таких как предложения, параграфы или целые документы. Такие модели



124

активно развиваются. Часть из них основана на выражении вектора предло­

жения через взвешенное среднее векторов слов. В [130] это происходит в пост­

обработке. Выбираются веса, штрафующие слишком частотные слова, в резуль­

тате взвешенное среднее предобученных векторов слов дает высокое качество.

В модели Sent2vec [131] этот этап переносится из пост-обработки в обучение.

Максимизируется правдоподобие наблюдаемых слов в предложениях, при этом

предложения моделируются усреднением векторов слов. Еще одна известная

модель StarSpace [132] обучается по выборке пар семантически близких пред­

ложений, при этом каждое предложение по-прежнему раскладывается в сумму

слов. Семантически близкими могут считаться последовательные предложения

в тексте (обучение без учителя) или предложения-дубликаты согласно разметке

асессоров (обучение с учителем).

Подходы другой группы [133–136] работают с предложением целиком, ухо­

дя от гипотезы мешка слов. Так, в модели SkipThought [133] предложение мо­

делируется рекуррентной нейронной сетью GRU для предсказания следующего

и предыдущего предложений в тексте. Предполагается, что представление ней­

ронной сети, получаемое из последнего состояния кодировщика (encoder), содер­

жит всю необходимую семантическую информацию о предложении. В модели

InferSent [135] исследуются несколько различных способов агрегации состояний

кодировщика: усреднение векторов, взятие максимума по каждой компоненте,

механизм внимания, несколько слоев сверток. Обучение производится по набо­

ру пар предложений SNLI [137], размеченных для задачи предсказания логи­

ческого следствия (entailment). Более полный обзор векторных представлений

предложений можно найти в [138], а сравнение качества работы на различных

прикладных задачах в [139].

Такие представления, как правило, не являются интерпретируемыми. В на­

шей работе [29] было показано, что увеличение разреженности представлений

может приводить к повышению интерпетируемости. Исследовалась простейшая

архитектура автокодировщика (autoencoder), в которой предложение представ­
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Таблица 5.7. Качество векторов предложений: корреляция Пирсона/Спирмена на задачах

близости STS-2014 и SICK relatedness (связанность); точность на задаче SICK entailment

(следование).

Model STS-2014 SICK

Forum News Headlines Images Tweets Rel Ent

BOW (ours) 0.41/ 0.42 0.70/ 0.62 0.60/ 0.53 0.76/ 0.71 0.68/ 0.63 0.77/ 0.70 76.27

Fitted (ours) 0.45/ 0.46 0.70/ 0.62 0.61/ 0.55 0.76/ 0.71 0.68/ 0.62 0.78/ 0.71 76.96

BOW (w2v) 0.39/ 0.46 0.67/ 0.66 0.64/ 0.60 0.76/ 0.72 0.70/ 0.69 0.79/ 0.69 75.62

ляется последним слоем LSTM сети, а затем с помощью другой LSTM сети

происходит предсказание того же предложения. Рассматривались несколько ва­

риантов разреживающих слоев и проверялось качество восстановления предло­

жения, а также интерпретируемость компонент получаемых представлений. Ин­

терпретируемость измерялась с помощью когерентности, адаптированной для

случая предложений. В результате было показано, что разреженные модели

существенно улучшают интерпретируемость, однако могут ухудшать качество

восстановления предложений.

Тематические представления предложений. В подходе, предлагаемом в

данной работе, вектора слов являются вероятностными распределениями на

множестве тем 𝑝(𝑡|𝑤) и получаются из параметров модели 𝜑𝑤𝑡 = 𝑝(𝑤|𝑡) по фор­

муле Байеса. Представления предложений могут быть получены с помощью

усреднения векторов слов, что соответствует одной итерации EM-алгоритма с

фиксированными предобученными параметрами Φ. При такой интерпретации

интересной возможностью представляется уточнение векторов предложений Θ

повторением EM-итераций до сходимости. В таком случае вхождения слов в до­

кументы получают контекстно-зависимые распределения 𝑝(𝑡|𝑤, 𝑠), где 𝑡 – тема,

𝑤 – слово, 𝑠 – предложение, а вектора предложений являются усреднением этих

распределений. Такой подход представляется предпочтительным, т.к. позволя­

ет уточнять тематические вектора многозначных слов исходя из контекста, что

должно приводить к более специфичным векторам предложений.



126

Рис. 5.2. Точность моделей ARTM и doc2vec-DBOW для нескольких размерностей простран­

ства (100, 200, 400) на задаче предсказания близости в тройках статей ArXiv.

Это было подтверждено в нашем эксперименте [33]. Оценивалось качество

решения задач семантической близости предложений на данных STS-2014 [140],

а также задач семантической связанности (relatedness) и определения логиче­

ского следования предложений (entailment) на данных SICK [141]. Векторные

представления предложений использовались в линейных моделях, обученных с

помощью инструмента SentEval [142]. Сравнивался стандартный подход, усред­

няющий вектора word2vec, а также два новых подхода: усреднение тематиче­

ских векторов слов (BOW) и уточнение этих векторов по контексту с помощью

10 проходов EM-алгоритма (fitted). Во всех случаях вектора слов были пре­

добучены на текстах английской Википедии. В таблице 5.7 показано, что кон­

текстное уточнение векторов улучшает качество на всех наборах данных. При

этом качество оказывается сопоставимым с качеством векторов, полученных на

основе модели word2vec.

Как и в случае отдельных слов, полученные тематические представле­

ния предложений имеют преимущества разреженности и интерпретируемости.

Предлагаемый подход может быть обобщен для произвольных признаков после­

довательного текста [33].
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Тематические представления документов. Подход тематического моде­

лирования естественным образом позволяет обучать представления докумен­

тов. В эксперименте на коллекции статей ArXiv исследовалось качество реше­

ния задачи семантической близости документов. Датасет [143] состоит из авто­

матически сгенерированных триплетов статей: запрос, статья с пересекающи­

мися ключевыми слова (семантически близкая) и статья с непересекающимися

ключевыми словами (семантически далекая). Качество моделей оценивалось

как точность определения, какая из статей близка к запросу. Тексты 963564

статей общей длиной 1416554733 токенов были предобработаны1, после чего

размер словаря составил 122596 слов. В нашем корпусе статей нашлось 15853

триплетов из оригинальных 20000 триплетов в тестового набора2.

Тематические представления документов обучались одной эпохой онлайно­

вого EM-алгоритма. Матрица Θ не хранилась, таким образом, алгоритм PWE

не требовал объема памяти, линейного по числу документов. Представления

статей из тестовой выборки были найдены с помощью 10 проходов по каждому

документу. Тематическая модель сравнивалась с классической для этой задачи

моделью DBOW [143] семейства doc2vec. Она тренировалась 15 эпохами с линей­

ным затуханием градиентного шага с 0.025 до 0.001. Векторные представления

тестовых документов были получены за 5 эпох. В отличие от EM-алгоритма,

модель DBOW требует хранения векторных представлений всех документов в

памяти и обучается дольше (несколько часов вместо 30 минут на одной ма­

шине). На Рисунке 5.2 видно, что предлагаемая ARTM модель существенно

превосходит модель DBOW на широком диапазоне размерностей векторного

пространства.
1 https://github.com/romovpa/arxiv-dataset
2 http://cs.stanford.edu/~quocle/triplets-data.tar.gz
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5.7. Обсуждение и выводы

Проведено теоретическое и экспериментальное сравнение тематических мо­

делей и векторных моделей семантики. Предложена формализация гипотезы

дистрибутивной семантики в рамках подхода аддитивной регуляризации те­

матических моделей. Доказана теорема, на основе которой предложен новый

алгоритм построения векторных представлений слов PWE. В экспериментах

показано, что с его помощью удается определять семантическую близость слов

наравне с известным методом SGNS и интерпретировать координаты векторно­

го пространства как содержательные темы коллекции.

Показана связь модели PWE с другими тематическими моделями совмест­

ной встречаемости слов. Доказана теорема об эквивалентности моделей WNTM

и BTM при связывании входных и выходных представлений слов. Теоретиче­

ский результат подтвержден в экспериментах.

Предложен способ одновременного учета гипотезы дистрибутивной семан­

тики и данных дополнительных модальностей. С помощью полученного рас­

ширения подхода АРТМ построено единое векторное пространство для токе­

нов различных модальностей, и продемонстрированы интерпретируемые кросс­

модальные близости. Показано улучшение качества предсказания семантиче­

ской близости слов в результате введения в модель модальностей времени и

категорий.

Предлагаемый подход представлений слов обобщен на случай сегментов

текста, в частности, отдельных предложений и документов. В экспериментах

получено качество, сопоставимое или превосходящее стандартные подходы се­

мейства word2vec.

Стоит заметить, что в модели PWE не используется информация о частях

слова (морфемах или буквенных 𝑛-граммах). Использование такой информа­

ции может повышать качество, как показано в последних работах по векторным

представлениям слов. В частности, на этом основана модель FastText [3]. Второе
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направление недавних исследований связано с обучением контексто-зависимых

представлений слов. Модель ELMo [4], предложенная в 2018 году, превосходит

другие модели на большом числе прикладных задач. Расширение разрабатыва­

емого подхода тематических векторных представлений слов для учета частей

слов и слов контекста представляется перспективной темой дальнейшего ис­

следования. Первые эксперименты по контекстно-зависимым представлениям в

модели PWE проведены в [33] и подтверждают, что отказ от гипотезы мешка

слов приводит к повышению качества тематических векторных представлений.
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Заключение

Отправной точкой данного исследования стали методы вероятностного те­

матического моделирования, позволяющие описывать коллекцию текстовых до­

кументов с помощью набора скрытых тем. Обобщение известных алгоритмов

построения таких моделей (PLSA-EM, LDA-GS и др.) позволило получить се­

мейство EM-алгоритмов, в котором эвристики робастности к шуму и фону, сэм­

плирования тем и регуляризации Дирихле могут включаться независимо. Была

предложена упрощенная робастная модель, в которой фоновая компонента от­

сутствует, а вес компоненты шума, предназначенной для описания редких нете­

матических терминов документов, настраивается автоматически. В эксперимен­

тах было показано, что в таких моделях удается строить сильно разреженные

распределения, а дополнительная регуляризация Дирихле не требуется.

Далее модель PLSA, свободная от регуляризации, была использована как

основа для построения аддитивно регуляризованных тематических моделей,

учитывающих дополнительные критерии на матрицы параметров Φ и Θ. В рам­

ках данного подхода была предложена модель фоновых и предметных тем, яв­

ляющаяся логичным продолжением робастных моделей. В данной модели сгла­

женные фоновые темы описывают общую лексику языка, а также наиболее

частотные слова конкретной коллекции. Это позволяет освободить предметные

темы от неспецифичных фоновых слов под действием комбинации регуляриза­

торов разреживания и декоррелирования. В экспериментах подтверждается по­

вышение интерпретируемости, разреженности и различности предметных тем.

Аппарат построения интерпретируемых разреженных тематических мо­

делей применяется для получения семантических векторных представлений

слов, ключевым свойством которых является сохранение семантических рас­

стояний. Это становится возможным после перехода от моделирования частот

слов в документах к моделированию совместных частот слов в локальных кон­

текстах. Предлагается модель тематических векторных представлений слов, в
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которой комбинируются преимущества тематических моделей и моделей дис­

трибутивной семантики. В экспериментах показывается высокое качество реше­

ния задачи близости слов, а также сохранение интерпретируемости компонент

векторов. С помощью регуляризатора разреживания удается получить более

90% нулей в построенных векторах без потери качества.

В последней части работы подход аддитивной регуляризации используется

для построения единого векторного пространства для токенов различных мо­

дальностей (слов, дат, категорий и т.д.). Предложенная модель превосходит дру­

гие подходы по качеству решения задачи близости слов, а также демонстрирует

интерпретируемые кросс-модальные близости. Расширение модели позволяет

строить тематические векторные представления сегментов текста, в частности,

предложений или целых документов. Данный подход показывает высокое каче­

ство на задаче определения семантической близости научных статей arXiv.

В дальнейшем планируется продолжение исследования и применение по­

лученных интерпретируемых векторных представлений для построения систем

разведочного информационного поиска. В данном приложении требуется не

только определить семантическую близость слов или сегментов текста, но и

проинтерпретировать темы, которые обеспечивают эту близость. Совмещение

этих требований возможно в рамках предложенного подхода.
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118. Röder Michael, Both Andreas, Hinneburg Alexander. Exploring the Space of

Topic Coherence Measures // Proceedings of the Eighth ACM International

Conference on Web Search and Data Mining. — WSDM ’15. — New York, NY,

USA: ACM, 2015. — Pp. 399–408.

119. Online Learning of Interpretable Word Embeddings / Hongyin Luo,

Zhiyuan Liu, Huan-Bo Luan, Maosong Sun // EMNLP. — 2015.

120. Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large

Collections. / Konstantin Vorontsov, Oleksandr Frei, Murat Apishev et al. //

TM@CIKM / Ed. by Nikolaos Aletras, Jey Han Lau, Timothy Baldwin,

Mark Stevenson. — ACM, 2015. — Pp. 29–37.

121. Human and Machine Judgements for Russian Semantic Relatedness / Alexan­

der Panchenko, Dmitry Ustalov, Nikolay Arefyev et al. // Analysis of Images,

Social Networks and Texts (AIST’2016). — Springer, 2016.

122. Miller George A., Charles Walter G. Contextual correlates of semantic similar­

ity // Language and Cognitive Processes. — 1991. — Vol. 6, no. 1. — Pp. 1–28.

123. Rubenstein Herbert, Goodenough John B. Contextual Correlates of Syn­

onymy // Commun. ACM. — 1965. — . — Vol. 8, no. 10. — Pp. 627–633.

124. Leviant Ira, Reichart Roi. Judgment Language Matters: Towards Judgment

Language Informed Vector Space Modeling // Preprint pubslished on arXiv

(arxiv:1508.00106). — 2015.

125. Levy Omer, Goldberg Yoav. Dependency-Based Word Embeddings // Proceed­

ings of the 52nd Annual Meeting of the Association for Computational Linguis­

tics (Volume 2: Short Papers). — Association for Computational Linguistics,

2014. — Pp. 302–308.

126. Press Ofir, Wolf Lior. Using the Output Embedding to Improve Language



146

Models // Proceedings of ACL: Volume 2, Short Papers. — ACL, 2017. —

Pp. 157–163.

127. Inan Hakan, Khosravi Khashayar, Socher Richard. Tying Word Vectors and

Word Classifiers: A Loss Framework for Language Modeling // CoRR. — 2016.

— Vol. abs/1611.01462.

128. A biterm topic model for short texts. / Xiaohui Yan, Jiafeng Guo, Yanyan Lan,

Xueqi Cheng // Proceedings of WWW. — 2013. — Pp. 1445–1456.

129. BigARTM: Open Source Library for Regularized Multimodal Topic Modeling

of Large Collections / Konstantin Vorontsov, Oleksandr Frei, Murat Apishev

et al. // AIST. — 2015.

130. Arora Sanjeev, Liang Yingyu, Ma Tengyu. A Simple but Tough-to-Beat Base­

line for Sentence Embeddings // International Conference on Learning Repre­

sentations. — 2017.

131. Pagliardini Matteo, Gupta Prakhar, Jaggi Martin. Unsupervised Learning of

Sentence Embeddings using Compositional n-Gram Features // Proceedings of

NAACL. — 2018.

132. StarSpace: Embed All The Things! / Ledell Wu, Adam Fisch, Sumit Chopra

et al. // CoRR. — 2017. — Vol. abs/1709.03856.

133. Skip-thought Vectors / Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov et al. //

Proceedings of the 28th International Conference on Neural Information Pro­

cessing Systems. — NIPS’15. — Cambridge, MA, USA: MIT Press, 2015. —

Pp. 3294–3302.

134. Li Jiwei, Luong Minh-Thang, Jurafsky Dan. A Hierarchical Neural Autoen­

coder for Paragraphs and Documents. // ACL (1). — The Association for

Computer Linguistics, 2015. — Pp. 1106–1115.

135. Supervised Learning of Universal Sentence Representations from Natural Lan­

guage Inference Data / Alexis Conneau, Douwe Kiela, Holger Schwenk et al. //

Proceedings of EMNLP. — Association for Computational Linguistics, 2017.

— Pp. 670–680.



147

136. Universal Sentence Encoder / Daniel Cer, Yinfei Yang, Sheng-yi Kong et al. //

CoRR. — 2018. — Vol. abs/1803.11175.

137. A large annotated corpus for learning natural language inference /

Samuel R. Bowman, Gabor Angeli, Christopher Potts, Christopher D. Man­

ning // Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing (EMNLP). — Association for Computational Linguistics,

2015.

138. Hill Felix, Cho Kyunghyun, Korhonen Anna. Learning Distributed Represen­

tations of Sentences from Unlabelled Data // Proceedings of the 2016 Con­

ference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies. — Association for Computational

Linguistics, 2016. — Pp. 1367–1377.

139. Perone Christian S., Silveira Roberto, Paula Thomas S. Evaluation of sentence

embeddings in downstream and linguistic probing tasks // CoRR. — 2018. —

Vol. abs/1806.06259.

140. SemEval-2014 Task 10: Multilingual Semantic Textual Similarity /

Eneko Agirre, Carmen Banea, Claire Cardie et al. // Proceedings of the 8th In­

ternational Workshop on Semantic Evaluation (SemEval 2014). — Association

for Computational Linguistics, 2014. — Pp. 81–91.

141. A SICK cure for the evaluation of compositional distributional semantic mod­

els / Marco Marelli, Stefano Menini, Marco Baroni et al. // Proceedings of

the Ninth International Conference on Language Resources and Evaluation

(LREC-2014). — European Language Resources Association (ELRA), 2014.

142. Conneau Alexis, Kiela Douwe. SentEval: An Evaluation Toolkit for Universal

Sentence Representations // CoRR. — 2018. — Vol. abs/1803.05449.

143. Dai Andrew M., Olah Christopher, Le Quoc V. Document Embedding with

Paragraph Vectors // CoRR. — 2015. — Vol. abs/1507.07998.


	Введение
	Глава 1.  Дистрибутивная семантика
	1.1.  Типы семантической близости слов
	1.2.  Этапы обработки: от корпуса к смыслам
	1.3.  Математические модели векторных представлений
	1.4.  Замечания о терминологии

	Глава 2.  Вероятностное тематическое моделирование
	2.1.  Задача тематического моделирования
	2.2.  Вероятностный латентный семантический анализ
	2.3.  Латентное размещение Дирихле

	Глава 3.  Схемы обучения тематических моделей
	3.1.  Обобщенное семейство EM-подобных алгоритмов
	3.2.  Робастные и разреженные тематические модели
	3.3.  Обсуждение и выводы

	Глава 4.  Аддитивная регуляризация тематических моделей
	4.1.  Подход аддитивной регуляризации
	4.2.  Разреженность и интерпретируемость тем
	4.3.  Автоматический отбор тем
	4.4.  Обсуждение и выводы

	Глава 5.  Тематические векторные модели семантики
	5.1.  Тематические векторные представления слов
	5.2.  Задачи семантической близости и аналогий слов
	5.3.  Интерпретируемость и разреженность компонент
	5.4.  Векторные представления мультимодальных данных
	5.5.  О связывании векторов слов и контекстов
	5.6.  Представления предложений и документов
	5.7.  Обсуждение и выводы

	Заключение
	Список литературы

