


Оглавление

Стр.

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Глава 1. Постановка задачи последовательного выбора моделей 10
1.1. Критерии выбора модели глубокого обучения . . . . . . . . . . . . . 16
1.2. Оптимизация параметров в задаче выбора структуры модели . . . . 18
1.3. Оптимизация гиперпараметров модели . . . . . . . . . . . . . . . . . 20
1.4. Порождение и выбор структуры модели глубокого обучения . . . . . 22
1.5. Метаоптимизация моделей глубокого обучения . . . . . . . . . . . . . 27
1.6. Выбор структур моделей специального вида . . . . . . . . . . . . . . 29

Глава 2. Выбор модели с использованием вариационного вывода 32
2.1. Постановка задачи оптимизации обоснованности моделей . . . . . . . 33
2.2. Методы получения вариационной оценки обоснованности . . . . . . . 36
2.3. Анализ методов выбора моделей . . . . . . . . . . . . . . . . . . . . . 44

Глава 3. Оптимизация гиперпараметров в задаче выбора модели 49
3.1. Постановка задачи оптимизации гиперпараметров моделей . . . . . . 50
3.2. Градиентные методы оптимизации гиперпараметров . . . . . . . . . . 52
3.3. Анализ алгоритмов оптимизации гиперпараметров . . . . . . . . . . 56

Глава 4. Выбор оптимальной структуры модели 64
4.1. Вероятностная модель . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2. Вариационная оценка обоснованности вероятностной модели . . . . . 68
4.3. Обобщающая задача . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4. Анализ обобщающей задачи . . . . . . . . . . . . . . . . . . . . . . . 90

Глава 5. Анализ прикладных задач порождения и выбора моделей глубокого
обучения 104

5.1. Выбор модели классификации временных рядов . . . . . . . . . . . . 104
5.2. Выбор модели обнаружения перефраза в тексте . . . . . . . . . . . . 109
5.3. Определение релевантности параметров модели глубокого обучения . 114
Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Список оcновных обозначений 126
Список иллюстраций . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Список таблиц . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

2



Введение

Актуальность темы. В работе рассматривается задача автоматического
построения моделей глубокого обучения оптимальной и субоптимальной слож-
ности.

Под сложностью модели понимается минимальная длина описания [1], т.е.
минимальное количество информации, которое требуется для передачи инфор-
мации о модели и о выборке. Вычисление минимальной длины описания мо-
дели является вычислительно сложной процедурой. В работе предлагается по-
лучение ее приближенной оценки, основанной на связи минимальной длины
описания и обоснованности модели [1]. Для получения оценки обоснованности
используются вариационные методы получения оценки обоснованности [2], ос-
нованные на аппроксимации неизвестного апостериорного распределения дру-
гим заданным распределением. Под субоптимальной сложностью понимается
вариационная оценка обоснованности модели.

Одна из проблем построения моделей глубокого обучения — большое коли-
чество параметров моделей [3, 4]. Поэтому задача выбора моделей глубокого
обучения включает в себя выбор стратегии построения модели, эффективной
по вычислительным ресурсам. В работе [5] приводятся теоретические оценки
построения нейросетей с использованием жадных стратегий, при которых по-
строение модели производится итеративно последовательным увеличением чис-
ла нейронов в сети. В работе [6] предлагается жадная стратегия выбора модели
нейросети с использованием релевантных распределений, т.е. параметрических
распределений, оптимизация параметров которых позволяет удалить часть па-
раметров из модели. Данный метод был также применялся в задаче построения
модели метода релевантных векторов [7]. Альтернативой данным алгоритмам
построения моделей являются методы, основанные на прореживании сетей глу-
бокого обучения [8, 9, 10], т.е. на последовательном удалении параметров, не
дающих существенного прироста качества модели. В работах [11, 12] рассматри-
вается послойное построение модели с отдельным критерием оптимизации для
каждого слоя. В работах [13, 14, 15] предлагается декомпозиция модели на по-
рождающую и разделяющую, оптимизируемые последовательно. В работе [16]
предлагается метод автоматического построения сети, основанный на бустинге.
В качестве оптимизируемого функционала предлагается линейная комбинация
функции правдоподобия выборки и сложности модели по Радемахеру. В рабо-
тах [17, 18, 19, 20] предлагается метод автоматического построения сверточной
сети с использованием обучения с подкреплением. В [21] используется схожее
представление сверточной сети, вместо обучения с подкреплением используется
градиентная оптимизация параметров, задающих структуру нейронной сети.

В качестве порождающих моделей в сетях глубокого обучения выступают
ограниченные машины Больцмана [3] и автокодировщики [22]. В работе [23]
рассматриваются некоторые типы регуляризации автокодировщиков, позволя-
ющие формально рассматривать данные модели как порождающие модели с
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использованием байесовского вывода. В работе [24] также рассматриваются ре-
гуляризованные автокодировщики и свойства оценок их правдоподобия. В ра-
боте [25] предлагается обобщение автокодировщика с использованием вариа-
ционного байесовского вывода [2]. В работе [26] рассматриваются модификации
вариационного автокодировщика и ступенчатых сетей (англ. ladder network) [27]
для случая построения многослойных порождающих моделей.

В качестве критерия выбора модели в ряде работ [28, 2, 29, 30, 31, 32] высту-
пает обоснованность модели. В работах [29, 30, 31, 32] рассматривается пробле-
ма выбора модели и оценки гиперпараметров в задачах регрессии. Альтернатив-
ным критерием выбора модели является минимальная длина описания [1], явля-
ющаяся показателем статистической сложности модели и заданной выборки. В
работе [33] рассматривается перечень критериев сложности моделей глубокого
обучения и их взаимосвязь. В работе [34] в качестве критерия сложности моде-
ли выступает показатель нелинейности, характеризуемый степенью полинома
Чебышева, аппроксимирующего функцию. В работе [35] анализируется показа-
тель избыточности параметров сети. Утверждается, что по небольшому набору
параметров в глубокой сети с большим количеством избыточных параметров
можно спрогнозировать значения остальных. В работе [36] рассматривается по-
казатель робастности моделей, а также его взаимосвязь с топологией выборки
и классами функций, в частности рассматривается влияние функции ошибки и
ее липшицевой константы на робастность моделей. Схожие идеи были рассмот-
рены в работе [37], в которой исследуется устойчивость классификации модели
под действием шума.

Одним из методов получения приближенного значения обоснованности яв-
ляется вариационный метод получения нижней оценки интеграла [2]. В рабо-
те [38] рассматривается стохастическая версия вариационного метода. В ра-
боте [39] рассматривается алгоритм получения вариационной нижней оценки
обоснованности для оптимизации гиперпараметров моделей глубокого обуче-
ния. В работе [40] рассматривается получение вариационной нижней оценки
интеграла с использованием модификации методов Монте-Карло. В работе [41]
рассматривается стохастический градиентный спуск в качестве оператора, по-
рождающего распределение, аппроксимирующее апостериорное распределение
параметров модели. Схожий подход рассматривается в работе [42], где также
рассматривается стохастический градиентный спуск в качестве оператора, по-
рождающего апостериорное распределение параметров. В работе [43] предла-
гается модификация стохастического градиентного спуска, аппроксимирующая
апостериорное распределение.

Альтернативным методом выбора модели является выбор модели на основе
скользящего контроля [44, 29]. Проблемой такого подхода является возможная
высокая вычислительная сложность [45, 46]. В работах [47, 48] рассматривается
проблема смещения оценок качества модели при гиперпараметрах, получаемых
с использованием 𝑘-fold метода скользящего контроля, при котором выборка
делится на 𝑘 частей с обучением на 𝑘 − 1 части и валидацией результата на
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оставшейся части выборки.
Задачей, связанной с проблемой выбора модели, является задача оптимиза-

ции гиперпараметров [28, 2]. В работе [29] рассматривается оптимизация гипер-
параметров с использованием метода скользящего контроля и методов опти-
мизации обоснованности моделей, отмечается низкая скорость сходимости ги-
перпараметров при использовании метода скользящего контроля. В ряде ра-
бот [49, 50] рассматриваются градиентные методы оптимизации гиперпарамет-
ров, позволяющие оптимизировать большое количество гиперпараметров од-
новременно. В работе [49] предлагается метод оптимизации гиперпараметров
с использованием градиентного спуска с моментом, в качестве оптимизируе-
мого функционала рассматривается ошибка на валидационной части выборки.
В работе [51] предлагается метод аппроксимации градиента функции потерь по
гиперпараметрам, позволяющий использовать градиентные методы в задаче оп-
тимизации гиперпараметров на больших выборках. В работе [52] предлагается
упрощенный метод оптимизации гиперпараметров с градиентным спуском: вме-
сто всей истории обновлений параметров для оптимизации используется только
последнее обновление. В работе [42] рассматривается задача оптимизации па-
раметров градиентного спуска с использованием нижней вариационной оценки
обоснованности.

Цели работы.

1. Исследовать методы построения моделей глубокого обучения оптималь-
ной и субоптимальной сложности.

2. Предложить критерии оптимальной и субоптимальной сложности модели
глубокого обучения.

3. Предложить метод выбора субоптимальной структуры модели глубокого
обучения.

4. Предложить алгоритм построения модели субоптимальной сложности и
оптимизации ее параметров.

Методы исследования. Для достижения поставленных целей использу-
ются методы вариационного байесовского вывода [28, 2, 41]. Рассматривается
графовое представление нейронной сети [17, 21]. Для получения вариационных
оценок обоснованности модели используется метод, основанный на градиентном
спуске [42, 41]. В качестве метода получения модели субоптимальной сложно-
сти используется метод автоматического определения релевантности парамет-
ров [28, 53] с использованием градиентных методов оптимизации гиперпарамет-
ров [49, 50, 52, 51].

Основные положения, выносимые на защиту.

1. Предложен метод байесовского выбора оптимальной и субоптимальной
структуры модели глубокого обучения с использованием автоматического
определения релевантности параметров.
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2. Предложены критерии оптимальной и субоптимальной сложности модели
глубокого обучения.

3. Предложен метод графового описания моделей глубокого обучения.
4. Предложено обобщение задачи оптимизации структуры модели, включа-

ющее ранее описанные методы выбора модели: оптимизация обоснованно-
сти модели, последовательное увеличение сложности модели, последова-
тельное снижение сложности модели, полный перебор вариантов струк-
туры модели.

5. Предложен метод оптимизации вариационной оценки обоснованности мо-
дели на основе метода мультистарта задачи оптимизации.

6. Предложен алгоритм оптимизации параметров, гиперпараметров и струк-
турных параметров моделей глубокого обучения.

7. Исследованы свойства оптимизационной задачи при различных значениях
метапараметров. Рассмотрены ее асимптотические свойства.

Научная новизна. Разработан новый подход к построению моделей глубо-
кого обучения. Предложены критерии субоптимальной и оптимальной сложно-
сти модели, а также исследована их связь. Предложен метод построения модели
глубокого обучения субоптимальной сложности. Исследованы методы оптими-
зации гиперпараметров и параметров модели. Предложена обобщенная задача
выбора модели глубокого обучения.

Теоретическая значимость. В целом, данная диссертационная работа но-
сит теоретический характер. В работе предлагаются критерии субоптимальной
и оптимальной сложности, основанные на принципе минимальной длины описа-
ния. Исследуется взаимосвязь критериев оптимальной и субоптимальной слож-
ности. Предлагаются градиентные методы для получения оценок сложности
модели. Доказывается теорема об оценке энтропии эмпирического распределе-
ния параметров модели, полученных под действием оператора оптимизации.
Доказывается теорема об обобщенной задаче выбора модели глубокого обуче-
ния.

Практическая значимость. Предложенные в работе методы предназна-
чены для построения моделей глубокого обучения в прикладных задачах ре-
грессии и классификации; оптимизации гиперпараметров полученной модели;
выбора модели из конечного множества заданных моделей; получения оценок
переобучения модели.

Степень достоверности и апробация работы. Достоверность резуль-
татов подтверждена математическими доказательствами, экспериментальной
проверкой полученных методов на реальных задачах выбора моделей глубокого
обучения; публикациями результатов исследования в рецензируемых научных
изданиях, в том числе рекомендованных ВАК. Результаты работы докладыва-
лись и обсуждались на следующих научных конференциях.
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Структура и объем работы. Диссертация состоит из оглавления, введе-
ния, четырех разделов, заключения, списка иллюстраций, списка таблиц, переч-
ня основных обозначений и списка литературы из 162 наименований. Основной
текст занимает 144 страницы.

Краткое содержание работы по главам. В первой главе вводятся основ-
ные понятия и определения, формулируются задачи построения моделей глубо-
кого обучения. Рассматриваются основные критерии выбора моделей. Рассмат-
риваются существующие алгоритмы построения моделей глубокого обучения.

Во второй главе предлагается алгоритм построения субоптимальной модели
глубокого обучения. Предлагаются методы оценки сложности модели.

В третьей главе исследуются методы оптимизации гиперпараметров модели.
В четвертой главе рассматривается задача выбора оптимальной и субоп-

тимальной структуры модели глубокого обучения. Предлагается обобщающая
задача выбора структуры модели глубокого обучения, исследуются ее асимпто-
тические свойства.

В пятой главе на базе предложенных методов описывается разработанный
программный комплекс, позволяющий автоматически построить модель глубо-
кого обучения субпотимальной сложности для заданной выборки для задачи
классификации и регрессии. Работа данного комплекса анализируется на ря-
де выборок для задач классификации и регрессии. Результаты, полученные с
помощью предложенных методов, сравниваются с результатами известных ал-
горитмов.
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Глава 1

Постановка задачи последовательного выбора моделей

Проблема выбора структуры модели является фундаментальной в области
машинного обучения и интеллектуального анализа данных. Проблема выбо-
ра структуры модели глубокого обучения формулируется следующим образом:
решается задача классификации или регрессии на заданной или пополняемой
выборке D. Требуется выбрать структуру нейронной сети, доставляющей ми-
нимум ошибки на этой функции и максимум качества на некотором внешнем
критерии. Под моделью глубокого обучения понимается суперпозиция диффе-
ренцируемых по параметрам нелинейный функций. Под структурой модели по-
нимается значения структурных параметров модели, т.е. величин, задающих
вид итоговой суперпозиции.

Формализуем описанную выше задачу.
Определение 1. Объектом назовем пару (x, 𝑦),x ∈ X = R𝑛, 𝑦 ∈ Y. В случае
задачи классификации Y является распределением вероятностей принадлеж-
ности объекта x ∈ X множеству классов {1, . . . ,𝑅}: Y ⊂ [0, 1]𝑅, где 𝑅 — число
классов. В случае задачи регрессии Y является некоторым подмножеством ве-
щественных чисел 𝑦 ∈ Y ⊆ R. Объект состоит из двух частей: x соответствует
признаковому описанию объекта, 𝑦 — метке объекта.

Задана простая выборка

D = {(x𝑖, 𝑦𝑖)}, 𝑖 = 1, . . . ,𝑚, (1.1)

состоящая из множества объектов

x𝑖 ∈ X ⊂ X, 𝑦𝑖 ∈ y ⊂ Y.

Определение 2. Моделью f(w,x) назовем дифференцируемую по параметрам
w функцию из множества признаковых описаний объекта во множество меток:

f : W× X → Y,

где W — пространство параметров функции f .
Специфика задачи выбора модели глубокого обучения заключается в том,

что модели глубокого обучения могут иметь значительное число параметров,
что приводит к неприменимости ряда методов оптимизации и выбора модели.
Перейдем к формальному описанию параметрического семейства моделей глу-
бокого обучения.
Определение 3. Пусть задан ациклический граф (𝑉,𝐸), такой что

1. для каждого ребра (𝑗, 𝑘) ∈ 𝐸: вектор базовых дифференцируемых функ-
ций g𝑗,𝑘 = [g𝑗,𝑘0 , . . . ,g𝑗,𝑘

𝐾𝑗,𝑘−1
] мощности 𝐾𝑗,𝑘;

2. для каждой вершины 𝑣 ∈ 𝑉 : дифференцируемая функция агрегации
agg𝑣.
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3. Функция f = f|𝑉 |−1, задаваемая по правилу

f𝑘(w,x) = agg𝑘
(︀
{⟨𝛾𝑗,𝑘,g𝑗,𝑘⟩ ∘ f𝑗(x)|𝑗 ∈ Adj(𝑣𝑘)}

)︀
, (1.2)

𝑘 ∈ {1, . . . , |𝑉 |− 1}, f0(x) = x, 𝑣𝑘 ∈ 𝑉.

и являющаяся функцией из признакового пространства X в пространство
меток Y при значениях векторов, 𝛾𝑗,𝑘 ∈ [0, 1]𝐾

𝑗,𝑘

.
Граф (𝑉,𝐸) со множеством векторов базовых функций {g𝑗,𝑘, (𝑗, 𝑘) ∈ 𝐸} и

функций агрегаций {agg𝑘}, где 𝑘 ∈ {0, . . . , |𝑉 |−1}, назовем параметрическим
семейством моделей F.

Примером функций агрегации выступают функции суммы и конкатенации
векторов.
Определение 4. Функции f0, . . . , f|𝑉 |−1 из (1.2) назовем слоями или подмоде-
лями модели f .
Утверждение 1. Для любого значения 𝛾𝑗,𝑘 ∈ [0, 1]𝐾

𝑗,𝑘

функция f ∈ F является
моделью.

Доказательство. Утверждение следует непосредственно из определения: по
условию утверждения для любого 𝛾𝑗,𝑘 ∈ [0, 1]𝐾

𝑗,𝑘

функция является диффе-
ренцируемой функцией из признакового пространства X в пространство меток
Y, что соответствует определению модели.

Пример параметрического семейства моделей, которое описывает сверточ-
ную нейронную сеть, представлена на Рис. 1.1. Семейство задает множество
моделей с двумя операциями свертки с одинаковым размером фильтра 𝑐0 и раз-
личным числом каналов 𝑐1 и 𝑐2. Единичная свертка с 𝑐1 каналами Conv(x, 𝑐1, 1)
требуется для выравнивания размерностей скрытых слоев. Каждая модель па-
раметрического семейства задается формулой:

f = agg2

(︁{︁
𝛾1,2
0 g1,2

0

(︁
agg1

(︁
{𝛾0,1

0 g0,1
0 (x), 𝛾0,1

1 g0,1
1 (x)}

)︁)︁}︁)︁
.

Положим, что функции агрегации agg1, agg2 являются операциями суммы. За-
метим, что к вершине, соответствующей модели f2 ведет только одно ребро,
поэтому операцию суммы можно опустить. Итоговая формула модели задается
следующим образом:

f = 𝛾1,2
0 softmax

(︀
𝛾0,1
0 Conv(x, 𝑐0, 𝑐1)(x)+

+ 𝛾0,1
1 Conv(x, 1, 𝑐1) ∘Conv(x, 𝑐0, 𝑐2)(x)w1,2

0

)︀
.

Определение 5. Параметрами модели f из параметрического семейства мо-
делей F назовем конкатенацию векторов параметров всех базовых функций
{g𝑗,𝑘|(𝑗, 𝑘) ∈ 𝐸},w ∈ W. Вектор параметров базовой функции g𝑗,𝑘𝑙 будем обо-
значать как w𝑗,𝑘

𝑙 .
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f0(x) = x f1(x) f2(x)

g0,1
0 (x) = Conv(x, 𝑐0, 𝑐1)

g0,1
1 (x) = Conv(x, 1, 𝑐1) ∘Conv(x, 𝑐0, 𝑐2)

g1,2
0 (x) = softmax(xw2,1)

Рис. 1.1. Пример параметрического семейства моделей глубокого обучения: се-
мейство описывает сверточную нейронную сеть.

Определение 6. Структурой Γ модели f из параметрического семейства мо-
делей F назовем конкатенацию векторов 𝛾𝑗,𝑘. Множество всех возможных зна-
чений структуры Γ будем обозначать как Γ. Векторы 𝛾𝑗,𝑘, (𝑗, 𝑘) ∈ 𝐸 назовем
структурными параметрами модели.

Определение 7. Параметризацией множества моделей 𝑀 назовем парамет-
рическое семейство моделей F, такое что для каждой модели f ∈ 𝑀 существуют
значение структуры модели Γ при котором функция f совпадает с функци-
ей (1.2).

Предложенное определение параметризации не противоречит определению
параметризации глубоких моделей в других работах. В [35] под параметриза-
цией понимается представление матрицы параметров модели с использованием
аппроксимации низкоранговыми матрицами. В [69] под параметризацией моде-
ли глубокого обучения понимается выбор графа, позволяющего описать струк-
туру заданной модели глубокого обучения.

Рассмотрим варианты ограничений, которые накладываются на структур-
ные параметры 𝛾𝑗,𝑘 параметрического семейства моделей. Цель данных ограни-
чений — уточнение архитектуры модели глубокого обучения, которую требуется
получить.

1. Структурные параметры лежат на веришнах булевого куба: 𝛾𝑗,𝑘 ∈
{0, 1}𝐾𝑗,𝑘

. Структурные параметры 𝛾𝑗,𝑘 интерпретируются как параметр
включения или выключения компонент вектора базовых функций g𝑗,𝑘 в
итоговую модель.

2. Структурные параметры лежат внутри булевого куба: 𝛾 ∈ [0, 1]𝐾
𝑗,𝑘

. Ре-
лаксированная версия предыдущих ограничений, позволяющая проводить
градиентную оптимизацию для структурных параметров.

3. Структурные параметры лежат на веришнах симплекса: 𝛾𝑗,𝑘 ∈ Δ̄𝐾𝑗,𝑘−1.
Каждый вектор структурных параметров 𝛾𝑗,𝑘 имеет только одну ненуле-
вую компоненту, определяющую какая из базовых функций g𝑗,𝑘 войдет в
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[0,0,0] [1,0,0]

[1,1,0][0,1,0]

[0,0,1] [1,0,1]

[1,1,1][0,1,1]

(а)

[0,0,0] [1,0,0]

[0,1,0]

[1,0,1]

[1,1,1][0,1,1]

(б)

[1,0,0]

[0,1,0]

[0,0,1]

(в)

[1,0,0]

[0,1,0]

[0,0,1]

(г)

Рис. 1.2. Примеры ограничений для одного структурного параметра 𝛾𝑗,𝑘,𝐾𝑗,𝑘 =
3.
а) структурный параметр лежит на вершинах куба, б) структурный параметр
лежит внутри куба, в) структурный параметр лежит на вершинах симплекса,
г) структурный параметр лежит внутри симплекса.

итоговую модель. Примером параметрического семейства моделей, требу-
ющим такое ограничение является семейство полносвязанных нейронных
сетей с одним скрытым слоем и двумя значениями количества нейронов
на скрытом слое. Схема семейства представлена на Рис. 1.3. Данное се-
мейство можно представить как семейство с двумя базовыми функциями
вида g = 𝜎(wTx), где матрицы параметров каждой из функций g1,1,g1,2

имеют фиксированное число нулевых столбцов. Количество этих столб-
цов определяет размерность итогового скрытого пространства или числа
нейронов на скрытом слое.

4. Структурные параметры лежат внутри симплекса: 𝛾𝑗,𝑘 ∈ Δ𝐾𝑗,𝑘−1. Ре-
лаксированная версия предыдущих ограничений, позволяющая проводить
градиентную оптимизацию для структурных параметров. Значение стук-
турных параметров 𝛾𝑗,𝑘 интерпретируются как вклад каждой компоненты
вектора базовых функций g𝑗,𝑘 в итоговую модель.

Пример, иллюстрирующий представленные выше ограничения, изображен
на Рис. 1.2. В данной работе рассматривается случай, когда на структурные па-
раметры наложено ограничение 4. Данные ограничения позволяют решать за-
дачу выбора модели как для семейства моделей типа многослойных полносвяз-
ных нейронных сетей, так и для более сложных параметрических семейств [21].

Для дальнейшей постановки задачи введем понятие вероятностной модели,
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f0(x) = x f1(x) f2(x)

g0,1
0 (x) = 𝜎

(︀
(w0,1

0 )Tx
)︀

g0,1
1 (x) = 𝜎

(︀
(w0,1

1 )Tx
)︀

g1,2
0 (x) = softmax

(︀
(w1,2

0 )Tx
)︀

Рис. 1.3. Пример параметрического семейства моделей глубокого обучения: се-
мейство описывает многослойную полносвязную нейронную сеть с одним скры-
тым слоем и нелинейной функцией активации 𝜎.

и связанных с ним определений. Будем полагать, что для параметров модели
w и структуры Γ задано распределение 𝑝(w,Γ|h,𝜆), соответствующее предпо-
ложениям о распределении структуры и параметров.
Определение 8. Гиперпараметрами h ∈ H модели назовем параметры рас-
пределения 𝑝(w,Γ|h,𝜆).
Определение 9. Априорным распределением параметров и структуры моде-
ли назовем вероятностное распределение, соответствующее предположениям о
распределении параметров модели:

𝑝(w,Γ|h,𝜆) : W× Γ → R+,

где W — множество значений параметров модели, Γ — множество значений
структуры модели.Формальное определение метапараметров 𝜆 ∈ Λ будет дано
далее.

Одной из постановок задачи выбора структуры модели является двусвязный
байесовский вывод. На первом уровне байесовского вывода находится апостери-
орное распределение параметров.
Определение 10. Апостериорным распределением назовем распределение ви-
да

𝑝(w,Γ|y,X,h,𝜆) =
𝑝(y|X,w,Γ)𝑝(w,Γ|h,𝜆)

𝑝(y|X,h,𝜆)
∝ 𝑝(y|X,w,Γ)𝑝(w,Γ|h,𝜆).

(1.3)
Определение 11. Вероятностной моделью глубокого обучения назовем сов-
местное распределение вида

𝑝(y,w,Γ|X,h,𝜆) = 𝑝(y|X,w,Γ,𝜆)𝑝(w,Γ|h,𝜆) : Y𝑚 ×W× Γ → R+.
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Определение 12. Функцией правдоподбия выборки назовем величину

𝑝(y|X,w,Γ) : Y𝑚 → R+.

На втором уровне байесовского вывода осуществляется выбор модели на
основе обоснованности модели.
Определение 13. Обоснованностью модели назовем величину

𝑝(y|X,h,𝜆) =

∫︁∫︁

w,Γ

𝑝(y|X,w,Γ)𝑝(w,Γ|h,𝜆)𝑑w𝑑Γ. (1.4)

Получение значений апостериорного распределения и обоснованности мо-
дели сетей глубокого обучения является вычислительно сложной процедурой.
Для получения оценок на данные величины используют методы, такие как ап-
проксимация Лапласа [29] и вариационная нижняя оценка [39]. В данной работе
в качестве метода получения оценок обоснованности модели выступает вариа-
ционная нижняя оценка.
Определение 14. Вариационным распределением назовем параметрическое
распределение 𝑞(w,Γ|𝜃), являющееся приближением апостериорного распре-
деления параметров и структуры 𝑝(w,Γ|y,X,h,𝜆).
Определение 15. Вариационными параметрами модели 𝜃 ∈ Θ назовем пара-
метры вариационного распределения 𝑞(w,Γ|𝜃).
Определение 16. Пусть задано вариационное распределения 𝑞(w,Γ|𝜃). Функ-
цией потерь 𝐿(𝜃|y,X,h,𝜆) для модели f назовем дифференцируемую функ-
цию, принимаемую за качество модели на обучающей выборки при параметрах
модели, получаемых из распределения 𝑞.

В качестве функции 𝐿(𝜃|y,X,h,𝜆) может выступать логарифм прав-
доподобия выборки log 𝑝(y|X,w,Γ) и логарифм апостериорной вероятности
log 𝑝(w,Γ|y,X,h,𝜆) параметров и структуры модели на обучающей выборке.
Определение 17. Пусть задано вариационное распределения 𝑞(w,Γ|𝜃) и
функция потерь 𝐿(𝜃|y,X,h,𝜆). Функцией валидации 𝑄(h|y,X,𝜃,𝜆) для моде-
ли f назовем дифференцируемую функцию, принимаемую за качество модели
при векторе 𝜃, заданном неявно.

В данной работе задача выбора структуры модели и параметров модели
ставится как двухуровневая задача оптимизации:

h* = argmax
h∈H

𝑄(h|y,X, 𝜃*,𝜆), (1.5)

где 𝜃* — решение задачи оптимизации

𝜃* = argmax
𝜃∈Θ

𝐿(𝜃|y,X,h,𝜆). (1.6)

Определение 18. Задачей выбора модели f назовем двухуровневую задачу
оптимизации (1.5),(1.6).
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Рассмотрим для примера базовый вариант выбора модели с применением
функций 𝑞,𝐿,𝑄.
Пример 1. Положим, что задано разбиение выборки на обучающую Dtrain и
валидационную Dvalid части. Положим в качестве вариационных параметров 𝜃
параметры w и структуры Γ модели:

𝜃 = [w,Γ].

Пусть также задано априорное распределение 𝑝(w,Γ|h,𝜆). Положим в каче-
стве функции 𝐿(𝜃|y,X,h,𝜆) логарифм величины, пропорциональной апосте-
риорной вероятности модели:

𝐿(𝜃|y,X,h,𝜆) =
∑︁

x,𝑦∈Dtrain

log 𝑝(𝑦,w,Γ|x,𝜆).

Положим в качестве функции 𝑄(h|y,X, 𝜃,𝜆) логарифм правдоподобия выбор-
ки при условии параметров w и структуры Γ:

𝑄(h|y,X, 𝜃,𝜆) =
∑︁

x,𝑦∈Dvalid

log 𝑝(𝑦|x,w,Γ,𝜆).

Оптимизация параметров и структуры производится по обучающей выборке.
Гиперпараметры h выступают в качестве регуляризатора, чья оптимизация
производится по валидационной выборке. Подобная оптимизация позволяет
предотвратить переобучение модели [49].

Частным случаем задачи выбора структуры глубокой сети является выбор
обобщенно-линейных моделей. Отдельные слои полносвязанных нейросетей яв-
ляются обобщенно-линейными модели. Задачу выбора обобщенно-линейной мо-
делей сводится к задаче выбора признаков, методы решения которой делятся
на три группы [70]:

1. Фильтрационные методы. Не используют какой-либо информации о мо-
дели, а отсекают признаки только на основе статистических показателей,
учитывающих взаимосвязь признаков и меток объектов.

2. Оберточные методы анализируют подмножества признаков. Они выбира-
ют не признаки, а подмножества признаков, что позволяет учесть корре-
ляция признаков.

3. Методы погружения оптимизируют модели и проводят выбор признаков
в единой процедуре, являясь комбинацией предыдущих типов отбора при-
знаков.

1.1. Критерии выбора модели глубокого обучения

В данном разделе рассматриваются различные критерии выбора моделей
глубокого обучения, соответствующие функции валидации 𝑄. В данной работе
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в качестве критерия выбора модели предлагается субоптимальная сложность
модели. Под сложностью модели понимается обоснованность модели (1.4), яв-
ляющееся байесовской интерпретацией минимальной длины описания [1], т.е.
минимального количества информации, которое требуется передать о модели и
о выборке:

MDL(y, f) = Len(y|w*, f) + COMP(f), (1.7)

где Len(y|w*, f) — длина описания матрицы y с использованием модели f и
оценки вектора параметров w*, полученных методом наибольшего правдоподо-
бия, а COMP(f) — величина, характеризующая параметрическую сложность
модели, т.е. способность модели описать произвольную выборки из X [1].

В общем случае правдоподобие модели является трудновычислимым. Для
получения оценки правдоподобия используются вариационные методы полу-
чения оценки правдоподобия [2], основанные на аппроксимации неизвестно-
го другим заданным распределением. Под субоптимальной сложностью пони-
мается вариационная оценка правдоподобия модели. Альтернативной величи-
ной, характеризующей сложность модели, выступает радемахеровская слож-
ность (1.14). Данная величина используется как критерий для продолжения
итеративного построения модели в [16].

В работе [33] рассматривается ряд критериев сложности моделей глубокого
обучения и их взаимосвязь. В работе [34] в качестве критерия сложности моде-
ли выступает показатель нелинейности, характеризуемый степенью полинома
Чебышева, аппроксимирующего функцию. В работе [35] анализируется показа-
тель избыточности параметров сети. Утверждается, что по небольшому набору
параметров в глубокой сети с большим количеством избыточных параметров
возможно спрогнозировать значения остальных. В работе [36] рассматривается
показатель робастности моделей, а также его взаимосвязь с топологией выборки
и классами функций, в частности рассматривается влияние функции ошибки и
ее липшицевой константы на робастность моделей. Схожие идеи были рассмот-
рены в работе [37], в которой исследуется устойчивость классификации модели
под действием шума. В ряде работ [28, 2, 29, 30, 31, 32] в качестве критерия
выбора модели выступает правдоподобие модели. В работах [29, 30, 31, 32] рас-
сматривается проблема выбора модели и оценки гиперапараметров в задачах
регрессии. Альтернативным критерием выбора модели является минимальная
длина описания [1], являющаяся показателем статистической сложности моде-
ли и заданной выборки. В работе [1] рассматриваются различные модификации
и интерпретации минимальной длины описания, в том числе связь с правдопо-
добием модели.

Одним из методов получения приближенного значения правдоподобия моде-
ли является вариационный метод получения нижней оценки правдоподобия [2].
В работе [38] рассматривается стохастическая версия вариационного метода.
В [39] рассматривается алгоритм получения вариационной нижней оценки прав-
доподобия для оптимизации гиперпараметров моделей глубокого обучения. В
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работе [40] рассматривается взаимосвязь градиентных методов получения ва-
риационной нижней оценки интеграла с методом Монте-Карло. В [41] рассмат-
ривается стохастический градиентный спуск в качестве оператора, порожда-
ющего распределение, аппроксимирующее апостериорное распределение пара-
метров модели. В работе отмечается, что стохастический градиентный спуск не
оптимизирует вариационную оценку правдоподобия, а приближает ее только
до некоторого числа итераций оптимизации. Схожий подход рассматривается
в работе [42], где также рассматривается стохастический градиентный спуск в
качестве оператора, порождающего апостериорное распределение параметров.
В работе [43] предлагается модификация стохастического градиентного спуска,
аппроксимирующая апостериорное распределение.

Альтернативным методом выбора модели является выбор модели на основе
скользящего контроля [44, 29]. Проблемой такого подхода является высокая вы-
числительная сложность [45, 46]. В работах [47, 48] рассматривается проблема
смещения оценок качества модели и гиперпараметров, получаемых при исполь-
зовании 𝑘-fold метода скользящего контроля, при котором выборка делится на
𝑘-частей с обучением на 𝑘 − 1 части и валидацией результата на оставшейся
части выборки.

1.2. Оптимизация параметров в задаче выбора структуры модели

Один из подходов к выбору оптимальной модели заключается в итератив-
ном удалении наименее информативных параметров модели. В данном разделе
собраны методы оптимизации структуры существующей модели.
Алгоритмы прореживания параметров модели. В [8] предлагается

удалять неинформативные параметры модели. Для этого находится точка оп-
тимума 𝜃* функции 𝐿 и производится разложение функции 𝐿 в ряд Тейлора в
окрестности 𝜃*:

𝐿(𝜃* +Δ𝜃|y,X,h,𝜆)− 𝐿(𝜃*|y,X,h,𝜆) =
1

2
Δ𝜃THΔ𝜃 + 𝑜(||Δ𝜃||3), (1.8)

где H — гессиан функции (−𝐿). Связь между параметрами не учитывается,
поэтому гессиан является диагональным. Положим в качестве операции удале-
ния параметра замену его значения на ноль. Выбор наиболее неинформативного
параметра сводится к задаче условной минимизации (1.8) при условиях вида

𝜃𝑖 +Δ𝜃𝑖 = 0, 𝜃𝑖 ∈ 𝜃.

В результате решения данной задачи минимизации каждому параметру
определяется функция выпуклости

saliency(𝜃𝑖) =
𝜃2𝑖

2(𝐻−1)𝑖,𝑖
.
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Данная функция характеризует информативность параметра.
В [71] было предложено развитие данного метода. В отличие от [8] не вводит-

ся предположений о диагональности гессиана функции ошибок, поэтому удале-
ние неинформативных параметров модели производится точнее. Для получения
оценок гессиана и его обратной матрицы применяется итеративный алгоритм.
Алгоритмы компрессии параметров модели. В [72, 73, 10] предлага-

ются методы компрессии параметров сетей глубокого обучения. Основным от-
личием задачи прореживания от задачи компрессии выступает эксплуатацион-
ное требование: если прореживание используется для получения оптимальной
и наиболее устойчивой модели, то компрессия производится для уменьшения
потребляемых вычислительных ресурсов при сохранении основных эксплуата-
ционных характеристик исходной модели [73]. В [10] предлагается итератив-
ное использование регуляризации типа DropOut [74] для прореживания моде-
ли. В [72, 73] используются методы снижения вычислительной точности пред-
ставления параметров модели на основе кластеризации параметров w модели:
вместо значений параметров предлагается хранить идентификатор кластера,
соответствующего параметру, что существенно снижает количество требуемой
памяти. В [73] предлагается метод компрессии, основанный на кластеризации
значений параметров модели и представлении их в сжатом виде на основе кодов
Хаффмана.
Байесовские методы прореживания параметров модели. Байесов-

ский подход к порождению и выбору моделей заключается в использовании
вероятностных предположений о распределении параметров и структуры в па-
раметрических семействах моделей. Такой подход позволяет учитывать при вы-
боре моделей не только эксплуатационные критерии качества модели, такие как
точность итоговой модели и количество параметров в ней, но и некоторые ста-
тистические характеристики модели.

В работе [49] рассматривается задача оптимизации гиперпараметров. Ав-
торы предлагают оптимизировать константы 𝑙2-регуляризации отдельно для
каждого параметра модели, проводится параллель с методами автомати-
ческого определения релевантности параметров (англ. automatic relevance
determination, ARD) [28]. Идея автоматического определения релевантности
заключается в выборе оптимальных значений гиперпараметров h с дальней-
шим удалением неинформативных параметров. Неинформативными парамет-
рами являются те параметры, которые с высокой вероятностью равны нулю
относительно априорного или апостериорного распределения.

В работе [39] был предложен метод, основанный на получении вариационной
нижней оценки правдоподобия модели. В качестве критерия информативности
параметра выступает отношение вероятности нахождения параметра в нуле к
вероятности равенства параметра моде вариационного распределения:

𝜌 = exp

(︃
−

𝜇2
𝑗

2𝜎2
𝑗

)︃
, (1.9)
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где 𝜇𝑗, 𝜎𝑗 — среднее и дисперсия аппроксимирующего распределения 𝑞 для па-
раметра 𝑤𝑗.

Идея данного метода была развита в [75], где также используются вариа-
ционные методы. В отличие от [39], в [75] рассматривается ряд априорных рас-
пределений параметров, позволяющих прореживать модели более эффективно:

1. Нормальное распределение с лог-равномерным распределением диспер-
сии. Для каждого параметра 𝑤 ∈ w задается группа параметров 𝜔 ∈ Ω,
где Ω — множество всех групп параметров:

𝑝(w|h) ∝
∏︁

𝜔𝑖∈Ω

1

|ℎ𝑖|
∏︁

𝑤∈𝜔𝑖

𝒩 (𝑤|0,h𝑖2),

где ℎ𝑖 — гиперпараметр, соответствующий группе 𝜔𝑖.
2. Априорное распределение задается произведением двух случайных вели-

чин 𝑠general, 𝑠𝑗𝑘 с половинным распределением Коши 𝒞+: одно ответственно
за отдельный параметр, другое — за общее распределение параметров:

𝑠general ∼ 𝒞+(0, ℎ), 𝑠𝑗𝑘 ∼ 𝒞+(0, 1), 𝑤̂𝑗𝑘 ∼ 𝒩 (0, 1), 𝑤𝑗𝑘 ∼ 𝑤̂𝑗𝑘𝑠𝑗𝑘𝑠general,

где ℎ ∈ h — гиперпараметр.

1.3. Оптимизация гиперпараметров модели

В данном разделе рассматриваются работы, посвященные методам оптими-
зации гиперпараметров. Методы, используемые для оптимизации гиперпара-
метров моделей глубокого обучения должны быть эффективными по вычис-
лительным затратам в силу высокой вычислительной сложности оптимизации
параметров модели. В [76, 77] рассматривается задача оптимизации гиперпа-
раметров стохастическими методами. В [76] проводится сравнение случайного
поиска значений гиперпараметров с переборным алгоритмом. В [77] производит-
ся сравнение случайного поиска и алгоритмов, основанных на вероятностных
моделях.
Градиентные методы оптимизации гиперпараметров.

Определение 19. Назовем оператором оптимизации алгоритм 𝑇 выбора век-
тора параметров 𝜃′ по параметрам предыдущего шага 𝜃:

𝜃′ = 𝑇 (𝜃|𝐿,y,X,h,𝜆), (1.10)

где 𝜆 — параметры оператора оптимизации или метапараметры.
Метапараметры соответствуют параметрам оптимизации, т.е. параметрам,

которые не подлежат оптимизации в ходе задачи выбора модели.
Пример схожего описания оптимизации модели с использованием оператора

оптимизации можно найти в [41].
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Частным случаем оператора оптимизации является оператор стохастическо-
го спуска:

𝑇 (𝜃|𝐿,y,X,h,𝜆) = 𝜃 − 𝜆lr∇(−𝐿(𝜃|y,X,h,𝜆)), (1.11)

где 𝜆lr — шаг градиентного спуска, ŷ, X̂ — случайная подвыборка заданной
мощности выборки D.

В случае оптимизации гиперпараметров оператор оптимизации применяется
не к вариационным параметрам 𝜃, а к гиперпараметрам h:

h = 𝑇 (h|𝑄,y,X,𝜃,𝜆). (1.12)

В случае, если для решения задачи (1.6) применяется несколько шагов опе-
ратора оптимизации (1.10), 𝜃* рассматривается как рекурсивная функция от
начального приближения вариационных параметров 𝜃0 и вектора гиперпара-
метров h:

𝜃* = 𝑇 ∘ · · · ∘ 𝑇 (𝜃|𝐿,y,X,h,𝜆) = 𝜃*(𝜃0,h). (1.13)

Решение задачи оптимизации (1.12) при (1.13) является вычислительно
сложным, поэтому применяются методы, аппроксимирующие применение гра-
диентных методов при (1.13).

В [78] рассматривается оптимизация гиперпараметров градиентными мето-
дами для квадратичной функции потерь. В [49] в качестве оператора опти-
мизации гиперпараметров выступает метод градиентного спуска с моментом.
Показано, что использование момента значительно снижает количество вычис-
лительных ресурсов, требуемых для проведения оптимизации. В [79] предла-
гается аппроксимация градиентного метода, использующая предположение о
линейности функции (1.13) от начального приближения 𝜃0. В [80] предлагает-
ся использовать численные методы для приближенного вычисления оператора
оптимизации гиперпараметров. В [52] в качестве аппроксимации (1.13) предла-
гается рассматривать только последний шаг оптимизации:

𝜃* ≈ 𝑇 (𝜃𝜂−1|𝐿,y,X,h,𝜆),

где 𝜂 — число шагов оптимизации.
Суррогатный выбор моделей. Идея суррогатных моделей заключается

в аппроксимации модели или параметрического семейства моделей вычисли-
тельно менее сложной функцией.

В работе [81] предлагается моделировать качество модели 𝑄 (1.4) гауссо-
вым процессом, параметрами которого выступают гиперпараметры исходной
модели.

Одна из основных проблем использования гауссового процесса как сурро-
гатной модели — кубическая сложность оптимизации. В работе [82] предлагает-
ся использовать случайные подпространства гиперпараметров для ускоренной
оптимизации. В работе [83] предлагается комбинация из множества гауссовых
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моделей и линейной модели, позволяющая модели нелинейные зависимости ги-
перпараметров, а также существенно сократить сложность оптимизации.

В работе [84] предлагается рассматривать RBF-модель для аппроксимации
качества 𝑄 исходной модели, что позволяет ускорить процесс оптимизации сур-
рогатной модели. В [85] рассматривается глубокая нейронная сеть в качестве
суррогатной функции. Вместо интеграла правдоподобия (1.4), который оцени-
вается в случае использования гауссового процесса в качестве суррогата, ис-
пользуется максимум апостериорной вероятности (1.3).

Одним из параметров гауссовых процессов является функция ядра гауссо-
вого процесса, полностью определяющая процесс в случае нулевого среднего. В
работе [86] предлагается функция ядра, определенная на графах:

𝑘(𝑣1, 𝑣2) = 𝑟(𝑑(𝑣1, 𝑣2)),

где 𝑑 — геодезическое расстояние между вершинами графа, 𝑟 — некоторая ве-
щественная функция, 𝑣1, 𝑣2 ∈ 𝑉 .

В работе [87] рассматривается задач выбора структуры нейросети. Предла-
гается метод построения ковариационной функции для сравнения разнородных
графов, соответствующих разным моделям нейронных сетей. Ковариационная
функция основывается на метрике, заданной на некоторых числовых характе-
ристиках 𝑔(𝑣) вершин, возможно не определенных для сравниваемых графов:

𝑑𝑣
(︀
(𝑉1,𝐸1), (𝑉2,𝐸2)

)︀
=

⎧
⎪⎪⎨
⎪⎪⎩

0, 𝑣 ̸∈ 𝑉1, 𝑣 ̸∈ 𝑉2,

𝜆1

√
2
√︁

1− cos(𝜋𝜆2
𝑔1−𝑔2

sup(𝑔)−inf(𝑔)), 𝑣 ∈ 𝑉1, 𝑣 ∈ 𝑉2,

𝜆1 иначе,

где 𝜆1,𝜆2 — параметры функции 𝑑𝑣.

1.4. Порождение и выбор структуры модели глубокого обучения

В данном разделе рассматриваются работы, посвященные порождению и
модификации структуры моделей. В отличие от работ, описанных в предыду-
щих разделах, в следующих работах рассматриваемым объектом является не
отдельный параметр, а подмодель или группа параметров, входящая в эту под-
модель.
Графовое представление структуры модели. Одним из возможных

представлений структуры моделей глубокого обучения является графовое пред-
ставление, в котором в качестве ребер графа выступают нелинейные функ-
ции, а в качестве вершин графа — представление выборки под действием со-
ответствующих нелинейных функций. Данный подход к описанию модели яв-
ляется соответствует походам, описанным в [88], а также в библиотеках типа
TensorFlow [89], Theano [90], Pytorch [91], в которых модель рассматривается
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как граф, ребрами которого выступают математические операции, а вершина-
ми — результат их действия на выборку. В то же время, существуют и другие
способы представления модели. В ряде работ, посвященных байесовской опти-
мизации [85, 84, 81], модель рассматривается как черный ящик, над которым
производится ограниченный набор операций типа “произвести оптимизацию па-
раметров” и “предсказать значение зависимой переменной по независимой пе-
ременной и параметрам модели”. Подход, описанный в данных работах, так-
же коррелирует с библиотеками машинного обучения, такими как Weka [92],
RapidMiner [93] или sklearn [94], в которых модель машинного обучения рас-
сматривается как черный ящик.

В [95] представлен обзор по графовому описанию моделей глубокого обуче-
ния, предлагается метод формального описания графовых сетей (англ. Graph
Network), являющийся обобщением предложенных ранее графовых описаний
моделей.

В работе [96] рассматриваются подходы к порождению моделей глубокого
обучения. Предлагается формализация пространства поиска и формаль-
ное описание элементов пространства моделей. Приведем пример описания
параметрического семейства моделей, соответствующего схеме из Рис. 1.1
при условии, что структурные параметры 𝛾 имеют только одну ненулевую
компоненту:
(Concat

OR(

(Conv2D [𝑐0] [𝑐1] [1],

(Concat(

(Conv2D [𝑐0] [𝑐2] [1],

(Conv2D [1] [𝑐1] [1])),

(Affine [10]),

(SoftMax)).

Прогнозирование графовых структур. В работе [97] предлагается ме-
тод прогнозирования графовой структуры на основе линейного программирова-
ния. Предлагается свести проблему поиска графовой структуры к комбинатор-
ной проблеме. В работе [98] предлагается метод прогнозирования структур дере-
вьев, основанный на дважды-рекуррентных нейросетях (англ. doubly-reccurent),
т.е. на сетях, отдельно прогнозирующих глубину и ширину уровней деревьев.
Стохастическое порождение структур. Одним из возможных методов

порождения структур моделей глубокого обучения выступает стохастическое
порождение структур. Данный тип порождения предполагает, что структуры
порождаются случайно в соответствие вариационным распределением, задан-
ным на структурах 𝑞Γ(Γ|𝜃Γ). Затем выбирается одна, либо несколько наилуч-
ших структур с учетом валидационной функции 𝑄 или внешних, возможно
недифференцируемых, критериев качества. Итоговая модель получается путем
оптимизации параметров модели при выбранной структуре Γ. Заметим, что в
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ряде работ, одновременно порождается не только структура модели, но и ито-
говые параметры.

В работе [99] рассматривается порождение моделей, оптимизируемых без
учителя. Модель представляется многослойным перцептроном вида:

f = f|V|-1 ∘ · · · ∘ f0(x), f𝑖(x) = 𝜎(x
(︀
w𝑖 ⊙H𝑖

)︀
),

где H𝑖 — бинарные матрицы, определяющие вклад каждого параметра из w𝑖 в
итоговую модель, знаком ⊙ обозначается покомпонентное перемножение.

Порождение моделей производится с использованием композиции процессов
индийских буфетов. Процесс индийского буфета заключается в итеративном
построении матрицы H𝑖 с ограниченным, но не заданным наперед количеством
столбцов. Интерпретируя количество столбцов матрицы как размер 𝑖-го слоя
предлагается метод, позволяющий выбирать стохастически порождать модели
с различной размерностью скрытых слоев.

В работе [100] предлагается метод выбора модели сверточной нейронной
сети. Используется функция потерь, основанная на аппроксимации априорного
распределения процесса индийского буфета для каждой базовой функции g𝑗,
являющейся 𝑗-м отображением объектов:

𝐿 =
∑︁

x∈X
||x−

𝐾−1∑︁

𝑗=0

w𝑗 * g𝑗(x)||22 + 𝜆2𝐾,

где 𝐾 — параметр, отвечающий за количество фильтров, 𝜆 — метапараметр
алгоритма, знаком * обозначается операция свертки.

В работе [101] предлагается ввести априорное распределение Бернулли на
структурные параметры 𝛾𝑗,𝑘 ∈ Γ.

В [102] рассматривается задача выбора архитектуры с помощью большого
количества параллельных запусков обучения моделей. Предлагаются критерии
ранней остановки процедуры оптимизации обучения моделей.
Последовательный выбор структуры модели. В работе [5] приводятся

теоретические оценки построения нейросетей с использованием жадных страте-
гий, при которых построение модели производится итеративно последователь-
ным увеличением числа нейронов в сети. В работе [6] предлагается жадная
стратегия выбора модели нейросети с использованием релевантных априорных
распределений, т.е. параметрических распределений, оптимизация параметров
которых позволяет удалить часть параметров из модели. Данный метод был к
задаче построения модели метода релевантных векторов [7].

В работах[11, 12] рассматривается послойное построение модели с отдель-
ным критерием оптимизации для каждого слоя. В работах [13, 14, 15] предлага-
ется декомпозиция модели на порождающую и разделяющую, оптимизируемых
последовательно.
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f0 = x f1 f2

g0,1
0 = 𝜎

(︁(︀
w0,1

0

)︀T
x
)︁

g0,1
1 = 𝜎

(︁(︀
w0,1

1

)︀T
x
)︁

g1,2
0 = x

g1,2
1 = 𝜎

(︁(︀
w1,2

1

)︀T
x
)︁

Рис. 1.4. Пример итерации алгоритма AdaNet [16]. Рассматривается две аль-
тернативные модели: модель с углублением сети (соответствует выбору базо-
вой функции g1,2

1 и модель с расширением сети (соответствует тождественной
функции g1,2

0 ).

Базовая функция g0,1
0 была получена на предыдущей итерации алгоритма. В

качестве функции агрегации для подмодели f1 выступает конкатенация: agg1 =
concat.

В работах [103, 16] предлагается наращивание моделей, основанное на бу-
стинге. Рассматривается задача построения нейросетевых моделей специально-
го типа:

f(x) = f|𝑉 |−1 ∘ f|𝑉 |−2 ∘ . . . f0(x), f𝑖+1(x) = 𝜎 (f𝑖(x)) + f𝑖(x),

приводится параметризация модели, позволяющая рассматривать декомпози-
ровать модель на слабые классификаторы. В [16] рассматривается задача вы-
бора полносвязной нейронной сети для задачи бинарной классификации, 𝑅 = 2.
На каждом шаге построения выбирается одно из двух расширений модели,
каждое из которых рассматривается как слабый классификатор: сделать мо-
дель шире или сделать модель глубже. Пример работы AdaNet представлен на
Рис. 1.4. Построение модели заканчивается при условии снижении радемахе-
ровской сложности:

R =
1

𝑚
E𝑏1,...,𝑏𝑚supw

𝑚∑︁

𝑖=1

𝑏𝑖[𝑦𝑖 ̸= argmax
𝑐

f [𝑐](x,w)], (1.14)

где 𝑏𝑖 — реализация случайной дискретной величины, равновероятно принима-
ющей значений −1 и 1, f [𝑐] — 𝑐-я компонента модели f .

В работе [104] рассматривается задача порождения сверточных нейронных
сетей. Предлагается проводить последовательный выбор структуры модели по
восходящему числу параметров: начиная от сетей с одной подмоделью и ите-
ративно увеличивая количество подмоделей. В силу высокой вычислительной
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сложности данного подхода, вместо последовательного порождения моделей,
предлагается провести оптимизацию рекуррентной нейронной сети, которая
предсказывает качество модели по заданным подмоделям, и на основе данного
предсказания выбрать наилучшую модель.

В работе [105] предлагается метод анализа структуры сети на основе ли-
нейных классификаторов, построенных на промежуточных слоях нейросети.
Схожий метод был предложен в [106], где классификаторы на промежуточных
уровнях используются для уменьшения вычислений при выполнении вывода и
предсказаний. Промежуточные классификаторы работают как решающий спи-
сок.

В работе [107] предлагается инкрементальный метод оптимизации нейро-
сети. На первом этапе модель декомпозируется на несколько подмоделей, при
которой модель последовательностью слоев f1, . . . , f|𝑉 |. Проводится последова-
тельная оптимизация моделей вида:

1) f = f|𝑉 |−1(x);

2) f = f|𝑉−2| ∘ f|𝑉 |−1(x);

3) ...
4) f = f0 ∘ · · · ∘ f|𝑉−1|(x).
Оптимизация структуры модели на основе обучения с подкрепле-

нием. В [17] предлагается итеративная схема выбора архитектуры сверточной
нейросети с использованием обучения с подкреплением. Распределение струк-
тур и параметров 𝑞(w,Γ|𝜃) задается рекуррентной нейронной сетью, которая
определяет значение параметров модели и наличие ребер с ненулевыми опера-
циями между вершинами графов модели. Параметры рекуррентной нейронной
сети оптимизируются на основе значения функции 𝑄, получаемого на каж-
дой итерации алгоритма. Описанный метод также позволяет использовать в
очередной подмодели результаты работы предыдущих подмоделей (англ. skip-
connection). Пример параметрического семейства, описываемого в работе пред-
ставлен на Рис. 1.5.

В работе [18] предлагается алгоритм построения регрессионной модели для
оценки финального качества модели и ранней остановки оптимизации моде-
лей. Он позволяет существенно ускорить поиск моделей, представленный в [17].
В [20] рассматривается задача переноса архитектуры нейросети, чья структу-
ры была выбрана по выборке, меньшей мощности. Как и в [17] предлагается
метод параметризации сверточной нейронной сети в виде графа. Предложен-
ная параметризация позволяет задать более мощное параметрическое семейство
моделей, чем в [17]. Модель представляется в виде последовательности супер-
позиций подмоделей, называемых клетками (англ. normal cell и reduction cell).
Каждая из этих клеток содержит следующее множество нелинейных операций
g, состоящее из тождественной операции g(x) = x, а также множество сверток
с фиксированным количеством каналов и размером фильтров и функций суб-
дискретизации или пулинга. Алгоритм выбора структуры модели рекуррентной
сетью выглядит следующим образом на шаге 𝑗:
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f0(x) = x f1(x) f|𝑉 |−2(x) f|𝑉 |−1(x)

g0,1
0 (x) = Conv(x, 𝑐0, 𝑐1)

. . .

g
0,|𝑉 |−2
0 (x) = x

g0,1
1 (x) = x g

|𝑉 |−2,|𝑉 |−1
0 (x) = softmax(x)

Рис. 1.5. Пример параметрического семейства моделей глубокого обучения, опи-
сываемый в [17]. Каждая подмодель f𝑗 является линейной комбинацией базовых
функций: нелинейной функции и результата работы предыдущих подмоделей.

1) выбрать вершину 𝑣′ из вершин 𝑣𝑗−1, 𝑣𝑗−2 из данной клетки или вершину
из предыдущих клеток;

2) выбрать вершину 𝑣′′ из вершин 𝑣𝑗−1, 𝑣𝑗−2 из данной клетки или вершину
из предыдущих клеток;

3) выбрать базовую функцию g′ для применения к вершине 𝑣′;
4) выбрать базовую функцию g′′ для применения к вершине 𝑣′′;
5) выбрать функцию агрегации результатов применения операций g′,g′′:

сумму или конкатенацию.
В отличие от предыдущих работ, в работе [19] предлагается подход к инкре-

ментальному обучению нейросети, основанном на модификации модели, полу-
ченной на предыдущем шаге. Рассматривается две операции над нейросетью:
расширение и углубление сети.

В работах [108, 109, 110] рассматриваются методы деформации нейросе-
тей. В работе [110] предлагается метод оптимального разделения нейросети на
несколько независимых сетей для уменьшения количества связей и, как след-
ствие, уменьшения сложности оптимизации модели. В работе [108] предлагает-
ся метод сохранения результатов оптимизации нейросети при построении новой
более глубокой или широкой нейросети. В работе [109] рассматривается задача
расширения сверточной нейросети, нейросеть рассматривается как граф.

В работе [21] используется представление модели из [20]. Вместо обучения с
подкреплением используются градиентная оптимизация структуры и парамет-
ров, выполненная в единой процедуре.

1.5. Метаоптимизация моделей глубокого обучения

Задача выбора структуры модели тесно связана с раздел машинного обуче-
ния под названием метаобучение или метаоптимизация. Под метаобучением
понимаются алгоритмы машинного обучения [111], которые:
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1) оценивают и сравнивают методы оптимизации моделей;
2) оценивают возможные декомпозиции процесса оптимизации моделей;
3) на основе полученных оценок предлагают оптимальные стратегии опти-

мизации моделей и отвергают неоптимальные.
В работе [112] предлагается подход к адаптивному изменению параметров

сети. В качестве оператора оптимизации параметров рассматривается величи-
на:

𝑇 (𝜃|𝐿,y,X,h,𝜆) = 𝜃 + foptim(fmod(𝜃)),

где fmod — функция, определяющая номер параметра из 𝜃, подлежащего опти-
мизации, а foptim — величина изменения параметра. В [112] также предлагает-
ся подмодель fana, определяющая номер параметра, подлежащего дальнейшему
анализу. Подход, описанный в данной работе, предполагает оптимизацию и ана-
лиз не только самой модели f , но и дополнительных моделей fmod, fana, foptim.

В работе [113] рассматривается оптимизация метапараметров (шага гради-
ентного спуска 𝜆lr и начального распределения параметров 𝜃0). Рассматривает-
ся задача оптимизации параметров модели в случае, когда количество примеров
невелико. Для этого проводится оптимизация параметров оператора оптимиза-
ции, который выглядит следующим образом:

𝑇 (𝜃|𝐿,y,X,h,𝜆) = 𝜃0 − 𝜆∇𝑇 (𝜃0|𝐿,y,X,h,𝜆),

где векторы 𝜃0 и 𝜆 являются метапараметрами оператора 𝑇 . Задача оптимиза-
ции параметров оператора 𝑇 рассматривается как задача многзадачного обуче-
ния (англ. multitask learning), когда оператор оптимизируется с учетом несколь-
ких различных выборок и различных функций 𝐿, определенных отдельно для
каждой выборки.

В работе [114] рассматривается задача восстановления параметров модели
по параметрам другой модели, чьи параметры были получены оптимизацией
функции потерь на выборке меньшей мощности. Задачу можно рассматривать
как задачу нахождения параметров некоторого оператора оптимизации 𝑇 , дей-
ствующего на параметры 𝜃0, где 𝜃0 — параметры модели, оптимизированной
на небольшой выборке. Предлагается функция оптимизации:

𝑇 (𝜃|𝐿,y,X,h,𝜆) = argmin
(︁
||𝜃̂ − 𝜃0||22 − 𝜆𝐿(𝜃|ŷ, X̂,h,𝜆)

)︁
,

где 𝜃 — параметры модели, обученной по полной выборке D, D̂ — выборка
меньшей мощности, 𝜆 — настраиваемый метапараметр.

В работе [115] рассматривается оптимизация метапараметров оператора оп-
тимизации с помощью модели долгой краткосрочной памяти LSTM, которая
выступает альтернативе аналитических алгоритмов, таких как Adam [116] или
AdaGrad [117]. LSTM имеет небольшое число параметров, т.к. для каждого ме-
тапараметра используется свой экземпляр модели LSTM с одинаковыми па-
раметрами для каждого экземпляра. Оптимизируемый функционал является
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Рис. 1.6. Пример суперсети. Каждый путь из подмодели f0 в конечную модель
f8 задает модель глубокого обучения.

суммой значений функции потерь 𝐿 на нескольких шагах оптимизации:

𝑄(h|y,X, 𝜃,𝜆) =

𝜂∑︁

𝑡=1

𝐿(𝜃𝑡|y,X,h,𝜆),

где 𝜂 — число шагов оптимизации, 𝜃𝑡 — оптимизируемые параметры модели на
шаге оптимизации 𝑡.

1.6. Выбор структур моделей специального вида

В данном разделе представлены работы по поиску оптимальных моделей со
структурами специального вида.

В работе [118] рассматривается оптимизация моделей нейросетей с бинарной
функцией активацией. Задача оптимизации сводится к задаче mixed integer про-
граммирования, которая решается методами выпуклого анализа. В работе [119]
предлагается метод построения сети глубокого обучения, структура которой
выбирается с использованием обучения без учителя. Критерий оптимальности
модели использует оценки энергетических функций и ограниченной машины
Больцмана.

В работах [120, 121] рассматривается выбор архитектуры сети с использо-
ванием суперсетей: связанных между собой подмоделей, образующих граф,
каждый путь из нулевой вершины в последнюю которого определяет модель
глубокого обучения. Пример графа, описывающего суперсеть представлен на
Рис. 1.6. В работе [121] рассматриваются стохастические суперсети, позволяю-
щие выбрать структуру нейросети за ограниченное время оптимизации. Схожий
подход был предложен в работе [120], где предлагается использовать эволюци-
онные алгоритмы для запоминания оптимальных подмоделей и переноса этих
моделей в другие задачи.
Порождающие модели. Порождающими моделями называются моде-

ли, приближающие совместное распределение объектов и соответствующих им
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меток 𝑝(X,y). Частным случаем порождающих моделей являются модели, при-
ближающие только распределение векторов объектов X. Подобный случай бу-
дем считать частным случаем классификации при пустом множестве меток
классов (𝑅 = 0).

В качестве порождающих моделей в сетях глубокого обучения выступают
ограниченные машины Больцмана [3] и автокодировщики [22]. В работе [23]
рассматриваются алгоритмы регуляризации автокодировщиков, позволяющих
формально рассматривать данные модели как порождающие модели с исполь-
зованием байесовского вывода. В работе [24] рассматриваются регуляризован-
ные автокодировщики и свойства оценок их правдоподобия. В работе [25] пред-
лагается обобщение автокодировщика с использованием вариационного байе-
совского вывода [2]. В работе [26] рассматриваются модификации вариацион-
ного автокодировщика и ступенчатых сетей [27] для случая построения много-
слойных порождающих моделей.

В ряде работ [122, 123, 124, 125, 126] рассматривается подход к
построению порождающих моделей глубокого обучения, при кото-
ром каждая подмодель f𝑖 приближает распределение некоторой слу-
чайной величины z𝑖, которая влияет на маргинальное распределение
𝑝(X,y) =

∫︀
z0,...,z|𝑉 |−1

𝑝(X,y|z0, . . . , z|𝑉 |−1)𝑝(z1, . . . , z|𝑉 |)𝑑z0 . . . 𝑑z|𝑉 |−1. Подоб-
ный подход позволяет использовать вероятностную интерпретацию для
каждой отдельной подмодели.

В работе [122] рассматривается обобщение вариационного автокодировщика
на случай более общих графических моделей. Предлагается проводить опти-
мизацию сложных графических моделей в единой процедуре. Для вероятност-
ного вывода предлагается использовать нейронные сети. Другая модификация
вариационного автокодировщика представлена в работе [123], авторы рассмат-
ривают использование процесса сломанной трости в вариационном автокоди-
ровщике, тем самым получая модель со стохастической размерностью скрытой
переменной. В [124] рассматривается смесь автокодировщиков, где смесь моде-
лируется процессом Дирихле.

В работе [125] предлагается подход к оптимизации неизвестного распределе-
ния с помощью вариационного вывода. Предлагается решать задачу оптимиза-
ции итеративно, добавляя в модель новые компоненты вариационного распре-
деления, проводится аналогия с бустингом.

В работе [126] рассматривается задача построения порождающих моделей
с дискретными значениями скрытой переменной 𝑧, предлагается критерий для
послойного обучения порождающих моделей:

𝑄 =
∑︁

x∈X
log
∑︁

𝑖

𝑝(x|𝑧 = 𝑖)𝑞(𝑧) → max,

где 𝑞 — аппроксимирующее распределение для случайной величины 𝑧, 𝑖 пробе-
гает все значения переменной 𝑧.

30



В работе [53] рассматривается метод ARD для снижения размерности скры-
того пространства вариационных порождающих моделей. Скрытая переменная
параметризуется как произведение некоторой случайной величины z на век-
тор h, отвечающий за релевантность каждой компоненты скрытой переменной.
Схема порождения выборки X представлена на Рис. 1.7.

m

𝑞(z,h)

x

z

h

Рис. 1.7. Схема порождения вектора объектов X, представленного в [53].

В данной работе предлагается метод последовательного порождения моде-
лей глубокого обучения, основывающийся на применении вариационного выво-
да. Вариационный вывод позволяет получить оценки правдоподобия модели с
небольшими вычислительными затратами, а также проследить потенциальное
начало переобучения модели без использования контрольной выборки. Для ре-
гуляризации структуры модели предлагается ввести априорное распределение
на структуре, позволяющее проводить оптимизацию модели и ее структуры
в различных режимах. В качестве метода оптимизации гиперпараметров вы-
ступают градиентные методы, что позволяет эффективно производить оптими-
зацию большого числа гиперпараметров, сопоставимого с числом параметров
модели.
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Глава 2

Выбор модели с использованием вариационного вывода

В данной главе рассматривается задача выбора моделей глубокого обучения
субоптимальной сложности. Под сложностью модели понимается обоснованно-
сти модели (1.4). Под субоптимальной сложностью понимается приближенная
оценка обоснованности модели, полученная с использованием вариационных ме-
тодов. Вводятся вероятностные предположения о распределении параметров.
На основе байесовского вывода предлагается функция обоснованности модели.
Для получения оценки обоснованности применяются вариационные методы с
использованием градиентных алгоритмов оптимизации. Проводится вычисли-
тельный эксперимент на нескольких выборках.

В работе предлагается метод получения вариационной нижней оценки обос-
нованности модели с использованием модифицированного алгоритма стохасти-
ческого градиентного спуска. Модификация заключается в добавлении шумо-
вой компоненты. Эта компонента позволяет получить более точные оценки обос-
нованности модели для сравнения моделей и выбора наиболее адекватной из
них. Рассматривается ряд модификаций базового алгоритма. В качестве базо-
вого алгоритма выступает алгоритм оптимизации параметров модели с исполь-
зованием стохастического градиентного спуска без контроля переобучения. Он
заключается в итеративном вычислении градиента по параметрам от функции
обоснованности обучающей выборки и изменении значений параметров с его
учетом. Приводится сравнение с алгоритмом получения вариационной нижней
оценки, представленном в [39]. Рассматриваются следующие модификации ба-
зового алгоритма: оптимизация с кросс-валидацией с использованием и без ис-
пользования регуляризации модели, алгоритм получения вариационной оценки
обоснованности модели с применением нормального распределения, алгоритм
получения вариационной оценки обоснованности с использованием стохасти-
ческого градиентного спуска, алгоритм получения вариационной оценки обос-
нованности с использованием стохастической динамики Ланжевена. Данные
алгоритмы решают следующие проблемы оптимизации моделей градиентным
спуском: оптимизация модели с меньшими затратами вычислительных ресур-
сов, быстрая сходимость оптимизации, контроль переобучения и выбор наи-
более адекватной модели. Под переобучением понимается потеря обобщающей
способности модели с увеличением правдоподобия обучающей выборки [28]. Пе-
реобучение характерно для моделей с большим количеством параметров, сопо-
ставимым с мощностью обучающей выборки, что встречается в случае выбора
моделей глубокого обучения [3, 127]. Также алгоритмы имеют дальнейшую
возможность применения к градиентным алгоритмам оптимизации гиперпара-
метров, описанным в [49].

Свойства представленных в данной работе алгоритмов исследуется на вы-
борках, на которых проверялась работа алгоритма вероятностного обратного
распространения ошибок [128], где авторы акцентируются на оптимизации па-
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раметров модели.

2.1. Постановка задачи оптимизации обоснованности моделей

Определим понятие статистической сложности модели. Сложностью модели
будем называть обоснованность модели (1.4). Пусть задано множество моделей
𝑀 , для которых, возможно, не задан граф параметрического семейства моде-
лей. Для каждой модели f ∈ 𝑀 заданы различные значения гиперпараметров
h. Рассмотрим два подхода к сравнению моделей:

1. Модели f описываются общим параметрическим семейством моделей глу-
бокого обучения F, т.е. имеют общий граф описания моделей (𝑉,𝐸), общее
пространство параметров W и пространство структур Γ. При таком под-
ходе сравнение сложности различных моделей является адекватным, т.к.
они определены на общем пространстве структур Γ и параметров W. Воз-
можно сравнение не только обоснованности модели, но и распределения
на структуре Γ.

2. Модели f не описываются общим параметрическим семейством. В данном
случае напрямую сравнить распределение структур Γ нельзя.

В данном разделе рассматривается второй вариант. Будем полагать, что струк-
тура Γ модели глубокого обучения f и метапараметры 𝜆 определены однознач-
но:

𝑝(w,Γ|h,𝜆) = 𝑝(w,Γ|h), 𝑝(w|Γ,h,𝜆) = 𝑝(w|h), 𝑝(y|X,w,Γ) = 𝑝(y|X,w).

Определение 20. Сложностью модели f назовем обоснованность модели:

𝑝(y|X,h) =

∫︁

w∈W
𝑝(y|X,w)𝑝(w|h)𝑑w. (2.1)

Заметим, что основная часть данной главы также применим и в случае, ко-
гда модели описываются общим параметрическим семейством моделей глубо-
кого обучения. В данном случае вместо интеграла (2.1) предлагается использо-
вать интеграл (1.4), учитывающий вероятностные предположения о структуре
модели.
Определение 21. Модель f назовем оптимальной среди моделей 𝑀 , если до-
стигается максимум интеграла (2.1).

Требуется найти оптимальную модель f из заданного множества моделей
𝑀 , а также значения ее параметров w, доставляющие максимум апостериорной
вероятности

𝑝(w|y,X,h) =
𝑝(y|X,w)𝑝(w|h)

𝑝(y|X,h)
. (2.2)
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Пример 2. Рассмотрим задачу линейной регрессии:

y = Xw + 𝜀, 𝜀 ∼ 𝒩 (0, 1), w ∼ 𝒩 (0,A−1),

где A — диагональная матрица. Правдоподобие зависимой переменной имеет
вид

𝑝(y|X,w,h) = (2𝜋)−
𝑚
2 exp
(︀
−1

2
(y −Xw)T(y −Xw)

)︀
, (2.3)

априорное распределение параметров модели имеет вид

𝑝(w|h) = (2𝜋)−
𝑛
2 |A| 12exp(−1

2
wTAw). (2.4)

Обоснованность модели (2.1) в этом примере вычисляется аналитиче-
ски [129]:

𝑝(y|X,h) = (2𝜋)−
𝑚
2 |A| 12 |H|− 1

2exp
(︀
−1

2
(y −Xŵ)T(y −Xŵ)

)︀
exp
(︀
−1

2
ŵTAŵ

)︀
,

(2.5)
где ŵ — значение наиболее вероятных (2.2) параметров модели:

ŵ = argmax 𝑝(w|y,X,h) = (A+XTX)−1XTy,

H — гессиан минус функции потерь (−𝐿) модели:

H = ∇∇w

(︂
1

2
(y −Xw)T(y −Xw) +

1

2
wTAw

)︂
= A+XTX,

𝐿 = log 𝑝(y|X,w).

Пример 3. Рассмотрим задачу классификации, в которой модель — нейросеть
с softmax-слоем на выходе:

f = f|V|-1(f|𝑉 |−2(. . . f0(x))), (2.6)

f0, . . . , f|𝑉 |−1 — дифференцируемые функции, f|V|-1 — многомерная логистиче-
ская функция:

f|V|-1 =
f|𝑉 |−2(. . . f1(x))∑︀𝑅

𝑐=1 exp
(︀
f|𝑉 |−2[𝑐](. . . f1(x))

)︀ , (2.7)

где f|𝑉 |−2[𝑐] — 𝑐-я компонента функции f|𝑉 |−2. Компонента 𝑐 вектора f|𝑉 |−1 опре-
деляет вероятность принадлежности объекта x к классу 𝑐. Логарифм правдо-
подобия зависимой переменной аналогично (2.3) имеет вид

log𝑝(𝑦|x,w) = log 𝑓 𝑦|𝑉 |−1(f|𝑉−2|(. . . f0(x))).

Данная модель описывает многослойную сеть, аналогичную моделям семей-
ства, представленного на Рис. 1.3.
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Интеграл обоснованности (2.1) модели является трудновычислимым для
данного семейства моделей. Одним из методов вычисления приближенного зна-
чения обоснованности является получение вариационной оценки обоснованно-
сти.

В качестве функции, приближающей логарифм интеграла (2.1), будем рас-
сматривать его нижнюю оценку, полученную при помощи неравенства Йенсе-
на [2]. Получим нижнюю оценку логарифма обоснованности модели, используя
неравенство

log 𝑝(y|X,h) =

∫︁

w

𝑞(w)log
𝑝(y,w|X,h)

𝑞(w)
𝑑w + DKL

(︀
𝑞(w)||𝑝(w|y,X,h)

)︀
≥ (2.8)

≥
∫︁

w

𝑞(w)log
𝑝(y,w|X,h)

𝑞(w)
𝑑w =

= −DKL

(︀
𝑞(w)||𝑝(w|h)

)︀
+

∫︁

w

𝑞(w)log 𝑝(y|X,w)𝑑w,

где DKL

(︀
𝑞(w)||𝑝(w|h)

)︀
— расстояние Кульбака–Лейблера между двумя распре-

делениями:

DKL

(︀
𝑞(w)||𝑝(w|h)

)︀
= −
∫︁

w

𝑞(w)log
𝑝(w|h)
𝑞(w)

𝑑w,

𝑝(y,w|X,h) = 𝑝(y|X,w)𝑝(w|h).
Определение 22. Вариационной оценкой логарифма обоснованности моде-
ли (2.1) log 𝑝(y|X,h) называется оценка log 𝑝(y|X,h), полученная аппроксима-
цией неизвестного апостериорного распределения 𝑝(w|y,X,h) заданным рас-
пределением 𝑞(w).

Будем рассматривать задачу нахождения вариационной оценки как зада-
чу оптимизации. Пусть задано множество распределений Q = {𝑞(w)}. Сведем
задачу нахождения наиболее близкой вариационной нижней оценки интегра-
ла (2.1) к оптимизации вида

𝑞(w) = argmax
𝑞∈Q

∫︁

w

𝑞(w)log
𝑝(y,w|X,h)

𝑞(w)
𝑑w.

В данной работе в качестве множества Q рассматривается нормальное распре-
деление и распределение параметров, неявно получаемое оптимизацией гради-
ентными методами.

Оценка (2.8) является нижней, поэтому может давать некорректные оцен-
ки для обоснованности (2.1). Для того, чтобы оценить величину этой ошибки,
докажем следующее утверждение.
Теорема 1 ([2]). Пусть задано множество Q = {𝑞(w)} непрерывных распреде-
лений. Максимизация вариационной нижней оценки

∫︁

w

𝑞(w)log
𝑝(y,w|X,h)

𝑞(w)
𝑑w
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логарифма интеграла (2.1) эквивалентна минимизации расстояния Кульбака–
Лейблера между распределением 𝑞(w) ∈ Q и апостериорным распределением
параметров 𝑝(w|y,X,h):

𝑞 = argmax
𝑞∈Q

∫︁

w

𝑞(w)log
𝑝(y,w|X,h)

𝑞(w)
𝑑w ⇔ 𝑞 = argmin

𝑞∈Q
DKL

(︀
𝑞(w)||𝑝(w|y,X,h)

)︀
,

(2.9)

DKL

(︀
𝑞(w)||𝑝(w|y,X,h)

)︀
=

∫︁

w

𝑞(w) log

(︂
𝑞(w)

𝑝(w|y,X,h)

)︂
𝑑w.

Доказательство. Доказательство непосредственно следует из (2.8). Вычитая
из обеих частей равенства DKL(𝑞(w)||𝑝(w|y,X,h)), получим

log 𝑝(y|X,h)− DKL(𝑞(w)||𝑝(w|y,X,h)) =

∫︁

w

𝑞(w)log
𝑝(y,w|X,h)

𝑞(w)
𝑑w,

где log 𝑝(y|X,h) — выражение, не зависящее от 𝑞(w).

Таким образом, задача нахождения вариационной оценки, близкой к значе-
нию интеграла (2.1) сводится к поиску распределения 𝑞, аппроксимирующего
распределение 𝑝(w|y,X,h) наилучшим образом.
Определение 23. Пусть задано множество распределений Q. Модель f назо-
вем субоптимальной на множестве моделей 𝑀 , если модель доставляет макси-
мум нижней вариационной оценке интеграла (2.9)

max
𝑞∈Q

∫︁

w

𝑞(w)log
𝑝(y,w|X,h)

𝑞(w)
𝑑w. (2.10)

Субоптимальность модели может быть также названа вариационной опти-
мальностью модели или LB-оптимальностью (Lower Bound — нижняя граница)
модели.

Вариационная оценка (2.8) интерпретируется как оценка сложности модели
по принципу минимальной длины описания (1.7), где первое слагаемое опре-
деляет количество информации для описания выборки, а второе слагаемое —
длину описания самой модели [39].

В данной работе решается задача выбора субоптимальной модели при раз-
личных заданных множествах Q.

2.2. Методы получения вариационной оценки обоснованности

Ниже представлены методы получения вариационных нижних оценок (2.10)
обоснованности (2.1). В первом параграфе рассматривается метод, основанный
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на аппроксимации апостериорного распределения 𝑝(w|y,X,h) (2.2) многомер-
ным гауссовым распределением с диагональной матрицей ковариаций. В по-
следующих параграфах рассматриваются методы, основанные на различных
модификациях стохастического градиентного спуска.
Аппроксимация нормальным распределением. В качестве множества

Q = {𝑞(w)} задано параметрическое семейство нормальных распределений с
диагональными матрицами ковариаций:

𝑞 ∼ 𝒩 (𝜇𝑞,A
−1
𝑞 ), 𝜃 = [𝜇𝑞,diag(A

−1
𝑞 )] (2.11)

где A𝑞 — диагональная матрица ковариаций, 𝜇𝑞 — вектор средних компонент.
Пусть априорное распределение 𝑝(w|h) (2.4) параметров модели задано как

нормальное:
𝑝(w|h) ∼ 𝒩 (𝜇,A−1), h = diag(A−1

𝑞 ),

Тогда оптимизация (2.9) имеет вид
∫︁

w

𝑞(w)log 𝑝(y|X,w)𝑑w −𝐷KL

(︀
𝑞(w)||𝑝(w|h)

)︀
→ max

A𝑞,𝜇𝑞

, (2.12)

где расстояние 𝐷KL между двумя гауссовыми величинами рассчитывается как

𝐷KL

(︀
𝑞(w)||𝑝(w|h)

)︀
=

1

2

(︀
Tr[AA−1

𝑞 ]+(𝜇−𝜇𝑞)
TA(𝜇−𝜇𝑞)−|W|+ln |A−1|−ln |A−1

𝑞 |
)︀
.

В качестве приближенного значения интеграла
∫︁

w

𝑞(w)log 𝑝(y|X,w)𝑑w

предлагается использовать формулу

∫︁

w

𝑞(w)log 𝑝(y|X,w)𝑑w ≈
𝑚∑︁

𝑖=1

log 𝑝(𝑦𝑖|x𝑖,w𝑖),

где w𝑖 — реализация случайной величины из распределения 𝑞(w).
Итоговая функция оптимизации (2.12) имеет вид

f = argmax
A𝑞,𝜇𝑞

𝑚∑︁

𝑖=1

log 𝑝(𝑦𝑖|x𝑖,w𝑖)−𝐷KL

(︀
𝑞(w)||𝑝(w|h)

)︀
= (2.13)

= argmax
𝜃

𝐿(𝜃|h,X,y).

Пример 4. Пусть задана выборка D, в которой переменная 𝑦 не зависит от x:

𝑦 ∼ 𝒩 (w,B−1), (2.14)
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B−1 =

(︂
2 1, 8
1, 8 2

)︂
,

𝑝(w|h) = 𝒩 (0, I).

График аппроксимации распределения параметров представлен на
рис. 2.1,а. Как видно из графика, с использованием метода (2.13) получено
грубое приближение апостериорного распределения 𝑝(w|y,X,h), что может
существенно занизить оценку обоснованности модели.

Рис. 2.0. а
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Рис. 2.0. б
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Рис. 2.0. в
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Рис. 2.1. Аппроксимация распределения а) нормальным распределением, б )
распределением, полученным с помощью градиентного спуска, в) с использо-
ванием стохастической динамики Ланжевена.

Данный пример показывает, что качество итоговой аппроксимации рас-
пределения 𝑝(w|y,X,h) значительно зависит от схожести распределений 𝑞 и
𝑝(w|y,X,h). В силу диагональности матрицы A𝑞 и полного ранга матрицы B
итоговое распределение 𝑞 не может адекватно приблизить данное распределе-
ние 𝑝(w|y,X,h).
Аппроксимация с использованием градиентного метода. В каче-

стве множества распределений Q = {𝑞(w)}, аппроксимирующих неизвестное
распределение log 𝑝(y|X,h), используются распределения параметров, полу-
ченные в ходе их оптимизации.

Представим неравенство (2.8)

log 𝑝(y|X,h) ≥
∫︁

w

𝑞(w)log
𝑝(y,w|X,h)

𝑞(w)
𝑑w = E𝑞(w)log 𝑝(y,w|X,h)− S

(︀
𝑞(w)

)︀
,

(2.15)
где S — энтропия распределения:

S
(︀
𝑞(w)

)︀
= −
∫︁

w

𝑞(w)log 𝑞(w)𝑑w,
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𝑝(y,w|X,h) = 𝑝(w|h)𝑝(y|X,w),

E𝑞(w)log 𝑝(y,w|X,h) — матожидание логарифма вероятности log 𝑝(y,w|X,h):

E𝑞(w)log 𝑝(y,w|X,h) =

∫︁

w

log 𝑝(y,w|X,h)𝑞(w)𝑑w.

Оценка распределений производится при оптимизации параметров. Оптими-
зация выполняется в режиме мультистарта [130], т.е. при запуске оптимизации
параметров модели из нескольких разных начальных приближений. Основная
проблема такого подхода — вычисление энтропии S распределений 𝑞(w) ∈ Q.
Ниже представлен метод получения оценок энтропии (2.19) S и оценок обосно-
ванности (2.15).

Запустим 𝑟 процедур оптимизаций модели f из разных начальных прибли-
жений:

𝐿(𝜃|h,X,y) =
𝑟∑︁

𝑙=1

log𝑝(y,w𝑙|X,h) → max, 𝜃 = [w1, . . . ,w𝑟],

где 𝑟 — число оптимизаций,

log𝑝(y,w𝑙|X,h) =
𝑚∑︁

𝑖=1

log𝑝(𝑦𝑖,w
𝑙|x𝑖,h) = log 𝑝(w𝑙|h) +

𝑚∑︁

𝑖=1

log𝑝(𝑦𝑖|x𝑖,w𝑙,h).

(2.16)
Пусть начальные приближения параметров w1, . . . ,w𝑟 порождены из неко-

торого начального распределения 𝑞0(w):

w1, . . . ,w𝑟 ∼ 𝑞0(w).

Для дальнейшего описания метода введем понятие оператора градиентного
спуска, являющегося частным случаем оператора оптимизации (1.10).
Определение 24. Оператором градиентного спуска назовем оператор оптими-
зации вида

𝑇 (𝜃|𝐿,y,X,h,𝜆) = 𝜃 − 𝜆lr∇(−𝐿(𝜃|y,X,h,𝜆)), (2.17)

где 𝜆lr — длина шага градиентного спуска.
В данной главе будем рассматривать распределения, полученные из несколь-

ких точек старта оптимизации параметров w модели f . Для удобства бу-
дем использовать 𝐿(w) как эквивалентную форму записи 𝐿(𝜃|y,X,h,𝜆) для
𝜃 = [w]T, и 𝑇 (w) как эквивалентную форму записи 𝑇 (𝜃|𝐿,y,X,h,𝜆).

Пусть значения w1, . . . ,w𝑟 — реализации случайной величины из некоторо-
го распределения 𝑞(w). Начальная энтропия распределения 𝑞(w) соответствует
энтропии распределения 𝑞0(w), из которого были порождены начальные при-
ближения оптимизации параметровw1, . . . ,w𝑟. Под действием оператора 𝑇 рас-
пределение параметров w1, . . . ,w𝑟 изменяется. Для учета энтропии распреде-
лений, полученных в ходе оптимизации, формализуем метод, представленный
в [41].

39



Теорема 2. Пусть 𝑇 — оператор градиентного спуска, 𝐿 — функция потерь,
градиент ∇𝐿 которой имеет константу Липшица 𝐶𝐿. Пусть 𝜃 = [w1, . . . ,w𝑟]T

— начальные приближения оптимизации модели, где 𝑟 — число начальных при-
ближений. Пусть 𝜆lr — длина шага градиентного спуска, такая что

𝜆lr <
1

𝐶𝐿
, 𝜆lr <

(︀
max

𝑙∈{1,...,𝑟}
𝜆max(H(w𝑙))

)︀−1
, (2.18)

где 𝜆max — наибольшее по модулю собственное значение гессианаH минус функ-
ции потерь (−𝐿).

При выполнении неравенств (2.18) разность энтропий распределений
𝑞′(w), 𝑞(w) на смежных шагах почти наверное сходится к следующему выра-
жению:

S
(︀
𝑞′(w))− S

(︀
𝑞(w)) ≈ 1

𝑟

𝑟∑︁

𝑙=1

(︀
−𝜆lrTr[H(w′𝑙)]− 𝜆lrTr[H(w′𝑙)H(w′𝑙)]

)︀
+ 𝑜𝜆2lr→0(1).

(2.19)
Предварительно приведем две леммы, требуемые для доказательства теоре-

мы.
Лемма 1 ( [131]). Пусть 𝑇 — оператор градиентного спуска, 𝐿 — дважды диф-
ференцируемая функция потерь, градиент ∇𝐿 которой имеет константу Лип-
шица 𝐶𝐿. Пусть для длины шага 𝜆lr выполнено неравенство 𝜆lr <

1
𝐶𝐿
. Тогда 𝑇

является диффеоморфизмом.
Лемма 2 ( [132]). Пустьw — случайный вектор с непрерывным распределением
𝑞(w). Пусть 𝑇 — биективное отображение вектора w в пространство той же
размерности. Пусть 𝑞′(w) — распределение вектора 𝑇 (w). Тогда справедливо
утверждение

S
(︀
𝑞′(w)

)︀
− S
(︀
𝑞(w)

)︀
=

∫︁

w

𝑞′(w)log

⃒⃒
⃒⃒𝜕𝑇 (w)

𝜕w

⃒⃒
⃒⃒ 𝑑w. (2.20)

Доказательство. Рассмотрим очередной шаг оптимизации. При 𝜆lr <
1
𝐶 опера-

тор градиентного спуска 𝑇 является диффеоморфизмом, а значит, и биекцией,
справедлива формула (2.20). По усиленному закону больших чисел

S
(︀
𝑞′(w)

)︀
− S
(︀
𝑞(w)

)︀
≈ 1

𝑟

𝑟∑︁

𝑙=1

log

⃒⃒
⃒⃒𝜕𝑇 (w

′𝑙)

𝜕w

⃒⃒
⃒⃒ ,

где знак ≈ означает сходимость почти наверное. Логарифм якобиана

log
⃒⃒
⃒𝜕𝑇 (w

′𝑙)
𝜕w

⃒⃒
⃒ оператора 𝑇 запишем как

log

⃒⃒
⃒⃒𝜕𝑇 (w

′𝑙)

𝜕w

⃒⃒
⃒⃒ = log |I− 𝜆lrH| =

|W|∑︁

𝑖=1

log (1− 𝜆lr𝜆𝑖), (2.21)

40



где 𝜆𝑖 — 𝑖-е собственное значение гессиана H.
При (𝜆lr𝜆𝑖)

2 ≤ (𝜆lr𝜆max)
2 < 1 выражение (2.21) раскладывается в ряд Тей-

лора:

|W|∑︁

𝑡=1

log (1− 𝜆lr𝜆𝑖) = −𝜆lrTr[H(w′𝑙)]− 𝜆2
lrTr[H(w′𝑙)H(w′𝑙)] + 𝑜𝜆2lr→0(1).

Просуммировав полученные выражения для каждой точки мультистарта и вы-
неся 𝑜𝜆2lr→0(1) за скобки, получим выражение (2.19), что и требовалось доказать.

Получим итоговую формулу для оценки обоснованности модели.
Теорема 3. Оценка (2.15) на шаге оптимизации 𝜏 представима в виде

log 𝑝(y|X,h) ≈ 1

𝑟

𝑟∑︁

𝑔=1

𝐿(w𝑙
𝜏 |X,y)+ (2.22)

+S
(︀
𝑞0(w)

)︀
+

1

𝑟

𝜏∑︁

𝑏=1

𝑟∑︁

𝑙=1

(︀
−𝜆lrTr[H(w𝑙

𝑏)]− 𝜆2
lrTr[H(w𝑙

𝑏)H(w𝑙
𝑏)]
)︀

с точностью до слагаемых вида 𝑜𝜆2lr→0(1), где w𝑙
𝑏 — 𝑙-я реализация параметров

модели на шаге оптимизации 𝑏, 𝑞0(w) — начальное распределение.

Доказательство. Представим энтропию распределения 𝑞𝜏(w) следующим об-
разом:

S
(︀
𝑞𝜏(w)

)︀
= S
(︀
𝑞0(w)

)︀
−S
(︀
𝑞0(w)

)︀
+S
(︀
𝑞1(w)

)︀
−S
(︀
𝑞1(w)

)︀
+· · ·−S

(︀
𝑞𝜏−1(w)

)︀
+S
(︀
𝑞𝜏(w)

)︀
.

Каждая разность энтропий вида S
(︀
𝑞𝑏(w)

)︀
−S
(︀
𝑞𝑏−1(w)

)︀
по теореме с точностью

до 𝑜𝜆2lr→0(1) представима в виде

S
(︀
𝑞𝑏(w)

)︀
− S
(︀
𝑞𝑏−1(w)

)︀
≈ 1

𝑟

𝑟∑︁

𝑙=1

(︀
−𝜆lrTr[H(w𝑙

𝑏)]− 𝜆2
lrTr[H(w𝑙

𝑏)H(w𝑙
𝑏)]
)︀
. (2.23)

Формула (2.22) получается подстановкой в выражение (2.15) суммы выра-
жений вида (2.23), а также начальной энтропии S

(︀
𝑞0(w)).

В [41] предлагается алгоритм приближенного вычисления для выражения,
находящегося под знаком суммы в (2.22):

−𝜆lrTr[H(w𝑙)]− 𝜆2
lrTr[H(w𝑙)H(w𝑙)] ≈ rT0

(︀
−2r0 + 3r1 − r2

)︀
,

где вектор r0 порождается из нормального распределения:

r0 ∼ 𝒩 (0, I), r1 = r0 − 𝜆lrr
T
0∇∇(−𝐿), r2 = r1 − 𝜆lrr

T
1∇∇(−𝐿).
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Вход: X,y, 𝑝(w|h);
Вход: критерий останова Stop, начальное распределение параметров 𝑞0, коли-

чество точек мультистарта 𝑟, функция потерь 𝐿, ее первая и вторая произ-
водные;

Выход: log 𝑝(y|X,h);
1: для 𝑙 = 1, . . . , 𝑟
2: w𝑙 ∼ 𝑞0;
3: S = S

(︀
𝑞0);

4: пока не достигнут критерий останова Stop
5: 𝜃 = 𝑇 (𝜃|𝐿,X,y,h,𝜆lr), где 𝜃 = [w1, . . . ,w𝑟]

T;
6: для 𝑙 = 1, . . . , 𝑟
7: r0 ∼ 𝒩 (0, I);
8: r1 = r0 − 𝜆lrr

T
0∇∇

(︀
−𝐿(w𝑙|y,X)

)︀
;

9: r2 = r1 − 𝜆lrr
T
1∇∇

(︀
−𝐿(w𝑙|y,X)

)︀
;

10: S𝑙 = rT0
(︀
−2r0 + 3r1 − r2

)︀
;

11: S = 1
𝑟

∑︀𝑟
𝑙=1 S

𝑙;
12: 𝑝(y|X,w,h) = 1

𝑟

∑︀𝑟
𝑙=1 𝑝(y|X,w𝑙);

13: 𝑝(w|h) = 1
𝑟

∑︀𝑟
𝑙=1 𝑝(w

𝑙|h);
14: log 𝑝(y|X,h) = log 𝑝(y|X,w,h) + log 𝑝(w|h);

Рис. 2.2. Псевдокод алгоритма получения вариационной нижней оценки обос-
нованности модели с использованием градиентного спуска

Заметим, что при приближении параметров модели к точке экстремума
оценка обоснованности устремляется в минус бесконечность в силу постоян-
но убывающей энтропии. Таким образом, чем ближе градиентный метод при-
ближает параметры модели к точке экстремума, тем менее точной становится
оценка обоснованности модели. Один из методов борьбы с данной проблемой
представлен в следующих параграфах.
Модификация алгоритма оптимизации модели.

В качестве оператора 𝑇 предлагается использовать псевдослучайный стохасти-
ческий градиентный спуск, т.е. градиентный спуск (1.11), оптимизирующий па-
раметры w1, . . . ,w𝑟 по некоторой случайной подвыборке X̂, ŷ, одинаковой для
каждой точки старта w1, . . . ,w𝑟:

𝑇 (𝜃|𝐿,y,X,h,𝜆) = 𝜃 − 𝜆lr∇(−𝐿(𝜃|y,X,h,𝜆)),

где 𝜆lr — шаг градиентного спуска, ŷ, X̂ — случайная подвыборка заданной
мощности выборки D. где X̂ — случайная подвыборка выборки X, одинаковая
для всех точек мультистарта, ŷ — соответствующие метки классов,

|X̂| = 𝑚̂.

Как и версия алгоритма с использованием градиентного спуска (2.17), ос-
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новной проблемой модифицированного алгоритма оценки интеграла (2.10) яв-
ляется грубость аппроксимации исходного распределения 𝑝(w|f ,D).

Рассмотрим пример (2.14). График аппроксимации распределения
𝑝(w|y,X,h) представлен на рис. 2.1,б. Как видно из графика, градиентный
спуск сходится к моде распределения. При небольшом количестве итераций
полученное распределение также слабо аппроксимирует апостериорное рас-
пределение. При приближении к точке экстремума снижается вариационная
оценка обоснованности модели, что интерпретируется как возможное начало
переобучения [41]. Таким образом, снижение оценки (2.22) можно использо-
вать как критерий остановки оптимизации модели для снижения эффекта
переобучения.

На рис. 2.1 представлена аппроксимация распределения 𝑝(w|Y,X,h) раз-
личными методами: а) нормальным распределением с диагональной матрицей
ковариаций, б ) с помощью градиентного спуска, в) с помощью стохастической
динамики Ланжевена. Точками отмечены параметры модели f , полученные в
ходе нескольких запусков оптимизации и являющиеся реализациями случайной
величины с распределением 𝑞(w). Нормальное распределение слабо аппрокси-
мирует распределение 𝑝(w|Y,X,h) в силу диагональности матрицы ковариа-
ций. Распределение, полученное с помощью градиентного спуска, слабо аппрок-
симирует распределение 𝑝(w|Y,X,h), так как сходится к моде.
Аппроксимация с использованием динамики Ланжевена

Для достижения нижней оценки интеграла (2.10), более близкой к реально-
му значению логарифма интеграла (2.1), чем оценка с использованием гра-
диентного спуска, предлагается использовать стохастическую динамику Лан-
жевена [43]. Стохастическая динамика Ланжевена представляет собой вариант
стохастического градиентного спуска с добавлением гауссового шума:

𝑇 (𝜃|𝐿,y,X,h,𝜆) = 𝜃 − 𝑚

𝑚̂
𝜆lr∇(−𝐿(𝜃|h, X̂, ŷ)) + 𝜀, 𝜀 ∼ 𝒩 (0,

𝜆lr

2
I), (2.24)

где X̂— псевдослучайная подвыборка, ŷ — соответствующие метки, 𝑚̂— размер
подвыборки. Длина шага оптимизации 𝜆lr удовлетворяет условиям, гарантиру-
ющим сходимость алгоритма в стандартных ситуациях [43]:

∞∑︁

𝜏=1

𝜆𝜏lr = ∞,
∞∑︁

𝜏=1

(𝜆𝜏lr)
2 < ∞.

Для оценки энтропии с учетом шума 𝜀 предлагается использовать следую-
щее неравенство [132, 133]:

Ŝ
(︀
𝑞𝜏(w)

)︀
≥ 1

2
|W|log

(︃
exp

(︃
2S
(︀
𝑞𝜏(w)

)︀

|W|

)︃
+ exp

(︃
2S
(︀
𝜀)

|W|

)︃)︃
,
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где 𝜏 — текущий шаг оптимизации, S
(︀
𝒩 (0, 𝜆lr2 )

)︀
— энтропия нормального рас-

пределения, Ŝ(𝑞𝜏(w)) — энтропия распределения 𝑞𝜏 с учетом добавленного шу-
ма 𝜀.

В отличие от стохастического градиентного спуска стохастическая ди-
намика Ланжевена сходится к апостериорному распределению параметров
𝑝(w|y,X,h) [43, 134]. График аппроксимации апостериорного распределения с
использованием динамики Ланжевена представлен на рис. 2.1,в. При одинако-
вом количестве итераций динамика Ланжевена продолжает аппроксимировать
апостериорное распределение, в то время как градиентный спуск сходится к мо-
де распределения. Как видно из графика, алгоритм, основанный на стохастиче-
ской динамике Ланжевена, способен давать более точную вариационную оценку
обоснованности (2.10). В то же время алгоритм более требователен к настройке
параметров оптимизации [135]: “быстро изменяющаяся кривизна [траекторий
параметров модели] делает методы стохастической градиентной динамики
Ланжевена по умолчанию неэффективными”.

2.3. Анализ методов выбора моделей

Для анализа свойств предложенного критерия субоптимальности в зада-
чах регрессии и классификации, а также методов получения нижних оценок
обоснованности модели в задачах выбора моделей был проведен ряд вычисли-
тельных экспериментов на выборках Boston Housing, Protein Structure, а так-
же на небольшой подвыборке YearPredictionMSD (далее — Boston, Protein и
MSD) [136] и подвыборке изображений рукописных цифр MNIST [137].

Для выборок Boston, Protein и MSD была рассмотрена задача регрессии

𝑦 = f(w,x) + 𝜀, 𝜀 ∼ 𝒩 (0, 1), f ∈ 𝑀.

В качестве множества моделей 𝑀 были рассмотрены нейросети с одним
скрытым слоем и softplus-функцией активации:

f(w,x) = (w1,2
0 )Tsoftplus

(︀
(w0,1

0 )Tx
)︀
, (2.25)

где w0,1
0 ∈ R𝑛×𝑛1 — матрица параметров скрытого слоя нейросети, w1,2

0 ∈ R𝑛1×1

— матрица параметров выходного слоя нейросети, 𝑛1 — размер скрытого слоя,
softplus(x) = log

(︀
1 + exp(x)

)︀
.

Для выборки Boston также было рассмотрено множество моделей с тремя
скрытыми слоями, построенных аналогично однослойной модели (2.25). Размер
каждого слоя равнялся 50.

Для выборки MNIST была рассмотрена задача бинарной классификации: из
выборки были взяты только объекты, соответствующие цифрам 7 и 9. Размер-
ность выборки была понижена с 784 до 50 методом главных компонент анало-
гично [138]. Для анализа моделей, полученных в случае высокой вероятности
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переобучения, из обучающей выборки были взяты первые 500 объектов. В каче-
стве модели рассматривалась нейросеть с тремя скрытыми слоями и функцией
активации вида:

𝜎(x) =
(︀
1 + exp(−x)

)︀−1
.

Во всех экспериментах исходная выборка D разбивалась на обучающую и
контрольную подвыборки: D = Dtrain ⊔Dtext.

Оптимизация параметров производилась на подвыборке Dtrain. Для контро-
ля переобучения некоторых алгоритмов из обучающей выборки Dtrain форми-
ровалась валидационная выборка Dvalid, на которой не проводилась оптимиза-
ция параметров модели. Мощность валидационной выборки Dvalid составляла
0,1 мощности обучающей выборки Dtrain, объекты для валидационной выбор-
ки выбирались случайным образом независимо для каждого старта алгоритма.
Качество полученных моделей проверялось на подвыборке Dtest. Критерием ка-
чества модели выступали среднеквадратичное отклонение вектора y от вектора
f(w,X) (RMSE) в случае задачи регрессии и доля верно предсказанных меток
класса (Accuracy) в задаче классификации, а также соответствующие критерии
при возмущении элементов выборки:

RMSE𝜎 = RMSE
(︀
f(w,X+ 𝜀),y

)︀
, 𝜀 ∼ 𝒩 (0, 𝜎I). (2.26)

Были рассмотрены шесть алгоритмов.
1. Базовый алгоритм: оптимизация параметров без валидации и ранней оста-

новки. Оптимизация проводилась с использованием стохастического гра-
диентного спуска (2.17). Для данного алгоритма априорное распределение
𝑝(w|h) не использовалось.

2. Алгоритм с валидацией. Для контроля переобучения во время оптимиза-
ции качество модели оценивалось на валидационной выборке Dvalid. Для
данного алгоритма априорное распределение также не использовалось.

3. Алгоритм с валидацией и введенным априорным распределением. В ка-
честве априорного распределения рассматривается распределение вида
w ∼ 𝒩 (0,𝛼I), где 𝛼 — дисперсия.

4. Нахождение вариационной нижней оценки с использованием стохастиче-
ского градиентного спуска.

5. Нахождение вариационной нижней оценки с использованием стохастиче-
ской динамики Ланжевена.

6. Нахождение вариационной нижней оценки с аппроксимацией нормальным
распределением (2.13).

Параметры модели выбирались из точек мультистарта (алгоритмы 1—5) или
порождались из распределения 𝑞 (алгоритм 6). Количество точек мультистарта:
𝑟 = 10 для задач регрессии и 𝑟 = 25 для задачи классификации. Для алгорит-
мов 2—6 применялась ранняя остановка: каждые 𝜏val итераций производилась
оценка внутреннего критерия качества модели. В качестве критерия останов-
ки применялось следующее условие: значение внутреннего критерия качества
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не улучшалось 3𝜏val итераций. Для разных алгоритмов внутренним критерием
качества выступали различные величины:

1) функция потерь 𝐿 (2.16) на валидационной выборкеDvalid для алгоритмов
2, 3;

2) вариационная нижняя оценка обоснованности (2.8) на обучающей выборке
Dtrain для алгоритмов 4, 5, 6.

Для каждой модели назначались различные значения параметра 𝛼(𝛼 ∈
{10, . . . , 109}) и длины шага оптимизации 𝜆lr, отбирались наилучшие модели.

Описание эксперимента представлено в табл. 1. Результаты экспериментов
представлены в табл. 2. На рис. 2.3 представлен график зависимости RMSE𝜎
от параметра 𝜎 для однослойных моделей.
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Рис. 2.2. б
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Рис. 2.2. в
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Рис. 2.3. Возмущение выборки для однослойных нейросетей: а) Boston Housing,
б ) Protein, в) MSD.

Таблица 2.1. Описание выборок для экспериментов по выбору моделей

Выборка D Интервал
валидации,
𝜏val

Количество
объектов, 𝑚

Количество
признаков,
𝑛

Размер под-
выборки, 𝑚̂

Размер
скрытого
слоя, 𝑛1

Boston
Housing

100 506 13 𝑚̂ = 𝑚 50

Protein 1000 45000 9 𝑚̂ = 200 100
MSD 1000 5000 91 𝑚̂ = 50 100
MNIST 100 500 50 𝑚̂ = 100 50

Модели имеют достаточно большое число параметров, поэтому в ходе оп-
тимизации параметров может произойти переобучение. На выборке Boston
Housing базовый алгоритм (1) показал наихудший результат в силу переобу-
чения, при этом алгоритм 4 показал лучший результат по сравнению с алго-
ритмами 2 и 3. В данном случае использование вариационной оценки предпо-
чтительнее алгоритмов, основанных на кросс-валидации. На выборке Protein
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Таблица 2.2. Результаты эксперимента по выбору моделей

Алгоритмы
Выборка D 1 2 3 4 5 6

Результаты, RMSE/Accuracy
Boston,

один слой
8,1 ± 2,0 5,9 ± 0,7 5,2 ± 0,6 3,7± 0,2 6,7 ± 0,7 5,0 ± 0,4

Boston, 3 слоя 7,1 ± 1,3 4,3 ± 0,1 4,4 ± 0,4 3,2± 0,06 4,6 ± 0,4 6,8 ± 1,6
Protein 5,1 ± 0,0 5,1 ± 0,0 5,1 ± 0,0 5,1 ± 0,0 5,1 ± 0,0 5,0± 0,1
MSD 12,2 ± 0,0 10,9± 0,1 10,9± 0,1 12,2 ± 0,0 12,9 ± 0,0 19,6 ± 3,6

MNIST 0,985 ± 0,002 0,984 ± 0,002 0,986± 0,002 0,914 ± 0,005 0,979 ± 0,003 0,971 ± 0,001
Результаты, RMSE/Accuracy0,5

Boston,
один слой

43,9 ± 9,4 18,6 ± 2,0 15,8 ± 2,3 11,9± 1,1 20,3 ± 3,1 18,2 ± 3,3

Boston, 3 слоя 23,4 ± 4,9 18,7 ± 2,8 18,3 ± 3,0 9,0 ± 0,7 14,5 ± 2,6 15,2 ± 2,7
Protein 19,5 ± 0,3 18,5 ± 0,5 18,6 ± 0,3 16,7± 0,3 19,3 ± 0,6 19,7 ± 3,7
MSD 178,3 ± 0,8 121,3± 4,5 123,7 ± 2,5 175,8 ± 1,0 203,8 ± 1,4 292,0 ± 2,0

MNIST 0,931 ± 0,004 0,929 ± 0,006 0,934± 0,007 0,857 ± 0,007 0,919 ± 0,008 0,916 ± 0,004
Результаты, RMSE/Accuracy1,0

Boston,
один слой

120,9 ± 33,4 42,5 ± 6,3 32,5 ± 6,0 25,7± 3,2 42,4 ± 5,7 41,3 ± 6,3

Boston, 3 слоя 46,1 ± 15,8 40,5 ± 5,3 38,6 ± 8,0 16,5 ± 2,5 30,4 ± 7,9 26,2 ± 6,9
Protein 37,0 ± 0,8 34,4 ± 1,1 35,0 ± 1,0 30,6± 0,6 36,6 ± 1,1 35,0 ± 8,1
MSD 319,6 ± 1,4 217,5± 8,2 221,9 ± 4,2 314,8 ± 1,8 363,7 ± 1,9 521,6 ± 3,1

MNIST 0,814± 0,010 0,808 ± 0,010 0,812 ± 0,008 0,772 ± 0,010 0,802 ± 0,009 0,800 ± 0,009
Сходимость алгоритмов, тыс. итераций

Boston,
один слой

25 25 25 14 10 27

Boston, 3 слоя 25 4 9 10 1 6
Protein 60 40 80 40 75 85
MSD 250 330 335 250 460 120

MNIST 1 6 3 13 3 25
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все алгоритмы показали схожие результаты. На выборке MSD алгоритмы 4,5,6
показали худший результат в сравнении с алгоритмами, использующими вали-
дационную подвыборку. Наихудший результат показал алгоритм 6, что гово-
рит о значительном отличии апостериорного распределения параметров (2.2)
от нормального.

Алгоритм 6 показал низкое качество (2.26) при возмущении объектов выбор-
ки в большинстве экспериментов. В трех экспериментах наилучшие показатели
по данному критерию показал алгоритм 4. Заметим, что алгоритм 5, являющий-
ся модификацией алгоритма 4, показал худшие результаты как по RMSE, так
и по RMSE при возмущении объектов выборки. На выборке MNIST алгоритм 4
показал результаты значительно хуже остальных алгоритмов. В целом резуль-
таты по данному алгоритму схожи с результатами, описанными в [41]: в отличие
от алгоритма 5 алгоритм 4, основанный на стохастическом градиентном спуске,
дает заниженную оценку обоснованности при приближении параметров к точке
экстремума. Алгоритм 5, основанный на динамике Ланжевена, также показал
худшее время сходимости на выборках MSD и Protein. Возможным дальнейшим
улучшением качества этого алгоритма является введение дополнительной кор-
ректирующей матрицы, обеспечивающей лучшее время сходимости параметров
к апостериорному распределению параметров [43].

Программное обеспечение для проведения экспериментов и проверки ре-
зультатов находится в [139].
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Глава 3

Оптимизация гиперпараметров в задаче выбора модели

Решается задача оптимизации гиперпараметров модели глубокого обучения.
Для оптимизации гиперпараметров модели предлагаются алгоритмы, основан-
ные на градиентном спуске. Так как сложность рассматриваемых алгоритмах
сопоставима со сложностью оптимизации параметров модели, предлагается оп-
тимизировать параметры и гиперпараметры в единой процедуре. Для выбора
адекватных значений гиперпараметров вводятся вероятностные предположения
о распределении параметров. В качестве оптимизируемой функции выступает
байесовская обоснованность модели и кросс-валидация. Для получения оценки
обоснованности используются вариационные методы. Проводится вычислитель-
ный эксперимент на нескольких выборках.

Одна из проблем построения моделей глубокого обучения — большое число
параметров модели [3], которое достигает нескольких миллионов, а оптимиза-
ция модели достигает десятков дней [127]. Задача выбора модели глубокого
обучения включает в себя выбор стратегии построения модели, эффективной
по вычислительным ресурсам. Проблема оптимизации параметров модели глу-
бокого обучения является вычислительно сложной в силу невыпуклости опти-
мизируемой функции потерь. Поэтому задача поиска параметров оптимизации
является важной, и нахождение оптимальных гиперпараметров сильно влияет
на итоговое качество модели.

В данной работе сравниваются градиентные методы оптимизации гипер-
параметров. Основным достоинством подобных алгоритмов является их воз-
можность одновременной оптимизации значительного числа гиперпараметров.
В качестве базового алгоритма выступает алгоритм выбора гиперпараметров
модели с использованием случайного поиска. В работах [79, 80, 52] в качестве
целевой функции потерь рассматривается потеря на валидационной подвыборке
с 𝐿2 регуляризацией. В данной работе рассматривается общая задачи оптимиза-
ции гиперпараметров. Рассматриваемые алгоритмы и целевые функции потерь
реализованы и представлены в качестве библиотеки для оптимизации гиперпа-
раметров моделей [140]. Основным теоретическим вкладом данной главы явля-
ется анализ рассматриваемых алгоритмов оптимизации гиперпараметров при
использовании функции потерь общего вида, а также исследование качества
и устойчивости итоговых моделей в случае использования кросс-валидации и
вариационной оценки обоснованности. В экспериментальной части в качестве
критерия выбора модели выступают вариационная нижняя оценка обоснован-
ности модели и ошибка на валидационной части выборки. В отличие от [80],
где также производится сравнение алгоритмов оптимизации гиперпараметров,
в данной работе исследуется поведение алгоритмов на выборках большой мощ-
ности, таких как WISDM [141] и MNIST [137]. Численные эксперименты пока-
зывают, что при значительном количестве гиперпараметров, сопоставимым с
количеством параметров модели, рассматриваемые алгоритмы предпочтитель-
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нее стохастических.

3.1. Постановка задачи оптимизации гиперпараметров моделей

Пусть задана дифференцируемая по параметрам модель, приближающая
зависимую переменную 𝑦:

f(w,x) : W× X → Y, w ∈ W.

Как и в предыдущем разделе, будем полагать, что структура модели Γ для
вероятностной модели глубокого обучения f и метапараметры 𝜆 определены
однозначно:

𝑝(w,Γ|h,𝜆) = 𝑝(w,Γ|h), 𝑝(w|Γ,h,𝜆) = 𝑝(w|h), 𝑝(y|X,w,Γ) = 𝑝(y|X,w).

Пусть априорное распределение параметров имеет вид

w ∼ 𝒩 (0,A−1), (3.1)

где A−1 = diag[𝛼1, . . . ,𝛼𝑢]
−1 — матрица ковариаций диагонального вида, где 𝑢

— количество параметров w модели f .
Задача оптимизации гиперпараметров зависит как от критерия выбора мо-

дели, так и от метода оптимизации параметров модели. Проиллюстрируем за-
дачу оптимизации гиперпараметров двусвзяным байесовским выводом.
Пример 5. Для дальнейшей формализации задачи в общем виде переобозна-
чим

𝜃 = w, h = [𝛼1, . . . ,𝛼𝑢], (3.2)

где 𝜃 — множество оптимизируемых параметров модели, h — множество гипер-
параметров модели.

На первом уровне байесовского вывода производится оптимизация парамет-
ров (1.3) модели f по заданной выборке D:

𝜃* = argmax𝐿(𝜃|y,X,h,𝜆) = 𝑝(w|X,y,h) =
𝑝(y|X,w)𝑝(w|h)

𝑝(y|X,h)
. (3.3)

На втором уровне производится оптимизация апостериорного распределе-
ния гиперпараметров h:

𝑝(h|X,y) ∝ 𝑝(y|X,h)𝑝(h),

где знак «∝» означает равенство с точностью до нормирующего множителя.
Полагая распределение параметров 𝑝(h) равномерным на некоторой боль-

шой окрестности, получим задачу оптимизации гиперпараметров:

𝑝(y|X,h) =

∫︁

w∈R𝑢

𝑝(y|X,w)𝑝(w|h) = 𝑄(h|y,X, 𝜃,𝜆) → max
h∈H

. (3.4)
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Как и в общей задаче (1.5), требуется найти параметры 𝜃* и гиперпараметры
h* модели, доставляющие максимум следующей функции:

h* = argmax
h∈H

𝑄(h|y,X, 𝜃,𝜆), (3.5)

𝜃*(h) = argmax
𝜃∈Θ

𝐿(𝜃|y,X,h,𝜆), (3.6)

где 𝐿,𝑄 — функции потерь и валидации (см. Опр. 16,17).
Рассмотрим вид переменной 𝜃 и функций 𝐿,𝑄 для различных методов вы-

бора модели и оптимизации ее параметров.
Базовый метод. Пусть оптимизация параметров и гиперпараметров про-

изводится по всей выборке D по одной и той же функции 𝐿 = 𝑄:

𝐿(𝜃|h,X,y) = 𝑄(h|𝜃,X,y) = log𝑝(y,w|X,h) = log𝑝(y|X,w) + log𝑝(w|h).

Вариационным параметрам 𝜃 модели f соответствует вектор параметров
модели:

𝜃 = w.

Кросс-валидация. Разобьем выборку D случайно на 𝐾 равных частей:

D = D1 ⊔ · · · ⊔D𝑘,D𝑘 = {X𝑘,y𝑘}, 𝑘 = 1, . . . ,𝐾.

Запустим 𝐾 оптимизаций модели, каждую на своей части выборки. Поло-
жим 𝜃 = [w1, . . . ,w𝐾 ], где w1, . . . ,w𝐾 — параметры модели при оптимизациях
1, . . . ,𝐾.

Положим функцию 𝐿 пропорциональной среднему значению логарифма
апостериорной вероятности по всем 𝑘 − 1 разбиениям D:

𝐿 =
1

𝐾

𝐾∑︁

𝑘=1

(︀ 𝐾

𝐾 − 1
log𝑝(y𝑘|X𝑘,w𝑘) + log𝑝(w𝑘|h)

)︀
. (3.7)

Положим функцию 𝑄 равной среднему значению правдоподобия выборки
по частям выборки D𝑘, на которых не проходила оптимизация параметров:

𝑄 =
1

𝑘

𝑘∑︁

𝑞=1

𝑘log𝑝(y ∖ y𝑘|X𝑘 ∖X,w𝑞).

где операция «X ∖X𝑘» определяется как взятие описаний всех объектов X за
исключением описаний объектов из X𝑘.
Вариационная оценка обоснованности. Положим 𝐿 = 𝑄, равной ва-

риационной оценке обоснованности модели:

log 𝑝(y|X,h) ≥ −DKL

(︀
𝑞(w)||𝑝(w|h)

)︀
+

∫︁

w

𝑞(w)log 𝑝(y|X,w)𝑑w ≈ (3.8)
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≈
𝑚∑︁

𝑖=1

log 𝑝(𝑦𝑖|x𝑖,w𝑖)−𝐷KL

(︀
𝑞(w)||𝑝(w|h)

)︀
= 𝐿 = 𝑄,

где 𝑞 — нормальное распределение с диагональной матрицей ковариаций:

𝑞 ∼ 𝒩 (𝜇𝑞,A
−1
𝑞 ), (3.9)

где A𝑞 = diag[𝛼𝑞1, . . . ,𝛼
𝑞
𝑢]

−1 — диагональная матрица ковариаций, 𝜇𝑞 — век-
тор средних компонент. Расстояние 𝐷KL между двумя гауссовыми величинами
задается как

𝐷KL

(︀
𝑞(w)||𝑝(w|h)

)︀
=

1

2

(︀
Tr[AA−1

𝑞 ]+(𝜇−𝜇𝑞)
TA(𝜇−𝜇𝑞)−𝑢+ln |A−1|−ln |A−1

𝑞 |
)︀
.

В качестве вариационных параметров 𝜃 выступают параметры распределения
𝑞:

𝜃 = [𝛼1, . . . ,𝛼𝑢,𝜇1, . . . ,𝜇𝑢].

3.2. Градиентные методы оптимизации гиперпараметров

В данном разделе приводится описание рассматриваемых градиентных ме-
тодов. Краткая характеристика и основные преимущества каждого из представ-
ленных методов отображены в Табл. 3.1, 3.2.

Рассмотрим случай, когда оптимизация (3.6) параметров 𝜃 производится с
использованием градиентных методов. Пусть задан оператор стохастического
градиентного спуска 𝑇 (1.11), оптимизирующий вариационные параметры 𝜃.
Пусть оператор 𝑇 производит 𝜂 шагов оптимизации:

𝜃* = 𝑇 ∘ 𝑇 ∘ · · · ∘ 𝑇 (𝜃0|𝐿,y,X,h,𝜆) = 𝑇 𝜂(𝜃0|𝐿,y,X,h,𝜆), (3.10)

где
𝑇 (𝜃|𝐿,X,y,h,𝜆) = 𝜃 − 𝜆lr∇(−𝐿(𝜃|h, X̂, ŷ)),

𝜆lr — длина шага градиентного спуска, 𝜃0 — начальное значение параметров 𝜃,
ŷ, X̂ — случайная подвыборка заданной мощности выборки D. В данной работе
в качестве оператора оптимизации параметров модели выступает стохастиче-
ский градиентный спуск (1.11).

Перепишем задачу оптимизации (3.5), (3.6) в следующем виде

h* = argmax
h∈H

𝑄(𝑇 𝜂(𝜃|𝐿,y,X,h,𝜆)), (3.11)

где 𝜃0 — начальное значение параметров 𝜃. В дальнейшем для удобства будем
применять сокращенные формы 𝑄(h|𝜃),𝐿(𝜃|h),𝑇 (𝜃,h).

Оптимизационную задачу (3.11) предлагается решать с использованием гра-
диентного спуска. Вычисление градиента от функции 𝑄(𝑇 𝜂(𝜃0|h)) по гиперпа-
раметрам h является вычислительно сложным в силу внутренней процедуры
оптимизации 𝜃* = 𝑇 (𝜃0|h). Общая схема оптимизации гиперпараметров пред-
ставлена следующим образом:
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Алгоритм Тип алгоритма Преимущества

алгоритма

Недостатки алго-

ритма

Случайный поиск стохастический простота реализации Алгоритм неэффек-
тивен при большом
количестве гиперпа-
раметров (прокля-
тие размерности)

Жадный алго-
ритм [52]

градиентный Возможность одно-
временной оптими-
зации параметров и
гиперпараметров

Жадность алгорит-
ма

HOAG [80] градиентный Быстрая сходимость Алгоритм требовате-
лен к настройкам па-
раметров

DrMAD [79] градиентный Алгоритм учитыва-
ет алгоритм опти-
мизации параметров
модели и его пара-
метры

Алгоритм стра-
дает от проблем
неустойчивости
градиентного спус-
ка (градиентный
взрыв и затуха-
ние); Алгоритм
работает в строгих
предположениях о
линейности траек-
тории оптимизации
гиперпараметров.

Таблица 3.1. Преимущества и недостатки рассматриваемых алгоритмов

Алгоритм Тип Сложность итера-

ции оптимизации

Предположения

Случайный поиск стохастический 𝑂(𝜂|Θ| · |D̂|) -

Жадный алго-
ритм [52]

градиентный 𝑂(𝜂|Θ| · |H| · |D̂|) H(𝜃) = I

HOAG [80] градиентный 𝑂(𝜂|Θ| · |H| · |D̂|+ o),
где 𝑜—сложность ре-
шения системы ли-
нейных уравнений

Первая производная
𝑄 и вторая произ-
водная 𝐿 являются
липшицевыми функ-
циями detH ̸= 0;

DrMAD [79] градиентный 𝑂(𝜂|Θ| · |H| · |D̂|) Траектория оптими-
зации вариационных
параметров 𝜃 =
𝜃0, . . .𝜃𝜂 линейна

Таблица 3.2. Сложность и предположения для различных алгоритмов оптими-
зации гиперпараметров

1. От 1 до 𝑙:
2. Инициализировать параметры 𝜃 при условии гиперпараметров h.
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3. Приближенно решить задачу оптимизации (3.11) и получить новый вектор
параметров h′

4. h = h′.
Здесь 𝑙 — число итераций оптимизации гиперпараметров. Рассмотрим методы
приближенного решения данной задачи оптимизации. Псевдокод общего алго-
ритма оптимизации гиперпараметров приведен на Рис. 3.1.
Жадный алгоритм. В качестве правила обновления вектора гиперпара-

метров h на каждом шаге оптимизации (3.10) выступает градиентный спуск с
учетом обновления параметров 𝜃 на данном шаге:

h′ = h− 𝜆h
lr∇h

(︀
−𝑄
(︀
h,𝑇 (𝜃|h)

)︀)︀
= h− 𝜆h

lr∇h

(︀
−𝑄
(︀
h,𝜃 − 𝜆lr∇ (−𝐿(𝜃|h)))

)︀
,

(3.12)
где 𝜆h

lr — длина шага оптимизации гиперпараметров. Псевдокод жадного алго-
ритма оптимизации гиперпараметров приведен на Рис. 3.2.
Алгоритм HOAG. Предлагается получить приближенное значения гра-

диента гиперпараметров ∇h𝑄
(︀
h,𝑇 𝜂(𝜃0)

)︀
на основе следующей формулы:

∇h𝑄
(︀
𝑇 𝜂(𝜃0,h)

)︀
= ∇h𝑄(h|𝜃)−

(︀
∇2

𝜃,h(−𝐿(𝜃|h))
)︀T

H(𝜃)−1∇𝜃𝑄(h|𝜃),

где H — гессиан функции (−𝐿) по вариационным параметрам 𝜃.
Процедура получения приближенного значения градиента гиперпараметров

∇h𝑄 производится итеративно.
1. Провести 𝜂 шагов оптимизации: 𝜃 = 𝑇 (𝜃0|h).
2. Решить линейную систему для вектора 𝜆: H(𝜃)𝜆 = ∇𝜃𝑄(h|𝜃).
3. Приближенное значение градиентов гиперпараметра вычисляется как

∇̂h𝑄 = ∇h𝑄(h|𝜃) +∇𝜃,h𝐿(𝜃|h)𝑇𝜆.
Итоговое правило обновления:

h′ = h− 𝜆h
lr∇̂h(−𝑄) = h+ 𝜆h

lr∇̂h𝑄. (3.13)

В данной работе для приближенного решения шага 2 алгоритма HOAG ис-
пользуется стохастический градиентный спуск в силу сложности вычисления
гессиана H(𝜃). Псевдокод алгоритма HOAG приведен на Рис. 3.3.
Алгоритм DrMad. Для получения градиента от оптимизируемой функ-

ции 𝑄 как от функции от начальных параметров 𝜃0 предлагается пошагово
восстановить 𝜂 шагов оптимизации 𝑇 (𝜃0|h) в обратном порядке аналогично ме-
тоду обратного распространения ошибок. Для упрощения данной процедуры
вводится предположение,что траектория изменения параметров 𝜃 линейна:

𝜃𝜏 = 𝜃0 +
𝜏

𝜂

(︀
𝑇 (𝜃|h)− 𝜃0

)︀
. (3.14)

Алгоритм вычисления приближенного значения градиента ∇h является
частным случаем алгоритма обратного распространения ошибки и представим
в следующем виде:
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1. Провести 𝜂 шагов оптимизации: 𝜃 = 𝑇 (𝜃0|h).
2. Положим ∇̂h = ∇h (−𝑄(h|𝜃𝜂)) .
3. Положим ∇̂𝜃 = ∇𝜃 (−𝑄(h|𝜃𝜂)) .
4. Положим 𝑑v = 0.

5. Для 𝜏 = 𝜂 . . . 1 повторить:
6. Вычислить значения параметров 𝜃𝜏 (3.14).

7. 𝑑v = 𝜆lr∇̂𝜃.
8. ∇̂h = ∇̂h− 𝑑v∇h∇𝜃(−𝐿(𝜃|h)).
9. ∇̂𝜃 = ∇̂𝜃 − 𝑑v∇𝜃∇𝜃(−𝐿(𝜃|h)).
Итоговое правило обновления гиперпараметров аналогично (3.13). Псевдо-

код данного алгоритма оптимизации гиперпараметров приведен на Рис. 3.4.
В работе [79] отмечается неустойчивость алгоритма при высоких значениях

длины шага градиентного спуска 𝜆lr. Поэтому вместо исходного правила (3.14)
в данной работе первые 5% значений параметров не рассматриваются, а также
учитывается только каждый 𝜏𝑘 шаг оптимизации:

𝜃𝜏 = 𝜃𝜏0 +
𝜏

𝜂
(𝑇 (𝜃|h)− 𝜃𝜏0), 𝜏 ∈ {𝜏0, . . . , 𝜂}, 𝜏 mod 𝜏𝑘 = 0, (3.15)

где 𝜏0 = [0.05 · 𝜂].
Иллюстративный пример поведения представленных методов представлен

на Рис. 3.5. Жадный алгоритм, соответствующий красной линии на графи-
ке, оптимизирует гиперпараметры во время процедуры оптимизация вариаци-
онных параметров 𝜃. Алгоритм HOAG оптимизирует гиперпараметры после
каждой процедуры оптимизации вариационных параметров. Алгоритм DrMAD
использует линеаризованную аппроксимацию траектории оптимизации вариа-
ционных параметров 𝜃.

Вход: X,y, 𝑝(w|h), 𝜃0;
Вход: количество итераций 𝑙 градиентной оптимизации гиперпараметров;
Вход: количество итераций 𝜂 оптимизации вариационных параметров;
Выход: оптимальные значения параметров h;
1: для 𝑟 = 1, . . . , 𝑙
2: провести оптимизацию вариационных параметров;
3: Приближенно решить задачу оптимизации (3.11) и получить новый век-

тор параметров h′

4: h = h′;
5: вернуть h.

Рис. 3.1. Псевдокод общего алгоритма оптимизации гиперпараметров.
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Вход: X,y, 𝑝(w|h), 𝜃0;
Вход: количество итераций 𝑙 градиентной оптимизации гиперпараметров;
Вход: количество итераций 𝜂 оптимизации вариационных параметров;
Выход: оптимальные значения параметров h;
1: для 𝑟 = 1, . . . , 𝑙
2: для 𝜏 = 1, . . . , 𝜂
3: провести шаг оптимизации вариационных параметров;
4: обновить гиперпараметры (3.12);
5: h = h′.
6: вернуть h.

Рис. 3.2. Псевдокод жадного алгоритма оптимизации гиперпараметров.

Вход: X,y, 𝑝(w|h), 𝜃0;
Вход: количество итераций 𝑙 градиентной оптимизации гиперпараметров;
Вход: количество итераций 𝜂 оптимизации вариационных параметров;
Выход: оптимальные значения параметров h;
1: для 𝑟 = 1, . . . , 𝑙
2: провести оптимизацию вариационных параметров;
3: Решить линейную систему для вектора 𝜆: H(𝜃)𝜆 = ∇𝜃𝑄(h|𝜃).
4: ∇̂h𝑄 = ∇h𝑄(h|𝜃) +∇𝜃,h𝐿(𝜃|h)𝑇𝜆;
5: h = h+ 𝜆lr∇̂h𝑄.
6: вернуть h.

Рис. 3.3. Псевдокод алгоритма HOAG.

3.3. Анализ алгоритмов оптимизации гиперпараметров

Для анализа рассматриваемых алгоритмов оптимизации гиперпараметров
был проведен ряд вычислительных экспериментов на выборках MNIST [137],
WISDM [141], а также на синтетических данных. Рассматривались задачи клас-
сификации и регрессии. В случае задач регрессии рассматриваемые модели f
возвращали скалярные значения:

Y ⊂ 𝑅, f(w,x) = 𝑓(w,x).

Рассматривались следующие критерии качества:
1. Наилучшее значение 𝑄̂ = max𝑗∈{1,...,𝑙}𝑄

𝑗.
2. Среднее число итераций алгоритма для сходимости. Под данным пока-

зателем понимается число шагов оптимизации гиперпараметров, при ко-
тором ошибка 𝑄 изменяется не более чем на 1% от своего наилучшего
значения:

argmin
𝑗

:
𝑄𝑗 −𝑄0

𝑄̂−𝑄0
≥ 0.99,
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Вход: X,y, 𝑝(w|h), 𝜃0;
Вход: количество итераций 𝑙 градиентной оптимизации гиперпараметров;
Вход: количество итераций 𝜂 оптимизации вариационных параметров;
Выход: оптимальные значения параметров h;
1: для 𝑟 = 1, . . . , 𝑙
2: 𝜃 = 𝑇 (𝜃0,h).
3: ∇̂𝜃 = ∇𝜃 (−𝑄(h|𝜃𝜂)) .
4: ∇̂h = ∇h (−𝑄(h|𝜃𝜂)) .
5: 𝑑v = 0.
6: для 𝜏 = 𝜂, . . . , 1
7: Вычислить значения параметров 𝜃𝜏 (3.14).
8: 𝑑v = 𝜆lr∇̂𝜃.
9: ∇̂h = ∇̂h− 𝑑v∇h∇𝜃 (−𝐿(𝜃|h)).
10: ∇̂𝜃 = ∇̂𝜃 − 𝑑v∇𝜃∇𝜃 (−𝐿(𝜃|h)).
11: h = h− ∇̂h.
12: вернуть h.

Рис. 3.4. Псевдокод алгоритма DrMAD.
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Рис. 3.5. Иллюстративный пример действия операторов оптимизации на ги-
перпараметры. Интенсивность цвета графика соответствует значения функции
валидации 𝑄.
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где 𝑄0 — значение функции 𝑄 до начала оптимизации гиперпараметров.
3. Внешний критерий качества моделей 𝐸:

𝐸 = RMSE =

(︃
1

𝑚

𝑚∑︁

𝑖=1

(𝑓(x𝑖,w)− 𝑦𝑖)

)︃ 1
2

в случае задачи регрессии

𝐸 = Accuracy = 1− 1

𝑚

𝑚∑︁

𝑖=1

[argmax
𝑟∈{1,...,𝑅}

𝑓 𝑟(x𝑖,w) ̸= 𝑦𝑖]

в случае задачи классификации.
4. Внешний критерий качества моделей 𝐸𝜎 при возмущении параметров мо-

дели:

𝐸𝜎 = RMSE𝜎 =

(︃
1

𝑚

𝑚∑︁

𝑖=1

(𝑓(x𝑖,w + 𝜀)− 𝑦𝑖)

)︃ 1
2

, 𝜀 ∼ 𝒩
(︀
0, 𝜎I

)︀
,

𝐸𝜎 = Accuracy𝜎 = 1− 1

𝑚

𝑚∑︁

𝑖=1

[argmax
𝑟∈{1,...,𝑅}

𝑓 𝑟(x𝑖,w + 𝜀)) ̸= 𝑦𝑖], 𝜀 ∼ 𝒩
(︀
0, 𝜎I

)︀
.

В качестве улучшаемого алгоритма рассматривался случайный поиск пара-
метров с количеством итераций поиска, совпадающих с количеством итераций
оптимизации гиперпараметров 𝑙: количество итераций 𝑙 = 50 для синтетической
выборки и выборки WISDM, 𝑙 = 25 для выборки MNIST. В качестве функций
𝑄 и 𝐿 рассматривались функции кросс-валидации (3.7) с 𝑘 = 4 и вариационная
оценка обоснованности (3.8).

На всех выборках гиперпараметры инициализировались случайно из равно-
мерного распределения:

h ∼ 𝒰(𝑎, 𝑏)|H|,

где 𝑎 = −2, 𝑏 = 10 для синтетической выборки и 𝑎 = −4, 𝑏 = 10 для выборок
WISDM и MNIST.

Длина градиентного шага 𝜆h
lr подбиралась для каждого алгоритма из сетки

значений вида {𝑟 · 10𝑠, 𝑠 ≤ 1, 𝑟 ∈ {1, 25, 50, 75}} таким образом, чтобы итоговое
значение гиперпараметров h удовлетворяло следующему правилу:

𝑎min ≤ min(h), max(h) ≤ 𝑏max,

где 𝑎min = −2.5, 𝑏max = 10.5 для синтетической выборки и 𝑎min = −5, 𝑏max = 11
для для выборок WISDM и MNIST. Калибровка значения 𝜆lr проводилась на
небольшом количестве итераций оптимизаций гиперпараметров 𝑙: 𝑙 = 50 для
синтетической выборки, 𝑙 = 10 для выборки WISDM 𝑙 = 5 для выборки MNIST.
В случае, если алгоритмы показывали неустойчивую работу непосредственно во
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время запуска эксперимента (взрыв градиента или численное переполнение), то
длина шага 𝜆h

lr понижалась. Для алгоритма DrMad параметр 𝜏𝑘, отвечающий
за количество рассматриваемых шагов оптимизации был установлен как 𝜏𝑘 = 1
для синтетической выборки и выборки WISDM, 𝜏𝑘 = 10 для выборки MNIST.
Синтетическая выборка. Синтетические данные были порождены из

выборки с одним признаком, X ∈ R𝑚×1. Порождения выборки происходило по
следующему правилу:

y = X+ 𝜀, X ∼ 𝒩 (0, I) 𝜀 ∼ 𝒩 (0, I),

где 𝑚 = 40. В качестве модели f выступает регрессия с признаками
{X0, . . . ,X9, sin(X), cos(X)}.

Было проведено 5 запусков для каждого алгоритма. Графики итоговых по-
линомов представлены на Рис. 3.6. Как видно из графиков, с использованием
вариационной оценки удалось получить полиномы, близкие к линейным моде-
лям. Подобные модели показывают наилучшее значение обоснованности в силу
слабого переобучения и хорошего качества на тестовой выборке.
WISDM. Выборка WISDM состоит из набора записей акселерометра. Каж-

дой записи соответствуют три координаты по осям акселерометра. В качестве
набора объектов рассматривалось наборы из 199 последовательных записей ак-
селерометра. В качестве набора меток рассматривалась евклидова норма соот-
ветствующих 200-х записей акселерометра.

Рассматривалась нейросеть с 10 нейронами на скрытом слое:

f = w2 · relu((w1)
Tx+ b1) + b2,

где w1,b1 — параметры первого слоя нейросети, w2,b2 — параметры второго
слоя нейросети,

relu(x) = max(0,x).

Графики сходимости алгоритмов, а также качества полученных моделей
представлены на Рис. 3.7. Как видно из графиков, градиентные алгоритмы
DrMad и HOAG показывают значительно худший результат по сравнению с
жадным алгоритмом оптимизации. Случайный поиск показывает достаточно
хорошие результаты в случае небольшого числа оптимизируемых гиперпара-
метров h. В случае, когда в качестве функции 𝑄 используется вариационная
нижняя оценка обоснованности (3.8) и количество гиперпараметров велико, эф-
фективно работающими алгоритмами оказалась жадная оптимизация и HOAG.
HOAG имеет большее время сходимости и требует более сложных вычислений
в процессе оптимизации.
MNIST. Выборка MNIST состоит из множества изображений рукописных

цифр. Рассматривалась нейросеть с 300 нейронами на скрытом слое.
Графики сходимости алгоритмов, а также качества полученных моделей

представлены на Рис. 3.8. Как видно из графиков, модели, достигающие наи-
лучшей оценки обоснованности, имеют наихудшее итоговое качество, но более
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(а) (б)

Рис. 3.6. Итоговые модели для синтетической выборки: а) с использованием
кросс-валидации, б) с использованием вариационной оценки обоснованности мо-
дели.

устойчивы к возмущению параметров модели. Для дополнительного анализа
данной проблемы были проведены эксперименты по оптимизации моделей на
выборке с добавленным шумом и использованием значений гиперпараметров h,
полученных ранее:

D̂ = D+ 𝜀, 𝜀 ∼ 𝒩 (0, 𝜎̂I),

где 𝜎̂ варьировалась в отрезке от 0 до 0.5. График зависимости качества мо-
делей от значения 𝜎̂ приведен на Рис. 3.9. Гиперпараметры, достигающие наи-
больших значений вариационной оценки (3.8) менее подвержены шуму в обу-
чающей выборке, что можно интерпретировать как меньшую подверженность
к переобучению.

Как можно видеть по результатам экспериментов, градиентные методы по-
казывают лучший результат, чем случай поиск в случае большого количество
гиперпараметров. Наилучшие результаты были получены жадным поиском. Ал-
горитм DrMad, показавший результаты хуже, чем жадный алгоритм и HOAG,
является упрощенной версией алгоритма, представленного в [79]. Данный ал-
горитм позволяет проводить оптимизацию не только гиперпараметров, но па-
раметров алгоритма оптимизации 𝑇 . Поэтому возможным развитием метода
DrMad является получение оптимальных значений параметров оптимизации.
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Алгоритм 𝐿,𝑄 𝑄(h|𝜃) Сходимость E 𝐸0.25 𝐸0.5

Синтетическая выборка

Случайный
поиск

(3.7) -171.6 26.2 ±
20.0

1.367 1.410 1.555

Greedy (3.7) -172.5 30.0 ± 24.5 1.421 1.439 1.536
DrMAD (3.7) -174.1 40.2 ± 16.1 1.403 1.424 1.512

HOAG (3.7) -174.7 29.4 ± 24.0 1.432 1.463 1.553
Случайный
поиск

(3.8) -63.5 32.4 ± 18.7 1.368 1.426 1.546

Greedy (3.8) -25.5 1.2 ± 0.4 1.161 1.174 1.193
DrMAD (3.8) -25.1 10.6 ± 0.8 1.157 1.163 1.184
HOAG (3.8) -25.8 10.8 ± 1.5 1.141 1.149 1.177

WISDM

Случайный
поиск

(3.7) -

1086661.1

22.0 ± 19.3 0.660 0.670 0.690

Greedy (3.7) -1086707.1 15.4 ±
17.2

0.707 0.723 0.769

DrMAD (3.7) -1086708.2 29.2 ± 8.0 0.694 0.708 0.742
HOAG (3.7) -1086733.5 28.2 ± 7.13 0.701 0.724 0.753
Random
search

(3.8) -35420.4 14.4 ± 7.8 0.732 0.755 0.785

Greedy (3.8) -3552.9 1.0 ± 0.0 0.702 0.730 0.767

DrMAD (3.8) -26091.4 50.0 ± 0.0 0.729 0.753 0.816
HOAG (3.8) -16566.6 49.0 ± 0.0 0.733 0.755 0.801

MNIST

Random
search

(3.7) -3236.4 7.8 ± 1.9 0.981 0.966 0.866

Greedy (3.7) -3416.7 10.8 ± 10.4 0.979 0.962 0.860
DrMAD (3.7) -3469.0 17.0 ± 5.6 0.982 0.962 0.831
HOAG (3.7) -3748.6 8.6 ± 7.3 0.980 0.961 0.853
Random
search

(3.8) -1304556.4 14.2 ± 5.7 0.982 0.943 0.814

Greedy (3.8) -11136.2 1.0 ± 0.0 0.977 0.952 0.884

DrMAD (3.8) -1305432.9 24.6 ± 0.5 0.982 0.941 0.813
HOAG (3.8) -280061.6 24.0 ± 0.0 0.981 0.943 0.819

Таблица 3.3. Результаты эксперимента по оптимизации гиперпараметров.
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Рис. 3.7. WISDM, наилучшее значение функции𝑄 и RMSE для кросс-валидации
(слева) и вариационной оценки обоснованности модели (справа).
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Рис. 3.8. MNIST, наилучшее значение функции 𝑄 и RMSE для кросс-валидации
(слева) и вариационной оценки обоснованности модели (справа).
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Рис. 3.9. MNIST, точность классификации на тестовой выборке при добавлении
шума в обучающую выборку. Гиперпараметры был оптимизированы с исполь-
зованием вариационной оценки обоснованности модели.

63



Глава 4

Выбор оптимальной структуры модели

В данной главе рассматривается задача выбора структуры модели глубокого
обучения. Предлагается ввести вероятностные предположения о распределении
параметров и распределении структуры модели. Проводится градиентная оп-
тимизация параметров и гиперпараметров модели на основе байесовского вари-
ационного вывода. В качестве оптимизируемой функции для гиперпараметров
модели предлагается обобщенная функция ее обоснованности. Показано, что
данная функция оптимизирует ряд критериев выбора структуры модели: ме-
тод максимального правдоподобия, последовательное увеличение и снижению
сложности модели, полный перебор структуры модели, а также получение мак-
симума вариационной оценки обоснованности модели. Решается двухуровневая
задача оптимизации: на первом уровне проводится оптимизация нижней оцен-
ки обоснованности модели по вариационным параметрам модели. На втором
уровне проводится оптимизация гиперпараметров модели.

4.1. Вероятностная модель

Определим априорные распределения параметров и структуры модели сле-
дующим образом. Пусть для каждого ребра (𝑗, 𝑘) ∈ 𝐸 и каждой базовой функ-
ции g𝑗,𝑘𝑙 параметры модели w𝑗,𝑘

𝑙 распределены нормально с нулевым средним:

w𝑗,𝑘
𝑙 ∼ 𝒩

(︀
0, (𝛾𝑗,𝑘𝑙 )2(A𝑗,𝑘

𝑙 )−1
)︀
,

где (A𝑗,𝑘
𝑙 )−1 — диагональная матрица, 𝑙 ∈ {0, . . . ,𝐾𝑗,𝑘 − 1}, где 𝐾𝑗,𝑘 — коли-

чество базовых функций для ребра 𝐾𝑗,𝑘. Априорное распределение 𝑝(w|Γ,h)
параметров w𝑗,𝑘

𝑙 зависит не только от гиперпараметров A𝑗,𝑘
𝑘 , но и от структур-

ного параметра 𝛾𝑗,𝑘𝑙 ∈ (0, 1).
В качестве априорного распределения для структуры Γ предлагается ис-

пользовать произведение распределений Gumbel-Softmax (𝒢𝒮) [142]:
𝑝(Γ|h,𝜆) =

∏︁

(𝑗,𝑘)∈𝐸
𝑝(𝛾𝑗,𝑘|s𝑗,𝑘,𝜆temp),

где для каждого структурного параметра 𝛾𝑗,𝑘 с количеством базовых функций
𝐾𝑗,𝑘 вероятность 𝑝(𝛾𝑗,𝑘|s𝑗,𝑘,𝜆temp) определена следующим образом:

𝑝(𝛾𝑗,𝑘|s𝑗,𝑘,𝜆temp) = (𝐾𝑗,𝑘 − 1)!(𝜆temp)
𝐾ℎ,𝑗−1

𝐾𝑗,𝑘−1∏︁

𝑙=0

𝑠𝑗,𝑘𝑙 (𝛾𝑗,𝑘𝑙 )−𝜆temp−1×

×

⎛
⎝
𝐾𝑗,𝑘−1∑︁

𝑙=0

𝑠𝑗,𝑘𝑙 (𝛾𝑗,𝑘𝑙 )−𝜆temp

⎞
⎠

−𝐾𝑗,𝑘

, (4.1)
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где s𝑗,𝑘 ∈ (0,∞)𝐾𝑗,𝑘 — гиперпараметр, отвечающий за смещенность плотности
распределения относительно точек симплекса на 𝐾𝑗,𝑘 вершинах, 𝜆temp > 0 —
метапараметр температуры, отвечающий за концентрацию плотности вблизи
вершин симплекса или в центре симплекса.

Перечислим свойства, которыми обладает распределение Gumbel-Softmax:
1. Компонента 𝑙 случайной величины 𝛾𝑗,𝑘 представима следующим образом:

𝛾𝑗,𝑘𝑙 =
exp(log 𝑠𝑗,𝑘𝑙 +𝐺𝑗,𝑘

𝑙 )/𝜆temp∑︀𝐾𝑗,𝑘−1
𝑙′=0 exp(log 𝑠𝑗,𝑘𝑙′ +𝐺𝑗,𝑘

𝑙′ )/𝜆temp

, (4.2)

где G𝑗,𝑘 ∼ − log
(︀
− log𝒰(0, 1)𝐾𝑗,𝑘)︀

.

2. Свойство округления: 𝑝(𝛾 𝑙1 > 𝛾 𝑙2, 𝑙1 ̸= 𝑙2|s𝑗,𝑘,𝜆temp) =
𝑠𝑗,𝑘𝑙1∑︀
𝑙′ 𝑠

𝑗,𝑘

𝑙′
.

3. При устремлении температуры к нулю плотность случайной величины
концентрируется на вершинах симплекса:

𝑝( lim
𝜆temp→0

𝛾𝑗,𝑘𝑙 = 1|s𝑗,𝑘,𝜆temp) =
𝑠𝑗,𝑘𝑙∑︀
𝑙′ 𝑠

𝑗,𝑘
𝑙′
.

4. При устремлении температуры к бесконечности плотность распределения
концентрируется в центре симплекса:

lim
𝜆temp→∞

𝑝(𝛾𝑗,𝑘|s𝑗,𝑘,𝜆temp) =

{︃
∞,𝛾𝑗,𝑘 = 1

𝐾𝑗,𝑘 , 𝑙 ∈ {0, . . . ,𝐾𝑗,𝑘 − 1},
0, иначе.

(4.3)

Доказательства первых трех утверждений приведены в [142]. Докажем
утверждение 4.

Доказательство. Формула плотности с точностью до множителя записывается
следующим образом :

𝑝(𝛾𝑗,𝑘|s𝑗,𝑘,𝜆temp) ∝
(𝜆temp)

𝐾𝑗,𝑘−1

(︁∑︀𝐾𝑗,𝑘−1
𝑙=0 𝑠𝑗,𝑘𝑙 (𝛾𝑗,𝑘𝑙 )−

𝐾𝑗,𝑘−1

𝐾𝑗,𝑘 𝜆temp
∏︀
𝑙′∈{0,...,𝐾𝑗,𝑘−1},𝑙′ ̸=𝑙(𝛾

𝑗,𝑘
𝑙 )

1

𝐾𝑗,𝑘 𝜆temp

)︁𝐾𝑗,𝑘 .

(4.4)
Заметим, что числитель (𝜆temp)

𝐾𝑗,𝑘−1 имеет меньшую скорость сходимости,
чем знаменатель, поэтому для вычисления предела достаточно проанализиро-
вать только знаменатель. Знаменатель под степенью (𝐾𝑗,𝑘) представляется сум-
мой слагаемых следующего вида:

⎛
⎝
∏︀
𝑙′ ̸=𝑙 𝛾

1

𝐾𝑗,𝑘

𝑙′

𝛾
𝐾𝑗,𝑘−1

𝐾𝑗,𝑘

𝑙

⎞
⎠
𝜆temp

. (4.5)
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Рассмотрим два случая: когда вектор 𝛾𝑗,𝑘 лежит не в центре симплекса, и
когда 𝛾𝑗,𝑘 лежит в центре симплекса. Пусть хотя бы для одной компоненты 𝑙 вы-
полнено: 𝛾𝑗,𝑘𝑙 ̸= 1

𝐾𝑗,𝑘 . Пусть 𝑙′ соответствует индексу максимальной компоненты
вектора 𝛾𝑗,𝑘:

𝑙′ = argmax
𝑙∈{0,...,𝐾𝑗,𝑘−1}

𝛾𝑗,𝑘𝑙 .

Для 𝑙 = 𝑙′ предел выражения (4.5) при 𝜆temp → ∞ стремится к нулю. Для 𝑙 ̸= 𝑙′

предел выражения (4.5) при 𝜆temp → ∞ стремится к бесконечности Возводя
сумму пределов в степень (−𝐾𝑗,𝑘) получаем предел плотности, равный нулю.

Рассмотрим второй случай. Пусть 𝛾𝑗,𝑘𝑙 = 1
𝐾𝑗,𝑘 для всех компонент век-

тора 𝛾𝑗,𝑘. Тогда выражение (4.1) с точностью до множителя упрощается до
(𝜆temp)

𝐾𝑗,𝑘−1. Предел данного выражения стремится к бесконечности. Таким об-
разом, предел плотности Gumbel-Softmax равен выражению (4.3), что и требо-
валось доказать.

Первое свойство Gumbel-Softmax распределения позволяет использовать
репараметризацию при вычислении градиента в вариационном выводе (англ.
reparametrization trick).
Определение 25. Случайную величину 𝜓 с распределением 𝑞 с параметрами
𝜃𝜓 назовем репараметризованной через случайную величину 𝜀, чье распределе-
ние не зависит от параметров 𝜃𝜓, если:

𝜓 = 𝑔(𝜀, 𝜃𝜓)

где 𝑔 — некоторая непрерывная функция.
Идею репараметризации поясним на следующем примере.

Пример 6. Пусть структура Γ зафиксирована для модели f . Рассмотрим ма-
тематическое ожидание логарифма правдоподобия выборки модели по некото-
рому непрерывному распределению 𝑞w(w|Γ, 𝜃w):

E𝑞w(w|Γ,𝜃w) log 𝑝(y|X,w,Γ) =

∫︁

w

log 𝑝(y|X,w,Γ)𝑞w(w|Γ, 𝜃w)𝑑w.

Продифференцируем данное выражение по параметрам 𝜃w вариационного рас-
пределения 𝑞w(w|Γ, 𝜃w), полагая что оно удовлетворяет необходимым условиям
для переноса оператора дифференцирования под знак интеграла:

∇𝜃w
E𝑞w(w|Γ,𝜃w) log 𝑝(y|X,w,Γ) =

∫︁

w

log 𝑝(y|X,w,Γ)∇𝜃w
𝑞w(w|Γ, 𝜃w)𝑑w.

Это выражение в общем виде не имеет аналитического решения. Пусть рас-
пределение 𝑞w(w|Γ, 𝜃w) для параметров w подлежит репараметризации через
случайную величину 𝜀:

w = g(𝜀, 𝜃w).
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(а) (б) (в) (г)

Рис. 4.1. Пример распределения Gumbel-Softmax при различных значениях па-
раметров: а) 𝜆temp → 0, б) 𝜆temp = 1, s = [1, 1, 1], в) 𝜆temp = 5, s = [1, 1, 1],
г) 𝜆temp = 5, s = [10, 0.1, 0.1].

Тогда справедливо следующее выражение:

∇𝜃w
E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ) = ∇𝜃w

E𝜀 log 𝑝(y|X, g(𝜀),Γ) =

=

∫︁

𝜀

∇𝜃w
log 𝑝(y|X, g(𝜀),Γ)𝑝(𝜀)𝑑𝜀 = E𝜀∇𝜃w

log 𝑝(y|X, g(𝜀),Γ).

Таким образом, распределение, позволяющее произвести репараметриза-
цию, является более удобным для вычисления интегральных оценок вида
∇𝜃w

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ), а также позволяет повысить точность приближен-
ного вычисления значений таких функций [143]. Анализ репараметризации для
генеративных моделей глубокого обучения представлен в [144].

Пример распределения Gumbel-Softmax при различных параметрах пред-
ставлен на Рис. 4.1. В качестве альтернативы для априорного распределения
структуры выступает распределение Дирихле. В качестве предельного случая,
когда все структуры Γ ∈ Γ равнозначны, выступает равномерное распределе-
ние. Выбор в качестве распределения структуры произведения распределений
Gumbel-Softmax обоснован выбором этого распределения в качестве вариаци-
онного.

Заметим, что предлагаемое априорное распределение неоднозначно: одно и
то же распределение можно получить с различными значениями гиперпарамет-
ра A𝑗,𝑘

𝑙 и структурного параметра 𝛾𝑗,𝑘𝑙 . В качестве регуляризатора для матрицы
(A𝑗,𝑘

𝑙 )−1 предлагается использовать обратное гамма-распределение:

(A𝑗,𝑘
𝑙 )−1 ∼ inv-gamma(𝜆1,𝜆2),

где 𝜆1,𝜆2 ∈ 𝜆 — метапараметры оптимизации. Использование обратного
гамма-распределения в качестве распределения гиперпараметров можно най-
ти в [2, 28]. В данной работе обратное распределение выступает как регу-
ляризатор гиперпараметров. Варьированием метапараметров 𝜆1,𝜆2 получает-
ся более сильная или более слабая регуляризация [7]. Пример распределений
inv-gamma(𝜆1,𝜆2) для разных значений метапараметров 𝜆1,𝜆2 изображен на
Рис. 4.2. Оптимизации без регуляризации соответствует случай предельного
распределения lim𝜆1,𝜆2→0 inv-gamma(𝜆1,𝜆2).
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Рис. 4.2. Графики обратных гамма распределений для различных значений ме-
тапараметров.

Таким образом, предлагаемая вероятностная модель содержит следующие
компоненты:

1. Параметры w модели, распределенные нормально.
2. Структура модели Γ, содержащая все структурные параметры

{𝛾𝑗,𝑘, (𝑗, 𝑘) ∈ 𝐸}, распределенные по распределению Gumbel-Softmax.
3. Гиперпараметры h = [diag(A), s], где A — конкатенация матриц

A𝑗,𝑘, (𝑗, 𝑘) ∈ 𝐸, s — конкатенация параметров Gumbel-Softmax распреде-
лений s𝑗,𝑘, (𝑗, 𝑘) ∈ 𝐸, где 𝐸 — множество ребер, соответствующих графу
рассматриваемого параметрического семейства моделей F.

4. Метапараметры: 𝜆 = [𝜆1,𝜆2,𝜆temp]. Эти параметры не подлежат оптими-
зации и задаются экспертно.

График вероятностной модели в формате плоских нотаций представлен на
Рис. 4.3.

4.2. Вариационная оценка обоснованности вероятностной модели

Задача выбора структуры Γ и параметров w заключается в по-
лучении оценок на апостериорное распределение 𝑝(w,Γ|y,X,h,𝜆) =
𝑝(Γ|y,X,h,𝜆)𝑝(w|y,X,Γ,h,𝜆). Оно зависит от гиперпараметров h. В качестве
критерия выбора гиперпараметров предлагается использовать апостериорную
вероятность гиперпараметров:

𝑝(h|y,X,𝜆) ∝ 𝑝(y|X,h,𝜆)𝑝(h|𝜆) → max
h∈H

. (4.6)
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Рис. 4.3. График предлагаемой вероятностной модели в формате плоских нота-
ций. Переменные обозначены белыми и серыми кругами, константы обозначены
обведенными черными кругами. Наблюдаемые переменные обозначены серыми
кругами.

Структура модели и параметры модели выбираются на основе полученных зна-
чений гиперпараметров:

w*,Γ* = argmax
w∈W,Γ∈Γ

𝑝(w,Γ|y,X,h*,𝜆),

где h* — решение задачи оптимизации (4.6).
Для вычисления обоснованности модели

𝑝(y|X,h,𝜆) =

∫︁∫︁

Γ,w

𝑝(y|X,w,Γ)𝑝(w|Γ,h,𝜆)𝑝(Γ|h,𝜆)𝑑Γ𝑑w

из (4.6) предлагается использовать нижнюю вариационную оценку обоснован-
ности.
Теорема 4. Пусть 𝑞(w,Γ|𝜃) = 𝑞w(w|Γ, 𝜃w)𝑞Γ(Γ|𝜃Γ) — вариационное распреде-
ление c параметрами 𝜃 = [𝜃w,𝜃Γ], аппроксимирующее апостериорное распре-
деление структуры и параметров:

𝑞(w,Γ|𝜃) ≈ 𝑝(w,Γ|y,X,h,𝜆),

𝑞w(w|Γ, 𝜃w) ≈ 𝑝(w|y,X,Γ,h,𝜆),

𝑞Γ(Γ|𝜃Γ) ≈ 𝑝(Γ|y,X,h,𝜆).

Тогда справедлива следующая оценка:

log 𝑝(y|X,h,𝜆) ≥ (4.7)

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞Γ(Γ|𝜃Γ)||𝑝(Γ|h,𝜆)

)︀
−

−𝐷KL

(︀
𝑞w(w|Γ, 𝜃w)||𝑝(w|Γ,h,𝜆)

)︀
,

где 𝐷KL

(︀
𝑞w(w|Γ, 𝜃w)||𝑝(w|Γ,h,𝜆)

)︀
вычисляется по формуле условной дивер-

генции:

𝐷KL

(︀
𝑞w(w|Γ, 𝜃w)||𝑝(w|Γ,h,𝜆)

)︀
= EΓ∼𝑞Γ(Γ|𝜃Γ)Ew∼𝑞w(w|Γ,𝜃w) log

(︂
𝑞w(w|Γ, 𝜃w)

𝑝(w|Γ,h,𝜆)

)︂
.

69



Доказательство. Перепишем логарифм обоснованности:

log 𝑝(y|X,h,𝜆) = log

∫︁∫︁

Γ,w

𝑝(y|X,w,Γ)𝑝(w|Γ,h,𝜆)𝑝(Γ|h,𝜆)𝑑Γ𝑑w =

= log

∫︁∫︁

Γ,w

𝑝(y|X,w,Γ)𝑝(w,Γ|h,𝜆)𝑞(w,Γ|𝜃)
𝑞(w,Γ|𝜃)𝑑Γ𝑑w =

= log E𝑞(w,Γ|𝜃)
𝑝(y|X,w,Γ)𝑝(w,Γ|h,𝜆)

𝑞(w,Γ|𝜃) .

Используя неравенство Йенсена получим

log E𝑞(w,Γ|𝜃)
𝑝(y|X,w,Γ)𝑝(w,Γ|h,𝜆)

𝑞(w,Γ|𝜃) ≥ E𝑞(w,Γ|𝜃) log
𝑝(y|X,w,Γ)𝑝(w,Γ|h,𝜆)

𝑞(w,Γ|𝜃) =

= E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
.

Декомпозируем распределение 𝑞 по свойству условной дивергенции:

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
=

= 𝐷KL

(︀
𝑞Γ(Γ|𝜃Γ)||𝑝(Γ|h,𝜆)

)︀
+EΓ∼𝑞Γ(Γ|𝜃Γ)Ew∼𝑞w(w|Γ,𝜃w) log

(︂
𝑞w(w|Γ, 𝜃w)

𝑝(w|Γ,h,𝜆)

)︂
. (4.8)

В качестве вариационного распределения 𝑞w(w|Γ, 𝜃w) предлагается исполь-
зовать нормальное распределение, не зависящее от структуры модели Γ:

𝑞w(w|Γ, 𝜃w) ∼ 𝒩 (𝜇𝑞,A
−1
𝑞 ),

где A−1
𝑞 — диагональная матрица с диагональю 𝛼𝑞.

В качестве вариационного распределения 𝑞Γ(Γ|𝜃Γ) предлагается исполь-
зовать произведение распределений Gumbel-Softmax. Конкатенацию парамет-
ров концентрации распределений обозначим s𝑞. Его температуру, общую для
всех структурных параметров 𝛾 ∈ Γ, обозначим 𝜃temp. Вариационными
параметрами распределения 𝑞(w,Γ|𝜃) являются параметры распределений
𝑞w(w|Γ, 𝜃w), 𝑞Γ(Γ|𝜃Γ):

𝜃 = [𝜇𝑞,𝛼𝑞, s𝑞, 𝜃temp].

График вероятностной вариационной модели в формате плоских нотаций пред-
ставлен на Рис. 4.4. Для анализа сложности полученной модели введем понятие
параметрической сложности.
Определение 26. Параметрической сложностью 𝐶𝑝(𝜃|𝑈h,𝜆) модели с вариа-
ционными параметрами 𝜃 на компакте 𝑈h ⊂ H назовем минимальную дивер-
генцию между вариационным и априорным распределением:

𝐶𝑝(𝜃|𝑈h,𝜆) = min
h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
.
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Рис. 4.4. График предлагаемой вероятностной вариационной модели в формате
плоских нотаций. Переменные обозначены белыми и серыми кругами, констан-
ты обозначены обведенными черными кругами. Вариационное распределение
обозначено черным кругом. Наблюдаемые переменные обозначены серыми кру-
гами.

Параметрическая сложность модели соответствует минимальной по h ∈ 𝑈h

ожидаемой длине описания параметров модели при условии заданного пара-
метрического априорного распределения [145].

Одним из критериев удаления неинформативных параметров в вероятност-
ных моделях является отношение вариационной плотности параметров в нуле
к вариационной плотности параметра в моде распределения (1.9):

𝑞w(𝑤 = 0|Γ, 𝜃w)

𝑞w(𝑤 = 𝜇𝑞|Γ, 𝜃w)
= exp

(︃
− 𝜇2

𝑞

2𝛼2
𝑞

)︃
,

где параметру модели 𝑤 соответствуют вариационные параметры 𝜇𝑞,𝛼𝑞:
𝑞w(𝑤|Γ, 𝜃w) ∼ 𝒩 (𝜇𝑞,𝛼𝑞).

Обобщим понятие относительной вариационной плотности на случай произ-
вольных непрерывных распределений.
Определение 27. Относительной вариационной плотностью параметра 𝑤 ∈ w
при условии структуры Γ и гиперпараметров h назовем отношение вариацион-
ной плотности в моде априорного распределения параметра к вариационной
плотности в моде вариационного распределения параметра:

𝜌(𝑤|Γ, 𝜃w,h,𝜆) =
𝑞w(mode 𝑝(𝑤|Γ, 𝜃w)|Γ,h,𝜆)
𝑞w(mode 𝑞w(𝑤|Γ, 𝜃w)|Γ,𝜃w)

.

Относительной вариационной плотностью вектора параметров w назовем сле-
дующее выражение:

𝜌(w|Γ, 𝜃w,h,𝜆) =
∏︁

𝑤∈w
𝜌(𝑤|Γ, 𝜃w,h,𝜆). (4.9)
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Сформулируем и докажем теорему о связи относительной плотности и пара-
метрической сложности модели. Предварительно докажем две вспомогательные
леммы.
Лемма 3. Пусть

1. Заданы компактные множества 𝑈h ⊂ H,𝑈𝜃w
⊂ Θw,𝑈𝜃Γ

⊂ ΘΓ.
2. Вариационное распределение 𝑞w(w|Γ, 𝜃w) является абсолютно непрерыв-

ным и унимодальным на 𝑈𝜃. Его мода и матожидание совпадают:

mode 𝑞w(w|Γ, 𝜃w) = E𝑞w(w|Γ,𝜃w)w.

3. Априорное распределение 𝑝(w|Γ,h,𝜆) является абсолютно непрерывным
и унимодальным на 𝑈h. Его мода и матожидание совпадают и не зависят
от гиперпараметров h на 𝑈h и структуры Γ на 𝑈𝜃Γ

:

E𝑝(w|Γ,h,𝜆) w = mode 𝑝(w|Γ1,h1,𝜆) = mode 𝑝(w|Γ1,h2,𝜆) = m

для любых h1,h2 ∈ 𝑈h,Γ1,Γ2 ∈ 𝑈Γ.
4. Параметры модели w имеют конечные вторые моменты по маргинальным

распределениям:
∫︁

Γ

𝑞Γ(Γ|𝜃Γ)𝑞w(w|Γ, 𝜃w)𝑑Γ,

∫︁

Γ

𝑞Γ(Γ|𝜃Γ)𝑝(w|Γ,h,𝜆)𝑑Γ

при любых 𝜃w ∈ 𝑈𝜃w
,𝜃Γ ∈ 𝑈𝜃Γ

,h ∈ 𝑈h.

5. Вариационное распределение 𝑞w(w|Γ, 𝜃w) является липшицевым по w.
6. Значение 𝑞w(w|Γ, 𝜃w) не равно нулю при любых 𝜃 ∈ 𝑈𝜃,Γ ∈ Γ.
7. Точная нижняя грань 𝑞w(m|Γ,𝜃w) не равна нулю при 𝜃w ∈ 𝑈𝜃w

и Γ ∈ Γ:

inf
Γ∈Γ,𝜃w∈𝑈𝜃w

𝑞w(m|Γ,𝜃w) > 0.

Тогда ⃒⃒
E𝑞Γ(Γ|𝜃Γ)𝜌(w|Γ, 𝜃w,h,𝜆)

−1 − 1
⃒⃒
≤

≤ 𝐶𝑙
infΓ′∈Γ,𝜃′

w∈𝑈𝜃w
𝑞w(m|Γ′,𝜃′

w)

∫︁∫︁

Γ,w

|w|·|𝑞w(w|Γ, 𝜃w)−𝑝(w|Γ,h,𝜆)|𝑞Γ(Γ|𝜃Γ)𝑑w𝑑Γ,

где 𝐶𝑙 — максимальная константа Липшица для 𝑞w(w|Γ, 𝜃w) на 𝑈𝜃.

Доказательство. Для произвольного 𝜃 = [𝜃w,𝜃Γ] рассмотрим выражение:
⃒⃒
E𝑞Γ(Γ|𝜃Γ)𝜌(w|Γ, 𝜃w,h,𝜆)

−1 − 1
⃒⃒
=

⃒⃒
⃒⃒
∫︁

Γ

(︂
𝑞w(mode 𝑞w(w|Γ, 𝜃w)|Γ,𝜃w)

𝑞w(mode 𝑝(w|Γ,h,𝜆)|Γ,𝜃w)

)︂
𝑞Γ(Γ|𝜃Γ)𝑑Γ− 1

⃒⃒
⃒⃒ =
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представляя единицу как дробь с равными знаменателем и числителем

=
⃒⃒∫︁

Γ

(︂
𝑞w(mode 𝑞w(w|Γ, 𝜃w)|Γ,𝜃w)− 𝑞w(mode 𝑝(w|Γ,h,𝜆)|Γ,𝜃w)

𝑞w(mode 𝑝(w|Γ,h,𝜆)|Γ,𝜃w)

)︂
𝑞Γ(Γ|𝜃Γ)𝑑Γ

⃒⃒
=

заменяя моду на матожидание (по условию теоремы)

=

⃒⃒
⃒⃒
∫︁

Γ

(︂
𝑞w(E𝑞w(w|Γ,𝜃w)w|Γ, 𝜃w)− 𝑞w(E𝑝(w|Γ,h,𝜆)w|Γ, 𝜃w)

𝑞w(m|Γ,𝜃w)

)︂
𝑞Γ(Γ|𝜃Γ)𝑑Γ

⃒⃒
⃒⃒ ≤

занося модуль под знак интеграла

≤
∫︁

Γ

⃒⃒
⃒⃒𝑞w(E𝑞w(w|Γ,𝜃w)w)|Γ,𝜃w)− 𝑞w(E𝑝(w|Γ,h,𝜆)w|Γ, 𝜃w)

𝑞w(m|Γ,𝜃w)

⃒⃒
⃒⃒ 𝑞Γ(Γ|𝜃Γ)𝑑Γ ≤

используя липшицевость функции 𝑞w(w|Γ, 𝜃w)

𝐶𝑙
infΓ′∈Γ,𝜃′

w∈𝑈𝜃w
𝑞w(m|Γ′,𝜃′

w)
|E𝑞w(w|Γ,𝜃w)w − E𝑝(w|Γ,h,𝜆)w|𝑞Γ(Γ|𝜃Γ)𝑑Γ ≤

расписывая матожидание через интеграл

≤ 𝐶𝑙
infΓ′∈Γ,𝜃′

w∈𝑈𝜃w
𝑞w(m|Γ′,𝜃′

w)

∫︁∫︁

Γ,w

|w|·|𝑞w(w|Γ, 𝜃w)−𝑝(w|Γ,h,𝜆)|𝑞Γ(Γ|𝜃Γ)𝑑w𝑑Γ,

что и требовалось доказать.

Лемма 4. Пусть
1. Вариационное распределение 𝑞w(w|Γ, 𝜃w) и априорное распределение

𝑝(w|Γ,h,𝜆) являются абсолютно непрерывными.
2. Решение задачи

h* = argmin
h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
(4.10)

единственно для любого 𝜃 ∈ 𝑈𝜃.
3. Задана бесконечная последовательность векторов вариационных парамет-

ров 𝜃[1],𝜃[2], . . . ,𝜃[𝑖], · · · ∈ 𝑈𝜃, такая что lim𝑖→∞𝐶𝑝(𝜃[𝑖]|𝑈h,𝜆) = 0.

Тогда следующее выражение стремится к нулю:
∫︁∫︁

w,Γ

|𝑝(w|Γ,h[𝑖],𝜆)− 𝑞w(w|Γ, 𝜃w[𝑖])|𝑞Γ(Γ|𝜃Γ[𝑖])𝑑Γ𝑑w,

где 𝜃[𝑖] = [𝜃w[𝑖], 𝜃Γ[𝑖]] , h[𝑖] — решение задачи (4.10) для 𝜃[𝑖].
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Доказательство. Воспользуемся неравенством Пинскера [146]:

||𝐹𝑞(𝜃w[𝑖])− 𝐹𝑝(h[𝑖])||TV ≤
√︂

1

2
̂︁KL (𝑝(w|Γ,h[𝑖],𝜆)||𝑞w(w|Γ, 𝜃w[𝑖])),

где || · ||TV — расстояние по вариации, 𝐹𝑞,𝐹𝑝 — функции распределения
𝑞w(w|Γ, 𝜃w), 𝑝(w|Γ,h,𝜆), ̂︁KL (𝑝(w|Γ,h,𝜆)||𝑞w(w|Γ, 𝜃w)) — дивергенция при
фиксированной структуре Γ:

∫︁

w

𝑞w(w|Γ, 𝜃w) log

(︂
𝑞w(w|Γ, 𝜃w)

𝑝(w|Γ,h,𝜆)

)︂
𝑑w.

По условию дивергенция (4.8) стремится к нулю при 𝑖 → ∞. Она деком-
позируется на два неотрицательных слагаемых, поэтому оба они стремятся к
нулю. Рассмотрим второе слагаемое:

0 = lim
𝑖→∞

EΓ∼𝑞Γ(Γ|𝜃Γ[𝑖])Ew∼𝑞w(w|Γ,𝜃w[𝑖]) log

(︂
𝑞w(w|Γ, 𝜃w[𝑖])

𝑝(w|Γ,h[𝑖],𝜆)

)︂
=

расписывая матожидание как интеграл

= lim
𝑖→∞

⃒⃒
⃒⃒
∫︁

Γ

∫︁

w

log

(︂
𝑞w(w|Γ, 𝜃w[𝑖])

𝑝(w|Γ,h[𝑖],𝜆)

)︂
𝑞Γ(Γ|𝜃Γ[𝑖])𝑞w(w|Γ, 𝜃w[𝑖])𝑑w𝑑Γ

⃒⃒
⃒⃒ ≥

по неравенству Пинскера

≥ lim
𝑖→∞

∫︁

Γ

||𝐹𝑞(𝜃w[𝑖])− 𝐹𝑝(h[𝑖])||2TV𝑞Γ(Γ|𝜃Γ[𝑖])𝑑Γ ≥ 0.

Отсюда

lim
𝑖→∞

∫︁

Γ

||𝐹𝑞(𝜃w[𝑖])− 𝐹𝑝(h[𝑖])||2TV𝑞Γ(Γ|𝜃Γ[𝑖])𝑑Γ = 0.

По неравенству Йенсена

0 ≤ lim
𝑖→∞

(︂∫︁

Γ

||𝐹𝑞(𝜃w[𝑖])− 𝐹𝑝(h[𝑖])||TV𝑞Γ(Γ|𝜃Γ[𝑖])𝑑Γ

)︂2

≤

≤ lim
𝑖→∞

∫︁

Γ

||𝐹𝑞(𝜃w[𝑖])− 𝐹𝑝(h[𝑖])||2TV𝑞Γ(Γ|𝜃Γ[𝑖])𝑑Γ.

Тогда по свойству степени предела

lim
𝑖→∞

∫︁

Γ

||𝐹𝑞(𝜃w[𝑖])− 𝐹𝑝(h[𝑖])||TV𝑞Γ(Γ|𝜃Γ[𝑖])𝑑Γ = 0.

По лемме Шеффе [147] данное выражение можно переписать как:

lim
𝑖→∞

1

2

∫︁∫︁

w,Γ

|𝑝(w|Γ,h[𝑖],𝜆)− 𝑞w(w|Γ, 𝜃w[𝑖])|𝑞Γ(Γ|𝜃Γ[𝑖])𝑑Γ𝑑w = 0, (4.11)

что и требовалось доказать.
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Теорема 5. Пусть выполнены условия Леммы 3 и Леммы 4. Тогда справедливо
следующее выражение:

lim
𝑖→∞

E𝑞Γ(Γ|𝜃Γ[𝑖])𝜌(w|Γ, 𝜃w[𝑖],h[𝑖],𝜆)
−1 = 1.

Доказательство. По Лемме 3

|E𝑞Γ(Γ|𝜃Γ)𝜌(w|Γ, 𝜃w,h,𝜆)
−1 − 1| ≤

≤ 𝐶𝑙
infΓ′∈Γ,𝜃′

w∈𝑈𝜃w
𝑞w(m|Γ′,𝜃′

w)

∫︁∫︁

Γ,w

|w|·|𝑞w(w|Γ, 𝜃w)−𝑝(w|Γ,h,𝜆)|𝑞Γ(Γ|𝜃Γ)𝑑w𝑑Γ.

Докажем что величина
∫︁∫︁

Γ,w

|w| · |𝑞w(w|Γ, 𝜃w)− 𝑝(w|Γ,h,𝜆)|𝑞Γ(Γ|𝜃Γ)𝑑w𝑑Γ

стремится к нулю. Определим случайную величину 𝜈(𝑡), 𝑡 ≥ 0 следующим об-
разом:

𝜈(𝑡) = max(−𝑡 · 1,min(𝑡 · 1,w)).

Данная величина совпадает с w при |w| < 𝑡 и принимает значение 𝑡 или −𝑡 при
|w| ≥ 𝑡. Тогда для любого 𝑡 > 0 справедливо:

∫︁∫︁

Γ,w

|w| · |𝑞w(w|Γ, 𝜃w)− 𝑝(w|Γ,h,𝜆)|𝑞Γ(Γ|𝜃Γ)𝑑w𝑑Γ ≤

по неравенству треугольника и используя выражение w = w + 𝜈(𝑡)− 𝜈(𝑡)

≤
∫︁∫︁

Γ,w

|w − 𝜈(𝑡)| · |𝑝(w|Γ,h,𝜆)− 𝑞w(w|Γ, 𝜃w)|𝑞Γ(Γ|𝜃Γ)𝑑w𝑑Γ+ (4.12)

+

∫︁∫︁

Γ,w

|𝜈(𝑡)| · |𝑞w(w|Γ, 𝜃w)− 𝑝(w|Γ,h,𝜆)|𝑞Γ(Γ|𝜃Γ)𝑑w𝑑Γ.

Рассмотрим первое слагаемое суммы (4.12). Т.к. вторые моменты
E𝑞Γ(Γ|𝜃Γ)E𝑞w(w|Γ,𝜃w)w

2,E𝑞Γ(Γ|𝜃Γ)E𝑝(w|Γ,h,𝜆)w
2 конечны, то случайная вели-

чина w равномерно интегрируема как при маргинальном распределе-
нии

∫︀
Γ 𝑞Γ(Γ|𝜃Γ)𝑞w(w|Γ, 𝜃w)𝑑Γ, так и при маргинальном распределении∫︀

Γ 𝑞Γ(Γ|𝜃Γ)𝑝(w|Γ,h,𝜆)𝑑Γ. По определению равномерной интегрируемости для
w, для любого числа 𝜀 существует число 𝑡0, такое что для любого 𝑡 ≥ 𝑡0,
любого h ∈ 𝑈h,𝜃 ∈ 𝑈𝜃, справедливо выражение:

E𝑞Γ(Γ|𝜃Γ)E𝑞w(w|Γ,𝜃w)|w − 𝜈(𝑡)| =
∫︁∫︁

w,Γ

|w − 𝜈(𝑡)|𝑞w(w|Γ, 𝜃w)𝑞Γ(Γ|𝜃Γ)𝑑w𝑑Γ ≤ 𝜀,

E𝑞Γ(Γ|𝜃Γ)E𝑝(w|Γ,h,𝜆)|w − 𝜈(𝑡)| =
∫︁∫︁

w,Γ

|w − 𝜈(𝑡)|𝑝(w|Γ,h,𝜆)𝑞Γ(Γ|𝜃Γ)𝑑w𝑑Γ ≤ 𝜀.
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Тогда ∫︁∫︁

Γ,w

|w − 𝜈(𝑡)| · |𝑝(w|Γ,h,𝜆)− 𝑞w(w|Γ, 𝜃w)|𝑑w𝑑Γ ≤

так как модуль разностей меньше или равен суммы модулей

≤
∫︁∫︁

Γ,w

|w − 𝜈(𝑡)|𝑝(w|Γ,h,𝜆) +
∫︁∫︁

Γ,w

|w − 𝜈(𝑡)|𝑞w(w|Γ, 𝜃w)𝑑Γ𝑑w < 2𝜀

для любого 𝑡 ≥ 𝑡0. Обозначим за 𝜀(𝑡) минимальное число 𝜀, удовлетворяющее
предыдущим неравенствам. Тогда

∫︁∫︁

Γ,w

|w − 𝜈(𝑡)| · |𝑝(w|Γ,h,𝜆)− 𝑞w(w|Γ, 𝜃w)|𝑑w𝑑Γ ≤ 2𝜀(𝑡),

где lim𝑡→∞ 𝜀(𝑡) = 0.
Рассмотрим второе слагаемое (4.12).

∫︁∫︁

Γ,w

|𝜈(𝑡)| · |𝑞w(w|Γ, 𝜃w)− 𝑝(w|Γ,h,𝜆)|𝑑w𝑑Γ ≤

по ограниченности функции 𝜈(𝑡)

≤ 𝑡

∫︁∫︁

Γ,w

|𝑞w(w|Γ, 𝜃w)− 𝑝(w|Γ,h,𝜆)|𝑞Γ(Γ|𝜃Γ)𝑑w𝑑Γ.

Переходя к пределу в (4.12) получим:

lim
𝑖→∞

∫︁∫︁

Γ,w

|w| · |𝑞w(w|Γ, 𝜃w)− 𝑝(w|Γ,h[𝑖],𝜆)|𝑞Γ(Γ|𝜃Γ[𝑖])𝑑w𝑑Γ =

добавим предел по 𝑡, от которого не зависит данное выражение

= lim
𝑡→∞

lim
𝑖→∞

∫︁∫︁

Γ,w

|w| · |𝑞w(w|Γ, 𝜃w[𝑖])− 𝑝(w|Γ,h[𝑖],𝜆)|𝑞Γ(Γ|𝜃Γ[𝑖])𝑑w𝑑Γ ≤

из выше написанных неравенств

≤ lim
𝑡→∞

lim
𝑖→∞

∫︁∫︁

Γ,w

|w − 𝜈(𝑡)| · |𝑝(w|Γ,h[𝑖],𝜆)− 𝑞w(w|Γ, 𝜃w[𝑖])|𝑑w𝑑Γ+

+

∫︁∫︁

Γ,w

|𝜈(𝑡)| · |𝑞w(w|Γ, 𝜃w[𝑖])− 𝑝(w|Γ,h[𝑖],𝜆)|𝑞Γ(Γ|𝜃Γ[𝑖])𝑑w𝑑Γ ≤

lim
𝑡→∞

2𝜀(𝑡) + lim
𝑡→∞

lim
𝑖→∞

𝑡

∫︁∫︁

Γ,w

|𝑞w(w|Γ, 𝜃w[𝑖])− 𝑝(w|Γ,h𝑖,𝜆)|𝑞Γ(Γ|𝜃Γ[𝑖]) = 0.

Последнее равенство следует из Леммы 4. Таким образом выражение
∫︁

Γ

𝑞w(mode 𝑞w(w|Γ, 𝜃w)|Γ,𝜃w)

𝑞w(mode 𝑝(w|Γ,h,𝜆)|Γ,𝜃w)
𝑞Γ(Γ|𝜃Γ)𝑑Γ

стремится к единице, что и требовалось доказать.
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Теорема утверждает, что при устремлении параметрической сложности мо-
дели к нулю, все параметры w модели подлежат удалению в среднем по всем
возможным значениям структуры Γ модели. Заметим, что теорема применима
для случая, когда последовательность вариационных распределений 𝑞(w,Γ|𝜃)
не имеет предела. Так, в случае, если структура Γ определена однозначно, по-
следовательность 𝜃𝑖 может являться последовательностью нормальных распре-
делений, чье матожидание стремится к нулю:

𝜃𝑖 ∼ 𝒩 (𝜇𝑞[𝑖],A
−1
𝑞 [𝑖]),𝜇𝑞[𝑖] → 0.

Априорным распределением 𝑝(w,Γ|h,𝜆) = 𝑝(w|Γ,h,𝜆) при этом может яв-
ляться семейство нормальных распределений с нулевым средним:

𝑝(w|Γ,h,𝜆) = 𝒩 (0,A−1).

При этом сама последовательность распределений 𝜃[𝑖] не обязана иметь предел.

4.3. Обобщающая задача

В данном разделе проводится анализ основных критериев выбора моделей,
а также предлагается их обобщение на случай моделей, использующих вариа-
ционное распределение 𝑞(w,Γ|𝜃) для аппроксимации неизвестного апостериор-
ного распределения параметров 𝑝(w,Γ|h,𝜆).

Рассмотрим основные статистические критерии выбора вероятностных мо-
делей.

1. Критерий максимального правдоподобия:

log 𝑝(y|X,w,Γ) → max
w∈𝑈w,Γ∈𝑈Γ

.

Для использования данного критерия в качестве задачи выбора модели
предлагается следующее обобщение:

𝐿(𝜃|y,X,h,𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ). (4.13)

Данное обобщение (4.13) эквивалентно критерию максимального правдо-
подобия при выборе в качестве 𝑞(w,Γ|𝜃) распределения, основанного на
запуске нескольких оптимизаций параметров (2.16) и структуры. Метод
не предполагает оптимизации гиперпараметров h. Для формального со-
ответствия данной задачи задаче выбора модели (1.5),(1.6), т.е. двухуров-
невой задачи оптимизации, положим 𝐿(𝜃|y,X,h,𝜆) = 𝑄(h|y,X,𝜃,𝜆) :

𝐿(𝜃|y,X,h,𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ) → max
𝜃∈𝑈𝜃

,

𝑄(h|y,X, 𝜃,𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ) → max
h∈𝑈h

.
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2. Метод максимальной апостериорной вероятности.

log 𝑝(y|X,w,Γ)𝑝(w,Γ|h,𝜆) → max
w∈𝑈w,Γ∈𝑈Γ

.

Аналогично предыдущему методу сформулируем вариационное обобще-
ние данной задачи:

𝐿(𝜃|y,X,h,𝜆) = 𝑄(h|y,X,𝜃,𝜆) = (4.14)

= E𝑞(w,Γ|𝜃)
(︀
log 𝑝(y|X,w,Γ) + log 𝑝(w,Γ|h,𝜆)

)︀
.

Т.к. в рамках данной задачи (4.14) не предполагается оптимизации гипер-
параметров h, положим параметры распределения 𝑝(w,Γ|h,𝜆) фиксиро-
ванными:

𝜆 = [𝜆1,𝜆2,𝜆temp, s, diag(A)].

3. Полный перебор структуры:

𝐿(𝜃|y,X,h,𝜆) = 𝑄(h|y,X,𝜃,𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(𝑞Γ(Γ|𝜃Γ) = 𝑝′|X,w,Γ)
(4.15)

где 𝑝′ — некоторое распределение на структуре Γ, выступающее в качестве
метапараметра.

4. Критерий Акаике:

AIC = 2 log 𝑝(y|X,w,Γ)− 2|W| → max .

В случае, если рассматриваемые модели принадлежат одному параметри-
ческому семейству моделей F, то количество параметров у всех рассмат-
риваемых моделей совпадает. Тогда критерий Акаике совпадает с крите-
рием максимального правдоподобия. Для использования критерия Ака-
ике для сравнения моделей, принадлежащих одному параметрическому
семейству F предлагается следующая переформулировка:

𝐿(𝜃|y,X,h,𝜆) = 𝑄(h|y,X,𝜃,𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)− (4.16)

−|{𝑤 : 𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
< 𝜆prune}|,

где
h = argmin

h′∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
, (4.17)

𝜆prune — метапараметр алгоритма, 𝑈h ⊂ H — область определения задачи
по гиперпараметрам. Предложенное обобщение (4.16) применимо только
в случае, если выражение (4.17) определено однозначно, т.е. существует
единственный вектор гиперпараметров h ∈ 𝑈h, доставляющий минимум
дивергенции 𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
.
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5. Информационный критерий Шварца:

BIC = 2 log 𝑝(y|X,w,Γ)− |W| log𝑚 → max .

Переформулируем данный критерий аналогично критерию AIC:

𝐿(𝜃|y,X,h,𝜆) = 𝑄(h|y,X,𝜃,𝜆) = (4.18)

log E𝑞(w,Γ|𝜃)𝑝(y|X,w,Γ)−0.5 log𝑚|{𝑤 : 𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
< 𝜆prune}|,

метапараметр 𝜆prune определен аналогично (4.17).
6. Метод вариационной оценки обоснованности:

𝐿(𝜃|y,X,h,𝜆) = (4.19)

= E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
+

+ log 𝑝(h|𝜆) → max
𝜃∈𝑈𝜃

,

𝑄(h|y,X, 𝜃,𝜆) =

= E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
+

+ log 𝑝(h|𝜆) → max
h∈𝑈h

,

В рамках данной задачи функции 𝐿(𝜃|y,X,h,𝜆) и 𝑄(h|y,X, 𝜃,𝜆) совпа-
дают, все гиперпараметры h подлежат оптимизации.

7. Валидация на отложенной выборке:

𝐿(𝜃|y,X,h,𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(ytrain|Xtrain,w,Γ)+log 𝑝(w,Γ|h,𝜆) → max
𝜃∈𝑈𝜃

,

(4.20)
𝑄(h|y,X, 𝜃,𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(ytest|Xtest,w,Γ) → max

h∈𝑈h

,

где (Xtrain,ytrain), (Xtest,ytest) — разбиение выборки на обучающую и кон-
трольную подвыборку. В рамках данной задачи, все гиперпараметры h
подлежат оптимизации.

Каждый из рассмотренных критериев удовлетворяет хотя бы одному из пе-
речисленных свойств:

1) модель, оптимизируемая согласно критерию, доставляет максимум прав-
доподобия выборки;

2) модель, оптимизируемая согласно критерию, доставляет максимум оценки
обоснованности;

3) для моделей, доставляющих сопоставимые значения правдоподобия вы-
борки, выбирается модель с меньшим количеством информативных пара-
метров.

4) критерий позволяет производить перебор структур для отбора наилуч-
ших.
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Формализуем рассмотренные критерии. Оптимизационную задачу, которая
удовлетворяет всем перечисленным свойствам при некоторых значениях мета-
параметров, будет называть обобщающей.
Определение 28. Двухуровневую задачу оптимизации будем называть обоб-
щающей на компакте

𝑈 = 𝑈𝜃w
× 𝑈𝜃Γ

× 𝑈h × 𝑈𝜆 ⊂ Θw × ΘΓ ×H× Λ,

если она удовлетворяет следующим критериям.
1. Область определения каждого параметра 𝑤 ∈ w, гиперпараметра ℎ ∈ h

и метапараметра 𝜆 ∈ 𝜆 не является пустым множеством и не является
точкой.

2. Для каждого значения гиперпараметров h оптимальное решение нижней
задачи оптимизации (1.6)

𝜃*(h) = argmax
𝜃∈Θ

𝐿(𝜃|y,X,h,𝜆)

определено однозначно при любых значениях метапараметров 𝜆 ∈ 𝑈𝜆.
3. Критерий максимизации правдоподобия выборки: существует 𝜆 ∈ 𝑈𝜆 и

𝐾1 > 0,

𝐾1 < max
h1,h2∈𝑈h

𝑄(h1|y,X,𝜃*(h1),𝜆)−𝑄(h2|y,X,𝜃*(h2),𝜆),

такие что для любых векторов гиперпараметров h1,h2 ∈ 𝑈h, удовлетво-
ряющих неравенству

𝑄(h1|y,X,𝜃*(h1),𝜆)−𝑄(h2|y,X,𝜃*(h2),𝜆) > 𝐾1,

выполняется неравенство

E𝑞(w,Γ|𝜃*(h1)) log 𝑝(y|X,w,Γ) > E𝑞(w,Γ|𝜃*(h2)) log 𝑝(y|X,w,Γ).

4. Критерий минимизации параметрической сложности: существует 𝜆 ∈ 𝑈𝜆

и 𝐾2 > 0,

𝐾2 < max
h1,h2∈𝑈h

𝑄(h1|y,X,𝜃*(h1),𝜆)−𝑄(h2|y,X,𝜃*(h2),𝜆),

такие что для любых векторов гиперпараметров h1,h2 ∈ 𝑈h, удовлетво-
ряющих неравенству

𝑄(h1|y,X,𝜃*(h1),𝜆)−𝑄(h2|y,X,𝜃*(h2),𝜆) > 𝐾2,

параметрическая сложность первой модели меньше, чем второй:

𝐶𝑝(𝜃
*(h1)|𝑈h,𝜆) < 𝐶𝑝(𝜃

*(ℎ2)|𝑈h,𝜆).
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5. Критерий приближения оценки обоснованности: существует значение ги-
перпараметров 𝜆, такое что значение функций потерь 𝑄(h|y,X,𝜃,𝜆)
как сложной функции от 𝐿(𝜃|y,X,h,𝜆) пропорционально вариационной
оценки обоснованности модели:

𝑄(h|y,X, 𝜃*(h),𝜆) ∝

∝ E𝑞(w,Γ|𝜃′(h)) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃′(h))||𝑝(w,Γ|h,𝜆)

)︀
+log 𝑝(h|𝜆)

для всех h ∈ 𝑈h, где в качестве гиперпараметров h рассматриваются все
гиперпараметры модели, вне зависимости от критерия и особенности его
оптимизации гиперпараметров:

h = [A, s],

где

𝜃′(h) = argmax
𝜃∈𝑈h

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
.

6. Критерий перебора оптимальных структур: существует константа 𝐾3 > 0,
такая что существует хотя бы одна пара гиперпараметров h1,h2 ∈ 𝑈h,
удовлетворяющая неравенствам:

𝐷KL

(︀
𝑝(Γ|h1,𝜆)||𝑝(Γ|h2,𝜆)

)︀
> 𝐾3,𝐷KL

(︀
𝑝(Γ|h2,𝜆)||𝑝(Γ|h1,𝜆)

)︀
> 𝐾3

и набор метапараметров 𝜆, такие что для произвольных локальных опти-
мумов h1,h2 задачи оптимизации 𝑄(h|y,X, 𝜃,𝜆), полученных при мета-
параметрах 𝜆 и удовлетворяющих неравенствам

𝐷KL

(︀
𝑝(Γ|h1,𝜆)||𝑝(Γ|h2,𝜆)

)︀
> 𝐾3,𝐷KL

(︀
𝑝(Γ|h2,𝜆)||𝑝(Γ|h1,𝜆)

)︀
> 𝐾3,

𝑄(h1|y,X,𝜃,𝜆) > 𝑄(h2|y,X,𝜃,𝜆),

существует значение метапараметров 𝜆′ ̸= 𝜆, такие что
(a) соответствие между вариационными параметрами 𝜃*(h1),𝜃

*(h2) со-
храняется при 𝜆′,

(b) выполняется неравенство 𝑄(h1|y,X,𝜃,𝜆′) < 𝑄(h2|y,X,𝜃,𝜆′).
7. Критерий непрерывности: функции 𝐿(𝜃|y,X,h,𝜆) и 𝑄(h|y,X, 𝜃,𝜆)

непрерывны по метапараметрам 𝜆 ∈ 𝑈𝜆.
Первый критерий является техническим и используется для исключения из

рассмотрения вырожденных задач оптимизации. Второй критерий говорит о
том, что решение первого и второго уровня должны быть согласованы и опре-
делены однозначно. Критерии 3-5 определяют возможные критерии оптимиза-
ции, которые должны приближаться обобщающей задачей. Критерий 6 гово-
рит о возможности перехода между различными структурами модели. Данный
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критерий говорит о том, что мы можем перейти от одного набора гиперпара-
метров h1 к другим h2, если они соответствуют локальным оптимумам зада-
чи оптимизации, и дивергенция соответствующих априорных распределений на
структурах 𝑝(Γ|h,𝜆) значимо высока. При этом соответствующие вариацион-
ные распределения 𝑞Γ(Γ|𝜃Γ) могут оказаться достаточно близки, несмотря на
значимые различия априорных распределений. Поэтому возможным дополне-
нием этого критерия был бы критерий, позволяющий переходить от структуры
к структуре, если соответствующие распределения 𝑞Γ(Γ|𝜃Γ) различаются зна-
чимо. Последний критерий говорит о том, что обобщающая задача должна поз-
волять производить переход между различными методами выбора параметров
и структуры модели непрерывно.
Теорема 6. Рассмотренные задачи (4.13),(4.14),(4.15),(4.16),(4.18),(4.20) не яв-
ляются обобщающими.

Доказательство. Задачи (4.13),(4.14),(4.15),(4.16),(4.18) не имеют гиперпара-
метров h, подлежащих оптимизации, поэтому не могут приближать вариаци-
онную оценку.

При использовании валидации на отложенной выборки (4.20) в функцию
валидации 𝑄(h|y,X, 𝜃,𝜆) не входит ни один метапараметр, поэтому критерий
перебора структур 6 для нее также не выполняется.

Докажем также, что задача (4.19) также не является обобщающей.
Теорема 7. Пусть 𝑞Γ — абсолютно непрерывное распределение с дифференци-
руемой плотностью, такой что:

1. Градиент плотности ∇𝜃Γ
𝑞(Γ|𝜃Γ) является ненулевым почти всюду.

2. Выражение ∇𝜃Γ
𝑞(Γ|𝜃Γ)log 𝑝(Γ|h,𝜆) ограничено на 𝑈𝜃 абсолютно непре-

рывной случайной величиной, не зависящей от Γ, с конечным первым
моментом.

Тогда задача (4.19) не является обобщающей.

Доказательство. Пусть выполнены условия критерия 6 о переборе структур,
и h1,h2 — локальные оптимумы функции 𝑄(h|y,X,𝜃,𝜆) при метапараметрах
𝜆. По условию критерия соответствие 𝜃1 = 𝜃*(h1) и 𝜃2 = 𝜃*(h2) должны со-
храняться, т.е. для некоторого 𝜆′ решение нижней задачи оптимизации 𝜃*(h1)
должно совпадать с решением 𝜃*(h1) при метапараметрах 𝜆. Тогда

0 = ∇𝜃E𝑞(w,Γ|𝜃1)log 𝑝(y|X,w,Γ)−∇𝜃DKL(𝑞(w,Γ|𝜃1)|𝑝(w,Γ|h1,𝜆)) =

= ∇𝜃E𝑞(w,Γ|𝜃1)log 𝑝(y|X,w,Γ)−∇𝜃DKL(𝑞(w,Γ|𝜃1)|𝑝(w,Γ|h1,𝜆
′)).

Сокращая равные слагаемые в равенстве получим:

∇𝜃DKL(𝑞(Γ|𝜃1)|𝑝(Γ|𝜆)) = ∇𝜃DKL(𝑞(Γ|𝜃1)|𝑝(Γ|𝜆′)),
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Из второго условия теоремы следует, что по теореме Лебега о мажорируемой
сходимости осуществим переход дифференцирования под знак интеграла:

∫︁

Γ∈Γ
∇𝜃Γ

𝑞(Γ|𝜃1)(log 𝑝(Γ|𝜆)− log 𝑝(Γ|𝜆′))𝑑Γ = 0.

Т.к. выражение ∇𝜃Γ
𝑞(Γ|𝜃1) принимает ненулевое значение почти всюду, то вы-

ражение log 𝑝(Γ|𝜆) − log 𝑝(Γ|𝜆′) равно нулю почти всюду, что означает что
метапараметр температуры 𝜆temp равен при разных значениях метапараметров:

𝜆temp = 𝜆′
temp, 𝜆temp ∈ 𝜆,𝜆′

temp ∈ 𝜆′.

Таким образом, метапараметры 𝜆,𝜆′ отличаются лишь на метапараметры 𝜆1,𝜆2

регуляризации ковариационной матрицы A−1. Возьмем в качестве векторов ги-
перпараметров h1,h2 гиперпараметры, отличающиеся только параметрами рас-
пределения структуры:

h1 = [s1, diag(A1)],h2 = [s2, diag(A2)], s1 ̸= s2,A1 = A2.

Метапараметры 𝜆1,𝜆2 не влияют на значение функции 𝑄(h|y,X,𝜃,𝜆) при ги-
перпараметрах, отличающихся только параметрами распределения структуры,
поэтому значение функции 𝑄 для них будет неизменно при любых значени-
ях 𝜆1,𝜆2. Приходим к противоречию: значение 𝑄(h|y,X,𝜃,𝜆) не меняется при
изменении метапараметров 𝜆.

В качестве обобщающей задачи оптимизации предлагается оптимизацион-
ную задачу следующего вида:

h* = argmax
h

𝑄(h|y,X, 𝜃,𝜆) = (4.21)

= 𝜆Q
likelihoodE𝑞(w,Γ|𝜃*) log 𝑝(y|X,w,Γ)−

−𝜆Q
prior𝐷KL

(︀
𝑞(w,Γ|𝜃*)||𝑝(w,Γ|h,𝜆)

)︀
−

−
∑︁

𝑝′∈P,𝜆∈𝜆Q
struct

𝜆𝐷KL

(︀
𝑞(w,Γ|𝜃*)||𝑝′

)︀
+ log 𝑝(h|𝜆),

𝜃* = argmax
𝜃

𝐿(𝜃|y,X,h,𝜆) = (4.22)

= E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)− 𝜆L
prior𝐷KL

(︀
𝑞(w,Γ|𝜃*)||𝑝(w,Γ|h,𝜆)

)︀
,

где P — непустое множество распределений на структуре Γ, 𝜆Q
prior,𝜆

L
prior,𝜆

Q
struct

— некоторые числа. Множество распределений P отвечает за перебор струк-
тур Γ в процессе оптимизации модели. В предельном случае, когда температу-
ра 𝜆temp близка к нулю, а множество P состоит из распределений, близких к
дискретным, соответствующим всем возможным структурам, калибровка 𝜆Q

struct

порождает последовательность задач оптимизаций, схожую с перебором струк-
тур. Рассмотрим следующий пример.
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(а) (б) (в)

Рис. 4.5. Пример зависимости функции 𝑄(h|y,X,𝜃,𝜆) от гиперпараметра s при
различных значениях метапараметров 𝜆Q

struct. Темные точки на графике соот-
ветствуют наименее предпочтительным значениям гиперпараметра. а) 𝜆Q

struct =

[0, 0], б) 𝜆Q
struct = [1, 0], в) 𝜆Q

struct = [1, 1].

Пример 7. Рассмотрим вырожденный случай поведения функции
𝑄(h|y,X, 𝜃,𝜆), когда 𝜆Q

likelihood = 𝜆Q
prior = 0. Пусть модель использует

один структурный параметр, в качестве априорного распределения на
структуре задано распределение Gumbel-Softmax с 𝜆temp. Пусть в качестве
множества распределений P используется два распределения Gumbel-Softmax,
сконцентрированных близко к вершинам симплекса:

P = [𝒢𝒮([0.95, 0.05, 0.05]T, 1.0),𝒢𝒮([0.95, 0.05, 0.05]T, 1.0)].
Из определения распределения Gumbel-Softmax следует, что достаточно рас-

смотреть только значения параметра s ,находящиеся внутри симплекса. На
рис. 4.5 изображены значения функции Q в зависимости от метапараметров
𝜆struct
Q и значений гиперпараметра s распределения на структуре. Видно, что ва-

рьируя коэффициенты метапараметров значение функции 𝑄(h|y,X,𝜃,𝜆) зна-
чительно меняется вблизи вершин симплекса. Таким образом получается по-
следовательность оптимизаций, схожая с полным перебором структуры.

Следующая теорема анализирует достаточные условия того, что предложен-
ная задача оптимизации (4.21) является обобщающей.
Теорема 8. Пусть

1. Задан компакт 𝑈 = 𝑈𝜃w
× 𝑈𝜃Γ

× 𝑈h × 𝑈𝜆, где априорное распределение
𝑝(w,Γ|h,𝜆) и распределение 𝑝(h|𝜆) непрерывны на 𝑈h × 𝑈𝜆.

2. Задано непустое множество P абсолютно непрерывных распределений на
структуре, чьи плотности непрерывны и не принимают нулевое значение,
где хотя бы одно распределение 𝑝1 ∈ P является Gumbel-Softmax распре-
делением, и для каждого значения s ∈ 𝑈h,𝜆temp ∈ 𝑈𝜆, существует значе-
ние параметров распределения 𝑝1, такое что 𝑝1 = 𝑝(Γ|h,𝜆). Параметры
распределений 𝑝 ∈ P принадлежат множеству метапараметров 𝜆 ∈ 𝑈𝜆.

3. Вариационное распределение 𝑞(w,Γ|𝜃) является абсолютно непрерыв-
ным, плотность которого непрерывна по метапараметрам 𝜆 ∈ 𝑈𝜆 и не
принимает нулевое значение.

84



4. Область определения каждого параметра 𝑤 ∈ w, гиперпараметра ℎ ∈ h
и метапараметра 𝜆 ∈ 𝜆 не является пустым и не является точкой.

5. Для каждого значения гиперпараметров h ∈ 𝑈h оптимальное решение
нижней задачи оптимизации 𝜃* определено однозначно на 𝑈𝜃 = 𝑈𝜃w

×𝑈𝜃Γ

при любых значениях метапараметров 𝜆 ∈ 𝑈𝜆.
6. Область значений метапараметров 𝜆Q

likelihood,𝜆
Q
prior,𝜆

L
prior,𝜆

Q
struct включает

отрезок от нуля до единицы.
7. Существует значение метапараметров

𝜆1 > 0,𝜆2 > 0,𝜆Q
likelihood > 0 ∈ 𝑈𝜆,

такое что

max
h∈𝑈h

log 𝑝(h|𝜆)−min
h∈𝑈h

log 𝑝(h|𝜆) < max
h∈𝑈h

𝑄(h|y,X, 𝜃,𝜆)−min
h∈𝑈h

𝑄(h|y,X, 𝜃,𝜆)

при 𝜆Q
struct = 0,𝜆Q

prior = 0.
8. Существует значение метапараметров

𝜆L
prior > 0,𝜆Q

prior > 0,𝜆1 > 0,𝜆2 > 0,𝜆temp > 0 ∈ 𝑈𝜆,

такое что

max
h∈𝑈h

1

𝜆Q
prior

log 𝑝(h|𝜆)− min
h∈𝑈h

1

𝜆Q
prior

log 𝑝(h|𝜆)+

+max
h∈𝑈h

min
𝜃∈𝑈𝜃

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
−

− min
h∈𝑈h,𝜃∈𝑈𝜃

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
+max

𝜃∈𝑈𝜃

1

𝜆L
prior

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−

−min
𝜃∈𝑈𝜃

1

𝜆L
prior

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ) <

< max
𝜃∈𝑈𝜃,h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
−

− min
𝜃∈𝑈𝜃,h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀

при 𝜆Q
struct = 0,𝜆Q

likelihood = 0.

9. Существуют значения метапараметров 𝜆Q
prior > 0,𝜆Q

likelihood > 0,𝜆1 >
0,𝜆2 > 0,𝜆temp > 0 ∈ 𝑈𝜆, такие что существуют гиперпараметры
h1,h2 ∈ 𝑈h:

𝐷KL

(︀
𝑝(w,Γ|h1,𝜆)||𝑝(w,Γ|h2,𝜆)

)︀
>

>
maxh𝑄(h|y,X, 𝜃,𝜆)−minh𝑄(h|y,X, 𝜃,𝜆)

𝑚𝜆
,

𝐷KL

(︀
𝑝(w,Γ|h2,𝜆)||𝑝(w,Γ|h1,𝜆)

)︀
>
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>
maxh𝑄(h|y,X, 𝜃,𝜆)−minh𝑄(h|y,X, 𝜃,𝜆)

𝑚𝜆

при 𝜆Q
struct = 0, где 𝑚𝜆 — максимальное значение 𝜆Q

struct перед распреде-
лением 𝑝1 из первого условия теоремы.

Тогда задача (4.21) является обобщающей на 𝑈 .

Доказательство. Для доказательства теоремы требуется доказать критерии 1-
7 из определения обобщающей задачи. Выполнение критериев 1 и 2 следует из
условий задачи.

Докажем критерий 3. Пусть 𝜆Q
prior = 0,𝜆Q

struct = 0. Пусть 𝜆1,𝜆2,𝜆
Q
likelihood

удовлетворяют седьмому условияю теоремы. Возьмем в качестве 𝐾1 следующее
выражение:

𝐾1 = max
h∈𝑈h

log 𝑝(h|𝜆)− min
h∈𝑈h

log 𝑝(h|𝜆).

Пусть h1,h2 ∈ 𝑈h — гиперпараметры, удовлетворяющие условию третьего кри-
терия:

𝑄(h1|y,X,𝜃,𝜆)−𝑄(h2|y,X,𝜃,𝜆) > 𝐾1

. Тогда

𝑄(h1|y,X,𝜃,𝜆)−𝑄(h2|y,X,𝜃,𝜆) = 𝜆Q
likelihoodE𝑞(w,Γ|𝜃*(h1)) log 𝑝(y|X,w,Γ)−

−𝜆Q
likelihoodE𝑞(w,Γ|𝜃*(h2)) log 𝑝(y|X,w,Γ) + log 𝑝(h1|𝜆)− log 𝑝(h2|𝜆) > 𝐾1.

Отсюда следует выполнение критерия 3:

𝜆Q
likelihoodE𝑞(w,Γ|𝜃1) log 𝑝(y|X,w,Γ)− 𝜆Q

likelihoodE𝑞(w,Γ|𝜃2) log 𝑝(y|X,w,Γ) > 0.

Т.к. 𝜆Q
likelihood > 0 :

E𝑞(w,Γ|𝜃1) log 𝑝(y|X,w,Γ)− E𝑞(w,Γ|𝜃2) log 𝑝(y|X,w,Γ) > 0.

Докажем критерий 4. Пусть 𝜆 удовлетворяют восьмому условию теоремы и
𝜆Q
likelihood = 0,𝜆Q

struct = 0. Пусть

𝐾2 = max
h∈𝑈h

1

𝜆Q
prior

log 𝑝(h|𝜆)− 1

𝜆Q
prior

min
h∈𝑈h

log 𝑝(h|𝜆)+

+max
h∈𝑈h

min
𝜃∈𝑈𝜃

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
−

− min
h∈𝑈h,𝜃∈𝑈𝜃

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
+max

𝜃∈𝑈𝜃

1

𝜆L
prior

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−

min
h∈𝑈h

1

𝜆L
prior

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ).
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Пусть h1,h2 ∈ 𝑈h,𝑄(h1|y,X,𝜃,𝜆) − 𝑄(h2|y,X,𝜃,𝜆) > 𝐾2. Рассмотрим раз-
ность параметрических сложностей двух векторов:

𝐶𝑝(𝜃2|𝑈h,𝜆)− 𝐶𝑝(𝜃1|𝑈h,𝜆) = min
h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h,𝜆)

)︀
−

−min
h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h,𝜆)

)︀
≥

оценим снизу, а также добавим и вычтем 𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆)

)︀

≥ min
h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h,𝜆)

)︀
−𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h1,𝜆)

)︀
+

+𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆)

)︀
−𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆)

)︀
=

сведем выражение до 𝑄(h|y,X,𝜃,𝜆)

= 𝑄(h1|y,X,𝜃1,𝜆)−𝑄(h2|y,X,𝜃2,𝜆)−
1

𝜆Q
prior

log 𝑝(h1|𝜆) +
1

𝜆Q
prior

log 𝑝(h2|𝜆)+

+min
h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h,𝜆)

)︀
−𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆)

)︀
>

воспользуемся неравенством 𝑄(h1|y,X,𝜃,𝜆)−𝑄(h2|y,X,𝜃,𝜆) > 𝐾2

> 𝐾2 −
1

𝜆Q
prior

log 𝑝(h1|𝜆) +
1

𝜆Q
prior

log 𝑝(h2|𝜆) +min
h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h,𝜆)

)︀

−𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆)

)︀
.

Рассмотрим разность:

min
h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h,𝜆)

)︀
−𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆)

)︀
=

т.к. 𝜃2 — решение нижней задачи оптимизации (4.22):

min
h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h,𝜆)

)︀
− 1

𝜆L
prior

E𝑞(w,Γ|𝜃2) log 𝑝(y|X,w,Γ)+

max
𝜃

(
1

𝜆L
prior

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(h2,Γ|h,𝜆)

)︀
) ≥

получим оценку снизу:

≥ min
h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h,𝜆)

)︀
−max

𝜃

1

𝜆L
prior

E𝑞 log 𝑝(y|X,w,Γ)+

max
𝜃

(︃
min
𝜃′

1

𝜆L
prior

E𝑞(w,Γ|𝜃′) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(h2,Γ|h,𝜆)

)︀
)︃

≥
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оценим первое слагаемое

≥ min
𝜃,h

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
−max

𝜃

1

𝜆L
prior

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)+

min
𝜃

1

𝜆L
prior

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−min
𝜃

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(h2,Γ|h,𝜆)

)︀
≥

оценим последнее слагаемое

≥ min
𝜃,h

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
−max

𝜃

1

𝜆L
prior

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)

+min
𝜃

1

𝜆L
prior

E𝑞 log 𝑝(y|X,w,Γ)−max
h

min
𝜃

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
.

Складывая полученную оценку с 𝐾2 − log 1

𝜆Qprior
𝑝(h2|𝜆) + log 1

𝜆Qprior
𝑝(h2|𝜆) полу-

чаем разность параметрических сложностей больше нуля, что и требовалось
доказать.

Докажем критерий 5. Пусть 𝜆Q
prior = 𝜆L

prior = 𝜆Q
likelihood = 1, 𝜆Q

struct = 0. Тогда
функции 𝐿(𝜃|y,X,h,𝜆) и 𝑄(h|y,X,𝜃,𝜆) можно записать как:

𝐿(𝜃|y,X,h,𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
,

𝑄(h|y,X, 𝜃,𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
+

+ log 𝑝(h|𝜆).
Двухуровневая задача оптимизации совпадает с оптимизацией вариационной
оценки обоснованности, что и требовалось доказать.

Докажем критерий 6. Пусть задан вектор метапараметров 𝜆, удовлетворяю-
щий девятому условию теоремы и 𝜆Q

struct = 0. По условию теоремы во множество
P входит хотя бы одно распределение Gumbel-Softmax:

𝑝1 ∼ 𝒢𝒮, 𝑝 ∈ P.

Возьмем в качестве 𝐾3 следующее выражение:

𝐾3 =
maxh𝑄(h|y,X, 𝜃,𝜆)−minh𝑄(h|y,X, 𝜃,𝜆)

𝑚𝜆
,

где 𝑚𝜆 — максимальное значение коэффициента 𝜆Q
struct ∈ 𝑈𝜆 перед 𝑝1. Пусть

заданы векторы гиперпараметров h1,h2, такие что

𝑄(h1|y,X,𝜃,𝜆)−𝑄(h2|y,X,𝜃,𝜆) > 0,

𝐷KL

(︀
𝑝(h1|𝜆)||𝑝(h2,Γ|h,𝜆)

)︀
> 𝐾3,
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𝐷KL

(︀
𝑝(h2,Γ|h,𝜆)||𝑝(h1|𝜆)

)︀
> 𝐾3.

Пусть вектор метапараметров 𝜆′ отличается от 𝜆 лишь метапараметром
𝜆Q
struct. Для обоих векторов метапараметров нижняя задача оптимизации

𝐿(𝜃|y,X,h,𝜆) совпадает, поэтому выполняется первое условие критерия.
Положим для 𝜆′ метапараметр 𝜆𝑄struct ∈ 𝜆Q

struct перед распределением 𝑝1 рав-
ным максимальному значению 𝑚𝜆. Положим также значение параметров дан-
ного распределения равным параметрам распределения 𝑝(Γ|h1,𝜆) :

𝑝1 = 𝑝(Γ|h1,𝜆).

Для остальных распределений 𝑝′ ∈ P положим коэффициент 𝜆𝑄struct ∈ 𝜆Q
struct

равным нулю. Тогда справедливо следующее неравенство:

𝑄(h2|y,X,𝜃,𝜆′)−𝑄(h1|y,X,𝜃,𝜆′) =

= 𝑄(h2|y,X,𝜃,𝜆)−𝑄(h1|y,X,𝜃,𝜆) +𝑚𝜆𝐷KL

(︀
𝑝(h2,Γ|h,𝜆)||𝑝(h1,Γ|h,𝜆)

)︀
=

= 𝑄(h2|y,X,𝜃,𝜆)−𝑄(h1|y,X,𝜃,𝜆) +𝑚𝜆𝐾3 > 0,

что и требовалось доказать.
Докажем критерий 7. Достаточным условием непрерывности функций

𝐿(𝜃|y,X,h,𝜆), 𝑄(h|y,X, 𝜃,𝜆) является непрерывность входящих в нее сла-
гаемых.

Слагаемые E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ) и 𝐷KL

(︀
𝑞w(w|Γ, 𝜃w)||𝑝(w|Γ,h,𝜆)

)︀
не за-

висят от метапараметров 𝜆. Слагаемое log 𝑝(h|𝜆) непрерывно по метапарамет-
рам по условию теоремы.

Достаточным условием непрерывности функций вида
𝐷KL

(︀
𝑝1(Γ|𝜆)||𝑝2(Γ|𝜆)

)︀
в точке 𝜆 ∈ 𝑈𝜆 является непрерывность почти

всюду плотностей 𝑝1, 𝑝2 и существование интегрируемой функции 𝑔, такой
что 𝑝1(Γ|𝜆) log 𝑝1(Γ|𝜆)

𝑝2(Γ|𝜆) ≤ 𝑔(Γ) для всех Γ ∈ Γ и 𝜆 ∈ 𝑈𝜆. Возьмем в качестве
функции 𝑔 константу:

𝑔(Γ) = max
𝜆∈𝑈𝜆,Γ∈Γ

𝑝1(Γ|𝜆) log
𝑝1(Γ|𝜆)
𝑝2(Γ|𝜆)

.

Т.к. множество Γ является произведением симплексов, то дивергенция
𝐷KL

(︀
𝑝1||𝑝2

)︀
представима как интеграл с конечными пределами интегрирова-

ния, поэтому константная функция 𝑔 будет интегрируемой. Поэтому слагаемые
𝐷KL

(︀
𝑞Γ(Γ|𝜃Γ)||𝑝(Γ|h,𝜆)

)︀
и 𝐷KL

(︀
𝑝′||𝑝(Γ|h,𝜆)

)︀
, 𝑝′ ∈ P являются непрерывными.

Таким образом функции 𝐿(𝜃|y,X,h,𝜆),𝑄(h|y,X,𝜃,𝜆) являются непрерыв-
ными по метапараметрам, что и требовалось доказать.

Метапараметрами данной задачи (4.21) являются коэффициенты
𝜆L
prior,𝜆

Q
prior, отвечающие за регуляризацию верхней и нижней задачи оп-

тимизации, коэффициент 𝜆Q
likelihood отвечает за максимизацию правдоподобия,
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а также параметры распределений P и вектор коэффициентов перед ними
𝜆Q
struct.
Условия 7-9 теоремы задают вид области 𝑈 , на которой представленная

оптимизационная задача является обобщающей. Условие 7 выполняется при
небольшом разбросе значений log 𝑝(h|𝜆) в зависимости от 𝜆1,𝜆2. Т.к. эти мета-
параметры выполняют роль регуляризатора, для области гиперпараметров 𝑈h,
выбранной адекватно, данное условие выполняется.

В случае, если 𝑞w(w|Γ, 𝜃w) — нормальное распределение, а 𝑞Γ(Γ|𝜃Γ) — рас-
пределение Gumbel-softmax, такие что для любого h ∈ 𝑈h существует 𝜃 ∈ 𝑈𝜃:

𝑝(w,Γ|h,𝜆) = 𝑞(w,Γ|𝜃),

а также полагая что значение log 𝑝(h|𝜆) приблизительно равно для всех h ∈ 𝑈h,
восьмое условие можно представить в следующем виде:

max
𝜃∈𝑈𝜃

1

𝜆L
prior

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−

−min
𝜃∈𝑈𝜃

1

𝜆L
prior

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ) <

< max
𝜃∈𝑈𝜃,h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
−

− min
𝜃∈𝑈𝜃,h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
.

Данное условие требует существования набора метапараметров 𝜆, такого что
максимальная разница дивергенций на 𝑈 больше, чем максимальная разница
между усредненными по 𝑞(w,Γ|𝜃) логарифмами правдоподобия выборки, по-
деленными на 𝜆Q

likelihood. Условие будет выполняться при достаточно больших
𝜆Q
likelihood. Условие 9 выполняется при достаточно больших значениях метапара-

метра 𝜆Q
struct.

4.4. Анализ обобщающей задачи

В данном разделе рассматриваются свойства предложенной задачи при раз-
личных значениях метапараметров, а также характер асимптотического пове-
дения задач. Следующие теоремы говорят о соответствии предлагаемой обоб-
щающей задачи вероятностной модели. В частности, задача оптимизации пара-
метров и гиперпараметров соответствует двухуровневому байесовскому выводу.
Теорема 9. Пусть 𝜆Q

prior = 𝜆L
prior = 𝜆Q

likelihood = 1,𝜆Q
struct = 0. Тогда:

1. Задача оптимизации (4.21) доставляет максимум апостериорной вероят-
ности гиперпараметров с использованием вариационной оценки обосно-
ванности:

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
+
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+ log 𝑝(w,Γ|h,𝜆) → max
h

.

2. Вариационное распределение 𝑞(w,Γ|𝜃) приближает апостериорное рас-
пределение 𝑝(w,Γ|y,X,h,𝜆) наилучшим образом:

𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|y,X,h,𝜆)

)︀
→ min

𝜃
.

3. Если существуют такие значения параметров 𝜃w,𝜃Γ, что
𝑝(w|y,X,Γ,h,𝜆) = 𝑞w(w|Γ, 𝜃w), 𝑝(Γ|y,X,h,𝜆) = 𝑞Γ(Γ|𝜃Γ), то ре-
шение задачи оптимизации 𝐿(𝜃|y,X,h,𝜆) доставляет эти значения
вариационных параметров.

Доказательство. Так как параметры 𝜃 не зависят от слагаемых при коэф-
фициентах 𝜆Q

struct, а также от log 𝑝(h|𝜆), то при 𝜆Q
likelihood = 𝜆L

prior = 𝜆Q
prior =

1,𝜆Q
struct = 0, как верхняя, так и нижняя задачи оптимизации (4.21) эквивалент-

ны оптимизации вариационной оценки обоснованности, поэтому первое утвер-
ждение выполняется.

Докажем второе утверждение. Рассмотрим оценку обоснованности модели:

log 𝑝(y|X,h,𝜆) = E𝑞(w,Γ|𝜃) log
𝑝(y,w,Γ|X,h,𝜆)

𝑞(w,Γ|𝜃) +𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
=

= E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
+

+𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|y,X,h,𝜆)

)︀
.

Из данного равенства следует:

log 𝑝(y|X,h,𝜆)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|y,X,h,𝜆)

)︀
=

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
,

где правая часть равенства соответствует вариационной оценки обоснованно-
сти. Выражение log 𝑝(y|X,h,𝜆) не зависит от вариационного распределения
𝑞(w,Γ|𝜃), поэтому максимизации вариационной оценки эквивалентна миними-
зации дивергенции 𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|y,X,h,𝜆)

)︀
.

Докажем третье утверждение. Вариационное распределе-
ние 𝑞(w,Γ|𝜃) декомпозируется на 𝑞w(w|Γ, 𝜃w), 𝑞Γ(Γ|𝜃Γ), апо-
стериорное распределение 𝑝(w,Γ|y,X,h,𝜆) декомпозируется на
𝑝(w|y,X,Γ,h,𝜆), 𝑝(Γ|y,X,h,𝜆), поэтому достижимо нулевое значе-
ние дивергенции: 𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|y,X,h,𝜆)

)︀
= 0. Дивергенция

представима в виде двух неотрицательных слагаемых (4.8), поэтому
при 𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|y,X,h,𝜆)

)︀
= 0 каждое из этих слагае-

мых будет равняться нулю. Отсюда следует что 𝜃w,𝜃Γ, при которых
𝑞w(w|Γ, 𝜃w) = 𝑝(w|Γ,h,𝜆), 𝑞Γ(Γ|𝜃Γ) = 𝑝(Γ|h,𝜆), является решением задачи
оптимизации (4.22), что и требовалось доказать.
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Докажем, что варьирование коэффициента 𝜆L
prior приводит к оптимизации

вариационной оценки обоснованности для выборки из той же генеральной со-
вокупности, но другой мощности.
Теорема 10. Пусть 𝑚 ≫ 0, 𝜆L

prior > 0, 𝑚
𝜆Lprior

∈ N, 𝑚
𝜆Lprior

≫ 0. Тогда оптимизация

функции

𝐿(𝜃|y,X,h,𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)− 𝜆L
prior𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀

эквивалентна оптимизации вариационной оценки обоснованности

E𝑞(w,Γ|𝜃) log 𝑝(ŷ|X̂,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀

для произвольной случайной подвыборки ŷ, X̂ мощности 𝑚
𝜆Lprior

из генеральной
совокупности.

Доказательство. Рассмотрим величину 1
𝑚𝐿(𝜃|y,X,h,𝜆):

1

𝑚
𝐿(𝜃|y,X,h,𝜆) =

1

𝑚
E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)− (4.23)

−
𝜆L
prior

𝑚
𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
.

При 𝑚 ≫ 0 по усиленному закону больших чисел данная функция может
быть аппроксимирована следующим образом:

1

𝑚
𝐿(𝜃|y,X,h,𝜆) ≈ E𝑦,xE𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)

−
𝜆L
prior

𝑚
𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
.

Аналогично рассмотрим вариационную оценку обоснованности для произ-
вольной выборки мощностью 𝑚0 =

𝑚
𝜆Lprior

, усредненную на мощность выборки:

1

𝑚0
E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)− 1

𝑚0
𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
≈ (4.24)

≈ E𝑦,xE𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)− 1

𝑚0
𝐷KL

(︀
𝑝(w,Γ|h,𝜆)||𝑞(w,Γ|𝜃)

)︀
=

= E𝑦,xE𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−
𝜆L
prior

𝑚
𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
.

Таким образом, задачи оптимизации функций (4.23),(4.24) совпадают, что и
требовалось доказать.
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Теорема показывает, что для достаточно большого 𝑚 и 𝜆L
prior > 0,𝜆L

prior ̸= 1
оптимизация параметров и гиперпараметров эквивалентна нахождению оценки
обоснованности для выборки другой мощности: чем выше значение 𝜆L

prior, тем
выше мощность выборки, для которой проводится оптимизация.

Таким образом, предлагаемая обобщающая задача производит оптимизацию
вариационной оценки обоснованности с различными эффективными размерами
выборок. Чем больше размер выборки, тем больше влияние априорного рас-
пределения, которое выступает в качестве регуляризатора. Сложность модели
назначается следующим образом:

1. варьированием сложности на верхнем уровне оптимизации оптимизации
с использованием коэффициента 𝜆Q

prior;
2. варьированием сложности на нижнем уровне оптимизации оптимизации

с использованием коэффициента 𝜆L
prior;

3. варьированием сложности на обоих уровнях оптимизации.
Рассмотрим различие этих вариантов на примере.
Пример 8. Назначим 𝜆Q

struct = 0. Требуется уменьшить вклад априорного рас-
пределения в итоговую оптимизацию. При варьировании нижней задачи опти-
мизации (𝜆L

prior → 0) оптимизационная задача становится эквивалента методу
максимального правдоподобия (4.13):

𝐿(𝜃|y,X,h,𝜆) → E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ).

При этом верхняя задача 𝑄(h|y,X,𝜃,𝜆) → maxh не имеет смысла, т.к. пара-
метры 𝜃 не зависят от гиперпараметров h.

При варьировании только верхней задачи оптимизации (𝜆Q
prior → 0,𝜆L

prior =

𝜆Q
likelihood = 1), на нижнем уровне задача 𝐿(𝜃|y,X,h,𝜆) совпадает с задачей вы-

бора обоснованных параметров при фиксированном значении гиперпараметров
h:

𝐿(𝜃|y,X,h,𝜆) = E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
.

При этом на верхнем уровне оптимизации выбираются гиперпараметры h, при
которых параметры будут доставлять максимум правдоподобия с точностью до
регуляризации:

𝑄(h|y,X, 𝜃,𝜆) →𝜆Qprior→0 E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ) + log 𝑝(h|𝜆).

Данный пример показывает, что варьирование сложности на различных уров-
нях оптимизации приводит к значительно различающимся результатам: сни-
жение значения коэффициента 𝜆Q

prior на верхнем уровне оптимизации приводит
к выбору модели с параметрами, соответствующими максимуму вариационной
оценки при гиперпараметрах, выбранных согласно критерию максимального
правдоподобия. Варьирование сложности на нижнем уровне оптимизации при-
водит вид всей оптимизации к критерию максимального правдоподобия.
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Докажем теорему об оценке разности параметрических сложностей. Пред-
варительно докажем следующую лемму.
Лемма 5. Пусть задан компакт 𝑈 = 𝑈h × 𝑈𝜃 и 𝜆Q

struct = 0. Пусть решение
задачи

min
h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h,𝜆)

)︀
(4.25)

является единственным для некоторых 𝜆Q
prior1

,𝜆Q
prior2

,𝜆Q
prior1

> 𝜆Q
prior2

на 𝑈

при некоторых фиксированных 𝜆Q
likelihood,𝜆

L
prior,𝜆temp,𝜆1,𝜆2. Пусть также ре-

шения задачи (4.21),(4.22) являются единственными на 𝑈 при 𝜆Q
prior1

,𝜆Q
prior2

и

𝜆Q
likelihood,𝜆

L
prior,𝜆temp,𝜆1,𝜆2. Тогда справедливо следующее неравенство:

𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h1,𝜆

′)
)︀
< 𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
,

где h1,𝜃1, h2,𝜃2 — решения задачи (4.21),(4.22) при 𝜆Q
prior1

,𝜆Q
prior2

,

𝜃1 = 𝜃*(h1), 𝜃2 = 𝜃*(h2),

𝜆′ — вектор метапараметров, содержащий метапараметры 𝜆temp,𝜆1,𝜆2

Доказательство. Заметим, что выражения вида
𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h1,𝜆1)

)︀
,𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆2)

)︀
зависят

только от метапараметров [𝜆temp,𝜆1,𝜆2], общих для 𝜆1,𝜆2 и не зависят
от 𝜆Q

likelihood,𝜆
L
prior,𝜆

Q
prior,𝜆

Q
struct. Для удобства записи далее будем обозначать за

𝜆′ вектор метапараметров [𝜆temp,𝜆1,𝜆2]:

𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h1,𝜆1)

)︀
= 𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h1,𝜆

′)
)︀
,

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆2)

)︀
= 𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
.

Пусть h1,𝜃1, h2,𝜃2 — решения задачи (4.21),(4.22) при 𝜆Q
prior1

,𝜆Q
prior2

. Тогда
справедлива система неравенств:

𝜆Q
likelihoodE𝑞(w,Γ|𝜃1) log 𝑝(y|X,w,Γ)−
− 𝜆Q

prior1
𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h1,𝜆

′)
)︀
+ log 𝑝(h1|𝜆1) >

> 𝜆Q
likelihoodE𝑞(w,Γ|𝜃2) log 𝑝(y|X,w,Γ)−

𝜆Q
prior1

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
+ log 𝑝(h2|𝜆2);

𝜆Q
likelihoodE𝑞(w,Γ|𝜃2) log 𝑝(y|X,w,Γ)−
− 𝜆Q

prior2
𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
+ log 𝑝(h2|𝜆2) >

> 𝜆Q
likelihoodE𝑞(w,Γ|𝜃1) log 𝑝(y|X,w,Γ)−

− 𝜆Q
prior2

𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h1,𝜆

′)
)︀
+ log 𝑝(h1|𝜆1).
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Складывая неравенства получим следующее выражение:

(𝜆Q
prior2

− 𝜆Q
prior1

)𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h1,𝜆

′)
)︀
>

> (𝜆Q
prior2

− 𝜆Q
prior1

)𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
.

Т.к. по условию 𝜆Q
prior1

> 𝜆Q
prior2

, то отсюда следует:

𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h1,𝜆

′)
)︀
< 𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
,

что и требовалось доказать.

Теорема 11. Пусть
1. Выполнены условия Леммы 5.
2. Функция 𝑄(h|𝜃2,X,𝜃,𝜆) является вогнутой по h ∈ 𝑈h при 𝜆Q

prior = 𝜆Q
prior2

.

3. Решение задачи (4.25) единственно при 𝜆Q
prior = 𝜆Q

prior2
.

4. Все стационарные точки 𝜃 ∈ 𝑈𝜃 функции 𝐿(𝜃|y,X,h,𝜆) являются ре-
шениями нижней задачи оптимизации при 𝜆Q

prior = 𝜆Q
prior2

с обратимым
гессианом.

5. Значения 𝑝(h|𝜆) приблизительно равны на 𝑈h:

𝑝(h1|𝜆) ≈ 𝑝(h2|𝜆) для всех h1,h2 ∈ 𝑈h.

Тогда справедлива следующая оценка разности параметрических сложностей:

𝐶𝑝(𝜃1|𝑈h,𝜆1)− 𝐶𝑝(𝜃2|𝑈h,𝜆2) <
𝜆L
prior

𝜆Q
prior

(𝜆Q
prior2

− 𝜆L
prior)×

× max
h∈𝑈h,𝜃∈𝑈𝜃

∇𝜃,h(𝐷KL

(︀
𝑞(w,Γ|𝜃)||[𝑝(w,Γ|h,𝜆)

)︀
)T∇2

𝜃(𝐿(𝜃|y,X,h,𝜆2))
−1×

×∇𝜃𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
max

h1,h2∈𝑈h

||h1 − h2||.

Доказательство. Положим 𝜆1,𝜆2 — два набора метапараметров с фиксиро-
ванными значениями метапараметров, соответствующих условиями теоремы и
отличающихся лишь значениями 𝜆Q

prior = 𝜆Q
prior1

,𝜆Q
prior = 𝜆Q

prior2
. Рассмотрим раз-

ность параметрических сложностей:

𝐶𝑝(𝜃1|𝑈h,𝜆1)− 𝐶𝑝(𝜃2|𝑈h,𝜆2) =

по определению параметрической сложности:

= min
h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h,𝜆′)

)︀
− min

h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h,𝜆′)

)︀
≤

используя оценку сверху:

≤ 𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h,𝜆′)

)︀
− min

h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h,𝜆′)

)︀
=
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добавляя и вычитая слагаемое 𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
:

= 𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h1,𝜆

′)
)︀
− min

h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
+

+𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
−𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
.

По Лемме 5:

𝐷KL

(︀
𝑞(w,Γ|𝜃1)||𝑝(w,Γ|h1,𝜆

′)
)︀
− min

h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
+

+𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
−𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
<

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
− min

h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
.

Обозначим за h′ — решение задачи (4.25). Тогда справедливо следующее
выражение:

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
− min

h∈𝑈h

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h,𝜆′)

)︀
=

𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆

′)
)︀
−𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h′,𝜆′)

)︀
=

т.к. по условию теоремы 𝑝(h1|𝜆) ≈ 𝑝(h2|𝜆):

=
1

𝜆Q
prior

(︀
𝑄(h′|𝜃2,X,𝜃,𝜆2)−𝑄(h2|y,X,𝜃,𝜆2)

)︀
.

Т.к.𝑄(h|y,X,𝜃,𝜆) — вогнутая при 𝜆Q
prior = 𝜆Q

prior2
, то справедливо равенство

𝑄(h′|𝜃2,X,𝜃,𝜆2)−𝑄(h2|𝜃2,X,𝜃,𝜆) ≤ ∇h(𝑄(h2|𝜃2,X,𝜃,𝜆2))||h2 − h′|| ≤

≤ ∇h(𝑄(h2|𝜃2,X,𝜃,𝜆2)) max
h1,h2∈𝑈h

||h1 − h2||.

Рассмотрим выражение ∇h𝑄(h2|𝜃2,X,𝜃,𝜆2). Из [80] следует равенство:

∇h𝑄(h2|𝜃*(h2),X, 𝜃,𝜆2) = ∇h𝑄(h2|𝜃2,X,𝜃,𝜆2)−

− (∇𝜃,h𝐿(𝜃2|y,X,h2,𝜆2))
T (︀∇2

𝜃𝐿(𝜃2|y,X,h2,𝜆2)
)︀−1∇𝜃𝑄(h2|𝜃2,X,𝜃,𝜆),

где в левой части равенства рассматривается градиент от 𝑄(h|y,X,𝜃,𝜆) как
от сложной функции, 𝜃* — решение нижней задачи оптимизации (4.22). Т.к. h2

— решение задачи оптимизации (4.21), то ∇h𝑄(h2|𝜃*(h2),X, 𝜃,𝜆2) = 0. Отсюда
следует:

𝑄(h′|𝜃2,X,𝜃,𝜆2)−𝑄(h2|𝜃2,X,𝜃,𝜆2) ≤
≤ (∇𝜃,h𝐿(𝜃2|y,X,h2,𝜆2))

T (︀∇2
𝜃𝐿(𝜃2|y,X,h2,𝜆2)

)︀−1×
∇𝜃𝑄(h2|𝜃2,X,𝜃,𝜆2) max

h1,h2∈𝑈h

||h1 − h2||.
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Функция 𝐿(𝜃|y,X,h,𝜆) состоит из двух слагаемых, одно из которых не
зависит от h, поэтому

∇𝜃,h(𝐿(𝜃2|y,X,h2,𝜆2))
T = −𝜆L

prior∇𝜃,h(𝐷KL

(︀
𝑞(w,Γ|𝜃2)||[𝑝(w,Γ|h2,𝜆

′)
)︀
)T.

Т.к. 𝜃2 — оптимум функции 𝐿(𝜃|y,X,h2,𝜆2), то

∇𝜃E𝑞(w,Γ|𝜃2) log 𝑝(y|X,w,Γ)−∇𝜃𝜆
L
prior𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆2)

)︀
= 0,

∇𝜃𝑄(h|y,X, 𝜃,𝜆2) = ∇𝜃E𝑞(w,Γ|𝜃2) log 𝑝(y|X,w,Γ)−
−𝜆Q

prior2
∇𝜃𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆2)

)︀
=

= (𝜆L
prior − 𝜆Q

prior2
)∇𝜃𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆2)

)︀
.

С учетом переписанных выражений ∇𝜃,h(𝐿(𝜃2|h2,X,h,𝜆))T,
∇𝜃𝑄(h|y,X, 𝜃,𝜆) получаем:

𝑄(h′|𝜃2,X,𝜃,𝜆2)−𝑄(h2|𝜃2,X,𝜃,𝜆2) ≤

≤ 𝜆L
prior(𝜆

Q
prior2

− 𝜆L
prior)∇𝜃,h(𝐷KL

(︀
𝑞(w,Γ|𝜃2)||[𝑝(w,Γ|h2,𝜆

′)
)︀
)T×

×∇2
𝜃(𝐿(𝜃2|h2,X,h,𝜆2))

−1∇𝜃𝐷KL

(︀
𝑞(w,Γ|𝜃2)||𝑝(w,Γ|h2,𝜆2)

)︀
max

h1,h2∈𝑈h

||h1 − h2||.

Отсюда следует доказываемое неравенство.

Оценка, полученная в данной теореме, зависит от метапараметров и гипер-
параметров, использованных только в задаче оптимизации при 𝜆Q

prior2
. Дан-

ная оценка разности параметрических сложностей обращается в ноль при
𝜆Q
prior2

= 𝜆L
prior и при 𝜆L

prior = 0. Последний случай соответствует вырожден-
ному случаю, когда нижняя задача оптимизации эквивалентна оптимизации
правдоподобия выборки, и оценка параметрической разности параметрической
сложности напрямую следует из Леммы 5.

Следующая теорема анализирует оптимизацию при
𝜆Qprior

𝜆Qlikelihood
= 𝜆L

prior. В част-

ности, если 𝜆Q
likelihood = 1, то такая оптимизация соответствует оптимизации

вариационной оценки обоснованности на обеих уровнях оптимизации для вы-
борки размера [ 𝑚

𝜆Lprior
], о чем говорилось в Теореме 10.

Теорема 12. Пусть
𝜆Qprior

𝜆Qlikelihood
= 𝜆L

prior. Тогда задача оптимизации (4.21) предста-

вима в виде одноуровневой задачи оптимизации:

𝜆Q
likelihoodE𝑞(w,Γ|𝜃)𝑝(y|X,w,Γ)− 𝜆Q

prior𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
−

−
∑︁

𝑝′∈P,𝜆∈𝜆Q
struct

𝐷KL

(︀
𝑝(Γ|h,𝜆)||𝑝′

)︀
− log 𝑝(h|𝜆) → max

h,𝜃
.
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Доказательство. Т.к. выполнено равенство
𝜆Qprior

𝜆Qlikelihood
= 𝜆L

prior, то нижняя задача

оптимизации (4.22) эквивалентна следующей задаче:

𝜆Q
likelihoodE𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−

−𝜆Q
prior𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
→ max

𝜃
.

Параметры 𝜃 вариационного распределения 𝑞(w,Γ|𝜃) не зависят от слагаемых
вида log 𝑝(h|𝜆) и 𝐷KL

(︀
𝑝(w,Γ|h,𝜆)||𝑝′

)︀
, 𝑝′ ∈ P, поэтому нижняя задача опти-

мизации эквивалентна следующей задаче:

𝜆Q
likelihoodE𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ)−

−𝜆Q
prior𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
.

−
∑︁

𝑝′,𝜆∈P,𝜆Q
struct

𝐷KL

(︀
𝑝(Γ|h,𝜆)||𝑝′

)︀
+ log 𝑝(h|𝜆) → max

𝜃

для любого вектора 𝜆Q
struct.

Поэтому верхняя и нижняя задачи совпадают:

h = argmax
h′

𝑄(h|y,X, 𝜃,𝜆),

где
𝜃*(h′) = argmax

𝜃
𝑄(h′|y,X,𝜃,𝜆).

Из свойства
max
h

max
𝜃

𝑄(h|y,X, 𝜃,𝜆) = max
𝜃,h

𝑄(h|y,X, 𝜃,𝜆)

следует доказательство теоремы.

Для вычисления приближенного значения функций 𝑄(h|y,X, 𝜃,𝜆) и
𝐿(𝜃|y,X,h,𝜆) предлагается использовать приближение методом Монте-Карло
с порождением 𝑟 реализаций величин w,Γ. Т.к. эти функции состоят из сла-
гаемых вида E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ), 𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
, log 𝑝(h|𝜆),

𝐷KL

(︀
𝑝(Γ|h,𝜆)||𝑝′

)︀
, 𝑝′ ∈ P, то рассмотрим численные приближения каждого из

этих слагаемых.
Выражение E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ) предлагается вычислять следующим об-

разом:

E𝑞(w,Γ|𝜃) log 𝑝(y|X,w,Γ) ≈ 1

𝑟

𝑟∑︁

𝑟′=1

log 𝑝(y|X,w𝑟′,Γ𝑟′),

где Γ𝑟′ — реализация случайной величины, полученная по формуле (4.2), w𝑟′ —
реализация случайной величины, полученная по формуле:

w𝑟′ = 𝜇𝑞 + 𝜀T
√
𝛼𝑞.
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Выражение 𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
декомпозируется на два слагае-

мых:
𝐷KL

(︀
𝑞(w,Γ|𝜃)||𝑝(w,Γ|h,𝜆)

)︀
= 𝐷KL

(︀
𝑞Γ(Γ|𝜃Γ)||𝑝(Γ|h,𝜆)

)︀
+

+

∫︁

Γ

∫︁

w

𝑞(w,Γ|𝜃) log 𝑞w(w|Γ, 𝜃w)

𝑝(w|Γ,h,𝜆)𝑑w𝑑Γ.

Для первого слагаемого предлагается использовать следующую формулу:

𝐷KL

(︀
𝑞Γ(Γ|𝜃Γ)||𝑝(Γ|h,𝜆)

)︀
≈ 1

𝑟

𝑟∑︁

𝑟′=1

log 𝑞Γ(Γ𝑟′|𝜃Γ)− log 𝑝(Γ𝑟′|h,𝜆). (4.26)

Для второго слагаемого справедлива следующая формула, основанная на
аналитической формуле для дивергенции гауссовых распределений:

∫︁

Γ

∫︁

w

𝑞w(w|Γ, 𝜃w) log
𝑞w(w|Γ, 𝜃w)

𝑝(w|Γ,h,𝜆)𝑑𝑞w(w|Γ, 𝜃w)𝑑𝑞Γ(Γ|𝜃Γ) ≈

≈ 1

2𝑟

𝑟∑︁

𝑟′=1

∑︁

(𝑗,𝑘)∈𝐸

𝐾𝑗,𝑘∑︁

𝑙=1

(︀
(𝛾𝑗,𝑘𝑙 [𝑟′])−2tr

(︀
A−1
𝑞 A
)︀
+ (𝛾𝑗,𝑘𝑙 [𝑟′])−2𝜇T

𝑞A𝜇𝑞+

+ log
(𝛾𝑗,𝑘𝑙 [𝑟′])2detA−1

detA−1
𝑞

)︀
− 1

2
|W|,

где 𝛾𝑗,𝑘𝑙 [𝑟′] — реализация 𝑙-й компоненты случайной величины 𝛾𝑗,𝑘.
Вычислительный эксперимент Для анализа предлагаемого метода вы-

бора структуры модели был проведен эксперимент. Цель эксперимента — ана-
лиз рассмотренных в данном разделе свойств обобщающей задачи оптимизации.
Выборка мощностью 50 объектов была порождена по следующему правилу:

x ∈ R11,x[𝑗] ∼ 𝒩 (0, 1),x ∈ X,

где x[𝑗] — 𝑗-я компонента объекта x,

𝑦 = tanh(x[0]) + 0.5𝜀, 𝜀 ∼ 𝒩 (0, 1).

Таким образом, метка 𝑦 учитывала только нулевую компоненту вектора x.
Остальные компоненты в данной задаче можно рассматривать как шум. Каж-
дому вектору x был также добавлен признак с постоянным значением, равным
единице.

Рассматривалось параметрическое семейство F моделей вида:

f = 𝛾0,1
0 f0 + 𝛾0,1

1 f1 + 𝛾0,1
2 f2,

где
f0 = 𝑤0,
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f1 = tanh(w1[0]x[0] +w1[1]),

f2 = tanh(w2
Tx),

Из определения данного параметрического семейства следует, что любая мо-
дель представляется в виде линейной комбинации трех подмодели: констант-
ной модели f0, модели f1 и переусложненной модели f2. Последняя использует
признаки объекта, не использовавшиеся при порождении меток объектов.

Были проведены эксперименты с различными значениями метапараметров:
1. 𝜆Q

likelihood = 0.01,𝜆Q
prior = 1,𝜆L

prior = 100,𝜆Q
struct = 0;

2. 𝜆Q
likelihood = 𝜆L

prior = 𝜆Q
prior = 1,𝜆Q

struct = 0;

3. 𝜆Q
likelihood = 100.0,𝜆Q

prior = 1,𝜆L
prior = 0.01,𝜆Q

struct = 0;
Рассматриваемые значения метапараметров удовлетворяют Теореме 12, поэто-
му задача сводится к одноуровневой задаче оптимизации. Распределение на
гиперпараметрах 𝑝(h|𝜆) рассматривалось как равномерное и не учитывалось в
оптимизации. Эксперимент был запущен с различными метапараметрами тем-
пературы: 𝜆temp = 0.2, 1.0, 10.0. Оптимизация проводилось с использованием
оператора оптимизации Adam [116]. Для каждого набора метапараметров про-
водилось 5 оптимизаций, для каждой оптимизации проводилось 1000 итера-
ций. На каждой итерации использовалось 𝑟 = 3 реализации каждой случайной
величины. Для улучшения сходимости задачи первые 500 итераций оптими-
зации проводились с использованием упрощенного априорного распределения
w ∼ 𝒩 (0,A−1). Затем значения диагонали матрицы A−1 устанавливались рав-
ными exp(10.0), после чего оптимизация проводилась с указанным в данном
разделе априорным распределением.

График распределения полученных структур при различных значениях ме-
тапараметров приведен на Рис. 4.6. На графике видно, что чем больше влия-
ние априорного распределения (т.е. чем больше значение метапараметров 𝜆L

prior,

𝜆Q
prior), тем меньше распределение структур сконцентрировано на модели f2, как

на модели, имеющий наибольшее количество параметров. Чем меньше влияние
априорного распределения и больше влияние значения правдоподобия выбор-
ки, тем меньше распределение структур сконцентрировано на модели f0, как на
модели, описывающей выборку наихудшим образом. При увеличении темпера-
туры концентрация структур смещается ближе к центру.

График зависимости полученных моделей от первой компоненты объектов
выборки представлен на Рис. 4.7. На данном графике видно, уменьшение зна-
чения метапараметров 𝜆L

prior, 𝜆
Q
prior ведет к переобучению модели. Увеличение

температуры 𝜆temp ведет к разбросу значений структуры Γ и увеличению дис-
персии предсказаний модели.

График относительной плотности (4.9) параметров моделей представлен на
Рис. 4.8. Высокая относительная плотность параметров соответствует наиболее
вероятным по вариационному распределению структурам.

Для анализа возможности перехода между структурами был проведен экс-
перимент с параметрами 𝜆Q

likelihood = 0.01,𝜆Q
prior = 1,𝜆L

prior = 100,𝜆Q
struct =
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(а) (б) (в)

(г) (д) (е)

(ж) (з) (и)

Рис. 4.6. Гистограмма итогового вариационного распределения 𝑞Γ(Γ|𝜃Γ) струк-
тур при различных значениях метапараметров. Левый нижний угол симплекса
соответствует модели f0, верхний угол соответствует модели f1, правый ниж-
ний угол соответствует модели f2. Первый столбец: 𝜆Q

likelihood = 0.01,𝜆Q
prior =

1,𝜆L
prior = 100,𝜆Q

struct = 0, второй столбец: 𝜆Q
likelihood = 𝜆L

prior = 𝜆Q
prior = 1,𝜆Q

struct =

0, третий столбец: 𝜆Q
likelihood = 100.0,𝜆Q

prior = 1,𝜆L
prior = 0.01,𝜆Q

struct = 0. Первая
строка: 𝜆temp = 0.2, вторая строка: 𝜆temp = 1.0, третья строка: 𝜆temp = 10.0.
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(а) (б) (в)

(г) (д) (е)

(ж) (з) (и)

Рис. 4.7. График зависимости f от нулевой компоненты вектора x для итоговых
моделей. Первый столбец: 𝜆Q

likelihood = 0.01,𝜆Q
prior = 1,𝜆L

prior = 100,𝜆Q
struct = 0,

второй столбец: 𝜆Q
likelihood = 𝜆L

prior = 𝜆Q
prior = 1,𝜆Q

struct = 0, третий столбец:

𝜆Q
likelihood = 100.0,𝜆Q

prior = 1,𝜆L
prior = 0.01,𝜆Q

struct = 0. Первая строка: 𝜆temp = 0.2,
вторая строка: 𝜆temp = 1.0, третья строка: 𝜆temp = 10.0.

(а) (б) (в)

Рис. 4.8. Относительная плотность параметров итоговых моделей при 𝜆temp =

0.2. Первый столбец: 𝜆Q
likelihood = 0.01,𝜆Q

prior = 1,𝜆L
prior = 100,𝜆Q

struct = 0,

второй столбец: 𝜆Q
likelihood = 𝜆L

prior = 𝜆Q
prior = 1,𝜆Q

struct = 0, третий столбец:

𝜆Q
likelihood = 100.0,𝜆Q

prior = 1,𝜆L
prior = 0.01,𝜆Q

struct = 0. Первый параметр соответ-
ствует модели f0, второй и третий параметр соответствует модели f1, параметры
4-15 соответствуют модели f2.
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Рис. 4.9. Оптимизация с метапраметром 𝜆Q
struct = 1.

[−1,−1],𝜆temp = 1.0. В качестве структур P выступали следующие структу-
ры:

𝑝1 = 𝒢𝒮(0.1, [0.99, 0.05, 0.05]), 𝑝2 = 𝒢𝒮(0.1, [0.05, 0.05, 0.99]).
Данные структуры соответствуют распределениям структур, сконцентрирован-
ным близко к моделям f0, f2. Гистограмма итоговых распределений для данной
задачи оптимизации представлена на Рис. 4.9. График показывает, что в от-
личие от оптимизации с 𝜆Q

struct = 0, которая представлена на Рис. 4.6, д, при
использовании данного слагаемого вариационное распределение 𝑞Γ(Γ|𝜃Γ) скон-
центрировано у модели f1. Заметим, что данная регуляризация влияет напря-
мую только на априорное распределение структур 𝑝(Γ|h,𝜆), а не на вариацион-
ное распределение 𝑞Γ(Γ|𝜃Γ), поэтому итоговое распределение 𝑞Γ(Γ|𝜃Γ) изменя-
ется значительно только при близких значениях суммы остальных слагаемых
обобщающей задачи оптимизации (4.21), (4.22).

Таким образом, в данной главе был предложен метод выбора структуры
модели глубокого обучения, основанный на байесовском выводе. Была предло-
жена обобщающая оптимизационная задача, позволяющая производить опти-
мизацию с использованием метода максимального правдоподобия выборки, с
увеличением и снижением сложности модели, с полным перебором структуры
модели, а также с получением максимума вариационной оценки обоснованно-
сти модели. Предложена параметрическая сложность модели, проанализирова-
на ее связь с относительной вариационной плотностью параметров. Возмож-
ным дальнейшим улучшением предложенного метода стала бы разработка ме-
тода выбора структуры модели с учетом взаимосвязи параметров подмоделей,
схожая с методами, предложенными в [75]. Другим направлением дальнейшей
работы является анализ альтернативных распределений на структуре моделей,
таких как распределение Дирихле, а также дополнение предложенной зада-
чи оптимизации (4.21),(4.22) с учетом различных априорных предположений о
структуре и параметрах модели.
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Глава 5

Анализ прикладных задач порождения и выбора моделей глубокого

обучения

В данной главе анализируются свойства предложенных моделей и рекомен-
дации по их использованию. Качество моделей, полученных с использованием
предложенных методов сравнивается с качеством известных методов.

5.1. Выбор модели классификации временных рядов

В данном разделе рассматривается задача построения сети глубокого обу-
чения для классификации временных рядов. Под временным рядом понимает-
ся реализация некоторого случайного процесса. Работы [148, 149, 150] посвя-
щены классификации временных рядов с использованием методов глубокого
обучения. В работе [149] для классификации временных рядов используются
рекуррентные нейронные сети. В работе [150] рассматриваются различные су-
перпозиции ограниченной машины Больцмана, автокодировщика и двуслойной
нейронной сети. Исследуется суперпозиция, состоящая из ограниченной маши-
ны Больцмана, автокодировщика и двуслойной нейронной сети [22]. Работа [151]
посвящена рекуррентной модификации модели ограниченной машины Больц-
мана для классификации временных рядов.

В данном разделе решается прикладная задача классификации временных
рядов. В качестве данных для вычислительного эксперимента используются
данные с акселерометров мобильных телефонов [141]. Для решения задачи оп-
тимизации используется алгоритм обратного распространения ошибок с послой-
ным предобучением сети и дальнейшей настройкой параметров всех слоев [152].
Постановка задачи. Рассматривается задача классификации. Моделью

классификации f выступает суперпозиция подмоделей, аналогичная (2.6):

f(w,x) = f0(f1(. . . f|𝑉 |−1(x))) : R𝑛 → [0, 1]𝑅, (5.1)

где f𝑣, 𝑣 ∈ {0, . . . , |𝑉 |− 1} — модели, параметрическое семейство вектор-
функции; w — вектор параметров моделей; 𝑐-ю компоненту f(x,w)[𝑐] вектора
f(x,w) будем интерпретировать как вероятность отнесения объекта x𝑖 к классу
с меткой 𝑐 (2.7).

Требуется максимизировать функцию 𝐿 на обучающей выборке D, где 𝐿 —
сумма логарифмов правдоподобия по всем объектам выборки

w* = argmax
w

𝐿(w|D),

где

𝐿(w|D) =
𝑚∑︁

𝑖=1

𝑅∑︁

=1

[𝑦𝑖 = 𝑐]log 𝑝(𝑦𝑖 = |x𝑖,w).
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Структура сети глубокого обучения. Для решения задачи предла-
гается использовать суперпозицию, состоящую из трех компонент: ограничен-
ной машины Больцмана, автокодировщика и двуслойной нейросети с softmax-
классификатором. Модель (5.1) в данном случае выглядит следующим образом:

f(w,x) = fSM ∘ fAE ∘ fRBM(x),

где fRBM, fAE, fSM — модели ограниченной машины Больцмана, автокодировщи-
ка и двуслойной нейронной сети соответственно.
Ограниченная машина Больцмана. Ограниченная машина Больцмана

представляет собой двудольный граф, где первая доля соответствует объекту
x, а вторая доля — бинарному вектору h длины 𝑛′. Рассмотрим случай, когда
вектор x принимает бинарные значения. Определим смещенную оценку лога-
рифма совместного распределения объекта x и скрытого вектора h следующим
образом:

𝐸(x,h) = −xT · bvis − hTbhid − hTWRBMx, (5.2)

где bvis,bhid,WRBM — параметры модели.
Пусть совместное распределение пары векторов x,h задано следующим об-

разом:

𝑝(x,h) =
1

𝑍
exp
(︀
−𝐸(x,h)

)︀
,

где 𝑍 — нормировочный коэффициент:

𝑍 =
∑︁

x∈{0,1}𝑛

∑︁

h∈{0,1}𝑛′
exp
(︀
−𝐸(x,h)

)︀
.

Функция вероятности вектора x есть сумма вероятностей по всем скрытым
состояниям вектора h:

𝑝(x) =
∑︁

h∈{0,1}𝑛′
𝑝(x,h).

Определим элемент суперпозиции (5.1):

fRBM(x) = E(h|x). (5.3)

Параметры модели (5.3) оптимизируются следующим образом:

W*
RBM,b

*
vis,b

*
hid = argmax

WRBM,bvis,bhid

𝑝(X, [WRBM,bvis,bhid]) = (5.4)

=
𝑚∏︁

𝑖=1

∑︁

h∈{0,1}𝑛′

1

𝑍
exp
(︀
−𝐸(x𝑖,h)

)︀
.

105



В данной работе используется модифицированная версия ограниченной маши-
ны Больцмана, позволяющая работать с небинарными входными данными [153].
В этой модификации функция 𝐸 (5.2) задается следующим образом:

𝐸(x,h) =
(x− bvis)

2

2𝜎̂2 − hT · bhid −
h

𝜎̂

T

WRBMx,

где 𝜎̂ — эмпирическая оценка среднеквадратичного отклонения по выборке X,
деление производится покомпонентно. Для решения задачи оптимизации (5.4)
используется алгоритм, описанный в [3].
Автокодировщик. Автокодировщик предназначен для снижения размер-

ности исходного пространства признаков. Автокодировщик представляет собой
суперпозицию кодирующего и декодирующего блока:

f ′AE = fenc(fdec(x)),

где
fenc(x) = 𝜎(Wencx+ benc) — кодирующий блок,

fdec ∘ fenc(x) = 𝜎(Wdecfenc(x) + bdec) — декодирующий блок,

𝜎(x) = (1 + exp(−x))−1 — сигмоидная функция,

Wenc,Wdec,benc,bdec — параметры модели.
Введем дополнительное ограничение на матрицы Wenc,Wdec:

Wenc = W
T

dec.

Параметры Wenc,Wdec,benc,bdec оптимизируются так, чтобы по вектору x
получить восстановленный вектор f ′AE, близкий к исходному x:

W*
enc,W

*
dec,b

*
enc,b

*
dec = argmin

Wenc,Wdec,benc,bdec

1

𝑚

𝑚∑︁

𝑖=1

||f ′AE(x𝑖)− x𝑖||22. (5.5)

Декодирующий блок fdec требуется только для решения задачи оптимиза-
ции (5.5) и не используется в суперпозиции (5.1). Таким образом, элемент су-
перпозиции (5.1) определен как

fAE = fenc(x).

Двуслойная нейросеть. Двуслойная сеть представляет собой логистическую
вектор-функцию:

fhid(x) = WT
2 tanh(W

T
1x), (5.6)

fSM(x) =
exp
(︀
fhid(x)

)︀

||exp
(︀
fhid(x)

)︀
||1

,

106



где 𝑐-я компонента fSM(x)[𝑐] вектора fSM(x) интерпретируется как вероятность
принадлежности объекта x классу 𝑐. Итоговая функция классификации (5.1)
ставит в соответствие объекту x метку класса 𝑦, где 𝑦 — класс, к которому
принадлежит x с наибольшей вероятностью:

𝑓(w,x)[𝑐] =

{︃
1, если 𝑐 = argmax𝑐′ fSM(fAE(fRBM(x))[𝑐

′],

0 иначе.

Здесь fAE, fRBM — автокодировщик (5.5) и ограниченная машина Больцма-
на (5.4) соответственно, fSM(x)[𝑐] — 𝑐-я компонента вектора fSM, f(W,x)[𝑐] —
𝑐-я компонента вектор-функции f .

Итоговая задача оптимизации выглядит следующим образом:

𝜃* = argmin
𝑚∑︁

𝑖=1

𝑅∑︁

𝑐=1

[𝑦𝑖 = 𝑐] log(fSM(fAE(fRBM(xi)))[𝑐],

где 𝜃* = [W*
RBM,b

*
vis,b

*
hid,W

*
enc,W

*
dec,b

*
enc,b

*
dec,W

*
2,W

*
1] — параметры огра-

ниченной машины Больцмана (5.4), автокодировщика (5.5) и двуслойной се-
ти (5.6).
Результаты вычислительного эксперимента. В качестве выбор-

ки для проведения вычислительного эксперимента использовалась выборка
WISDM [141], представляющая собой набор записей акселерометра мобильного
телефона. Каждой записи соответствуют три координаты по осям акселеромет-
ра. Набор данных содержит записи движений для шести классов переменной
длины. При проведении вычислительного эксперимента из каждой записи ис-
пользовались первые 200 сегментов. Т. к. выборка не сбалансирована, в нее до-
бавлялись повторы записей классов, содержащих количество записей, меньшее
чем у большего класса.

Основные эксперименты — исследование зависимости ошибки классифика-
ции от числа параметров и размера выборки — были проведены как с исполь-
зованием инструментария на базе библиотеки Theano, так и с использованием
инструментария на языке Matlab. Для оценки качества классификации была
проведена процедура скользящего контроля [44] при соотношении числа объ-
ектов обучающей и контрольной выборки 3:1. Число нейронов на каждом слое
задавалось из соотношения 10:6:3. При проведении процедуры скользящего кон-
троля для каждого отсчета количества нейронов было произведено пять за-
пусков. В эксперименте с использованием инструментария на базе Theano при
обучении двуслойной нейронной сети проводился мультистарт [130], т. е. одно-
временный запуск обучения сети с восемью разными стартовыми значениями
параметров для предотвращения возможного застревания алгоритма обучения
в локальном минимуме. При оценке качества классификации выбиралась мо-
дель с наилучшими результатами. График зависимости ошибки классификации
от числа используемых нейронов изображен на рис. 5.1.
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Рис. 5.1. Зависимость ошибки от числа нейронов

Для оценки зависимости качества классификации от размера обучающей
выборки была проведена кросс-валидация с фиксированным количеством объ-
ектов в обучающей выборке (25% исходной выборки) и переменным размером
обучающей выборки. Число нейронов было установлено как 364:224:112. При
проведении процедуры скользящего контроля для каждого отсчета было произ-
ведено пять запусков. График зависимости ошибки классификации от размера
обучающей выборки представлен на рис. 5.2.

Для исследования скорости оптимизации нейросети в зависимости от кон-
фигурации Theano был сделан следующий эксперимент: проводилось обучение
двуслойной нейросети на основе подсчитанных заранее параметров ограничен-
ной машины Больцмана (5.4) и автокодировщика (5.5). Обучение проходило
за 100 итераций. При обучении алгоритм запускался параллельно с 𝑟 разными
стартовыми позициями, 𝑟 ∈ {1, . . . , 4}. Число нейронов было установлено как
300:200:100. Запуск осуществлялся со следующими конфигурациями Theano:

∙ вычисление на центральном процессоре, задействовано одно ядро;
∙ вычисление на центральном процессоре, задействовано четыре ядра;
∙ вычисление на центральном процессоре, задействовано восемь ядер;
∙ вычисление на графическом процессоре.
Результаты эксперимента приведены на рис. 5.3. Как видно из графика,

вычисление с использованием CUDA показывает значительное ускорение по
сравнению с вычислением на центральном процессоре.
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Рис. 5.2. Зависимость ошибки от размера обучающей выборки
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Рис. 5.3. Результаты эксперимента по исследованию скорости процесса обучения

5.2. Выбор модели обнаружения перефраза в тексте

В данном разделе решается задача выбора оптимальной нейросетевой моде-
ли из класса рекуррентных нейронных сетей. Рекуррентной нейросетью назы-
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вается нейросеть со связью между нейронами одного слоя. В качестве критерия
оптимальности используется нижняя оценка правдоподобия модели.

Для построения модели рекуррентной сети рассматривается модель из [154],
решающая задачу определения сходства предложений. Модель принимает на
вход векторизованные представления слов. Векторизация выполняется с по-
мощью алгоритма GloVe [155], основанного на факторизации матрицы слов-
контекстов и использовании весовой функции для уменьшения значимости
редких слов. Альтернативой этому алгоритму выступает линейная модель
Word2vec, комбинирующая в себе Continuous Bag-of-Words, skip-gram, negative
sampling [156]. Несмотря на разные подходы к проблеме, GloVe и Word2vec оп-
тимизируют схожие функционалы. Упрощенной линейной моделью Word2vec,
предназначенной для классификации документов, является fastText — метод,
работающий на символьных 𝑛-граммах [157].

Для решения задач, связанных с обработкой естественного языка приме-
няются модели рекуррентных сетей [158]. Обобщением рекуррентных моделей
являются рекурсивные модели автокодировщиков, агрегирующие информацию
от входного текста не рекуррентно, а по дереву синтаксического разбора.

Предлагается подход, основанный на получении вариационной нижней оцен-
ки правдоподобия модели. Предлагаемый подход сравнивается с методом уда-
ления параметров Optimal Brain Damage, базирующимся на анализе функции
ошибки (1.8).

Вычислительный эксперимент проводится на выборке размеченных пар
предложений SemEval 2015. Для каждой пары предложений из корпуса дана
экспертная оценка их семантической близости. Требуется построить модель,
оценивающую семантическую близость двух предложений. Проблема рассмат-
ривается как задача многоклассовой классификации, аналогично [154]. Кри-
терием качества служит 𝐹1-мера, учитывающая как полноту, так и точность
предсказаний. В качестве базовой модели рассматривается пара соединенных
рекуррентных сетей с общим вектором параметров и softmax-классификатором
на выходе.
Постановка задачи. Для построения выборки используем набор пар пред-

ложений SemEval 2015 [159]. Каждому слову сопоставим вектор размерности 𝑛.
Обозначим через 𝑙 число слов в самом длинном предложении. Предложения
длины, меньше 𝑙, дополним нулевыми векторами. Построим выборку

D = {(x𝑖, 𝑦𝑖)}, 𝑖 = 1, . . . ,𝑚,

где x𝑖 = [x1𝑖 ,x
2
𝑖 ] — пары последовательностей векторов слов, соответствующих

𝑖-й паре предложений, x1𝑖 ,x
2
𝑖 ∈ R𝑛×𝑙; 𝑦𝑖 ∈ Y = {0, . . . ,𝑅} — экспертная оценка

семантической близости.
Требуется построить модель 𝑓(w) : R𝑛×𝑙 × R𝑛×𝑙 → Y, сопоставляющую

паре предложений x1𝑖 и x2𝑖 класс семантической близости, где w ∈ W ⊆ R𝑠 —
пространство параметров модели. Искомая модель выбирается из множества
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𝑀 рекуррентных нейронных сетей с функцией активации tanh. Модель

𝑓 : R𝑛×𝑙 × R𝑛×𝑙 → Y

принадлежит искомому множеству моделей 𝑀 , если существуют такие матри-
цы перехода W1,W2 ∈ R𝑛×𝑛,W3 ∈ R(𝑍×2𝑛) и вектор смещения b ∈ R𝑛, что для
𝑗-х элементов x1𝑖𝑗,x

2
𝑖𝑗 ∈ R𝑚 последовательностей x1𝑖 и x2𝑖 определены векторы

скрытого слоя z1𝑖𝑗, z
2
𝑖𝑗 ∈ R𝑛:

z1𝑖𝑗 = tanh(W1x
1
𝑖𝑗 +W2z

1
𝑖,𝑗−1 + b), (5.7)

z2𝑖𝑗 = tanh(W1x
2
𝑖𝑗 +W2z

2
𝑖,𝑗−1 + b). (5.8)

Для определения класса семантической близости используются последние
значения скрытого слоя z1𝑖𝑙 и z2𝑖𝑙, объединенные в один вектор. После 𝑙-й ите-
рации пару предложений будем относить к классу с наибольшим значением,
полученным после 𝑙-й итерации, 𝑗 = 1, . . . , 𝑙:

𝑦 = argmax
𝑐∈{1,...,𝑅}

(︂
W3

[︂
z1𝑖𝑙
z2𝑖𝑙

]︂)︂
[𝑐], (5.9)

где (·)[𝑐] — 𝑐-я компонента вектора.
В качестве оптимизируемой функции потерь 𝐿 выступает вариационная

оценка обоснованности модели (2.8):

𝐿 =
𝑚∑︁

𝑖=1

log 𝑝(𝑦𝑖|x𝑖, ŵ)−𝐷KL

(︀
𝑞(w)||𝑝(w|h)

)︀
, ŵ ∼ 𝑞, (5.10)

где 𝑞 — вариацинное распределение, аппроксимирующее неизвестное апосте-
риорное распределение параметров. В качестве вариационного распределения
выберем нормальное распределение:

𝑞 ∼ 𝒩 (𝜇𝑞,A
−1
𝑞 ),

где 𝜇𝑞,A
−1
𝑞 — вектор средних и матрица ковариации. Априорное распределение

𝑝(w|h) вектора параметров w будем считать нормальным с параметрами 𝜇 и
A:

𝑝(w|h) ∼ 𝒩 (𝜇,A−1),

где 𝜇 — вектор средних, A−1 — матрица ковариаций.
Рассмотрим частные случаи вида матриц ковариаций A−1

𝑞 и A−1. Так как
априори нет предпочтений при выборе параметров, то априорное распределение
для всех параметров считаем одинаковым, т. е. вектор средних 𝜇 = 𝜇, матрица
ковариаций скалярна: A−1 = 𝛼I.

Априорное распределение уточняется после каждого шага оптимизации ва-
риационных параметров. Алгоритм решения оптимизационной задачи заключа-
ется в выполнении градиентного шага при заданном априорном распределении,
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вычислении апостериорного распределения и аппроксимации нового априорно-
го распределения полученным апостериорным.

Рассмотрим различные виды матрицы ковариаций A−1
𝑞 вариационного рас-

пределения 𝑞.
1. Матрица ковариаций скалярна: A−1

𝑞 = 𝛼𝑞I. В этом случае дивергенция
выглядит следующим образом:

DKL

(︀
𝒩 (𝜇𝑞,A

−1
𝑞 )||𝒩 (𝜇,A−1)

)︀
=

|W|∑︁

𝑗=1

(︀
log

𝛼

𝛼𝑞
+

(𝜇− 𝜇𝑞[𝑗])
2 + 𝛼2

𝑞 + 𝛼2

2𝛼2

)︀
,

где 𝜇𝑞[𝑗] — 𝑖-я компонента вектора 𝜇𝑞.
По значениям параметров 𝛼𝑞 и 𝜇𝑞 вариационного распределения вычис-
лим оптимальные параметры априорного. Из условия

𝜕

𝜕𝜇
DKL =

|W|∑︁

𝑗=1

𝜇− 𝜇𝑞[𝑗]

𝛼2
= 0

получаем выражения для 𝜇 на следующей итерации

𝜇′ =
1

|W|

|W|∑︁

𝑗=1

𝜇𝑞[𝑗].

Аналогично

𝜕

𝜕𝛼2
DKL =

|W|∑︁

𝑗=1

1

2𝛼2
− (𝜇− 𝜇𝑞[𝑗])

2 + 𝛼2
𝑞

2𝛼4
= 0 ⇒

⇒ 𝛼̂2 =
1

|W|

|W|∑︁

𝑖=1

(𝜇− 𝜇𝑞[𝑗])
2 + 𝛼2

𝑞.

2. Матрица ковариаций диагональна: A−1
𝑞 = diag(𝛼2

𝑞).
В этом случае

DKL

(︀
𝒩 (𝜇𝑞,A

−1
𝑞 )||𝒩 (𝜇,A−1)

)︀
=

|W|∑︁

𝑗=1

(log
𝛼

𝛼𝑞[𝑗]
+
(𝜇− 𝜇𝑞[𝑗])

2 +𝛼𝑞[𝑗]
2 + 𝛼2

2𝛼2
).

Значения параметров априорного распределения для следующей итера-
ции вычисляются следующим образом:

из
𝜕

𝜕𝜇
DKL =

|W|∑︁

𝑗=1

𝜇− 𝜇𝑞[𝑗]

𝛼2
= 0 получаем 𝜇̂ =

1

|W|

|W|∑︁

𝑗=1

𝜇𝑞[𝑗],
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из
𝜕

𝜕𝛼2
DKL =

|W|∑︁

𝑗=1

1

2𝛼2
− (𝜇− 𝜇𝑞[𝑗])

2 +𝛼[𝑗]2

2𝛼4
= 0

получаем

𝛼̂2 =
1

|W|

|W|∑︁

𝑗=1

(𝜇− 𝜇𝑞[𝑗])
2 +𝛼𝑞[𝑗]

2.

Оптимизация параметров сводится к следующему алгоритму:

1. Инициализировать 𝛼𝑞 = 1, 𝜇𝑞 = 0,𝜇 = 0, 𝛼2 = 1.
Повторять:

2. Сделать градиентный шаг (2.17) по вариационным параметрам 𝜃 =
[𝜇,𝛼𝑞].

3. Обновить параметры априорного распределения.

4. Пока значение 𝐿 не стабилизируется.
Удаление нерелевантных параметров Введем множество индексов ак-

тивных параметров модели 𝒜 = {𝑗|𝑤𝑗 ̸= 0}. Для увеличения правдоподобия
модели предлагается уменьшить число активных параметров |𝒜|. Для удале-
ния выберем параметры, имеющие наибольшую плотность вариационной веро-
ятности 𝜌 (1.9) в нуле. Если апостериорная матрица ковариаций скалярна, то

𝜌𝑗 = exp

(︂
− 𝜇𝑞[𝑗]

2

2𝛼𝑞[𝑗]2

)︂
. (5.11)

Чем больше 𝜌, тем меньше |𝜇𝑞[𝑗]

𝛼𝑞[𝑗]
|, поэтому удаляются параметры со значением

|𝜇𝑞[𝑗]

𝛼𝑞[𝑗]
| < 𝜆, где 𝜆 — пороговое значение. Варьируя пороговое значение 𝜆, выбира-

ем оптимальное число неудаленных параметров. Для диагонального вида мат-
рицы ковариаций критерий удаления параметров записывается как |𝜇𝑞[𝑗]

𝛼𝑞[𝑗]
| < 𝜆.

Вычислительный эксперимент. Цель эксперимента — проверка работо-
способности предложенного алгоритма и сравнение результатов с ранее полу-
ченными. В качестве данных использовалась выборка SemEval 2015, состоящая
из 8331 пары схожих и несхожих предложений. Слова преобразовывались в
векторы размерности 50 при помощи алгоритма GloVe [155].

Для базовых алгоритмов тренировочная, валидационная и тестовая выбор-
ки составили 70%, 15% и 15% соответственно. Для рекуррентной нейронной
сети, полученной вариационным методом, валидационная выборка отсутство-
вала, а тренировочная и тестовая выборки составили 85% и 15% соответствен-
но. Критерием качества была выбрана 𝐹1-мера. В качестве базовых алгоритмов
использовались линейная регрессия, метод ближайших соседей, решающее де-
рево и модификация метода опорных векторов SVC. Базовые алгоритмы взяты
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из библиотеки sklearn [94]. Дополнительно были построены рекуррентная ней-
росеть с одним скрытым слоем [154] и нейросеть с одним скрытым слоем и
вариационной оптимизацией параметров.
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Рис. 5.4. Доля неудаленных параметров сети в зависимости от порогового зна-
чения 𝜆 для скалярного (𝐼) и диагонального (𝐷) вида апостериорной матрицы
ковариаций.

На рис. 5.5а и 5.5б представлена зависимость оценки правдоподобия 𝐿
(5.12) от параметра 𝜆. Для обоих случаев существует оптимальное значение
𝜆, минимизирующее 𝐿; модели с таким параметром будут оптимальными. На
рис. 5.5в, 5.5г, 5.5д и 5.5е отображены зависимости качества модели от 𝜆 и доли
выброшенных параметров. Видно, что даже при удалении большинства пара-
метров из сети качество предсказаний меняется несущественно, что говорит о
слишком большом числе параметров исходной модели.

Из рис. 5.4 видно, что при малых 𝜆 из сети с диагональной апостериорной
матрицей ковариаций удаляется больше весов, а при больших 𝜆 — меньше, что
говорит о лучшем отборе параметров такой моделью.

5.3. Определение релевантности параметров модели глубокого обу-

чения

В данном разделе решается задача выбора субоптимальной структуры ней-
ронной сети. Предлагается удалять наименее релевантные параметры модели.
Под релевантностью [39] подразумевается то, насколько параметр влияет на
функцию ошибки. Малая релевантность указывает на то, что удаление этого
параметра не влечет значимого изменения функции ошибки. Метод предлага-
ет построение исходной избыточной сложности нейросети с большим числом
избыточных параметров. Для определения релевантности параметров предла-
гается оптимизировать параметры и гиперпараметры в единой процедуре. Для
удаления параметров предлагается использовать метод Белсли [160].
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Рис. 5.5. Зависимость нижней оценки правдоподобия модели и F1-меры от 𝜆

для скалярной (а, б, в) и диагональной(г, д, е) матриц.
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Таблица 5.1. Результаты вычислительного эксперимента

Модель 𝐹1, валидация 𝐹1,тест
Логистическая регрессия 0,286 0,286
SVC 0,290 0,290
Дерево решений 0,316 0,316
KNN 0,322 0,322
Рекуррентная модель 0,393 0,362
Рекуррентная модель с вариационным распреде-
лением, A = 𝛼I,A𝑞 = 𝛼𝑞I

— 0,311

Рекуррентная модель с вариационным распреде-
лением, A = 𝛼I,A𝑞 диагональная

— 0,330

Проверка и анализ метода проводится на выборке Boston Housing, Wine
и синтетических данных. Результат сравнивается с моделью, полученной при
помощи базовых алгоритмов.
Постановка задачи. Задана выборка

D = {x𝑖, 𝑦𝑖}, 𝑖 = 1, ...,𝑚,

где x𝑖 ∈ R𝑛, 𝑦𝑖 ∈ {1, . . . ,𝑅}, 𝑅 — число классов. Рассмотрим модель

f(x,w) : R𝑛 ×W → [0, 1]𝑅,

f(w,x) = softmax
(︀
f0(f1(...(f|𝑉 |−1(x,w)

)︀
.

Параметр 𝑤𝑗 модели f называется активным, если 𝑤𝑗 ̸= 0. Множество ин-
дексов активных параметров обозначим 𝒜. Задано пространство активных па-
раметров модели:

W𝒜 ⊂ {1, . . . , |W| : 𝑤𝑗 ̸= 0, 𝑗 ∈ 𝒜}.
Для модели f с множеством индексов активных параметров𝒜 и соответству-

ющего ей вектора параметров w ∈ W𝒜 определим логарифмическую функцию
правдоподобия выборки (2.8):

𝐿 =
𝑚∑︁

𝑖=1

log 𝑝(𝑦𝑖|x𝑖, ŵ)−𝐷KL

(︀
𝑞(w)||𝑝(w|h)

)︀
, ŵ ∼ 𝑞, (5.12)

где 𝑞 — вариацинное распределение, аппроксимирующее неизвестное апостери-
орное распределение параметров.

Аналогично (5.12) будем проводить оптимизацию вариационной оценки
правдоподобия модели, где в качестве вариационного распределения 𝑞 и априор-
ного распределения параметров 𝑝(w|h) выступает нормальное. Требуется най-
ти множество активных параметров W𝒜, доставляющие максимум функции
потерь 𝐿:

𝐿 → max
𝒜,w∈W𝒜

.
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Случайное удаление. Метод случайного удаления заключается в том,
что случайным образом удаляется некоторый параметр 𝑤𝜉 из множества ак-
тивных параметров сети. Индекс параметра 𝜉 порождается из равномерного
распределения:

𝜉 ∼ 𝒰(𝒜)

Оптимальное прореживание. Метод оптимального прорежива-
ния [8] (1.8) использует вторую производную целевой функции. Нахождение
очередного индекса элемента для удаления сводится к задаче оптимизации:

𝜉 = argmin
𝑤2
𝜉

−2H[𝑖, 𝑗]
,

где 𝜉 — индекс наименее релевантного, удаляемого параметра.
Удаление неинформативных параметров с помощью вариацион-

ного вывода. В работе [39] предлагается удалять параметры, которые имеют
максимальное отношение плотности 𝑝(w|𝒜) априорной вероятности в нуле к
плотности вероятности априорной вероятности в математическом ожидании 𝜇𝑗
параметра 𝑤𝑗.
Для гауссовского распределения с диагональной матрицей ковариации получа-
ем:

𝑝(𝑤𝑗|h) =
1√︀

2𝛼𝑞[𝑗]2
exp(−(𝑤𝑗 − 𝜇𝑗)

2

2𝛼𝑞[𝑗]2
).

Разделим плотность вероятности в нуле к плотности в математическом ожида-
нии (1.9)

𝑝(𝑤𝑗 = 0|h)
𝑝(𝑤𝑗 = 𝜇𝑗|h)

= exp

(︃
−

𝜇2
𝑗

2𝛼𝑞[𝑗]2

)︃
,

и поставим следующую задачу оптимизации:

𝜉 = argmin
𝑗∈𝒜

⃒⃒
⃒⃒ 𝜇𝑗
𝛼𝑞[𝑗]

⃒⃒
⃒⃒ ,

где 𝜉 — индекс наименее релевантного, удаляемого параметра.
Предлагаемый метод определения релевантности параметров ней-

росети. Предлагается метод основанный, на модификации метода Белсли.
Пусть w — вектор параметров, доставляющий минимум функционалу потерь
𝐿 на множестве W𝒜, а A−1

𝑞 соответствующая ему ковариационная матрица.
Выполним сингулярное разложение матрицы

A−1
𝑞 = UΛVT.

Индекс обусловленности 𝜂𝑗 определим как отношение максимального элемента
к 𝑗-му элементу матрицы Λ. Для нахождения мультикоррелирующих призна-
ков требуется найти индекс 𝜉 вида:

𝜉 = argmax
𝑗∈𝒜

𝜂𝑗.
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Рис. 5.6. Илюстрация метода Белсли

Таблица 5.2. Илюстрация метода Белсли

𝜂 𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6
1.0 2 · 10−17 4 · 10−17 1 · 10−16 2 · 10−17 6 · 10−17 3 · 10−4

1.5 5 · 10−17 9 · 10−17 2 · 10−16 5 · 10−17 3 · 10−20 3 · 10−2

3.3 9 · 10−18 1 · 10−17 2 · 10−17 9 · 10−18 2 · 10−19 9 · 10−1

2 · 1015 1 · 10−2 1 · 10−1 8 · 10−1 2 · 10−3 9 · 10−2 1 · 1017
8 · 1015 6 · 10−2 8 · 10−1 9 · 10−2 8 · 10−2 9 · 10−1 2 · 1017
1 · 1016 9 · 10−1 1 · 10−2 4 · 10−2 9 · 10−1 1 · 10−3 5 · 10−21

Дисперсионный долевой коэффициент 𝑞𝑖,𝑗 определим как вклад 𝑗-го призна-
ка в дисперсию 𝑖-го элемента вектора параметра w:

𝑞𝑖,𝑗 =
𝑢2
𝑖,𝑗/𝜆𝑗,𝑗∑︀𝑛

𝑗=1 𝑢
2
𝑖,𝑗/𝜆𝑗,𝑗

.

Большие значение дисперсионных долей указывают на наличие зависимости
между параметрами. Находим долевые коэффициенты, которые вносят макси-
мальный вклад в дисперсию параметра 𝑤𝜉:

𝜁 = argmax
𝑗∈𝒜

𝑞𝜉,𝑗.

Параметр с индексом 𝜁 определим как наименее релевантный параметр нейро-
сети.

Проиллюстрируем принцип работы метода Белсли на примере. Рассмотрим
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данные, порожденные следующим образом:

w =

⎡
⎢⎢⎢⎢⎢⎢⎣

sin(𝑥)
cos(𝑥)

2+cos(𝑥)
2+sin(𝑥)

cos(𝑥) + sin(𝑥)
𝑥

⎤
⎥⎥⎥⎥⎥⎥⎦
,

с матрицей ковариации на рис. 5.6.a, где 𝑥 ∈ {0.0, 0.02, ..., 20.0}.
В табл. 5.2 приведены индексы обусловленности и соответствующие им дис-

персионные доли, которые также изображены на рис. 5.6.б. Согласно этим дан-
ным, максимальный индекс обусловленности 𝜂6 = 1.2 · 1016. Ему соответствуют
максимальные дисперсионные доли признаков с индексами 1 и 4, которые, как
видно из построения выборки, коррелируют между собой.
Вычислительный эксперимент. Для анализа свойств предложенно-

го алгоритма и сравнения его с существующими был проведен вычислитель-
ный эксперимент. В качестве данных использовались три выборки. Выборки
Wine [161] и Boston Housing [162] — это реальные данные. Синтетические данные
сгенерированы таким образом, чтобы параметры сети были мультикоррелируе-
мые. Генерация данных состояла из двух этапов. На первом этапе генерировался
вектор параметров wsynthetic:

wsynthetic ∼ 𝒩 (msynthetic,A
−1
synthetic),

где msynthetic =

⎡
⎢⎢⎣

1.0
0.0025
· · ·

0.0025

⎤
⎥⎥⎦, A

−1
synthetic =

⎡
⎢⎢⎣

1.0 10−3 · · · 10−3 10−3

10−3 1.0 · · · 0.95 0.95
· · · · · · · · · · · · · · ·
10−3 0.95 · · · 0.95 1.0

⎤
⎥⎥⎦.

На втором этапе генерировалась выборка Dsynthetic:

Dsynthetic = {(x𝑖, 𝑦𝑖)|x𝑖 ∼ 𝒩 (1, I), 𝑦𝑖 = 𝑥𝑖,0, 𝑖 = 1 . . . 10000}.

В приведенном выше векторе параметров wsynthetic для выборки Dsynthetic, наи-
более релевантным является первый параметр, а все остальные параметры яв-
ляются нерелевантными. Матрица ковариации была выбрана таким образом,
чтобы все нерелевантные параметры были зависимы и метод Белсли был мак-
симально эффективен.

Для алгоритмов тренировочная и тестовая выборки составили 80% и 20% со-
ответственно. Критерием качества прореживания служит процент параметров
нейросети, удаление которого не влечет значимой потери качества прогноза.
Также критерием качества служит устойчивость нейросети к зашумленности
данных.
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Таблица 5.3. Описание выборок для эксперимента по определению релевантно-
сти параметров модели глубокого обучения

Выборка Тип задачи Размер выборки Число признаков
Wine классификация 178 13
Boston Housing регрессия 506 13
Synthetic data регрессия 10000 100

Качеством прогноза Accuracy модели для задачи классификации является
точность прогноза модели:

Accuracy =

∑︀𝑚
𝑖=1[𝑓(w,x𝑖) = 𝑦𝑖]

𝑚
,

Качеством прогноза RMSE модели для задачи регрессии является средне-
квадратическое отклонение результата модели от точного:

RMSE =

∑︀𝑚
𝑖=1 (𝑓(w,x𝑖)− 𝑦𝑖)

2

𝑚
.

Wine. Рассмотрим нейронную сеть с 13 нейронами на входе, 13 нейронами
в скрытом слое и 3 нейронами на выходе.
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Рис. 5.7. Качество прогноза при удаление параметров на выборке Wine

На рис. 5.7 показано как меняется точность прогноза Accuracy при удалении
параметров указанными методами. Из графика видно, что метод оптимального
прореживания, вариационный метод и метод Белсли позволяют удалить ≈ 80%
параметров и качество всех этих методов падает при удалении ≈ 90% парамет-
ров нейросети.

На рис. 5.8 показаны поверхности изменения уровня шума ответов нейро-
сети при изменении процента удаленных параметров и уровня шума входных
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(а) Произвольное удаление параметров
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(б) Оптимальное прореживание
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(в) Вариационный метод

Рис. 5.8. Влияние шума в начальных данных на шум выхода нейросети на вы-
борке Wine

данных для разных методов прореживания. На графиках показано, что при уда-
лении параметров нейросети методом Белсли шум меньше, чем при удалении
параметров другими методами, на это указывает то что поверхность которая
соответствует методу Белсли ниже других поверхностей.
Boston Housing. Рассмотрим нейронную сеть с 13 нейронами на входе, 39

нейронами в скрытом слое и одним нейроном на выходе.
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Рис. 5.9. Качество прогноза при удаление параметров на выборке Boston
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Рис. 5.10. Влияние шума в начальных данных на шум выхода нейросети на
выборке Boston

На рис. 5.9 показано как меняется среднеквадратическое отклонение прогно-
за RMSE от точного ответа при удалении параметров указанными методами.
График показывает, что метод Белсли является более эффективным, чем дру-
гие методы, т.к. позволяет удалить больше параметров нейросети без потери
качества.

На рис. 5.10 показаны поверхности изменения уровня шума ответов нейро-
сети при изменении процента удаленных параметров и уровня шума входных
данных для разных методов прореживания. График показывает, что уровень
шума всех методов одинаковый, так как поверхности всех методов находятся
на одном уровне.
Синтетические данные. Рассмотрим нейронную сеть с 100 нейронами на

входе и одним нейроном на выходе.
На рис. 5.11 показано как меняется среднеквадратическое отклонение про-

гноза от RMSE точного ответа при удалении параметров указанными методами.
График показывает, что удаление параметров методом Белсли является более
эффективным чем другие методы прореживания, т.к. качество прогноза нейро-
сети улучшается при удалении шумовых параметров.

На рис. 5.12 показаны поверхности изменения уровня шума ответов нейро-
сети при изменении процента удаленных параметров и уровня шума входных
данных для разных методов прореживания. На графиках показано, что при
удалении параметров нейросети методом Белсли шум меньше, чем при уда-
лении параметров другими методами, т.к. поверхность которая соответствует
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Рис. 5.11. Качество прогноза при удаление параметров на синтетической вы-
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(б) Оптимальное прореживание
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(в) Вариационный метод

Рис. 5.12. Влияние шума в начальных данных на шум выхода нейросети на
синтетической выборке

методу Белсли ниже других поверхностей.
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Заключение

Основные результаты диссертационной работы заключаются в следующем.
В главе 1 введены основные понятия, поставлены задачи выбора модели глу-

бокого обучения и проанализированы методы оптимизации параметров модели,
методы оптимизации гиперпараметров, методы представления моделей глубо-
кого обучения в графовом виде, методы оптимизации структурных параметров
и метапараметров модели. Последние включают в себя как эвристические ме-
тоды, так и методы, основанные на байесовском выводе и вероятностных пред-
положениях о распределении параметров, гиперпараметров и метапараметров
модели.

В главе 2 были предложены критерии оптимальной и субоптимальной слож-
ности моделей глубокого обучения. Предложен алгоритм выбора субоптималь-
ной модели, основанный на получении вариационной нижней оценки правдопо-
добия модели. Был предложен метод получения оценки, основанный на стоха-
стическом градиентном спуске, позволяющий проводить выбор модели и опти-
мизацию модели единообразно. Исследованы свойства стохастического гради-
ентного спуска, а также оценок правдоподобия, полученных с его использова-
нием. Работа представленного алгоритма проиллюстрирована рядом выборок.
Вычислительный эксперимент продемонстрировал значимое влияние априор-
ного распределения на апостериорное распределение параметров модели.

В главе 3 были проанализированы градиентные методы оптимизации гипер-
параметров. Предложено обобщение существующих методов на функции потерь
и валидации общего вида. Было проведено сравнение двух критериев выбора
модели: на основе кросс-валидации и на основе вариационной оценки правдопо-
добия модели. Эксперименты показали, что градиентные методы оптимизации
гиперпараметров являются эффективными в случае, когда число гиперпара-
метров велико. Также эксперименты показали, что те модели, гиперпараметры
и параметры которых были оптимизированы с использованием вариационной
оценки правдоподобия модели, имеют меньшую точность классификации, чем
те модели, чьи гиперпараметры и параметры были оптимизированы с исполь-
зованием метода кросс-валидации. В то же время, первые модели оказались
более робастными при добавлении шума в выборку. Модели, чья оптимизация
проводилась с использованием вариационной оценки правдоподобия, оказались
значительно лучшими на синтетической выборке, когда число объектов в обуча-
ющей выборке мало по сравнению с числом параметров. Поэтому вариационная
оценка правдоподобия более предпочтительна, когда вероятность переобучения
моделей велика или когда проведение кросс-валидации вычислительно затрат-
но.

В главе 4 был предложен обобщенный метод выбора структуры модели
субоптимальной сложности. Формализовано понятие параметрической сложно-
сти для вероятностных моделей. Сформулированы требования к вариационным
распределениям, введенным на структуре модели. Показано, что предложен-

124



ный метод выбора структуры модели обобщает такие методы выбора модели
как оптимизация по критерию максимального правдоподобия, оптимизация ва-
риационной оценки обоснованности модели, снижение и увеличение сложности
модели, а также полный перебор.

В главе 5 проведен анализ свойств предложенных методов. Описан реализо-
ванный программный комплекс, выбирающий модели глубокого обучения. Про-
ведено сравнение предложенных алгоритмов с известными решениями. Пред-
ложенные алгоритмы показали более высокое качество решения задач.
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Список оcновных обозначений

x𝑖 ∈ X — вектор признакового описания 𝑖-го объекта
𝑦𝑖 ∈ y — метка 𝑖-го объекта
D — выборка
X ⊂ X — матрица, содержащая признаковое описание объектов выборки
y ⊂ Y — вектор меток объектов выборки
𝑚 — количество объектов в выборке
𝑛 — количество признаков в признаковом описании объекта
X = R𝑚 — признаковое пространство объектов
Y — множество меток объектов
𝑅 — множество классов в задаче классификации
𝑟 — число оптимизаций модели
(𝑉,𝐸) — граф со множеством вершин 𝑉 и множеством ребер 𝐸
g𝑗,𝑘 — вектор базовых функций для ребра (𝑗, 𝑘)
𝐾𝑗,𝑘 — мощность вектора базовых функций для ребра (𝑗, 𝑘)
agg𝑣 — функция агрегации для вершины 𝑣
𝛾𝑗,𝑘 — структурный параметр для ребра (𝑗, 𝑘)
Δ𝐾 — симплекс на 𝐾 вершинах
Δ̄𝐾 — множество вершин симплекса на 𝐾 вершинах
F — параметрическое семейство моделей
𝑈 — область определения оптимизационной задачи
w ∈ W — параметры модели
W — пространство параметров модели
𝑈w ⊂ W — область определения параметров модели
Γ ∈ Γ — структура модели
Γ — множество значений структуры модели
𝑈Γ ⊂ Γ — область определения параметров модели
h ∈ H — гиперпараметры модели
H — пространство гиперпараметров модели
𝑈h ⊂ H — область определения гиперпараметров
𝜃 ∈ Θ — параметры вариационного распределения
Θ — пространство параметров вариационного распределения
𝑈𝜃 ⊂ Θ — область определения вариационных параметров модели
𝜃w ∈ Θw — параметры вариационного распределения, аппроксимирующего апо-
стериорное распределение параметров модели
Θw — пространство параметров вариационного распределения, аппроксимиру-
ющего апостериорное распределение параметров модели
𝑈𝜃w

⊂ Θw — область определения параметров вариационного распределения,
аппроксимирующего апостериорное распределение параметров модели
𝜃Γ ∈ ΘΓ — параметры вариационного распределения, аппроксимирующего апо-
стериорное распределение структуры модели
ΘΓ —пространство параметров вариационного распределения, аппроксимирую-
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щего апостериорное распределение структуры модели
𝑈𝜃Γ

⊂ ΘΓ — область определения параметров вариационного распределения,
аппроксимирующего апостериорное распределение структуры модели
𝜆 ∈ Λ — вектор метапараметров
Λ — пространство метапараметров
𝑈𝜆 ⊂ Λ — область определения метапараметров
𝑝(y|X,w,Γ) — правдоподобие выборки
𝑝(w,Γ|h,𝜆) — априорное распределение параметров и структуры модели
𝑝(h|𝜆) — распределение гиперпараметров модели
𝑝(Γ|h,𝜆) — априорное распределение структуры модели
𝑝(w|Γ,h,𝜆) — априорное распределение параметров модели
𝑝(w,Γ|y,X,h,𝜆) — апостериорное распределение параметров и структуры мо-
дели
𝑝(w|y,X,Γ,h,𝜆) — апостериорное распределение структуры модели
𝑝(Γ|y,X,h,𝜆) — апостериорное распределение структуры модели
𝑝(h|y,X,𝜆) — апостериорное распределение гиперпараметров
𝑝(𝑦,w,Γ|x,h) — вероятностная модель глубокого обучения
𝑝(y|X,h,𝜆) — обоснованность модели
𝑞(w,Γ|𝜃) — вариационное распределение параметров и структуры модели
𝑞w(w|Γ, 𝜃w) — вариационное распределение структуры модели
𝑞Γ(Γ|𝜃Γ) — вариационное распределение параметров модели
𝐿(𝜃|y,X,h,𝜆) — функция потерь
𝑄(h|y,X, 𝜃,𝜆) — валидационная функция
𝑇 (𝜃|𝐿(𝜃|y,X,h,𝜆)) — оператор оптимизации
Q — семейство вариационных распределений
S — энтропия распределения
𝑀 — множество моделей без общей параметризации
𝐷KL

(︀
𝑝1||𝑝2

)︀
— дивергенция Кульбака-Лейблера между распределениями 𝑝1 и 𝑝2

A−1 — матрица ковариаций параметров модели
s — конкатенация параметров концентрации на структуре модели
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