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Общая характеристика работы

Актуальность темы. Развитие современных технологий сбора и
хранения информации привело к заметному увеличению объёмов дан­
ных, в частности текстовых документов. Во многих прикладных областях
возникает потребность в обработке и анализе накопленных текстовых кол­
лекций. Одним из популярных в настоящее время направлений обработки
естественного языка (Natural Language Processing, NLP) является тема­
тическое моделирование. Тематическая модель описывает зависимость
текстовых документов и содержащихся в них термов через наборы кла­
стеров термов — тем. В роли термов обычно рассматриваются слова или
их нормальные формы, но также иногда используются словосочетания или
термины. Конкретная форма термов зависит то того, какие виды предва­
рительной обработки текста были применены к коллекции. Тематическая
модель для текстовой коллекции относит каждый документ к некоторым
темам и для каждой темы определяет какие термы её образуют. Выявление
подобных тематики текста можно рассматривать как шаг в направлении
понимания естественного языка (Natural Language Understanding, NLU). В
частности, тематическое моделирование предоставляет вариант решения
проблемы синонимии и полисемии слов. Синонимы объединяются в одну те­
му, поскольку обычно употребляются в схожих контекстах. В то же время
слова с несколькими значениями и омонимы попадают сразу в несколько
тем, позволяя отличить разные по смыслу употребления друг от друга.

Тематическое моделирование может быть использовано для получе­
ния интерпретируемых векторных представлений слов, демонстрирующих
сравнимое качество с векторными представлениями модели SGNS (Skip­
Gram Negative Sampling) [Distributed Representations of Words and Phrases
and their Compositionality, 2013] на задачах сравнения семантически близ­
ких слов [Potapenko, Popov, Vorontsov, 2017]. Но применение тематического
моделирования не ограничивается только областью анализа текстов. Дан­
ный подход применяется и в других областях, например, в анализе аудио
[W. Wang, 2011], анализе изображений и видео [Feng, Lapata, Mirella,
2010; Hospedales, Gong, Xiang, 2011; LI (и др.), 2012], биоинформатике
[Pritchard J. K., 2000; Shivashankar (и др.), 2011]. Также тематические моде­
ли используются в задачах информационного поиска [Vulić, Smet, Moens,
2012; Vulić (и др.), 2015; Ianina, Golitsyn, Vorontsov, 2017; Ianina, Vorontsov,
2019] и рекомендаций [Nikolenko, 2015; Nikolenko, Koltcov, Koltsova, 2017;
Pan, Li, 2010].

Общий подход для решения задачи тематического моделирова­
ния — построение вероятностной тематическая модели (Probabilistic Topic
Model, PTM). Согласно этому подходу документы описываются некоторым
дискретным распределением вероятностей на множестве тем, а темы —
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дискретным распределением вероятностей на множестве термов. Постро­
енная модель позволяет преобразовать любой текст в вектор вероятностей
тем. Важным преимуществом тематического векторного представления
текста является его интерпретируемость. Каждая координата вектора по­
казывает долю соответствующей темы в тексте, при этом семантика темы
описывается частотным словарём термов, то есть фактически словами
естественного языка.

Классическим методом построения PTM является предложенный в
1999 году вероятностный латентный семантический анализ (Probabilistic
Latent Semantic Analysis, PLSA [Hofmann, 1999]). Этот подход задаёт веро­
ятностную модель порождения термов в документах и строит разбиение
термов и документов на темы, исходя из принципа максимизации правдо­
подобия. В 2003 году была предложена классическая модель латентного
размещения Дирихле (Latent Dirichlet Allocation, LDA [Blei, Ng, Jordan,
2003]), которая была более устойчива и более точно учитывала данные
о редких термах.

Важным преимуществом модели LDA является возможность расши­
рять вероятностную модель дополнительными параметрам. Это сыграло
важную роль в популярности подхода LDA [Applications of topic models,
2017]. Именно на основе этого подхода, были предложены вероятностные
модели, учитывающие связи между документами [Cohn, Hofmann, 2001;
McCallum, Corrada-Emmanuel, X. Wang, 2005; Nallapati, Cohen, 2008] или
метаданные о документах [Probabilistic author-topic models for information
discovery, 2004]. Также есть модели, которые учитывают время появления
документа и его язык [Zosa, Granroth-Wilding, 2019] или порядок слов в
документе [Gruber, Weiss, Rosen-Zvi, 2007; Wallach, 2006], что изначально
было несвойственно подходу LDA.

Традиционный способ построения новых тематических моделей опи­
сан в [Applications of topic models, 2017]. Рекомендации включают в
себя: введение новой вероятностной модели коллекции документов, ко­
торая не должна быть слишком вычислительно сложной, оставаясь при
этом реалистичной; нахождение нового алгоритма оценки апостериорно­
го распределения параметров; реализацию этого алгоритма; валидацию
результатов. Трудностями использования подобного подхода являются
необходимость проделывать данные действия заново для каждой новой
модели, а также сложность и, иногда, невозможность построения тема­
тических моделей, удовлетворяющих нескольким различным требований
одновременно.

Теория аддитивной регуляризации тематических моделей (Additive
Regularization of Topic Models, ARTM) [Vorontsov, Potapenko, 2015] ре­
шает эти проблемы, отказываясь от использования байесовского выво­
да [Vorontsov, Potapenko, 2014a]. В ARTM любые требования к модели
формализуются через оптимизационные критерии — регуляризаторы.
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Если требований несколько, то в постановку оптимизационной задачи
вводится взвешенная сумма регуляризаторов [Vorontsov, Potapenko, 2015;
Vorontsov, Potapenko, Plavin, 2015]. Байесовские тематические модели,
как правило, удаётся переформулировать в терминах регуляризации,
при этом существенно сокращается объём необходимых математических
выкладок [Fast and modular regularized topic modelling, 2017]. Для оце­
нивания параметров модели с произвольным набором регуляризаторов
используется один и тот же итерационный процесс, называемый регуля­
ризованным EM-алгоритмом. Этот алгоритм даёт возможность добавлять
и заменять регуляризаторы не только на уровне постановки задачи, но и на
уровне алгоритма и его программного кода. Это приводит к модульной тех­
нологии тематического моделирования, которая реализована в проектах
с открытым кодом BigARTM [BigARTM: Open Source Library for Regularized
Multimodal Topic Modeling of Large Collections, 2015; Frei, Apishev, 2017]
и TopicNet [TopicNet: Making Additive Regularisation for Topic Modelling
Accessible, 2020].

Дополнительным обоснованием использования регуляризаторов яв­
ляется некорректность по Адамару [Hadamard, 1902] поставленной оп­
тимизационной задачи максимизации правдоподобия. Согласно теории
регуляризации А. Н.Тихонова [Tikhonov, Arsenin, 1977], добавление регу­
ляризатора доопределяет решение задачи и делает его устойчивым.

До сих пор в теории ARTM оставались открытыми вопросы о схо­
димости регуляризованного EM-алгоритма и о влиянии регуляризато­
ров на сходимость. В литературе хорошо изучены свойства Generalized
Expectation Maximization алгоритма (GEM [Dempster, Laird, Rubin, 1977]),
для которого известны достаточные условия сходимости [Wu, 1983]. В дан­
ной работе показывается, что итерации регуляризованного EM-алгоритма
ARTM возможно интерпретировать как итерации GEM-алгоритма, за счёт
чего возможно получить достаточные условия сходимости.

Для сходящегося итерационного процесса ARTM ставится вопрос
о свойствах точки, к которой сошёлся алгоритм, например, открытым
является вопрос о единственности полученного решения. С формальной
точки зрения, в алгоритме ARTM для матрицы частот слов в докумен­
тах строится стохастическое матричное разложение, ранг которого равен
числу тем. Поскольку точного разложения требуемого ранга, как правило,
не существует, то строится приближенное разложение, которое является
локальным экстремумом оптимизируемого функционала. Таким образом,
неединственность решения задачи тематического моделирования может
возникать как из-за неоднозначности выбора этого приближения, так и
из-за неединственности точного разложения приближения. До сих пор
остаётся открытым вопрос о влиянии этих факторов на неединственность
решения задачи тематического моделирования.
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Проблема единственности стохастического матричного разложения
исследовалась в работах [Donoho, Stodden, 2004; Laurberg (и др.), 2008;
Gillis, 2012]. В этих работах представлены либо достаточные, либо необхо­
димые условия единственности разложения. Недостатками предложенных
условий применительно к тематическому моделированию являются их гро­
моздкость и сложность проверки выполнения на практике.

В данной работе исследуются теоретические свойства регуляризо­
ванного EM-алгоритма ARTM. Особое внимание уделяются вопросам
сходимости данного алгоритма и единственности стохастического матрич­
ного разложения в точке сходимости, поскольку они являются открытыми
и представляют отдельный интерес. Также в рамках исследования про­
изводится поиск возможных модификаций алгоритма, которые за счёт
теоретических гарантий будут улучшать качество получаемых тематиче­
ских моделей.

Целью данной работы является получение достаточных условий схо­
димости алгоритма аддитивной регуляризации тематических моделей и
достаточных условий для единственности стохастического матричного раз­
ложения в точке сходимости, которые могут быть проверены на реальных
текстовых коллекциях, а также поиск модификаций исходного алгоритма,
улучшающих сходимость и повышающих метрики качества тематических
моделей.

Методология и методы исследования. В работе использованы
подходы и методы численной оптимизации, вычислительной линейной
алгебры, теории матричных разложений, машинного обучения. Для до­
казательства сходимости алгоритма ARTM использовались известные
фундаментальные результаты о сходимости GEM-алгоритмов. Для дока­
зательства единственности стохастического матричного разложения был
использован подход геометрической интерпретации стохастического мат­
ричного разложения. В качестве реализации алгоритма ARTM исполь­
зовались собственная реализация на языке Python1 а также библиотеки
с открытым кодом BigARTM [Frei, Apishev, 2017] и TopicNet [TopicNet:
Making Additive Regularisation for Topic Modelling Accessible, 2020]. Для
экспериментов в качестве текстовых коллекций использовались открытые
публичные данные.

Научная новизна:
1. Впервые были получены достаточные условия сходимости алгорит­

ма аддитивной регуляризации тематических моделей ARTM.
2. Были получены достаточные условия единственности стохастиче­

ского матричного разложения в задачах тематического моделиро­
вания.

3. Были сформулированы причины нединственности решения для за­
дач тематического моделирования.

1github.com/ilirhin/python_artm/tree/master/
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4. Был разработан новый подход к стохастическому матричному
разложению в тематическом моделировании, в котором одна из
матриц находится в функциональной зависимости от другой.

Теоретическая значимость В работе впервые предложен подход
с интерпретацией ARTM как GEM-алгоритма, в результате чего были
получены достаточные условия сходимости данного алгоритма. Также
были получены достаточные условия на единственность стохастического
матричного разложения. В результате были сформулированы причины
неединственности решения в тематическом моделировании.

Практическая значимость Разработана реализация алгоритма
ARTM, с помощью которой теоретические положения диссертационной
работы были подтверждены на реальных текстовых коллекциях. Пред­
ложенные в работе в работе алгоритмы реализованы в библиотеке с
открытым кодом TopicNet. Модификации EM-алгоритма ARTM, полу­
ченные на основе теоретических результатов, значительно увеличивают
основные метрики качества тематических моделей.

Основные положения, выносимые на защиту:
1. Теорема о достаточных условиях сходимости алгоритма ARTM.
2. Теорема о достаточных условиях единственности стохастического

матричного разложения.
3. Модификация алгоритма ARTM, ускоряющая сходимость итера­

ционного процесса.
4. Метод разреживания тематической модели, не увеличивающий

перплексию получаемой модели.
Достоверность Достоверность результатов обеспечивается доказа­

тельствами теорем и описаниями проведённых экспериментов, допуска­
ющими их воспроизводимость, а также наличием репозитория Github с
исходным кодом всех экспериментов.

Апробация работы. Основные результаты работы докладыва­
лись на:

1. 5th International Symposium, Conformal and Probabilistic Prediction
with Applications, 2016

2. Научный семинар Школы Анализа Данных, 2016.
3. Научный семинар лаборатории искусственного интеллекта, 2018.
4. Научный семинар Федерального исследовательского центра «Ин­

форматика и Управление» Российской Академии Наук, 2020.
Личный вклад. Личный вклад диссертанта в работы, выполненные

с соавторами, заключается в следующем:
– В работе [Селезнев, Ирхин, Кантор, 2018] предложена идея приме­

нения подхода тематического моделирования, предложены метри­
ки качества, соответствующие решению прикладной задачи.
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– В работе [Ирхин, Воронцов, 2020] предложены достаточные усло­
вия сходимости, доказаны все утверждения и теоремы, реализова­
ны и проведены все эксперименты.

– В работе [Дербаносов, Ирхин, 2020] предложена и доказана основ­
ная лемма, реализованы и проведены все эксперименты.

– В работе [Ирхин, Булатов, Воронцов, 2020] предложена новая
постановка оптимизационной задачи, выполнен вывод итераций ал­
горитма ARTM, реализована и проведена часть экспериментов, не
связанная с библиотекой TopicNet.

Основные результаты по теме диссертации изложены в 3 печатных
изданиях, 1 из которых изданы в журналах, рекомендованных ВАК, 2 —
в периодических научных журналах, индексируемых Scopus.

Содержание работы

Во введении обосновывается актуальность исследований, проводи­
мых в рамках данной диссертационной работы, приводится обзор научной
литературы по изучаемой проблеме, формулируется цель, ставятся задачи
работы, излагается научная новизна, теоретическая и практическая значи­
мость представляемой работы.

В первой главе описывается постановка задачи тематического мо­
делирования, вводятся основные определения и обозначения дисссертации.
Далее приводятся оптимизационные задачи подходов PLSA и LDA и опи­
сывается алгоритм максимизациии выбранных функционалов. После чего
описывается метод аддитивной регуляризации, ставится оптимизационная
задача ARTM и приводится вывод стандартных формул оптимизирующе­
го итерационного процесса.

Пусть 𝐷 — конечное множество (коллекция) текстовых документов,
𝑊 — конечное множество (словарь) всех употребляемых в них термов,
𝑇 — конечное множество тем. Каждый документ 𝑑 ∈ 𝐷 представляет собой
последовательность 𝑛𝑑 термов (𝑤1, . . . , 𝑤𝑛𝑑

) из словаря 𝑊 . Принимается
гипотеза «мешка слов», согласно которой порядок термов в документе
не важен. Через 𝑛𝑑𝑤 обозначается число вхождений терма 𝑤 в документ 𝑑.

Пусть 𝜑𝑤𝑡 = 𝑝(𝑤 | 𝑡) — неизвестное распределение термов в темах,
𝜃𝑡𝑑 = 𝑝(𝑡 |𝑑) — неизвестное распределения тем в документах. Задача веро­
ятностного тематического моделирования заключается в том, чтобы найти
параметры модели по эмпирическим данным 𝑛𝑑𝑤. Для этого решается за­
дача максимизации логарифма правдоподобия

𝐿(Φ,Θ) =
∑︁
𝑑∈𝐷

∑︁
𝑤∈𝑑

𝑛𝑑𝑤 ln
∑︁
𝑡∈𝑇

𝜑𝑤𝑡𝜃𝑡𝑑 → max
Φ,Θ

(1)
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при ограничениях неотрицательности и нормировки:

𝜑𝑤𝑡 ≥ 0,
∑︁
𝑤∈𝑊

𝜑𝑤𝑡 = 1, 𝜃𝑡𝑑 ≥ 0,
∑︁
𝑡∈𝑇

𝜃𝑡𝑑 = 1,

где Φ и Θ — матрицы параметров 𝜑𝑤𝑡 и 𝜃𝑡𝑑 соответственно.
Задача 1 является некорректно поставленной по Адамару задачей

приближённого стохастического матричного разложения (𝑛𝑑𝑤

𝑛𝑑
) ≈ ΦΘ, име­

ющей в общем случае бесконечное множество решений. Чтобы выбрать из
него наиболее подходящее решение, вводятся дополнительные критерии —
регуляризаторы 𝑅𝑖(Φ,Θ) → max, 𝑖 = 1, . . . ,𝑘. В подходе ARTM предлагает­
ся максимизировать взвешенную сумму всех регуляризаторов 𝑅(Φ,Θ) =∑︀𝑘

𝑖=1 𝜏𝑖𝑅𝑖(Φ,Θ) совместно с основным критерием правдоподобия:

𝐿(Φ,Θ) +𝑅(Φ,Θ) =
∑︁
𝑑∈𝐷

∑︁
𝑤∈𝑑

𝑛𝑑𝑤 log
∑︁
𝑡∈𝑇

𝜑𝑤𝑡𝜃𝑡𝑑 +
∑︁𝑘

𝑖=1
𝜏𝑖𝑅𝑖(Φ,Θ) → max

Φ,Θ
,

(2)
при тех же ограничениях неотрицательности и нормировки.

Наиболее известные тематические модели PLSA и LDA являются
частными случаями регуляризации. В модели вероятностного латентного
семантического анализа PLSA регуляризация не используется, 𝑅(Φ,Θ) = 0.
В модели латентного размещения Дирихле LDA регуляризатором является
логарифм правдоподобия априорного распределения Дирихле

𝑅(Φ,Θ) =
∑︁
𝑡∈𝑇

∑︁
𝑤∈𝑊

(𝛽𝑤 − 1) ln𝜑𝑤𝑡 +
∑︁
𝑑∈𝐷

∑︁
𝑡∈𝑇

(𝛼𝑡 − 1) ln 𝜃𝑡𝑑

с гиперпараметрами 𝛽𝑤, 𝛼𝑡.
Применение теоремы Каруша–Куна–Таккера позволяет выписать си­

стему уравнений для стационарных точек оптимизационной задачи (2).
Решение данной системы методом простых итераций приводит к EM-по­
добному алгоритму, в котором на каждой итерации чередуются два шага:
E-шаг (expectation) и M-шаг (maximization).

На E-шаге вычисляются значения условных вероятностей
𝑝𝑡𝑑𝑤 = 𝑝(𝑡 |𝑑,𝑤) по текущим значениям параметров 𝜑𝑤𝑡 и 𝜃𝑡𝑑:

𝑝𝑡𝑑𝑤 =
𝜙𝑤𝑡𝜃𝑡𝑑∑︀
𝑠 𝜙𝑤𝑠𝜃𝑠𝑑

.

Данное выражение совпадает с формулой Байеса, поскольку, в силу
гипотезы условной независимости, 𝑝(𝑡 |𝑑,𝑤) = 𝑝(𝑤 | 𝑡) 𝑝(𝑡 |𝑑)

𝑝(𝑤 |𝑑) .
На M-шаге по условным вероятностям тем 𝑝𝑡𝑑𝑤 для каждого терма

в каждом документе вычисляются новые приближения параметров 𝜑𝑤𝑡 и
9



𝜃𝑡𝑑 и вспомогательные переменные 𝑛𝑑𝑤𝑡, 𝑛𝑤𝑡, 𝑛𝑡𝑑, 𝑛𝑡, 𝑛𝑑, 𝑟𝑤𝑡, 𝑟𝑡𝑑:

𝑛𝑑𝑤𝑡 = 𝑛𝑑𝑤𝑝𝑡𝑑𝑤,

𝑛𝑤𝑡 =
∑︁
𝑑∈𝐷

𝑛𝑑𝑤𝑡, 𝑛𝑡𝑑 =
∑︁
𝑤∈𝑑

𝑛𝑑𝑤𝑡,

𝑛𝑡 =
∑︁
𝑤∈𝑊

𝑛𝑤𝑡, 𝑛𝑑 =
∑︁
𝑡∈𝑇

𝑛𝑡𝑑,

𝑟𝑤𝑡 = 𝜑𝑤𝑡
𝜕𝑅

𝜕𝜑𝑤𝑡
, 𝑟𝑡𝑑 = 𝜃𝑡𝑑

𝜕𝑅

𝜕𝜃𝑡𝑑
,

𝜑𝑤𝑡 = norm
𝑤∈𝑊

(𝑛𝑤𝑡 + 𝑟𝑤𝑡) , 𝜃𝑡𝑑 = norm
𝑡∈𝑇

(𝑛𝑡𝑑 + 𝑟𝑡𝑑) ,

где norm
𝑖∈𝐼

(𝑥𝑖) = (𝑥𝑖)+∑︀
𝑗∈𝐼(𝑥𝑗)+

— операция нормировки, которая переводит

произвольный числовой вектор (𝑥𝑖 : 𝑖 ∈ 𝐼) в дискретное вероятност­
ное распределение, операция (𝑥𝑖)+ = max(𝑥𝑖, 0) называется положительной
срезкой.

Вспомогательные переменные 𝑛* интерпретируются как оценки счёт­
чиков: 𝑛𝑑𝑤𝑡 — число вхождений терма 𝑤 в документ 𝑑, связанных с темой 𝑡;
𝑛𝑡𝑑 — число всех термов в документе 𝑑, связанных с темой 𝑡; 𝑛𝑤𝑡 — число
раз, когда терм 𝑤 был связан с темой 𝑡, во всей коллекции; 𝑛𝑡 — число
термов, связанных с темой 𝑡, во всей коллекции; 𝑛𝑑 совпадает с длиной
документа 𝑑.

Во второй главе рассматривается вопрос сходимости алгоритма
ARTM. Итерации алгоритма ARTM рассматриваются как итерации GEM­
алгоритма. Для этого вводится дополнительный функционал:

𝑄(Φ,Θ,Φ′,Θ′) =
∑︁
𝑑,𝑤,𝑡

𝑛𝑑𝑤𝑝
′
𝑡𝑑𝑤 ln(𝜑𝑤𝑡𝜃𝑡𝑑)+𝑅(Φ,Θ), где 𝑝′𝑡𝑑𝑤 =

𝜑′
𝑤𝑡𝜃

′
𝑡𝑑∑︀

𝑡
𝜑′
𝑤𝑡𝜃

′
𝑡𝑑

.

Это стандартный приём при доказательстве сходимости GEM-алгоритма.
Показывается, что изменения 𝑄 на итерациях являются нижней оценкой
для изменений 𝐿 + 𝑅:

∆𝑘(𝐿+𝑅) ≥ 𝑄(Φ𝑘+1,Θ𝑘+1,Φ𝑘,Θ𝑘)−𝑄(Φ𝑘,Θ𝑘,Φ𝑘,Θ𝑘).

Этот факт является основополагающим в доказательстве сходимости GEM­
алгоритмов, предложенном в работе [Wu, 1983].

Далее вводятся требуемые определения, описывающие свойства регу­
ляризаторов, которые нужны для сходимости алгоритма ARTM.

Определение 1. Регуляризатор 𝑅 является 𝛿-регулярным, если на ите­
рациях EM-алгоритма ∀𝑡 ∃𝑤 : 𝑛𝑤𝑡 + 𝑟𝑤𝑡 > 𝛿 и ∀𝑑 ∃𝑡 : 𝑛𝑡𝑑 + 𝑟𝑡𝑑 > 𝛿. Если
регуляризатор обладает свойством 𝛿-регулярности при некотором 𝛿 > 0,
то будем говорить, что регуляризатор сильно регулярен; при 𝛿 = 0 будем
просто говорить, что он регулярен.
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Регулярность гарантирует, что в операции norm не возникнет деления
на нуль, то есть итерации корректно определены. Сильная же регуляр­
ность позволяет утверждать, что преобразования, которые производятся
на итерациях алгоритма, являются непрерывными по (Φ,Θ). Это свойство
легко выполняется на практике: если значение 𝑛𝑤𝑡 + 𝑟𝑤𝑡 (или 𝑛𝑡𝑑 + 𝑟𝑡𝑑)
становится меньше 𝛿, то вся тема (весь документ) исключается из модели
и итерации продолжаются.

Определение 2. Регуляризатор 𝑅 сохраняет нуль, если на итерациях
алгоритма из 𝑛𝑤𝑡 = 0 следует 𝜑𝑤𝑡 = 0 и из 𝑛𝑡𝑑 = 0 следует 𝜃𝑡𝑑 = 0.

Это определение формализует следующие свойство итерационного
процесса: если на какой-либо итерации значение 𝜑𝑤𝑡 стало равным нулю,
то оно будет оставаться нулевым на последующих итерациях, и аналогично
для 𝜃𝑡𝑑. Для регуляризатора данное свойство легко проверяется аналити­
чески. На практике многие регуляризаторы им обладают. Регуляризатор
модели LDA, на первый взгляд, не обладает данным свойством при 𝛽𝑤 > 1
или 𝛼𝑡 > 1, так как при 𝑛𝑤𝑡 = 0 вполне может оказаться, что 𝜑𝑤𝑡 > 0. Одна­
ко при использовании ненулевой инициализации 𝜑𝑤𝑡 значение 𝑛𝑤𝑡 не может
обратиться в нуль. Поэтому и для такого регуляризатора условие сохране­
ния нуля выполняется.

Определение 3. Регуляризатор 𝑅 называется 𝜖-разреживающим, если
на итерациях EM-алгоритма 𝜑𝑤𝑡, 𝜃𝑡𝑑 /∈ (0, 𝜖).

Некоторые регуляризаторы имеют неограниченную в окрестности
нуля производную, поэтому при реализации EM-алгоритма параметры,
меньшие некоторого 𝜖, зануляются. Это приводит к тому, что значения
в матрице параметров оказываются отделены от нуля. Именно эта особен­
ность отражена в данном определении.

Определение 4. Регуляризатор 𝑅 корректный, если на итерациях
EM-алгоритма из 𝑛𝑑𝑤 > 0 следует 𝑝𝑡𝑑𝑤 > 0 хотя бы для одной темы 𝑡.

Если модель даёт нулевую оценку вероятности 𝑝(𝑤 |𝑑) = 0 при том,
что терм 𝑤 встречается в документе, 𝑛𝑑𝑤 > 0, то логарифм правдоподобия
становится неограниченным, 𝐿 → −∞. На практике этого легко избежать,
если использовать регуляризатор сглаживания фоновых тем [Vorontsov,
Potapenko, 2014b]. Он гарантирует, что для любого терма в любом доку­
менте найдётся хотя бы одна тема с ненулевой вероятностью.

В данных определениях формулируется основная теорема и след­
ствия из неё:

Теорема 1. Пусть регуляризатор 𝑅 является дифференцируемой функ­
цией при 𝜑𝑤𝑡, 𝜃𝑡𝑑 ∈ (0, 1], сохраняющей нуль, корректной, 𝜖-разрежи­
вающей и 𝛿-регулярной. Также допустим, что 𝑄(Φ𝑘+1,Θ𝑘+1,Φ𝑘,Θ𝑘) ≥
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𝑄(Φ𝑘,Θ𝑘,Φ𝑘,Θ𝑘) начиная с некоторой итерации 𝑘. Тогда последователь­
ность 𝑝𝑘𝑡𝑑𝑤 сходится в смысле дивергенции Кульбака–Лейблера для любых
𝑑 и 𝑤 таких, что 𝑛𝑑𝑤 > 0:

KL
(︀
𝑝𝑘𝑡𝑑𝑤

⃦⃦
𝑝𝑘+1
𝑡𝑑𝑤

)︀
→ 0 при 𝑘 → ∞.

Следствие 1. Если в дополнение к условиям Теоремы 1 регуляризатор 𝑅
сильно регулярен, а 𝑟𝑤𝑡 и 𝑟𝑡𝑑 непрерывны по 𝑝𝑡𝑑𝑤, то

|𝜑𝑘
𝑤𝑡 − 𝜑𝑘+1

𝑤𝑡 | → 0 и |𝜃𝑘𝑡𝑑 − 𝜃𝑘+1
𝑡𝑑 | → 0.

Следствие 2. Рассмотрим функцию 𝐹 (Φ,Θ) = 𝐿(Φ,Θ)+𝑅(Φ,Θ), опреде­
лённую для тех Φ и Θ, у которых множество нулевых позиций матриц
совпадает с множеством ненулевых позиций Ω, стабилизировавшимся
в ходе итераций.

В условиях Следствия 1 если процесс не сошёлся в неподвижную
точку, то все предельные точки траектории (Φ𝑘,Θ𝑘) являются ста­
ционарными точками 𝐹 . Если же множество стационарных точек 𝐹
дискретно для каждого уровня значений 𝐹 , то (Φ𝑘,Θ𝑘) сходится к неко­
торой стационарной точке 𝐹 .

Важным условием сходимости алгоритма ARTM является неуменьше­
ние значения 𝑄 на М-шаге. Поэтому далее в работе производятся оценки
изменения функционала 𝑄 на итерации. Доказывается теорема:

Теорема 2. Пусть величины 𝑟𝑤𝑡 и 𝑟𝑡𝑑 на М-шаге рассчитываются в точ­
ках

𝑛𝑤𝑡∑︀
𝑤
𝑛𝑤𝑡

и
𝑛𝑡𝑑∑︀
𝑡
𝑛𝑡𝑑

,

тогда в ходе нормировки 𝑛𝑤𝑡 + 𝑟𝑤𝑡 и 𝑛𝑡𝑑 + 𝑟𝑡𝑑 на M-шаге при отсутствии
занулений элементов матриц угол между вектором изменений ∆𝑛 и гра­
диентом 𝑅̄ острый, если градиент ненулевой.

На основе этой теоремы предлагается модификация исходного
M-шага алгоритма, которая меняет расчёт величин 𝑟𝑤𝑡 и 𝑟𝑡𝑑. Формулы
регуляризационных поправок из исходного алгоритма

𝑟𝑘𝑤𝑡 = 𝜑𝑘−1
𝑤𝑡

𝜕𝑅

𝜕𝜑𝑤𝑡

(︀
Φ𝑘−1

𝑤𝑡 ,Θ𝑘−1
𝑡𝑑

)︀
; 𝑟𝑘𝑡𝑑 = 𝜃𝑘−1

𝑡𝑑

𝜕𝑅

𝜕𝜃𝑡𝑑

(︀
Φ𝑘−1

𝑤𝑡 ,Θ𝑘−1
𝑡𝑑

)︀
; (3)

заменяются на модифицированные согласно Теореме 2:

𝑟𝑘𝑤𝑡 =
𝑛𝑘
𝑤𝑡

𝑛𝑘
𝑡

𝜕𝑅

𝜕𝜑𝑤𝑡

(︂
𝑛𝑘
𝑤𝑡

𝑛𝑘
𝑡

,
𝑛𝑘
𝑡𝑑

𝑛𝑘
𝑑

)︂
; 𝑟𝑘𝑡𝑑 =

𝑛𝑘
𝑡𝑑

𝑛𝑘
𝑑

𝜕𝑅

𝜕𝜃𝑤𝑡

(︂
𝑛𝑘
𝑤𝑡

𝑛𝑘
𝑡

,
𝑛𝑘
𝑡𝑑

𝑛𝑘
𝑑

)︂
. (4)
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В следующих разделах описываются и приводятся результаты эксперимен­
тов на текстовой коллекции, сравнивающих эти две формулы между собой
на примере регуляризатора декорреляции:

𝑅(Φ) = − 𝜏

|𝑇 |(|𝑇 | − 1)

∑︁
𝑡 ̸=𝑠

∑︁
𝑤∈𝑊

𝜑𝑤𝑡𝜑𝑤𝑠.

Эксперименты показывают, что чем больше значение регуляризатора 𝑅
по сравнению со значением логарифма правдоподобия 𝐿 (c ростом ко­
эффициента 𝜏), тем больше положительный эффект от предложенной
модификации (Рис. 1 и Таблица 1).
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Модифицированна, формула в-шага
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Рис. 1 — Изменение функционала 𝐿 + 𝑅 на итерациях, |𝑇 | = 30, при
различных значениях коэффициента регуляризации 𝜏 .

𝜏 𝐿+𝑅 стандарт 𝐿+𝑅 модификация Улучшение 𝐿+𝑅, %
107 -3536050 -3536340 -0.01
108 -3693905 -3691338 0.07

1.5 · 108 -4509247 -4448501 1.35
2.0 · 108 -5018335 -4808217 4.19
2.5 · 108 -5790283 -5388187 6.94
3.0 · 108 -6363392 -5848354 8.09
3.5 · 108 -7223361 -6374974 11.75
4.0 · 108 -8055262 -6982549 13.32
4.5 · 108 -8941616 -7586618 15.15
5.0 · 108 -9532948 -8259205 13.36

Таблица 1 — Итоговые значения 𝐿+𝑅 по окончании итераций.
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Также в экспериментах было подтверждено выполнение достаточных
условий сходимости из Теоремы 1. Таким образом, было показано, что ите­
рационный процесс ARTM сходится, после чего возникает вопрос анализа
свойств точки, к которой сошёлся алгоритм. В частности, единственно­
сти полученного решения. Известно, что оптимизационная задача ARTM
имеет неединственное решение, однако, причины этой неединственности
подробно не изучались. Эффект неединственности потенциально состоит
из двух частей: неединственности точного матричного разложения в точке,
в которую сошёлся алгоритм, и мультиэкстремальности оптимизационной
задачи.

В третьей главе определяется степень влияния этих двух факторов.
Для этого рассматривается вопрос единственности точного стохастическо­
го матричного разложения. Сначала производится формальная постановка
задачи, вводятся дополнительные обозначения.

Определение 5. Матрица 𝐹 ∈ R𝑛×𝑚 будет называться неотрицатель­
ной, если все её элементы неотрицательны.

Определение 6. Неотрицательная матрица 𝐹 ∈ R𝑛×𝑚 будет называть­
ся стохастической, если ∀𝑗

∑︁
𝑖

𝐹𝑖𝑗 = 1.

Определение 7. Пусть дана матрица 𝐹 ∈ R𝑛×𝑚, её неотрицатель­
ным (стохастическим) матричным разложением будет называться
представление в виде произведения 𝐹 = ΦΘ двух неотрицательных (сто­
хастичеcких) матриц Φ ∈ R𝑛×𝑘, Θ ∈ R𝑘×𝑚.

Определение 8. Пусть дана матрица 𝐹 ∈ R𝑛×𝑚, её матричным
разложением полного ранга будет называться представление в виде про­
изведения 𝐹 = ΦΘ двух матриц полного ранга Φ ∈ R𝑛×𝑘, Θ ∈ R𝑘×𝑚.

Определение 9. Разложение 𝐹 = ΦΘ будет называться единственным,
если для любого другого разложения 𝐹 = Φ′Θ′ выполняется Φ′ = Φ𝑆,Θ′ =
𝑆−1Θ, где 𝑆 — некоторая матрица перестановки.

supp(𝑣) — множество позиций, где стоят нулевые элементы вектора 𝑣;
supp(𝑣) — множество позиций, где стоят ненулевые элементы вектора 𝑣;
𝑋𝑗 — 𝑗-ый столбец матрицы 𝑋;
𝑋
[︀
[𝑖1, . . . , 𝑖𝑝], [𝑗1, . . . , 𝑗𝑞]

]︀
— подматрица, состоящая из строк 𝑖1, . . . , 𝑖𝑝 и

столбцов 𝑗1, . . . , 𝑗𝑞;

В этих обозначениях формулируется и доказывается теорема о доста­
точных условиях единственности матричного разложения:

Теорема 3. Пусть дано разложение 𝐹 = ΦΘ, 𝐹 ∈ R𝑛×𝑚, rank𝐹 = 𝑘,
Φ ∈ R𝑛×𝑘, Θ ∈ R𝑘×𝑚. Пусть выполнены условия:
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– ∀𝑖 ∈ {1, . . . ,𝑘} ∃𝑗 : Θ𝑖𝑗 = 1,∀𝑖′ ̸= 𝑗 Θ𝑖′𝑗 = 0;

– ∀𝑗 rank
(︁
Φ
[︀
supp(Φ𝑗), [1, . . . ,𝑘] ∖ [𝑗]]

)︁
= 𝑘 − 1.

Тогда разложение 𝐹 = ΦΘ единственно.

Далее приводится интерпретация с точки зрения тематического мо­
делирования условия Теоремы 3.

Условие 1 требует наличия в матрице Θ единичной подматрицы раз­
мера 𝑘 × 𝑘. Матрица Θ отвечает за распределение тем в документах.
Поэтому фактически это условие требует наличия в тематической моде­
ли 𝑘 унитематических документов, то есть таких, в которых есть одна
тема с вероятностью появления 1, а вероятности остальных тем нулевые.
Выполнение этого условия можно гарантировать, добавив в коллекцию 𝑘
искусственно созданных унитематических документов, слова для которых
подбираются, например, экспертами.

Условие 2 говорит о том, что для любого 𝑗 произведение матриц

Φ
[︀
supp(Φ𝑗), [1, . . . ,𝑘] ∖ [𝑗]] и Θ

[︀
[1, . . . , 𝑘] ∖ [𝑗], :

]︀
является неотрицательным матричным разложением полного ранга для
матрицы

𝐹
[︀
supp(Φ𝑗), :

]︀
.

С точки зрения тематического моделирования это означает, что если для
любой темы 𝑡 из матрицы слова-документы 𝐹 ранга 𝑇 убрать все слова,
встречающиеся в 𝑡-ой теме, то на получившей матрице слова-документы
можно построить невырожденную тематическую модель на 𝑇 − 1 теме.

Далее описываются эксперименты на текстовой коллекции
20NewsGroups для проверки предложенных условий на практике. Предла­
гается эффективный способ проверки достаточных условий для матриц,
полученных в итоге разложения. Чтобы для каждой темы 𝑡 проверять пол­
ноту ранга матрицы Φ[𝑠𝑢𝑝𝑝(Φ𝑡), [1, . . . , 𝑇 ] ∖ [𝑡]], находится минимальное
сингулярное значение матрицы Φ[𝑠𝑢𝑝𝑝(Φ𝑡),[1, . . . ,𝑇 ] ∖ [𝑡]] и сравнивается
нулём. Это минимальное сингулярное значение для темы 𝑡 обозначается
𝜎𝑡 . Далее описывается эксперимент и приводятся его результаты (Рис. 2),
показывающие положительность 𝜎𝑡 на реальной текстовой коллекции.

Таким образом, показывается, что локальная неединственность опти­
мизационной задачи ARTM возникает из-за того, что разным значениям
произведения ΦΘ соответствуют одинаковые значения оптимизируемого
функционала 𝐿+𝑅. При этом для каждого значения ΦΘ точное разложе­
ние на Φ и Θ определяется однозначно.
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Рис. 2 — Изменение min
𝑡

𝜎𝑡 при стремлении коэффициента 𝛼 к нулю в
регуляризаторе 𝑅(Φ) = 𝛼

∑︀
𝑡

∑︀
𝑤
ln𝜑𝑤𝑡, т. е. при уменьшении силы разрежи­

вания.

Важным фактором как сходимости, так и единственности точ­
ного матричного разложения является разреженность матрицы Φ. В
четвёртой главе главе предлагается метод разреживания тематической
модели без повышения её перплексии.

Доказывается теорема о изменении правдоподобия при занулении эле­
ментов матриц Φ и Θ:

Теорема 4. Изменение значения 𝐿 при занулении значения 𝜑𝑤𝑡 состав­
ляет

∆𝐿 =
∑︁
𝑑

𝑛𝑑𝑤 log(1− 𝑝𝑡𝑑𝑤) +
∑︁

𝑑,𝑢 ̸=𝑤

𝑛𝑑𝑢 log

(︂
1 +

𝜑𝑤𝑡

1− 𝜑𝑤𝑡
𝑝𝑡𝑑𝑢

)︂
.

Изменение значения 𝐿 при занулении значения 𝜃𝑡𝑑 составляет

∆𝐿 =
∑︁
𝑤

𝑛𝑑𝑤 log (1− 𝑝𝑡𝑑𝑤)− 𝑛𝑑 log(1− 𝜃𝑡𝑑).

А также теорема об аппроксимации предложенных выражений:
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Теорема 5. Изменение значения 𝐿 при занулении значения 𝜑𝑤𝑡 после
аппроксимации составляет

∆𝐿 =
𝑛𝑡𝜑𝑤𝑡 − 𝑛𝑤𝑡

1− 𝜑𝑤𝑡
− 1

2

(︂
𝜑𝑤𝑡

1− 𝜑𝑤𝑡

)︂2 ∑︁
𝑑,𝑢 ̸=𝑤

𝑛𝑑𝑢𝑝
2
𝑡𝑑𝑢+

+
1

2

∑︁
𝑑

𝑛𝑑𝑤𝑝
2
𝑡𝑑𝑤 +𝑂

(︃∑︁
𝑑

𝑛𝑑𝑤𝑝
3
𝑡𝑑𝑤

)︃
.

Изменение значения 𝐿 при занулении значения 𝜃𝑡𝑑 после аппрокси­
мации составляет

∆𝐿 = (𝑛𝑑𝜃𝑡𝑑 − 𝑛𝑡𝑑) +
1

2

∑︁
𝑤

𝑛𝑑𝑤𝑝
2
𝑡𝑑𝑤 − 1

2
𝑛𝑑𝜃

2
𝑡𝑑 +𝑂

(︃∑︁
𝑤

𝑛𝑑𝑤𝑝
3
𝑡𝑑𝑤

)︃
.

На основе предложенных теорем предлагается метод разреживания
тематических моделей. За 𝛾𝑤𝑡 обозначается изменение 𝐿 при занулении
значения 𝜑𝑤𝑡. На итерациях EM-алгоритма ARTM зануляются элементы
матрицы Φ, для которых 𝛾𝑤𝑡 ≤ −𝛼. Предложенная стратегия раз­
реживания (OBD ARTM) сравнивается в эксперименте на коллекции
20Newsgroups с классическим методом разрежения с помощью регуляри­
затора разреживания (sparse ARTM), который соответствует занулению
при 𝑛𝑤𝑡 ≤ 𝛼.

Метрика Алгоритм До После Увеличение, %
Разреженность sparse ARTM 0.32 0.866 +170
Разреженность OBD ARTM 0.32 0.86 +168
Перплексия sparse ARTM 1518.1 2121.5 +39
Перплексия OBD ARTM 1518.1 1549.8 +2

Таблица 2 — Разреженность и перплексия после 1 итерации разреживания
разными методами

Результаты эксперимента (Таблица 2) показывает, что предложенный
метод позволяет добиться примерно того же уровня разреженности, но при
этом, в отличие от подхода с регуляризатором, не увеличивает перплек­
сию модели.

Помимо разреженности во многих прикладных задачах важна интер­
претируемость матрицы Φ, которая, обычно, оценивается через когерент­
ность. Подход для анализа увеличения функционала 𝑄, предложенный
в первой главе, показывает как можно выводить формулы для M-шага,
сохраняя при этом достаточные условия на сходимость. Используя этот
подход, в пятой главе рассматривается изменение оптимизационной за­
дачи ARTM, которое направлено на получение более разреженных и
когерентных решений.
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Предлагается заменить исходную оптимизационную задачу 2 на сле­
дующую:

𝐿(Φ, 𝑓(Φ)) +𝑅(Φ, 𝑓(Φ)) → max
Φ

, (5)

где 𝑓 — это некоторая функция, которая отображает матрицу темы-слова
в матрицу документы-темы.

Подобное изменение мотивируется тем, что реализации тематическо­
го моделирования (особенно восстанавливающие элементы Θ “на лету”)
часто используют следующую эвристику: для получения 𝜃𝑡𝑑 конкретного
документа 𝑑 повторяются несколько итераций EM-алгоритма с фикси­
рованной Φ. В этой процедуре вектор 𝜃*𝑑 сначала инициализируется
некоторым образом (как правило, используется равномерное распределе­
ние), а затем итеративно обновляется по формуле 𝜃𝑡𝑑 ∝

∑︀
𝑤 𝑛𝑑𝑤𝑝𝑡𝑑𝑤 с

пересчётом 𝑝𝑡𝑑𝑤. Обновление может происходить какое-то установленное
количество итераций либо продолжаться до сходимости. То есть в реализа­
циях тематического моделирования матрицы Φ и Θ находятся в некоторой
функциональной зависимости, что и предлагается учесть в оптимизаци­
онной задаче.

Далее определяется функция зависимости Φ и Θ. В качестве интер­
претируемой, простой для анализа и лёгкой для вычислений функции
предлагается усреднение распределений тем слов по всем словам, встре­
чающимся в документе. Более формально:

𝑝(𝑡 | 𝑑) ∝
∑︁
𝑤

𝑛𝑑𝑤𝑝(𝑡 | 𝑤),

где 𝑝(𝑡 | 𝑤) получены по формуле Байеса, предполагая, что распределение
𝑝(𝑡) равномерно:

𝑝(𝑡 | 𝑤) = 𝑝(𝑤 | 𝑡)∑︀𝑇
𝑠=1 𝑝(𝑤 | 𝑠)

=
Φ𝑤𝑡∑︀
𝑠 Φ𝑤𝑠

.

Откуда выводится:

Θ𝑡𝑑 =
∑︁
𝑤

𝑛𝑑𝑤∑︀
𝑢 𝑛𝑑𝑢

Φ𝑤𝑡∑︀
𝑠 Φ𝑤𝑠

. (6)

Далее приводится вывод формул E-шага и M-шага для 5 с функцией
зависимости 6. Для этого вводятся дополнительные обозначения и дока­
зывается теорема:

𝐴𝑑𝑤 =
𝑛𝑑𝑤∑︀

𝑠 Φ𝑤𝑠Θ𝑠𝑑
[𝑛𝑑𝑤 > 0], 𝐵𝑑𝑤 =

𝑛𝑑𝑤∑︀
𝑤 𝑛𝑑𝑤

,

𝐶𝑑𝑡 = (𝐴Φ)𝑑𝑡 +
𝜕𝑅

𝜕Θ𝑡𝑑
, ℎ𝑤 =

1∑︀
𝑠 Φ𝑤𝑠

.
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Теорема 6. В EM-алгоритме для 5 c формулой зависимости 6 E-шаг
останется без изменений, а М-шаг будет выглядеть следующим образом:

Φ𝑛𝑒𝑤
𝑤𝑡 ∝

(︃∑︁
𝑑

𝑛𝑑𝑤𝑝𝑡𝑑𝑤 +Φ𝑜𝑙𝑑
𝑤𝑡

(︂
𝜕𝑅

𝜕Φ𝑤𝑡
+ ℎ𝑤(𝐶

𝑇𝐵)𝑡𝑤 − ℎ2
𝑤(Φ

𝑜𝑙𝑑𝐶𝑇𝐵)𝑤𝑤

)︂)︃
+

(7)

Для полученных формул проводится анализ, показывающий, что
асимптотика времени работы новых формул не отличается от исходных.
Также отмечается, что предложенные формул могут быть реализованы
как регуляризатор для исходной постановки оптимизационной задачи:

𝑟𝑤𝑡 = Φ𝑜𝑙𝑑
𝑤𝑡

(︂
𝜕𝑅

𝜕Φ𝑤𝑡
+ ℎ𝑤(𝐶

𝑇𝐵)𝑡𝑤 − ℎ2
𝑤(Φ

𝑜𝑙𝑑𝐶𝑇𝐵)𝑤𝑤

)︂
,

В последующих разделах описываются эксперименты и приводят­
ся их результаты, показывающие улучшение основных метрик качества
матрицы Φ по сравнению с PLSA и LDA (Рис. 3). Так демонстрируются
результаты реализации предложенной модификации как регуляризатора в
библиотеке для тематического моделирования TopicNet, которые показы­
вают улучшение от использования модификации в комбинации с другими
регуляризаторами (Таблица 3).

Алгоритм Разреженность Различность PPMI LogLift
sparse LDA 0.896 0.044 1.570 0.503
smooth LDA 0 0.043 1.509 0.479
PLSA 0.869 0.050 1.517 0.459
ARTM + 𝑅𝑒𝑔 0.898 0.027 1.710 0.590
TARTM 0.893 0.007 1.716 0.952
TARTM + 𝑅𝑒𝑔 0.929 0.003 1.788 1.020

Таблица 3 — Эксперимент с реализацией TopicNet. Сравнение моде­
лей по четырём критериям: разреженность матрицы, различность тем,
PPMI топ слов, LogLift. Модель TARTM достигает наилучших результатов
по всем критериям кроме разреженности. Применение комбинации регу­
ляризаторов сглаживания фоновых тем, разреживания предметных тем
и декоррелирования (TARTM + 𝑅𝑒𝑔) существенно улучшает модель по
всем пяти критериям.
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Рис. 3 — График зависимости трёх критериев качества тематических моде­
лей (разреженности, средней различности тем по мере Жаккара, средней
когерентности тем по PPMI) для пяти моделей (PLSA, LDA со сглажива­
нием, LDA с разреживанием, TARTM и «наивный» TARTM) на текстовой
коллекции NIPS. Модель TARTM быстрее сходится, а по критериям раз­
личности и когерентности тем либо превосходит остальные модели, либо

сравнима с ними.

В заключении приведены основные результаты работы, которые за­
ключаются в следующем:

1. Теорема о достаточных условиях сходимости алгоритма ARTM.
2. Теорема о достаточных условиях единственности стохастического

матричного разложения.
3. Модификация алгоритма ARTM, ускоряющая сходимость итера­

ционного процесса.
4. Метод разреживания тематической модели, не увеличивающий

перплексию получаемой модели.
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