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Введение

Биометрические технологии распознавания (идентификации, верификации)

личности широко зарекомендовали себя при решении различных задач, связан­

ных с обеспечением повышенного уровня безопасности доступа к информации и

различным материальным объектам. В основе технологий лежит свойство уни­

кальности биометрической характеристики человека (индивидуума), использу­

емой в качестве идентификатора. Одной из таких характеристик является изоб­

ражение радужной оболочки глаза.

Радужная оболочка глаза (РОГ) имеет уникальную, сложную и слабо из­

меняющуюся со временем структуру, что делает её высокоинформативным и

устойчивым биометрическим признаком. Несмотря на то, что свойство уни­

кальности РОГ известно с давних времён, первые новаторские работы (в т.ч.

патенты), предлагающие использование радужки в качестве биометрического

признака для распознавания, приходятся на период с 1985 по 1998 годы [21,

33, 34, 46, 140, 142]. В качестве входного сигнала было предложено использо­

вание изображения РОГ, зарегистрированного цифровой камерой в ближнем

инфракрасном (БИК) диапазоне частот спектра электромагнитных волн.

C развитием технических средств регистрации изображения и обработки

информации, позволяющая обеспечить наиболее высокую точность распознава­

ния, по сравнению с другими биометрическими методами [48, 98, 99], технология

аутентификации личности по радужной оболочке глаза стала привлекать вни­

мание все большего количества исследовательских групп по всему миру, о чем

свидетельствуют данные обзоров технологии, приходящиеся на этот период [22,

23, 81, 101]. В то же время, одно за другим, стали появляться и первые коммер­

ческие решения в области систем контроля и управления доступом (СКУД),

использующие изображение радужки в качестве уникального идентификатора.

Среди наиболее известных IriScan, Iridian, Sarnoff, Sensar, LG, Panasonic, OKI,

Morpho и другие.
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Среди наиболее известных на сегодняшний день биометрических систем,

использующих изображение РОГ в качестве уникального идентификатора, мож­

но выделить следующие: системы биометрического паспортного контроля в бо­

лее чем 10 терминалах аэропортов Великобритании и Амстердама, на границе

США и Канады, в 32 наземных, воздушных и морских портах ОАЭ (Совет Со­

трудничества Арабских Государств сообщает о 62 триллионах сравнений био­

метрических шаблонов РОГ за последние 10 лет) [62]; в 2016 году, в рамках

программы UIDAI, осуществляемой индийским правительством, изображение

радужки было зарегистрировано у более чем 1 млрд жителей страны; изобра­

жение РОГ является одной из трёх биометрических модальностей (также лицо

и папиллярный узор пальца и ладони), стандартизованных ICAO для примене­

ния в электронных паспортах [66].

Одной из основных причин высокого интереса к биометрическим методам

аутентификации сегодня является постоянное повышение требований к безопас­

ности, в частности, при проведении финансовых операций, защиты и персони­

фикации пользовательских данных. Большое внимание уделяется в том числе

и удобству сервисов, позволяющих отказаться от использования всевозможных

паролей, ПИН-кодов, смарт-карт и иных способов защиты. Мобильные устрой­

ства, стремительно приобретающие универсальность в аспекте проведения все­

возможных транзакций, становятся платформой для развёртывания на них сер­

висов, использующих методы биометрической аутентификации. Значительная

часть смартфонов, появившихся на рынке за последние несколько лет, оборудо­

ваны компактными сенсорами для аутентификации пользователя. С каждым

годом доля устройств, использующих биометрию для распознавания, увели­

чивается, а повышение требований к безопасности заставляет производителей

прибегать к использованию более сложных средств защиты. Позволяющая обес­

печить наивысшую точность и удобство в использовании, технология аутенти­

фикации по РОГ привлекает все больше внимания производителей мобильных

устройств.
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Актуальность темы исследования В попытках изобрести надёжные и

при этом удобные способы подтверждения подлинности той или иной инфор­

мации, общество проделало огромный путь от парольных фраз, сложных печа­

тей, механических замков и ключей до методов автоматической аутентифика­

ции. Подтверждение личности при пересечении границ регионов и государств,

приобретении товаров и услуг, попытках доступа к различного рода данным

и устройствам, проведении всевозможных финансовых транзакций, сопровож­

дающиеся необходимостью предоставления подтверждающей информации, ста­

новится регулярной и неотъемлемой частью жизни каждого. Более 522 млрд.

безналичных платёжных транзакций было произведено в 2017 году, 282 и 389

млрд. в 2010 и 2014 годах соответственно, согласно World Payments Report 2017

(WPR2017) [138], а прогнозируемое к 2020 году значение может достигнуть 726

млрд. Количество безналичных платёжных операций стремительно увеличива­

ется, вместе с ним растёт и доля операций, совершенная при помощи мобиль­

ных устройств. По данным WPR2017 в период с 2015-2019 гг. ожидаемый рост

доли транзакций, осуществляемых с их помощью, составит 21.8% и 32% в пе­

риод 2017-2022 гг. Каждая транзакция, проводимая при помощи мобильного

устройства, требует предоставления подтверждающей информации (ПИН-код

и др.). Помимо транзакций, требующих непосредственного участия пользова­

теля, существует устойчивый тренд к персонификации и интеллектуализации

различных сервисов и услуг, среди которых т.н. «умный дом» (Smart Home),

интернет вещей (Internet of Things), роботы-помощники (Smart Assistant и др.)

и многое другое. Здесь речь может идти и о т.н. некооперативном распознава­

нии. Практически каждое из вышеперечисленных приложений подразумевает

наличие системы автоматической аутентификации/идентификации пользовате­

ля.

Развитие систем компьютерного зрения, машинного (в особенности глубо­

кого) обучения, регистрации и обработки цифровых изображений, распознава­

ния образов в совокупности увеличением мощности вычислительных устройств,
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позволили совершить значительный рывок в области биометрической иден­

тификации личности. В качестве идентификатора здесь выступает уникаль­

ная биометрическая характеристика человека (БХЧ) или биометрическая

модальность. К числу наиболее часто используемых для распознавания БХЧ

можно отнести следующие: изображение и форма лица, изображения радужной

оболочки, сетчатки и периокулярной области глаза, папиллярный узор пальцев

и ладони, изображение венозного русла кисти и ладони, особенности голоса, по­

черка, походки. Изображение радужки, обладающей сложной структурой, инди­

видуальной для каждого человека, является богатым источником информации.

Биометрические системы, использующие изображение РОГ в качестве биомет­

рической модальности, на сегодняшний день показывают наивысшую точность

распознавания, и поэтому привлекают внимание множества исследователей по

всему миру.

Среди наиболее известных исследовательских групп: Cambridge University,

Великобритания (J. Daugman); Michigan State University, США (J. Anil, A.

Ross); University of Notre Dame, США (P.J. Flynn, K.W. Bowyer), University of

Beira Interior, Португалия (H. Proenca), Warsaw University of Technology, Поль­

ша (A. Czajka), Institute of Automation of the Chinese Academy of Sciences, КНР

(T. Tan), в том числе и несколько российских: Федеральный Исследовательский

центр «Информатика и управление» РАН (д.т.н. И.А. Матвеев), МГУ им. Ломо­

носова (д.ф-м.н. А.С. Крылов), Институт систем обработки изображений РАН

и др. Тем не менее, наибольшее внимание технологиям биометрического рас­

познавания сейчас уделяется со стороны коммерческих компаний, создающих

целые институты и направления для их реализации и доведения до рынка.

Использование биометрических технологий в мобильных устройствах и в

системах некооперативного распознавания подразумевает удобство их исполь­

зования, быстродействие и устойчивость к изменчивости БХЧ и окружения.

Это вынуждает ужесточать требования как к алгоритмам распознавания, так

и к средствам регистрации изображения. В частности, система должна осу­
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ществлять устойчивое извлечение биометрического признака(-ов) из изобра­

жения низкого качества, его обработку и последующее сравнение в режиме

реального времени, обеспечивая при этом низкие значения ошибки ложного

недопуска (False Rejection Rate - FRR). Биометрический шаблон должен быть

защищен. Защита может осуществляться на системном уровне и добавлением

спецальных алгоритмов хеширования биометрических данных. Кроме этого, к

основным требованиям часто относят необходимость взаимодействия с пользо­

вателем и наличие системы защиты от подделки. Весь процесс обработки дол­

жен осуществляться на устройстве с сильно ограниченными вычислительными

ресурсами.

Таким образом, новые сценарии использования технологий биометрическо­

го распознавания создают новые задачи, решение которых позволит существен­

но повысить уровень безопасности и удобства транзакций, ежедневно осуще­

щствляемых миллионами людей по всему миру, при использовании различных

сервисов и услуг.

Наиболее актуальными направлениями развития области распознавания

по РОГ на сегодняшний день являются: оценка качества изображения радуж­

ки в условиях изменчивости окружения и при некооперативном распознавании;

разработка методов сегментации области радужки на изображении низкого ка­

чества; разработка высокопроизводительных методов извлечения и представле­

ния особенностей радужки из изображения низкого качества; анализ информа­

тивных признаков радужки и периокулярной области глаза с целью обеспече­

ния обратной связи с пользователем; создание устойчивых методов сравнения

биометрических шаблонов радужки, получаемых в условиях значительной из­

менчивости окружения; разработка новых методов защиты от подделки.

Цели и задачи диссертационной работы:

В работе были поставлены следующие цели:

∙ Создать методы и алгоритмы для автоматического распознавания чело­
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века по радужной оболочке глаза, способные обрабатывать изображение

радужки с частотой поступления кадров на мобильном устройстве, удо­

влетворяющие критериям ошибок распознавания: 𝐹𝑅𝑅 ≤ 1% при 𝐹𝐴𝑅 <

10−7

∙ Разработать методы и алгоритмы оценки качества изображения радужки,

определяющие её пригодность для выделения признаков и обеспечиваю­

щие обратную связь с пользователем устройства

∙ Разработать методы и алгоритмы выделения области радужки на изобра­

жении низкого качества

∙ Создать методы и алгоритмы выявления подделок радужки по изображе­

нию низкого качества, способный обеспечивать защиту от ранее не рсм­

матриваемых видов атак

Для достижения поставленных целей были решены следующие задачи:

∙ Исследование и разработка методов распознавания человека по радужке,

удовлетворяющих критериям, необходимым для обеспечения возможно­

сти их применения в мобильном устройстве

∙ Разработка метода оценки качества изображения радужки, учитывающе­

го ограничения, особенности использования мобильного устройства и вза­

имодействия c пользователем

∙ Исследование и разработка методов выделения радужки на изображении

низкого качества, получаемого в условиях постоянно изменяющегося окру­

жения

∙ Исследование и разработка методов извлечения и сравнения уникальных

особенностей радужки из изображения низкого качества в условиях по­

стоянно изменяющегося окружения
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∙ Исследование и разработка методов обнаружения попыток представления

подделок радужной оболочки глаза

∙ Сбор и разметка баз данных изображений для проведения экспериментов

в рамках решения вышеперечисленных задач

∙ Создание среды и программных средств для оценки производительности

методов, реализованных в рамках решения вышеперечисленных задач

∙ Создание программных средств (библиотеки и демо-приложений) для апро­

бации реализованных методов на мобильном устройстве

Научная новизна.

∙ Предложен новый высокопроизводительный метод распознавания чело­

века по радужной оболочке глаза, способный работать на устройстве с

низкой вычислительной мощностью в условиях постоянно изменяющего­

ся окружения в режиме реального времени;

∙ Предложен новый высокопроизводительный метод выделения области ра­

дужки на изображении низкого качества;

∙ Разработан новый метод оценки качества изображения радужки, позволя­

ющий оценить её пригодностьдля извлечения уникальных особенностей и

их последующего сравнения, обеспечивающий обратную связь с пользова­

телем в виде отображения подсказок на экране устройства;

∙ Разработан новый метод адаптивного квантования изображения радужки,

устойчивый к искажениям текстуры радужки;

∙ Предложен новый метод извлечения и сравнения уникальных особенно­

стей радужки, обеспечивающий высокую точность распознавания, устой­

чивый к изменению размера зрачка, условий окружения и уровню каче­

ства изображения;
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∙ Разработан новый надежный метод защиты от подделывания радужки,

обеспечивающий защиту от, в том числе, ранее не рассматриваемых видов

атак;

Теоретическая и практическая значимость. Результаты, изложенные

в диссертации, используются в мобильных устройствах, выпускаемых компани­

ей Samsung Electronics Co. Ltd. Среди устройств флагманские модели, выпуска­

емые компанией в период с 2016 по 2018 гг.: смартфон Samsung Galaxy Note7,

смартфоны Samsung Galaxy S8/S8+, смартфон Samsung Galaxy Note8, смартфо­

ны Samsung Galaxy S9/S9+, смартфон Samsung Galaxy Note9, планшет Samsung

Galaxy Tab S4.

Положения, выносимые на защиту:

∙ Исследованы особенности использования методов биометрического распо­

знавания человека по радужной оболочке глаза в применении к мобиль­

ным устройствам, сформулированы основные требования, предъявляемые

к таким методам;

∙ Разработан метод распознавания пользователя смартфона по изображе­

нию радужной оболочки глаза, собрана база данных изображений ра­

дужки, полученных в условиях, симулирующих реальное взаимодействие

пользователя с устройством при распознавании, осуществлена программ­

ная реализация метода, произведено сравнение с аналогами, известными

из литературы, по точности и скорости распознавания;

∙ Предложен многостадийный метод оценки качества изображения радуж­

ки, получаемого при помощи мобильного устройства, позволяющий обес­

печивать обратную связь с пользователем в виде отображения подсказок

на экране устройства;

∙ Исследованы методы выделения области радужки на изображении, полу­

чаемом в экстремальных условиях окружения, разработан и программ­
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но реализован метод, основанный на глубоком обучении, произведена его

оценка и сравнение с известными из литературы аналогами;

∙ Исследованы, разработаны и программно реализованы методы извлече­

ния уникальных особенностей радужки по изображению, получаемому в

экстремальных условиях окружения, произведено сравнение методов с су­

ществующими аналогами по скорости обработки и точности распознава­

ния;

∙ 6. Исследованы новые виды подделок радужки, собрана база данных под­

делок, предложен метод защиты от подделок, устойчивый к новым видам

подделок, произведено его сравнение с известными из литературы мето­

дами по точности детектирования и скорости обработки.

Степень достоверности и апробация результатов. Достоверность ре­

зультатов обеспечивается обширным анализом работ в области исследования,

описанием проведенных экспериментов, их воспроизводимостью, а так же апро­

бацией результатов на практике. Основные результаты диссертации докладыва­

лись на следующих конференциях: The 12th IAPR International Conference On

Biometrics, Crete, Greece, 2019; International Conference on Pattern Recognition

and Artificial Intelligence, Montreal, Canada, 2018; International Workshop on "Photogrammetric

and computer vision techniques for video surveillance, biometrics and biomedicine Moscow,

Russia, 2017; Intelligent Data Processing Conference, Barcelona, Spain, 2016; Intelligent

Data Processing Conference, Gaeta, Italy 2018; Samsung Mobile Developers Conference,

Suwon, 2016, South Korea; Всероссийская научная конференции ЭКОМОД-2016,

Киров, Россия, 2016.

Публикации. Материалы диссертации опубликованы в 10 печатных ра­

ботах, из них 3 в журналах из списка ВАК.

Личный вклад автора. Содержание диссертации и основные положе­

ния, выносимые на защиту, отражают персональный вклад автора в опубли­
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кованные работы. Подготовка к публикации полученных результатов проводи­

лась совместно с соавторами, причем вклад диссертанта был определяющим.

Все представленные в диссертации результаты получены лично автором.

Структура и объем диссертации. Диссертация состоит из введения,

обзора литературы, 5 глав, заключения и библиографии. Общий объем диссер­

тации 106 страниц, из них 88 страниц текста, включая 34 рисунков. Библиогра­

фия включает 154 наименований на 17 страницах.
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Глава 1

Биометрия радужки

1.1. Обзор методов биометрического распознавания

Биометрия (или биометрика) - область знаний, изучающая методы и

средства измерения и формализации персональных физических характеристик,

поведенческих черт человека и их использование для идентификации или вери­

фикации человека. Биометрической характеристикой человека (БХЧ)) назы­

ваются результаты измерения элемента фенотипа человека или поведенческой

черты, в процессе сравнения которых с аналогичными, ранее зарегистрирован­

ными БХЧ (эталон, шаблон) реализуется процедура идентификации или вери­

фикации личности.

Биометрическая система представляет собой автоматизированную систе­

му, решающую задачи идентификации или верификации личности и реализую­

щую следующие операции [6]:

∙ регистрации выборки БХЧ от конкретного пользователя;

∙ формирование вектора биометрических данных из выборки БХЧ;

∙ формирование биометрического вектора признаков;

∙ сравнение биометрических векторов признаков с эталонами (шаблонами);

∙ принятие решения о соответствии сравниваемых БХЧ;

∙ формирование результата о достижении идентификации (верификации);

∙ принятие решения о повторении, окончании или видоизменении процесса

идентификации (верификации).

Все БХЧ могут быть поделены на две группы: физиологические (статиче­

ские) и поведенческие (динамические) [6]. Для каждой из груп насчитывается
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множество конкретных методов, наиболее распространенные из которых пере­

числены ниже:

1. Физиологические биометрические характеристики человека:

а. Видеообраз лица: овал, форма, размер отдельных деталей, геометри­

ческие параметры (расстояние между его определенными точками),

узор подкожных кровеносных сосудов и др.;

б. Структура радужной оболочки глаза;

в. Структура кровеносных сосудов на сетчатке глаза;

г. Особенности папиллярного узора одного или нескольких пальцев,

ладони: параметры минуций (координаты, ориентация), параметры

пространственно-частотного спектра и др.;

д. Особенности папиллярного узора ладони;

е. Особенности строения ладони: геометрия (ширина, длина, высота

пальцев, расстояние между определенными точками), неровности скла­

док кожи, рисунок вен, папиллярный рисунок ладони и др.;

ж. Особенности уха: форма (контур, наклон, козелок, противокозелок,

форма и прикрепление мочки), геометрические параметры уха (рас­

стояние между определенными точками) и др.;

з. Особенности губ: форма и др.;

2. Поведенческие биометрические характеристики человека:

а. Особенности голоса: тембр, частотный спектр и др.;

б. Особенности походки;

в. Характер подписи: сила нажима, координата времени;

г. Характер набора текста на клавиатуре и др.;
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Источник БХЧ Универсальность Уникальность Стабильность Собираемость

Видеообраз лица +++ + ++ +++

Термограмма лица +++ +++ + ++

Отпечаток пальца +++ +++ +++ ++

Рука ++ ++ ++ +++

Радужка ++ +++ +++ ++

Сетчатка +++ +++ ++ +

Подпись + + + +++

Голос ++ + + ++

Губы +++ +++ ++ +

Ухо ++ ++ ++ ++

Динамика письма ++ +++ + +++

Походка +++ ++ + +

Таблица 1.1. Экспертная оценка биометрических характеристик человека

Выбор источника БХЧ является основной задачей при создании конкрет­

ных биометрических технологий. Идеальная БХЧ должны быть универсаль­

ной, уникальной, стабильной, собираемой. Универсальность означает наличие

биометрической характеристики у каждого человека. Уникальность означает,

что не может быть двух человек, имеющих идентичные значения БХЧ. Ста­

бильность – независимость БХЧ от времени. Собираемость – возможность по­

лучения биометрической характеристики от каждого индивидума.

Реальные БХЧ не идеальны и это ограничивает их применение. В резуль­

тате экспертной оценки указанных свойств таких источников БХЧ установлено,

что ни одна из характеристик не удовлетворяет требованиям по перечисленным

свойствам (см. Таб. 1.1). Необходимым условием использования тех или иных

БХЧ является их универсальность и уникальность, что косвенно может быть

обосновано их взаимосвязью с генотипом человека.
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1.2. Применение биометрических методов

Обращение к биометрическим технологиям идентификации личности про­

исходит, когда речь идет о повышении требований к безопасности совместно с

удобством их использования. Биометрические технологии могут быть исполь­

зованы как альтернатива существующим методам аутентификации, требующих

запоминания бесчисленного числа паролей, кодовых фраз, ПИН-кодов пласти­

ковых карт, банковских счетов, ячеек и др.

На сегодняшний день, применение таких технологий наиболее часто про­

изводится в системах безопасности для:

∙ Контроля и управления доступом на охраняемый объект, при пересечении

государственных границ, а так же с целью ограничения доступа к элек­

тронным ресурсам, различным персональным устройствам, банковским

ячейкам, депозитам и др.

∙ Обеспечения безопасности финансовых операций: платежные операции,

снятие наличных в банкомате и др.

Рост интереса к биометрическим технологиям обусловлен повышением тре­

бований к безопасности при проведении аутентификации пользователя. На сего­

дняшний день биометрические технологии наиболее активно внедряются в сфе­

рах государственного контроля границ и при проведении финансовых операций.

Примерами этого могут служить необходимость обязательной сдачи биометри­

ческих данных (отпечатков пальцев, изображения лица) при получении загра­

ничного паспорта, внедрение универсальных электронных карт (ID за рубежом

и УЭК на территории РФ), планы по внедрению биометрических технологий

с целью аутентификации пользователя многими крупными банками, внедрение

такими крупными компаниями как Samsung, Apple, Google своих платежных

систем Samsung Pay, Apply Pay и Android Pay соответственно и многое другое.
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1.3. Структура радужки и её свойства

Радужная оболочка глаза (радужка, лат. iris, из др.-греч. ἶρις «радуга») -

круглая подвижная диафрагма диаметром около 12 мм, отделяющую переднюю

камеру глазного яблока от задней. Расположена за роговицей между передней

и задней камерами глаза, перед хрусталиком (Рис. 1.1, а), обеспечивает регуля­

цию количества света, попадающего на сетчатку. Содержит пигментные клетки

(у млекопитающих — меланоциты), круговые мышцы, сужающие зрачок, и ра­

диальные, расширяющие его.

(а) (б )

Рис. 1.1. Строение глаза (а) и радужки (б)

На передней поверхности радужки выделяют зрачковый край (margo pupillaris)

шириной 1 мм и ресничный край (margo ciliaris) шириной 3—4 мм. В области

зрачкового края расположен сфинктер зрачка (sphincter pupillae) — мышца,

суживающая зрачок; в области ресничного края находится дилататор зрачка

(dilatator pupillae) — мышца, расширяющая зрачок (Рис. 1.1, б ). Место соеди­

нения радужки с ресничным (цилиарным) телом называется корнем радужки,

остальная её часть находится в свободном взвешенном состоянии в жидкости

передней и задней камер глазного яблока [3].

Структура радужки имеет вид губчатой ткани 1.2, состоящей из множе­

ства радиальных тонких перемычек (трабекул), образованных толстой адвенти­

цией сосудов и окружающей их соединительной тканью. Между трабекулами

располагаются углубления (лакуны и крипты). На границе зрачкового и реснич­
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ного края определяется зубчатая линия, или круг Краузе (малое кольцо радуж­

ки) — область прикрепления эмбриональной зрачковой сосудистой мембраны.

Зрачок обрамлен темно-коричневой зрачковой каймой. На передней поверхно­

сти радужки видны складки, при узком зрачке более рельефно выделяются

радиальные складки, при широком зрачке — концентрические [3].

Рис. 1.2. Структура радужки

Радужка имеет генетически обусловленные рисунок и цвет. Коричневый

(темный) цвет наследуется по доминантному типу, голубой (светлый) — по ре­

цессивному. Рисунок и цвет радужки слабо изменяются в течение жизни [1].

Цвет радужки стабилизируется к 10—12 годам. В пожилом возрасте радуж­

ка становится несколько светлее вследствие дистрофических изменений. Также

возможно появление пятен на поверхности радужки в связи с заболеваниями

различных органов [1, 3].

Сложность и особенности текстуры радужки делают её уникальным, вы­

соко-информативным биометрическим признаком, который может быть исполь­

зован в качестве идентификатора.
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1.4. Общая модель распознавания по радужке

Подавляющее большинство предложенных методов распознавания по ра­

дужной оболочке глаза используют следующую общую схему (Рис. 1.3):

Рис. 1.3. Общая схема распознавания по радужке

Регистрация изображения радужки (блок 1) осуществляется при помощи

цифровой камеры в ближнем инфракрасном (БИК, 810-950 нм), либо в види­

мом (380-780 нм) диапазонах длин волн. При регистрации, как правило, так

же используется активная диодная подсветка. Далее (блок 2) осуществляется

оценка качества полученного изображения с точки зрения его пригодности для

выделения радужки и формирования биометрического эталона. К блоку оценки

качества часто относят подсистему защиты от подделки. Он может быть мно­

гостадийным и распределен между остальными блоками. Следующий за ним

блок 3 осуществляет выделение радужки на изображении, т.е. отделение обла­

сти изображения, относящейся к радужке, от фона и шума. В качестве шума

здесь выступает множество элементов: веки, ресницы, блики и т.д. После того,

как область радужки выделена, осуществляется построение биометрического
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эталона (блок 4).

Рис. 1.4. Преобразование изображения радужки

Данный этап часто включает преобразование изображения (Рис. 1.4), пу­

тем перехода из исходной Декартовой системы координат (𝑥, 𝑦) в полярную

(𝑟, 𝜃) (1.1), впервые предложенную в работе [33]:

𝐼(𝑥(𝑟, 𝜃), 𝑦(𝑟, 𝜃)) → 𝐼(𝑟, 𝜃) (1.1)

где 𝐼(𝑥, 𝑦) - исходное изображение радужки, (𝑥, 𝑦) координаты в Декартовой

системе, а (𝑟, 𝑞) - соответствующие нормализованные координаты в полярной.

𝑥(𝑟, 𝜃) и 𝑦(𝑟, 𝜃) заданы в виде линейных комбинаций наборов точек границ зрач­

ка (𝑥𝑝(𝜃), 𝑦𝑝(𝜃)) и радужки (𝑥𝑖(𝜃), 𝑦𝑖(𝜃)):

𝑥(𝑟, 𝜃) = (1− 𝑟) · 𝑥𝑝(𝜃) + 𝑟 · 𝑥𝑖(𝜃)

𝑦(𝑟, 𝜃) = (1− 𝑟) · 𝑦𝑝(𝜃) + 𝑟 · 𝑦𝑖(𝜃)
(1.2)

После того как биометрический шаблон радужки построен, в зависимо­

сти от текущего сценария (регистрация/распознавание) он либо сохраняется в

БД (блок 5), либо сравнивается с эталонами, сохраненными в БД ранее (блок

6). При построении шаблона также часто используется процедура выбора наи­

лучшего (-их) по заранее заданным критериям, что позволяет снизить ошибки

распознавания.

1.5. Особенности мобильной биометрии радужки

Значительная доля платежных транзакций осуществляется посредством

мобильных платежных систем, и эта доля стремительно растет [138]. При ра­
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боте с Samsung Pay, Apply Pay и Android Pay пользователю предлагается ис­

пользовать один из возможных способов аутентификации, среди которых уже

сейчас присутствует биометрический шаблон отпечатков пальцев (Рис. 1.5).

Рис. 1.5. Использование отпечатков пальцев при совершении платежной транзакции с мо­

бильного устройства

Как было упомянуто ранее, технология распознавания по радужке обла­

дает рядом преимуществ по сравнению с распознаванием по иным биометриче­

ским признакам, в том числе отпечаткам пальцев. Структура радужки явля­

ется устойчивым, хорошо выраженным и высоко-информативным биометриче­

ским признаком, практически не подвергающимся изменениям в течение жиз­

ни. Кроме этого, процедура распознавания по радужке является бесконтактной.

Перечисленные свойства позволяют обеспечить удобство использования, более

высокую точность распознавания и надежность биометрических систем иден­

тификации, построенных на основе данного биометрического признака и, как

следствие, расширение рынка мобильных устройств.

В качестве информации, используемой для построения биометрического

шаблона в системах биометрической идентификации личности по радужной

оболочке глаза, выступает изображение радужки.

Работа с мобильным устройством накладывает дополнительные ограниче­

ния на применения биометрической системы распознавания по радужке и, как

следствие, к ней выдвигаются дополнительные требования. Система должна

обеспечивать работу в условиях постоянно изменяющихся внешних условий сре­

ды. Распознавание должно производиться в помещении, на улице, в солнечную
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и пасмурную погоду, учитывать возможность ношения очков, контактных линз

и др. Система должна обеспечивать удобство использования, т.е. учитывать по­

ведение пользователя, возможные моргания, тряску рук, направление взгляда

и так далее. Система должна обеспечивать возможность работы в реальном

времени на мобильном устройстве с ограниченным количеством потребляемой

памяти и вычислительных ресурсов, обеспечивая при этом высокую точность

распознавания.

Рис. 1.6. Основные проблемы при распознавании по радужке с мобильного устройства

Неучёт вышеперечисленных требований приводит к ухудшению качества

изображения (Рис. 1.6, 1.7) [40], а в некоторых случаях даже к невозможности

его получения.

(а) (б ) (в)

Рис. 1.7. Ухудшение качества изображения при распознавании по радужке с мобильного

устройства, влекущее за собой ошибки сегментации радужки: а) отвод взгляда, перекрытие

веками, б) пере-экспонирование, в) низкий контраст, блик от очков

Ухудшение качества изображения приводит к снижению точности распо­

знавания, что ставит под сомнение возможность применения таких биометри­
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ческих систем при осуществлении различного рода транзакций (Рис. 1.6).

1.6. Выводы к первой главе

Произведен обзор биометрических методов распознавания человека. При­

ведено сравнение различных биометрических характеристик человека с точки

зрения их универсальности, уникальности, стабильности и собираемости. Рас­

смотрены основные области применения и направления развития биометриче­

ских методов. Описаны структура и свойства радужной оболочки глаза. Показа­

ны её преимущества и недостатки как уникальной БХЧ. Приведена общая схема

распознавания по радужке от процедуры регистрации изображения до вычис­

ления степени схожести и принятия решения об идентичности/неидентичности

двух радужек. Рассмотрены особенности использования радужки в качестве

БХЧ при распознавании человека с мобильного устройства.
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Глава 2

Распознавание по радужке с мобильного

устройства

2.1. Основные трудности при распознавании человека по

радужке

Биометрические технологии распознавания хорошо зарекомендовали себя

и заняли нишу в решении задач, связанных с обеспечением безопасности. Говоря

о мобильных устройствах, существенное количество современных персональных

устройств (смартфонов, планшетов и т.д.) оснащены компактными сканерами

отпечатков пальцев, предназначенных для аутентификации пользователя. Не

смотря на то, что методы аутентификации по отпечаткам пальцев демонстри­

руют достаточно высокую точность распознавания, они все еще имеют суще­

ственные недостатки [37]. Среди всех биометрических модальностей, рассмат­

риваемых в качестве кандидатов для замены либо объединения с отпечатками,

радужная оболочка глаза остается одной из самых привлекательных [22, 30, 38,

121].

Регистрация изображения радужки обычно производится с использовани­

ем камеры высокого разрешения в ближнем инфракрасном (БИК), либо в види­

мом диапазоне длин волн [112] в фиксированных, практически «лабораторных»

условиях окружения. Требования, предъявляемые к системе и процессу реги­

страции изложены в стандарте ISO/IEC 19794-6:2011 [67]. Когда речь заходит

о массовом производстве, стоимость, компактность и удобство использования

становятся существенными, и поэтому не все, упомянутые в стандарте [67], тре­

бования могут быть удовлетворены. В значительной степени это касается си­

стемы регистрации изображения. Не менее важным моментом является то, что

рынок мобильных устройств подразумевает их использование по всему миру,
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Рис. 2.1. Примеры изображений полученных при фиксированных условиях окружения (свер­

ху), и изображений, полученных при помощи мобильного устройства (снизу)

становится важно учитывать все возможные поведенческие и расовые особенно­

сти конечных пользователей. По этой причине, в частности, не допускается ис­

пользование изображений, зарегистрированных в видимом диапазоне спектра,

т.к. текстура радужки темных (в основном коричневых) оттенков оказывается

практически неразличимой. Более подробно о преимуществах распознавания

по радужке в БИК диапазоне изложено в работах [30, 35, 38, 67], а проблемы,

связанные с системами регистрации изображения радужки, подробно описаны

в работах [30, 112].

Использование мобильного устройства в качестве биометрического сенсо­

ра подразумевает его способность обрабатывать биометрические данные при

постоянном изменении окружения и учитывать поведение пользователя. Места

использования устройства могут сильно различаться по уровням освещенности

(от 10−4 до более 105 люкс под прямыми солнечными лучами), спектрам излу­

чения источников, спектру поглощения и отражения окружающих объектов и

многим другим параметрам. С другой стороны, следует учитывать и особен­

ности пользователя: он может носить очки, контактные линзы; может произ­

вести попытку аутентификации при ходьбе или страдать от тремора рук, тем

самым вызывая дрожание устройства; пользователь может удерживать устрой­

ство слишком далеко или близко к лицу, так, что радужка оказывается вне
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диапазона глубины резкости камеры, и её изображение получается размытым;

зрачки пользователя могут быть сильно расширены или сужены в зависимости

от уровня освещенности и по другим причинам [105, 133, 4]; область радуж­

ки может быть сильно затенена веками и ресницами, если глаз пользователя

недостаточно открыт. Все упомянутые факторы влияют на качество входных

биометрических данных (Рис. 2.1) и, как следствие, на точность распознава­

ния [129].

В дополнение ко всем вышеперечисленным факторам, мобильная система

должна быть простой и удобной в использовании. Для биометрической системы

удобство определяется простотой взаимодействия с пользователем и высокой

скоростью распознавания, где последняя обусловлена вычислительной сложно­

стью применяемого метода (Рис. 1.6). Между сложностью и энергопотреблени­

ем существует компромисс, который важно учитывать при разработке мобиль­

ных алгоритмов. Процесс аутентификации должен осуществляться с частотой

поступления кадров и, в то же время, потреблять минимальное количество энер­

гии устройства.

При разработке мобильных биометрических систем также следует прини­

мать во внимание важное требование, предъявляемое к системам с высоким

уровнем защиты. а именно, полное отсутствие доступа извне к данным, кото­

рые они обрабатывают. К таким данным относятся пин-коды, иная персональ­

ная информация и, особенно, биометрические данные. На сегодняшний день су­

ществует технологии, предоставляющие возможность обеспечить достаточный

уровень защищенности данных. Они все представляют систему на чипе (SoC,

System on Chip), являющуюся защищенной частью центрального процессора

устройства, с развернутой на нем отдельной операционной системой, например

TrustZone от ARM или Qualcomm [12]. Такого рода системы накладывают до­

полнительные ограничения на приложения, с которыми они работают. Ограни­

чения выражаются в виде еще более заниженной доступной тактовой частоте

процессора, невозможности использовать многопоточность и существенно огра­
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ниченном обьеме доступной оперативной памяти.

2.2. Метод аутентификации по радужке c мобильного

устройства

Несмотря на успешное внедрение множества биометрических систем рас­

познавания по радужке по всему миру, мобильные приложения этой технологии

являются новой областью для исследований [84, 150]. Это связано с тем, что из­

вестные на сегодняшний день алгоритмы и решения не способны обеспечить

достаточную точность распознавания на данных, полученных с мобильного

устройства. В большинстве исследований в данной области используются изоб­

ражения, полученные в видимом диапазоне[16, 45, 120]. В работе Thavalengal и

др. [132] исследована возможность использования комбинированного решения,

использующего изображения радужки, полученные одновременно в видимом и

БИК диапазонах. Утверждается, что для предложенной системы и метода, рас­

познавание на расстоянии превышающем 15 см все еще затруднено. Примером

решения, использующего БИК диапазон, является работа Zhang и др. [151], в

которой представлены результаты, демонстрирующие перспективность подхода

с объединением для распознавания двух модальностей: радужки и лица. Апро­

бация метода производилась на внутренней базе данных радужек и лиц. Одной

из наиболее релевантных работ, предлагающих использование БИК диапазона

для мобильных приложений, является [72]. Предлагается использовать допол­

нительные факторы, оказывающие влияние на качество изображения радужки,

в частности, уровни освещенности и смазанности при оценке качества изобра­

жения и сравнении биометрических эталонов.

На сегодняшний день уже существует несколько коммерческих решений

для распознавания человека по радужке с мобильного устройства. Первый смарт­

фон с технологией распознавания по радужной оболочке глаза Delta ID Inc. [39,

82] был представлен компанией Fujitsu в 2015 году [47]. В 2016 году компания
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Microsoft представила серию смартфонов Lumia 950 [93], оснащённых сканером

радужки. Следом еще несколько компаний представили свои решения. Упомя­

нутые компании использовали собственные данные, собранные для исследова­

ний и тестирования своих решений. Результаты по производительности алго­

ритмов не были опубликованы.

В данной главе представлено алгоритмическое решение для аутентифи­

кации человека по радужке, способное обеспечить точность и скорость рас­

познавания достаточные для применения в мобильных приложениях. Основ­

ными особенностями метода являются: многостадийная структура алгоритма;

новый подход к оценке качества изображения, позволяющий дать исчерпываю­

щую оценку изображению радужки с учетом особенностей работы с мобильным

устройством; а также новый адаптивный метод квантования вектора призна­

ков радужной оболочки глаза. Данные особенности позволяют осуществлять

распознавание в режиме реального времени в условиях сильного изменения

окружения и обеспечить обратную связь с пользователем устройства. Решение

детально описано в [105].

2.2.1. Структура алгоритма распознавания

Основная идея предлагаемой структуры алгоритма состоит в том, чтобы

выполнять наиболее вычислительно сложные операции только с изображения­

ми самого высокого качества. В данном случае под качеством понимается сово­

купность критериев, отражающих пригодность изображения радужки для из­

влечения особенностей и распознавания. Весь алгоритмический конвейер мож­

но разделить на несколько частей, объединенных промежуточными этапами

выбора изображений наилучшего качества. Общая схема предложенного алго­

ритма распознавания по радужной оболочке глаза с мобильного устройства

представлена на Рис. 2.2.

На приведенной схеме (Рис. 2.2), можно выделить два основных блока об­

работки (до буфера изображений и после). Операции первого блока начинают­
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Рис. 2.2. Блок схема алгоритма распознавания по радужной оболочке глаза с мобильного

устройства
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ся с получения изображения и заканчиваются вычислением промежуточного

показателя качества 𝑄𝑀 и помещении изображения в буфер. Операции вто­

рого блока начинаются с выбора из буфера изображения, для которого теку­

щее значение 𝑄𝑀 является максимальным среди всех, находящихся в буфере,

а заканчивается выделением уникальных особенностей и построением вектора

признаков радужки.

Первый блок осуществляет обработку данных с частотой поступления кад­

ров. На первом этапе производится выделение области глаза на входном изобра­

жении. Предложенный метод основан на применении метода MLBP, предложен­

ного в работе [75], продемонстрировавшим наилучшие результаты для изобра­

жений c мобильного устройства. Полученные изображения проходят процеду­

ру предобработки, включающую в себя подавление шума, а также повышения

контрастности на границах зрачка и радужки. Предобработка производится

с использованием оператора Шарра, представляющего из себя модификацию

фильтра Собела, обладающую свойством более высокой вращательной симмет­

рии [124]. Фильтрация производится путем свертки входного изображения с за­

ранее подобранным набором ядер Шарра. Далее на изображении производится

выделение зрачка, путем определения координат его центра и границы. раз­

личные подходы к выделению зрачка рассмотрены в [4]. Для простоты в пред­

ложенном методе зрачок параметрически представляется в виде окружности,

имеющей центр (𝑥𝑝, 𝑦𝑝) и радиус 𝑟𝑝. Зрачок также часто описывают эллипсом

либо фигурой сложной формы. Выделение зрачка, также, обычно производит­

ся в несколько этапов. В большинстве работ, с целью ускорения вычислений,

обычно можно выделить два основных этапа: грубая оценка параметров и их

последующее уточнение. Методы грубой оценки зависят от условий примене­

ния. Здесь для грубой оценки предлагается метод, основанный на применении

сверточных нейронных сетей, подробно описанный в главе 3.2, а для уточнения
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используется интегро-дифференциальный оператор Догмана (2.1) [35].

max
(𝑟,𝑥0,𝑦0)

⃒⃒⃒⃒
⃒⃒𝐺𝜎(𝑟) *

𝜕

𝜕𝑟

∮︁
𝑟,𝑥0,𝑦0

𝐼(𝑥, 𝑦)

2𝜋𝑟
𝑑𝑠

⃒⃒⃒⃒
⃒⃒ , (2.1)

где 𝐼(𝑥, 𝑦) — яркость изображения.

Оператор осуществляет поиск области на изображении, где достигается макси­

мум частной производной от нормализованного интеграла по 𝑟 по направлению

увеличения величины радиуса. Несколько модификаций подхода Догмана рас­

смотрены в работах [11, 65, 73, 91]. Далее производится оценка положения век на

изображении. Их положение описывается координатами точек 𝐸𝑢 и 𝐸𝑙 для верх­

него и нижнего век соответственно, как показано на рис. 2.3. Предложенный

метод определения положения век подробно описан в работе [103] и основан на

применении набора разнонаправленных фильтров Габора для предобработки,

и последующим уточнением границы века модификацией интегро-дифференци­

ального оператора для параболический кривой (2.2).

max
(𝑎,𝑘,ℎ)

⃒⃒⃒⃒
⃒∑︁

𝑎

∑︁
𝑘

𝐺𝜎 *
𝜕

𝜕ℎ

∑︁
𝑎

(𝑦 − 𝑘)2 − 4𝑎(𝑥− ℎ)

⃒⃒⃒⃒
⃒ , (2.2)

где (𝑘, ℎ) — вершина параболы, 𝑎 — её кривизна.

Рис. 2.3. Определение положения верхнего 𝐸𝑢 и нижнего 𝐸𝑙 век, 𝑃𝑐 - центр зрачка

Вычисление промежуточного показателя качества является завершающей опе­

рацией первого блока и может производится различными способами. В дан­

ной работе в качестве оценки предлагается вычисление взвешенной суммы по
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нескольким накопленным в процессе обработки параметрам качества, среди ко­

торых: средние яркости полного кадра 𝐼𝑓𝑎𝑣𝑔 и области глаза 𝐼𝑒𝑎𝑣𝑔 (Рис. 2.3), значе­

ние контраста на границе зрачок-радужка 𝐶𝑝𝑖, степень открытости глаза 𝑁𝐸𝑂

(2.3), выраженная по значениям 𝐸𝑙 и 𝐸𝑢 (Рис. 2.3). Коэффициенты регрессии

между набором используемых метрик и значением математического ожидания

соответствующего распределения степени схожести для пар сравнений свой со

своим предложено использовать в качестве весов для вычисления финального

показателя качества.

Поскольку входные данные представляют собой видеопоследовательность,

а не единичный кадр, можно выбирать изображения наилучшего качества в те­

чение заранее определенного периода времени по завершению любого этапа ал­

горитма. Выбор может быть выполнен с использованием показателей качества,

которые были оценены до помещения изображения в буфер (Рис. 2.2). После то­

го как буфер полностью заполнен, каждый последующий кадр вытесняет один

из кадров худшего качества в течение предопределенного времени. Как только

заданное время истекло, выбранные изображения переносятся на второй этап

обработки. В качестве временной константы может быть выбрано время полной

обработки изображения на втором этапе.

Второй этап состоит из более вычислительно сложных операций. Обраба­

тываются только изображения из буфера. Этап начинается с поиска центра

(𝑥𝑖, 𝑦𝑖) и радиуса 𝑟𝑖 радужки на изображении глаза с использованием информа­

ции о параметрах зрачка. Используемый подход к поиску аналогичен тому, что

использовался для поиска зрачка. Информация о расположении век использу­

ется здесь для выбора диапазона углов при обходе контура интегро-дифферен­

циальным оператором. Информация о положении век используется для опреде­

ления области поиска интегро-дифференциальным оператором. Для удаления

ресниц и частично затенений используется подход, описанный в [9]. Далее над

изображениями радужки полученной маски осуществляется операция нормали­

зации (1.1). Последним этапом второго блока является извлечение уникальных
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особенностей радужки и построение вектора признаков.

Извлечение особенностей радужки производится для каждого кадра, про­

шедшего все проверки по качеству. Заранее определенное количество векторов

признаков, полученное в процессе регистрации (𝑁𝐸) сохраняется в базе данных.

Все они используются в дальнейшем для сравнения. Так как, возможность на­

капливать векторы признаков предлагается использовать и при верификации,

существует несколько вариантов их использования. Метод сравнения «каждый

с каждым» подразумевает 𝑁𝐸×𝑁𝑉 количество сравнений, а это не всегда оправ­

дано (𝑁𝑉 - текущее количество векторов признаков в режиме верификации).

Для того чтобы уменьшить количество сравнений, несколько векторов призна­

ков могут быть отобраны в качестве наиболее репрезентативных. Правило от­

бора таких векторов основано на измерении для них степени схожести внутри

одного класса. Пара векторов, для которых степень схожести минимальна вы­

бираются в качестве образцов для последующего сравнения с векторами, хра­

нящимися в базе данных. Таким образом количество сравнений уменьшается и

становится равным 0.5 * 𝑁𝑉 (𝑁𝑉 − 1) + 2𝑁𝐸. Если для 𝑁𝐸 и 𝑁𝑉 выполняется

условие 𝑁𝐸 > 𝑁𝑉 /2, то количество сравнений значительно уменьшается.

2.2.2. Оценка качества изображения радужки

Оценка качества изображения является неотъемлемым этапом распознава­

ния [4]. В литературе известно множество подходов к оценке качества изобра­

жения радужки [26, 31, 44, 49]. Однако, большинство из них не рассматривает

мобильные приложения. Подход, описанный в данной работе, имеет несколько

ключевых особенностей по сравнению с методами, известными ранее [58, 111].

Главной особенностью решения является предложенный набор критериев

качества изображения радужки. Набор составлен из метрик, позволяющих оце­

нивать качество с учетом большинства возможных сценариев использования

устройства. Оценка по каждому из критериев производится сразу после того,

как произведено соответствующее измерение.
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Рис. 2.4. Общая схема алгоритма оценки качества изображения

Персональное мобильное устройство подразумевает постоянное взаимодей­

ствие с пользователем. По этой причине второй особенностью предложенного

решения является способность осуществлять обратную связь с пользователем

устройства. В случае отсеивания кадра по какому-либо критерию качества,

пользователю автоматически выводится подсказка в понятной для него форме.

Например, если вычисленное расстояние до лица выходит за заранее опреде­

ленный допустимый предел, то пользователю будет предложено расположить

устройство ближе либо дальше.

Оценка качества также позволяет поддерживать обратную связь не только

с пользователем, но и с аппаратной частью устройства, обеспечивая корректи­

ровку параметров системы регистрации изображения, с целью получения кад­

ров наилучшего качества (подробнее в заявке на изобретение [2]). Например,

изображение области глаза было классифицировано как переэкспонированное.

Алгоритм автоматически корректирует значение экспозиции для регистрации

последующего кадра. На схеме (Рис. 2.4) изображена структура алгоритма оцен­

ки качества изображения. Обратная связь с пользователем и аппаратной ча­

стью условно обозначена буквой 𝐹 (𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘) со стрелкой.
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Рис. 2.5. Условная схема взаимодействия между элементами системы распознавания

2.2.3. Использование дополнительных сенсоров

Отличительной особенностью метода является использование информации

с дополнительных сенсоров, доступных для использования внутри устройства.

Так, например, информация об уровне освещенности, данные с дальномера и

иные доступные данные могут быть использованы для подстройки как пара­

метров аппаратной части устройства, так и алгоритма. Таким образом реализу­

ется связь между ключевыми компонентами биометрической системы: пользо­

вателем, аппаратной и программной частями устройства (Рис. 2.5). Детальное

описание предложенного метода приведено в заявке [5].

Вводятся дополнительные метрики оценки качества, позволяющие уско­

рить процесс обработки информации внутри алгоритма. Обе преложенные мет­

рики (2.3, 2.4) описывают уровень открытости глаза на различных этапах ал­

горитма с использованием информации о положении век 𝐸𝑢 и 𝐸𝑙.

𝑁𝐸𝑂𝑝 =
|𝐸𝑙 − 𝐸𝑢|

𝑅𝑝
(2.3)

𝑁𝐸𝑂𝑖 =
|𝐸𝑙 − 𝐸𝑢|

𝑅𝑖
(2.4)

Метрики 𝑁𝐸𝑂𝑝 и 𝑁𝐸𝑂𝑖 (NEO, сокр. - normalized eye opening) вычисляются

и используются на разных этапах алгоритма, сразу, как только информация
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о значения радиусов зрачка 𝑅𝑝 и радужки 𝑅𝑖 становится доступной. Введение

пары метрик позволяет оценивать уровень открытости глаза на ранних этапах

алгоритма и показало свою полезность на практике.

Заключительным этапом алгоритма является построение вектора призна­

ков с применением фильтра Габора к нормализованному изображению радуж­

ки, а также метода адаптивного квантования, подробно описанного в главе 4.1.

Параметры фильтра подобраны в результате оптимизации методом Нелдера­

Мида на обучающей выборке.

Экспериментальные результаты

Экспериментальные результаты включают в себя оценку точности и ско­

рости распознавания, а также описание данных, использованных для оценки.

Описание базы данных

На сегодняшний день не существует достаточно представительных баз дан­

ных изображений радужных оболочек глаза, полученных в БИК области ча­

стот, достаточных для того, чтобы произвести комплексную оценку метода с

учетом изменений условий окружения, учитывающих особенности поведения

пользователя, цвет глаз и т.д. По этой причине для проведения исследований

и разработки была собрана собственная база данных. Каждый биометрический

образец представлен пятисекундным видеороликом, отражающим попытку ре­

гистрации/верификации. Детальная информация о собранной БД представлена

в Таб. 2.1.

База данных собрана с использованием мобильного устройства (планше­

та), оснащённого встроенной компактной камерой, работающей в БИК диапа­

зоне, и активной БИК-подсветкой. Для сбора был установлен следующий сце­

нарий: пользователь берёт устройство на начальном расстоянии около 35 см;

начинается запись видеоролика и пользователь приближает устройство ближе

к глазу до расстояния 15 см в течение 5 секунд. Такой подход был выбран из

соображений возможных особенностей взаимодействия пользователя с устрой­

ством, таких как более удобное расстояние, возможное дрожания рук и т.д.
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Параметры Без очков С очками

Количество пользователей 286 123

Количество радужек 566 222

Число сравнений 27 149 310 2 936 082

Расовая принадлежность Азиаты & Европеоиды

Количество глаз в кадре один глаз

Количество видеороликов на каждый глаз ≤10

Количество кадров в видеоролике 75

Расстояние съемки 15− 35 (см)

Разрешение матрицы камеры 1280× 720

Таблица 2.1. Характеристики использованной базы данных

Рис. 2.6. Примеры изображений, полученных на разных расстояниях от лица до устройства:

18 и 30 (см) слева и справа соответственно

Примеры изображений, снятых камерой, представлены на Рис. 2.6. Изоб­

ражения взяты из одной и той же видеопоследовательности, но соответствуют

разным расстояниям (18 и 30 см). Все видеопоследовательности используются

для моделирования попыток регистрации и верификации. Для обоих сценари­

ев использовались одни и те же параметры алгоритма, поэтому значение 𝐹𝑇𝐸

равно значению 𝐹𝑇𝐴 (Таб. 2.2).

Результаты по точности распознавания

В соответствии с общепринятыми понятиями и определениями, подроб­

но описанными, например, в [41], а также стандартах ISO/IЕС 19795-1:2006,

ISO/IEC 19794-6:2011 и ГОСТ Р ИСО/МЭК 19795-1-2007, для оценивания про­
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изводительности системы распознавания были выбраны следующие (основные):

∙ FTE (failure to enroll) - количество транзакций регистрации, для которых

не возможно завершить извлечение биометрического эталона;

∙ FTA (failure to acquire) - количество транзакций верификации, для кото­

рых не возможно завершить извлечение биометрического эталона;

∙ Степень схожести - численная мера близости двух биометрических этало­

нов;

∙ FNMR (false non-match rate) - вероятность ложного несовпадения;

∙ FMR (false match rate) - вероятность ложного совпадения;

∙ EER (equal error rate) - равный уровень ошибок, коэффициент, при кото­

ром FNMR=FMR;

∙ Enrollment template - биометрический шаблон, полученный в режиме ре­

гистрации, содержащий один или несколько биометрических эталонов;

∙ Probe template - биометрический шаблон, полученный в режиме верифи­

кации, содержащий один или несколько биометрических эталонов;

Полученные результаты по точности распознавания предложенного алго­

ритма представлены в таблице 2.2. Данные значения были получены с исполь­

зованием системы автоматического тестирования и базы данных, описанной в

таблице 2.1.

Процедура тестирования состояла из нескольких этапов:

1. Формирование биометрических эталонов из всех видеопоследовательно­

стей в режиме регистрации;

2. Формирование биометрических эталонов из всех видеопоследовательно­

стей в режиме верификации;

3. Формирование списка всех возможных пар сравнений шаблонов (enrollment­

probe);
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4. Вычисление значений степени схожести для каждой из пар биометриче­

ских шаблонов;

5. Вычисление показателей точности распознавания (Таб. 2.2);

Оценка FTA и FTE производится по результатам выполнения шагов 1 и 2.

Полученные значения (Таб. 2.2) отражают возможность метода обрабатывать

данные, полученные в сложных условиях.

Поскольку система аутентификации представляет собой бинарный класси­

фикатор, точность распознавания для нее оценивается с помощью ROC (receiver

operating characteristic) кривой, отражающей зависимость между величинами

FMR и FNMR [85]. Значения FMR и FNMR изменяются в зависимости от внут­

ренних параметров системы распознавания, таких как порог принятия решения,

с которым сравнивается полученное значение степени схожести биометрических

эталонов, а также самих значений степени схожести. Более подробно о проце­

дуре оценивания описано в работе [105].

Значение Без очков С очками

FTA/FTE 0.0685 0.07001

FMR 10−7 10−6

FNMR 0.01077 0.03912

EER 0.00128 0.00574

Таблица 2.2. Результаты по точности распознавания

Результаты по скорости распознавания

Производительность метода оценивалась при помощи вышеупомянутого

планшета, оснащенного процессором Qualcomm Snapdragon 800 (2.26 GHz, Quad­

core). Измерения производились на одном ядре процессора. Медианное время

выполнения составило 25 и 42 (мсек) для операций первого и второго блоков

(2.2.1, Рис. 2.2) соответственно.

40



2.3. Выводы ко второй главе

Рассмотрены основные трудности, связанные с биометрическим распозна­

ванием человека по радужной оболочке глаза при помощи мобильного устрой­

ства. Предложены, протестированы и внедрены:

1. новая многостадийная структура алгоритма для автоматического распо­

знавания, построенная с использованием промежуточных блоков оценки

качества изображения, позволяющая осуществлять распознавание челове­

ка при помощи устройства со значительно ограниченной вычислительной

мощностью в режиме реального времени (≈ 15 кадров/сек.), удовлетво­

ряющая критериями ошибок: 𝐹𝑁𝑀𝑅 ≤ 1% при 𝐹𝑀𝑅 < 10−7;

2. алгоритм оценки качества, позволяющий:

∙ комплексно оценивать качество входящего изображения радужки на

предмет его пригодности для извлечения признаков и формирования

биометрического эталона;

∙ обеспечивать обратную связь с пользователем путем отображения

подсказок, понятных пользователю, на экране устройства, на основа­

нии внутренних измеряемых показателей качества изображения;

∙ производить управление параметрами системы регистрации изобра­

жения с целью получения изображения радужки наилучшего каче­

ства;

∙ учитывать и использовать данные с иных доступных сенсоров, поз­

воляющих получать дополнительную информацию об окружении.
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Глава 3

Выделение области радужки на изображении

Выделение (сегментация) области радужки на изображении – один из ос­

новных этапов распознавания. Ошибки сегментации влекут за собой рост числа

ошибок распознавания, делая систему менее надежной и удобной в использова­

нии. Подавляющее большинство существующих подходов ориентированы на ис­

пользование систем в условиях слабо изменяющегося окружения. Классические

методы, основанные на эвристиках, хорошо зарекомендовали себя здесь. Широ­

кое распространение технологий распознавания создает необходимость обеспе­

чения полной функциональности систем в более широком диапазоне условий и,

как следствие, создания более гибких и устойчивых решений.

3.1. Особенности выделения радужки в сложных

условиях

Сложные условия окружения, характерные для сценария взаимодействия

пользователя с мобильным устройством, оказывают значительное влияние не

только на свойства самого биометрического признака, но и на качественные

характеристики изображения, из которого следует предварительно извлечь ин­

формацию, описывающую его уникальные особенности.

Факторы окружения в особенной степени существенны для биометриче­

ской системы, использующей изображение объекта распознавания в качестве

входных данных, в особенной при распознавании по радужке: уровень окружа­

ющего освещения варьируется в диапазоне от 10−4 в ночное время суток или

темном помещении до 105 (лк) в полдень под прямыми солнечными лучами;

распределение освещенности в области радужки, определяемое характеристи­

ками и расположением источников света относительно лица и радужки. Изме­

42



Рис. 3.1. Примеры изображений полученных при помощи мобильного устройства: причина

(снизу) и следствие (сверху)

нение размеров зрачка приводят к деформации структуры радужки, различ­

ные погодные условия вынуждают пользователя устройства моргать, сильно

прищуривать глаза и могут значительно снизить качество изображения в це­

лом. Факторы окружения, влияющие на распознавание, подробно описаны в

литературе [102, 119, 133, 150], а некоторые примеры изображений радужки,

получаемых в сложных условиях, приведены на Рис. 3.1 и 1.7.

Важной особенностью распознавания при помощи мобильного устройства

являются поведенческие характеристики пользователя, описанные в главах 1.5

и 2.1. Примеры ошибок выделения области радужки на изображении в след­

ствие влияния факторов окружения и особенностей поведения пользователя

приведены на Рис. 1.7.
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3.2. Методы выделения радужки на изображении

3.2.1. Обзор существующих методов

Существует большое количество различных методов и подходов к решению

задачи выделения области радужной оболочки глаза на изображении. Методы

хорошо зарекомендовали себя для не мобильных приложений. Многие из них

используются в коммерческих решениях и распространены настолько широко,

что их по праву можно называть классическими.

Среди классических методов можно выделить основные направления:

∙ Применение интегро-дифференциального оператора (2.1), предложенно­

го в работе [35]. Оператор используется для выделения радиально-сим­

метричных структур, которыми, в данном случае, предлагается описы­

вать зрачок и радужку. Метод имеет высокие точность и устойчивость,

но обладает неприемлемой для большинства приложений вычислитель­

ной сложностью [4]. Примеры использования [8, 15, 17]. Примеры совер­

шенствования исходного решения путем добавления различных методов

предобработки представлены в работах [10, 11, 65, 73, 91];

∙ Анализ гистограммы изображения, бинаризации и последующее оценива­

ние радиусов зрачка и радужки [55, 87, 108]. Методы показали свою рабо­

тоспособность на качественных изображениях [28, 137], однако, в сложных

условиях [109, 115] их применение сильно ограничено;

∙ Методология Хафа (Hough), позволяющая оценить параметры кривых за­

данного вида (в данном случае окружностей, описывающих зрачок и ра­

дужку) с использованием т.н. аккумуляторов. В качестве примеров ис­

пользования различных подходов внутри методологии можно привести

следующие [18, 24, 116, 140]. Данный подход позволяет получить выиг­

рыш по скорости обработки, но гораздо менее устойчив к зашумлённым
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данным в сравнении, например, с методами, использующими интегро-диф­

ференциальный оператор.

Существенная часть работ, посвящённых выделению области радужки за

последнее время и приходящаяся на период с 1997 по 2014 годы, сосредоточена

вокруг вышеперечисленных методов [79]. В работах предлагаются различные

варианты улучшения методологий путем добавления процедуры специальной

предобработки изображения [108, 146], решающих правил, основанных на все­

возможных эвристиках [22, 35, 90, 97, 153, 4], а также техник машинного обуче­

ния. Общая схема классического подхода изображена на Рис. 3.2 Методы хоро­

шо разобраны и классифицированы по различным особенностям в работе [4].

Рис. 3.2. Общая схема классического подхода к выделению радужки на изображении)

С увеличением количества всевозможных данных для обучения и развити­

ем аппаратных средств область машинного обучения в недавнем времени пре­

терпела существенные изменения. Глубокое обучение (deep learning, DL) стало

одним из подходов, позволяющих эффективно использовать данные большие

объемы данных. Начиная с 2012 года глубокое обучение и, в частности, глубокие

сверточные нейронные сети (deep convolutional neural networks, deep CNN) были

успешно применены для решения целого ряда задач компьютерного зрения, до­

стигнув результатов, в значительной степени превосходящих полученный ранее

существующими методами и даже человека [53, 74, 80, 136].

Прошло некоторое время, пока глубокое обучение достигло области био­

метрического распознавания и было применено для выделения радужки на

изображении. На сегодняшний день создание различных приложений, в том
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числе мобильных, требует от алгоритма высокой устойчивости к сильно изме­

няющимся условиям окружения, упомянутым ранее (2.1). Авторы [88] впервые

продемонстрировали преимущества подхода к сегментации радужки с исполь­

зованием свёрточных нейронных сетей, в частности, на изображениях радужек,

полученных в более сложных условиях. В работе также сравниваются два ос­

новных подхода к сегментации с использованием сверточных сетей: так называе­

мый «patch-based» подход, при котором сеть обучают с использованием неболь­

ших фрагментов исходного изображения, принадлежащих либо не принадле­

жащих области объекта, который необходимо выделить, присваивая каждому

из фрагментов марку класса в зависимости от принадлежности; вторым под­

ходом является т.н. «end-to-end» способ обучения, когда на вход сети подается

полноразмерное изображение, а выходом её является бинарная маска той же

размерности, значение каждого пикселя в которой определяет класс объекта,

например: 1 - радужка, 0 - фон.

Иным примером «patch-based» подхода является архитектура, представ­

ленная в работе [13]. Незадолго до её появления, исследователи в [127] показали,

что такой подход и предложенный метод обучения в значительной степени ухуд­

шают качество сегментации, в очередной раз закрепив преимущества «end-to­

end» подхода. В работе [70] продемонстрирована возможность использования

архитектуры SegNet применительно к сегментации радужки, а также предло­

жено использование техники дропаут (dropout) обучения, впервые описанной в

работе [139]. Подход позволил достигнуть достаточно высокой точности сегмен­

тации, однако, в виду вычислительной сложности, не применим на практике.

Иная CNN архитектура была представлена в работе [19]. Предложено исключе­

ние пулинг (pooling) слоёв, показана высокая эффективность. Однако, в рабо­

те [80] ранее утверждалось, что такой подход не позволяет извлекать сложные

особенности из изображения, что критично для задачи сегментации в сложных

условиях. Известно также, что отсутствие пулинг слоёв приводит к тому, что

построенная на таком подходе архитектура оказывается чувствительной к раз­
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личным сдвигам объекта на изображении.

3.2.2. Выделение области радужки методами глубокого обучения

В настоящей работе предложены новые CNN архитектуры. За основу взя­

ты две базовые архитектуры, демонстрирующие лучшие результаты в зада­

че сегментации различных объектов на изображении: FCN (fully-convolutional

network) и SegNet. Предложена новая структура основных блоков, из которых

состоят обе архитектуры.

Основные подходы с использованием глубокого обучения

Архитктура FCN, впервые предложенная для решения задач семантиче­

ской сегментации объектов, подразумевает полное исключение полносвязных

(fully-connected) слоев [127]. Это свойство позволяет адаптировать модель, обу­

ченную для решения задачи классификации, в модель, решающую задачу сег­

ментации объектов без дополнительных оптимизаций. Архитектура поддержи­

вает оба (patch-based и end-to-end) подхода к обучению и представляет собой

модель т.н. «кодировщик-декодировщик» (encoder-decoder), изображенную на

Рис. 3.3. Роль кодировщика заключается в построении высокоуровневого пред­

ставления входных данных, в то время как декодировщик осуществляют об­

ратную задачу. Принимая на вход представление, полученное кодировщиком,

декодировщик переводит его в пространство размерности исходного изображе­

ния, используя закодированную информацию о пространственном соотношении

различных элементов текстуры изображения. В архитектуре FCN декодиров­

щик построен с использованием блоков, содержащих слои деконволюции или

(deconvolution layers) или транспонированные свёрточные слои, предложенные

в работе [149]. Выход каждого деконвоюционного слоя объединяется с картами

признаков соответствующих симметричных слоёв кодировщика с использовани­

ем т.н. пропускных соединений (skip-connections) (Рис. 3.3) с целью восстанов­

ления структурной информации.

Другим примером архитектуры, реализующей схему кодировщик-декоди­
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Рис. 3.3. Общая схема архитектуры кодировщик-декодировщик (encoder-decoder)

ровщик выступает SegNet [14]. Основным вкладом работы стала замена вычис­

лительно-сложных и требовательных к памяти устройства операций деконво­

люции так называемыми «unpooling» слоями. Большая требовательность по

объему потребляемой памяти для FCN обусловлена тем необходимостью хра­

нить карты признаков, являющихся выходами каждого из блоков кодировщика

до тех пор, пока они не будут использованы декодировщиком. Таким образом,

пик потребления памяти устройства архитектурой достигается в момент, когда

все карты признаков кодировщика извлечены, т.е. в момент формирования вы­

шеупомянутого высокоуровневого представления. Архитектура SegNet позволя­

ет на порядки снизить количество памяти, необходимой для полного прямого

прохода. Несмотря на преимущества, подход SegNet с unpooling слоями снижа­

ет емкость сети, а невозможность пропускать градиенты через skip-connection

при обратном распространении ошибки затрудняют обучение. Разница меж­

ду структурами блоков декодировщика FCN и SegNet проиллюстрирована на

Рис. 3.4.

Структура основных блоков архитектуры

Изначально идея использования остаточных (residual) связей при констру­

ировании блоков была предложена в контексте очень глубоких сетей [60]. Далее,

остаточные блоки хорошо зарекомендовали себя как эффективно использую­

щие память и позволяющие при этом поддерживать достаточную ёмкость. Их

обходные (bypass) соединения способствуют эффективной передаче градиента

при обратном распространении и позволяют оптимизировать также добавочную

часть в каждом соединении. Общая структура остаточного блока приведена на
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Рис. 3.4. Структуры основных блоков декодировщиков FCN (справа) и SegNet (слева)

Рис. 3.5. Авторы [60] также предложили сразу несколько модификации блока,

отличающихся количеством каналов и глубиной (Рис. 3.6).

Рис. 3.5. Общая структура остаточного (residual) блока

Предложено дополнение блоков слоями нормализации (batch normalization),

впервые описанными в работе [68], позволяющими ускорить сходимость модели
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Рис. 3.6. Модификации остаточных (residual) блоков: simple - слева, bottleneck - справа

и повысить её обобщающую способность, тем самым снижать чувствительность

модели к вариациям входных данных.

Предложенные архитектуры

Обе вышеупомянутые архитектуры (FCN, SegNet) были взяты за основу

и модифицированы. SegNet по заявлению авторов [14] позволяет обеспечить

относительно низкое потребление памяти, хотя это во многом зависит от целе­

вой платформы и вычислительных средств. С другой стороны FCN демонстри­

рует лучшую показатели сходимости. Архитектура ResNet-26 с блоками типа

simple была взята в качестве кодировщика и симметрично-отражённая (Рис. 3.3)

как декодировщик для модифицированной FCN. Предложенная модификация

SegNet представляет собой ResNet-18 кодировщик и симметрично-отражённый

декодировщик (Рис. 3.3). Блоки типа bottleneck были исключены из рассмотре­

ния для применения в FCN, т.к. требовательны к размеру карт признаков на

каждом последнем слое, что является существенной проблемой для FCN. Для

FCN все слои max-pooling были заменены большими значениями смещений яд­

ра в сверточных слоях (strided convolutions). В случае с SegNet max-pooling слои

были перемещены в конец каждого блока кодировщика, а смещения ядер были

выбраны единичными.
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Экспериментальные результаты

Экспериментальные результаты были получены на двух наборах данных:

публично доступном CASIA-Iris-Lamp-V3 [29] и его модификации. Для оценки

качества сегментации был выбран коэффициент Жаккара (Jacсard Index, IoU -

intersection over Union, 3.1) [127]. В качестве метода для сравнения был выбран

метод, демонстрирующий наилучшие результаты [88].

𝐽(𝐼𝑝𝑟, 𝐼𝑔𝑡) =
|𝐼𝑝𝑟 ∩ 𝐼𝑔𝑡|
|𝐼𝑝𝑟 ∪ 𝐼𝑔𝑡|

=
|𝐼𝑝𝑟 ∩ 𝐼𝑔𝑡|

|𝐼𝑝𝑟|+ |𝐼𝑔𝑡| − |𝐼𝑝𝑟 ∩ 𝐼𝑔𝑡|
, (3.1)

где 𝐼𝑝𝑟 и 𝐼𝑔𝑡 - множества пикселей, принадлежащих области радужки, предска­

занных моделью и размеченными экспертом соответственно.

База данных изображений радужек CASIA-Iris-Lamp-V3 была выбрана в

качестве основной для тестирования. Особенность этой БД в том, что в ней

представлены изображения, полученные в осложненных, изменяющихся усло­

виях окружения, позволяющие симулировать внутриклассовые отклонения: раз­

личные размеры зрачков, отвод взгляда, перепады яркости и др. База данных

содержит 16212 изображений радужек 411 субъектов. Для оценивания методов

были случайным образом выбраны 4865 изображений 124 субъектов. Разметка

произведена экспертом с выполнением следующих условий: все пиксели, при­

надлежащие области радужки на изображении, а также ресницы, пересекаю­

щие область радужки, были приняты относящимися к классу «область радуж­

ки» (Рис. 3.7). Область ресниц, перекрывающих радужку на изображении была

также отнесена к классу радужки т.к. одной из основных целей работы было

показать преимущества предложенных архитектур по сравнению с существую­

щими. Сценарий был выбран именно таким, потому что позволил существенно

упростить процедуру разметки и, таким образом, увеличить количество дан­

ных. База данных была предварительно поделена на три подвыборки: обучаю­

щую (train), валидационную (validation) и тестовую (test) в соотношении 3386,

478 и 1001 изображений соответственно. Результаты, полученные на валида­
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Рис. 3.7. Результаты выделения области радужки

ционной выборке, использовались для выбора лучшей модели, которая затем

оценивалась на тестовой.

Исследуемые модели обучались на протяжении 200 эпох пакетами (batch)

изображений по 8 штук. В качестве алгоритма оптимизации был выбран Adam [77].

Параметры обучения и тестирования были выбраны одинаковыми для всех ис­

следуемых моделей.

Было проведено два эксперимента. В первом модели обучались на БД [29]

без модификаций. Результаты представленные в Таб. 3.1, демонстрируют что

обе предложенные модели показывают примерно одинаково хорошие результа­

ты, незначительно превосходя модель [88].

𝐼 ′(𝑥, 𝑦) = (𝐼(𝑥, 𝑦)− 𝐼) · 𝐶 + 𝐼, (3.2)

где 𝐼(𝑥, 𝑦) - исходное изображение, 𝐼 - среднее значение яркости исходного изоб­

ражения, 𝐶 - коэффициент изменения контраста.

Целью второго эксперимента была симуляция еще более значительных из­

менения окружения. С этой целью над исходным набором обучающих данных

52



Модель
Исх. набор данных, IoU Модиф. набор данных, IoU

val. test val. test set

MFCN 0.918 0.919 0.668 0.676

FCN 0.930 0.930 0.884 0.894

SegNet 0.928 0.929 0.916 0.924

Таблица 3.1. Результаты по точности выделения области радужки на изображении

была произведена операция аугментации. Для этого над каждым изображением

в обучающей выборке были выполнены следующие операции: значение контра­

ста 𝐶 изменялось случайным образом в диапазоне [50%, 150%] ( 3.2), случайное

значение в диапазоне [−20%, 20%] также присваивалось интенсивности каждо­

го пикселя. Финальное тестирование производилось на оригинальных изобра­

жениях из БД. Результаты показали, что предложенные модели значительное

превосходят MFCN [88], демонстрируя высокую устойчивость к изменениями

условий окружения, а также высокую обобщающую способность. Несколько

примеров результатов сегментации радужки на изображениях из CASIA-Iris­

Lamp-V3 представлены на Рис. 3.7.

Результаты по скорости распознавания

Производительность метода оценивалась на процессоре Qualcomm Snapdragon

835 (2.45 GHz). Медианное время выполнения составило 35 мсек. Алгоритми­

ческая сложность метода, при условии фиксирования её параметров (весов и

смещений) и добавления операции масштабирования на входе, линейна по раз­

меру входных данных.

3.3. Выводы ко второй главе

Рассмотрены особенности выделения области радужной оболочки глаза на

изображениях, получаемых в сложных условиях окружения, связанных с ис­
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пользованием мобильного устройства и взаимодействия с пользователем. При­

веден обзор и классификация существующих методов, обозначены их основ­

ные преимущества и недостатки. Рассмотрены новые методы, построенные с

использованием методов глубокого обучения, выделены их основные преимуще­

ства, подчеркнуты перспективы использования и развития. Предложены, проте­

стированы две новые архитектуры сверточных нейронных сетей, позволяющих

производить устойчивое выделение области радужки на изображении низкого

качества в сложных условиях окружения с частотой поступления кадров (15

кадров в секунду). Обе архитектуры позволили превзойти существующие, из­

вестные из литературы решения, основанные на глубоком обучении. Одна из

предложенных архитектур успешно внедрена и используется в коммерческих

продуктах.
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Глава 4

Методы извлечения и сравнения уникальных

особенностей радужки

Завершающими и неотъемлемыми частями алгоритма распознавания яв­

ляются: извлечение уникальных особенностей (признаков) биометрического об­

разца (-ов) и его (их) последующего сравнения, по результатам которого вы­

числяется степень схожести, используемая для принятия решения. Оба этапа

обычно рассматриваются в едином контексте, т.к. являются смежными и сильно

зависят друг от друга.

Извлекаемые признаки должны обладать следующими общими свойства­

ми [69, 4]:

∙ Уникальность (информативность/значимость): признаки должны содер­

жать в себе информацию, достаточную для того, чтобы обеспечить отли­

чаемость биометрического образца от других;

∙ Стабильность (устойчивость): неизменность во времени, независимость от

условий регистрации и изменчивости самого образца;

∙ Применимость: признаки должны быть легко извлекаемыми, сравнивае­

мыми и храниться в компактном виде.

С точки зрения анатомии, для радужки можно выделить несколько основ­

ных источников для извлечения признаков: цвет радужки, форма зрачка, тек­

стура радужки и др. Самыми информативным признаками радужки являются

характеристики её текстуры [35]. Процедуре извлечения особенностей текстуры

обычно предшествует этап нормализации (нормирования) изображения, пред­

ставляющая собой конформное кольца радужки в прямоугольник, называемое
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полярным преобразованием (1.1). Из литературы известно несколько вариантов

такого преобразования, описанных в работе [95].

Обзоры различных методов извлечения и сравнения особенностей радуж­

ки приведены в работах [22, 23, 101, 122]. Среди модификаций можно выделить

базовые подходы [4]: использование двумерных вейвлетов Габора [35], использо­

вание матриц совместной встречаемости [56, 147], использование расположения

и хаарктеристик ключевых точек текстуры [113], применение дискретного коси­

нусного преобразования [96], использование одномерный вейвлетов различных

масштабов [21], различные варианты преобразования Хаара [86, 110], пирами­

ды Лапласа [141], метод основанный на ориентации градиентов [130]. В боль­

шинстве недавних работ предлагается использование методов глубокого обуче­

ния [51, 89, 117, 131, 152].

Специфика использования мобильного устройства (2.1, 1.5) сказывается на

качестве выделения области радужки (3.1) и изменчивости текстуры радужки

(1.3, 2.2). Следствием этих факторов является высокая вариативность входных

данных для методов извлечения и сравнения этих особенностей. Это ограничи­

вает возможности алгоритмов извлечения признаков, вызывая значительные

внутриклассовые отклонения.

4.1. Вейвлеты Габора и адаптивное квантование фазы

Одним из наиболее распространенных подходов извлечения особенностей

и представления их в виде некоторого вектора признаков (т.н. эталона) радуж­

ки является использование вейвлетов Габора. В качестве входной информации

используется нормализованное изображение радужки и бинарная маска, описы­

вающая полезную и зашумленную (ресницы, веки, блики и др.) области изоб­

ражения. Базовая структура такого подхода изображена на Рис. 4.1.

Методы, основанные на применении вейвлетов Габора, являются одними из

самых распространенных для не мобильных приложений, т.к. способны обеспе­
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Рис. 4.1. Общая схема алгоритма извлечения и сравнения признаков радужки при помощи

вейвлетов Габора

чивать достаточную точность и надежность [35]. Процедура кодирования, при­

сущая таким методам (Рис. 4.2), необходима, в частности, для повышения ста­

бильности представления вектора признаков и ускорения процесса сравнения.

Одним из наиболее распространенных подходов к кодированию является бинар­

ное квантование значений вектора признаков. Несмотря на то что квантование

способно не учитывать нерелевантную, оно также способствует уменьшению

полезной информации, дестабилизируя тем самым значения вектора призна­

ков [63, 114]. Метод по-прежнему имеет одно важное преимущество, сделавшее

его настолько популярным для использования: сравнение квантованных значе­

ний - битовая операция, а значит метод позволяет осуществлять сравнения с

очень высокой скоростью. Эта особенность является очень важной, в частности,
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при решении задачи идентификации, когда требуется произвести поиск макси­

мально похожего образца по базе данных, насчитывающей большое количество

примеров.

Рис. 4.2. Извлечение вектора признаков радужки вейвлетами Габора и последующее кванто­

вание

Современные модификации подхода рассматривают понятие хрупкости как неустой­

чивость элементов вектора без учета характера появления такой неустойчиво­

сти. В работе предлагается разделение источников нестабильности на естествен­

ные и вызванные кодированием. Предлагается новый подход к построению век­

тора признаков радужной оболочки. Подход состоит из двух этапов: извлече­

ния первичных признаков с использованием фильтрации единичным вейвлетом

Габора, параметра которого заранее оптимизированы, и адаптивного квантова­

нием с предварительно оптимизированными порогами хрупкости.

4.1.1. Извлечение вектора признаков

Один из методов извлечения признаков, используемый во многих успеш­

ных коммерческих системах распознавания по радужке, основан на извлечении

квантованных значений фазы после свертки нормализованного изображения с

набором комплексных фильтров Габора. Этот метод был впервые предложен в
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работе [34] и с тех пор подвергался различным модификациям [128, 134]. Все

связанные подходы используют либо несколько фильтров с октавным увели­

чением частоты, либо с одним фильтром с заранее заданными параметрами.

Основным преимуществом метода Габора, применяемого в этом случае, являет­

ся его способность создавать полосовой фильтр с регулируемыми параметрами.

Это свойство позволяет учесть априорные характеристики анализируемого объ­

екта в частотной области. В неидеальных условиях с наличием коррелированно­

го шума, вызванного низкочастотной разницей яркости, можно добиться более

высокого качества распознавания при настройке тонкого полосового фильтра

путем оптимизации его параметров.

Рис. 4.3. Переход от использования нескольких ядер к одному с оптимальными параметрами

Предложен подход, использующий один фильтр с заранее оптимизирован­

ными параметрами (Рис. 4.3), различными для действительной 𝑅𝑒 и мнимой

𝐼𝑚 частей. Для оптимизации были выбраны следующие параметры ядра: дли­

на волны 𝜆, стандартное отклонение 𝜎 и пространственное соотношение сторон

𝛾 соответственно. Многие эксперименты, проведенные нами и другими иссле­

дователями, показали, что наиболее значимые черты радужки ортогональны

ее радиальному направлению, поэтому устанавливается 𝜃 = 0. В качестве целе­

вой функции для оптимизации выбрано значение 𝐸𝐸𝑅, отражающее частоту

ошибок, соответствующую пороговому значению 𝑡, для которого 𝐹𝑀𝑅 равна

𝐹𝑁𝑀𝑅: 𝐹𝑀𝑅(𝑡) = 𝐹𝑁𝑀𝑅(𝑡). Выбор 𝐸𝐸𝑅 в качестве целевой функции поз­

воляет оценить эффективность системы распознавания независимо от заранее

определенного порога для степени схожести. Для оптимизации использовался
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метод прямого поиска Нелдера-Мида [100]. Этот метод хорошо зарекомендо­

вал себя при решении задач оптимизации, в частности, в случае наличия обла­

стей плато и седловых точек из-за его способности к нерегулярной конструкции

симплекса. Оптимизация и окончательное тестирование выполнялись на набо­

ре данных CASIA-IrisV3-Lamp [29], симулирующем изменение освещенности в

процессе регистрации изображения. Весь набор данных был разделен для обу­

чающую и тестовую выборки в пропорции 0.6/0.4.

Метод EER d’

OFI [34] 0.0406 3.61

Предложенный метод 0.0373 3.73

Таблица 4.1. Результаты по точности распознавания для двух алгоритмов извлечения осо­

бенностей радужки вейвлетам Габора при фиксированном алгоритме квантования

Сравнение метода производилось с базовым подходом с октавным увеличе­

нием частоты ядра (octave frequency increase, OFE), описанным в работе [34]. С

целью демонстрации преимуществ обоих частей (фильтрации и квантования)

предложенного метода, в качестве первого эксперимента было произведено срав­

нение методов фильтрации для фиксированного метода квантования. Расстоя­

ние Хэмминга (Hamming Distance, HD) выбирана в качестве меры различия

пар векторов признаков радужки. Результаты представлены в таблице 4.1. Для

оценки, кроме значения 𝐸𝐸𝑅, была так еж использована метрика 𝑑′, отражаю­

щая степень разделимости между полученными распределениями genuine (сво­

их) и impostor (самозванцев). Данный показатель оказывается более чувстви­

тельным и информативным, когда выполняются условия: распределения имеют

не большую площадь пересечения, распределения имеют вид Гауссового.

Результаты эксперимента (Таб. 4.1) отражают преимущества предложен­

ного подхода. Стоит также отметить, что предлагаемый метод требует двух

операций свертки (по одному для частей 𝑅𝑒 и 𝐼𝑚 соответственно), тогда как

для OFI-метода требуется по крайней мере четыре (Рис. 4.3) для каждой части

60



(всего восемь). Т.к. размер ядра для свертки для обоих методов был выбран

идентичным, можно заключить, что предложенный метод в 4 раза превосходит

OFI по скорости.

4.1.2. Квантование

Квантование фазы, полученного после фильтрации сигнала, является за­

ключительным этапом процедуры построения вектора признаков (Рис. 4.1). В

оригинальной работе квантование производится в зависимости от знака фа­

зы [34], и все элементы используются для сравнения. Кроме того, в работе [63]

было показано, что не все квантованные элементы вектора признаков одина­

ково важны и вводится понятие хрупкости. Хрупкость в данном конкретном

случае означает несогласованность информации, хранящейся в двух или более

векторах одной и той же радужки. Несогласованные элементы могут быть опре­

делены из нескольких или из одного кадра. Данная работа ориентирована на

однокадровый подход. Большинство современных работ [63, 83] используют кон­

стантное предопределенное пороговое значение (одинаковое для 𝑅𝑒 и 𝐼𝑚) для

классификации векторных элементов на хрупкие и не-хрупкие.

Рис. 4.4. Задание значений порогов различных для 𝑅𝑒 and 𝐼𝑚 частей

Предложенный метод подразумевает задание различных и независимых

друг от друга порогов для 𝑅𝑒 and 𝐼𝑚 частей(Рис. 4.4).
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Рис. 4.5. Определение порога хрупкости

Алгоритм адаптивного определения порога хрупкости использует опорное

значение 𝑇𝑅, полученное после оптимизации и состоит из следующих этапов:

1. Значения вектора признаков упорядочиваются по возрастанию 𝐹𝑉 =

{𝑚𝑖𝑛..𝑚𝑎𝑥}

2. Финальное значение порога хрупкости определяется как 𝑇𝐹 = 𝐹𝑉 [𝑇𝑅*𝐿],

где 𝐿 размерность вектора признаков (Рис. 4.5)

Опорные значения порогов 𝑇𝑅(𝑅𝑒) и 𝑇𝑅(𝐼𝑚) получены по результатам

предварительной оптимизации на обучающей выборке полным перебором. По­

лученные значения 𝑇𝐹 (𝑅𝑒) и 𝑇𝐹 (𝐼𝑚) используются далее для удаления неустой­

чивой информации из вектора признаков после квантования.

Описание базы данных
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Предложенный метод извлечение признаков проверяется на двух разных

базах данных изображений радужек, полученных при помощи цифровой каме­

ры в БИК диапазоне. Один из них CASIA-IrisV3-Lamp [29] является общедо­

ступным и содержит изображения, снятые в условиях изменяющегося уровня

освещенности (примеры изображений на Рис. 4.6). Другой набор данных был

собран приватно при помощи мобильного устройства, но в сильно меняющих­

ся условиях окружающей среды: в помещении при нормальном освещении, в

темном помещении и на ярком солнце, симулируя попытки аутентификации.

Описание собранной БД приведено в таблице 4.2, а примеры изображений при­

ведены на Рис. 4.7. Параметры фильтра Габора, а также пороговые значения

хрупкости (𝑇𝑅) предварительно оптимизированы для каждого набора данных

независимо друг от друга.

Рис. 4.6. Примеры изображений радужек из набора данных CASIA-IrisV3-Lamp

Рис. 4.7. Примеры изображений радужек из набора данных, собранных при помощи мобиль­

ного устройства

Экспериментальные результаты
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Набор данных CASIA-IrisV3-Lamp Мобильный

Кол-во субъектов 411 286

Кол-во классов 819 566

Расы

Кол-во радужек на изображении 1 1

Дистанция съемки 15÷ 25 (см) 15÷ 35()

Разрешение камеры (пикс.) 640× 480 1280× 720

Таблица 4.2. Описание баз данны тестирования

Оценивание предложенного метода адаптивного квантования производи­

лось по значениям 𝐸𝑅𝑅 и 𝑑′. В качестве метода для сравнения была взята ра­

бота [63]. Предложенный и описанный выше метод извлечения признаков при

помощи фильтра Габора был использован в качестве основанного для извлече­

ния признаков для обоих методов. Результаты представлены в Таб. 4.3.

Dataset CASIA-IrisV3-Lamp Мобильный

EER d’ EER d’

Без квантования 0.0373 3.73 0.0048 7.62

Hollingsworth [63] 0.0430 3.60 0.0043 7.77

Предложенный 0.0370 3.85 0.0040 8.01

Таблица 4.3. Результаты сравнения методов квантования

Результаты эксперимента демонстрируют превосходство метода по сравне­

нию с [63] на обоих наборах данных.

4.2. Метод с использованием глубокого обучения

Относительно новым и одним из наиболее перспективных направлений в

области биометрического распознавания, как и во многих других областях, яв­

ляется применение методов глубокого обучения. О преимуществах и недостат­
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ках подходов, построенных на глубоком обучении, упоминалось ранее (3.2.1).

Первые работы, использующие такой подход в применении к задаче извлечения

и сравнения уникальных особенностей радужной оболочки глаза начали появ­

ляться в 2016 году. Отправной точкой была работа Liu и др. [89], названная

DeepIris. Чуть позже Minae и др. в работе [94] провели анализ применимости

подхода с извлечением признаков радужки при помощи нейронной сети, предва­

рительно обученной на базе данных изображений ImageNet, содержащей поряд­

ка тысячи классов различных объектов. В качестве вектора признаков в таком

подходе выступает вектор выходных значений, т.н. эмбеддингов (embedings),

последнего полносвязного слоя сети. В работе предложено использовать дан­

ный вектор без какого-либо дополнительного обучения и подстройки парамет­

ров сети. Далее метод главных компонент (PCA) используется для понижения

размерности вектора и метод опорных векторов (SVM) для классификации на

genuine и impostor. В качестве базовой была использована архитектура VGG.

Данную работу можно рассматривать как одну из первых попыток изучить

возможности глубоких нейронных сетей в применении к задаче распознавания

по радужной оболочке. Позднее Gangwar и др. [51] представили DeepIrisNet

модель, объединяющую в себе перспективные методы глубокого обучения, из­

вестные на тот момент. Год спустя Tang и др. [131] представили похожу на

DeepIrisNet работу, основанную на использовании эмбеддингов. В то же вре­

мя Proenca и др. [117] представили метод, который они назвали IRINA. Идея

работы заключалась в том, чтобы при помощи сети осуществлять поиск соответ­

ствующих патчей для пар изображений, а также Марковские случайные поля

(MRF) для компенсации нелинейных искажений текстуры радужки. В качестве

классификатора было предложено использовать SVM. В работе продемонстри­

рована высокая устойчивость к текстурным деформациям зрачка, радужки, а

также к ошибкам сегментации. Однако, предлагаемая модель существенно огра­

ничивает применимость метода для мобильных приложений в виду собственной

вычислительной сложности. Подход с парой т.н. полносверточных сетей (FCN)
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с модифицированной расширенной триплетной функцией потерь ETL (extended

triplet loss) был предложен в работе [152]. Одна из сетей используется для из­

влечения признаков радужки, а вторая осуществляет построение маски. Метод

нечеткого улучшения изображения в сочетании с линейной итеративной класте­

ризацией и нейронной сетью SOM был предложено в [7]. Несмотря на то, что ме­

тод заявлен для распознавания на мобильном устройстве, производительность

в режиме реального времени не была достигнута.

Для сравнения с предложенным подходом среди вышеперечисленных были

выбраны те, которые удовлетворяют следующим критериям:

∙ Применимость к мобильным устройствам (способность осуществлять об­

работку в режиме реального времени);

∙ Высокая точность распознавания.

Предложенный метод представляет собой сверточную нейронную сеть, спро­

ектированную с учетом преимуществ нормализованного изображения радужки

как инварианта, представления низко- и высокоуровневых признаков сравне­

ния, а также информации об окружении. Модель состоит из двух основных

частей: выделения особенностей и их последующего сравнения. Обе части обу­

чаются совместно.

4.2.1. Низкоуровневое представление признаков

Объединение низко и высокоуровневых признаков в нейронных сетях не

является новой идеей [43, 52, 71]. Известно, что первые слои в CNN отвечают за

извлечение низкоуровневой текстурной информации, а представление высокого

уровня достигается с глубиной [59, 148]. Методы выделения признаков радужки,

основанные на различных видах вейвлет-преобразований, упомянутых ранее

(вейвлеты Габора и т.д. [35, 104]), которые в течение многих лет доминировали

в этой области, - это в основном попытки использовать низкоуровневое описание
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Рис. 4.8. Архитектура предложенной модели сверточной сети для извлечения и сравнения

уникальных признаков радужки

текстуры. Эти методы доказали свою надежность для сценариев с практически

неизменным окружением, но оказались чувствительными к ее изменениям.

Нормализованное изображение радужки представляет собой инвариант,

позволяющий использовать текстурные признаки в условиях слабо изменяю­

щейся среды, когда они остаются хорошо выровненными относительно между

собой. Поэтому распознавание по радужке является хорошим примером зада­

чи, для которой рентабельность использования низкоуровневых представлений

объектов может быть исследована в контексте методов на основе CNN и сильно

изменяющихся условий окружения.

В работе рассматривается влияние высокоуровневых текстурных призна­

ков на эффективность распознавания. Взяв за основу классический подход [35]

67



Слой Размер входного тензора

Сверточный 3x3 (𝑠′ = 1, 𝑎𝑐𝑡. = 𝑡𝑎𝑛ℎ) 1× 49× 161

Сверточный блок 𝐶𝑁𝑁𝐵𝑀𝑁(𝑘ℎ = 𝑘𝑤 = 3, 𝑠′ = 2) 8× 47× 159

Таблица 4.4. Структура сверточного блока #1

к вычислению степени схожести при помощи расстояния Хэмминга (Hamming

Distance, HD), вектор вида 𝐹𝑉𝑠ℎ = {𝑥0..𝑥𝑁} использовался в качестве описания

высокоуровневых текстурных отличительных признаков. Каждый элемент 𝑥𝑖

вектора 𝐹𝑉𝑠ℎ вычисляется следующим образом:

𝑥𝑖 =

∑︀
|𝐹𝑀𝑆𝑞

1,𝑖 − 𝐹𝑀𝑆𝑞
2,𝑖 | ×𝑀𝑐∑︀

𝑀𝑐
(4.1)

где 𝐹𝑀𝑆𝑞
𝑘,𝑖 это 𝑖-я карта признаков 𝑘-й радужки (входящей или сохраненной)

после стандартизации приведением к 𝜇 = 0 и 𝜎 = 1, бинаризованная по знаку;

𝑀𝑐 - бинарная маска, используемая для выделения шума в виде ресниц, век и

различных бликов, объединенная из двух: 𝑀𝑐 = 𝑀1 ×𝑀2.

Слой Шаг свертки

Свертка по глубине (𝑘ℎ = 𝑘𝑤 = 3) 𝑠′

Пакетная нормализация −

ReLU −

Свертка (𝑘ℎ = 𝑘𝑤 = 1) 1

Пакетная нормализация −

ReLU −

Таблица 4.5. Структура блока 𝐶𝑁𝑁𝐵𝑀𝑁

Основные элементы блока выделения высокоуровневых признаков и их

взаимосвязи приведены на Рис. 4.8, а структура сверточного блока #1 пред­

ставлена в Таб. 4.4. Структура основных блоков, впервые предложенная в ра­
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боте [64] как вычислительно эффективная, была выбрана в качестве базового

структурного элемента архитектуры (Таб. 4.5). Карты признаков 𝐹𝑀𝑆𝑞
1,𝑖 и 𝐹𝑀𝑆𝑞

2,𝑖

(4.1) являются выходом первого сверточного слоя с функцией активации 𝑡𝑎𝑛ℎ()

(Таб. 4.4).

Распределения элементов вектора 𝐹𝑉𝑠ℎ для genuine и impostor сравнений,

полученные в процессе обучения по окончании различных эпох на валидаци­

онной выборке, представлены на Рис. 4.9. Несмотря на то, что распределения

для разных фильтров для поздних эпох очень похожи, сами фильтры сильно

различаются (Рис. 4.10). Форма распределений для обоих классов напоминает

Гауссиан. По этой причине для оценки степени их разделимости были выбра­

ны значения d’ и EER. Изменение значений для каждого фильтра в процессе

обучения представлено на Рис. 4.11. Результаты, представленные в Таб. 4.8, по­

казывают, что добавление 𝐹𝑉𝑠ℎ позволяет получить несколько лучшие резуль­

таты по точности распознавания для базовой модели с ядрами 3х3 на первом

сверточном слое. Также показано, что для больших ядер (9x9) разница в про­

изводительности становится более значимой (Таб. 4.8).

4.2.2. Высокоуровневое представление признаков

Представление высокоуровневых (глубоких) признаков выполняется свер­

точным блоком #2. Карты признаков 𝐹𝑀𝑆𝑞
1,𝑖 и 𝐹𝑀𝑆𝑞

2,𝑖 , поступающие из свер­

точного блока #1, объединяются по каналам и поступают на вход блоку #2

(Рис. 4.8). Смысл конкатенации на данном этапе заключается в очередном ис­

пользовании свойства инвариантности нормализованного изображения радуж­

ки. Эксперименты показали преимущества этого подхода по сравнению со стан­

дартными методами [78], где векторы признаков имеют сильно пониженную

размерность. Однако среди недостатков такого подхода: относительно большой

размер вектора и вычислительная сложность процедуры сравнения. Структу­

ра блока представлена в Таб. 4.6. Выходной вектор 𝐹𝑉𝑑𝑒𝑒𝑝 ∈ 𝑅128 отражает

высокоуровневое представление отличительных признаков и необходим для ра­
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Рис. 4.9. Изменение распределений значений элементов вектора 𝐹𝑉𝑠ℎ в процессе обучения

боты со сложными нелинейными искажениями текстуры радужной оболочки,

вызванными изменением условий окружения.

4.2.3. Вычисление степени схожести

Предварительный анализ ошибок распознавания показал, что genuine и

impostor распределения хорошо разделяются. Однако, среди impostor сравне­

70



Рис. 4.10. Фильтры первого сверточного слоя, полученные после обучения (100 эпох)

(а) (б )

Рис. 4.11. Изменение значений EER (а) и d’ (б) для распределений элементов вектора 𝐹𝑉𝑠ℎ

в процессе обучения

ний существуют такие, для которых степень схожести принимает высокие значе­

ния, препятствуя фиксированию порога принятия решения на уровне, необходи­

мом для создания устойчивой системы распознавания. Характер распределений

элементов 𝐹𝑉𝑠ℎ (Рис. 4.9) наталкивает на идею использования методов вариаци­

онного вывода для регуляризации. Смысл метода заключается в представлении

некоторого вектора в виде 𝑛-мерной случайной величины с заданным распреде­

лением. В данной работе предлагается представление векторов 𝐹𝑉𝑠ℎ и 𝐹𝑉𝑑𝑒𝑒𝑝 в

Слой Размер входного тензора

Сверточный блок 𝐶𝑁𝑁𝐵𝑀𝑁(𝑘ℎ = 𝑘𝑤 = 3, 𝑠′ = 2) 32× 23× 79

Сверточный блок 𝐶𝑁𝑁𝐵𝑀𝑁(𝑘ℎ = 𝑘𝑤 = 3, 𝑠′ = 2) 32× 11× 39

Сверточный блок 𝐶𝑁𝑁𝐵𝑀𝑁(𝑘ℎ = 𝑘𝑤 = 3, 𝑠′ = 1) 32× 5× 19

Полносвязный слой + Пакетная норм. (без акт.) 1× 1632

Таблица 4.6. Структура сверточного блока #2
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виде случайных величин соответствующей размерности, имеющих многомерное

нормальное распределение 𝐹𝑉 ′
𝑠ℎ ∼ 𝑁(𝜇𝑠ℎ,Σ𝑠ℎ) и 𝐹𝑉 ′

𝑑𝑒𝑒𝑝 ∼ 𝑁(𝜇𝑑𝑒𝑒𝑝,Σ𝑑𝑒𝑒𝑝) соот­

ветственно, где 𝜇 - вектор средних значений, а Σ - матрица ковариации. Вари­

ационный вывод в нейронных сетях выполняется при помощи так называемого

трюка с переопределением параметров (репараметризацией), описанного в [76].

Выбор (семплирование) значений из распределений выполняется случайным об­

разом и только только в процессе обучения, тогда как для обученной модели

выводятся только значения 𝜇. В качества функции активации здесь предлагает­

ся использование сигмоида. Эта же процедура выполняется далее для векторов

после конкатенации 𝐹𝑉 ′
𝑠ℎ, 𝐹𝑉 ′

𝑑𝑒𝑒𝑝 и 𝐹𝑉𝑎𝑑𝑑, где 𝐹𝑉𝑎𝑑𝑑 = {Δ𝑁𝑃𝑅,𝐴𝑂𝐼}, где 𝐴𝑂𝐼

- площадь пересечения (полезая площадь):

𝐴𝑂𝐼 =
Σ𝑀𝑐

𝑀ℎ
𝑐 ×𝑀𝑤

𝑐

(4.2)

и Δ𝑁𝑃𝑅 вычисляется как:

Δ𝑁𝑃𝑅 =

⃒⃒⃒⃒
𝑅𝑝

1

𝑅𝑖
1

− 𝑅𝑝
2

𝑅𝑖
2

⃒⃒⃒⃒
(4.3)

где 𝑅𝑝 и 𝑅𝑖 соответствующие радиусы зрачка и радужки

Выходной вектор 𝐹𝑉 ′
𝑑 ∈ 𝑅128 является входом для последнего полносвязно­

го слоя с двумя нейронами, представляющими два класса: свой и чужой (genuine

и impostor). Для Вычисления степени схожести используется SoftMax класси­

фикатор.

Полученные результаты (Таб. 4.8) демонстрируют, что применение вариа­

ционного вывода (VI) повышает точность распознавания (VI=N означает заме­

ну структуры VI на простыми полносвязными слоями соответствующей размер­

ности), но также стоит упомянуть, с увеличением объема данных для обучения,

рентабельность применения такого подхода снижается.
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4.2.4. Метод обучения

Еще одной особенностью предложенного метода является использование

функции потерь (loss function) специального вида. Основная идея заключается

в том, что некоторые изображения одной и той же радужки настолько отли­

чаются друг от друга, что их практически невозможно отнести их к одному

классу даже визуально по исходному (до нормализации) изображению. Данное

свойства в значительной степени препятствует сходимости модели при обуче­

нии. Поэтому разумно взвешивать или даже полностью игнорировать такие

сравнения при обучении. Предлагается следующий алгоритм:

∙ вычисление функции потерь (например, кросс-энтропии) для каждого срав­

нения в пакете;

∙ применение весов 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = {𝑤0..𝑤𝐾} для 𝐾-максимальных значений;

∙ суммирование значений и вывод значения для пакета;

Данный подход позволил обеспечить лучшую сходимость модели и добить­

ся более высокой точности распознавания.

Экспериментальные результаты

Экспериментальные результаты были получены на нескольких наборах

данных и сравнивались с наиболее релевантными методами среди существу­

ющих. Результаты включают оценку точности распознавания и скорости.

Экспериментальные данные

Для обучения и тестирования использовались три разных набора данных:

CASIA-Iris-M1-S2 (CMS2) [27], CASIA-Iris-M1-S3 (CMS3) [27] и еще один (Iris-

Mobile, IM), собранный в лаборатории при помощи мобильного устройства со

встроенной камерой, работающей в БИК диапазоне. Последний собран, имити­

руя реальные сценарии аутентификации пользователя мобильного устройства:

изображения, захваченные в сильно меняющемся освещении как в помещении,
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Набор Изображений Радужек Изображений Субъекты

данных (всего) (всего) (на улице)

CMS2 7723 398 0 Азиаты

CMS3 8167 720 0 Азиаты

IM 22966 750 4933 Европ. и Азиаты

Таблица 4.7. Описание базы данных тестирования

так и на открытом воздухе (под прямым солнечным светом), с очками и без

очков. В нем также представлены изображения для людей различных расо­

вых принадлежностей: азиатов и европеоидов. Более подробные спецификации

наборов данных описаны в Таб. 4.7, а несколько примеров изображений об­

ласти глаза представлены на Рис. 3.1. Выделение области радужки с целью

получения масок было осуществлено автоматически алгоритмом, описанным в

гл. 3. Примеры изображений радужек и соответствующих масок представлены

на Рис. 4.8. Каждый набор данных первоначально был разделен на подвыбор­

ки: обучающую, валидационную и тестовую в пропорции 70/10/20 (%) соответ­

ственно. Разделение производилось таким образом, что для разных подвыборок

не существует изображений одной и той же радужки.

Обучение

Обучение и тестирование проводились отдельно для каждого набора дан­

ных. Поскольку количество genuine сравнений 𝑁𝐺 намного меньше, все они

были использованы для обучения, а количество сравнений impostor было уста­

новлено в 𝑁𝐼 = 10𝑁𝐺. Модель, продемонстрировавшая лучшие результаты на

валидационной выборке, выбиралась для оценки на тестовой. Все модели обу­

чались на протяжении 150 эпох, а в качестве метода оптимизации был выбран

Adam [77].

Обучение предлагаемой модели проводилось таким образом, чтобы одна

эпоха была эквивалентна одному проходу по всем genuine сравнениям, тогда
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𝑐𝑜𝑛𝑣1 | 𝑉 𝐼 | 𝐹𝑉𝑠ℎ EER FNMR d’

8× 3× 3 | 𝑌 | 𝑌 0.0116 0.1925 4.3155

8× 3× 3 | 𝑁 | 𝑌 0.0120 0.2027 4.2048

8× 3× 3 | 𝑌 | 𝑁 0.0125 0.2085 4.1253

8× 9× 9 | 𝑌 | 𝑌 0.0134 0.1566 4.3034

8× 9× 9 | 𝑌 | 𝑁 0.0172 0.1694 3.9850

Таблица 4.8. Оценка точности распознавания для различных модификаций модели

как impostor сравнения каждый раз случайным образом выбирались из всего

набора для каждого пакета. Также была установлена пропорция для количества

genuine и impostor сравнений в пакете 𝑁 𝑏
𝐼 = 10𝑁 𝑏

𝐺.

Результаты по точности распознавания

Полученные результаты по точности распознавания представлены в Таб. 4.9

и Рис. 4.12. Предложенный метод превосходит остальные на всех наборах дан­

ных. После разделения полных наборов на подмножества стало невозможно

оценить FNMR для FMR=10−7 для наборов данных CMS2 и CMS3, поскольку

количество сравнений в тестовых подмножествах не превышало 10 миллионов.

По этой причине был проведен еще дополнительный эксперимент. Его суть за­

ключалась в том, чтобы оценить эффективность предлагаемой модели на набо­

рах данных без какого-либо обучения или дообучения на них (с переносом). Мо­

дель, прошедшая обучение на обучающей выборке IM, была протестирована на

полных наборах данных (до разделения) CMS2 и CMS3, чтобы получить FNMR

при FMR=10−7. Модель показала результаты, превосходящей её собственные,

полученные после обучения на обучающих подмножествах данных каждого из

наборов, и это доказало её высокую способность к обобщению. Тем не менее,

было бы справедливо отметить, что набор данных IM содержит гораздо больше

изображений, чем два других.

Результаты по скорости обработки
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Метод CMS2 CMS3 IM Testing

DeepIrisNet 0.0709 0.1199 0.1371 без переноса

FCN+ETL 0.0093 0.0301 0.0607 без переноса

Предложенный 0.0014 0.0190 0.0116 без переноса

метод 0.0003 0.0086 0.0116 с переносом

Таблица 4.9. Значения EER, полученные для сравниваемых методов на различных базах

данных

(а) (б ) (в)

Рис. 4.12. ROC-кривые построенные по результатам тестирования сравниваемых методов на

базах данных: (а)CMS2, (б)CMS3, (в)IM

Тестирование предложенного метода производилось на мобильном устрой­

стве. Полное медианное время выполнения измерено на процессоре Qualcomm

Snapdragon 835 CPU (2.45 GHz) и составило 3-4 миллисекунды: 1-2 (мсек) для

извлечения особенностей и столько же для из сравнения. Измерения произво­

дились на одном ядре процессора.

4.3. Выводы к четвертой главе

Рассмотрены особенности извлечения и сравнения уникальных особенно­

стей радужки при распознавании в сложных условиях, с учетом специфики

применения в мобильном устройстве. Рассмотрены два основных направления

к задаче: использование вейвлетов и их всевозможных модификаций, а так­
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же методов глубокого обучения. Предложены, протестированы и внедрены два

разных метода: (i) основанный на применений вейвлетов Габора с последующим

адаптивным квантованием фазы, позволивший достичь большей устойчивости

к искажениям текстуры радужки по сравнению с существующими методами; (ii)

основанный на применении глубокого обучения с учетом специфики вариатив­

ности радужки. Исследована рентабельность использования низкоуровневых

текстурных особенностей радужки в объединении с высокоуровневым представ­

лением. В рамках подхода, основанного на применении сверточной нейронной

сети предложен новый метод обучения, позволивший обеспечить лучшую схо­

димость модели и повысить точность распознавания. Для тестирования метода

была собрана и подготовлена дополнительная база данных изображений ра­

дужек, учитывающая особенности использования мобильного устройства. Оба

предложенных метода позволяют обеспечивать высокую скорость распознава­

ния, достаточную для их применения в мобильном устройстве в режиме реаль­

ного времени.
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Глава 5

Защита от подделывания радужки

Способность обеспечивать надежную защиту от попыток подделывания яв­

ляется одним из ключевых требований к системе безопасности, использующей

биометрические методы. Распознавание по радужной оболочке глаза является

одной из наиболее перспективных и новых биометрических технологий на рын­

ке мобильных устройств (1.2, 1.5). О преимуществах технологии по сравнению

с иными биометрическими методами упоминалось ранее (1.1). За последние го­

ды несколько компаний представили технологию аутентификации по радужке,

встроенную в свои смартфоны, среди наиболее известных: [39, 93, 123]. Предпо­

лагается, методы биометрической аутентификации станут заменой для привыч­

ных схем с паролями. В целом технология предназначена для более удобного

взаимодействия с устройством и, в то же время, для повышения уровня без­

опасности личной информации пользователя, хранящейся на устройстве.

После выпуска устройств, оснащенных сканером радужки, стали подтвер­

ждаться факты взлома технологии путем подделывания (спуфинга, spoofing)

радужной оболочки глаза и представлении её устройству в качестве оригиналь­

ной, принадлежащей пользователю. Следует отметить, что попытки взлома

предпринимались группами профессионалов, специализирующимися на взломе

и компрометировании технологий безопасности, в т.ч. и биометрических [20,

25]. Эксперименты проведенные в рамках данного настоящего исследования

подтверждают, что идеи обоих упомянутых методов спуфинга являются выпол­

нимыми, за исключением нескольких важных условий, которые должны быть

выполнены: изображение радужной оболочки должно быть захвачено инфра­

красной камерой с высоким разрешением таким образом, что диаметр радужки

на изображении должен составлять не менее 250-300 точек на бумаге, напеча­

танной с разрешением не менее 600 dpi, что означает, что изображение должно
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быть зафиксировано либо с очень короткого расстояния, либо с использованием

телеобъектива с высоким разрешением; глаза должны быть открыты достаточ­

но с прицелом, направленным к камере; изображение радужной оболочки не

должно быть размытым и недооцененным; Таким образом, можно сделать вы­

вод, что проблема анти-спуфинга радужки остается актуальной, в особенности

для мобильных приложений.

5.1. Обзор методов защиты от подделывания радужки

Среди известных способов спуфинга радужки можно выделить следую­

щие [32, 42, 49]: представление системе напечатанной на принтере с высоким

разрешением изображении радужки пользователя; представление изображения

либо последовательности изображений радужки с экрана другого устройства;

представление системе искусственного глаза, изготовленного из стекла или пла­

стика; представление контактной линзы с рисунком оригинальной радужки

пользователя; иные возможные варианты, позволяющие обеспечить реалистич­

ность радужки для биометрической системы.

Cуществующие методы борьбы с подделыванием радужки, описанные в

литературе, могут быть поделены на:

∙ Использующие и не использующие дополнительные аппаратные средства,

позволяющие обнаруживать особые физиологические свойства «живно­

сти» радужки, например глазного гиппуса, представляющего собой есте­

ственное колебание диаметра зрачка в ответ на внезапное изменение осве­

щения (например, включение дополнительного диода) [32, 49];

∙ Требующие и не требующие дополнительного взаимодействия с пользова­

телем, например посредством вывода подсказок с просьбой закрыть/открыть

веки, предоставить иную дополнительную информацию в виде пин-кода

и др.
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Класс методов, использующих дополнительные аппаратные средства, а

также требующие дополнительного взаимодействия с пользователем, рассмат­

ривается в меньшей степени, когда речь заходит о их применении на мобильном

устройстве, главным образом потому, что такой подход может значительно уве­

личить стоимость и, в то же время, уменьшить удобство использования техно­

логии [106]. Полностью автоматические подходы выделяются экономичностью,

что делает их привлекательными для коммерческого применения, однако, тре­

буют высокой степени универсальности и устойчивости к изменениям выходных

данных.

Одной из первых работ в данной области была [36], в которой рассматри­

валась проблема спуфинга при помощи напечатанных на бумаге изображения

радужки. В работе утверждалось, что процесс печати оставляет обнаружива­

емые следы на поддельных образцах и предлагалось их обнаружение приме­

нением двумерного анализа Фурье полученного изображения. Подход показал

свою эффективность против атак с использованием изображений радужки, на­

печатанных на бумаге. Однако, метод оказался неустойчивым к иным видам

атак, описанными далее. Несколько методов анализа признаков, присущих ис­

кусственным радужкам в частотной области, были предложены в работах [61] и

[31]. В работе [120] предлагается метод представления изображения радужки

в виде пирамиды Лапласа для различных масштабов. Метод позволяет анали­

зировать частотные отклики для разных ориентаций радужки и обнаруживать

артефакты, присущие искусственным образцам, с использованием последова­

тельности изображений. Методы, основанные на локальных дескрипторах, так­

же используются для анализа и представления текстуры радужки с целью обна­

ружения спуфинг-атак. Например, в работах [57, 61] показана эффективность

использования различных конфигураций LBP (local binary patterns, локальных

бинарных шаблонов) дескрипторов против ряда известных атак (например, кон­

тактные линзы с рисунком радужки, напечатанные на бумаге, искусственные

радужки из пластика или стекла т. д.). Бинарные особенности изображения,
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основанные на статистиках (BSIF) также изучались в контексте обнаружения

подделок и тестировались на разных базах данных подделок [118]. Комплексное

решение для защиты от спуфинга на основе комбинации нескольких локальных

дескрипторов (LBP, BSIF и локального квантования фазы (LPQ)) для представ­

ления текстуры представлено в комплексном исследовании [54].

В работе [49] было показано, что различные метрики качества изображе­

ния радужки могут быть использованы для обнаружение спуфинг-атак. Идея

подхода исходит из предположения о том, что входные изображения подделок

могут значительно отличаться по уровню качества от оригинальных для нор­

мальных (фиксированных) условий распознавания. Несколько значимых в от­

ношении детектирования подделок метрик качества представлены в работе [49]

и протестированы на образцах подделок, напечатанных на бумаге.

Одним из наиболее многообещающих подходов к детектированию спуфинг­

атак сегодня является применение методов глубокого обучения. Такие методы

демонстрируют высокую надежность по сравнению с существующими. Одной

из пионерских работ в применении к радужке, лицу и отпечаткам пальцев бы­

ла [92]. Комплексная работа по сравнении различных подходах регулярно ор­

ганизовывается в рамках LivDet соревнований, где методы глубокого обучения

по результатам последних лет занимают лидирующие позиции [143—145].

Все вышеупомянутые подходы к обнаружению спуфинг-атак были рас­

смотрены в контексте мобильных приложений, накладывающих на них допол­

нительные ограничения, о которых говорилось ранее (2.1, 1.5). Среди всех, для

сравнения были выбраны [118, 125, 126], которые отвечали требованиям мобиль­

ных приложений, демонстрирующие при этом перспективные результаты.
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5.2. Обнаружение подделок радужки методами глубокого

обучения

Предложен универсальный метод обнаружения спуфинг-атак разных ка­

тегорий. Метод основан на использовании моделей глубоких сверточных ней­

ронных сетей (CNN). Входными данными метода являются два изображения:

изображение радужки 𝐼𝐸𝑅, центр которого совпадает с центром радужки, и

изображение нормализованной радужки 𝐼𝑁𝐼 , получаемое преобразованием ви­

да 1.1, 1.2. Примеры обоих изображений приведены на Рис. 5.1. Метод опира­

ется на информацию о положении и размерах зрачка и радужки, которые, в

простейшем случае, могут быть описаны параметрически окружностями.

Проверка на наличие потенциальной спуф-атаки производится сразу после

этапа нормализации радужки (описан в разделе 1.4) и состоит из двух этапов:

масштабирование изображения и пропускания его через сверточную нейронную

сеть (Рис. 5.1). Изображение области радужки 𝐼𝐸𝑅(𝑀𝐸𝑅, 𝑁𝐸𝑅) вырезается с

пропорцией 𝑀𝐸𝑅 = 𝑁𝐸𝑅 = 3𝑅𝑖, где 𝑅𝑖 - радиус радужки. Центр изображения

𝐼𝐸𝑅 совмещен с центром радужки, описываемой окружностью.

Далее обе изображения масштабируются до заранее заданного размера в

пикселях (Рис. 5.1). Размер изображения выбирается заранее как оптимальный

для заданной архитектуры и позволяющий обеспечивать достаточную точность

и скорость обработки для полученной модели.

Архитектура сверточной сети

Предложенный метод основан на использовании основных блоков архитек­

туры MobileNet [64], показавшей свою эффективность и применимость для за­

дач, связанных с мобильными приложениями. Одно из основных преимуществ

архитектуры это конструкция её основных сверточных блоков. Пары слоев свер­

ток по глубине (depth-wise convolutions) с последующими свертками с ядрами

1х1 позволяют существенно снизить количество умножений, сохраняя емкост­

ные характеристики модели [64].
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Рис. 5.1. Общая схема алгоритма защиты от подделывания радужки

Пары изображений 𝐼𝐸𝑅 и 𝐼𝑁𝐼 , полученные из одного исходного изображе­

ния подаются на вход сверточным блокам 𝐶𝑁𝑁𝐵𝐸𝑅 и 𝐶𝑁𝑁𝐵𝑁𝐼 соответствен­

но, как показано на Рис. 5.1. Структура обоих блоков отражена в Таб. 5.1. Блоки

имеют схожую структуру, основными элементами которой являются структур­

ные единицы архитектуры MobileNet [64], обозначенные как 𝐶𝑁𝑁𝐵𝑀𝑁 . Струк­

тура блоков 𝐶𝑁𝑁𝐵𝑀𝑁 описана в Таб. 4.5.

Над картами признаков, полученных для изображений 𝐼𝐸𝑅 и 𝐼𝑁𝐼 на выходе

из соответствующих блоков, производится операция глобального усредняющего
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Элемент архитектуры Размер входного тензора

блока 𝐶𝑁𝑁𝐵𝐸𝑅 𝐶𝑁𝑁𝐵𝑁𝐼

Сверточный слой (𝑘ℎ = 𝑘𝑤 = 3, 𝑠′ = 2) 1× 91× 91 1× 59× 123

Сверточный блок 𝐶𝑁𝑁𝐵𝑀𝑁(𝑘ℎ = 𝑘𝑤 = 3, 𝑠′ = 1) 8× 45× 45 8× 29× 61

Сверточный блок 𝐶𝑁𝑁𝐵𝑀𝑁(𝑘ℎ = 𝑘𝑤 = 3, 𝑠′ = 2) 16× 43× 43 16× 27× 59

Сверточный блок 𝐶𝑁𝑁𝐵𝑀𝑁(𝑘ℎ = 𝑘𝑤 = 3, 𝑠′ = 1) 32× 21× 21 32× 13× 29

Сверточный блок 𝐶𝑁𝑁𝐵𝑀𝑁(𝑘ℎ = 𝑘𝑤 = 3, 𝑠′ = 2) 64× 19× 19 64× 11× 29

Сверточный блок 𝐶𝑁𝑁𝐵𝑀𝑁(𝑘ℎ = 𝑘𝑤 = 3, 𝑠′ = 1) 64× 9× 9 64× 5× 13

Глобальный усредняющий пуллинг 64× 7× 7 64× 3× 11

Таблица 5.1. Структура блоков 𝐶𝑁𝑁𝐵𝐸𝑅 и 𝐶𝑁𝑁𝐵𝑁𝐼 : 𝑘ℎ, 𝑘𝑤 - размеры ядра свертки по

вертикали и горизонтали соответственно

пулинга (global average pooling). Затем они объединяются в один вектор, являю­

щийся входом последнего полносвязного (fully-connected) слоя. Классификатор

softmax используется для оценивания вероятностей 𝑃𝑠𝑝𝑜𝑜𝑓 and 𝑃𝑙𝑖𝑣𝑒 принадлеж­

ности текущего изображения к одному из двух классов: живой или подделка.

Предложенная модификация архитектуры имеет намного меньшее количе­

ство параметров по сравнению с оригинальной [64], а также использует отступы

(paddings) типа «valid», что позволяет уменьшить количество операций при пря­

мом проходе (forward pass).

Описание базы данных подделок

На сегодняшний день доступно несколько баз данных, содержащих изоб­

ражения оригинальных (живых) радужек и подделок. По аналогии с наборами

данных, собранными для оценки эффективности распознавания радужки, их

можно разделить на две группы: полученные в видимом и ближнем инфракрас­

ном (БИК) спектрах. Поскольку системы, использующие БИК изображения, бо­

лее распространены в виду ряда преимуществ, упомянутых ранее (1.4, 2.2), в ра­

боте рассмотрены только изображения, полученные в БИК диапазоне. В смеж­
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ных работах также рассмотрено несколько распространенных типов подделок,

среди которых: радужка, напечатанная на бумаге; живая радужка, покрытая

текстурированными (узорчатыми) контактными линзами; живая радужка, по­

крытая полу-прозрачной контактной линзой, с воспроизведенным на ней рисун­

ком радужки какого-либо человека. Случай с воспроизведением рисунка радуж­

ки пользователя устройства кажется слишком сложным в реализации, поэтому

не рассматривается в данной работе. Сценарий атаки с радужкой, напечатан­

ной на бумаге, более прост и интуитивен. В некторых из самых недавних работ

в области сообщается, что такую проблему удалось решить, однако, ни в одной

из них не рассматривается использование технологии в мобильном устройстве.

На сегодняшний день не существует доступных наборов данных, получен­

ных при помощи мобильного устройства в БИК диапазоне. По этой причине

такой набор данных был предварительно собран. Набор включает в себя сле­

дующие типа атак, часть из которых не была рассмотрена ранее: (i) изобра­

жение радужки, напечатанное на бумаге (PR); (ii) изображение радужки, на­

печатанное на бумаге с наложением прозрачных контактных линз (PWL); (iii)

изображение радужки, напечатанное на бумаге с нанесением прозрачного клея

(PWG). Такие типы образцов подделок были выбраны не случайно. Именно

они были успешно использованы для обхода мобильной биометрической систе­

мы [20, 25]. Изображения радужной оболочки были получены с использованием

NIR-камеры высокого разрешения в диапазоне расстояний от 20 до 40 (см) и

далее напечатаны на белой бумаге с разрешениями 600/1200 (dpi) в равной про­

порции. Полученные образцы были использованы для съемки примеров трех

классов подделок. В качестве примеров живых радужек были выбраны две ка­

тегории: (i) изображение радужки, полученно при нормальном освещении внут­

ри хорошо освещенной комнаты (IN); (ii) изображение радужки, полученные в

солнечную погоду вне помещения (OUT). Данные категории были выбраны из

соображений рассмотрения возможности изменения условий окружения, прису­

щих мобильным приложениям.
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Таблица 5.2. Описание собранно базы данных (живой/подделка) радужек

Параметр Значение

Разрешение изображения 320× 240

Кол-во субъектов/глаз 23/46

Кол-во изображений подделка/живой 18548/18031

IN/OUT/PR/PWL/PWG (весь набор) 10679/7869/6233/5907/5891

IN/OUT/PR/PWL/PWG (тестовый набор) 2534/2006/1436/1452/1568

В качестве устройства для регистрации изображения было выбрано пор­

тативное вычислительное устройство Raspberry Pi с камерой (PiCamera v2.1) с

дополнительно установленным полосно-пропускающим (850±20 нм) БИК филь­

тром, позволяющей получать изображения в БИК диапазоне частот. В качестве

дополнительного источника освещения был использован светодиод с пиковой ча­

стотой излучения 850 нм. детальная информация о собранном наборе данных

представлена в Таб. 5.2. Разбиение данных на обучающую и тестовую выбор­

ку производилось таким образом, чтобы наборы не пересекались по субъектам.

Несколько примеров изображений 𝐼𝐸𝑅 из набора представлены на Рис. 5.2.

Экспермиентальные результаты

Для того чтобы оценить эффективность предлагаемого решения, были ре­

ализованы несколько известных литературы методов. Производительность ме­

тодов оценивалась на собранном, упомянутом выше наборе данных. Среди из­

вестных подходов: методы, в основе которых лежит частотный анализ, предло­

женные в работах [31] и [61]; метод, построенный на LBP [57] и BSIF дескрипто­

рах [118], а также метод, предложенный в работе [126] с использованием числен­

ных показателей качества изображения. Вышеупомянутые методы были выбра­

ны как демонстрирующие наивысшую производительность на наборах данных

изображений, полученных в БИК диапазоне согласно обзору, приведенному в
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Рис. 5.2. Примеры изображений

работе [50]. По причине высокой вычислительной сложности метод, основанный

на применении пары CNN в сочетании с набором решающих правил, предложен­

ных исследователями из CASIA в работе [145], был исключен из рассмотрения

как неприменимый для мобильных приложений, работающих в режиме реаль­

ного времени. Время выполнения для метода в 400 раз превышает время для

метода, предложенного в данной работе.

Для оценивания точности распознавания были выбраны следующие по­

казатели: FerrLive - доля изображений живых образцов, ошибочно классифи­

цированных как подделки; FerrFake - доля изображений подделок, ошибочно

классифицированных как живые; CCR (correct classification rate) - доля пра­

вильно классифицированных изображений на всем наборе данных. В Таб. 5.3

приведены результаты тестирования известных из литературы и предложенно­

го методов. Важно отметить, что только два из упомянутых решений ([118]

и [126]) были изначально представлены как способные обеспечивать возмож­

ность использования в мобильном устройстве. К преимуществам метода [126]

можно отвести простоту и относительное быстродействие алгоритма. Метод,

предложенный в работе [118] включает в себя вычислительно сложные опе­
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Таблица 5.3. Результаты по точности классификации живых радужек и подделок

Method FerrLive FerrFake CCR

Czajka [31] 0.505 0.207 0.661

He [61] 0.370 0.739 0.442

Gupta [57] 0.294 0.251 0.749

Raghavendra [118] 0.076 0.128 0.897

Sequeira [126] 0.320 0.293 0.694

Предложенный метод 0.048 0.034 0.959

рации свертки с фильтрами относительно большой размерности: от 7 × 7 до

17×17, что делает его менее предпочтительным для развертывания на мобиль­

ном устройстве.

Тестирование предложенного метода производилось на мобильном устрой­

стве. Полное медианное время выполнения измерено на процессоре Qualcomm

Snapdragon 835 CPU (2.45 GHz) и составило 4-6 миллисекунд. Измерения про­

изводились на одном ядре процессора.

5.3. Выводы к пятой главе

Рассмотрены особенности защиты от подделывания радужек в примене­

нии к распознаванию с мобильного устройства. Воспроизведены попытки взло­

ма при помощи методов, использованных группами профессиональных взлом­

щиков. Произведена классификация общих подходов к защите от подделыва­

ния. Произведен обзор существующих методов, рассмотрены их преимущества

и недостатки. Рассмотрены новые виды подделок, ранее не исследовавшиеся

в литературе: (i) изображение радужки, напечатанное на бумаге с наложени­

ем прозрачных контактных линз; (ii) изображение радужки, напечатанное на

бумаге с нанесением прозрачного клея. Собрана и обработана база данных изоб­
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ражений в том числе новых видом подделок при помощи мобильного устрой­

ства с учетом возможных изменений окружения. Разработан, протестирован и

внедрен новый метод защиты от спуфинг-атак, основанный на применении ме­

тодов глубокого обучения, в частности, сверточных нейронный сетей. Предло­

женный метод продемонстрировал высокую точность обнаружения подделок,

значительно превосходящую известные из литературы решения, а также ско­

рость обработки, достаточную для запуска на мобильном устройстве в режиме

реального времени.
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Заключение

1. Исследованы особенности применения метода биометрического распозна­

вания по радужной оболочке глаза в приложениях мобильных устройств.

Исследованы причины и зависимости изменения радужки и пригодности

её для распознавания в сложных, постоянно изменяющихся условиях окру­

жения, а так же с учетом особенностей поведения пользователя устрой­

ства, присущих мобильным приложениям, работающих с изображениями

объектов. Разработан, предложен и внедрен метод распознавания, пригод­

ный для применения в мобильных устройствах.

2. Исследованы методы и алгоритмы оценки качества изображения радуж­

ки. Разработан и внедрен метод оценки качества для мобильных при­

ложений, позволяющий комплексно оценивать пригодность изображения

для извлечения признков, обеспечивать обратную связь с пользователем

устройства, производить управление параметрами системы регистрации

изображения, учитывать и использовать данные с иных сенсоров устрой­

ства, позволяющих извлекать дополнительную информацию об окруже­

нии.

3. Разработаны, исследованы и внедрены методы выделения области радуж­

ки на изображении низкого качества с использованием методов глубокого

обучения, позволяющие производить устойчивое выделение области ра­

дужки на изображении низкого качества в сложных условиях окружения

с частотой поступления кадров.

4. Исследованы, разработаны и внедрены методы извлечения уникальных

особенностей радужки из изображения плохого качества и их последую­

щего сравнения. Один из предложенных методов превосходит по точности

существующие аналоги, в особенности, в экстремально сложных условиях.

Предложенные методы обеспечивают скорость распознавания, достаточ­
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ную для их применения в мобильных приложениях в режиме реального

времени.

5. Исследованы особенности защиты от подделывания радужек в примене­

нии к распознаванию с мобильного устройства, а так же новые методы

подделывания. Разработан, протестирован и внедрен новый метод защи­

ты от подделывания, основанный на применении сверточных нейронный

сетей. Предложенный метод продемонстрировал высокую точность и ско­

рость обнаружения подделок, значительно превосходящую известные из

литературы решения.

6. Собраны, обработаны и размечены следущие базы данных: наборы изоб­

ражений радужки низкого качества, полученных при помощи мобильного

устройства в условиях, симулирующих реальные сценарии его использо­

вания, содержащих максимум один (более 157000) и два (более 200000)

глаза, набор данных изображений в том числе новых видов подделок ра­

дужной оболочки глаза (более 150000).

7. Созданы программные средства для проведения вычислительных экспе­

риментов по оценке качества разработанных алгоритмов.

8. Созданы библиотека и демо-приложения для апробации реализованных

методов и алгоритмов на мобильном устройстве.
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