




Общая характеристика работы

Актуальность темы. В работе исследуется проблема автоматическо-
го выбора моделей глубокого обучения оптимальной и субоптимальной
сложности. Под сложностью модели понимается минимальная длина описа-
ния (Grünwald: 2005), минимальное количество информации, которое требуется
для передачи информации о модели и о выборке. Получение минимальной дли-
ны описания модели является вычислительно сложной процедурой. В работе
предлагается получение ее приближенной оценки, основанной на связи мини-
мальной длины описания и обоснованности модели. Для получения оценки
обоснованности используются вариационные методы получения оценки обосно-
ванности (Bishop: 2006), основанные на аппроксимации неизвестного апостери-
орного распределения другим заданным распределением. Под субоптимальной
сложностью понимается нижняя вариационная оценка обоснованности модели.
Одна из проблем построения моделей глубокого обучения — большое число

параметров моделей (Hinton: 2007, 2013). Поэтому задача выбора моделей глубо-
кого обучения включает в себя выбор вычислительно эффективной стратегии
построения модели. В работе (Barron: 2008) приводятся теоретические оцен-
ки построения нейросетей с использованием жадных стратегий, при которых
построение модели производится итеративно последовательным увеличением
числа нейронов в сети. В работах (Zoph: 2016, Baker: 2017, Cai: 2018, Zoph: 2018)
предлагаются методы автоматического построения моделей глубокого обучения,
основанные на обучении с подкреплением. В (Liu: 2018) предлагается градиент-
ная оптимизация структуры модели.
В качестве критерия выбора модели в ряде работ (MacKay: 2002, Bishop: 2006,

Стрижов: 2010, 2014) выступает обоснованность модели. Альтернативными кри-
териями выступают показатель нелинейности модели (Vladislavleva: 2008), ро-
бастность модели (Xu: 2012) и эксплуатационные критерии качества модели.
Важным свойством, предъявляемым к критериям качества модели, является
устойчивость выбранных моделей под действием шума (Szegedy: 2013).
Одним из методов получения приближенного значения обоснованности явля-

ется вариационный метод получения нижней оценки интеграла (Bishop: 2006).
Использование вариационной оценки в качестве приближения обоснованности
позволяет аппроксимировать апостериорное распределение с использованием
широкого семейства распределений. В работе (Graves: 2011) рассматривается
алгоритм получения вариационной нижней оценки обоснованности для опти-
мизации параметров и гиперпараметров моделей глубокого обучения. В ра-
боте (Maclaurin: 2015) рассматривается стохастический градиентный спуск в
качестве оператора, порождающего распределение, аппроксимирующее апо-
стериорное распределение параметров модели. Схожий подход предлагается
в работе (Mandt: 2017), где также рассматривается стохастический градиент-
ный спуск в качестве оператора, приближающего апостериорное распределение
параметров.
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Задачей, связанной с проблемой выбора модели, является задача оптимиза-
ции гиперпараметров (MacKay: 2002, Bishop: 2006). В работе (Стрижов: 2012)
рассматривается оптимизация гиперпараметров с использованием метода сколь-
зящего контроля и методов оптимизации обоснованности моделей, отмечается
низкая скорость сходимости оптимизации гиперпараметров при использовании
метода скользящего контроля. В ряде работ (Maclaurin: 2015, Domke: 2012)
рассматриваются градиентные методы оптимизации гиперпараметров, позво-
ляющие оптимизировать большое количество гиперпараметров одновременно.
В работе (Maclaurin: 2015) предлагается метод оптимизации гиперпараметров
с использованием градиентного спуска с моментом, в качестве оптимизируе-
мой функции рассматривается ошибка на валидационной части выборки. В
работах (Pedregosa: 2016, Luketina: 2016) предлагается метод аппроксимации
градиента функции потерь по гиперпараметрам, позволяющий использовать
градиентные методы в задаче оптимизации гиперпараметров на больших выбор-
ках.

Цели работы.

1. Исследовать методы построения моделей глубокого обучения оптимальной
и субоптимальной сложности.

2. Предложить критерии оптимальной и субоптимальной сложности модели
глубокого обучения.

3. Предложить метод выбора субоптимальной структуры модели глубокого
обучения.

4. Предложить алгоритм построения модели субоптимальной сложности и
оптимизации ее параметров.

Методы исследования. Для достижения поставленных целей используют-
ся методы байесовского вывода. В качестве оценки обоснованности выступает
вариационная нижняя оценка обоснованности модели. Рассматривается гра-
фовое представление нейронной сети. Для получения вариационных оценок
обоснованности модели используется метод, основанный на градиентном спуске.
В качестве метода получения модели субоптимальной сложности используется
метод автоматического определения релевантности параметров с использованием
градиентных методов оптимизации гиперпараметров.

Основные положения, выносимые на защиту.

1. Предложен метод байесовского выбора оптимальной и субоптимальной
структуры модели глубокого обучения с использованием автоматического
определения релевантности параметров.

2. Предложены критерии оптимальной и субоптимальной сложности модели
глубокого обучения.

3. Предложен метод графового описания моделей глубокого обучения.
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4. Предложено обобщение задачи оптимизации структуры модели, включаю-
щее ранее описанные методы выбора модели: оптимизация обоснованности
модели, последовательное увеличение сложности модели, последователь-
ное снижение сложности модели, полный перебор вариантов структуры
модели.

5. Предложен метод оптимизации вариационной оценки обоснованности мо-
дели на основе метода мультистарта задачи оптимизации.

6. Предложен алгоритм оптимизации параметров, гиперпараметров и струк-
турных параметров моделей глубокого обучения.

7. Исследованы свойства оптимизационной задачи при различных значениях
метапараметров. Рассмотрены ее асимптотические свойства.

Научная новизна. Разработан новый подход к построению моделей глубо-
кого обучения. Предложены критерии субоптимальной и оптимальной сложности
модели, а также исследована их связь. Предложен метод построения модели
глубокого обучения субоптимальной сложности. Исследованы методы оптими-
зации гиперпараметров и параметров модели. Предложена обобщенная задача
выбора модели глубокого обучения.

Теоретическая значимость. Диссертационная работа носит теоретиче-
ский характер. В работе предлагаются критерии субоптимальной и оптимальной
сложности, основанные на принципе минимальной длины описания. Исследуется
взаимосвязь критериев оптимальной и субоптимальной сложности. Предлагают-
ся градиентные методы для получения оценок сложности модели. Доказывается
теорема об оценке энтропии эмпирического распределения параметров модели,
полученных под действием оператора оптимизации. Доказывается теорема об
обобщенной задаче выбора модели глубокого обучения.

Практическая значимость. Предложенные в работе методы предназначе-
ны для построения моделей глубокого обучения в прикладных задачах регрессии
и классификации; оптимизации гиперпараметров полученной модели; выбора мо-
дели из конечного множества заданных моделей; получения оценок переобучения
модели.

Степень достоверности и апробация работы. Достоверность резуль-
татов подтверждена математическими доказательствами, экспериментальной
проверкой полученных методов на реальных задачах выбора моделей глубокого
обучения; публикациями результатов исследования в рецензируемых научных из-
даниях, в том числе рекомендованных ВАК. Результаты работы докладывались
и обсуждались на следующих научных конференциях.

1. “Восстановление панельной матрицы и ранжирующей модели в разнород-
ных шкалах”, Всероссийская конференция «57-я научная конференция
МФТИ», 2014.
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2. “A monolingual approach to detection of text reuse in Russian-English
collection”, Международная конференция «Artificial Intelligence and Natural
Language Conference», 2015.

3. “Выбор модели глубокого обучения субоптимальной сложности с использо-
ванием вариационной оценки правдоподобия”, Международная конферен-
ция «Интеллектуализация обработки информации», 2016.

4. “Machine-Translated Text Detection in a Collection of Russian Scientific
Papers”, Международная конференция по компьютерной лингвистике и
интеллектуальным технологиям «Диалог-21», 2017.

5. “Author Masking using Sequence-to-Sequence Models”, Международная кон-
ференция «Conference and Labs of the Evaluation Forum», 2017.

6. “Градиентные методы оптимизации гиперпараметров моделей глубокого
обучения”, Всероссийская конференция «Математические методы распо-
знавания образов ММРО», 2017.

7. “Детектирование переводных заимствований в текстах научных статей из
журналов, входящих в РИНЦ”, Всероссийская конференция «Математиче-
ские методы распознавания образов ММРО», 2017.

8. “ParaPlagDet: The system of paraphrased plagiarism detection”, Междуна-
родная конференция «Big Scholar at conference on knowledge discovery and
data mining», 2018.

9. “Байесовский выбор наиболее правдоподобной структуры модели глубокого
обучения”, Международная конференция «Интеллектуализация обработки
информации», 2018.

10. “Variational learning across domains with triplet information”, Международ-
ная конференция «Visually Grounded Interaction and Language workshop,
Conference on Neural Information Processing Systems», 2018.

Публикации по теме диссертации. Основные результаты по теме дис-
сертации изложены в 11 печатных изданиях, 9 из которых изданы в журналах,
рекомендованных ВАК.

Личный вклад. Все приведенные результаты, кроме отдельно оговоренных
случаев, получены диссертантом лично при научном руководстве д.ф.-м.н. В. В.
Стрижова.

Структура и объем работы. Диссертация состоит из оглавления, введе-
ния, четырех разделов, заключения, списка иллюстраций, списка таблиц, перечня
основных обозначений и списка литературы из 162 наименований. Основной
текст занимает 144 страницы.
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Основное содержание работы

Во введении обоснована актуальность диссертационной работы, сформули-
рованы цели и методы исследования, поставлены основные задачи, обоснована
научная новизна, теоретическая и практическая значимость полученных резуль-
татов. В главе 1 приводится формальная постановка задачи выбора модели
глубокого обучения. Вводятся основные определения и обозначения, функции
качества модели глубокого обучения, описывается вероятностная интерпретация
модели.
Проблема выбора структуры модели глубокого обучения формулируется сле-

дующим образом: решается задача классификации или регрессии на заданной
или пополняемой выборке D, (x, 𝑦) ∈ D, x ∈ X = R𝑛, 𝑦 ∈ Y. Требуется выбрать
структуру нейронной сети, доставляющей минимум ошибки на этой функции и
максимум качества на некотором внешнем критерии. Под моделью глубокого
обучения понимается суперпозиция дифференцируемых по параметрам нели-
нейный функций. Под структурой модели понимается значение структурных
параметров модели, т.е. величин, задающих вид итоговой суперпозиции.
Определение 1. Моделью f(w, x) назовем дифференцируемую по параметрам
w функцию из множества признаковых описаний объекта во множество меток:

f : W × X → Y,

где W — пространство параметров функции f .
Определение 2. Пусть задан ациклический граф (𝑉,𝐸), такой, что 1) для
каждого ребра (𝑗, 𝑘) ∈ 𝐸 задан вектор базовых дифференцируемых функций
g𝑗,𝑘 = [g𝑗,𝑘

0 , . . . , g𝑗,𝑘
𝐾𝑗,𝑘−1] мощности 𝐾𝑗,𝑘; 2) для каждой вершины 𝑣 ∈ 𝑉 задана

дифференцируемая функция агрегации agg𝑣; 3) задана функция f = f|𝑉 |−1:

f𝑘(w, x) = agg𝑘

(︁
{⟨𝛾𝑗,𝑘, g𝑗,𝑘⟩ ∘ f𝑗(x)|𝑗 ∈ Adj(𝑣𝑘)}

)︁
, (1)

𝑘 ∈ {1, . . . , |𝑉 | − 1}, f0(x) = x, 𝑣𝑘 ∈ 𝑉,

являющаяся функцией из признакового пространства X в пространство меток
Y при значениях векторов, 𝛾𝑗,𝑘 ∈ [0, 1]𝐾𝑗,𝑘 .
Граф (𝑉,𝐸) со множеством векторов базовых функций {g𝑗,𝑘, (𝑗, 𝑘) ∈ 𝐸} и

функций агрегаций {agg𝑘}, где 𝑘 ∈ {0, . . . , |𝑉 | − 1}, назовем параметрическим
семейством моделей F.
Утверждение 1. Для любого значения 𝛾𝑗,𝑘 ∈ [0, 1]𝐾𝑗,𝑘 функция f ∈ F является
моделью.
Определение 3. Структурой Γ модели f из параметрического семейства моде-
лей F назовем конкатенацию векторов 𝛾𝑗,𝑘.Множество всех возможных значений
структуры Γ будем обозначать как Γ. Векторы 𝛾𝑗,𝑘, (𝑗, 𝑘) ∈ 𝐸 назовем струк-
турными параметрами модели.
В работе рассматривается случай, когда структурные параметры лежат

внутри симплекса: 𝛾𝑗,𝑘 ∈ Δ𝐾𝑗,𝑘−1.
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Определение 4. Гиперпараметрами h ∈ H модели назовем параметры распре-
деления 𝑝(w, Γ|h, 𝜆).
Определение 5. Априорным распределением параметров и структуры модели
назовем вероятностное распределение, соответствующее предположениям о рас-
пределении параметров модели: 𝑝(w, Γ|h, 𝜆) : W× Γ → R+, гдеW — множество
значений параметров модели, Γ — множество значений структуры модели.
Определение 6. Апостериорным распределением назовем распределение вида

𝑝(w, Γ|y, X, h, 𝜆) = 𝑝(y|X, w, Γ)𝑝(w, Γ|h, 𝜆)
𝑝(y|X, h, 𝜆) ∝ 𝑝(y|X, w, Γ)𝑝(w, Γ|h, 𝜆). (2)

Определение 7. Обоснованностью модели назовем величину

𝑝(y|X, h, 𝜆) =
∫︁∫︁

w,Γ
𝑝(y|X, w, Γ)𝑝(w, Γ|h, 𝜆)𝑑w𝑑Γ. (3)

Определение 8. Вариационным распределением назовем параметрическое рас-
пределение 𝑞(w, Γ|𝜃) c параметрами 𝜃 ∈ Θ, являющееся приближением апосте-
риорного распределения параметров и структуры 𝑝(w, Γ|y, X, h, 𝜆).
Определение 9. Пусть задано вариационное распределения 𝑞(w, Γ|𝜃). Функци-
ей потерь 𝐿(𝜃|y, X, h, 𝜆) для модели f назовем дифференцируемую функцию,
принимаемую за качество модели на обучающей выборки при параметрах модели,
получаемых из распределения 𝑞.
Определение 10. Пусть задано вариационное распределения 𝑞(w, Γ|𝜃) и функ-
ция потерь 𝐿(𝜃|y, X, h, 𝜆). Функцией валидации 𝑄(h|y, X, 𝜃, 𝜆) для модели f
назовем дифференцируемую функцию, принимаемую за качество модели при
векторе 𝜃, заданном неявно.
Задача выбора структуры модели и параметров модели ставится как двух-

уровневая задача оптимизации:

h* = arg max
h∈H

𝑄(h|y, X, 𝜃*, 𝜆), 𝜃* = arg max
𝜃∈Θ

𝐿(𝜃|y, X, h, 𝜆). (4)

Определение 11. Задачей выбора модели f назовем двухуровневую задачу
оптимизации (4).
Метапараметры 𝜆 соответствуют параметрам оптимизации, т.е. параметрам,

которые не подлежат оптимизации в ходе задачи выбора модели.
В главе 2 рассматривается задача выбора моделей глубокого обучения субоп-

тимальной сложности. Вводятся вероятностные предположения о распределении
параметров. В качестве сложности модели выступает обоснованность модели (3).
Для получения оценки обоснованности применяются вариационные методы с
использованием градиентных алгоритмов оптимизации. Предполагается, что
структура Γ модели глубокого обучения f и метапараметры 𝜆 определены
однозначно:

𝑝(w, Γ|h, 𝜆) = 𝑝(w, Γ|h), 𝑝(w|Γ, h, 𝜆) = 𝑝(w|h), 𝑝(y|X, w, Γ) = 𝑝(y|X, w).
(5)
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Пусть априорное распределение параметров имеет вид

w ∼ 𝒩 (0, A−1), (6)

где A−1 = diag[𝛼1, . . . ,𝛼𝑢]−1 — матрица ковариаций диагонального вида, где 𝑢 —
число параметров w модели f .
Определение 12. Сложностью модели f назовем обоснованность модели:

𝑝(y|X, h) =
∫︁

w∈W
𝑝(y|X, w)𝑝(w|h)𝑑w. (7)

Определение 13. Модель f назовем оптимальной среди моделей множества
𝑀 , если достигается максимум интеграла (7).
Требуется найти оптимальную модель f из заданного множества моделей

𝑀 , а также значения ее параметров w, доставляющие максимум апостериорной
вероятности

𝑝(w|y, X, h) = 𝑝(y|X, w)𝑝(w|h)
𝑝(y|X, h) . (8)

В качестве функции, приближающей логарифм интеграла (7), будем рассмат-
ривать его вариационную нижнюю оценку, полученную при помощи неравенства
Йенсена:

log 𝑝(y|X, h) ≥
∫︁

w
𝑞(w)log 𝑝(y, w|X, h)

𝑞(w) 𝑑w = (9)

= −DKL
(︁
𝑞(w)||𝑝(w|h)

)︁
+

∫︁

w
𝑞(w)log 𝑝(y|X, w)𝑑w,

где DKL
(︁
𝑞(w)||𝑝(w|h)

)︁
— расстояние Кульбака–Лейблера между двумя распре-

делениями.
Определение 14. Пусть задано множество распределений Q.Модель f назовем
субоптимальной на множестве моделей 𝑀 , если модель доставляет максимум
нижней вариационной оценке интеграла (9).
В качестве множества Q рассматривается два семейства распределений.

Первое семейство — семейство нормальных распределений с диагональными
матрицами ковариаций:

𝑞 ∼ 𝒩 (𝜇𝑞, A−1
𝑞 ), 𝜃 = [𝜇𝑞, diag(A−1

𝑞 )] (10)

где A𝑞 — диагональная матрица ковариаций, 𝜇𝑞 — вектор средних компонент.
В качестве второго семейства распределений Q, рассматриваются распреде-

ления параметров, полученные в ходе оптимизации модели.
Представим интеграл (9) в виде:

E𝑞(w)log 𝑝(y, w|X, h) − S
(︁
𝑞(w)

)︁
, (11)

где S — энтропия распределения:

S
(︁
𝑞(w)

)︁
= −

∫︁

w
𝑞(w)log 𝑞(w)𝑑w, 𝑝(y, w|X, h) = 𝑝(w|h)𝑝(y|X, w).
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Оценка распределений производится при оптимизации параметров. Опти-
мизация выполняется в режиме мультистарта, т.е. при запуске оптимизации
параметров модели из нескольких разных начальных приближений. Основная
проблема такого подхода — вычисление энтропии S распределений 𝑞(w) ∈ Q.
Ниже представлен метод получения оценок энтропии (12) S и оценок обосно-
ванности (11).
Пусть начальные приближения параметров w1, . . . , w𝑟 порождены из неко-

торого начального распределения: w1, . . . , w𝑟 ∼ 𝑞0(w).
Для удобства будем использовать 𝐿(w) как эквивалентную форму записи

𝐿(𝜃|y, X, h, 𝜆) для 𝜃 = [w]T.
Определение 15. Оператором градиентного спуска назовем оператор опти-
мизации вида 𝑇 (w) = w − 𝜆lr∇(−𝐿(w)), где 𝜆lr — длина шага градиентного
спуска.
Теорема 1. Пусть 𝑇 — оператор градиентного спуска, 𝐿 — функция потерь,
градиент ∇𝐿 которой имеет константу Липшица 𝐶𝐿. Пусть 𝜃 = [w1, . . . , w𝑟]T —
начальные приближения оптимизации модели, где 𝑟 — число начальных прибли-
жений. Пусть 𝜆lr — длина шага градиентного спуска, такая, что 𝜆lr < 1

𝐶𝐿
, 𝜆lr <

(︁
max𝑙∈{1,...,𝑟} 𝜆max(H(w𝑙))

)︁−1
, где 𝜆max — наибольшее по модулю собственное

значение гессиана H минус функции потерь (−𝐿).
Тогда разность энтропий распределений 𝑞′(w), 𝑞(w) на смежных шагах почти

наверное сходится к следующему выражению:

S
(︁
𝑞′(w)) − S

(︁
𝑞(w)) ≈ 1

𝑟

𝑟∑︁

𝑙=1

(︁
−𝜆lrTr[H(w′𝑙)] − 𝜆lrTr[H(w′𝑙)H(w′𝑙)]

)︁
+ 𝑜𝜆2

lr→0(1).

(12)
Теорема 2. Оценка (11) на шаге оптимизации 𝜏 представима в виде

1
𝑟

𝑟∑︁

𝑔=1
𝐿(w𝑙

𝜏 |X, y)+S
(︁
𝑞0(w)

)︁
+1
𝑟

𝜏∑︁

𝑏=1

𝑟∑︁

𝑙=1

(︁
−𝜆lrTr[H(w𝑙

𝑏)]−𝜆2
lrTr[H(w𝑙

𝑏)H(w𝑙
𝑏)]

)︁
(13)

с точностью до слагаемых вида 𝑜𝜆2
lr→0(1), где w𝑙

𝑏 — 𝑙-я реализация параметров
модели на шаге оптимизации 𝑏, 𝑞0(w) — начальное распределение.
В главе 3 рассматривается задача оптимизации гиперпараметров модели

глубокого обучения. Для оптимизации гиперпараметров модели предлагаются
алгоритмы, основанные на градиентном спуске. Так как сложность рассматрива-
емых алгоритмах сопоставима со сложностью оптимизации параметров модели,
предлагается оптимизировать параметры и гиперпараметры в единой процедуре.
Предполагается, что структура модели Γ для вероятностной модели глубокого
обучения f и метапараметры 𝜆 определены однозначно (5).
Пусть априорное распределение параметров имеет вид (6). Требуется найти

параметры 𝜃* и гиперпараметры h* модели, доставляющие максимум следующей
функции:

h* = arg max
h∈H

𝑄(h|y, X, 𝜃*, 𝜆), 𝜃*(h) = arg max
𝜃∈Θ

𝐿(𝜃|y, X, h, 𝜆), (14)
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где 𝐿,𝑄 — функции потерь и валидации.
Перечислим алгоритмы оптимизации гиперпараметров, исследованные в этой

главе:
1. Случайный поиск, стохастический метод. Неэффективен при большом
количестве гиперпараметров в силу проклятия размерности.

2. Жадный алгоритм (Luketina: 2016), градиентный метод. Доставляет
локально-оптимальное решение задачи оптимизации. Позволяет произ-
водить одновременную оптимизацию параметров и гиперпараметров.

3. HOAG (Pedregosa: 2016), градиентный метод. Алгоритм основан на прибли-
жении аналитического решения двухуровневой задачи оптимизации (14).

4. DrMAD (Fu: 2017), градиентный метод. Алгоритм работает в строгих
предположениях о линейности траектории оптимизации гиперпарамет-
ров. Алгоритм позволяет также производить оптимизацию параметров
оператора оптимизации.

В главе 4 рассматривается задача выбора структуры модели глубокого обу-
чения. Предлагается ввести вероятностные предположения о распределении
параметров и распределении структуры модели. В качестве оптимизируемой
функции для гиперпараметров модели предлагается обобщенная функция ее
обоснованности. Показано, что данная функция оптимизирует ряд критериев вы-
бора структуры модели: метод максимального правдоподобия, последовательное
увеличение и снижению сложности модели, полный перебор структуры модели,
а также получение максимума вариационной оценки обоснованности модели.
Определим априорные распределения параметров и структуры модели сле-

дующим образом. Пусть для каждого ребра (𝑗, 𝑘) ∈ 𝐸 и каждой базовой
функции g𝑗,𝑘

𝑙 параметры модели w𝑗,𝑘
𝑙 распределены нормально с нулевым

средним: w𝑗,𝑘
𝑙 ∼ 𝒩

(︁
0, (𝛾𝑗,𝑘

𝑙 )2(A𝑗,𝑘
𝑙 )−1)︁

, где (A𝑗,𝑘
𝑙 )−1 — диагональная матрица,

𝑙 ∈ {0, . . . ,𝐾𝑗,𝑘 − 1}, где 𝐾𝑗,𝑘 — количество базовых функций для ребра 𝐾𝑗,𝑘.
Априорное распределение 𝑝(w|Γ, h) параметров w𝑗,𝑘

𝑙 зависит не только от ги-
перпараметров A𝑗,𝑘

𝑘 , но и от структурного параметра 𝛾𝑗,𝑘
𝑙 ∈ (0, 1).

В качестве априорного распределения для структуры Γ предлагается ис-
пользовать произведение распределений Gumbel-Softmax (𝒢𝒮): 𝑝(Γ|h, 𝜆) =
∏︀

(𝑗,𝑘)∈𝐸 𝑝(𝛾𝑗,𝑘|s𝑗,𝑘,𝜆temp), где для каждого структурного параметра 𝛾𝑗,𝑘 с ко-
личеством базовых функций 𝐾 𝑗,𝑘 вероятность 𝑝(𝛾𝑗,𝑘|s𝑗,𝑘,𝜆temp) определена сле-
дующим образом:

(𝐾𝑗,𝑘 − 1)!(𝜆temp)𝐾ℎ,𝑗−1
𝐾𝑗,𝑘−1∏︁

𝑙=0
𝑠𝑗,𝑘

𝑙 (𝛾𝑗,𝑘
𝑙 )−𝜆temp−1

⎛
⎝

𝐾𝑗,𝑘−1∑︁

𝑙=0
𝑠𝑗,𝑘

𝑙 (𝛾𝑗,𝑘
𝑙 )−𝜆temp

⎞
⎠

−𝐾𝑗,𝑘

, (15)

где s𝑗,𝑘 ∈ (0, ∞)𝐾𝑗,𝑘 — гиперпараметр, отвечающий за смещенность плотности
распределения относительно точек симплекса на 𝐾𝑗,𝑘 вершинах, 𝜆temp > 0 —
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метапараметр температуры, отвечающий за концентрацию плотности вблизи
вершин симплекса или в центре симплекса.
В качестве регуляризатора для матрицы (A𝑗,𝑘

𝑙 )−1 предлагается использовать
обратное гамма-распределение: (A𝑗,𝑘

𝑙 )−1 ∼ inv-gamma(𝜆1,𝜆2), где 𝜆1,𝜆2 ∈ 𝜆 —
метапараметры оптимизации.
Таким образом, предлагаемая вероятностная модель содержит следующие

компоненты:
1. Параметры w модели, распределенные нормально.
2. Структура модели Γ, содержащая все структурные параметры

{𝛾𝑗,𝑘, (𝑗, 𝑘) ∈ 𝐸}, распределенные по распределению Gumbel-Softmax.
3. Гиперпараметры h = [diag(A), s], где A — конкатенация матриц

A𝑗,𝑘, (𝑗, 𝑘) ∈ 𝐸, s — конкатенация параметров Gumbel-Softmax распре-
делений s𝑗,𝑘, (𝑗, 𝑘) ∈ 𝐸, где 𝐸 — множество ребер, соответствующих графу
рассматриваемого параметрического семейства моделей F.

4. Метапараметры: 𝜆 = [𝜆1,𝜆2,𝜆temp]. Эти параметры не подлежат оптимиза-
ции и задаются экспертно.

В качестве критерия выбора гиперпараметров предлагается использовать
апостериорную вероятность гиперпараметров:

𝑝(h|y, X, 𝜆) ∝ 𝑝(y|X, h, 𝜆)𝑝(h|𝜆) → max
h∈H

. (16)

Структура и параметры модели выбираются на основе полученных значений
гиперпараметров: w*, Γ* = arg maxw∈W,Γ∈Γ 𝑝(w, Γ|y, X, h*, 𝜆), где h* — решение
задачи оптимизации (16).
Для вычисления обоснованности модели 𝑝(y|X, h, 𝜆) из (16) предлагается

использовать нижнюю вариационную оценку обоснованности.
Теорема 3. Пусть 𝑞(w, Γ|𝜃) = 𝑞w(w|Γ, 𝜃w)𝑞Γ(Γ|𝜃Γ) — вариационное распреде-
ление c параметрами 𝜃 = [𝜃w, 𝜃Γ], аппроксимирующее апостериорное распреде-
ление структуры и параметров:

𝑞w(w|Γ, 𝜃w) ≈ 𝑝(w|y, X, Γ, h, 𝜆), 𝑞Γ(Γ|𝜃Γ) ≈ 𝑝(Γ|y, X, h, 𝜆).

Тогда справедлива следующая оценка:

log 𝑝(y|X, h, 𝜆) ≥ (17)

E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ) − 𝐷KL
(︁
𝑞Γ(Γ|𝜃Γ)||𝑝(Γ|h, 𝜆)

)︁
−

−𝐷KL
(︁
𝑞w(w|Γ, 𝜃w)||𝑝(w|Γ, h, 𝜆)

)︁
,

где 𝐷KL
(︁
𝑞w(w|Γ, 𝜃w)||𝑝(w|Γ, h, 𝜆)

)︁
вычисляется по формуле условной диверген-

ции:

𝐷KL
(︁
𝑞w(w|Γ, 𝜃w)||𝑝(w|Γ, h, 𝜆)

)︁
= EΓ∼𝑞Γ(Γ|𝜃Γ)Ew∼𝑞w(w|Γ,𝜃w) log

⎛
⎝𝑞w(w|Γ, 𝜃w)
𝑝(w|Γ, h, 𝜆)

⎞
⎠ .
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Для анализа сложности полученной модели введем понятие параметрической
сложности.
Определение 16. Параметрической сложностью 𝐶𝑝(𝜃|𝑈h, 𝜆) модели с вариаци-
онными параметрами 𝜃 на компакте 𝑈h ⊂ H назовем минимальную дивергенцию
между вариационным и априорным распределением:

𝐶𝑝(𝜃|𝑈h, 𝜆) = min
h∈𝑈h

𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
.

Одним из критериев удаления неинформативных параметров в вероятност-
ных моделях является отношение вариационной плотности параметров в нуле к
вариационной плотности параметра в моде распределения.
Определение 17. Относительной вариационной плотностью параметра 𝑤 ∈ w
при условии структуры Γ и гиперпараметров h назовем отношение вариаци-
онной плотности в моде априорного распределения параметра к вариационной
плотности в моде вариационного распределения параметра:

𝜌(𝑤|Γ, 𝜃w, h, 𝜆) = 𝑞w(mode 𝑝(𝑤|Γ, h, 𝜆)|Γ, 𝜃w)
𝑞w(mode 𝑞w(𝑤|Γ, 𝜃w)|Γ, 𝜃w) .

Относительной вариационной плотностью вектора параметров w назовем следу-
ющее выражение:

𝜌(w|Γ, 𝜃w, h, 𝜆) =
∏︁

𝑤∈w
𝜌(𝑤|Γ, 𝜃w, h, 𝜆). (18)

Теорема 4. Пусть
1. Заданы компактные множества 𝑈h ⊂ H,𝑈𝜃w ⊂ Θw,𝑈𝜃Γ ⊂ ΘΓ.
2. Вариационное распределение 𝑞w(w|Γ, 𝜃w) является абсолютно непрерыв-
ным и унимодальным на 𝑈𝜃. Его мода и матожидание совпадают.

3. Априорное распределение 𝑝(w|Γ, h, 𝜆) является абсолютно непрерывным
и унимодальным на 𝑈h. Его мода и матожидание совпадают и не зависят
от гиперпараметров h на 𝑈h и структуры Γ на 𝑈𝜃Γ:

E𝑝(w|Γ,h,𝜆) w = mode 𝑝(w|Γ1, h1, 𝜆) = mode 𝑝(w|Γ1, h2, 𝜆) = m

для любых h1, h2 ∈ 𝑈h, Γ1, Γ2 ∈ 𝑈Γ.
4. Параметры модели w имеют конечные вторые моменты по маргинальным
распределениям:

∫︀
Γ 𝑞Γ(Γ|𝜃Γ)𝑞w(w|Γ, 𝜃w)𝑑Γ,

∫︀
Γ 𝑞Γ(Γ|𝜃Γ)𝑝(w|Γ, h, 𝜆)𝑑Γ

при любых 𝜃w ∈ 𝑈𝜃w, 𝜃Γ ∈ 𝑈𝜃Γ, h ∈ 𝑈h.

5. Вариационное распределение 𝑞w(w|Γ, 𝜃w) является липшицевым по w.
6. Значение 𝑞w(w|Γ, 𝜃w) не равно нулю при любых 𝜃 ∈ 𝑈𝜃, Γ ∈ Γ.
7. Точная нижняя грань infΓ∈Γ,𝜃w∈𝑈𝜃w 𝑞w(m|Γ, 𝜃w) не равна нулю.
8. Решение задачи h* = arg minh∈𝑈h 𝐷KL

(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
единствен-

но для любого 𝜃 ∈ 𝑈𝜃.
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9. Задана бесконечная последовательность векторов вариационных парамет-
ров 𝜃[1], 𝜃[2], . . . , 𝜃[𝑖], · · · ∈ 𝑈𝜃, такая, что lim𝑖→∞ 𝐶𝑝(𝜃[𝑖]|𝑈h, 𝜆) = 0.

Тогда следующее выражение стремится к единице:
lim𝑖→∞ E𝑞Γ(Γ|𝜃Γ[𝑖])𝜌(w|Γ, 𝜃w[𝑖], h[𝑖], 𝜆)−1.

Рассмотрим основные статистические критерии выбора вероятностных моде-
лей.

1. Критерий максимального правдоподобия: log 𝑝(y|X, w, Γ) →
maxw∈𝑈w,Γ∈𝑈Γ . Для использования данного критерия в качестве за-
дачи выбора модели предлагается следующее обобщение:

𝐿(𝜃|y, X, h, 𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ). (19)

Метод не предполагает оптимизации гиперпараметров h. Для формаль-
ного соответствия данной задачи задаче выбора модели (4), положим
𝐿(𝜃|y, X, h, 𝜆) = 𝑄(h|y, X, 𝜃, 𝜆) :

𝐿(𝜃|y, X, h, 𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ) → max
𝜃∈𝑈𝜃

,

𝑄(h|y, X, 𝜃, 𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ) → max
h∈𝑈h

.

2. Метод максимальной апостериорной вероятности:
log 𝑝(y|X, w, Γ)𝑝(w, Γ|h, 𝜆) → maxw∈𝑈w,Γ∈𝑈Γ . Аналогично предыду-
щему методу сформулируем вариационное обобщение данной задачи:

𝐿(𝜃|y, X, h, 𝜆) = 𝑄(h|y, X, 𝜃, 𝜆) = (20)

= E𝑞(w,Γ|𝜃)
(︁
log 𝑝(y|X, w, Γ) + log 𝑝(w, Γ|h, 𝜆)

)︁
.

Т.к. в рамках данной задачи (20) не предполагается оптимизации гиперпа-
раметров h, положим параметры распределения 𝑝(w, Γ|h, 𝜆) фиксирован-
ными: 𝜆 = [𝜆1,𝜆2,𝜆temp, s, diag(A)].

3. Полный перебор структуры:

𝐿(𝜃|y, X, h, 𝜆) = 𝑄(h|y, X, 𝜃, 𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(𝑞Γ(Γ|𝜃Γ) = 𝑝′|X, w, Γ)
(21)

где 𝑝′ — некоторое распределение на структуре Γ, выступающее в качестве
метапараметра.

4. Критерий Акаике: AIC = 2 log 𝑝(y|X, w, Γ) − 2|W| → max . Для использо-
вания критерия Акаике для сравнения моделей, принадлежащих одному
параметрическому семейству F предлагается следующая переформулиров-
ка:

𝐿(𝜃|y, X, h, 𝜆) = 𝑄(h|y, X, 𝜃, 𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ)− (22)

−|{𝑤 : 𝐷KL
(︁
𝑞w(𝑤|Γ, 𝜃w)||𝑝(𝑤|Γ, h, 𝜆)

)︁
< 𝜆prune}|,
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где
h = arg min

h′∈𝑈h

𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
, (23)

𝜆prune — метапараметр алгоритма, 𝑈h ⊂ H — область определения задачи
по гиперпараметрам. Предложенное обобщение (22) применимо только
в случае, если выражение (23) определено однозначно, т.е. существует
единственный вектор гиперпараметров h ∈ 𝑈h, доставляющий минимум
дивергенции 𝐷KL

(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
.

5. Информационный критерий Шварца: BIC = 2 log 𝑝(y|X, w, Γ) −
|W| log𝑚 → max . Переформулируем данный критерий аналогично крите-
рию AIC:

𝐿(𝜃|y, X, h, 𝜆) = 𝑄(h|y, X, 𝜃, 𝜆) = log E𝑞(w,Γ|𝜃)𝑝(y|X, w, Γ)− (24)

−0.5 log𝑚|{𝑤 : 𝐷KL
(︁
𝑞w(𝑤|Γ, 𝜃w)||𝑝(𝑤|Γ, h, 𝜆)

)︁
}|,

метапараметр 𝜆prune определен аналогично (23).
6. Метод вариационной оценки обоснованности:

𝐿(𝜃|y, X, h, 𝜆) = (25)

= E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ) − 𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
+

+ log 𝑝(h|𝜆) → max
𝜃∈𝑈𝜃

, 𝑄(h|y, X, 𝜃, 𝜆) =

= E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ) − 𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
+

+ log 𝑝(h|𝜆) → max
h∈𝑈h

,

В рамках данной задачи функции 𝐿(𝜃|y, X, h, 𝜆) и 𝑄(h|y, X, 𝜃, 𝜆) совпа-
дают, все гиперпараметры h подлежат оптимизации.

7. Валидация на отложенной выборке:

𝐿(𝜃|y, X, h, 𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(ytrain|Xtrain, w, Γ)+log 𝑝(w, Γ|h, 𝜆) → max
𝜃∈𝑈𝜃

,

(26)
𝑄(h|y, X, 𝜃, 𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(ytest|Xtest, w, Γ) → max

h∈𝑈h
,

где (Xtrain, ytrain), (Xtest, ytest) — разбиение выборки на обучающую и кон-
трольную подвыборку. В рамках данной задачи все гиперпараметры h
подлежат оптимизации.

Определение 18. Двухуровневую задачу оптимизации будем называть обоб-
щающей на компакте 𝑈 = 𝑈𝜃w × 𝑈𝜃Γ × 𝑈h × 𝑈𝜆 ⊂ Θw × ΘΓ × H × Λ, если она
удовлетворяет следующим критериям.

1. Область определения каждого параметра 𝑤 ∈ w, гиперпараметра ℎ ∈ h
и метапараметра 𝜆 ∈ 𝜆 не является пустым множеством и не является
точкой.
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2. Для каждого значения гиперпараметров h оптимальное решение нижней
задачи оптимизации (4) 𝜃*(h) = arg max𝜃∈Θ 𝐿(𝜃|y, X, h, 𝜆) определено
однозначно при любых значениях метапараметров 𝜆 ∈ 𝑈𝜆.

3. Критерий максимизации правдоподобия выборки: существует 𝜆 ∈ 𝑈𝜆

и 𝐾1 > 0,𝐾1 < maxh1,h2∈𝑈h 𝑄(h1|y, X, 𝜃*(h1), 𝜆) − 𝑄(h2|y, X, 𝜃*(h2), 𝜆),
такие, что для любых векторов гиперпараметров h1, h2 ∈ 𝑈h, удовлетво-
ряющих неравенству 𝑄(h1|y, X, 𝜃*(h1), 𝜆) − 𝑄(h2|y, X, 𝜃*(h2), 𝜆) >
𝐾1, выполняется неравенство E𝑞(w,Γ|𝜃*(h1)) log 𝑝(y|X, w, Γ) >
E𝑞(w,Γ|𝜃*(h2)) log 𝑝(y|X, w, Γ).

4. Критерий минимизации параметрической сложности: существует 𝜆 ∈ 𝑈𝜆

и 𝐾2 > 0, 𝐾2 < maxh1,h2∈𝑈h 𝑄(h1|y, X, 𝜃*(h1), 𝜆) − 𝑄(h2|y, X, 𝜃*(h2), 𝜆),
такие, что для любых векторов гиперпараметров h1, h2 ∈ 𝑈h, удовле-
творяющих неравенству 𝑄(h1|y, X, 𝜃*(h1), 𝜆) − 𝑄(h2|y, X, 𝜃*(h2), 𝜆) >
𝐾2, параметрическая сложность первой модели меньше, чем второй:
𝐶𝑝(𝜃*(h1)|𝑈h, 𝜆) < 𝐶𝑝(𝜃*(ℎ2)|𝑈h, 𝜆).

5. Критерий приближения оценки обоснованности: существует значение ги-
перпараметров 𝜆, такое, что значение функций потерь 𝑄(h|y, X, 𝜃, 𝜆)
как сложной функции от 𝐿(𝜃|y, X, h, 𝜆) пропорционально вариационной
оценки обоснованности модели:

𝑄(h|y, X, 𝜃*(h), 𝜆) ∝

∝ E𝑞(w,Γ|𝜃′(h)) log 𝑝(y|X, w, Γ)−𝐷KL
(︁
𝑞(w, Γ|𝜃′(h))||𝑝(w, Γ|h, 𝜆)

)︁
+log 𝑝(h|𝜆)

для всех h ∈ 𝑈h, где в качестве гиперпараметров h рассматриваются
все гиперпараметры модели, вне зависимости от критерия и особенности
оптимизации гиперпараметров, соответствующих критерию: h = [A, s],
где

𝜃′(h) = arg max
𝜃∈𝑈h

E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ) − 𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
.

6. Критерий перебора оптимальных структур: существует константа 𝐾3 > 0
и набор метапараметров 𝜆, такие, что существует хотя бы одна пара
гиперпараметров h1, h2 ∈ 𝑈h, удовлетворяющая неравенствам:

𝐷KL
(︁
𝑝(Γ|h1, 𝜆)||𝑝(Γ|h2, 𝜆)

)︁
> 𝐾3,𝐷KL

(︁
𝑝(Γ|h2, 𝜆)||𝑝(Γ|h1, 𝜆)

)︁
> 𝐾3,

и для произвольных локальных оптимумов h1, h2 задачи оптимизации
𝑄(h|y, X, 𝜃, 𝜆), полученных при метапараметрах 𝜆 и удовлетворяющих
неравенствам

𝐷KL
(︁
𝑝(Γ|h1, 𝜆)||𝑝(Γ|h2, 𝜆)

)︁
> 𝐾3,𝐷KL

(︁
𝑝(Γ|h2, 𝜆)||𝑝(Γ|h1, 𝜆)

)︁
> 𝐾3,

𝑄(h1|y, X, 𝜃, 𝜆) > 𝑄(h2|y, X, 𝜃, 𝜆),
существует значение метапараметров 𝜆′ ̸= 𝜆, такое, что
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(a) соответствие между вариационными параметрами 𝜃*(h1), 𝜃*(h2) со-
храняется при 𝜆′,

(b) выполняется неравенство 𝑄(h1|y, X, 𝜃, 𝜆′) < 𝑄(h2|y, X, 𝜃, 𝜆′).
7. Критерий непрерывности: функции 𝐿(𝜃|y, X, h, 𝜆) и 𝑄(h|y, X, 𝜃, 𝜆) непре-
рывны по метапараметрам 𝜆 ∈ 𝑈𝜆.

Теорема 5. Рассмотренные задачи (19),(20),(21),(22),(24),(26) не являются обоб-
щающими.
Теорема 6. Пусть 𝑞Γ — абсолютно непрерывное распределение с дифференци-
руемой плотностью, такой, что:

1. Градиент плотности ∇𝜃Γ𝑞(Γ|𝜃Γ) является ненулевым почти всюду.
2. Выражение ∇𝜃Γ𝑞(Γ|𝜃Γ)log 𝑝(Γ|h, 𝜆) ограничено на 𝑈𝜃 абсолютно непре-
рывной случайной величиной, не зависящей от Γ, с конечным первым
моментом.

Тогда задача (25) не является обобщающей.
В качестве обобщающей задачи оптимизации предлагается оптимизационную

задачу следующего вида:

h* = arg max
h

𝑄(h|y, X, 𝜃, 𝜆) = (27)

= 𝜆Q
likelihoodE𝑞(w,Γ|𝜃*) log 𝑝(y|X, w, Γ) − 𝜆Q

prior𝐷KL
(︁
𝑞(w, Γ|𝜃*)||𝑝(w, Γ|h, 𝜆)

)︁
−

− ∑︁

𝑝′∈P,𝜆∈𝜆Q
struct

𝜆𝐷KL
(︁
𝑞(w, Γ|𝜃*)||𝑝′)︁ + log 𝑝(h|𝜆),

𝜃* = arg max
𝜃

𝐿(𝜃|y, X, h, 𝜆) = (28)

= E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ) − 𝜆L
prior𝐷KL

(︁
𝑞(w, Γ|𝜃*)||𝑝(w, Γ|h, 𝜆)

)︁
,

где P — непустое множество распределений на структуре Γ, 𝜆Q
prior,𝜆

L
prior, 𝜆Q

struct —
некоторые числа. Множество распределений P отвечает за перебор структур Γ
в процессе оптимизации модели. В предельном случае, когда температура 𝜆temp
близка к нулю, а множество P состоит из распределений, близких к дискретным,
соответствующим всем возможным структурам, калибровка 𝜆Q

struct порождает
последовательность задач оптимизаций, схожую с перебором структур.
Теорема 7. Пусть

1. Задан компакт 𝑈 = 𝑈𝜃w × 𝑈𝜃Γ × 𝑈h × 𝑈𝜆, где априорное распределение
𝑝(w, Γ|h, 𝜆) и распределение 𝑝(h|𝜆) непрерывны на 𝑈h × 𝑈𝜆.

2. Задано непустое множество P абсолютно непрерывных распределений
на структуре, чьи плотности непрерывны и не принимают нулевое зна-
чение, где хотя бы одно распределение 𝑝1 ∈ P является Gumbel-Softmax
распределением, и для каждого значения s ∈ 𝑈h,𝜆temp ∈ 𝑈𝜆, существует
значение параметров распределения 𝑝1, такое, что 𝑝1 = 𝑝(Γ|h, 𝜆). Пара-
метры распределений 𝑝 ∈ P принадлежат множеству метапараметров
𝜆 ∈ 𝑈𝜆.
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3. Вариационное распределение 𝑞(w, Γ|𝜃) является абсолютно непрерывным,
плотность которого непрерывна по метапараметрам 𝜆 ∈ 𝑈𝜆 и не принимает
нулевое значение.

4. Область определения каждого параметра 𝑤 ∈ w, гиперпараметра ℎ ∈ h и
метапараметра 𝜆 ∈ 𝜆 не является пустым и не является точкой.

5. Для каждого значения гиперпараметров h ∈ 𝑈h оптимальное решение
нижней задачи оптимизации 𝜃* определено однозначно на 𝑈𝜃 = 𝑈𝜃w × 𝑈𝜃Γ

при любых значениях метапараметров 𝜆 ∈ 𝑈𝜆.
6. Область значений метапараметров 𝜆Q

likelihood,𝜆Q
prior,𝜆

L
prior, 𝜆Q

struct включает
отрезок от нуля до единицы.

7. Существует значение метапараметров 𝜆1 > 0,𝜆2 > 0,𝜆Q
likelihood > 0 ∈ 𝑈𝜆,

такое, что

max
h∈𝑈h

log 𝑝(h|𝜆)−min
h∈𝑈h

log 𝑝(h|𝜆) < max
h∈𝑈h

𝑄(h|y, X, 𝜃, 𝜆)−min
h∈𝑈h

𝑄(h|y, X, 𝜃, 𝜆)

при 𝜆Q
struct = 0,𝜆Q

prior = 0.
8. Существует значение метапараметров 𝜆L

prior > 0,𝜆Q
prior > 0,𝜆1 > 0,

𝜆2 > 0,𝜆temp > 0 ∈ 𝑈𝜆, такое, что

max
h∈𝑈h

1
𝜆Q

prior
log 𝑝(h|𝜆) − min

h∈𝑈h

1
𝜆Q

prior
log 𝑝(h|𝜆)+

+ max
h∈𝑈h

min
𝜃∈𝑈𝜃

𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
−

− min
h∈𝑈h,𝜃∈𝑈𝜃

𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
+max

𝜃∈𝑈𝜃

1
𝜆L

prior
E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ)−

− min
𝜃∈𝑈𝜃

1
𝜆L

prior
E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ) <

< max
𝜃∈𝑈𝜃,h∈𝑈h

𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
−

− min
𝜃∈𝑈𝜃,h∈𝑈h

𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁

при 𝜆Q
struct = 0,𝜆Q

likelihood = 0.

9. Существуют значения метапараметров 𝜆Q
prior > 0,𝜆Q

likelihood > 0,𝜆1 > 0,𝜆2 >
0,𝜆temp > 0 ∈ 𝑈𝜆, такие, что существуют гиперпараметры h1, h2 ∈ 𝑈h:

𝐷KL
(︁
𝑝(w, Γ|h1, 𝜆)||𝑝(w, Γ|h2, 𝜆)

)︁
>

>
maxh 𝑄(h|y, X, 𝜃, 𝜆) − minh 𝑄(h|y, X, 𝜃, 𝜆)

𝑚𝜆
,

𝐷KL
(︁
𝑝(w, Γ|h2, 𝜆)||𝑝(w, Γ|h1, 𝜆)

)︁
>
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>
maxh 𝑄(h|y, X, 𝜃, 𝜆) − minh 𝑄(h|y, X, 𝜃, 𝜆)

𝑚𝜆

при 𝜆Q
struct = 0, где 𝑚𝜆 — максимальное значение 𝜆Q

struct перед распределе-
нием 𝑝1 из первого условия теоремы.

Тогда задача (27) является обобщающей на 𝑈 .
Следующие теоремы говорят о соответствии предлагаемой обобщающей

задачи вероятностной модели. В частности, задача оптимизации параметров и
гиперпараметров соответствует двухуровневому байесовскому выводу.

Теорема 8. Пусть 𝜆Q
prior = 𝜆L

prior = 𝜆Q
likelihood = 1, 𝜆Q

struct = 0. Тогда:
1. Задача оптимизации (27) доставляет максимум апостериорной вероятности
гиперпараметров с использованием вариационной оценки обоснованности:

E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ) − 𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
+

+ log 𝑝(w, Γ|h, 𝜆) → max
h

.

2. Вариационное распределение 𝑞(w, Γ|𝜃) приближает апостериорное распре-
деление 𝑝(w, Γ|y, X, h, 𝜆) наилучшим образом:

𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|y, X, h, 𝜆)

)︁
→ min

𝜃
.

3. Если существуют такие значения параметров 𝜃w, 𝜃Γ, что
𝑝(w|y, X, Γ, h, 𝜆) = 𝑞w(w|Γ, 𝜃w), 𝑝(Γ|y, X, h, 𝜆) = 𝑞Γ(Γ|𝜃Γ), то ре-
шение задачи оптимизации 𝐿(𝜃|y, X, h, 𝜆) доставляет эти значения
вариационных параметров.

Докажем, что варьирование коэффициента 𝜆L
prior приводит к оптимизации

вариационной оценки обоснованности для выборки из той же генеральной сово-
купности, но другой мощности.
Теорема 9. Пусть 𝑚 ≫ 0, 𝜆L

prior > 0, 𝑚
𝜆L

prior
∈ N, 𝑚

𝜆L
prior

≫ 0. Тогда оптимизация
функции

𝐿(𝜃|y, X, h, 𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X, w, Γ) − 𝜆L
prior𝐷KL

(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁

эквивалентна оптимизации вариационной оценки обоснованности

E𝑞(w,Γ|𝜃) log 𝑝(ŷ|X̂, w, Γ) − 𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁

для произвольной случайной подвыборки ŷ, X̂ мощности 𝑚
𝜆L

prior
из генеральной

совокупности.
Теорема 10. Пусть

1. Задан компакт 𝑈 = 𝑈h × 𝑈𝜃 и 𝜆Q
struct = 0.
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2. Решение задачи

min
h∈𝑈h

𝐷KL
(︁
𝑞(w, Γ|𝜃2)||𝑝(w, Γ|h, 𝜆)

)︁
(29)

является единственным для некоторых 𝜆Q
prior1,𝜆

Q
prior2,𝜆

Q
prior1 > 𝜆Q

prior2 на 𝑈
при некоторых фиксированных 𝜆Q

likelihood,𝜆L
prior,𝜆temp,𝜆1,𝜆2.

3. Решения задачи (27),(28) являются единственными на 𝑈 при 𝜆Q
prior1,𝜆

Q
prior2

и 𝜆Q
likelihood,𝜆L

prior,𝜆temp,𝜆1,𝜆2.
4. Функция 𝑄(h|𝜃2, X, 𝜃, 𝜆) является вогнутой по h ∈ 𝑈h при 𝜆Q

prior = 𝜆Q
prior2.

5. Решение задачи (29) единственно при 𝜆Q
prior = 𝜆Q

prior2.
6. Все стационарные точки 𝜃 ∈ 𝑈𝜃 функции 𝐿(𝜃|y, X, h, 𝜆) являются ре-
шениями нижней задачи оптимизации при 𝜆Q

prior = 𝜆Q
prior2 с обратимым

гессианом.
7. Значения 𝑝(h|𝜆) приблизительно равны на 𝑈h: 𝑝(h1|𝜆) ≈

𝑝(h2|𝜆) для всех h1, h2 ∈ 𝑈h.

Тогда справедлива следующая оценка разности параметрических сложностей:

𝐶𝑝(𝜃1|𝑈h, 𝜆1) − 𝐶𝑝(𝜃2|𝑈h, 𝜆2) <
𝜆L

prior

𝜆Q
prior2

(𝜆Q
prior2 − 𝜆L

prior)×

× max
h∈𝑈h,𝜃∈𝑈𝜃

∇𝜃,h(𝐷KL
(︁
𝑞(w, Γ|𝜃)||[𝑝(w, Γ|h, 𝜆)

)︁
)T∇2

𝜃(𝐿(𝜃|y, X, h, 𝜆2))−1×

×∇𝜃𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
max

h1,h2∈𝑈h
||h1 − h2||.

Теорема 11. Пусть 𝜆Q
prior

𝜆Q
likelihood

= 𝜆L
prior. Тогда задача оптимизации (27) представима

в виде одноуровневой задачи оптимизации:

𝜆Q
likelihoodE𝑞(w,Γ|𝜃)𝑝(y|X, w, Γ) − 𝜆Q

prior𝐷KL
(︁
𝑞(w, Γ|𝜃)||𝑝(w, Γ|h, 𝜆)

)︁
−

− ∑︁

𝑝′∈P,𝜆∈𝜆Q
struct

𝐷KL
(︁
𝑝(Γ|h, 𝜆)||𝑝′)︁ − log 𝑝(h|𝜆) → max

h,𝜃
.

В главе 5 продемонстрировано применение предложенных методов к при-
кладным задачам классификации и регрессии, задаче определения схожести
предложений на основе их векторных представлений, а также к задачам проре-
живания моделей глубокого обучения.

В заключении представлены основные результаты диссертационной рабо-
ты.

1. Предложен метод байесовского выбора оптимальной и субоптимальной
структуры модели глубокого обучения с использованием автоматического
определения релевантности параметров.
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2. Предложены критерии оптимальной и субоптимальной сложности модели
глубокого обучения.

3. Предложен метод графового описания моделей глубокого обучения. Пред-
ложено обобщение задачи оптимизации структуры модели, включающее
ранее описанные методы выбора модели: оптимизация обоснованности
модели, последовательное увеличение сложности модели, последователь-
ное снижение сложности модели, полный перебор вариантов структуры
модели.

4. Предложен метод оптимизации вариационной оценки обоснованности мо-
дели на основе метода мультистарта задачи оптимизации.

5. Предложен алгоритм оптимизации параметров, гиперпараметров и струк-
турных параметров моделей глубокого обучения.

6. Исследованы свойства оптимизационной задачи при различных значениях
метапараметров. Рассмотрены ее асимптотические свойства.

7. Рассмотрено применение предложенных методов для построения моделей
глубокого обучения в прикладных задачах регрессии и классификации.
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