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1 Введение

1.1 Актуальность темы

Технологии биометрической идентификации личности широко эксплуатируются в систе-

мах контроля доступа и учета посещаемости. Разработано и опробовано множество подходов,

использующих различные идеи, признаки, измерения. Основными методами, применяющими

статические биометрические характеристики человека, являются: идентификация по папил-

лярному рисунку на пальцах, радужной оболочке глаза, геометрии лица, сетчатке глаза,

рисунку вен ладони, геометрии и текстуре ладони (как внешней, так и внутренней её сто-

роны). Также существует семейство методов, использующих динамические характеристики:

идентификация по голосу, динамике рукописного почерка, сердечному ритму, походке. Далее

будем называть модальностями категории биометрических характеристик человека.

Спрос на системы биометрической идентификации уверенно растёт на 10-15% в год

на протяжении последнего десятилетия. В первую очередь их внедряют организации, ко-

торые заинтересованы в повышении уровня безопасности и улучшении имеющихся бизнес-

процессов. Очень часто препятствием на пути внедрения подобных систем является их цена,

которая на данный момент слишком высока для малого бизнеса и бюджетных учреждений

с ограниченным финансированием. Также немаловажным сдерживающим фактором явля-

ются издержки, связанные с созданием и поддержанием необходимой инфраструктуры.

Каждая модальность обладает своими достоинствами и недостатками, определяющими

сферы её применения. В частности, весьма перспективным направлением представляется

идентификация человека по изображению внешней (тыльной) стороны его ладони.

Простота и удобство. Для идентификации достаточно расположить ладонь перед каме-

рой, что предполагает минимальное взаимодействие со сканирующим оборудованием.

Следует также отметить, что строение руки человека обеспечивает значительно более

лёгкую демонстрацию ладони внешней стороной вверх (закрытое положение ладони)

на горизонтальной плоскости, чем в противоположном случае (открытое положение

ладони).

Социальная приемлемость. В отличие от идентификации по отпечатку пальца, как пра-

вило ассоциирующейся с криминалистикой, процедура идентификации по внешней сто-

роне ладони является эмоционально нейтральной и не вызывает отторжения у людей.

В то же время, демонстрация внутренней стороны ладони незнакомому человеку не

является приемлемой в некоторых культурных традициях и религиозных верованиях.
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Помимо этого, можно выделить несколько технических особенностей данной модально-

сти.

1. Для неё не требуются специализированные сенсоры, нужна лишь цифровая камера.

В то же время для систем, работающих с другими модальностями, требуется особое,

зачастую дорогостоящее, оборудование: устройства сканирования радужной оболочки

глаза, сканеры отпечатков пальцев, инфракрасные камеры для считывания рисунка

вен и т. п.

2. Для получения изображения тыльной стороны ладони вполне подходят камеры мо-

бильных телефонов и планшетов, которые на данный момент обладают достаточным

разрешением (1280× 720 пикселей и более), — и потому являются подходящими сенсо-

рами в возникающей задаче биометрической идентификации.

В силу широкой распространенности мобильных устройств с качественными камерами мож-

но считать, что идентификация по изображению ладони не требует специального оборудо-

вания.

Таким образом, выбор изображения внешней стороны ладони в качестве мо-

дальности создаёт предпосылки для создания на основе мобильного устройства

интуитивно понятной и социально приемлемой системы биометрической иденти-

фикации, которая при этом технически доступна и недорога.

На сферу применения мобильной системы, использующей ладонь для распознавания,

критическим образом влияет качество получаемых снимков. Оно варьируется в широких пре-

делах — это определяется многообразием характеристик гаджетов и разноообразием условий

съёмки. Довольно часто участки снимков, которые подвергаются анализу (в данной работе,

например, это области кожных складок пальцев внешней стороны ладони), обладают низкой

информативностью — характерные особенности едва различимы. Вследствие чего, постро-

енные по ним признаки не позволяют достичь высокоточной идентификации, требуемой, к

примеру, при контроле доступа на режимных объектах или в задачах криминалистики.

Мобильная система идентификации по тыльной стороне ладони должна применяться в

случаях, не требующих большой точности распознавания. Таких, как контроль посещаемо-

сти в школах и университетах, контроль доступа в библиотеках, поликлинниках и прочих

подобных учреждениях. Из этого следует, что база биометрических данных такого рода не

представляет интереса для злоумышленников, и утечка информации из неё не способна на-

нести серьёзный вред. Затраты на хранение базы биометрических эталонов в этом случае

невелики — нет необходимости обеспечивать высокий уровень их безопасности.
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Тем не менее, вышесказанное не исключает возможности использования тыльной сторо-

ны ладони в качестве дополнительной модальности в системах с повышенными требованиями

к точности распознавания.

1.2 Цель исследования

Целью исследования является создание метода идентификации человека по изображе-

ниям внешней стороны ладони, который может быть использован в системе распознавания

на базе мобильного устройства. Неотъемлемой частью работы является реализация соответ-

ствующего программного комплекса, обосновывающего эффективность метода и его частей.

Выбор в качестве модальности внешней стороны ладони, а также желаемые показатели

точности и скорости работы метода идентификации во многом продиктованы требованиями

к системе распознавания в целом:

точность — небольшой уровень ошибок (т. е. приемлемый для предметной области, в ко-

торой планируется внедрение);

скорость — распознавание должно осуществляться в режиме реального времени;

доступность — система должна состоять из распространённых и недорогих компонентов;

социальная примлемость — система не должна вызывать негативную реакцию пользо-

вателей в силу социальных стереотипов или религиозных установок;

удобство — процесс идентификации должен быть интуитивно понятен для конечного поль-

зователя и не вводить дополнительных ограничений (например, не требовать вырав-

нивания ладони перед камерой), эксплуатация не должна быть сложна для владельца

(например, минусом может являться сложный процесс разворачивания системы на но-

вом месте);

гибкость — возможность работы в различных внешних условиях (например, при разном

освещении и при съёмке «с руки»).

Представленная в работе мобильная система распознавания по внешней стороне ладони (по

форме ладони и кожным складкам пальцев) разработана, в первую очередь, для идентифи-

кации в малых группах. Возможной областью её использования являются учреждения, где

существует потребность в контроле посещаемости: вузы, школы, больницы, библиотеки.

На момент начала исследования (июнь 2013 года) в научной литературе (раздел 2) не

было представлено систем идентификации по ладони в целом (и по внешней её стороне — в
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частности) , одновременно удовлетворяющих всем вышеуказанным требованиям. Возможные

причины этого кроются в сложности возникающих научно-технических задач, которые необ-

ходимо решить при создании такой системы. Разработке и проектированию системы био-

метрической идентификации по внешней стороне ладони сопутствует ряд неопределённых

факторов, которые сводятся к нескольким принципиальным вопросам.

1. Насколько уникальными являются признаки формы ладони и рисунка кожных складок

и в какой мере их достаточно для идентификации личности?

2. Существует ли возможность надёжного извлечения этих признаков из изображений,

полученных с помощью общедоступных мобильных камер (без использования специ-

ального оборудования) при свободном расположении ладони во время съёмки?

3. Возможно ли решить задачу извлечения признаков и провести идентификацию на их

основе в реальном времени при работе на мобильном устройстве в различных условиях

применения?

4. Каким образом построить систему распознавания и организовать процесс идентифика-

ции, чтобы получившийся программный комплекс оказался практически востребован-

ным?

Получение ответов на эти вопросы составляет основное содержание исследования, проведен-

ного в данной работе.

1.3 Методы исследования

В исследовании использованы методы вычислительной геометрии, теории графов, тео-

рии анализа и распознавания изображений, компьютерной графики, анализа данных и ма-

шинного обучения. Для сбора данных и проведения вычислительных экспериментов исполь-

зовались методы разработки многозвенных программных систем — в том числе, мобильных

и веб-приложений.

1.4 Предлагаемый подход к решению

В работе предлагаются и обосновываются следующие принципы построения метода

идентификации по изображению внешней стороны ладони и основанной на нём системы

распознавания на базе мобильного устройства.
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∙ Декомпозиция задачи идентификации на задачи детектирования и распознавания, их

структурное распределение между клиентом и сервером:

– задача клиента — детектирование, т. е. отбор подходящих для распознавания изоб-

ражений ладони и последующая отправка их на сервер;

– задача сервера — распознавание, т. е. вычисление признаков, сравнение с базой

эталонов и выдача результата.

∙ Применяется клиент-серверная структура программного комплекса с мобильным

устройством в качестве клиента.

∙ Для детектирования ладони и локализации областей кожных складок на пальцах ис-

пользуется непрерывное медиальное представление формы ладони.

∙ Формирование признакового описания ладони осуществляется с помощью двумерных

фильтров Габора и SIFT-дескрипторов, которые применяются к областям изображения

внешней стороны ладони, содержащим кожные складки вторых фаланг пальцев.

∙ Классификация изображений ладони происходит путём сравнения их признакового

описания с базой эталонов — используется метод ближайшего соседа со специальной

мерой сходства.

1.5 Научные результаты, выносимые на защиту

На защиту выносятся следующие результаты данной работы:

1. Метод биометрической идентификации личности по изображениям внешней стороны

ладони со свободным положением руки в кадре, включающий детектирование ладони

по признакам формы объекта и классификацию по текстурным признакам.

2. Метод детектирования ладони на основе непрерывного медиального представления

изображения.

3. Метод формирования признакового описания ладони по изображениям кожных скла-

док пальцев на базе двумерных фильтров Габора.

4. Мера сходства изображений ладони, основанная на признаках, полученных с помощью

двумерных фильтров Габора и дескрипторов SIFT.
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5. Обоснование работоспособности предложенных методов путём реализации программ-

ного комплекса на базе мобильного устройства. Экспериментально доказано, что ри-

сунок кожных складок на внешней стороне средних фаланг пальцев является инди-

видуальным признаком личности человека, дающим возможность уверенно проводить

идентификацию в малых группах.

Все результаты, выносимые на защиту, получены автором самостоятельно.

1.6 Научная значимость

Научный результат работы заключается в разработке метода идентификации по изоб-

ражению внешней стороны ладони, а также в разработке подхода к созданию систем иден-

тификации по ладони на базе представленного метода.

Ключевыми особенностями метода являются: разделение задачи идентификации на за-

дачи детектирования и распознавания, использование непрерывного медиального представ-

ления формы ладони, применение методов машинного обучения.

Научная значимость предлагаемого решения определяется также универсальностью и

гибкостью предложенного подхода:

∙ сфера применимости подхода не ограничена смартфонами и планшетами на базе ОС

Android — аналогичное программное обеспечение может быть реализовано для другой

подходящей аппаратной платформы: персонального компьютера с внешней камерой,

мобильного устройства на базе иной ОС (например, iOS) или специализированного

устройства с камерой и вычислительными ресурсами;

∙ разделение задачи идентификации на детектирование и распознавание не обязывает к

физическому разнесению этих модулей между устройствами (клиентом и сервером) —

возможно чисто структурное деление в рамках одного универсального устройства с

нужными характеристиками;

∙ для построения информативного описания ладони в работе использованы области кож-

ных складок пальцев на её тыльной стороне, однако в рамках предложенного подхода

могут быть исследованы возможности построения системы, работающей с другими тек-

стурными особенностями — например, с рисунком на внутренней стороне ладони.
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1.7 Практическая значимость

Основной недостаток наиболее эффективных систем биометрической идентификации —

необходимость использования специального оборудования (датчики, сканеры) и сопутству-

ющей инфраструктуры. Как следствие, подобные системы дороги не только при покупке, но

и при последующей эксплуатации, что делает их недоступными при небольшом финансиро-

вании.

Практическим результатом данной работы является программное обеспечение, реша-

ющее задачу идентификации по тыльной стороне ладони в малых группах, не выходя за

рамки возможностей современных мобильных устройств. Иными словами, любой человек,

имеющий смартфон или планшет на базе ОС Android, получает возможность на его основе

за несколько минут внедрить для своего коллектива систему идентификации по форме и

текстуре ладони.

1.8 Достоверность результатов

Достоверность результатов работы подтверждается корректностью постановок рассмат-

риваемых задач исследования, применением математически обоснованных методов их ре-

шения, программной реализацией и вычислительными экспериментами, проведенными на

реальных базах изображений человеческих ладоней. Реализованная в рамках исследования

система биометрической идентификации по внешней стороне ладони прошла апробацию в

качестве инструмента контроля посещаемости студентов и учёта посетителей на фестивале

науки.

1.9 Апробация работы

Результаты исследования докладывались на следующих конференциях и семинарах:

1. 16-ая всероссийская конференция «Математические методы распознавания образов»

ММРО-16, Казань, 2013;

2. 9th Open German-Russian Workshop on Pattern Recognition and Image Understanding

(OGRW 2014), Germany, Koblenz, 2014 [1];

3. 10th International Conference on Computer Vision Theory and Applications (VISAPP

2015), Germany, Berlin, 2015 [2];
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4. 6-я научно-техническая конференция «Техническое зрение в системах управления-

2015», Москва, 2015 [3];

5. 17-я всероссийская конференция «Математические методы распознавания образов»

ММРО-17, Светлогорск, 2015 [4];

6. 26-я международная конференция по компьютерной графике и машинному зрению

(ГрафиКон 2016), Нижний Новгород, 2016 [5];

7. 18-я всероссийская конференция «Математические методы распознавания образов»

ММРО-18, Таганрог, 2017 [6];

8. семинар «Морфологический анализ данных» под руководством проф. Ю.П. Пытьева,

Москва, 13 ноября 2014 г.;

9. совместный с Хуавэй международный научный семинар «Интеллектуальная обработка

изображений и видео», Москва, 22 ноября 2017 г.;

10. XIII Московский Фестиваль науки NAUKA 0+, Москва, 12-14 ноября 2018 г.;

11. the 5th International Professor’s Day on ICT Algorithm Design (ICTAD-2018), Russia,

Moscow, November 28-29, 2018;

12. Zhejiang international workshop, Russia, Moscow, December 14, 2018.

Материалы исследования опубликованы в 9 печатных работах, из них: 2 статьи в ре-

цензируемых журналах [7, 8], 4 cтатьи в сборниках трудов конференций [1, 2, 5, 9] и 3 тезиса

докладов [3, 4, 6]. В изданиях, рекомендованных ВАК РФ, опубликовано 2 статьи [7, 8].

В рамках исследования разработана мобильная система идентификации личности по

ладони, с помощью которой осуществлялся контроль посещаемости студентов двух групп

ВМК МГУ. Также система применялась для учёта посетителей на XIII Московском фести-

вале науки Nauka 0+.

Описания отдельных результатов работы включены в отчёты по проектам РФФИ 14-01-

00716, 16-57-45054, 17-01-00917.

1.10 Обоснование специальности

Данная работа по своей тематике и направленности полученных результатов соответ-

ствует следующим пунктам паспорта специальности 05.13.17 — «Теоретические основы ин-

форматики»:
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5) Разработка и исследование моделей и алгоритмов анализа данных, обнаружения зако-

номерностей в данных и их извлечениях, разработка и исследование методов и алгоритмов

анализа текста, устной речи и изображений.

7) Разработка методов распознавания образов, фильтрации, распознавания и синтеза изоб-

ражений, решающих правил. Моделирование формирования эмпирического знания.

1.11 Структура и объём

Работа состоит из введения, 4 глав, заключения и библиографии. Работа содержит 134

страницы основного текста, включая 60 иллюстраций и 12 таблиц. Перечень библиографи-

ческих источников включает 71 наименование.
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2 Обзор научной литературы

Изучение релевантных методов и анализ уже реализованных систем имеет для дан-

ной работы крайне важное значение, так как именно отсутствие готовых решений в рам-

ках поставленной задачи (раздел 1.2) дало старт исследованию. Ниже приведена структура

главы. В разделе 2.1 сделан общий обзор популярных методов биометрической идентифика-

ции. Следует за ним раздел 2.2, в котором содержатся важные замечания касательно связи

разрешения изображения ладони и извлекаемых оттуда текстурных признаков. Раздел 2.3

посвящён методам, использующим минимум одну из модальностей из числа входящих в сле-

дующий список: форма ладони, рисунок ладони, кожные складки пальцев. Продолжает из-

ложение раздел 2.4, в котором разбираются известные мобильные системы идентификации,

базирующиеся на вышеприведенных модальностях. Завершает главу раздел 2.5 с выводами.

2.1 Обзор методов биометрической идентификации

Существует множество методов биометрической идентификации, обладающих своими

достоинствами и недостатками [10, 11]. Краткое сравнение наиболее часто используемых в

задаче идентификации биометрических признаков (модальностей) приведено в таблице 1, со-

ставленной на основе таблицы из работы [11] и собственного анализа изученной литературы.

Значения столбцов следующие:

∙ точность — насколько уверенно человек может быть идентифицирован по этому при-

знаку;

∙ универсальность — наличие данного признака у всех людей, использующих систему;

∙ уникальность — насколько данный признак отличается у разных людей;

∙ стабильность — насколько сильно изменяется данный признак с течением времени;

∙ бесконтактность — требуется ли соприкосновение со сканером, с сенсором или рабо-

чей поверхностью; если указано «Варьируется», то встречаются различные варианты

получения данных;

∙ стоимость — стоимость готовой биометрической системы, использующей данный при-

знак;

∙ тип — оборудование, которое требуется, чтобы сконструировать систему, использую-

щую данный признак.
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Цель таблицы — дать некое качественное представление о той части предметной области,

которая имеет отношение к данной работе. Следует отметить, что значение уникальности

биометрического признака может зависеть от характеристик используемого оборудования —

например, рисунок ладони и кожные складки пальцев имеют высокие показатели уникаль-

ности только при съёмке в высоком разрешении, а для распознавания по лицу наиболее

эффективно одновременное применение нескольких камер для построения его 3d-модели.

Считаем, что используется оптимальное оборудование.

Распознавание по рисунку радужной оболочки глаза. Характеризуется высокой

точностью (близкой к 100% [12]), сравнение выполняется практически мгновенно. Радужная

оболочка мало изменяется в течение жизни, распознавание не подвержено влиянию внеш-

них факторов (съемка производится с близкого расстояния в инфракрасном диапазоне). К

недостаткам таких методов можно отнести высокую стоимость оборудования, трудность на-

стройки сканера для использования несколькими людьми различного роста. Подобную си-

стему можно обмануть, используя распечатанную качественную фотографию радужной обо-

лочки. Во избежание этого могут применяться динамические тесты — например, отслежи-

вание микродвижений зрачка. Изменчивость признаков в течение жизни небольшая, однако

некоторые операции на глазах могут уменьшить вероятность корректного распознавания.

Требуется специализированное оборудование.

Распознавание по лицу. Обладает сравнительно высокой точностью в идеальных усло-

виях (более 98% [13]), сравнение производится быстро. Для некоторых систем не требуется

кооперация с пользователем. Из недостатков можно отметить чувствительность к освеще-

нию, повороту головы, очкам, волосам и другим объектам, закрывающим лицо. Кроме того,

распознавание чувствительно даже к изменению выражения лица. Обман системы возмо-

жен с помощью статических макетов, динамические тесты могут этому воспрепятствовать.

Изменчивость признаков на протяжении жизни — от умеренной до высокой. Для получения

данных требуется обычная цифровая камера. В системах, которые строят 3d-модель лица,

их несколько.

Распознавание по голосу. Имеет сравнительно высокую точность (EER порядка 2% [14]),

быстрое сравнение, устойчивость к внешним факторам (в т. ч. к шуму). Однако соответству-

ющие методы не подходят для людей, имеющих проблемы с речевым аппаратом или немых.

Также голос может быть искажен в результате болезни или травмы, что затрудняет распо-
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знавание. Аудиозапись голоса позволяет обмануть систему, одним из способов борьбы может

служить постоянная смена произносимой контрольной фразы. Голос изменяется с возрастом,

изменчивость может быть от умеренной до высокой. Требуется микрофон для получения

данных. Наиболее совершенные методы устойчивы к шумам при записи.

Распознавание по рисунку вен. Демонстрирует высокую точность (EER = 0.17% [15]),

сравнение осуществляется быстро. Устойчиво к внешним факторам. Существенное преиму-

щество подобных методов в том, что из-за использования инфракрасного диапазона систе-

му достаточно сложно обмануть — для распознавание необходима ладонь живого человека.

Изменчивость признаков в течение жизни низкая. Требуется специализированное устройство

с инфракрасной камерой.

Распознавание по отпечатку пальца. Является самым распространенным подходом к

идентификации на данный момент. Для подобных методов характерны высокая точность

(EER = 0.67% [16]), быстрое сравнение и независимость от внешних факторов. Обман такой

системы затруднителен, однако возможен — например, через предъявление «универсально-

го» отпечатка, составленного из наиболее часто встречающихся папиллярных узоров людей.

Изменчивость низкая, но занятие некоторыми видами ручного труда может изменить отпе-

чатки. Требуется специализированный сканер для получения данных.

2.2 Связь разрешения изображения ладони и извлекаемых текстур-

ных признаков

Перед тем, как переходить к методам идентификации по изображению ладони, будет

разумным пояснить некоторые моменты, связанные с информативностью снимков ладони в

видимом диапазоне и разрешением матрицы цифровой камеры.

На интуитивном уровне достаточно очевидно, что изображения ладони, снятые одной и

той же камерой с разных дистанций, отличаются по информативности — на более «удалён-

ном» снимке мелкие детали неразличимы, и извлечь из них адекватное признаковое описание

едва ли получится.

В растровой графике для обозначения разрешающей способности различных процессов

преобразования изображений (сканирование, печать, растеризация и т. п.) популярен термин

dpi (англ. dots per inch) — эта величина говорит о количестве точек на единицу длины:

например, 300 dpi означает 300 точек на один дюйм). Для справки, 1 дюйм (1′′) равен 2.54 см.
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Для устройств ввода, к которым относятся сканеры и цифровые камеры, для обозначе-

ния разрешающей способности вместо dpi часто используется аналогичный термин ppi (англ.

pixels per inch) — количество пикселей на единицу длины.

Информация из буклета от компании-изготовителя перчаток (рис. 1) позволяет пример-

но оценить линейные параметры ограничивающего прямоугольника для ладони взрослого

человека. Согласно наблюдениям, при оптимальном расположении ладони целиком внутри

области съёмки (с некоторым запасом от краёв) минимальная сторона 𝐿1 ограничивающего

прямоугольника приблизительно в 2 раза превышает обозначенное на рисунке расстояние X

(«линейный» аналог обхвата ладони). Тем самым, X принимает значения из отрезка [2.5′′, 5′′],

а значения 𝐿1 ограничены [5′′, 10′′].

Не составляет труда определить фактическую разрешающую способность изображений

ладони, входящих в базы (раздел 4.2), использованные автором при тестировании алгоритма

распознавания по внешней стороне ладони (строки 2–4 в табл. 2).

Легко увидеть, что даже при наиболее удачных условиях съёмки (высокое разрешение

камеры, физически маленькая ладонь, оптимальное расположение в кадре) фактический dpi

изображения ладони остаётся достаточно низким — колеблется в пределах 96 . . . 240 dpi.

Разрешение

W (пикс.) x H (пикс.)

Пропорции

изображения

мин. dpi

(при X=10′′)

макс. dpi

(при X=5′′)

640 x 480 4 : 3 48 96

1280 x 960 4 : 3 96 192

1600 x 1200 4 : 3 120 240

1920 x 1080 16 : 9 108 216

Таблица 2: Фактическое dpi изображений ладони при различных разрешениях камеры.

В исследовании [17] было показано, что для работы с текстурными особенностями внут-

ренней стороны ладони уровня папиллярных линий необходима разрешающая способность

не менее 400 dpi. Современные сканеры отпечатков пальцев, также работающие с папилляр-

ным узором, имеют разрешающую способность от 500 dpi.

В то же время, для извлечения признаков из более крупных текстурных особенностей

(уровня линий ладони и морщин на ней) зачастую достаточно меньшей (от 100 до 200 dpi)

разрешающей способности [18]. Далее в работе в контексте текстурных особенностей ладони

и её частей будем называть разрешающую способность до 200 dpi низкой, от 200 до 400 dpi —

средней, от 400 dpi — высокой.
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Вывод. В методах идентификации по ладони или её частям, использующих изображе-

ния в видимом диапазоне, разрешение снимков и механика их получения имеют ключевое

значение, так как этим определяется разрешающая способность и, как следствие, характер

извлекаемых текстурных признаков.

Рис. 1: Сводка размеров мужских и женских перчаток от производителя.

2.3 Методы идентификации по ладони

Помимо перечисленных в разделе 2.1 подходов к биометрической идентификации, су-

ществует ряд методов распознавания по ладони или её частям на основе изображений в

видимом диапазоне. Рассмотрим их более подробно.

2.3.1 По рисунку ладони

Рисунком ладони называется узор основных линий ладони, а также морщин на внут-

ренней стороне ладони. Изучение трудов, посвященных биометрической идентификации по

рисунку внутренней стороны ладони, является важным этапом данного исследования, так

как некоторые методы и идеи вполне применимы к распознаванию по кожным складкам

пальцев на внешней стороне ладони.
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Многие работы, исследующие распознавание по рисунку ладони, для тестирования ис-

пользуют представленную в [19] базу данных PolyU Palmprint [20]. База включает в себя

изображения внутренней стороны ладони 193 людей с разрешением 1600×1200 пикселей, по-

лученные в контролируемых условиях (равномерное искусственное освещение, чёрный фон,

специальные упоры для фиксации ладони) с использованием оригинального устройства за-

хвата изображений (схема приведена на рис. 2). Сбор изображений осуществлялся в две

сессии, временной промежуток между ними составил 2 месяца (настройки устройства захва-

та во время второй сессии отличались, чтобы имитировать захват с помощью двух разных

устройств). Во время каждой сессии собиралось по 10 изображений правой и левой ладоней

каждого человека. Таким образом, каждый человек предоставил 40 изображений, а всего

база содержит 7752 изображения 386 ладоней.

Рис. 2: Устройство для сбора изображений рисунка ладони, использованных для форми-

рования базы PolyU Palmprint [20]. Здесь Ring source — лампа тороидальной формы, A/D

converter — аналого-цифровой преобразователь, CCD Camera — цифровая камера с ПЗС-

матрицей.
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В системе используются направляющие для фиксации ладони внутри устройства. Кроме

того, смонтирован круговой источник света для создания достаточного и равномерного осве-

щения. В сочетании с тем, что съёмка производится на чёрном фоне, задача выделения обла-

сти интереса существенно упрощается. А именно, достаточно выполнить простую пороговую

бинаризацию, чтобы получить силуэт ладони. Затем выполняется поиск впадин между паль-

цами (между указательным и средним, между безымянным и мизинцем), чтобы по ним уже

построить область интереса на ладони. Благодаря направляющим расположение пальцев на

всех снимках одинаково, и поиск впадин не составляет труда.

Стоит заметить, что все изученные автором работы, использующие для тестирования

базу PolyU Palmprint, применяют аналогичные несложные алгоритмы выделения области

интереса.

Методы, основанные на векторе ориентации линий ладони в локальной окрестно-

сти. В работе [21] предложен метод кодирования особенностей линий ладони (как главных

линий, так и морщин), названный Binary Orientation co-Occurrence Vector, или BOCV. Он

является дальнейшим развитием зарекомендовавших себя методов, базирующихся на получе-

нии вектора ориентации в локальной окрестности, таких как: Palm Code [19], Fusion Code [22]

и Competitive Code (CompCode) [23]. В основе алгоритма шесть двумерных фильтров Габора

с разными ориентациями. Для получения значения вектора признаков в точке изображения

объединяются бинаризованные по порогу результаты их применения. Благодаря использо-

ванию нескольких фильтров метод устойчив к небольшим поворотам и позволяет лучше

извлекать локальные особенности в случае наличия в локальной окрестности двух и более

пересекающихся линий ладони. Для тестирования использована база PolyU Palmprint [20].

Достигнуты значения FAR = 3.3 * 10−6%, FRR = 0.2525%, EER = 0.0189% для задачи вери-

фикации, что превосходит показатели упомянутых «классических» методов.

В 2012 году в труде [24] предложено усовершенствование BOCV, названное E-BOCV.

Вводится понятие «слабых» (fragile) битов, их позиции определяются как позиции точек,

имеющих отклик фильтра меньше порога. При вычислении расстояния Хэмминга между

BOCV-матрицами сравниваемых изображений слабые биты не учитываются. В плане точ-

ности Е-BOCV незначительно улучшает результаты оригинального метода.

Метод, основанный на выделении основных линий. В статье [25] для выделения ли-

ний из рисунка ладони используется конечное преобразование Радона. По утверждению авто-

ров, это позволяет извлекать основные линии быстро и эффективно, даже если изображение
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содержит большое количество длинных и ярко выраженных морщин. В качестве признаков

использовались бинарные изображения обнаруженных линий. Сравнение производилось с

помощью метода пиксель-с-площадью (каждый пиксель первого изображения сравнивался

с пикселями окрестности соответствующего пикселя второго изображения и наоборот). Для

тестирования использована база PolyU Palmprint [20]. Достигнутые показатели FAR и FRR,

равные 0.49% и 0.565% соответственно, подтверждают информативность основных линий в

качестве признака. По утверждению авторов, полученный метод распознавания устойчив к

небольшим сдвигам и поворотам ладони.

2.3.2 По форме ладони

Из рассмотрения исключены методы, работающие с 3d-снимками, так как соответствую-

щие системы очевидно не удовлетворяют сформулированному ранее требованию доступности

(раздел 1.2) из-за наличия 3d-сенсоров.

Методы на основе анализа контура. В работе [26] идентификация проводится по кон-

туру ладони на бинарном изображении. Для получения признаков используются полиномы

Цернике до 70-го порядка, авторами предложен собственный алгоритм вычисления таких

полиномов. Для отбора признаков использован PCA (Principal Component Analysis), для

сравнения применяется Евклидова метрика. Изображения ладони получены контактным спо-

собом с помощью камеры и прозрачного стола с подсветкой, за счет чего минимизировано

влияние внешних условий на качество изображений. Упоры для позиционирования руки не

используются, поэтому от пользователя требуется самостоятельно расставлять пальцы. Для

сегментации применена бинаризация с фиксированным порогом. На базе из 400 изображений

40 людей достигнуто значение EER = 2%.

В работе [27] наряду с прочими признаками формы также используется контур ладони.

Изображения получают с помощью камеры и светодиодной подсветки, процедура бесконтакт-

ная. Контур, представляющий из себя простой многоугольник, получается путём применения

детектора границ к результату пороговой бинаризации. Вычисляются несколько категорий

признаков: основные характеристики ладони и пальцев (длина и ширина пальцев, ширина

ладони, кривизна пальцев), углы (между парами соседних сегментов вдоль границы ладони),

некоторые расстояния (между ключевыми точками и точками границы). Для сравнения век-

торов признаков применяется взвешенное расстояние Евклида. На базе из 4000 изображений

200 ладоней достигнуто значение EER = 2.16%.
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Методы на основе спектра. В статье [28] использован морфологический спектр в смысле

Марагоса [29], который строится по бинаризованному изображению ладони. Для сравнения

векторов признаков применяется евклидова метрика, в качестве классификатора выбран ме-

тод ближайшего соседа. База ладоней состоит из 400 изображений 40 людей, полученных с

помощью сканера. Авторы отмечают высокую вычислительную сложность их способа вы-

числения спектра. В ходе тестирования достигнуто значение EER = 2.85%.

В работе [30] рассмотрено формирование признакового описания по форме ладони не

только на базе морфологического спектра, но и с помощью других видов спектра: медиаль-

ного и дистанционного. В ходе проведенного тестирования различных метрик для сравнения

векторов-признаков выбрана транспортная (EMD) метрика. Используемый классификатор

kNN демонстрирует лучшие результаты при k = 1, т. е. оптимальным является метод бли-

жайшего соседа. База ладоней состоит из 160 изображений 36 людей, полученных с помощью

стационарной веб-камеры. Ладонь испытуемого в процессе съёмки прижата к тёмной гори-

зонтальной поверхности непосредственно под камерой. Для морфологического, медиального

и дистанционного спектров получено качество идентификации 93.7%, 94.5%, и 95.2% соот-

ветственно. Среднее время работы на изображении из базы разрешением 640× 480 пикселей

в системе с процессором Intel Core i5 2.67 ГГц составляет 2.548 с., 0.025 с. и 0.093 c. соот-

ветственно. Авторы делают вывод, что в прикладных задачах наиболее уместно использо-

вать медиальный или дистанционный спектры, так как они могут вычисляться в режиме

реального времени — например, при обработке видеопотока. Но из-за невысокого качества

идентификации признаковое описание на базе спектра следует включать в мультимодальные

системы наряду с другими признаками описания объекта.

Метод на основе гибких объектов. В работе [31] предложен метод распознавания на

основе модели ладони в виде плоского графа, называемого скелетом. Скелет является непре-

рывной моделью ладони, с помощью его деформаций можно легко получить соответствую-

щие деформации силуэта ладони. В базе хранятся скелеты для ладоней, снятых с расставлен-

ными пальцами без колец и браслетов. Далее выделяются пальцы и определяются точки их

поворотов, после чего параметризуются допустимые деформации скелета: сдвиги и повороты

всей ладони, повороты пальцев. При сравнении к эталонным моделям из базы применяют-

ся деформации так, чтобы привести пальцы в положение, минимизирующее расстояние до

тестируемой модели по заданной метрике. В базе 22 человека и 97 изображений. В задаче

верификации достигнуто значение EER = 0.5%. В задаче идентификации метод показал се-
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бя не лучшим образом, поэтому в данной работе предложено дополнительно использовать

распознавание по голосу.

2.3.3 По кожным складкам пальцев

Методы, основанные на преобразовании Габора. Статья [32] является одной из са-

мых цитируемых работ по распознаванию кожных складок пальцев внешней стороны ладо-

ни. Представлены программно-аппаратный комплекс для получения изображений суставов

пальцев, включающий в себя устройство для съёмки с фиксацией пальца, и метод выделения

области складок из полученного изображения. Устройство съемки состоит из cветодиодного

источника света, упора для пальца (палец слегка согнут) и цифровой камеры (рис. 3).

Для выделения области кожных складок на пальце используется различие в направле-

нии изгибов складок вокруг центра окна поиска. Извлечение признаков делается с помощью

модификации ImCompCode&MagCode алгоритма Competitive Code [23], уже упомянутого

выше при рассмотрении методов идентификации по рисунку ладони. Для каждого пиксе-

ля выполняется свёртка с несколькими двумерными фильтрами Габора разных ориентаций.

Если нет доминирующего направления, то первый признак для данного пикселя получает

некоторое специальное значение. В противном случае ему присваивается номер фильтра, да-

ющего минимальное значение свертки (рассматривается её вещественная часть). Значение

свёртки фильтра с максимальным откликом, подвергнутое локальной дискретизации, ис-

пользуется в качестве второго признака.

Для сравнения объектов предложена метрика, являющаяся взвешенной суммой мет-

рик для первого и второго признаков. C помощью разработанного устройства собрана база

изображений пальцев PolyU FKP [33], включающая 7920 изображений пальцев разрешением

768 × 576 пикселей от 165 человек , — по 4 пальца на человека (средний и указательный

на обеих руках) и по 12 изображений на палец (в рамках двух сессий). Разрешающая спо-

собность снимков в базе составляет 400 dpi, но основные изложенные авторами результаты

вычислительных экспериментов получены на изображениях с искусственно пониженным до

150 dpi — в целях демонстрации работоспособности метода на снимках с низкой разрешаю-

щей способностью. Достигнуто значение EER = 1.48%.

Метод Local-Global Information Combination (LGIC) [34] представляет собой дальнейшее

развитие идеи кодирования особенностей ориентации морщин. В самом деле, если в фильтре

Габора увеличивать параметр амплитуды 𝜎, то влияние локальных особенностей изображе-

ния на результат свёртки будет ослабевать. В предельном случае результат свёртки отражает
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только глобальные особенности, а преобразование Габора по сути превращается в преобра-

зование Фурье. Авторы публикации используют некоторое подмножество коэффициентов

дискретного двумерного преобразования Фурье, применённого к области кожных складок

пальца, в качестве дополнительного вектора признаков. Задействованный метод сопостав-

ления объектов на основе признакового описания глобальной ориентации морщин был ра-

нее представлен в [35] и получил название Band-Limited Phase-Only correlation (BLPOC). По

утверждению авторов, метод LGIC в задаче верификации при тестировании на базе Poly FKP

превосходит хорошо зарекомендовавшие себя методы BLPOC [35] и CompCode [23].

Методы, основанные на прочих преобразованиях. В работе [36] каждому пикселю

области, содержащей кожные складки пальца, ставится в соответствие вектор признаков,

задающий доминирующую ориентацию морщин в окрестности с центром в данном пикселе

(KnuckleCode). Для кодирования используется модифицированное конечное дискретное пре-

образование Радона, которое в случае растрового изображения имеет значительно меньшую

вычислительную сложность, чем двумерные фильтры Габора. Для расчёта расстояний меж-

ду объектами ищется сдвиг матриц признаковых описаний, обспечивающий минимальное

расстояние по Хеммингу. Тестирование осуществлено на базе из работы [37], включающей

158 человек и 790 изображений. Достигнуто значение EER = 1.14%.

В методе MonogenicCode [38] для извлечения локальных признаков, характеризующих

пиксель изображения, используется моногенный сигнал, который в точке может быть пред-

ставлен как вектор в сферической системе координат — с параметрами ориентации и фазы.

На базе PolyU FKP для задачи верификации авторами получен результат EER = 1.72%, что

сравнимо с показателем CompCode. При этом скорость извлечения признакового описания

у MonogenicCode почти в 3 раза выше, чем у CompCode.

2.3.4 Мультимодальные

В работе [39] используются текстурные признаки рисунка ладони наряду с признаками

формы. Для сегментации области интереса на внутренней стороне ладони применяется карта

расстояний внутренних точек ладони до контура. Текстурные признаки основаны на коэффи-

циентах применённого к области интереса дискретного косинусного преобразования. Также

используются 23 признака формы: длины и ширины пальцев, ширина и длина ладони, пло-

щадь ладони и ещё 7 признаков. Для выбора наиболее информативного подмножества при-

знаков использован алгоритм, основанный на корреляции (correlation-based feature selection,

CFS). Тестирование осуществлено на собственной базе из 100 человек и 1000 изображений.

25



Рис. 3: Устройство для сбора изображений кожных складок пальцев внешней стороны ладо-

ни, использованное для создания базы PolyU FKP [33].

Для её создания применена обычная цифровая камера и поверхность с чёрным покрытием,

к которой нужно приложить тыльную сторону руки. С применением SVM классификатора

достигнута точность 98%.

Те же авторы в статье [40] вводят понятие качества пользователя, характеризующего

возможность его корректной классификации. Оно определяется как минимальное расстояние

между изображениями данного пользователя в обучающей выборке. Полученное значение

используется для вычисления итогового расстояния между объектами в классификаторе.

На базе из публикации [39] достигнуто значение EER = 2.2%.

В работе [41] используется комбинация признаков на основе формы ладони, рисунка ла-

дони и кожных складок пальцев внутренней стороны ладони. Признаки формы представлены

«классическими» характеристиками размеров пальцев, а также параметрами их контуров.

Для извлечения особых точек текстуры ладони применяется детектор углов Канаде-Лукаса-

Томаси (использует матрицу вторых производных изображения). При генерации текстурных

признаков пальцев использован оператор Собеля с последующим шумоподавлением на ос-

нове вейвлетов Добеши. Создана собственная база из 1900 изображений 95 человек, съёмка

произведена внутри закрытой коробки в контролируемых условиях. Применение процеду-
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ры иерархического сопоставления объектов позволило достичь при тестировании значений

FRR = 0.00898 и FAR = 2.52 * 10−6.

В статье [42] предлагается бимодальная система, использующая рисунок ладони и тек-

стурные складки на внешней стороне пальцев. Для сравнения каждого из признаков исполь-

зовалана функция фазовой корреляции [43] — значение пика этой функции принимается

за расстояние. Объединение результатов сравнения осуществляется взвешенным суммиро-

ванием, веса вычисляются как нормализованные значения EER каждого из признаков. Для

идентификации применялась минимаксная нормализация расстояния. База для тестирова-

ния сформирована на основе баз PolyU Palmprint [20] и PolyU FKP [33] — по 12 изображений

кожных складок пальцев и внутренней стороны ладони для 150 человек. Для идентификации

достигнуто значение EER = 0.003%, для верификации значение GAR (Genuine Acceptance

Rate) составило 99.647%.

2.4 Мобильные системы идентификации по ладони

2.4.1 По рисунку ладони

В статье [44] представлена система верификации по внутренней стороне ладони, рабо-

тающая на мобильном устройстве. Предполагается, что в центре изображения находятся

пиксели ладони, по которым вычисляются пороги в пространстве nRGB (нормализованное

пространство RGB, значение каждого канала поделено на сумму значений по трём каналам)

для пороговой сегментации. В основе работы метод CompCode [23], немного модифицирован-

ный и ускоренный на этапе сопоставления признакового описания объектов. Особое внимание

уделено разработке алгоритма устойчивой локализации области интереса, так как основной

сценарий использования — съёмка «с руки». Собрана собственная база изображений из 30

человек, по 20 изображений на человека разрешением 640×480 пикселей. В качестве устрой-

ства использован iPhone 4, камера которого снабжена вспышкой, автофокусом, системой

стабилизации и матрицей 5 мегапикселей. Мобильное приложение работает с отдельными

фотографиями (не видеопотоком), на обработку каждой уходит порядка 0.5 с. без учёта

времени сопоставления с объектами-эталонами. Примерные достигнутые показатели метода:

EER = 2.8%, GAR = 0.968, FAR = 0.005 (в публикации содержится только ROC-кривая).

В статье [45] предложена мобильная система, также работающая с изображениями внут-

ренней стороны ладони. Сегментация ладони выполняется с помощью алгоритма роста об-

ласти, начальное приближение для которого выбирается в середине ладони по цвету кожи

в пространстве HSV. С помощью функции расстояний точек контура от некоторой рефе-
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ренсной точки на ладони определяеются особые точки, по которым происходит локализация

квадратной области интереса. Для снижения влияния искажений, неизбежно возникающих

из-за вариаций углов съёмки при фотографировании «с руки», для каждой пары областей

интереса «тестовое изображение – эталонное изображение» ищутся параметры аффинного

преобразования, построенному по отобранным парам контрольных точек.

Далее на изображении внутри области интереса выделяются блоки, каждому из кото-

рых ставится в соответствие блок на сравниваемом изображении. Извлечение признакового

описания и последующее сопоставление делается поблочно на основе функции фазовой кор-

реляции методом Band-Limited Phase-Only Correlation (BLPOC) [43]. Итоговое расстояния

между объектами определяется как пик функции фазовой корреляции, являющей усредне-

нием по соответствующим функциям в блоках. Использован телефон HTC Nexus One, камера

которого снабжена вспышкой, автофокусом, системой стабилизации и матрицей 5 мегапиксе-

лей. Мобильное изображение работает с отдельными фотографиями (не видеопотоком). Для

каждого снимка генерация признаков занимает порядка 0.6 с., ещё 0.4 с. тратится на сопо-

ставление с объектами-эталонами. На собственной базе изображений рисунков ладони (30

человек, 520 снимков, разрешение 640× 480 пикселей, собрана при помощи смартфона) и на

базе PolyU Palmprint [20] достигнуты значения EER равные 4.072% и 0.051% соответственно.

2.4.2 По форме ладони

Представленный в работе [46] метод использует контур ладони для распознавания. Для

сегментации применяется алгоритм кластеризации k-средних с двумя классами, за которой

следует постобработка морфологическими операциями для увеличения гладкости границы.

Алгоритм сегментации разработан с расчётом на отсутствие ограничений к фону и осве-

щению, но для более уверенного распознавания рекомендуется наличие однородного фона,

контрастирующего с рукой. В качестве признаков использованы два вектора. Первый пред-

ставляет собой набор углов наклона касательной к контуру в точках контура. Второй —

набор расстояний от точек контура до его центроида. Для сравнения векторов признаков

(как правило разной длины) применён алгоритм выравнивания последовательностей на базе

нечёткой логики, обычно используемый при анализе ДНК-цепочек. База собрана с помощью

мобильного устройства съёмкой «с руки» и включает в себя изображения 45 человек раз-

решением 1600 × 1200 пикселей. Достигнуто значение EER = 3.7%. На момент публикации

сама система на базе мобильного устройства авторами не реализована.
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В более поздней работе с участием тех же авторов [47] предлагается другой метод распо-

знавания по контуру. Алгоритм сегментации основан на представлении изображения в виде

графа. Вершинам графа соответствуют пиксели, рёбра соединяют соседние пиксели (исполь-

зуется структура 4-связности), веса рёбер отражают различия в интенсивностях пикселей

(b-канал в пространстве цветов CIE 1976 L*a*b*). Пиксели объединяются в группы, имею-

щие похожие в смысле текстуры свойства. Далее последовательно выполняется агрегация

полученных подграфов в более крупные структуры. Процесс прекращается, когда остается

два подграфа, они представляют фон и ладонь. Для выделения пальцев применяется мор-

фологическое открытие с большим радиусом. Результат вычитается из исходного бинарного

изображения, и остаются области, соответствующие пальцам. После этого ищутся концы

пальцев и точки между ними. Следующим шагом рассчитываются геометрические признаки

каждого из пальцев (длина, кривизна, вектор параметров ширины) и объединяются в еди-

ный вектор признаков. В качестве классификатора выбран SVM с линейным ядром. База

собрана с помощью смартфона Apple iPhone съёмкой «с руки» и включает в себя по 15 изоб-

ражений 50 человек разрешением 400 × 300 пикселей. Достигнуто значение EER = 6%. В

рассматриваемой статье сама система на базе мобильного устройства авторами не упомина-

ется, но в публикации [48] на основе изложенного метода представлено Android приложение

для задачи верификации. Мобильное приложение работает с отдельными фотографиями (не

видеопотоком), на обработку каждого снимка уходит порядка 2.0 с., ещё около 0.4 с. тратится

на сопоставление с объектами-эталонами.

2.4.3 По кожным складкам пальцев

В работе [49] для детектирования пальца на изображении применён алгоритм AdaBoost с

признаками Хаара, при этом доля корректных распознаваний составляет 72%. Классификатор

данного типа требует, чтобы фон и освещение мало отличались от тех, что присутствовали

на обучающих изображениях. Для снятия этого ограничения владельцу смартфона предо-

ставлена возможность самостоятельно указывать центр области локализации. После предо-

бработки применяется детектор границ Канни для локализации области складок. Для ми-

нимизации влияния ориентации в сравнении c эталонами участвует не только оригинальное

тестовое изображение пальца, но и несколько его копий, повёрнутых на небольшие углы.

Генерация признаков основана на лог-Габор фильтрах (log-Gabor filters). Для определения

минимального расстояния между векторами признаков к ним применяются битовые сдвиги

друг относительно друга, вычисляется нормализованное расстояние Хэмминга и выбирается
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наименьшее. Авторами написано мобильное приложение для операционной системы Android,

которое работает с отдельными фотографиями (не видеопотоком). С его помощью собрана

собственная база изображений пальцев, состоящая из 561 изображений пальцев 109 человек

разрешением 768×1024 пикселей. Достигнуто значение EER = 9%. Для задачи верификации

время распознавания на смартфоне HTC Desire HD A9191 составляет до 5 с.

2.5 Выводы к главе 2

Биометрические признаки на основе изображения ладони в видимом диапазоне стано-

вятся всё более востребованными в системах идентификации личности — многочисленные

исследования в этой области и стремительное развитие цифрового оборудования делают рас-

познавание всё точнее и быстрее.

В разделе 2.2 показана связь между разрешением изображения ладони (или её части) и

характером извлекаемых текстурных особенностей через показатель разрешающей способно-

сти (dpi). Важным фактом является то, что использованные для тестирования большинством

авторов базы прецедентов Poly FKP [33], PolyU Palmprint [20] и [37] состоят из изображений

с dpi не более 400, т. е. для анализа доступны морщины и складки кожи, но не папиллярные

линии.

Исторически большинство работ сконцентрировано на разработке методов биометри-

ческой идентификации по внутренней стороне ладони (раздел 2.3.1), но для массового ис-

пользования данная модальность может оказаться не самым удачным вариантом. Рядовому

пользователю удобно предъявлять ладонь тыльной стороной вверх, что влечёт за собой необ-

ходимость в специализированном сканирующем (или фотографирующем) оборудовании — а

это противоречит сформулированному в разделе 1.2 требованию доступности системы распо-

знавания. Более того, демонстрация внутренней стороны ладони с последующей съёмкой не

для всех людей является допустимой и эмоционально нейтральной, что нарушает требование

социальной приемлемости целевой системы.

Как было сказано выше, предъявление ладони тыльной стороной вверх физиологически

просто и психологически комфортно для человека, при этом изображение внешней сторо-

ны ладони может быть получено обычной цифровой камерой (в том числе и мобильного

устройства). С учётом вышесказанного, при разработке метода идентификации и связан-

ной с ним системы автором использованы модальности формы ладони и рисунка кожных

складок пальцев на внешней стороне ладони.
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Хочется особо отметить похожесть методов, описанных авторами в трудах по распозна-

ванию на основе кожных складок пальцев, с методами, работающими по рисунку внутренней

стороны ладони. Это можно объяснить как общей природой морщин в обоих случаях, так и

грамотным выбором математического аппарата. Примером таких «универсальных» подхо-

дов к генерации признакового описания являются преобразования Фурье, Габора, Радона и

Рисса. Рассмотренные в разделе 2.3.3 методы на их основе стабильно демонстрируют пока-

затели EER < 2% на внушительных публично доступных базах прецедентов PolyU FKP [33]

и [37].

Отдельно стоят методы распознавания по форме ладони (раздел 2.3.2). Они требователь-

ны к качеству сегментации, при этом не дают высоких показателей точности (EER обычно

превышает 2%) — сказывается как вариабельность формы ладони в рамках одного человека,

так и относительно высокая похожесть формы ладоней разных людей. Тем не менее, это не

исключает использование формы ладони в качестве дополнительной модальности в некото-

рых системах биометрической идентификации. Почти во всех изученных работах предпо-

лагается стационарный сценарий получения изображения ладони — с фиксацией на стекле

сканера или на поверхности перед объективом неподвижно закреплённой камеры (призвано

уменьшить изменчивость формы в зависимости от угла съёмки). Исключением являются

работы [46] и [47], где съёмка производится «с руки» с помощью мобильного устройства.

Достигнутые значения EER в них ожидаемо невысоки — равны 3.7% и 6% соответственно.

Почти все приведенные в обзоре методы биометрической идентификации по кожным

складкам внешней стороны пальцев ориентированы на работу с изображениями из базы

PolyU FKP [33]. Эта база собрана с помощью специально разработанного устройства (рис. 3),

в котором расположение пальца фиксировано и освещение постоянно. Как следствие, обла-

сти кожных сладок имеют высокое качество, одинаковый масштаб и единую ориентацию —

работать с такими данными довольно удобно. Мультимодальные методы, в которые входят

кожные складки пальцев, как правило используют в качестве второй модальности рисунок

ладони [42]; работы, где дополнительно применяется форма ладони, не найдены.

Мобильные системы идентификации на основе ладони (по рисунку ладони, форме ладо-

ни, кожным складкам пальцев внешней стороны ладони) слабо представлены в литературе

(раздел 2.4) и в силу своих характеристик не годятся для решения реальных прикладных

задач. Среди них ещё менее распространены мобильные системы, работающие с кожными

складками пальцев, — единственной известной автору релевантной работой в этом направле-

нии является [49]. Точность распознавания предложенного программного комплекса невысо-
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ка, разработанное приложение ориентировано для персональной аутентификации, а не для

идентификации в малых группах.

Подводя итоги, можно утверждать, что в научной литературе не представлено систе-

мы биометрической идентификации человека по снимку внешней стороны ладони на базе

мобильного устройства, удовлетворяющей требованиям из раздела 1.2. Последующие главы

работы посвящены предложенному методу распознавания и особенностям реализации про-

граммного комплекса.
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3 Метод идентификации по ладони

3.1 Машинное обучение в задаче идентификации по ладони

Машинное обучение (англ. machine learning, ML) — обширный подраздел искусственно-

го интеллекта, изучающий методы построения алгоритмов, способных обучаться. Различают

два типа обучения. Обучение по прецедентам, или индуктивное обучение, основано на вы-

явлении общих закономерностей по частным эмпирическим данным. Дедуктивное обучение

предполагает формализацию знаний экспертов и их перенос в компьютер в виде базы знаний.

Дедуктивное обучение принято относить к области экспертных систем, поэтому термины

машинное обучение и обучение по прецедентам можно считать синонимами.

3.1.1 Основные понятия

Пусть имеется множество объектов 𝑋, множество ответов 𝑌 , и существует целевая

функция 𝑦* : 𝑋 → 𝑌 , значения которой 𝑦𝑖 = 𝑦*(𝑥𝑖) известны только на конечном подмно-

жестве объектов {𝑥1, . . . , 𝑥𝑙} ⊂ 𝑋. Пары «объект-ответ» (𝑥𝑖, 𝑦𝑖) называются прецедентами.

Совокупность пар 𝑋 𝑙 = (𝑥𝑖, 𝑦𝑖)
𝑙
𝑖=1 называется обучающей выборкой.

Задача обучения по прецедентам заключается в том, чтобы восстановить функциональ-

ную зависимость между объектами и ответами, то есть построить отображение 𝑎 : 𝑋 → 𝑌 ,

удовлетворяющее следующей совокупности требований:

∙ Отображение должно допускать эффективную компьютерную реализацию. По этой

причине будем называть его алгоритмом.

∙ Алгоритм 𝑎(𝑥) должен воспроизводить на объектах выборки заданные ответы: 𝑎(𝑥𝑖) =

𝑦𝑖, 𝑖 = 1, . . . , 𝑙. Равенство здесь может пониматься как точное или как приближённое, в

зависимости от конкретной задачи.

∙ Алгоритм 𝑎(𝑥) должен обладать обобщающей способностью, то есть достаточно точно

приближать целевую функцию 𝑦*(𝑥) не только на объектах обучающей выборки, но и

на всём множестве 𝑋.

∙ На алгоритм 𝑎(𝑥) могут накладываться разного рода априорные ограничения, такие,

как непрерывность, гладкость, монотонность, устойчивость, и т. д. В некоторых случаях

задаётся функциональный вид (модель) алгоритма 𝑎(𝑥).

В данной работе задача идентификации человека по ладони сводится к разновидно-

сти задачи машинного обучения, называемой классификацией. При этом 𝑌 = {1, . . . ,𝑀},
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где 𝑀 — число непересекающихся классов, и 𝑋 также разбивается на классы 𝐾𝑦 = {𝑥 ∈

𝑋 : 𝑦*(𝑥) = 𝑦}. Алгоритм 𝑎(𝑥) должен давать ответ на вопрос «какому классу принадлежит

𝑥?».

В контексте исследования:

∙ каждому человеку взаимно-однозначно назначена метка класса 𝑦;

∙ объектом 𝑥 является изображение ладони человека;

∙ произвольный класс 𝐾𝑦 множества объектов 𝑋 сформирован из изображений ладони,

принадлежащих человеку с меткой класса 𝑦;

∙ искомый алгоритм классификации должен давать ответ на вопрос «какому человеку

принадлежит изображение ладони 𝑥?»

3.1.2 Модель алгоритмов и метод обучения

Моделью алгоритмов называется параметрическое семейство отображений 𝐴, из которо-

го выбирается искомый алгоритм 𝑎(𝑥) : 𝐴 = {𝜙(𝑥, 𝛾)|𝛾 ∈ Γ}, где 𝜙 : 𝑋 × Γ → 𝑌 — некоторая

фиксированная функция, Γ — множество допустимых значений 𝛾, называемое простран-

ством параметров или пространством поиска (search space).

Процесс подбора параметров модели по обучающей выборке называют настройкой

(fitting) или обучением (training, learning) алгоритма. В результате настройки выбирается

единственный алгоритм 𝑎 ∈ 𝐴, который должен приближать целевую зависимость.

Методом обучения называется отображение 𝜇 : (𝑋 × 𝑌 )𝑙 → 𝐴, которое произвольной

конечной выборке 𝑋 𝑙 ставит в соответствие алгоритм 𝑎 : 𝑋 → 𝑌 . Говорят также, что метод 𝜇

строит алгоритм 𝑎 по выборке 𝑋 𝑙. Метод обучения, как и сам алгоритм 𝑎, должен допускать

эффективную программную реализацию.

Итак, в задачах обучения по прецедентам чётко различаются два этапа:

∙ на этапе обучения метод 𝜇 по выборке 𝑋 𝑙 строит алгоритм 𝑎 = 𝜇(𝑋𝑙);

∙ на этапе применения алгоритму 𝑎 подаются на вход новые объекты 𝑥, вообще говоря,

отличные от обучающих, для получения ответов 𝑦 = 𝑎(𝑥).

Этап обучения наиболее вычислительно сложен. Как правило, он сводится к поиску па-

раметров модели, доставляющих оптимальное значение заданному функционалу качества.

В данном исследовании примером 𝜇 может служить процедура настройки параметров клас-

сификатора 1NN, описанная в разделе 4.3.2.
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Минимизацию эмпирического риска следует применять с известной долей осторожности,

поскольку главным её недостатком является склонность к переобучению. Если алгоритм 𝑎

доставляет минимум функционалу 𝑄(𝑎,𝑋 𝑙) на заданной обучающей выборке 𝑋 𝑙, это ещё

не гарантирует, что он будет хорошо приближать целевую зависимость на произвольной

контрольной выборке 𝑋𝑘 = (𝑥′
𝑖, 𝑦

′
𝑖)
𝑘
𝑖=1. Когда качество работы алгоритма на новых объектах,

не вошедших в состав обучения, оказывается существенно хуже, чем на обучающей выборке,

говорят об эффекте переобучения (overtraining) или переподгонки (overfitting). При решении

практических задач с этим явлением приходится сталкиваться очень часто.

3.1.3 Функционал качества

Функция потерь (loss function) — это неотрицательная функция L (𝑎, 𝑥), характеризую-

щая величину ошибки алгоритма 𝑎 на объекте 𝑥. Если L (𝑎, 𝑥) = 0, то ответ a(x) называется

корректным. Функционал качества алгоритма 𝑎 на выборке 𝑋 𝑙:

𝑄(𝑎,𝑋𝑙) =
1

𝑙

𝑙∑︁
𝑖=1

L (𝑎, 𝑥𝑖).

Функционал 𝑄 называют также функционалом средних потерь или эмпирическим риском,

так как он вычисляется по эмпирическим данным (𝑥𝑖, 𝑦𝑖)
𝑙
𝑖=1. Функция потерь, принимающая

только значения 0 и 1, называется бинарной. В этом случае L (𝑎, 𝑥) = 1 означает, что ал-

горитм 𝑎 допускает ошибку на объекте 𝑥, а функционал 𝑄 называется частотой ошибок

алгоритма 𝑎 на выборке 𝑋 𝑙.

Используемая в настоящей работе функция потерь:

L (𝑎, 𝑥) = [𝑎(𝑥) ̸= 𝑦*(𝑥)]

— представляет собой индикатор несовпадения с правильным ответом.

Классический метод обучения, называемыйминимизацией эмпирического риска (empirical

risk minimization, ERM), заключается в том, чтобы найти в заданной модели 𝐴 алгоритм 𝑎,

доставляющий минимальное значение функционалу качества 𝑄 на заданной обучающей вы-

борке 𝑋 𝑙:

𝜇(𝑋 𝑙) = arg min
𝑎∈𝐴

𝑄(𝑎,𝑋 𝑙).

Именно он и используется для обучения итогового классификатора в настоящей работе (раз-

дел 4.3.2).
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3.1.4 Признаковое описание объектов

Признаком (feature) называется отображение 𝑓 : 𝑋 → 𝐷𝑓 , описывающее результат из-

мерения некоторой характеристики объекта, где 𝐷𝑓 — заданное множество. В зависимости

от множества допустимых значений 𝐷𝑓 признаки делятся на следующие типы:

∙ бинарный признак: 𝐷𝑓 = {0, 1};

∙ номинальный признак: 𝐷𝑓 — конечное множество;

∙ порядковый признак: 𝐷𝑓 — конечное упорядоченное множество;

∙ количественный признак: 𝐷𝑓 = R.

Если все признаки имеют одинаковый тип, 𝐷𝑓1 = · · · = 𝐷𝑓𝑛 , то исходные данные на-

зываются однородными, в противном случае — разнородными. Пусть имеется набор призна-

ков 𝑓1, . . . , 𝑓𝑛. Вектор (𝑓1(𝑥), . . . , 𝑓𝑛(𝑥)) называют признаковым описанием объекта 𝑥 ∈ 𝑋.

В дальнейшем мы не будем различать объекты из X и их признаковые описания, полагая

𝑋 = 𝐷𝑓1 × · · · ×𝐷𝑓𝑛 . Совокупность признаковых описаний всех объектов выборки 𝑋𝑙, запи-

санную в виде таблицы размером 𝑙 × 𝑛, называют матрицей объектов–признаков:

𝐹 = ‖𝑓𝑗(𝑥𝑖)‖𝑙×𝑛 =

⎛⎜⎜⎜⎝
𝑓1(𝑥1) · · · 𝑓𝑛(𝑥1)

· · · · · · · · ·

𝑓1(𝑥𝑛) · · · 𝑓𝑛(𝑥𝑙)

⎞⎟⎟⎟⎠ (1)

Матрица объектов-признаков является стандартным и наиболее распространённым спо-

собом представления исходных данных. Однако на практике встречаются задачи, в кото-

рых данные устроены сложнее, например, описания объектов могут иметь переменную дли-

ну. В таких случаях по имеющимся исходным данным вычисляются преобразованные дан-

ные, имеющие стандартный вид (1). Этот приём называется извлечением признаков (features

extraction) из данных.

Таким образом, признаки — это характеристики объектов, которые либо измеряются

непосредственно, либо вычисляются по «сырым» исходным данным. Любое отображение из

множества 𝑋 можно рассматривать как признак. В текущем исследовании признаки извле-

каются из изображений внешней стороны ладони (раздел 3.5).

3.1.5 Цикл исследования

Построение обучаемых алгоритмов в прикладных задачах (одной из которых, безуслов-

но, является рассматриваемая задача идентификации личности по ладони) — это исследо-
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вательская работа. Здесь нет универсальных рецептов, и решающую роль играют экспери-

менты на реальных данных. Приведенная ниже схема описывает наиболее типичный цикл

исследований с комментариями в контексте данной работы. Выполнение каждого этапа мо-

жет опровергнуть очередную гипотезу и вернуть исследователя к любому из предыдущих

этапов. Процесс поиска решения предполагает постепенное углубление в суть задачи.

∙ Постановка задачи. На начальном этапе поставлена цель исследования, сформулиро-

ваны исследовательские задачи и определены свойства, которыми должна обладать

разрабатываемая система идентификации личности по ладони (раздел 1.2).

∙ Сбор данных. Сбор данных (раздел 4.2) проходил в несколько этапов. Определены на-

чальные требования к съёмке и собрана «База-1» (раздел 4.2.1) изображений для те-

стирования алгоритмов детектирования ладони и распознавания по её форме. Далее

в ходе разработки алгоритма распознавания создана обучающая выборка «База-2» —

для её наполнения применён уже оттестированный алгоритм детектирования, а также

уточнены условия съёмки. Более того, для дополнительного тестирования метода де-

тектирования применена внешняя база HGC (раздел 4.2.3), а для тестирования метода

распознавания — внешняя база PolyU (раздел 4.2.4).

∙ Формулировка гипотез. Одной из ранних гипотез было то, что для идентификации

человека по ладони в малых группах достаточно лишь признаков, полученных на ос-

нове формы ладони. Эта гипотеза не оправдала себя на реальных данных, в силу чего

сформулирована новая — и в метод распознавания были добавлены текстурные при-

знаки. Проведенные вычислительные эксперименты показали значимый рост точности,

ставший основанием для формулировки финальной гипотезы — для уверенной иденти-

фикации хватит только текстурных признаков.

∙ Предобработка данных. Метод детектирования (раздел 3.4) в разработанном решении

идентификации по ладони по сути выполняет роль предобработки данных, так как

отфильтровывает изображения ладони, непригодные для дальнейшего анализа (и из-

влечения признаков) в методе распознавания.

∙ Разработка моделей алгоритмов. В работе широко используются как классические ме-

тоды машинного обучения (метрический алгоритм классификации 1NN, сегментация

по Оцу, сегментация на основе разрезов в графах и т. д.), так и разработанные (моди-

фицированные) автором: метод семантической разметки ладони (раздел 3.4.3), метод
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извлечения (раздел 3.5.4) и сравнения (раздел 3.5.5) Габор-признаков, метод сравнения

на основе SIFT-признаков (раздел 3.5.6) и т. д.

∙ Оценка качества алгоритмов. В рамках методологии тестирования обучаемых алго-

ритмов на каждом этапе исследования проводились вычислительные эксперименты

(раздел 4.3) на реальных данных из обучающих выборок (раздел 4.2).

∙ Отбор или коррекция алгоритмов. Не все алгоритмы, протестированные или разрабо-

танные автором, вошли в итоговое решение. Примером может служить отбор подходя-

щих для этапов детектирования и распознавания методов сегментации (раздел 3.4.1).

∙ Опытная эксплуатация. Разработанная мобильная система распознавания по внеш-

ней стороне ладони применена для контроля посещаемости студентов ВМК МГУ, а

также для учёта гостей на Московском Фестивале науки, в ходе чего подтверждены

заявленные свойства системы.

∙ Автоматизированное принятие решений. Текущая реализация системы распознава-

ния на базе мобильного устройство не требует участия эксперта — как сбор образцов,

так и процесс идентификации происходит при участии одного лишь испытуемого.

3.2 Задачи детектирования и распознавания

Для извлечения используемых в данной задаче признаков необходима качественная сег-

ментация изображения из видеопотока камеры (то есть определение области, занимаемой

ладонью), что, в сочетании с изменчивыми условиями съёмки, предъявляет весьма высокие

требования к алгоритму сегментации. В то же время, существующие алгоритмы не могут

обеспечить достаточно высокое качество сегментации при работе в реальном времени на

мобильных устройствах из среднего ценового диапазона.

Кроме того, в биометрической системе необходимо хранить базу биометрических образ-

цов. Хранилище при этом должно обеспечивать достаточный уровень безопасности, а также

доступ к базе для всех клиентов. Для решения этой проблемы необходимо наличие цен-

трального сервера. В качестве сервера может выступать как персональный компьютер, так и

специализированное решение. Принимая во внимание также ограниченные вычислительные

возможности мобильных устройств, предлагается перенести часть процесса идентификации

на сервер, тем самым уменьшив нагрузку на мобильный клиент. А именно, разделить задачу

идентификации личности человека по ладони на задачи детектирования и распознавания.
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Задача детектирования — обнаружение объекта (в нашем случае ладони) на изображе-

нии и, в случае наличия, проверка «пригодности» изображения ладони для последующего

распознавания.

Задача распознавания — генерация признакового описания по изображению ладони, про-

шедшей проверки на «пригодность», и непосредственно классификация ладони путём сопо-

ставления с базой признакового описания ладоней-эталонов.

При этом детектирование выполняется на мобильном устройстве, а распознавание на

удалённом сервере. Таким образом, осуществляется не только логическое, но и структурное

разделения исходной задачи идентификации на детектирование и распознавание.

Связь между клиентом и сервером осуществляется с помощью беспроводной сети. Стоит

также отметить, что задача распознавания является вычислительно трудной даже для пер-

сонального компьютера — как минимум потому, что одним из её этапов является «точная»

сегментация. Это значит, что сервер не может обрабатывать большое число изображений

в режиме реального времени, что вкупе с ограничениями сети предъявляет определённые

требования к модулю детектирования.

Алгоритм детектирования должен допускать к дальнейшей обработке как можно мень-

ше «непригодных» изображений, т. е. иметь низкое значение FAR (иначе сервер не справит-

ся с большим количеством изображений). Вместе с тем, при соблюдении распознаваемым

пользователем процедуры предъявления ладони должно поддерживаться невысокое значе-

ние FRR (это обеспечит приемлемое общее время распознавания).

Далее рассмотрим подробнее каждую из задач.

3.3 Корректность ладони

Прежде чем переходить к предлагаемому в работе методу детектирования ладони, нуж-

но сформулировать, что является корректной ладонью в контексте задачи детектирования:

∙ ладонь вместе с частью запястья находится целиком в кадре;

∙ посторонние предметы не закрывают ладонь, т. е. отсутствуют часы, кольца, браслеты,

длинные рукава и т. п.;

∙ все пальцы расставлены (разведены).

Некорректная ладонь — ладонь, которая не является корректной в терминах определения

выше. Корректными изображениями (кадрами) будем называть те изображения (кадры),

которые содержат корректную ладонь. Некорректные изображения (кадры), в свою очередь,
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либо не содержат ладони вообще, либо содержат некорректную ладонь. Соответствующие

проверки назовём проверками на корректность.

3.4 Метод детектирования

В алгоритме детектирования можно выделить ряд последовательных этапов:

1. обнаружение объекта-кандидата на роль ладони в кадре (задача «быстрой» сегмента-

ции — раздел 3.4.1);

2. создание скелетного представления ладони (раздел 3.4.2), построение семантической

разметки и проверка ладони на корректность (раздел 3.4.3);

3. определение расфокусированных кадров (раздел 3.4.4);

4. в случае корректной ладони, находящейся в фокусе, — формирование данных для от-

правки в модуль распознавания (в частности, необходимых для работы «точной» сег-

ментации — раздел 3.4.5). Такую ладонь, пригодную для последующего распознавания,

назовём валидной.

Таким образом, корректность ладони является необходимым (но не достаточным) условием

её валидности, и только валидные ладони участвуют в последующем распознавании.

Важно отметить, что алгоритм детектирования должен отрабатывать в режиме реаль-

ного времени на кадрах из видеопотока камеры мобильного устройства, что накладывает

достаточно жёсткие требования к производительности — 20-40 мс на обработку одного кад-

ра.

Абсолютное большинство методов сегментации (например, на основе глубоких нейрон-

ных сетей или минимальных разрезов на графах) не укладывается в эти временные ограни-

чения. В рамках поиска решения автором отобраны и опробованы перспективные «быстрые»

методы сегментации, описанные разделе 3.4.1.

В результате, выбор сделан в пользу пороговой бинаризации изображения по Оцу (пункт

«Пороговая бинаризация» в разделе 3.4.1). Для фонов, однородных по цвету и контрастных

относительно ладони, метод даёт хорошее сочетание качества сегментации и скорости рабо-

ты. Это позволяет быстро выделить участок, предположительно относящийся к ладони, а

затем для выделенной области проверить условия корректности ладони, указанные в списке

выше.

Автором проведено отдельное исследование по возможности использования пороговой

бинаризации для произвольных фонов при условии предварительной локализации области
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ладони с помощью метода Виолы-Джонса (пункт «Метод Виолы-Джонса с последующей

пороговой бинаризацией» в разделе 3.4.1). Тестирование подхода в реальных условиях пока-

зало его чувствительность к ориентации предъявляемой ладони, что послужило причиной

отказа от дальнейшего применения. На практике работа с однородным контрастным фо-

ном при эксплуатации разработанной системы распознавания ладони не является значимым

ограничивающим фактором.

3.4.1 Сегментация

Существует большое количество алгоритмов сегментации изображений. В контексте за-

дачи нас интересует бинарная (двухклассовая) сегментация, в ходе которой происходит на-

значение метки («объект» или «фон») каждому пикселю. Среди методов бинарной сегмен-

тации можно выделить несколько обширных групп:

∙ Пороговая бинаризация по яркости. Пиксели делятся на две группы, в зависимости от

того, больше ли их яркость некоего порога или нет.

∙ Вычитание фона. Предполагается, что изображение или последовательность изобра-

жений состоит из неподвижного фона и некоторого объекта. Строится модель фона и

пиксели проверяются на соответствие этой модели.

∙ Кластеризация по цвету. Пиксели делятся на группы на основе своего цвета.

∙ Минимизация энергии. Разбиение пикселей на группы осуществляется путём оптими-

зации некой функции энергии, заданной на графе, построенном по изображению.

∙ Нейронные сети. Изображение подаётся на вход свёрточной нейронной сети, которая

определяет принадлежность каждого пикселя к фону или объекту.

Рассмотрим каждую из групп подробней.

Пороговая бинаризация. Один из самых простых методов двуклассовой сегментации

изображений — пороговая бинаризация. Порог может быть как фиксированным ( [26], [19]),

так и вычисляться адаптивно [37]. Популярный и эффективный алгоритм вычисления по-

рога — метод Оцу [50], минимизирующий внутриклассовую дисперсию и максимизирующий

межклассовую (объект и фон). Данный метод работает очень быстро, но требует, чтобы фон

и объект контрастировали друг с другом. Например, фон должен быть тёмным, а объект —

светлым, или наоборот. В частности, в случае светлого фона и светлого объекта качество
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сегментации может оказаться неудовлетворительным. Для решения этой проблемы автором

предложено ввести дополнительный шаг, базирующийся на алгоритме Виолы-Джонса [51].

Метод Виолы-Джонса с последующей пороговой бинаризацией. Предлагаемый ав-

тором принцип работы заключается в следующем. Сначала следует выполнить локализацию

ладони на изображении, т. е. получить прямоугольник, её содержащий. Это можно сделать,

применяя подход, аналогичный методу Виолы-Джонса [51] для детектирования лиц.

Если ладонь не обнаружена, то обработку на этом можно прекратить, что сэкономит

значительное количество времени.

При наличии ладони в кадре в случае светлого фона предполагается использовать то,

что центральная часть полученного прямоугольника гарантированно принадлежит ладони.

Для этого изображение переводится в цветовое пространство HSV (Hue, Saturation, Value).

Далее строится цветовая модель кожи на основе выделенного прямоугольника. Один из вари-

антов такой модели — HS-гистограмма в указанном цветовом пространстве. Яркость (Value)

при этом не учитывается, чтобы снизить влияние уровня освещения. После этого для каж-

дого пикселя изображения в HSV-пространстве можно найти вероятность того, что пиксель

принадлежит коже, на основании ранее построенной модели. Эта вероятность будет равна

значению модельной гистограммы в ячейке, соответствующей H- и S-координатам данно-

го пикселя в пространстве HSV. Сегментация исходного изображения тогда осуществляется

пороговой бинаризацией полученных вероятностей.

В случае тёмного фона достаточно использовать простую пороговую бинаризацию по

методу Оцу.

Метод Виолы-Джонса состоит из каскада классификаторов на основе модифицирован-

ных признаков Хаара (рис. 4). Признаки представляют собой бинарные маски определенных

конфигураций (со значениями +1 и -1), значение такого признака в точке изображения по-

лучается свёрткой окрестности данной точки с маской.

Во время работы алгоритма по изображению движется окно поиска (обычно размера

24×24). Для каждого положения окна вычисляются значения признаков Хаара с различны-

ми положениями и ориентациями (порядка 162336 признаков). Для каждого признака обуча-

ется простой пороговый классификатор, который выносит решение, присутствует в данном

окне объект или нет. Такие классификаторы объединяются в ансамбль с помощью алгорит-

ма обучения AdaBoost (Adaptive Boosting), имеющий значительно большую разрешающую

способность, чем каждый из простых классификаторов по отдельности.
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Рис. 4: Примитивы Хаара.

Ясно, что вычислять большое количество признаков для каждого положения окна поис-

ка нецелесообразно. Необходимо отсеивать окна, заведомо не содержащие искомый объект.

Авторами метода установлено, что простейший классификатор с двумя признаками может

достичь почти 100% чувствительности (обнаруживать объект, когда он присутствует) при

50% доле ложноположительных срабатываний. Такой классификатор является первой ступе-

нью т. н. каскада классификаторов — если он выдаёт отрицательный результат, то обработка

данного окна прекращается. В противном случае начинает работать более сложный класси-

фикатор второй ступени (порядка 10 признаков) и т. д. Подобная цепочка усложняющихся

классификаторов обеспечивает приемлемое быстродействие для приложений реального вре-

мени.

Автором проведено тестирование алгоритма Виолы-Джонса для детектирования левой

руки в условиях меняющихся фона и освещения. Для обучения алгоритма необходимы две

группы изображений: позитивные примеры (изображения, содержащие искомый объект) и

негативные примеры (фоновые изображения без объекта на них). Алгоритму требуется боль-

шое количество примеров — как позитивных (рис. 5), так и негативных (рис. 6). Необходимые

изображения извлечены из видеофайлов, снятых на мобильный телефон, и сведены в базу

Хаар-1. Помимо этого составлена ещё одна база Хаар-2, сформированная из изображений

базы Хаар-1, подвергнутых небольшим поворотам и наложенных на различные фоны.

Нужно отметить, что алгоритм Виолы-Джонса на основе признаков Хаара чувствителен

к повороту объекта, поэтому детектируемые ладони должны иметь одну и ту же ориентацию

относительно камеры (±15 градусов).
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Рис. 5: Примеры изображений ладони на тёмном фоне.

Рис. 6: Примеры изображений фона.

Номер

эксперимента

Название

базы

Цвет

фона

Кол-во позитивных

изображений

Ошибка

1-го рода, %

Кол-во негативных

изображений

Ошибка

2-го рода, %

Ошибка

общая, %

1 Хаар-1 тёмный 500 11.3 430 6.1 8.9

2 Хаар-1 светлый 500 18.1 430 4.3 11.7

3 Хаар-2 тёмный 3800 15.7 500 5.8 14.5

4 Хаар-2 светлый 4300 22.6 500 6.4 20.1

Таблица 3: Результаты детектирования ладони в кадре методом Виолы-Джонса.

Эксперименты показали, что алгоритм Виолы-Джонса далеко не всегда (табл. 3) верно

обнаруживает область ладони как на тёмном, так и на светлом фоне — даже при соблюдении

испытуемом нужной ориентации ладони (рис. 7). Вероятная причина в том, что сведение и

разведение пальцев создаёт большое многообразие форм ладони даже в рамках одного чело-

века. Более того, принудительное ориентирование ладони испытуемого вводит дополнитель-

ное ограничение в процесс идентификации, соблюдение которого зачастую является задачей

более сложной, чем обеспечение наличия контрастного фона.

Исходя из этого, решено отказаться от использования текущей версии алгоритма детек-

тирования области ладони на произвольном фоне на основе метода Виолы-Джонса.
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(a) Корректное детектирование (b) Некорректное детектирование

Рис. 7: Примеры работы алгоритма детектирования методом Виолы-Джонса.

Вычитание фона. Другой большой класс алгоритмов сегментации используется для вы-

деления движущихся объектов на неподвижном фоне. Как правило, в таких методах стро-

ится модель фона (например, цветовое распределение), и проверяется, насколько каждый

пиксель изображения соответствует этой модели (например, в смысле значения правдоподо-

бия). Пиксели с низким соответствием считаются принадлежащими объекту, остальные —

фону. Построение модели может осуществляться как непрерывно (с каждым новым посту-

пившим кадром), так и только по первым кадрам видеопоследовательности. Большое число

популярных алгоритмов вычитания фона содержится в библиотеке BGSLibrary [52].

Подобные методы предполагают, что камера неподвижна относительно фона. Но в ре-

альных условиях эксплуатации разрабатываемой системы данное требование, как правило,

не выполняется. В итоге, качество сегментации зачастую оказывается неудовлетворитель-

ным.

Для сценария съёмки «с руки» лучше подходят алгоритмы с динамической подстройкой

модели фона. К сожалению, они имеют общий недостаток: объект, появившийся в кадре и не

двигающийся длительное время, считается фоном спустя какое-то время. При использовании

реализованной системы такие случаи весьма часты.
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На рис. 8 приведены примеры работы алгоритмов вычитания фона при съёмке «с руки»

на однородном контрастном фоне (движение камеры минимально). В левом столбце изобра-

жение с меньшим контрастом, в правом — с большим. Видно, что простая бинаризация по

методу Оцу в указанных условиях работает либо так же, либо значительно лучше.

Рис. 8: Примеры работы алгоритмов сегментации из библиотеки BGSLibrary и бинаризации

Оцу для двух ладоней. Первая строка — исходные изображения, вторая — бинаризация Оцу,

третья — адаптивная медиана (BGSLibrary), четвёртая — смесь гауссиан (BGSLibrary).
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В то же время стоит отметить, что съёмка с неподвижной камерой на одном и том

же фоне является важным сценарием использования разрабатываемой системы, поэтому

алгоритмы вычитания фона были добросовестно исследованы.

Выделение кожи в цветовом пространстве. Один из популярных способов сегмента-

ции основан на выделении пикселей кожи на снимке. Изображение переводится в какое-либо

цветовое пространство (nRGB, YCbCr, CIE 1976 L*a*b*). Далее, как правило, выполняется

отсечение по порогу [44]. Автором проведены тесты нескольких алгоритмов сегментации по

цвету кожи, примеры их работы в сравнении с методом Оцу приведены на рис. 9. Анализ

показал, что хотя сегментация по цвету кожи часто обеспечивает хороший результат, она

является существенно менее устойчивой к изменению цвета источника освещения, чем метод

Оцу.

Построение гауссовой модели цвета кожи. Для сегментации также может использо-

ваться подход, основанный на гауссовой модели цвета кожи: по большому набору примеров

кожи вычисляются параметры нормального распределения. Решение о принадлежности те-

стового пикселя к коже принимается на основании значения правдоподобия. Автором прове-

дены эксперименты, в которых данные методы показали неудовлетворительные результаты,

так как они чувствительны к освещению, а именно — к цвету источника. Это значит, что

применение вспышки или смена помещения могут существенно влиять на качество сегмен-

тации.

Минимизация энергии и разрезы графов. Также существует обширный класс методов

сегментации, основанных на минимизации энергии [53], [54]. Вводится некая функция энер-

гии, определенная на изображении и зависящая от меток пикселей, — такая, что ее миними-

зация дает оптимальное разбиение пикселей. В работе [55] показано, что при определённых

условиях задача минимизации энергии может быть сведена к задаче поиска минимального

разреза графа.

Задача о минимальном разрезе применительно к сегментации формулируется следую-

щим образом. Изображение представляется в виде графа. Вершины графа могут быть двух

типов: вершины первого типа соответствуют пикселям изображения, вершин второго типа —

две, они называются источником и стоком. Вершины первого типа соединены только со сво-

ими соседями (в смысле 8- или 4- связности), источником и стоком. Каждому ребру присвоен

вес. Веса рёбер, соединяющих вершины первого типа между собой, определяют похожесть
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Рис. 9: Сегментация по цвету кожи и Оцу. Первая строка — исходные изображения, вторая —

бинаризация Оцу, третья — Chai and Ngan, четвёртая — LUT, пятая — HSV.
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пикселей по какой-либо метрике. Веса рёбер, соединяющие вершины первого типа с источ-

ником или стоком, задают степень соответствия пикселей моделям объекта и фона (правдо-

подобие). Такой граф называется s-t графом. Разрез графа представляет собой разбиение

множества вершин на два подмножества. Стоимостью разреза называют суммарный вес рё-

бер, соединяющих вершины подмножеств разреза. Минимальный разрез имеет наименьшую

стоимость. Пиксели изображения включённые в подмножество разреза, содержащее источ-

ник, помечаются как фон, во множество, содержащее сток — как объект.

Стоит отметить, что такие алгоритмы обладают большой вычислительной сложностью,

быстро растущей с увеличением размера изображения. Например, для изображения разме-

ром 500 × 500 пикселей с жёсткими ограничениями, занимающими порядка 20% площади

кадра, время вычисления сегментации на персональном компьютере средней мощности со-

ставляет порядка 0.6 сек, а в случае мобильного устройства время вычисления может быть

существенно больше. Для решения данной проблемы разработаны различные методы, — на-

пример, интерактивная сегментация (пользователь помечает участки изображения как соот-

ветствующие объекту или фону) и алгоритмы кластеризации вершин графа (кластеризация

с помощью водораздела).

Таким образом, алгоритмы, основанные на разрезах графов, не подходят для сегмен-

тации в режиме реального времени на мобильных устройствах из-за своей вычислительной

сложности. Но вполне пригодны для использования на сервере (раздел 3.5).

Нейронные сети. В последнее время все большее внимание получают методы сегмента-

ции изображений на основе глубоких нейронных сетей. Как правило, в основе лежат сверточ-

ные сети. Подобные методы обеспечивают чрезвычайно высокое качество сегментации [56]

в широком диапазоне условий (фон, освещение). Но они также обладают существенными

недостатками, такими как высокая вычислительная сложность и необходимость большой

обучающей выборки (сотни тысяч изображений). Как правило, для работы глубокой ней-

ронной сети в реальном времени (время обработки одного кадра порядка 30 мс) требуется

мощный графический ускоритель. Это ограничение не позволяет использовать методы это-

го класса для сегментации ладони как на мобильных устройствах (за исключением самых

производительных моделей), так и на сервере.

Выводы. Сегментация ладони является первым и действительно важным этапом метода

детектирования ладони на кадрах из видеопотока. От метода сегментации при этом требу-

49



ется не только производительность, но и точность. На основе проведенных экспериментов и

изученной литературы сделаны следующие выводы.

Методы пороговой бинаризации работают достаточно быстро, но чувствительны к от-

носительной яркости объекта и фона, т. е. применимы только в случаях, когда объект кон-

трастирует с фоном. Автором предложен метод на основе алгоритма Виолы-Джонса с по-

следующей пороговой бинаризацией, который ослабляет это ограничение. Подход показал

хорошие результаты на модельных данных, но в реальных условиях эксплуатации системы

его внедрение оказалось неоправданным.

Методы, основанные на вычитании фона, подходят для неподвижной относительно фона

камеры. Тем не менее, даже в этом случае они могут испытывать проблемы с выделением ла-

дони, если она продолжительное время находится в кадре без движения. Алгоритмы, исполь-

зующие цвет кожи (на основе гауссовой модели или цветового пространства), чувствительны

к освещению. Методы графовой сегментации вычислительно сложны, для приемлемой ско-

рости работы и качества требуют априорных знаний об объекте и фоне. Глубокие нейронные

сети требуют слишком больших вычислительных ресурсов, чтобы их можно было использо-

вать на мобильных устройствах среднего класса.

Оптимальным вариантом остаются методы пороговой бинаризации, среди которых вы-

бран метод Оцу — быстрый и дающий приемлемое качество. В качестве фона при этом реко-

мендуется использовать однородные поверхности, контрастирующие с ладонью. На практике

это почти не ограничивает область применимости системы.

3.4.2 Получение геометрической информации о ладони

После того, как сегментация ладони выполнена (т. е. выделено множество пикселей, ей

соответствующих), нужно определить, является ли выделенная область ладонью. И, если

является, то корректна ли она в смысле условий, перечисленных в разделе 3.4. Для работы

алгоритма проверки корректности необходимо извлечь дополнительную геометрическую ин-

формацию о ладони. Нас интересуют концы и основания пальцев, точки между пальцами,

максимальный вписанный круг. Существует несколько методов получения такой информа-

ции.

Функция расстояния от точек контура до особой точки ладони. Один из попу-

лярных способов использует функцию расстояния до некой особой точки ладони (центроид,

точка на запястье и т. д.), определенную на точках контура [37]. Примерный график такой

функции показан на рис. 10.
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Рис. 10: Пример функции расстояния. На графике кружками отмечены концы пальцев, а

квадратами — точки между пальцами. Расстояние вычисляется от точки, отмеченной белым

кружком на левом изображении. На графике по оси X отложен номер точки на контуре

ладони, а по оси Y — расстояние от данной точки до центра ладони

Этот способ позволяет уверенно находить точки концов пальцев и точки между пальца-

ми. Однако с его помощью сложно отличить корректную ладонь от некорректной, так как

информации, содержащейся в функции расстояния, для этого недостаточно. Более того, та-

кой метод не способен отличить ладонь от любого другого объекта, имеющего нужное число

выступов и впадин. В случае «неидеальной» сегментации (к примеру, если фон не матовый,

присутствуют отражения) данный алгоритм также может давать ошибочные результаты.

Примеры неверного определения пальцев приведены на рис. 11.
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Рис. 11: Выделение трёх средних пальцев при «неидеальном контуре». Слева — метод, ос-

нованный на функции расстояния [37], справа — предложенный алгоритм, основанный на

непрерывных скелетах. Нумерация пальцев начинается с большого пальца, имеющего ин-

декс 0 (на рисунках не обозначен).

В связи с вышесказанным, в данной работе применяется подход к извлечению геомет-

рической информации из формы ладони на основе циркулярных графов (непрерывных ске-

летов) [57]. Скелетом замкнутой фигуры называется множество центров её максимальных

вписанных кругов. Максимальным вписанным кругом фигуры называется круг, не лежа-

щий целиком ни в одном другом вписанном круге данной фигуры. Скелетное представление

фигуры отражает её топологическую структуру, кроме того оно мало изменяется при де-

формациях фигуры. Построение скелета осуществляется следующим образом. Из бинарного

изображения ладони извлекается контур, рассматриваемый как замкнутый многоугольник

без самопересечений. На базе полученного многоугольника строится диаграмма Вороного,

после чего выбирается подмножество рёбер диаграммы Вороного, формирующих скелет.
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Данный метод позволяет сравнительно просто осуществить проверку ладони на коррект-

ность. Делается это с помощью выделения ветвей скелета, соответствующих пальцам ладони.

Прежде, чем переходить к описанию процесса проверки, выделим основные свойства скелета

ладони, которые будут использованы в дальнейшем.

∙ Скелет ладони делится на внешний (лежит вне контура ладони, связный граф) и внут-

ренний (лежит внутри контура ладони, связный граф).

∙ Для каждой вершины скелета определен радиус соответствующего ей вписанного круга

максимального радиуса. Это отображение множества вершин скелета во множество

действительных чисел называется радиальной функцией и обозначается 𝑅(𝑣).

∙ Внутренний скелет ладони является деревом. Степень вершины может быть 1, 2 или 3.

∙ Внутренний скелет имеет вершину с максимальным радиусом вписанного круга 𝑅𝑚𝑎𝑥

(среди всех вершин внутреннего скелета), данная вершина далее называется корнем

скелета, а соответствующий круг — максимальным кругом.

∙ Внутренний скелет — ориентированный граф, рёбра направлены от корня скелета к

вершинам степени 1.

Так как небольшие изменения контура могут приводить к существенным изменениям

скелетного представления, необходимо проводить регуляризацию или стрижку построен-

ного скелета [57]. Силуэтом скелета назовём объединение всех максимальных вписанных

кругов с центрами в точках скелета. Силуэт скелета без регуляризации совпадает с исход-

ной многоугольной фигурой. Если задан параметр 𝜀, процесс стрижки можно описать так:

последовательно удаляются вершины скелета степени 1, пока расстояние между силуэтом

полученного скелета и исходной фигурой в метрике Хаусдорфа не превосходит 𝜀. Далее

в работе используется именно регуляризованный скелет, слово «регуляризованный» будем

опускать.

Пример построения скелета приведен на рис. 12. Зеленым обозначен контур ладони,

полученный по бинарному изображению. Жёлтым и розовым изображен внутренний скелет,

бирюзовым и синим — внешний.

Используя в качестве входных данных скелетное представление ладони, автором пред-

ложен метод проверки ладони на корректность [8]. Осуществляется это с помощью отбора и

анализа ветвей скелета, соответствующих пальцам ладони (раздел 3.4.3).
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Выводы. Ранее были рассмотрены методы сегментации объекта относительно фона. В

данном разделе описан подход к извлечению дополнительной геометрической информации

о структуре объекта на основе циркулярных графов, который позволяет быстро и точно

построить скелетное представление объекта-кандидата на роль ладони. Это необходимо для

дальнейшего проведения семантической разметки ладони, т. е. выделения оснований и концов

пальцев, точек между пальцами, определения максимального круга.
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(a) Исходное изображение.

(b) Бинаризация по Оцу.

(c) Контур ладони и её скелет.

Рис. 12: Начальные этапы процедуры детектирования
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3.4.3 Семантическая разметка ладони

Для последующего анализа необходимо по скелету ладони определить положение паль-

цев. Эта процедура состоит из нескольких последовательных шагов:

∙ выделение ветвей-кандидатов в пальцы;

∙ проверка радиальной функции, отсеивающая ветви-кандидаты, которые анатомически

не могут соответствовать пальцам в силу своей «толщины»;

∙ выделение оснований и концов пальцев;

∙ базовые пороговые проверки расстояний, отсеивающие ветви-кандидаты, которые ана-

томически не могут являться пальцами в силу своей длины, расположения оснований

и концов пальцев;

∙ исключение побочных ветвей-кандидатов, соответствующих одному пальцу;

∙ проверка троек, отсеивающая ветви, не лежащие в области пальцев (например, ветви

из области запястья);

∙ определение большого пальца из оставшихся кандидатов;

∙ медианная проверка, отсеивающая изображения с близко сведёнными пальцами;

∙ поиск вершин внешнего скелета между пальцами.

Если на каком-то шаге не проходит проверка или остаётся меньше 5 ветвей-кандидатов

в пальцы, то процедуры разметки досрочно завершается, и ладонь считается некорректной.

Выделение ветвей-кандидатов. В первую очередь, находятся ветви внутреннего скеле-

та, заканчивающиеся в вершинах степени 1 и начинающихся в корне (обозначены жёлтым

на рис. 12(c); корень скелета O выделен оранжевым).

Проверка радиальной функции. Так как радиальная функция пальцев имеет специфи-

ческий вид, для каждой ветви-кандидата выполняется следующая проверка. Вычисляются

значения нормализованной радиальной функции (или их линейная интерполяция) в 30 клю-

чевых точках, равномерно распределенных вдоль ветви. Нормализованная радиальная функ-

ция определяется так: 𝑅𝑛(𝑣) = 𝑅(𝑣)/𝑅𝑚𝑎𝑥. Таким образом, ее значения лежат на отрез-

ке [0, 1]. По обучающей выборке рассчитываются границы, в которых могут лежать значения
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функции в ключевых точках, совокупность этих границ называется граничным коридором.

Граничный коридор общий для всех пальцев. Для каждой ветви-кандидата проверяется,

лежит ли нормализованная радиальная функция в граничном коридоре. Это позволяет от-

сечь большое количество ложных ветвей, например, появившихся из-за искажений контура

вследствие неточности сегментации.

Рис. 13: Пример граничного коридора. По оси 𝑋 нормализованное расстояние от верши-

ны до корня, по 𝑌 — 𝑅𝑛(𝑣). Пунктирные линии — границы коридора, зелёная линия —

нормализованная радиальная функция пальца.

Выделение оснований и концов пальцев. Для каждой ветви-кандидата находятся вер-

шины, соответствующие основанию и концу пальца, аналогично [31]. Отрезок, соединяющий

эти точки, будем называть осью пальца. Длину оси пальца, делённую на 𝑅𝑚𝑎𝑥, назовём

длиной пальца. Участок ветви-кандидата между вершинами, определёнными в качестве ос-

нования и конца пальца, будем называть пальцем-кандидатом. Пример работы показан на

рис. 14. Далее все значения, сравниваемые с порогами, полученными из обучающей выборки,

считаем нормализованными на 𝑅𝑚𝑎𝑥.
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Рис. 14: Пример выделения оснований и концов пальцев. Вершины скелета B, D, F, H, J —

основания пальцев, A, C, E, G, I — концы пальцев. Отрезки BA, DC, FE, HG, JI — оси

соответствующих пальцев.

Базовые пороговые проверки расстояний. Для каждого пальца-кандидата проверяет-

ся, лежит ли его длина в неких фиксированных пределах 𝐿𝑚𝑖𝑛 < 𝑙 < 𝐿𝑚𝑎𝑥. Также проверяет-

ся, лежат ли основания и концы пальцев-кандидатов на определённом расстоянии от корня:

𝐷𝑜𝑟𝑖𝑔
𝑚𝑖𝑛 < 𝑑𝑜𝑟𝑖𝑔 < 𝐷𝑜𝑟𝑖𝑔

𝑚𝑎𝑥 & 𝐷𝑡𝑜𝑝
𝑚𝑖𝑛 < 𝑑𝑡𝑜𝑝 < 𝐷𝑡𝑜𝑝

𝑚𝑎𝑥. Константы 𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥, 𝐷
𝑜𝑟𝑖𝑔
𝑚𝑖𝑛, 𝐷

𝑜𝑟𝑖𝑔
𝑚𝑎𝑥, 𝐷

𝑡𝑜𝑝
𝑚𝑖𝑛, 𝐷

𝑡𝑜𝑝
𝑚𝑎𝑥

вычисляются по обучающей части выборки. Данные проверки удаляют ветви, которые не

могут принадлежать пальцам по анатомическим причинам.

Исключение побочных ветвей-кандидатов. На этом этапе для основания каждого

пальца-кандидата x ищется другой палец-кандидат y, чьё основание лежит внутри макси-

мального вписанного круга, соответствующего основанию x. Если длина пальца-кандидата

x меньше длины y, то ветвь пальца-кандидата y исключается из дальнейшего рассмотрения.

Таким образом отсекаются побочные ветви-кандидаты, соответствующие одному и тому же

пальцу (рис. 15).
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Рис. 15: Пример работы процедуры исключения побочных ветвей-кандидатов. Красным по-

казаны ветви, которые будут удалены в ходе этой проверки: OB, OD, OF, OG. Ветви OA,

OC, OE, OH, OI участвуют в следующих проверках. Прочие ветви на рисунке были отфиль-

трованы на предыдущих шагах.

Проверка троек. Пальцы-кандидаты упорядочиваются в порядке обхода контура и нуме-

руются, начиная с 0. Рассматриваются тройки последовательных пальцев-кандидатов (0-1-2,

1-2-3, 2-3-4, и т. д.), и для каждой из них строится отрезок, соединяющий середины осей пер-

вого и третьего пальцев из тройки (рис. 16). Если построенный отрезок пересекается с осью

второго пальца из тройки, все три кандидата попадают в список для дальнейшей обработки.

В противном случае не добавляется ни один.

Такая проверка позволяет отсечь пальцы-кандидаты, либо лежащие внутри ладони, либо

имеющие малую длину, либо расположенные под большими углами к остальным кандидатам.

Рис. 14 служит примером ладони, пальцы-кандидаты которой проходят проверку троек.
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Рис. 16: 0-1-2 — пример тройки пальцев-кандидатов, не прошедших проверку троек: отрезок

(обозначен белым), соединяющий середины осей большого (0) и среднего пальцев (2), не

пересекает ось указательного (1).

Поиск большого пальца. Эксперименты показали, что приведённых выше проверок до-

статочно для отсеивания всех побочных ветвей. Таким образом, для корректной ладони на

данном этапе должно остаться ровно 5 пальцев-кандидатов. Если это не так, ладонь счита-

ется некорректной.

В случае корректной ладони, для каждого пальца вычисляется евклидово расстояние

между его основанием и основанием ближайшего пальца:

𝑑𝑖 = min
𝑗 ̸=𝑖

{|𝑜𝑟𝑖𝑔𝑖 − 𝑜𝑟𝑖𝑔𝑗|}, 𝑖, 𝑗 ∈ {0, . . . , 4},

где 𝑜𝑟𝑖𝑔𝑘 — координаты пикселя основания пальца 𝑘 на изображении. Большой палец вы-

бирается как кандидат с максимальным 𝑑𝑖. Пальцы переупорядочиваются в порядке обхода

контура, начиная с большого, — его порядковый номер (индекс) принимается за 0.

Медианная проверка. Позволяет обнаружить случай «слипшихся» пальцев, т. е. когда

пальцы (например, средний и безымянный) находятся слишком близко друг к другу, вслед-

ствие чего контур не проходит между ними, и скелет из-за этого меняет свою структуру.

Вычисляются евклидовы расстояния:

𝜌𝑖 = {|𝑜𝑟𝑖𝑔𝑖 − 𝑟𝑜𝑜𝑡|}, 𝑖 ∈ {1, . . . , 4},

60



где 𝑜𝑟𝑖𝑔𝑖 — координаты пикселя основания пальца 𝑖 на изображении, 𝑟𝑜𝑜𝑡 — координаты пик-

селя, соответствующего корню скелета (центру максимального круга). Определим переста-

новку индексов (𝑖1, 𝑖2, 𝑖3, 𝑖4) такую, что 𝜌𝑖1 < 𝜌𝑖2 < 𝜌𝑖3 < 𝜌𝑖4 . Выберем референсное значение

следующим образом: 𝜌𝑟𝑒𝑓 = 𝜌𝑖2 . Далее, для каждого пальца вычисляются нормализованные

отклонения от референсного значения:

𝜂𝑖 = |𝜌𝑖 − 𝜌𝑟𝑒𝑓 |/𝑅𝑚𝑎𝑥, 𝑖 ∈ {1, . . . , 4}

Если все расстояния 𝜂𝑖 меньше некоторого порога, медианная проверка считается пройден-

ной. В противном случае ладонь считается некорректной (рис. 17).

Рис. 17: Случай близко сведённых пальцев, который позволяет выявить медианная проверка.

Поиск вершин внешнего скелета между пальцами. В случае корректной ладони,

выполняется поиск вершин внешнего скелета (раздел 3.4.2) степени 1, которые лежат между

парами пальцев (0 и 1, 1 и 2, 2 и 3, 3 и 4). Если таких вершин для данной пары пальцев

несколько — выбирается ближайшая к линии, соединяющей основания пальцев пары.

3.4.4 Определение расфокусированных кадров

Так как расстояние между ладонью и камерой может изменяться, возникает необходи-

мость в постоянной фокусировке. Однако системы автофокуса в современных мобильных

устройствах не всегда обеспечивают правильную фокусировку. Назовём сфокусированным

такой кадр, где ладонь целиком находится в фокусе, т. е. её контур и пространство внутри

него не смазаны. Примеры кадров с правильным и неправильным фокусами приведены на

рис. 18.
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(a) Правильная. (b) Неправильная.

Рис. 18: Примеры фокусировки.

Стоит заметить, что приведенная выше процедура детектирования, основанная на фор-

ме ладони, не способна отличить сфокусированный кадр от расфокусированного. При этом

для извлечения текстурных признаков пригодны только сфокусированные кадры. Таким об-

разом, возникает необходимость в определении правильности фокусировки перед отправкой

кадра на сервер.

Оптическое размытие из-за неправильной фокусировки может быть смоделировано с

помощью фильтра Гаусса. Считаем, что расфокусированное изображение получено из ори-

гинала применением к нему фильтра. На рис. 19 приведены примеры обработки сфокусиро-

ванного и расфокусированного кадров.

Видно, что для сфокусированного кадра на бинаризованном изображении-разности

(правый нижний столбец) очень много ненулевых пикселей, тогда как для расфокусирован-

ного изображения их существенно меньше. Причина в том, что Гауссово размытие действу-

ет как фильтр низких частот, отфильтровывая высокочастотные компоненты изображения.

Поэтому при применении данного фильтра к уже размытому изображению, содержащему

преимущественно низкие частоты, изменения будут минимальны.

Можно сформулировать основную идею так: если исходное изображение мало отлича-

ется от результата размытия по Гауссу, то кадр, вероятнее всего, расфокусирован. Однако

необходимо учитывать следующие особенности. Фон с неоднородной текстурой может вно-

сить существенные искажения в картину разности (нижнее изображение второго столбца

на рис. 19), поэтому анализ проводится только для части кадра, лежащей внутри контура

ладони и относящейся к пальцам (рис. 20).
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Рис. 19: Определение качества фокусировки. Первый столбец — расфокусированный кадр,

второй — с правильным фокусом. Первая строка — исходное изображение, вторая — после

применения размытия по Гауссу, третья — разность между исходным и размытым изобра-

жениями, четвёртая — пороговая бинаризация полученной разности.

Кроме того замечено, что вне зависимости от фокуса на изображении-разности много

пикселей, имеющих минимально возможное ненулевое значение, которые представляют собой
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Рис. 20: Выделение области интереса для определения фокуса. Область интереса находится

внутри контура.

шум. Чтобы минимизировать его влияние, было решено отбирать пиксели, имеющие значение

больше эмпирически подобранного порога.

В качестве количественной меры расфокусированности используется следующая вели-

чина. Пусть 𝑆𝑑𝑖𝑓𝑓 = {𝑝1, 𝑝2, . . . 𝑝𝑛} — множество пикселей изображения разности внутри вы-

деленной области интереса, где 𝑝𝑖 — значение яркости пикселя, а 𝑛 — количество пикселей

в области интереса. Тогда мера расфокусированности будет вычисляться так:

𝐷 =
|{𝑝𝑖|𝑝𝑖 > 𝑇, 𝑝𝑖 ∈ 𝑆𝑑𝑖𝑓𝑓}|
|{𝑝𝑖|𝑝𝑖 > 0, 𝑝𝑖 ∈ 𝑆𝑑𝑖𝑓𝑓}|

,

где 𝑇 — эмпирически подобранное значение. Кадр признаётся расфокусированным, если 𝐷

меньше заданного порога. Варьируя порог, можно изменять «уровень требований к качеству»

фокусировки. Расфокусированные кадры исключаются из дальнейшего рассмотрения (не

участвуют в распознавании).

3.4.5 Вычисление зёрен

Если ладонь корректна, строится ограничивающий прямоугольник, включающий в себя

ладонь и пальцы (рис. 21). Это позволяет уменьшить вычислительную сложность после-

дующего анализа, так как процедура распознавания оперирует только с областью внутри

прямоугольника.

Для упрощения вычислений и улучшения качества при последующей «точной» сегмен-

тации необходимо задать т. н. жёсткие ограничения — два множества пикселей с фиксиро-

ванными метками (объекта или фона), которые не изменяются в процессе работы алгоритма

сегментации. Пиксели из указанных множеств также называют зёрнами (объекта или фона

соответственно).

Зёрна могут быть получены на основе скелетного представления и построенной на его

базе семантической разметки, описанных выше. Автором предложено использовать в каче-
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стве зёрен объединение уменьшенных максимальных вписанных кругов для подмножества

вершин скелета (рис. 22). Круги уменьшаются для того, чтобы даже в случае неточной сег-

ментации по Оцу внутренние пиксели лежали внутри ладони, а внешние — принадлежали

фону. Из внутренних вершин скелета в данное подмножество включаются те, которые ле-

жат внутри ограничивающего прямоугольника — это зёрна объекта. Среди внешних вершин

выбираются те, которые принадлежат ветвям, расположенным между пальцами и лежащим

внутри прямоугольника, — это зёрна фона.

Рис. 21: Результат семантической разметки ладони. Оранжевым обозначен ограничивающий

ладонь прямоугольник.
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Рис. 22: Зёрна объекта обозначены красным цветом, зёрна фона — синим.

3.4.6 Выводы к разделу 3.4

Предложено разделить задачи детектирования и распознавания ладони, при этом за-

дача детектирования разбивается на этапы сегментации и валидации. Для решения задачи

первичной «быстрой» сегментации проведён анализ методов, часть из которых была проте-

стирована. В качестве наиболее подходящего метода выбрана бинаризация по Оцу.

В рамках задачи валидации разработан метод семантической разметки ладони на ос-

нове непрерывных скелетов. Описан механизм поиска расфокусированных кадров, который

существенно улучшает характеристики системы распознавания при реальной экслуатации.

Используя выход алгоритмов построения скелетного представления и полученной на его ба-

зе семантической разметки, представлен способ задания жёстких ограничений, необходимых

для последующей «точной» сегментации.

Таким образом, зёрна фона и ладони, а также изображение ладони внутри ограничива-

ющего прямоугольника передаются в модуль распознавания для дальнейшего анализа.
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3.5 Метод распознавания

После того, как зёрна ладони и её изображение внутри ограничивающего прямоугольни-

ка переданы в модуль распознавания, можно приступать к генерации признакового описания.

Первым шагом необходимо провести «точную» сегментацию (раздел 3.5.1).

3.5.1 Cегментация

Для «точной» сегментации применяется алгоритм минимизации энергии на основе

разрезов графов OneCut [58] с использованием полученных ранее зёрен (раздел 3.4.5).

Результатом, как правило, является очень качественная сегментация ладони. Полученное

бинарное изображение (пиксели со значением 0 соответствуют фону, 1 — ладони) переда-

ется в модуль извлечения признаков формы, а также используется для выделения области

интереса при извлечении текстурных признаков.

Подобные алгоритмы сегментации имеют высокую вычислительную сложность, быстро

растущую с размером изображения, — так как они оперируют графами, число вершин в ко-

торых равно числу пикселей изображения. Автором предпринята попытка облегчить вычис-

ления, использовав в качестве узлов графа т. н. суперпиксели. Суперпиксель — связное мно-

жество пикселей изображения, однородных в некотором смысле (например, по цвету). Это

позволяет оперировать с суперпикселями принципиально так же, как и с исходными пиксе-

лями. Однако количество суперпикселей зачастую значительно меньше количества пикселей.

К примеру, для изображения с разрешением 1980 × 1020 пикселей нормальное количество

суперпикселей — порядка 200. При разбиении изображения на суперпиксели выполняется

важное условие: границы между суперпикселями проходят вдоль границ объектов на исход-

ном изображении. Примеры суперпикселей приведены на рис. 23.

Рис. 23: Примеры суперпикселей
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Проведённые эксперименты показали, что в данной задаче построение суперпикселей

работает медленнее, чем вся сегментация с помощью разрезов графов. Выбранный алгоритм

SLIC (Simple Linear Iterative Clustering) [59] выполняет итеративную кластеризацию пикселей

в пятимерном пространстве: L, a, b из цветового пространства CIELAB и координаты пиксе-

ля x, y. Желаемое количество суперпикселей полагалось равным 100. Параметр, отвечающий

за компактность, был равен 20 (чем он больше, тем больший вес имеет пространственное рас-

стояние между пикселями и тем более компактными получаются суперпиксели). А именно,

для изображений размером 400 × 300 пикселей время вычисления суперпикселей в среднем

составило 0.37 с., в то время как для тех же изображений вычисление графовой сегментации

с использованием зёрен в среднем заняло порядка 0.25 с. Причина этого в том, что зёр-

на, подаваемые на вход графовой сегментации, занимают сравнительно большую площадь

изображения. Поэтому вычисление максимального потока в пиксельном графе выполняется

существенно быстрее, чем обычно (при небольших областях жёстких ограничений). Таким

образом, для данной задачи использование суперпикселей в варианте выше не оправдано.

Выводы. Для «точной» сегментации выбран метод на основе разрезов графов OneCut,

показавший в ходе экспериментов оптимальное сочетание качества сегментации и скорости

работы. Высокая эффективность метода сегментации обеспечена благодаря предложенному

способу получения «больших» зёрен объекта и фона. Применение алгоритма построения

суперпикселей SLIC не даёт преимуществ в скорости работы, поэтому его использование

нецелесообразно.

3.5.2 Генерация признаков формы

Выходом алгоритма графовой сегментации (предыдущий раздел 3.5.1) является, как

правило, точная маска ладони с гладким контуром. Это, в свою очередь, способствует точ-

ному извлечению признаков на основе формы. Актуальной задачей является подбор таких

признаков, которые будут достаточно устойчивы и репрезентативны, чтобы применить их в

задаче классификации пользователей по изображению ладони.

Генерация признаков формы происходит следующим образом. По бинарному изобра-

жению (маске ладони выше) строится скелет и проводится семантическая разметка ладони

(рис. 24). Для этого используются методы, описанные ранее в разделах 3.4.2 и 3.4.3. После

вычисляются следующие признаки:

1. Спектр (распределение медиальной ширины).
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2. Ломаная, последовательно соединяющая вершины пальцев и точки между ними. В

качестве признака используются нормализованные длины ее звеньев.

3. Кривизны пальцев. Для каждого пальца вычисляется максимальное расстояние между

точками скелета и осью пальца по обе стороны от последней.

Остановимся подробнее на каждом из признаков.

Распределение медиальной ширины. Пусть имеется замкнутая фигура 𝐷 и её скелет

𝑆. Для каждой точки 𝑠 ∈ 𝑆 существует единственный максимальный вписанный круг 𝐶(𝑠) ⊂

𝐷 с центром в точке 𝑠 и радиусом 𝑟(𝑠). Для каждой точки 𝑠 ∈ 𝑆 определим множество

𝑃 (𝑠) = {𝑝 : 𝑝 ∈ 𝜕𝐷 ∩ 𝐶(𝑠)} ближайших к 𝑠 граничных точек фигуры. Для каждой точки

скелета 𝑠 ∈ 𝑆 определено множество отрезков {𝑠𝑝 : 𝑝 ∈ 𝑃 (𝑠)}, соединяющих её с ближайшими

точками границы фигуры. Эти отрезки назовём спицами (рис. 25).

Рис. 25: Примеры спиц.

Для множества спиц фигуры выполняются следующие утверждения [60]:

∙ две спицы могут пересекаться лишь в концевых своих точках, т. е. либо в точках скелета,

либо в точках границы;

∙ через каждую точку фигуры проходит хотя бы одна спица;

∙ для каждой внутренней точки фигуры, не принадлежащей скелету, существует един-

ственная спица, проходящая через эту точку;

∙ для каждой граничной точки фигуры, в которой имеется касательная к границе, ин-

цидентная спица является единственной.

Медиальной шириной фигуры 𝐷 в точке 𝑥 ∈ 𝐷 назовём длину спицы, инцидентной

данной точке. Обозначим эту функцию 𝑀(𝑥). Обозначим множество точек границы фигуры

𝐿 = 𝜕𝐷, имеющих медиальную ширину меньшую некоторого значения 𝑟,

𝐿(𝑟) = {𝑥 : 𝑥 ∈ 𝐿,𝑀(𝑥) 6 𝑟}.
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(a) Графовая сегментация методом OneCut.

(b) Семантическая разметка ладони.

Рис. 24: Выделение пальцев на основе точной сегментации
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Тогда распределением медиальной ширины на точках границы фигуры называется функция

𝐹𝐿(𝑟) = |𝐿(𝑟)|/|𝐿|.

Назовем медиальным спектром фигуры функцию

𝑓(𝑟) =
𝜕𝐹𝐿(𝑟)

𝜕𝑟
.

Спектр имеет ограниченную область определения, а также представляет собой функцию

распределения, т. е. ∫︁ +∞

0

𝑓(𝑟)d𝑟 = 1.

Спектр как характеристика формы является устойчивым, т. е. малое изменение формы

фигуры влечет малое изменение спектра. В качестве признака используется набор значений

спектра в натуральных точках числовой оси. Важную роль при сравнении спектров друг с

другом играет выбор метрики. Так как спектр представляет собой одномерную нормирован-

ную гистограмму, остановимся подробнее на способах сравнения гистограмм.

Метрики для сравнения гистограмм. Пусть 𝐻(1), 𝐻(2) — дискретные спектры, 𝑁,𝑀 —

количество элементов в них,𝐾 = min{𝑁,𝑀}. Самая простая метрика — сумма поэлементных

разностей:

𝑑𝐿1 =
𝐾∑︁
𝑖=1

|𝐻(1)(𝑖) −𝐻(2)(𝑖)|.

Её достоинством является простота интерпретации. Чем меньше значение, тем больше сход-

ство.

Следующая метрика — сумма пересечений гистограмм:

𝑑𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
𝐾∑︁
𝑖=1

min{𝐻(1)(𝑖), 𝐻(2)(𝑖)}.

Если обе гистограммы нормированы на единицу, то значение метрики 1 означает полное

сходство, а 0 — полное различие.

Следующий метод сравнения предложен Карлом Пирсоном и носит названия метрики

хи-квадрат:

𝑑𝜒2 =
𝐾∑︁
𝑖=1

𝐻(1)(𝑖)+𝐻(2)(𝑖)̸=0

(𝐻(1)(𝑖) −𝐻(2)(𝑖))2

𝐻(1)(𝑖) + 𝐻(2)(𝑖)
.

Здесь чем меньше значение, тем больше сходство, 0 означает идеальное совпадение, макси-

мальное значение не ограничено.
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Ещё одна метрика называется расстоянием Бхаттачария:

𝑑𝐵 =

⎯⎸⎸⎸⎷1 −
𝐾∑︁
𝑖=1

√︀
𝐻(1)(𝑖)𝐻(2)(𝑖)√︁∑︀

𝑗 𝐻
(1)(𝑗)

∑︀
𝑗 𝐻

(2)(𝑗)
.

Чем меньше значение, тем больше сходство, 0 означает полное совпадение, а 1 — полное

несовпадение.

Важным классом метрик являются так называемые EMD (Earth Mover’s Distance)

метрики. Эти метрики отражают минимальную «стоимость преобразования» одной гисто-

граммы в другую. Пусть имеется некоторая базовая метрика 𝑑𝐸(𝑖, 𝑗), 𝑖 ∈ {1, . . . , 𝑁}, 𝑗 ∈

{1, . . . ,𝑀}. Значение 𝑖-го элемента гистограммы 𝐻(1) равно ℎ
(1)
𝑖 , аналогично значение 𝑗-го

элемента 𝐻(2) равно ℎ
(2)
𝑗 . Тогда EMD-метрика определяется следующим образом:

𝐸𝑀𝐷(𝐻(1), 𝐻(2)) = min
ℎ𝑖𝑗

∑︁
𝑖=1,...,𝑁

∑︁
𝑗=1,...,𝑀

ℎ𝑖𝑗𝑑𝐸(𝑖, 𝑗),

∑︁
𝑖=1,...,𝑁

ℎ
(1)
𝑖 = 1,

∑︁
𝑗=1,...,𝑀

ℎ
(2)
𝑗 = 1,

∑︁
𝑖=1,...,𝑁

∑︁
𝑗=1,...,𝑀

ℎ𝑖𝑗 = 1,

∀𝑖, 𝑗 : ℎ𝑖𝑗 > 0, ℎ
(1)
𝑖 =

∑︁
𝑗=1,...,𝑀

ℎ𝑖𝑗, ℎ
(2)
𝑗 =

∑︁
𝑖=1,...,𝑁

ℎ𝑖𝑗.

Стоит отметить, что в общем случае вычисление данного расстояния требует решения за-

дачи линейного программирования. Однако если гистограммы являются дискретными, од-

номерными и нормированными на единицу, как в данном случае, вычисления существенно

упрощаются. Если в качестве базовой метрики выбрать 𝐿1-метрику, то расстояние 𝐸𝑀𝐷𝐿1

вычисляется следующим образом:

𝐸𝑀𝐷𝐿1(𝐻(1), 𝐻(2)) =

∫︁ +∞

−∞
|𝐹 (𝑥) −𝐺(𝑥)|d𝑥.

Здесь 𝐹 (𝑥), 𝐺(𝑥) — функции распределения для 𝐻(1)(𝑥𝑖) и 𝐻(2)(𝑦𝑗):

𝐹 (𝑥) =

∫︁ 𝑥

−∞
𝐻(1)(𝑡)d𝑡, 𝐺(𝑥) =

∫︁ 𝑥

−∞
𝐻(2)(𝑡)d𝑡.

Таким образом, возможно вычисление данного расстояния за линейное относительно разме-

ров гистограмм время.

Для сравнения спектров двух изображений с учётом результатов работы [30] автором

выбрана 𝐸𝑀𝐷𝐿1-метрика.

Ломаная. Соединяет особые точки контура ладони: 5 концов пальцев и 4 точки на контуре

между пальцами (рис. 26). Выделение этих точек несложно делается на основе семантической
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Рис. 26: Ломаная — признак на основе формы.

разметки ладони (раздел 3.4.3) и подробно описано в [61]. Для единообразия со статьёй будем

считать, что пальцы нумеруются последовательно, начиная с 1.

Пусть 𝑇1, 𝑇2, . . . , 𝑇9 — последовательные вершины ломаной, и 𝛾𝑖 = |𝑇𝑖𝑇𝑖+1|, 𝑖 = 1, . . . , 8

длины соответствующих сегментов, 𝛾 =
∑︀8

𝑖=1 𝛾𝑖 — общая длина. Вектор признаков тогда

определён как 𝑉 =
(︁

𝛾1
𝛾
, 𝛾2

𝛾
, . . . , 𝛾8

𝛾

)︁
. Мерой различия между двумя векторами признаков 𝑉 (1)

и 𝑉 (2) является евклидово расстояние 𝜌𝜀(𝑉
(1), 𝑉 (2)).

Кривизна пальцев. Мера кривизны пальцев строится следующим образом (рис. 27).

Рис. 27: Кривизна пальцев — признак на основе формы.
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Продолжим использовать последовательную нумерацию пальцев, начиная с 1. Для каж-

дого пальца с номером 𝑖 = 1, . . . , 5 на непрерывном скелете находятся основание 𝐴𝑖 и конец

𝐵𝑖 (раздел 3.4.3). Затем, для ветви скелета 𝐴𝑖𝐵𝑖 находятся точки, лежащие на максимальном

удалении от отрезка 𝐴𝑖𝐵𝑖 справа (точка 𝑅𝑖) и слева (точка 𝐿𝑖). Пусть 𝛿𝑖 — расстояние между

𝐴𝑖𝐵𝑖 и 𝑅𝑖, а 𝜀𝑖 — расстояние между 𝐴𝑖𝐵𝑖 и 𝐿𝑖 и 𝜂𝑖 = |𝐴𝑖𝐵𝑖| — длина отрезка. Если правее

(левее) отрезка 𝐴𝑖𝐵𝑖 нет точек, то соответствующие расстояния 𝛿𝑖 (𝜀𝑖) принимают нулевые

значения. Тогда вектор 𝑊 =
(︁

𝛿1
𝜂1
, 𝜀1
𝜂1
, 𝛿2
𝜂2
, 𝜀2
𝜂2
, . . . , 𝛿5

𝜂5
, 𝜀5
𝜂5
,
)︁
есть вектор кривизны пальцев.

Мерой различия между двумя векторами признаков 𝑊 (1) и 𝑊 (2) является евклидово

расстояние 𝜌𝜀(𝑊
(1),𝑊 (2)).

3.5.3 Локализация области кожных складок на пальце

С помощью семантической разметки (раздел 3.4.3), полученной на этапе детектирова-

ния, на изображении ладони выделяются области, содержащие пальцы. А именно, для каж-

дого пальца в качестве такой области выступает трапеция, которая строится следующим

образом (рис. 28).

Через точку основания пальца проводится отрезок, перпендикулярный оси пальца и име-

ющий длину, равную диаметру круга основания. Через вершину пальца проводится парал-

лельный ему отрезок с длиной 80% от длины первого отрезка. Такой выбор длины позволяет

избежать искажения текстуры при дальнейших преобразованиях, и в то же время не захва-

тывать большие участки фона. Эти отрезки формируют основания трапеции. Полученная

трапеция далее подвергается перспективному преобразованию, приводящему ее к прямо-

угольнику фиксированного размера 96 × 480 пикселей.

После нормализации можно переходить непосредственно к поиску области кожных скла-

док (рис. 29). Так как освещение может меняться в широких пределах (в частности, может

быть неравномерным), применяется предобработка изображения, улучшающая контраст-

ность и увеличивающая качество извлекаемых признаков. К полученному изображению

применяется адаптивное выравнивание гистограммы яркости с ограниченным контрастом

(Contrast Limited Adaptive Histogram Equalization, CLAHE) [62].

Далее изображение инвертируется, из результата вычитается медиана по всему изоб-

ражению (пиксели с отрицательными значениями полагаются равными 0) и сглаживается

фильтром Гаусса (рис. 29(b)–(d)). Это позволяет убрать шумы в однородных областях изоб-

ражения. Для точного поиска области кожных складок используется детектор границ Канни

(Canny) [63] — рис. 29(e). К полученному изображению применяется детектор границ, ре-
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зультатом работы которого является бинарное изображение, ненулевые пиксели которого

обозначают найденные границы. Назовём его изображением границ.

Для фиксированного размера окна поиска назовём плотностью границ количество

ненулевых пикселей на изображении границ внутри данного окна. Поиск области складок

проводится только в одном направлении — вдоль вертикали изображения границ (рис. 29(f)),

из которого удалены «короткие» (менее 32 пикселей длиной) компоненты связности: по сре-

динной оси (жёлтая линия) перемещается окно поиска (красный прямоугольник 24 × 144

пикселей), и вычисляется плотность границ в данном окне. Точка, являющаяся центром ок-

на с максимальной плотностью границ (обозначена зелёным), выбирается в качестве центра

искомой области. Во время поиска центр окна не выходит за пределы верхней половины изоб-

ражения пальца — по анатомическим причинам, так как нас интересуют кожные складки

сустава на стыке первой и второй фаланг пальца. Искомая область кожных складок раз-

мером 𝑊𝑓𝑘𝑝 × 𝐻𝑓𝑘𝑝 = 96 × 144 пикселей однозначно определяется положением центра окна

поиска (зелёный прямоугольник на рис. 29(a)), после чего выделяется в отдельное изобра-

жение.

Сделано следующее наблюдение — если плотность границ меньше некоторого значения,

то, как правило, это свидетельствует об изображении плохого качества (например, расфоку-

сированом). Генерация признаков по такому изображению не имеет смысла. Поэтому, если

хотя бы для одного пальца плотность границ при поиске области интереса меньше некото-

рого порога, всё изображение исключается из дальнейшей обработки. Стоит отметить, что

такие изображения весьма редко встречаются при работе системы (от 0 до 4 изображений на

400 кадров) — проверка на расфокусированные кадры (раздел 3.4.4) на этапе детектирования

кардинально уменьшает их количество.
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Рис. 28: Извлечение и нормализация области пальца. Область, ограниченная трапецией бе-

лого цвета, проективным преобразованием приводится к прямоугольнику 96× 480 пикселей.

(a) (b) (c) (d) (e) (f)

Рис. 29: Стадии процедуры локализации области кожных складок на пальце: a — исходное

нормализованное изображение, b — выравнивание гистограммы яркости методом CLAHE,

c — инверсия и вычитание медианы, d — сглаживание фильтром Гаусса, e — применение

детектора границ Канни, f — поиск области интереса (красное окно с зелёным центром).
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3.5.4 Извлечение текстурных признаков на базе фильтра Габора

Двумерный фильтр Габора широко используется в анализе изображений для извлечения

локальных особенностей, имеющих квазипериодическую структуру. Классическим примером

является его применение для распознавания по отпечаткам пальцев. Следует отметить, что

кожные складки внешней стороны пальца также имеют квазипериодическую структуру, при

этом они визуально различимы на изображениях с низкой разрешающей способностью (раз-

дел 2.2), с которыми идёт работа.

Метод кодирования локальной информации об ориентации. В настоящей работе

используется та же основная идея по извлечению локальной информации об ориентации с

помощью семейства двумерных фильтров Габора, что и в методе CompCode [23], предло-

женном для распознавания по рисунку ладони. Рассмотрим её подробнее. Фильтр Габора —

линейный фильтр, импульсная характеристика которого имеет вид функции, представляю-

щей собой произведение Гауссовой и гармонической функций:

𝐺𝑅(𝑥, 𝑦;𝜆, 𝜃, 𝜙, 𝜎, 𝛾) = exp

(︂
− 𝑥′2 + 𝛾2𝑦′2

2𝜎2

)︂
cos

(︂
2𝜋

𝑥′

𝜆
+ 𝜙

)︂
,

где

𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃, 𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃.

Согласно другой интерпретации, выше представлена действительная часть комплексной

функции Габора. Далее в работе под словами «фильтр Габора» и «функция Габора» мы

будем понимать именно функцию 𝐺𝑅. Смысл параметров фильтра следующий:

∙ 𝜎 — стандартное отклонение Гауссова ядра, отвечает за амплитуду фильтра;

∙ 𝜆 определяет длину волны гармонической части фильтра;

∙ 𝜃 — угол поворота фильтра;

∙ 𝛾 определяет форму фильтра. Чем ближе значение к единице, тем менее вытянутую

форму имеет фильтр;

∙ 𝜙 — фаза фильтра.

Также приведём вид одномерного фильтра Габора:

𝐺(𝑥;𝜆, 𝜙, 𝜎) = exp

(︂
− 𝑥2

2𝜎2

)︂
cos

(︂
2𝜋

𝑥

𝜆
+ 𝜙

)︂
.

Смысл параметров одномерного фильтра аналогичен двумерному случаю.
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Указанная выше функция экспоненты обладает свойствами нормального распределения

случайной величины. Согласно правилу трёх сигм, практически все значения экспоненты

лежат в интервале [−3𝜎, 3𝜎] — правило трёх сигм (рис. 31). В задачах анализа сигналов

значения функции, зачастую, рассчитываются только в указанных пределах.

Рис. 30: Одномерный фильтр Габора с параметрами 𝜆 = 1, 𝜙 = 0, 𝜎 = 1. Вертикальные

пунктирные линии ограничивают область |𝑥| < 3𝜎.

Структура двумерного фильтра Габора позволяет адаптировать его для извлечения

информации о характере кожных складок на изображении: их толщине и направлении.

Выполним свёртку изображения с несколькими фильтрами, имеющими разные ориентации.

Значением признака 𝐹 (𝑥, 𝑦) в данной точке (𝑥, 𝑦) изображения 𝐼 является номер фильтра с

минимальным откликом:

𝐹 (𝑥, 𝑦) = arg min
𝑗

{𝐼(𝑥, 𝑦) *𝐺𝑅(𝑥, 𝑦;𝜆, 𝜃𝑗, 𝜙, 𝜎, 𝛾)},

где 𝐼(𝑥, 𝑦) — окрестность изображения с центром в точке (𝑥, 𝑦); 𝜃𝑗 — угол поворота

фильтра, 𝜃𝑗 = 𝑗𝜋/𝐽, 𝑗 = 0, . . . , 𝐽−1, 𝐽 — количество различных ориентаций. При выборе 𝐽 = 6

(обусловлено адаптацией теории вейвлетов к физиологическим особенностям человека [64])

при прочих фиксированных параметрах получается семейство из 6 разноориентированных

фильтров (рис. 32(a) или (b)).

Модификация метода. Для адаптации изложенного метода кодирования локальной ин-

формации об ориентации под поставленную задачу идентификации личности по изображе-

нию внешней стороны ладони внесены следующие изменения.
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1. Используется два семейства фильтров Габора с разными параметрами 𝜎 и 𝜆, чтобы

учесть текстурные особенности с разным характерным размером (с помощью «эпох» —

рис. 32).

2. Вместо вектора признаков с длиной, равной количеству пикселей в области кожных

складок пальца, используется значения 𝐹 (𝑥, 𝑦) в вершинах равномерной прямоугольной

сетки. Это позволяет существенно сократить размер вектора, и, как следствие, время

извлечения и сравнения признаков, сохраняя приемлемый уровень точности классифи-

кации.

3. Для каждого изображения ладони вычисляются текстурные признаки областей кож-

ных складок каждого из трёх пальцев. Сопоставление изображений областей кожных

складок выполняется для каждого из пальцев отдельно, затем полученные значения

расстояний объединяются с помощью функции MIN. Это значительно повышает каче-

ство классификации в сравнении с работой только по одному пальцу.

Далее остановимся подробнее на каждой модификации.

Эпохи. Кожные складки внешней стороны пальца имеют текстурные особенности раз-

ных характерных размеров. При фиксированных параметрах 𝛾0 и 𝜙0 cемейство функций

{𝐺𝑅(𝑥, 𝑦;𝜆1, 𝜃𝑗, 𝜙0, 𝜎1, 𝛾0), 𝑗 = 0, . . . , 5} назовём первой эпохой (определяется параметрами

𝜎1, 𝜆1), {𝐺𝑅(𝑥, 𝑦;𝜆2, 𝜃𝑗, 𝜙0, 𝜎2, 𝛾0), 𝑗 = 0, . . . , 5} — второй эпохой (определяется параметрами

𝜎2, 𝜆2).

Морщины пальцев обладают выраженной периодичностью, что описывается парамет-

ром 𝜆, входящим в гармоническую часть функции Габора. Как правило, расстояния меж-

ду крупными морщинами имеют характерный физический размер 2-3 мм., сами морщины

обладают толщиной около 1-2 мм. Учитывая реальные физические размеры ширины паль-

цев (15–30мм) и ширину изображения кожных складок (96 пикселей), выделение этих осо-

бенностей обеспечивается эпохами с параметрами 𝜎1 = 4.5, 𝜆1 = 2.4 * 𝜎1 * 𝑘1, 𝑘1 = 10 и

𝜎2 = 2, 𝜆2 = 2.4 * 𝜎2 * 𝑘2, 𝑘2 = 2. Значения 𝑘1 и 𝑘2 были определены по Базе-2 (раздел 4.2.2)

при обучении метода (раздел 4.3). На рис. 32 отображены эпохи, на рис. 31 приведены одно-

мерные фильтры Габора с параметрами эпох.

Параметры 𝛾0 = 0.5 (морщины имеют вытянутую форму) и 𝜙0 = 0 (необходимости

в сдвиге по фазе нет) заданы экспертно. Согласно правилу трёх сигм значения гауссианы

близки к нулю на расстоянии большем 3𝜎 от начала координат, поэтому размер окна свёртки
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𝑆𝑥 × 𝑆𝑦 для первой эпохи выбирается равным ⌊2 * 3𝜎1⌋ × ⌊2 * 3𝜎1 * 𝛾0⌋, а для второй —

⌊2 * 3𝜎2⌋ × ⌊2 * 3𝜎2 * 𝛾0⌋.

Таким образом, изображение описывают два вектора признаков 𝐹1 и 𝐹2, где

𝐹𝑖(𝑥, 𝑦) = arg min
𝑗

{𝐼(𝑥, 𝑦) *𝐺𝑅(𝑥, 𝑦;𝜆𝑖, 𝜃𝑗, 𝜙0, 𝜎𝑖, 𝛾0)}, 𝜃𝑗 = 𝑗𝜋/6, 𝑖 ∈ {1, 2}, 𝑗 = 0, . . . , 5.

Рис. 31: Одномерные фильтры Габора с параметрами эпох: 𝜎1 = 4.5, 𝜆1 = 4.8 * 𝜎1 (синий) и

𝜎2 = 2.0, 𝜆2 = 24 * 𝜎2 (зелёный). Вертикальные пунктирные линии соответствующего цвета

ограничивают области трёх сигм для каждого из графиков.

(a) Первая эпоха.

(b) Вторая эпоха.

Рис. 32: Визуализация используемых двумерных фильтров Габора.
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Стоит также отметить, что для работы с локальными особенностями складок пальцев

размером 1 мм. вполне достаточно DPI порядка 100, достигаемого при съёмке внешней сто-

роны руки с разрешением 1280 × 960 пикселей (раздел 2.2).

Сетка. Вторая модификация состоит в том, что для получения векторов признаков каждой

из эпох используются не все пиксели изображения кожных складок, а только их часть. А

именно, пусть 𝑆𝑥 × 𝑆𝑦 пикселей — размер окна фильтра, (𝑂𝑥, 𝑂𝑦) — стартовое смещение

относительно начала координат изображения кожных складок. Тогда точки сетки, в которых

берутся значения признака для конкретной эпохи, будут следующими:

𝑃 (𝑗, 𝑖) = (𝑂𝑥 + 𝑗 * 𝑆𝑥/2, 𝑂𝑦 + 𝑖 * 𝑆𝑦/2), 𝑖 = 0, 1, . . . ,
2 *𝐻𝑓𝑘𝑝

𝑆𝑦

; 𝑗 = 0, 1, . . . ,
2 *𝑊𝑓𝑘𝑝

𝑆𝑥

,

где, как упоминалось выше, 𝐻𝑓𝑘𝑝 и 𝑊𝑓𝑘𝑝 — высота и ширина изображения кожных складок.

Как показали эксперименты, такая модификация не ухудшает качество классификации, од-

нако существенно уменьшает время сравнения пары признаков. Это является критически

важным для системы реального времени.

Для первой эпохи мы получим 3 × 11 = 33 узла сетки (и такую же длину 𝑁1 вектора

признаков 𝐹1), для второй — 8×24 = 192 узла сетки (и такую же длину 𝑁2 вектора признаков

𝐹2). Визуализация предлагаемого метода приведена на рис. 33. Для отображения значений

𝐹 (𝑥, 𝑦) использованы оттенки серого от чёрного (0) к белому (1).

Рис. 33: Два примера формирования векторов признаков на базе эпох. Слева в верхем ряду —

исходное изображение кожных складок; далее в верхнем ряду цветом пикселей показаны

значения 𝐹 (𝑥, 𝑦) для первой и второй эпох; в нижнем ряду красным отмечены узлы сетки

для первой и второй эпох соответственно, цветом ячеек показаны значения 𝐹 (𝑥, 𝑦) в узлах

сетки.
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3.5.5 Сравнение на основе Габор-признаков

При сравнении текстурных признаков применяется расстояние, учитывающее круговую

природу ориентации в каждой точке. Пусть есть два вектора 𝑓 (1) и 𝑓 (2) размерности 𝑁 ,

содержащие Габор-признаки на базе одной из эпох для двух сравнимаемых изображений

кожных складок. Расстояние между ними будет равно:

𝐺𝐷𝑖𝑠𝑡(𝑓 (1), 𝑓 (2)) =
1

3𝑁

𝑁∑︁
𝑗=1

min{𝑑𝑗, 6 − 𝑑𝑗}, 𝑑𝑗 = |𝑓 (1)
𝑗 − 𝑓

(2)
𝑗 |.

Чтобы компенсировать ошибки поиска области кожных складок, при сопоставлении век-

торов признаков конкретной эпохи выполняются сдвиги вверх-вниз точек сетки, в которых

берутся значения признаков. В настоящей работе шаг сдвига равен 3 пикселя, использует-

ся 3 сдвига вверх и 3 вниз. В качестве результирующего расстояния по конкретной эпохе

𝐺𝑆ℎ𝑖𝑓𝑡𝐷𝑖𝑠𝑡(𝑓 (1), 𝑓 (2)) берётся минимальное расстояние, полученное при попарных сдвигах

векторов признаков относительно друг друга.

Обозначим за 𝐺𝑆ℎ𝑖𝑓𝑡𝐷𝑖𝑠𝑡𝑘𝑖 расстояние между парой изображений кожных складок паль-

ца 𝑖 на базе эпохи 𝑘. Тогда расстояние по Габор-признакам между изображениями кожных

складок пальца 𝑖 вычисляется следующим образом:

𝐺𝑆ℎ𝑖𝑓𝑡𝐷𝑖𝑠𝑡𝑖 = 𝐺𝑆ℎ𝑖𝑓𝑡𝐷𝑖𝑠𝑡1𝑖 + 𝛼𝑔 *𝐺𝑆ℎ𝑖𝑓𝑡𝐷𝑖𝑠𝑡2𝑖 , 𝑖 ∈ {1, 2, 3},

где 𝛼𝑔 — настраиваемый во время обучения параметр.

3.5.6 Сравнение на основе SIFT-признаков

Масштабно-инвариантная трансформация признаков (scale-invariant feature transform,

SIFT) [65] — алгоритм выявления и описания локальных особенностей на изображении.

Метод состоит из двух основных этапов: детектирования ключевых точек и их описания

с помощью числовых векторов, называемых дескрипторами. Дескриптор SIFT инвариантен

к масштабированию, изменению ориентации, изменению освещённости и частично инвари-

антен аффинным искажениям. В силу озвученных свойств его часто применяют в задачах

машинного зрения (распознавание жестов, трекинг, трёхмерная реконструкция и т. д.).

В разделе 3.5.3 описан алгоритм локализации кожных складок на пальце, основным

результатом которого является нормализованное изображение 𝑊𝑓𝑘𝑝×𝐻𝑓𝑘𝑝 пикселей найден-

ной области. Далее на сравниваемых изображениях строятся дескрипторы SIFT (рис. 34),

которые используются для вычисления меры различия между пальцами описанным ниже

способом.
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Пусть найдено 𝑛1 ключевых точек на первом изображении 𝐼1 области кожных складок

пальца и 𝑛2 — на втором изображении 𝐼2.

Обозначим 𝑠1 = {(𝑝11, 𝑑
1
1), (𝑝

1
2, 𝑑

1
2), . . . , (𝑝

1
𝑛1
, 𝑑1𝑛1

)} — множество пар ключевых точек и соот-

ветствующих дескрипторов для первого изображения, 𝑠2 = {(𝑝21, 𝑑
2
1), (𝑝

2
2, 𝑑

2
2), . . . , (𝑝

2
𝑛2
, 𝑑2𝑛2

)} —

для второго изображения. Для каждого дескриптора 𝑑1𝑖 ключевой точки 𝑝1𝑖 на одном изоб-

ражении вычисляется ближайший дескриптор на втором, в качестве метрики используется

расстояние Евклида (в 128-мерном пространстве):

(𝑝2𝑖*, 𝑑
2
𝑖*) = arg min

(𝑝2,𝑑2)∈𝑠2
|𝑑1𝑖 − 𝑑2|

Затем выполняется фильтрация полученных пар с целью отсеять ложные соответствия.

В первую очередь, для каждого дескриптора 𝑑1𝑖 проверяется, насколько сильно расстоя-

ние 𝐷𝑖𝑠𝑡1𝑛𝑛 = |𝑑1𝑖 −𝑑2𝑖*| до ближайшего соседа 𝑑2𝑖* отличается от расстояния 𝐷𝑖𝑠𝑡2𝑛𝑛 до второго

ближайшего:

𝐷𝑖𝑠𝑡2𝑛𝑛 = min
(𝑝2,𝑑2)∈𝑠2;
𝑑2 ̸=𝑑2𝑖*

|𝑑1𝑖 − 𝑑2|.

Если отношение этих расстояний больше 0.8 (определено эмпирически), то соответствие

неустойчиво, и участвующие точки недостаточно отличаются от остальных. Такие точки

исключаются из рассмотрения. Пусть после фильтрации осталось 𝑛 пар ключевых точек с

соответствующими дескрипторами.

В силу особенностей построения предполагается только линейный сдвиг нормализован-

ных изображений кожных складок друг относительно друга — нормализация устраняет несо-

ответствия в масштабе, а жёсткость пальца вдоль своей оси позволяет исключить влияние

поворотов. Поэтому геометрические расстояния между координатами соответствующих клю-

чевых точек на изображении 𝑝1𝑖 = (𝑥1
𝑖 , 𝑦

1
𝑖 ) и 𝑝2𝑖 = (𝑥2

𝑖 , 𝑦
2
𝑖 ) должны отличаться на одну и ту

же величину. В качестве оценки этой величины выбрана медиана указанных расстояний по

всем соответствиям:

𝑀 = 𝑚𝑒𝑑𝑖𝑎𝑛({|𝑝1𝑖 − 𝑝2𝑖*|, 𝑖 = 1, 2, . . . , 𝑛})

Пары точек, абсолютное отклонение расстояния внутри которых 𝐷𝑖𝑠𝑡𝑔𝑒𝑜𝑚𝑖 = |𝑝1𝑖 − 𝑝2𝑖*| от

медианы |𝐷𝑖𝑠𝑡𝑔𝑒𝑜𝑚𝑖 −𝑀 | больше 10 (определено эмпирически), отбрасываются.

Аналогично рассматриваются направления векторов 𝑣𝑖 = 𝑝1𝑖 − 𝑝2𝑖*. Проверяется, что

все направления этих векторов примерно совпадают. Для этого вычисляется медиана всех

направлений:

𝐴 = 𝑚𝑒𝑑𝑖𝑎𝑛({𝑎𝑛𝑔𝑙𝑒(𝑣𝑖), 𝑖 = 1, 2, . . . , 𝑛}),
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где функция 𝑎𝑛𝑔𝑙𝑒(𝑣) вычисляет направление вектора. После этого отбрасываются пары, у

которых угол 𝑎𝑛𝑔𝑙𝑒(𝑣𝑖) отличается от медианы 𝐴 больше 𝜋/20 (определено эмпирически).

Если после фильтрации осталось достаточное количество 𝑛0 пар точек (дескрипторов),

считается, что это изображения одного и того же пальца. Расстояние между двумя изобра-

жениями кожных складок пальцев тогда имеет следующий простой вид:

𝑆𝐷𝑖𝑠𝑡(𝐼1, 𝐼2) =

⎧⎪⎨⎪⎩0, если 𝑛0 > 𝑛𝑝𝑎𝑖𝑟𝑠;

1, иначе.

где 𝑛𝑝𝑎𝑖𝑟𝑠 — пороговое значение, которое может выставляться экспертно (во время исследова-

ния в некоторых экспериментах использовано фиксированное значение 10) или настраивать-

ся во время обучения на конкретной базе ладоней. За 𝑆𝐷𝑖𝑠𝑡𝑖 обозначим расстояние между

двумя изображениями кожных складок пальца 𝑖.

(a) (b) (c) (d)

(e) (f) (g) (h)

Рис. 34: Процедура сопоставления SIFT-дескрипторов для нормализованных изображений

кожных складок пальцев. В верхнем ряду на любом изображении в поиске соответствия

участвуют области кожных складок одного и того же человека, в нижнем ряду — разных

людей.

3.5.7 Сравнение на основе текстурных признаков

Итоговое расстояние между парой изображений кожных складок пальца 𝑖 с использо-

ванием Габор- и SIFT-признаков вычисляется так:

𝐷𝑖𝑠𝑡𝑖 = 𝐺𝑆ℎ𝑖𝑓𝑡𝐷𝑖𝑠𝑡𝑖 + 𝛼𝑠𝑆𝐷𝑖𝑠𝑡𝑖,

где 𝛼𝑠 —настраивамый во время обучения параметр. Итоговое расстояние между изображе-

ниями ладоней получается с помощью функции MIN из попарных расстояний между изоб-
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ражениями кожных складок каждого из трёх пальцев:

𝐷𝑖𝑠𝑡 = 𝑚𝑖𝑛{𝐷𝑖𝑠𝑡1, 𝐷𝑖𝑠𝑡2, 𝐷𝑖𝑠𝑡3}.

В качестве классификатора в работе используется метод ближайшего соседа (1NN) с

функцией расстояния 𝐷𝑖𝑠𝑡.

3.5.8 Выводы к разделу 3.5

Предложен метод точного выделения маски ладони на снимке, использующий сегмента-

цию на основе разрезов графов вместе с априорной информацией о пикселях фона и объекта,

полученной на этапе детектирования.

Описаны признаки формы ладони (кривизна пальцев, ломаная, спектр), которые мо-

гут быть полезны при последующей классификации. Они вычисляются на основе точной

сегментации. Приведены метрики для сравнения объектов на основе каждого из указанных

признаков и их комбинации.

Представлен метод локализации области кожных складок на пальце, использующий се-

мантическую разметку ладони.

Разработаны методы извлечения признакового описания из изображения области кож-

ных складок внешней стороны пальца, а также предложены способы сравнения объектов на

основе полученного признакового описания.

Первый метод для первичного кодирования информации о локальной ориентации тек-

стурных особенностей в точке изображения использует семейство двумерных фильтров

Габора с различными ориентациями. Можно выделить следующие особенности предложенно-

го метода. Для учёта особенностей текстуры кожных складок пальца с разным характерным

размером предложены два семейства фильтров Габора с различными параметрами 𝜎, 𝜆, на-

зываемых эпохами. С их помощью формируются два (по числу эпох) вектора признаков,

значения элементов которых вычисляются в узлах равномерной сетки (размер ячейки равен

равен размеру окна фильтра для соответствующей эпохи). В качестве вектора признаков бе-

рутся значения карты ориентаций в узлах сетки, размер ячейки которой равен размеру окна

фильтров из соответствующей эпохи. При сравнении векторов признаков двух изображений

кожных складок пальцев в рамках одной эпохи их сопоставление происходит с помощью

специальной функции расстояний, учитывающей угловую природу признаков. Для мини-

мизации влияния неточностей, связанных с локализацией областей кожных складок паль-

цев, выполняются попарные сдвиги (в контексте равномерной сетки) векторов признаков и
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ищется минимальное расстояние. Итоговое Габор-расстояние между изображениями кожных

складок является линейной комбинацией расстояний (с учётом сдвигов) по каждой из эпох.

Второй метод основан на дескрипторах ключевых точек SIFT. При сравнении двух изоб-

ражений кожных складок пальца ищутся соответствия между дескрипторами. Если после

окончания алгоритма поиска и фильтрации осталось достаточное количество пар, то SIFT-

расстояние между изображениями принимается за 0 (принадлежат одному и тому же чело-

веку), иначе — 1.

Для вычисления итогового расстояния между двумя изображениями внешней стороны

ладони предложена функция расстояний, объединяющая результаты сравнения изображений

кожных складок каждого из пальцев на основе Габор- и SIFT-признаков.

3.6 Выводы к главе 3

Задача биометрической идентификации личности по изображению внешней стороны ла-

дони рассмотрена в рамках методологии машинного обучения.

Предложено разделить задачу идентификации по ладони на задачи детектирования и

распознавания. Это связано как с ограниченными вычислительными возможностями мобиль-

ных устройств, так и с необходимостью обеспечить безопасность хранимых биометрических

признаков.

Сформулировано понятие корректной ладони. Предложен метод детектирования ладо-

ни, состоящий из нескольких основных шагов: «быстрой» сегментации; построения скелет-

ного представления, сементической разметки и проверки ладони на корректность; опреде-

ления расфокусированных кадров; формирования данных для последующей отправки в мо-

дуль распознавания. Эффективная реализация позволяет работать с кадрами видеопотока

на стороне клиента (мобильного устройства).

Разработан метод распознавания ладони, который выполняет извлечение признакового

описания и сравнение его имеющимися в базе образцами. В него вошли: метод «точной»

сегментации ладони на основе разрезов в графах и априорной информации с этапа детек-

тирования; метод локализации области кожных складок на пальце на основе семантической

разметки ладони; методы сравнения изображений кожных складок пальца на основе дву-

мерных фильтров Габора и на базе дескрипторов SIFT; функция расстояний между дву-

мя изображениями внешней стороны ладони на основе Габор- и SIFT-признаков отдельных

пальцев.
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4 Экспериментальное исследование методов детектиро-

вания и распознавания

4.1 Оборудование

Разработанная система идентификации по ладони тестировалась на мобильных устрой-

ствах из среднего ценового диапазона:

∙ планшет Samsung Galaxy Note 10.1 на базе операционной системы (ОС) Android 4.1,

четырёхъядерного процессора Samsung Exynos 4412 1.4 ГГц и 2 Гб оперативной памяти

(далее — Устройство-1);

∙ смартфон LG G2 на базе ОС Android 4.4, четырёхъядерного процессора Qualcomm

Snapdragon 800 2.26 ГГц и 2 Гб оперативной памяти (далее — Устройство-2);

∙ смартфон Samsung Galaxy S5 на базе ОС Android 5.0, четырёхъядерного процессора

Qualcomm Snapdragon 801 2.5 ГГц и 2 Гб оперативной памяти (далее — Устройство-3).

В качестве сервера использовался ноутбук на базе ОС Ubuntu 12.04, четырёхъядерного

процессора Intel Core i7 2.4 ГГц и 6 Гб оперативной памяти.

4.2 Базы изображений

Для тестирования созданы собственные базы изображений тыльной стороны ладони.

База-1 собрана в рамках этапа исследования, посвящённому методу детектирования ла-

дони из кадров видеопотока [2], [3], [8].

Во время сбора Базы-1 уделено недостаточное внимание резкости собираемых изобра-

жений, поскольку изначально предполагалась работа метода распознавания исключительно

на основе признаков формы. В связи с этим, на этой базе методы распознавания по тексту-

рам кожных складок пальцев показали слабые результаты. Как результат, автором создана

новая база (далее — База-2), в которой требуемые участки ладони находятся в фокусе каме-

ры. Изначально в базу вошли 280 корректных изображений (см. определение в разделе 3.3)

тыльной стороны левой ладони 40 человек, при этом произвёден итоговый экспертный отбор

снимков — так, чтобы в рамках одного человека изображения ладони максимально попарно

отличались друг от друга. На Базе-2 успешно опробованы методы распознавания по тексту-

рам [5], [6].
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К моменту проведения финальных вычислительных экспериментов, изложенных в те-

кущей главе, База-2 дополнена до 502 изображений 48 человек.

Помимо Базы-1 качество детектирования проверено на базе HGC сканированных изоб-

ражений внутренней стороны ладони.

Результаты распознавания получены не только на Базе-2, но также и на базе

PolyU HD (база изображений тыльной стороны ладони от Гонконгского Политехнического

Университета).

Далее приведено более детальное описание баз изображений ладони, использованных в

ходе исследовательской работы.

4.2.1 База-1

База содержит 2322 изображения тыльной стороны правой ладони 50 человек, которые

получены при разложении 80 видео на кадры с их последующим прореживанием и дальней-

шей разметкой экспертом на корректные и некорректные. Кадры, сильно размытые из-за

движений рукой испытуемым, из базы исключались. Отношение числа изображений с кор-

ректными ладоням к числу изображений с некорректными и отсутствующими — 1 к 1.

Съёмка видео осуществлена с помощью Устройства-1 и Устройства-2, разрешение —

1920×1080 или 1280×720 пикселей. Примеры изображений приведены на рис. 35. Данная база

применялась для настройки структурных параметров метода детектирования — например,

статистики граничного коридора, величин порогов в пороговых проверках (раздел 3.4.3).

При съёмке требовалось соблюдение следующих условий:

1. в качестве фона выступает тёмная матовая поверхность;

2. ладонь достаточно освещена рассеянным источником — в противном случае в прило-

жении необходимо активировать режим работы со встроенной вспышкой;

3. отсутствуют длинные рукава, кольца, часы, браслеты и других посторонние предметы;

4. ладонь прижата к поверхности, плоскость ладони ортогональна оси визирования (съём-

ки).

Пользователю разрешалось двигать ладонью и пальцами в кадре, избегая резких движе-

ний, — в частности, убирать из кадра ладонь и возвращать её обратно, сводить и разводить

пальцы и т. д. Движения камерой оператором по возможности исключались — в частности,

большинство видео сняты Устройством-1, закрепленным статично (рис. 36a).
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(a) Корректные изображения.

(b) Некорректные изображения.

Рис. 35: Примеры изображений Базы-1.

(a) Съёмка со статичной камерой. (b) Съёмка «с руки».

Рис. 36: Примеры экспериментальных установок системы идентификации по ладони.

4.2.2 База-2

База содержит 502 валидных изображения тыльной стороны левой ладони 48 человек

(рис. 37 и 40a) — преимущественно студентов двух групп ВМК МГУ. Для валидации приме-

нялся алгоритм детектирования (раздел 3.4), настроенный на Базе-1, — т. е. помимо провер-

ки на корректность присутствовала и проверка на расфокусированность. Съёмка выполнена

разработанным мобильным приложением для идентификации по ладони (главу 5) с помощью
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Устройства-2 и Устройства-3 в реальных условиях эксплуатации системы. Каждый человек

участвовал минимум в трёх различных конфигурациях условий cъёмки (освещение, фон, мо-

бильное устройство). На финальном этапе экспертом исключены визуально похожие между

собой снимки одного человека, чтобы максимизировать вариабельность образцов в пределах

одного испытуемого. При съёмке требовалось соблюдение следующих условий:

1. в качестве фона выступает тёмная матовая поверхность;

2. ладонь достаточно освещена рассеянным источником — в противном случае в прило-

жении необходимо активировать режим работы со встроенной вспышкой;

3. ладонь вместе с частью запястья расположена целиком в кадре, пальцы расставлены;

4. отсутствуют длинные рукава, кольца, часы, браслеты и других посторонние предметы;

5. камера при съёмке сфокусирована на средних фалангах пальцев;

6. движения ладонью и пальцами во время процедуры идентификации минимизирова-

ны — либо совершаются медленно, либо не совершаются вообще;

7. ладонь расслаблена и прижата к поверхности, плоскость ладони примерно (допустимы

и приветствуются отклонения до 30∘) ортогональна оси визирования (съёмки).

Условия 1, 2 обеспечивают приемлемое качество сегментации на этапе детектирования (раз-

дел 3.4). Условия 3, 4 соответствуют аналогичным в определении корректной ладони (раз-

дел 3.3), так как при отсутствии корректных кадров в видеопотоке модулю распознавания

будет не с чем работать. Условия 5, 6 помогают понизить число расфокусированных («сма-

занных») снимков, которые непригодны для работы метода распознавания по текстурам

внешней стороны пальцев. Такие кадры в некотором количестве всё равно будут присут-

ствовать в видеопотоке, и для их отсева разработан специальный алгоритм (раздел 3.4.4).

Заключительное условие 7 способствует уменьшению вариабельности особенностей тексту-

ры и формы ладони в пределах одного человека в силу того, что сильное изменение угла

наклона камеры кардинальным образом влияет на вид ладони на снимке (и, как следствие,

на извлекаемые признаки).

Таким образом, принципы коллаборации, на которых построено взаимодействие пользо-

вателя и системы идентификации, позволяют организационными мерами уменьшить число

непригодных для распознавания снимков. Тем самым, уменьшается время, необходимое для

идентификации одного пользователя, и увеличивается точность распознавания.
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Рис. 37: Примеры изображений Базы-2.

4.2.3 База HGC

В качестве сторонней базы для оценки качества детектирования использовалась

HGC [66], а именно — её тестовая часть. Изображения ладоней получены с помощью ска-

нера. Фон везде тёмный и контрастирует со светлыми ладонями. Разрешение изображений

составляет 510 × 702 пикселей. Стоит отметить, что для данной базы положение руки не

фиксировано, поэтому присутствует много изображений с некорректной ладонью (таблица 4

и рис. 38).

Часть базы
Количество

изображений

Некорректных

изображений

Корректных

изображений

Обучающая (Train) 300 155 145

Тестовая (Test) 160 64 96

Таблица 4: Состав базы HGC.
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(a) Корректные изображения.

(b) Некорректные изображения.

Рис. 38: Примеры изображений базы HGC Test.

4.2.4 База PolyU HD

В качестве сторонней базы для оценки качества распознавания применена бескон-

тактная база изображений тыльной стороны ладони от Гонконгского Политехнического

Университета (англ. The Hong Kong Polytechnic University Contactless Hand Dorsal Images

Database) [67]. Для краткости назовём её PolyU HD. Изображения получены с помощью

зафиксированной цифровой камеры и специального источника освещения, ось визирования

ортогональна плоскости изображения. Фон везде светлый и контрастирует с тёмными ладо-

нями. Разрешение изображений составляет 1600 × 1200 пикселей. Указанная выше публика-
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ция посвящена распознаванию человека по текстуре кожных складок фаланг пальцев, при

этом не на всех изображениях базы ладонь целиком присутствует в кадре.

Так как для работы разработанного автором метода распознавания требуется коррект-

ная ладонь, часть изображений из базы PolyU HD отброшена. В результате, для тестирова-

ния остаётся 165 человек и 931 изображение (рис. 39), от 3 до 12 изображений на человека

(рис. 40). Следует отметить, что у алгоритмов сегментации (как быстрой, так и точной) не

возникает проблем с выделением ладоней на базе PolyU HD.

(a) Корректные изображения

(b) Некорректные изображения

Рис. 39: Примеры изображений базы PolyU HD.
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(a) База-2. (b) PolyU HD.

Рис. 40: Гистограммы количества картинок для баз ладоней. По горизонтальной оси показано

количество картинок на одного человека, а по вертикальной — количество человек.

4.3 Вычислительные эксперименты

Общая схема тестирования. Применяемая в работе оценка качества какого-либо метода

(равно реализующего его алгоритма 𝑎 = 𝑎(𝑥, 𝛾)) системы биометрической идентификации по

ладони построена на принципах машинного обучения (раздел 3.1) и выглядит следующим

образом.

1. Исходная выборка (база) 𝑋𝑛 случайно разбивается на обучающую 𝑋 𝑙 и тестовую непе-

ресекающиеся части𝑋𝑘 (принципы разбиения и соотношения частей могут отличаться).

2. По обучающей выборке 𝑋 𝑙 настраиваются параметры 𝛾𝑡𝑟𝑎𝑖𝑛 алгоритма 𝑎 (если таковые

имеются).

3. На тестовой выборке𝑋𝑘 вычисляется функционал качества𝑄(𝑎(𝑋 𝑙, (𝛾𝑡𝑟𝑎𝑖𝑛, 𝛾𝑠𝑡𝑟𝑢𝑐𝑡)), 𝑋
𝑘) —

например, частота ошибок классификации для задачи идентификации или EER для

задачи верификации.

4. Шаги 1-3 повторяются заданное число раз 𝑝. Для получения итоговой оценки качества

метода значения функционала качества для каждого разбиения выборки суммируются

и делятся на число разбиений 𝑝.

𝛾 = (𝛾𝑡𝑟𝑎𝑖𝑛, 𝛾𝑠𝑡𝑟𝑢𝑐𝑡) — параметры алгоритма 𝑎: 𝛾𝑡𝑟𝑎𝑖𝑛 — вычисляемые по 𝑋 𝑙, 𝛾𝑠𝑡𝑟𝑢𝑐𝑡 — структур-

ные (задаются экспертно или настраиваются внешней процедурой обучения). Разбиение ис-

ходной выборки на обучающую и тестовую части призвано уменьшить эффект переобучения
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(раздел 3.1.2), а усреднение значений функционала качества по числу повторных запусков

снижает зависимость итогового результата от конкретного разбиения.

При тестировании в данной работе разбиение на обучающую и тестовую части, как пра-

вило, осуществлялось в соотношении 2: 1, а усреднение выполнялось по 𝑝 = 10 разбиениям.

Настройка структурных параметров. Предложенный метод распознавания (раз-

дел 3.5) использует несколько параметров, определяющих поведение меры близости изобра-

жений, которые можно определить как структурные: 𝛼𝑔 (раздел 3.5.5), 𝑛𝑝𝑎𝑖𝑟𝑠 (раздел 3.5.6)

и 𝛼𝑠 (раздел 3.5.7).

Для их настройки может применяться следующая несложная схема. Обозначим для

параметра 𝑝 множество допустимых значений через 𝑃 ⊂ R. Пусть также 𝐸(𝑝) — функцио-

нал качества, зависящий от параметра 𝑝 (величины других параметров фиксированы). Так

как множество допустимых значений 𝑃 , как правило, бесконечно, требуется сократить про-

странство поиска. Для этого применяется поиск по одномерной сетке с адаптивным шагом.

Сначала множество параметров строится с экспоненциальным шагом:

𝑃𝑒𝑥𝑝 = {exp(𝑖), 𝑖 = 0, 1, . . . ,𝑚},

где𝑚— разумно ограничивающее множество число. Далее применялся следующий алгоритм:

1. 𝑃 = 𝑃𝑒𝑥𝑝

2. 𝑝* = arg min𝑝∈𝑃 𝐸(𝑝)

3. 𝑙𝑒𝑓𝑡 = 𝑝*/2; 𝑟𝑖𝑔ℎ𝑡 = 𝑝* * 2

4. Если 𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡 < 𝜀 для некоторого малого 𝜀, перейти на шаг 6, иначе перейти на

шаг 5

5. 𝑃 = {𝑙𝑒𝑓𝑡 + 𝑖 * 𝑠𝑡𝑒𝑝, 𝑖 = 0, 1, . . . , 𝑘}, где 𝑘 —размер сетки на каждом шаге, а 𝑠𝑡𝑒𝑝 =

(𝑟𝑖𝑔ℎ𝑡− 𝑙𝑒𝑓𝑡)/𝑘 — шаг сетки. Перейти на шаг 2

6. Искомое значение параметра считается равным (𝑙𝑒𝑓𝑡 + 𝑟𝑖𝑔ℎ𝑡)/2, поиск завершён.

Параметры перебора 𝑚, 𝑘, 𝜀 выбираются, исходя из требуемого диапазона и желаемого вре-

мени перебора. Алгоритм перебора приведен для одномерного случая, для двух и более од-

новременно настраиваемых параметров можно использовать конструкцию из вложенных пе-

реборов.

Далее описаны эксперименты по оценке качества алгоритмов детектирования (раз-

дел 4.3.1) и распознавания (раздел 4.3.2).
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4.3.1 Тестирование метода детектирования

Эксперименты на Базе-1. Во время тестирования при случайном разбиении выборки по

её обучающей части 𝑋 𝑙 настраиваются 𝛾𝑡𝑟𝑎𝑖𝑛 параметры метода детектирования: статистика

граничного коридора, пороги длин пальцев и т. д. (раздел 3.4.3). В качестве функционала

качества алгоритма детектирования выступает доля изображений ладони в тестовой вы-

борке, для которых неверно определена корректность. В экспериментах по оценке качества

детектирования из алгоритма (раздел 3.4) исключается процедура определения расфокуси-

рованных кадров (раздел 3.4.4), так как её наличие целесообразно при тестировании метода

распознавания и работе всей системы в реальных условиях.

В проведённом вычислительном эксперименте все изображения были сжаты до разреше-

ния 640×360 пикселей — этого разрешения вполне достаточно для уверенной работы метода

детектирования. Результаты тестов приведены в таблице 5. В последнем столбце приведены

значения затрат времени на кадр (Time Per Frame), включающие в себя всю процедуру де-

тектирования, т. е. сумму времени бинаризации, построения скелета, семантической разметки

и проверки на корректность ладони. Согласно показаниям профилировщика (программного

инструмента для измерения времени выполнения программ или их частей), наиболее вре-

мязатратной частью алгоритма детектирования является построение диаграммы Вороного,

необходимой для получения скелета, — порядка 60% времени.

FAR FRR Ошибка, % TPF, мс

3.2 4.6 3.6 30.1

Таблица 5: Ошибки детектирования на Базе-1.

Предложенный в работе алгоритм показал низкие значения ошибок (как FAR, так и

FRR) и достаточную скорость для работы в реальном времени, поэтому его вполне возмож-

но использовать в задаче детектирования ладони на стороне клиента (в т. ч. на мобильном

устройстве). Также алгоритм детектирования устойчив к понижению разрешения изображе-

ний — демонстрирует сравнимые результаты даже при сжатии исходных кадров до 320×180

пикселей.

Эксперименты на базе HGC. Процедура оценки качества алгоритма детектирования

аналогична приведённой в предыдущем параграфе — за исключением того, что случайные

разбиения не выполнялись, так как база уже разбита авторами на обучающую и тестовую

части. Процедура семантической разметки (раздел 3.4.3) не предназначена для случаев све-
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дённых пальцев, поэтому такие некорректные изображения были отброшены перед тестиро-

ванием. Примеры работы процедуры детектирования приведены на рис. 41.

Рис. 41: Работа детектирования на базе HGC.

Количественное сравнение алгоритма детектирования на разных базах представлено в

таблице 6. Результаты лучших алгоритмов на тестовой части базы HGC приведены в таб-

лице 7, при этом предложенный автором метод детектирования показывает сравнимые с

лидерами результаты.

База FAR FRR Ошибка, % TPF, мс

База-1 3.2 4.6 3.6 30.1

HGC [66] 3.8 5.1 4.3 45.4

Таблица 6: Результаты алгоритма детектирования на Базе-1 и HGC Test.

Выводы. Проведённые эксперименты показывают, что метод детектирования устойчиво

и точно работает на различных данных, удовлетворяющих простым условиям съёмки (раз-

дел 4.2.1). Малое время обработки (≈ 30 мс на ПК) одного кадра приемлемого разрешения
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(640× 360 пикселей) позволяет проводить детектирование ладони в видеопотоке мобильного

устройства с частотой 15-30 кадров в секунду, что подтверждается апробацией системы.

4.3.2 Тестирование метода распознавания

Влияние метода сегментации на уровень ошибок метода распознавания. В разде-

ле 3.5.1 показано, каким образом результаты семантической разметки из модуля детектирова-

ния могут быть использованы для выполнения точной графовой сегментации ладони. В таб-

лице 8 приведены результаты тестирования метода распознавания (Габор- и SIFT-признаки

по 3 пальцам) на Базе-2 в зависимости от используемого алгоритма сегментации: «быстро-

го» Оцу [50] и «точного» OneCut [58]. Они обосновывают использование метода графовой

сегментации в составе модуля распознавания.

Оцу, % OneCut, %

0.9 2.3

Таблица 8: Качество идентификации для разных методов сегментации на Базе-2.

Анализ эпох. В разделе 3.5.4 для генерации признаков на основе двумерных фильтров

Габора предложено использовать два семейства этих фильтров (две эпохи). В таблице 9

приведены результаты тестирования метода распознавания на Базе-2 при использовании

только Габор-признаков для каждого из пальцев. Видно, что линейная комбинация эпох

даёт более низкий уровень ошибок.

№ пальца Эпоха 1,% Эпоха 2,% Обе эпохи, %

1 9.2 8.0 5.7

2 9.9 7.9 6.3

3 9.6 8.2 6.1

Таблица 9: Качество классификации для различных эпох и их комбинации на Базе-2.

Анализ признаков. Как и в случае прочих вычислительных экспериментов, для тестиро-

вания отдельных признаков и их комбинаций (табл. 10) применена общая схема, изложенная

в начале раздела 4.3.

Для оценки классификатора в задаче биометрии часто строится ROC-кривая, которая

характеризует зависимость доли верных положительных классификаций от доли ложных
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положительных классификаций при варьировании порога решающего правила. Она пред-

назначена для количественной оценки бинарной классификации, что в терминах биометрии

соответствует задаче верификации. С помощью ROC-анализа могут быть получены такие

важные характеристики метода распознавания, как AUC (англ. Area Under the Curve — аг-

регированная характеристика качества классификации, не зависящая от соотношения цен

ошибок) и EER (англ. Equal Error Rate — коэффициент, при котором ошибки обоих родов

эквивалентны).

ROC-кривые для классификаторов на основе признаков формы на Базе-2 приведены

на рис. 42, на основе текстурных признаков на Базе-2 — на рис. 43, на основе текстурных

признаков на базе Poly HD — на рис. 44.

Признаки формы продемонстрировали плохие результаты на Базе-2. Причина, по-

видимому, состоит в том, что признаки формы ладони сильно зависят от угла съёмки. Более

того, форма ладони сама по себе обладает высокой внутриклассовой вариабельностью (это

гибкий объект) и невысокой межклассовой (несложно найти людей, чьи ладони визуально

сильно похожи).

Результаты на базе Poly HD значительно лучше, что согласуется с приближенными к

идеальным условиями съёмки Poly HD (раздел 4.2.4) и свободным положением камеры при

съёмке Базы-2 (раздел 4.2.2). При всём этом, спектр хорошо себя зарекомендовал на данных,

полученных с помощью сканера [30].

Тестирование Габор-признаков, полученных по области кожных складок одного из паль-

цев, показало их хорошую информативность и устойчивость к изменению углу съёмки.

Классификация по Габор-признакам трёх пальцев (раздел 3.5.7, 𝛼𝑠 = 0) даёт существен-

ное уменьшение ошибок по сравнению с классификацией по Габор-признакам лишь одного

из пальцев. Совместное использование Габор- и SIFT-признаков трёх пальцев ещё немного

уменьшает уровень ошибок.

С ростом числа людей (в Базе-2 содержатся изображения 48 людей, а в Poly HD — 165

людей) метод распознавания ожидаемо теряет в точности распознавания, сохраняя при этом

показатели 𝐸𝐸𝑅 и средней ошибки идентификации менее 2%. Эти показатели сопостави-

мы с результатами лучших методов идентификации по кожным складкам внешней стороны

пальцев, рассмотренных в обзорном разделе 2.3.3. Учитывая то, как была снята База-2 (раз-

дел 4.2.2), это позволяет утверждать, что предложенный автором метод распознавания по

изображению внешней стороны ладони на основе Габор- и SIFT-признаков уверенно проводит

идентификацию в малых группах (<200 человек) c помощью камеры мобильного устройства

при различных внешних условиях.
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Предпринята попытка сконструировать функцию расстояния между изображениями ла-

дони как линейную комбинацию расстояния на основе фильтров Габора и расстояния по од-

ному из признаков формы. К сожалению, ни одно из таких комбинированных расстояний не

даёт стабильного улучшения качества распознавания на Базе-2.

Оценка времени работы. Время выполнения основных этапов процедуры распознава-

ния приведено в таблице 11. Стоит отметить, что для комфортного использования системы

достаточно времени ответа от модуля распознавания в течение 1-2 секунд.

Если мы храним признаковое описание, построенное на основе 1000 изображений ла-

доней (этого количества достаточно для малой группы порядка 100 человек), то для сопо-

ставления поступившего изображения со всеми эталонами с использованием трёх пальцев

потребуется 204 + 30 + 3 * 44 + 3 * 0.3 * 1000 = 1266 мс, что укладывается в обозначенные

временные ограничения.

Этап Время, мс

Точная сегментация ладони 204

Семантическая разметка ладони 30

Извлечение текстурных признаков (1 палец) 44

Сопоставления пары текстурных признаков (1 палец) 0.3

Таблица 11: Время работы основных этапов процедуры распознавания.

Пороги уверенной классификации. Алгоритм ближайшего соседа неустойчив к шумо-

вым выбросам, поэтому в случае реальной системы при неуверенной классификации разумно

отказаться от классификации вообще и запросить ещё одно изображение — такой сценарий

реализован в мобильном приложении (раздел 5.2.1). Для этого используется порог уверенной

классификации, выбор которого осуществляется следующим образом. Строится накопитель-

ная гистограмма попарных межклассовых расстояний для итоговой функции расстояний. В

качестве порога выбирается x-координата последнего столбца, чьё значение не превышало

заданный порог (выбрано 0.05 * 𝑆, где 𝑆 – сумма всех столбцов гистограммы).

101



М
ет
од

О
ш
и
бк
а,
%

Б
аз
а-
2

A
U
C

Б
аз
а-
2

E
E
R
,
%

Б
аз
а-
2

О
ш
и
бк
а,
%

P
ol
y
U
H
D

A
U
C

P
ol
y
U
H
D

E
E
R
,
%

P
ol
y
U
H
D

К
р
и
ви
зн
а

21
.0

0.
96
92

8.
7

10
.6

0.
97
50

7.
7

Л
ом
ан
ая

22
.1

0.
95
89

11
.2

12
.6

0.
97
03

7.
9

С
п
ек
тр

24
.3

0.
94
07

15
.1

13
.4

0.
96
72

9.
8

Г
аб
ор

(п
ал
ец

1)
5.
7

0.
99
23

4.
0

11
.1

0.
97
34

6.
5

Г
аб
ор

(п
ал
ец

2)
6.
3

0.
98
77

3.
6

12
.3

0.
97
23

8.
4

Г
аб
ор

(п
ал
ец

3)
6.
1

0.
99
55

3.
7

11
.4

0.
97
57

7.
1

Г
аб
ор

(т
р
и
п
ал
ьц
а)

1.
4

0.
99
96

1.
1

1.
8

0.
99
90

1.
3

Г
аб
ор

+
S
IF
T
(т
р
и
п
ал
ьц
а)

0.
9

0.
99
97

0.
7

1.
4

0.
99
97

0.
8

Т
аб
л
и
ц
а
10
:
Т
ес
ти
р
ов
ан
и
е
м
ет
од
а
р
ас
п
оз
н
ав
ан
и
я
н
а
Б
аз
е-
2
и
н
а
ба
зе

P
ol
y
U
H
D

п
р
и
р
аз
л
и
ч
н
ы
х
и
сп
ол
ьз
уе
м
ы
х
п
р
и
зн
ак
ах
.
С
то
л
бц
ы

«
О
ш
и
бк
а,
%
..
.»
со
д
ер
ж
ат

ош
и
бк
у
и
д
ен
ти
ф
и
к
ац
и
и
,
ус
р
ед
н
ён
н
у
ю
п
о
𝑝

=
10

сл
у
ч
ай
н
ы
м
р
аз
би
ен
и
я
м
ба
зы

н
а
об
у
ч
аю

щ
у
ю
и
те
ст
ов
у
ю
ч
ас
ти

в
со
от
н
ош

ен
и
и

2
:

1.
С
то
л
бц
ы
«
E
E
R
,
%
..
.»
и
«
A
U
C
,
%
..
.»
—
со
д
ер
ж
ат

ха
р
ак
те
р
и
ст
и
к
и
R
O
C
-к
р
и
во
й
,
п
ос
тр
ое
н
н
ой

п
о
р
аз
би
ен
и
ю
ба
зы
,
н
а

к
от
ор
ом

д
ос
ти
га
ет
ся

м
ед
и
ан
н
ое

зн
ач
ен
и
е
𝐸
𝐸
𝑅
ср
ед
и
вс
ех

р
аз
би
ен
и
й
.

102



(a) Кривизна пальцев. (b) Ломаная.

(c) Спектр.

Рис. 42: ROC-кривые метода распознавания в зависимости от используемых признаков фор-

мы на Базе-2.
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(a) Габор-признаки (палец 1). (b) Габор-признаки (палец 2).

(c) Габор-признаки (палец 3). (d) Габор-признаки (три пальца).

(e) Габор- и SIFT-признаки (три пальца).

Рис. 43: ROC-кривые метода распознавания в зависимости от используемых текстурных при-

знаков на Базе-2.
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(a) Габор-признаки (палец 1). (b) Габор-признаки (палец 2).

(c) Габор-признаки (палец 3). (d) Габор-признаки (три пальца).

(e) Габор- и SIFT-признаки (три пальца).

Рис. 44: ROC-кривые метода распознавания в зависимости от используемых текстурных при-

знаков на базе PolyU HD.
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4.4 Выводы к главе 4

Для вычислительных экспериментов с методом детектирования создана база изобра-

жений внешней стороны ладони (База-1), а также использована сторонняя база HGC. На

обеих базах метод демонстрирует низкий уровень ошибок и высокую производительность,

что делает его пригодным для работы с видеопотоком на мобильном устройстве в режиме

реального времени. На базе HGC также проведено тестирование метода семантической раз-

метки — полученные результаты сопосоставимы с лучшими алгоритмами, участвовавшими

в соответствующем состязании.

Для тестирования метода распознавания создана ещё одна база изображений внеш-

ней стороны ладони (База-2, съёмка «с руки»), дополнительно применена сторонняя база

(PolyU HD, статичная съёмка). Проведённые вычислительные эксперименты показали вы-

сокую информативность и устойчивость предложенного автором признакового описания на

основе фильтров Габора и дескрипторов SIFT.

Экспериментально обосновано использование двух семейств фильтров Габора для улуч-

шения качества распознавания. Опытным путём доказано, что использование «точной» сег-

ментации значительно увеличивает точность метода распознавания.

Достигаемые показатели точности метода распознавания сравнимы с результатами пере-

довых методов идентификации по кожным складкам внешней стороны пальцев, рассмотрен-

ных в обзоре. Количество людей (48 и 165 соответственно) в использованных базах позволяет

утверждать, что разработанный метод подходит для идентификации в малых группах.
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5 Мобильная система биометрической идентификации

5.1 Общая характеристика системы

Практическим результатом исследовательской работы является разработка программ-

ного комплекса, реализующего предложенный в главе 3 метод биометрической идентифика-

ции личности по изображению внешней стороны ладони. При постановке цели исследования

к системе было предъявлено ряд требований (раздел 1.2).

Наряду с точностью и скоростью (обеспечиваются характеристиками метода иден-

тификации), одним из требуемых свойств системы является доступность. Это требование

выполняется в силу использованных при проектировании системы компонентов: мобильное

устройство на ОС Android сейчас есть практически у каждого, а арендовать обычный Linux-

сервер можно просто и недорого.

Разбиение задачи идентификации по ладони на детектирование и распознавание (раз-

дел 3.2) потребовало не только логическое, но и структурное разделение этих этапов между

клиентом (мобильным устройством) и удалённым сервером. Связь между приложением и

сервером осуществляется по беспроводному интернет-соединению. Подобное распределение

задач позволило добиться идентификации в реальном времени при одновременном соблю-

дении всех прочих требований к системе идентификации.. Таким образом, разработанная

система имеет клиент-серверную архитектуру, а мобильное устройство выступает в роли

первичного сенсора.

Как характеристику, гибкость можно разделить на эксплуатационную гибкость и

структурную гибкость.

В первом случае имееется ввиду стабильность процесса идентификации по отношению

ко внешним условиям: работоспособность при разном освещение, съёмка как со штатива, так

и с руки. Разработанная система может работать в обоих случаях благодаря использованию

встроенной вспышки, аппаратного автофокуса и алгоритмов, устойчивых к масштабирова-

нию и поворотам изображения.

Структурная гибкость системы выражается в возможности распределения вычислитель-

ных модулей между мобильным приложением и сервером. Это позволяет выполнять слож-

ные расчеты на более мощном сервере, оставляя на мобильном устройстве только пользо-

вательский интерфейс и модуль детектирования. Благодаря такому распределению задач

появляется возможность модифицировать алгоритмы распознавания, не изменяя мобильное

приложение. Примером подобной модификации может служить добавление новых призна-
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ков в модуль распознавания. Более того, данный программный комплекс несложно модифи-

цировать для работы с другими модальностями на базе руки — например, с изображением

внутренней стороны ладони. При дальнейшем развитии характеристик мобильных устройств

вполне вероятно размещение на клиенте всех модулей системы идентификации (кроме базы

биометрических признаков).

Что касается удобства, то тут ключевую роль играет интуитивно понятный пользова-

тельский интерфейс мобильного приложения. Чтобы начать работу, необходимо лишь ав-

торизоваться в системе и (по желанию) выбрать параметры работы приложения. Система

может функционировать в двух режимах: обучения и тестирования (раздел 5.2.1). Процесс

эксплуатации системы администратором предельно прост: подготовка приложения к работе

с очередной группой распознаваемых занимает несколько секунд, сложности с переноской

современных мобильных устройств в силу их скромных размеров также отсутствуют.

5.2 Мобильное приложение

В данном разделе даётся описание интерфейса мобильного приложения. В разделе 5.2.1

приводится общее описание процесса работы с системой. Далее в разделе 5.2.2 описан глав-

ный экран приложения и расположенные на нём элементы интерфейса. Описание меню на-

строек мобильного приложения приводится в разделе 5.2.3.

5.2.1 Принципы работы

Основные определения.

∙ Съёмка — получение изображений ладони с помощью камеры мобильного

устройства. Используется видеопоток.

∙ Пользователь — человек, чьи изображения ладони участвуют в распознавании.

∙ Сессия — непрерывный и ограниченный по времени процесс съёмки ладони

одного пользователя.

∙ Результат сессии — сообщение об итогах идентификации после окончания сессии. Может

быть либо именем распознанного пользователя, либо отказом от класси-

фикации с указанием причины (невозможность уверенной классифика-

ции, отсутствие достаточного количества обработанных изображений и

т. д.).
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∙ Группа — именованное множество пользователей. Все пользователи, находящи-

еся в базе, должны состоять хотя бы в одной группе. Добавлять или

удалять пользователей в список для распознавания можно только груп-

пами.

∙ Администратор — человек, имеющий учётную запись в системе. Администратор управ-

ляет мобильным приложением, также он имеет возможность создавать

и редактировать группы и пользователей.

∙ Валидный кадр — кадр, содержащий валидную ладонь (раздел 3.4).

∙ Невалидный кадр — кадр, либо не содержащий ладони, либо содержащий невалидную

ладонь.

Начало работы. Перед началом работы с системой администратору предлагается войти

в свою учётную запись (при её отсутствии — зарегистрироваться), либо использовать суще-

ствующий аккаунт Google (данная учётная запись необходима для установки любых прило-

жений на мобильное устройство с ОС Android). Затем нужно создать хотя бы одну груп-

пу пользователей. Также можно настроить параметры работы приложения и камеры (раз-

дел 5.2.3). После этого система готова к работе в режиме обучения (для функционирования

режима тестирования необходимо наличие группы с хотя бы одним пользователем с ненуле-

вым количеством изображений — раздел 5.2.1). Также стоит отметить, что администратор

может использовать несколько устройств, все настройки синхронизируются между ними.

Сессии. Основным при работе с системой является понятие сессии. Сессия — это непре-

рывный и ограниченный по времени процесс съёмки ладони одного человека (раздел 5.2.1).

Начать съёмку можно нажатием на кнопку «Старт» (раздел 5.2.2). Сессия, в свою очередь,

начинается, когда в процессе съёмки встретилось 𝑁𝑠𝑡𝑎𝑟𝑡 кадров (𝑁𝑠𝑡𝑎𝑟𝑡 ≈ 5 ) подряд с валид-

ной ладонью. Во время сессии выполняется определение наличия валидной ладони в каждом

кадре, и, если такая ладонь найдена, изображение отправляется на сервер для распознава-

ния. Экран приложения во время сессии показан на рис. 45. Концептуальная схема работы

сессии приведена на рис. 46.
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Рис. 45: Экран сессии.

Рис. 46: Схема сессии. Здесь check_stop() — процедура проверки условий остановки сессии,

она устанавливает флаг окончания сессии либо в положение true (сессия завершается) или

false (сессия продолжается).
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Сессия завершается при выполнении хотя бы одного из следующих условий:

∙ 𝑁𝑐𝑜𝑛𝑓 (≈ 3) изображений было успешно обработано сервером;

∙ на сервер отправлено 𝑁𝑚𝑎𝑥 (≈ 3) изображений;

∙ встретилось подряд 𝑁𝑖𝑛𝑣𝑎𝑙𝑖𝑑 (≈ 30) невалидных кадров;

∙ с последнего валидного кадра прошло 𝑇𝑖𝑛𝑣𝑎𝑙𝑖𝑑 (≈ 4) секунд.

Схема проверки этих условий показана на рис. 47.

Рис. 47: Схема проверки условий остановки сессии.

Есть возможность приостановить текущую сессию, нажав на кнопку «Пауза сессии».

Если сессия не была возобновлена спустя 𝑇𝑝𝑎𝑢𝑠𝑒 (≈ 2) минут, она завершается. Также можно

принудительно завершить текущую сессию, нажав на кнопку «Остановка сессии». Когда
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сессия завершена, администратору всегда выдаётся результат (раздел 5.2.1). После ответа

администратора начинается новая сессия.

Результат сессии. Если классификация проведена успешно, система выдаёт имя распо-

знанного пользователя. Существует несколько причин отказа от классификации:

∙ не было успешно обработано 𝑁𝑐𝑜𝑛𝑓 снимков;

∙ расстояние между снимками и их ближайшими соседями больше порога уверенной

классификации.

В этом случае система выдаёт сообщение «Отказ от классификации» с указанием причины

(рис. 48) и начинает новую сессию.

Рис. 48: Результат идентификации при отклонении большого количества кадров.

Далее, в режиме обучения (раздел 5.2.1) предлагается либо подтвердить правильность

классификации, либо, если система ошиблась, ввести истинное имя пользователя (рис. 49

и 50). Чтобы предотвратить опечатки в именах пользователей и другие ошибки, админи-

стратору необходимо подтвердить свой выбор.

Рис. 49: Результат идентификации в режиме обучения.
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Рис. 50: Выбор другого пользователя.

В режиме тестирования действий администратора не требуется (рис. 51).

Рис. 51: Результат сессии в режиме тестирования.

Режимы. У системы существуют два основных режима: обучение и тестирование.

В режиме обучения происходит пополнение базы прецедентов (изображений ладони).

Выполняется съёмка, при поступлении каждого нового изображения с валидной ладонью

проводится классификация этого изображения на основе уже существующей (возможно пу-

стой) базы эталонов, на экран выводится результат классификации. Если ладонь распознана

правильно, администратор может добавить её в базу, иначе предлагается ввести имя другого
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пользователя (в случае отсутствия его в базе, создаётся новый) и приписать это изображение

ему.

Режим тестирования отличается от режима обучения тем, что нет возможности до-

бавлять новых пользователей и снимаемые изображения ладоней не сохраняются в базе.

Администратору лишь выводится результат идентификации.

Стоит отметить, что возможна идентификация по нескольким группам одновременно. В

этом случае сравнение нового изображения происходит со всеми изображениями выбранных

групп. В режиме обучения текущая картинка добавляется в базу для выбранного пользо-

вателя в каждой группе. Если этого пользователя нет в какой-либо из выбранных групп,

создаётся новый пользователь.

5.2.2 Главный экран

На главном экране приложения расположены основные элементы интерфейса, также на

него выводится изображение с камеры устройства и визуализация во время сессии. Когда

сессия не начата, активны следующие кнопки (рис 52).

Рис. 52: Главный экран приложения.

Опции камеры. Позволяют настроить использование вспышки, коррекцию экспозиции и

баланс белого.

Меню групп. Позволяет управлять группами. Можно выбрать одну или несколько групп

из существующих либо создать новую (рис 53). Также есть возможность вывести список

пользователей группы. Для каждого пользователя пишется количество изображений, участ-

вующих в распознавании. Поддерживается редактирование пользователей (изменение имени,

удаление изображений, удаление пользователя).
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Рис. 53: Меню управления группами.

Выбор режима. Выбор между режимами тестирования и обучения (рис 54).

Рис. 54: Меню выбора режима.

Кнопка смены учётной записи. Возможность выйти из текущей учётной записи и зайти

с помощью другой.

Старт. Кнопка начала сессии.
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Меню настроек. Доступ к основным настройкам как системы в целом, так и мобильного

приложения (раздел 5.2.3).

Когда идёт сессия, на главном экране отображается следующая информация:

∙ Количество кадров с валидной ладонью,

∙ Число отправленных на сервер кадров.

Помимо этого выводится изображение с камеры устройства, на которое наложена визу-

ализация результатов процедуры детектирования (только в случае наличия валидной ладо-

ни), а также это изображение обрамлено в прямоугольник зелёного цвета в случае наличия

валидной ладони и красного в противном случае. Также отображаются кнопки паузы и оста-

новки сессии (рис. 45). Во время сессии доступ к выбору режима, управлению группами и к

настройкам закрыт.

5.2.3 Настройки

Рис. 55: Меню настроек приложения.

Все настройки синхронизированы с сервером таким образом, что каждый администра-

тор имеет единые настройки для всех своих устройств. Меню настроек содержит несколько
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подменю, отвечающих за параметры различных частей системы. Рассмотрим каждое из них

подробнее.

Настройки приложения. В этом меню можно настроить таймауты сессии (время завер-

шения сессии при сворачивании приложения) и диалоговых окон. Также есть возможность

выбрать разрешения изображений, использующихся для детектирования на устройстве и при

распознавании на сервере.

Настройки алгоритма. Здесь настраиваются параметры сессии, такие как максимальное

число отправляемых на сервер изображений, максимальное количество кадров без валидной

ладони и т. д. (табл. 12).

Параметр Значение по умолчанию Описание

𝑁𝑠𝑡𝑎𝑟𝑡 5 число подряд идущих кадров с корректной ладо-

нью, необходимое для начала сессии

𝑁𝑐𝑜𝑛𝑓 3 количество изображений, необходимое для уверен-

ной классификации

𝑁𝑚𝑎𝑥 3 максимальное число изображений, отправляемое на

сервер за время сессии

𝑁𝑖𝑛𝑣𝑎𝑙𝑖𝑑 30 количество некорректных кадров подряд, при кото-

ром сессия завершается

𝑇𝑖𝑛𝑣𝑎𝑙𝑖𝑑 4 время в секундах после последнего корректного

кадра, после которого сессия завершается

𝑇𝑝𝑎𝑢𝑠𝑒 2 максимальное время приостановки сессии в мину-

тах

Таблица 12: Параметры сессии.

Настройки визуализации. В этом подменю можно выбрать, визуализировать ли внут-

ренние структуры алгоритма детектирования. Это снижает скорость работы приложения,

но позволяет пользователю лучше расположить ладонь перед камерой для более точного

распознавания.

Настройки уведомлений. Здесь можно настроить параметры уведомлений о различных

событиях, таких как отправка снимка на сервер, начало сессии, окончание сессии и наличие
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большого количества некорректных кадров в текущей сессии. Уведомления реализованы с

помощью звуковых сигналов, что призвано упростить взаимодействие с приложением.

Также в меню есть кнопка «Сбросить настройки», возвращающая все настройки в по-

ложение по умолчанию.

5.3 Cервер

Вторым ключевым компонентом разработанной системы является сервер. К его задачам

относятся классификация изображений ладони и хранение базы биометрических прецеден-

тов. Общая схема работы сервера показана на рис. 56. Основными компонентами сервера

являются: модуль распознавания, база данных, очередь задач, интерфейс взаимодействия с

сервером. Рассмотрим подробнее каждый из них.

Модуль распознавания.

1. Сервер получает валидные изображения от мобильного приложения во время сессии

посредством интернет-соединения.

2. Для каждого изображения извлекаются текстурные признаки (раздел 3.5).

3. Классификатор 1NN сравнивает признаковое описание поступившего кадра с описа-

ниями из базы эталонов, после чего в мобильное приложение отсылается результат

идентификации.

База данных. Так как данные в системе имеют заранее определённую структуру, исполь-

зовалана реляционная база данных. Подобная модель данных обеспечивает высокое быстро-

действие, простоту поддержки и реализации. В качестве СУБД была выбрана PostgreSQL.

ER-диаграмма таблиц базы данных приведена на рис. 57.

118



Рис. 56: Схема работы сервера.
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Рис. 57: Структура базы данных (БД).

Основные таблицы:

api member — содержит информацию о пользователях;

api group — содержит информацию о группах пользователей;
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api palmimage — содержит информацию об изображениях (пользователя, к которому от-

носится изображение, вычисленные признаки), отправленных на сервер во время сес-

сий;

api session — содержит информацию о сессиях;

custom user emailuser — содержит информацию об администраторах.

Очередь задач. Сервер является асинхронным, т. е. может выполнять несколько задач од-

новременно. Для этого используется очередь задач, распределяющая работу между несколь-

кими вычислителями (каждый из них выполняется в отдельном потоке). Например, когда

приходит новое изображение от мобильного приложения, задача его обработки помещается в

очередь. Свободный вычислитель «забирает» себе эту задачу и выполняет её в своём потоке,

в то время как сервер продолжает работу. По завершении задачи, вычислитель сохраняет

результат выполнения в базу данных и готов выполнять новую.

Интерфейс взаимодействия с сервером (API). При разработке интерфейса серве-

ра использовался современный подход, называемый REST (Representational State Transfer).

Данный подход устанавливает жёсткие правила взаимодействия компонентов системы, что

позволяет упростить архитектуру и разработку.

Один из примеров реализации REST API — отсутствие хранимого состояния сервера.

Это значит, что вся информация, необходимая серверу для обработки запроса клиента, со-

держится в самом запросе. Таким образом, клиент не должен знать состояние сервера и

наоборот. Этот метод делает сервер независимым от клиентов, что даёт возможность срав-

нительно просто добавить веб-интерфейс, не изменяя сервер. Также это позволяет свободно

менять мобильное приложение, не внося изменений в код сервера.

Для обмена информацией между частями системы (сервер, клиент, веб-интерфейс) ис-

пользуется формат JSON. Это текстовый формат данных, представляющий собор набор пар

ключ-значение. Он является универсальным способом передачи информации между разно-

родными модулями и не зависит от реализации каждого из них.

5.4 Веб-интерфейс

Вся биометрическая информация, полученная при работе с системой, хранится на сер-

вере. Доступ администраторов к ней осуществляется через веб-интерфейс (рис. 58).
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Рис. 58: Веб-интерфейс сервера. Главный экран.

С его помощью администраторы имеют возможность:

∙ редактировать информацию о своей учётной записи;

∙ редактировать пользователей (добавлять и удалять изображения, переименовывать и

т. д.);

∙ создавать и удалять группы;

∙ редактировать группы (добавлять и удалять пользователей и т. д.);

∙ просматривать результаты сессий, в т. ч. отправленные на сервер изображения, визуа-

лизации и т. д.;

∙ изменять настройки приложения и алгоритма классификации.
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Стоит отметить, что при добавлении изображений выполняется вычисление признаков

и сохранение их в базу. В ходе этого процесса создаются визуализации, которые можно по-

смотреть в соответствующем меню (рис 59).

Рис. 59: Веб-интерфейс сервера. Редактирование изображений.

Благодаря системе учётных записей, администраторы могут изменять только свои груп-

пы и пользователей, не имея возможности изменять данные других администраторов.

Таблица посещений. Ключевым и самым часто используемым компонентом веб-интерфейса

является таблица посещений. В ней отражается статистика распознаваний пользователей по

датам. По строкам расположены пользователи, по столбцам —даты распознаваний. В ячей-

ках таблицы первое число обозначает общее количество сессий распознавания для данного

пользователя в данный день. Число в скобках — общее количество изображений в этих сес-

сиях. Сессия считается успешной, если пользователь был распознан верно, и не успешной в

противном случае. Цвет ячейки обозначает долю успешных сессий (если все успешны — зе-

лёный, если все не успешны — красный, иначе — жёлтый). Пример части таблицы приведён

на рис. 60. Также существует возможность фильтрации строк и столбцов таблицы по датам,

группам и режимам.
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Рис. 60: Таблица посещений.

5.5 Особенности разработки кода

В силу того, что компоненты системы запускаются в существенно различных средах,

для разработки приложения и сервера использовались несколько языков программирова-

ния: С++, Java и Python. Мобильное приложение написано на Java, так как это основной

язык разработки для ОС Android. При создании модуля детектирования для приложения

использовался С++, так как он обеспечивает высокую скорость работы.

Для реализации сервера использовался Python из-за своей гибкости, удобства и просто-

ты тестирования. Кроме того, хотя этот язык и медленнее таких языков как Java и C++, его

скорости достаточно для работы сервера. Код модуля распознавания также написан на C++,

так как в нём имеются вычислительно сложные этапы (например, точная сегментация).

Таким образом, возникла необходимость в компиляции С++-кода одновременно для

системы Android и для Linux. Для этого использовалась кросс-платформенная система ав-

томатизации сборки — CMake. Эта система скрывает низкоуровневые системно-зависимые

детали процесса сборки, позволяя писать единые правила сборки для различных платформ.

Кроме того, модули детектирования и распознавания активно используют следующие

библиотеки:
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Boost [70] — для построения диаграмм Вороного, операций с графами, работы с файловой

системой, измерения времени;

OpenCV [71] — для операций с изображениями, в т. ч. бинаризации и морфологических

операций, а также для визуализации.

5.6 Выводы к главе 5

В связи с тем, что в научной литературе не представлено систем биометрической иден-

тификации личности человека по изображению внешней стороны ладони (раздел 2.5), удо-

влетворяющих поставленным требованиям (раздел 1.2), был разработан соответствующий

программный комплекс на базе мобильного Android-устройства.

Программное обеспечение состоит из нескольких основных компонентов: Android-

приложения, сервера, веб-интерфейса для администратора.

Следует отметить, что код модулей детектирования (клиент) и распознавания (сервер)

также использовался для вычислительных экспериментов (глава 4).

Эффективная реализация всех программных компонентов позволила создать систему,

которая успешно прошла апробацию в качестве контроля посещаемости студентов МГУ и

учёта посетителей на XIII Московском Фестивале науки NAUKA 0+.
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6 Заключение

В работе представлен метод биометрической идентификации человека по изображению

внешней стороны ладони, пригодный для использовании в системе распознавания на базе

мобильного устройства.

Проведена декомпозиция исходной задачи идентификации на задачи детектирования

и распознавания. Предпосылками для этого являются ограниченная вычислительная мощ-

ность мобильных устройств и обеспечение безопасности хранимых биометрических призна-

ков.

Ладони, пригодные для дальнейшего распознавания, определены через понятие коррект-

ности. В предложенном методе детектирования можно выделить ряд основных шагов:

1. обнаружение объекта-кандидата на роль ладони в кадре (на основе «быстрой» сегмен-

тации по Оцу);

2. создание непрерывного медиального представления формы ладони, построение семан-

тической разметки и проверка ладони на корректность;

3. определение расфокусированных кадров;

4. формирование данных для отправки в модуль распознавания (если требуется).

Разработанный метод распознавания сводится к следующему:

1. «точная» сегментации ладони на основе разрезов в графах и априорной информации с

этапа детектирования;

2. локализация областей кожных складок на пальцах на основе семантической разметки

ладони;

3. извлечение текстурных признаков кожных складок пальцев на основе двух семейств

двумерных фильтров Габора, позволяющих эффективно закодировать текстурные осо-

бенности разных ориентаций и характерных размеров;

4. построение специальной меры сходства изображений ладони, объединяющей результа-

ты сопоставления областей кожных складок каждого из пальцев по SIFT-дескрипторам

и Габор-признакам.

Предложенный метод идентификации воплощён в виде программного комплекса. Для

тестирования метода детектирования собрана собственная база изображений внешней сто-
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роны ладони (База-1), а также использована стороняя (HGC). В обоих случаях метод про-

демонстрировал низкие показатели ошибок и высокую скорость работы, что подтверждает

целесообразность его использования в мобильном клиенте при анализе видеопотока в реаль-

ном времени.

Для тестирования метода распознавания создана ещё одна база изображений внешней

стороны ладони (База-2, съёмка «с руки»), дополнительно применена сторонняя (PolyU HD,

статичная съёмка). Проведённые вычислительные эксперименты показали высокую точность

метода распознавания как на задаче верификации, так и на задаче идентификации. Это до-

казывает эффективность предложенного метода распознавания, а также служит обосновани-

ем того, что рисунок кожных складок внешней стороны пальцев является индивидуальным

признаком личности человека, позволяющим проводить идентификацию в малых группах —

даже в случае съёмки внешней стороны ладони «с руки» при помощи мобильного устройства.

В рамках исследования разработана сама система биометрической идентификации на

базе мобильного устройства по изображению внешней стороны ладони, которая была ис-

пользована на практике для контроля посещаемости студентов и учёта посетителей научного

фестиваля. В ходе апробации продемонстрирована уверенная работа идентификации в режи-

ме реального времени при съёмке «с руки» в малых группах (до 100 человек). Программное

обеспечение состоит из нескольких основных компонентов: Android-приложения, сервера,

веб-интерфейса для администратора. Получившаяся система является точной, быстрой, до-

ступной, социально приемлемой и гибкой — т. е. удовлетворяет всем целевым характеристи-

кам. Мобильные системы, работающие с кожными складками пальцев, крайне слабо пред-

ставлены в научной литературе — и среди них нет тех, что удовлетворяют целевым харак-

теристикам. Это позволяет утверждать, что подобная система была реализована впервые.

Можно выделить следующие направления дальнейшей работы:

1. исследование возможности надёжной локализации области кожных складок внешней

стороны пальца без предварительной «точной» сегментации ладони;

2. поиск новых методов генерации информативного признакового описания для области

кожных складок пальца;

3. перенос генерации признакового описания на клиент (мобильное устройство).
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Javier Casanova, Aitor Mendaza-Ormaza // Advanced Biometric Technologies. — 2011. —

08. — Pp. 368–382.

49. Cheng KamYuen, Kumar Ajay. Contactless finger knuckle identification using smartphones //

2012 BIOSIG - Proceedings of the International Conference of the Biometrics Special Interest

Group. — 2012. — Pp. 1–6.

50. Otsu Nobuyuki. A threshold selection method from gray-level histograms // Automatica. —

1975. — Vol. 11, no. 285-296. — Pp. 23–27.

51. Viola Paul, Jones Michael J. Robust Real-Time Face Detection // Int. J. Comput. Vision. —

2004. — may. — Vol. 57, no. 2. — Pp. 137–154.

52. Sobral Andrews. BGSLibrary: An OpenCV C++ Background Subtraction Library // IX

Workshop de Visão Computacional (WVC’2013). — Rio de Janeiro, Brazil: 2013. — Jun.

53. Yi Faliu, Moon Inkyu. Image segmentation: A survey of graph-cut methods // Systems and

Informatics (ICSAI), 2012 International Conference on / IEEE. — 2012. — Pp. 1936–1941.

132



54. Camilus K Santle, Govindan VK. A review on graph based segmentation // International

Journal of Image, Graphics and Signal Processing (IJIGSP). — 2012. — Vol. 4, no. 5. — P. 1.

55. Boykov Yuri Y, Jolly Marie-Pierre. Interactive graph cuts for optimal boundary & region

segmentation of objects in ND images // Computer Vision, 2001. ICCV 2001. Proceedings.

Eighth IEEE International Conference on / IEEE. — Vol. 1. — 2001. — Pp. 105–112.

56. Vodopivec Tadej, Lepetit Vincent, Peer Peter. Fine hand segmentation using convolutional

neural networks // arXiv preprint arXiv:1608.07454. — 2016.

57. Местецкий Леонид Моисеевич. Непрерывная морфология бинарных изображений: фи-

гуры, скелеты, циркуляры. — М.: ФИЗМАТЛИТ, 2009. — С. 288.

58. Grabcut in One Cut / Meng Tang, Lena Gorelick, Olga Veksler, Yuri Boykov // International

Conference on Computer Vision. — 2013. — December.

59. SLIC superpixels compared to state-of-the-art superpixel methods / Radhakrishna Achanta,

Appu Shaji, Kevin Smith et al. // IEEE transactions on pattern analysis and machine intel-

ligence. — 2012. — Vol. 34, no. 11. — Pp. 2274–2282.

60. Местецкий Л. М. Медиальная ширина фигуры - дескриптор формы изображений //

Машинное обучение и анализ данных. — 2014. — Т. 1, № 9. — С. 1291–1318.

61. Mestetskiy Leonid, Bakina Irina, Kurakin Alexey. Hand geometry analysis by continuous skele-

tons // Proceedings of the 8th international conference on Image analysis and recognition -

Volume Part II. — ICIAR’11. — 2011. — Pp. 130–139.

62. Adaptive histogram equalization and its variations / Stephen M Pizer, E Philip Amburn,

John D Austin et al. // Computer vision, graphics, and image processing. — 1987. — Vol. 39,

no. 3. — Pp. 355–368.

63. Canny John. A computational approach to edge detection // Pattern Analysis and Machine

Intelligence, IEEE Transactions on. — 1986. — no. 6. — Pp. 679–698.

64. Lee Tai Sing. Image Representation Using 2D Gabor Wavelets // IEEE Trans. Pattern Anal.

Mach. Intell. — 1996. — oct. — Vol. 18, no. 10. — Pp. 959–971.

65. Lowe David G. Object recognition from local scale-invariant features // Computer vision,

1999. The proceedings of the seventh IEEE international conference on / Ieee. — Vol. 2. —

1999. — Pp. 1150–1157.

133



66. HGC 2011-Hand Geometric Points Detection Competition Database / F Magalhaes,

HP Oliveira, H Matos, A Campilho. — 2010.

67. Kumar Ajay, Xu Zhihuan. Personal identification using minor knuckle patterns from palm

dorsal surface // IEEE Transactions on Information Forensics and Security. — 2016. —

Vol. 11, no. 10. — Pp. 2338–2348.

68. Robust palm and knuckle ROI extraction in unconstrained environment / Ahmed S ELSayed,

Hala M Ebeid, Mohamed Roushdy, Zaki T Fayed // Pattern Analysis and Applications. —

2017. — Pp. 1–23.

69. Invariant hand biometrics feature extraction / Alberto Santos Sierra, Carmen Sánchez Ávila,
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