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Введение

Актуальность исследования. Развитие современных технологий сбора
и хранения информации привело к заметному увеличению объёмов данных, в
частности текстовых документов. Во многих прикладных областях возникает
потребность в обработке и анализе накопленных текстовых коллекций. Одним
из популярных в настоящее время направлений обработки естественного язы­
ка (Natural Language Processing, NLP) является тематическое моделирование.
Тематическая модель описывает зависимость текстовых документов и содер­
жащихся в них термов через наборы кластеров термов — тем. В роли термов
обычно рассматриваются слова или их нормальные формы, но также иногда
используются словосочетания или термины. Конкретная форма термов зави­
сит то того, какие виды предварительной обработки текста были применены
к коллекции. Тематическая модель для текстовой коллекции относит каждый
документ к некоторым темам и для каждой темы определяет какие термы её об­
разуют. Выявление подобных тематики текста можно рассматривать как шаг в
направлении понимания естественного языка (Natural Language Understanding,
NLU). В частности, тематическое моделирование предоставляет вариант реше­
ния проблемы синонимии и полисемии слов. Синонимы объединяются в одну
тему, поскольку обычно употребляются в схожих контекстах. В то же время
слова с несколькими значениями и омонимы попадают сразу в несколько тем,
позволяя отличить разные по смыслу употребления друг от друга.

Тематическое моделирование может быть использовано для получения
интерпретируемых векторных представлений слов, демонстрирующих сравни­
мое качество с векторными представлениями модели SGNS (Skip-Gram Negative
Sampling) [1] на задачах сравнения семантически близких слов [2]. Но примене­
ние тематического моделирования не ограничивается только областью анализа
текстов. Данный подход применяется и в других областях, например, в анализе
аудио [3], анализе изображений и видео [4—6], биоинформатике [7; 8]. Также
тематические модели используются в задачах информационного поиска [9—12]
и рекомендаций [13—15].

Общий подход для решения задачи тематического моделирования — по­
строение вероятностной тематическая модели (Probabilistic Topic Model, PTM).
Согласно этому подходу документы описываются некоторым дискретным
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распределением вероятностей на множестве тем, а темы — дискретным распре­
делением вероятностей на множестве термов. Построенная модель позволяет
преобразовать любой текст в вектор вероятностей тем. Важным преимуществом
тематического векторного представления текста является его интерпретируе­
мость. Каждая координата вектора показывает долю соответствующей темы
в тексте, при этом семантика темы описывается частотным словарём термов,
то есть фактически словами естественного языка.

Классическим методом построения PTM является предложенный в 1999
году вероятностный латентный семантический анализ (Probabilistic Latent
Semantic Analysis, PLSA [16]). Этот подход задаёт вероятностную модель порож­
дения термов в документах и строит разбиение термов и документов на темы,
исходя из принципа максимизации правдоподобия. В 2003 году была предло­
жена классическая модель латентного размещения Дирихле (Latent Dirichlet
Allocation, LDA [17]), которая была более устойчива и более точно учитывала
данные о редких термах.

Важным преимуществом модели LDA является возможность расширять
вероятностную модель дополнительными параметрам. Это сыграло важную
роль в популярности подхода LDA [18]. Именно на основе этого подхода, были
предложены вероятностные модели, учитывающие связи между документами
[19—21] или метаданные о документах [22]. Также есть модели, которые учиты­
вают время появления документа и его язык [23] или порядок слов в документе
[24; 25], что изначально было несвойственно подходу LDA.

Традиционный способ построения новых тематических моделей описан в
[18]. Рекомендации включают в себя: введение новой вероятностной модели кол­
лекции документов, которая не должна быть слишком вычислительно сложной,
оставаясь при этом реалистичной; нахождение нового алгоритма оценки апосте­
риорного распределения параметров; реализацию этого алгоритма; валидацию
результатов. Трудностями использования подобного подхода являются необхо­
димость проделывать данные действия заново для каждой новой модели, а
также сложность и, иногда, невозможность построения тематических моделей,
удовлетворяющих нескольким различным требований одновременно.

Теория аддитивной регуляризации тематических моделей (Additive
Regularization of Topic Models, ARTM) [26] решает эти проблемы, отказы­
ваясь от использования байесовского вывода [27]. В ARTM любые требования
к модели формализуются через оптимизационные критерии — регуляризаторы.
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Если требований несколько, то в постановку оптимизационной задачи вводится
взвешенная сумма регуляризаторов [26; 28]. Байесовские тематические модели,
как правило, удаётся переформулировать в терминах регуляризации, при этом
существенно сокращается объём необходимых математических выкладок [29].
Для оценивания параметров модели с произвольным набором регуляризаторов
используется один и тот же итерационный процесс, называемый регуляризован­
ным EM-алгоритмом. Этот алгоритм даёт возможность добавлять и заменять
регуляризаторы не только на уровне постановки задачи, но и на уровне ал­
горитма и его программного кода. Это приводит к модульной технологии
тематического моделирования, которая реализована в проектах с открытым
кодом BigARTM [30; 31] и TopicNet [32].

Дополнительным обоснованием использования регуляризаторов является
некорректность по Адамару [33] поставленной оптимизационной задачи макси­
мизации правдоподобия. Согласно теории регуляризации А.Н. Тихонова [34],
добавление регуляризатора доопределяет решение задачи и делает его устой­
чивым.

До сих пор в теории ARTM оставались открытыми вопросы о сходимости
регуляризованного EM-алгоритма и о влиянии регуляризаторов на сходимость.
В литературе хорошо изучены свойства Generalized Expectation Maximization
алгоритма (GEM [35]), для которого известны достаточные условия сходимости
[36]. В данной работе показывается, что итерации регуляризованного EM-алго­
ритма ARTM возможно интерпретировать как итерации GEM-алгоритма, за
счёт чего возможно получить достаточные условия сходимости.

Для сходящегося итерационного процесса ARTM ставится вопрос о свой­
ствах точки, к которой сошёлся алгоритм, например, открытым является
вопрос о единственности полученного решения. С формальной точки зрения,
в алгоритме ARTM для матрицы частот слов в документах строится стоха­
стическое матричное разложение, ранг которого равен числу тем. Поскольку
точного разложения требуемого ранга, как правило, не существует, то строится
приближенное разложение, которое является локальным экстремумом опти­
мизируемого функционала. Таким образом, неединственность решения задачи
тематического моделирования может возникать как из-за неоднозначности вы­
бора этого приближения, так и из-за неединственности точного разложения
приближения. До сих пор остаётся открытым вопрос о влиянии этих факторов
на неединственность решения задачи тематического моделирования.
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Проблема единственности стохастического матричного разложения иссле­
довалась в работах [37—39]. В этих работах представлены либо достаточные,
либо необходимые условия единственности разложения. Недостатками предло­
женных условий применительно к тематическому моделированию являются их
громоздкость и сложность проверки выполнения на практике.

В данной работе исследуются теоретические свойства регуляризованного
EM-алгоритма ARTM. Особое внимание уделяются вопросам сходимости дан­
ного алгоритма и единственности стохастического матричного разложения в
точке сходимости, поскольку они являются открытыми и представляют отдель­
ный интерес. Также в рамках исследования производится поиск возможных
модификаций алгоритма, которые за счёт теоретических гарантий будут улуч­
шать качество получаемых тематических моделей.

Целью данной работы является получение достаточных условий сходимо­
сти алгоритма аддитивной регуляризации тематических моделей и достаточных
условий для единственности стохастического матричного разложения в точке
сходимости, которые могут быть проверены на реальных текстовых коллекци­
ях, а также поиск модификаций исходного алгоритма, улучшающих сходимость
и повышающих метрики качества тематических моделей.

Методология и методы исследования. В работе использованы под­
ходы и методы численной оптимизации, вычислительной линейной алгебры,
теории матричных разложений, машинного обучения. Для доказательства
сходимости алгоритма ARTM использовались известные фундаментальные ре­
зультаты о сходимости GEM-алгоритмов. Для доказательства единственности
стохастического матричного разложения был использован подход геометри­
ческой интерпретации стохастического матричного разложения. В качестве
реализации алгоритма ARTM использовались собственная реализация на языке
Python1 а также библиотеки с открытым кодом BigARTM [31] и TopicNet [32].
Для экспериментов в качестве текстовых коллекций использовались открытые
публичные данные.

Научная новизна:
1. Впервые были получены достаточные условия сходимости алгоритма

аддитивной регуляризации тематических моделей ARTM.
2. Были получены достаточные условия единственности стохастического

матричного разложения в задачах тематического моделирования.
1github.com/ilirhin/python_artm/tree/master/

github.com/ilirhin/python_artm/tree/master/
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3. Были сформулированы причины нединственности решения для задач
тематического моделирования.

4. Был разработан новый подход к стохастическому матричному разло­
жению в тематическом моделировании, в котором одна из матриц
находится в функциональной зависимости от другой.

Теоретическая значимость В работе впервые предложен подход с ин­
терпретацией ARTM как GEM-алгоритма, в результате чего были получены
достаточные условия сходимости данного алгоритма. Также были получены
достаточные условия на единственность стохастического матричного разложе­
ния. В результате были сформулированы причины неединственности решения
в тематическом моделировании.

Практическая значимость Разработана реализация алгоритма ARTM,
с помощью которой теоретические положения диссертационной работы были
подтверждены на реальных текстовых коллекциях. Предложенные в работе
в работе алгоритмы реализованы в библиотеке с открытым кодом TopicNet.
Модификации EM-алгоритма ARTM, полученные на основе теоретических ре­
зультатов, значительно увеличивают основные метрики качества тематических
моделей.

Основные положения, выносимые на защиту:
1. Теорема о достаточных условиях сходимости алгоритма ARTM.
2. Теорема о достаточных условиях единственности стохастического мат­

ричного разложения.
3. Модификация алгоритма ARTM, ускоряющая сходимость итерацион­

ного процесса.
4. Метод разреживания тематической модели, не увеличивающий пер­

плексию получаемой модели.
Достоверность Достоверность результатов обеспечивается доказатель­

ствами теорем и описаниями проведённых экспериментов, допускающими их
воспроизводимость, а также наличием репозитория Github с исходным кодом
всех экспериментов.

Апробация работы. Основные результаты работы докладывались на:
1. 5th International Symposium, Conformal and Probabilistic Prediction with

Applications, 2016
2. Научный семинар Школы Анализа Данных, 2016.
3. Научный семинар лаборатории искусственного интеллекта, 2018.
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4. Научный семинар Федерального исследовательского центра «Инфор­
матика и Управление» Российской Академии Наук, 2020.

Личный вклад. Личный вклад диссертанта в работы, выполненные с
соавторами, заключается в следующем:

– В работе [40] предложена идея применения подхода тематического моде­
лирования, предложены метрики качества, соответствующие решению
прикладной задачи.

– В работе [41] предложены достаточные условия сходимости, доказаны
все утверждения и теоремы, реализованы и проведены все эксперимен­
ты.

– В работе [42] предложена и доказана основная лемма, реализованы и
проведены все эксперименты.

– В работе [43] предложена новая постановка оптимизационной задачи,
выполнен вывод итераций алгоритма ARTM, реализована и проведена
часть экспериментов, не связанная с библиотекой TopicNet.

Основные результаты по теме диссертации изложены в 3 печатных из­
даниях, 1 из которых изданы в журналах, рекомендованных ВАК, 2 —
в периодических научных журналах, индексируемых Scopus.

Объем и структура работы. Диссертация состоит из введения, 5 глав,
заключения и 0 приложений. Полный объём диссертации составляет 105 стра­
ниц, включая 14 рисунков и 7 таблиц. Список литературы содержит 76 на­
именований.
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Глава 1. Аддитивная регуляризация тематических моделей

В этой главе будут поставлены оптимизационные задачи вероятностно­
го тематического моделирования и аддитивной регуляризации тематических
моделей. Также будут введены основные общие обозначения, которые будут
использоваться в данной работе.

1.1 Постановка задачи тематического моделирования

Пусть 𝐷 — множество (коллекция) текстовых документов, 𝑊 — множе­
ство (словарь) всех употребляемых в них терминов (слов или словосочетаний).
Каждый документ 𝑑 ∈ 𝐷 представляет собой последовательность 𝑛𝑑 терминов
(𝑤1, ..., 𝑤𝑛𝑑

) из словаря 𝑊 . Термин может повторяться в документе много раз.
Пусть существует конечное множество тем 𝑇 , и каждое употребление термина
𝑤 в каждом документе 𝑑 связано с некоторой темой 𝑡 ∈ 𝑇 , которая не известна.
Формально, тема определяется как дискретное (мультиномиальное) вероятност­
ное распределение в пространстве слов заданного словаря 𝑊 .

Вводится дискретное вероятностное пространство 𝐷 ×𝑊 × 𝑇 . Тогда кол­
лекция документов может быть рассмотрена как множество троек (𝑑, 𝑤, 𝑡),
выбранных случайно и независимо из дискретного распределения 𝑝(𝑑, 𝑤, 𝑡). При
этом документы 𝑑 ∈ 𝐷 и термины 𝑤 ∈ 𝑊 являются наблюдаемыми перемен­
ными, темы 𝑡 ∈ 𝑇 являются латентными (скрытой) переменными. Через 𝑛𝑑𝑤

обозначается число вхождений терма 𝑤 в документ 𝑑.
Пусть φ𝑤𝑡 = 𝑝(𝑤 | 𝑡) — неизвестное распределение термов в темах,

θ𝑡𝑑 = 𝑝(𝑡 |𝑑) — неизвестное распределения тем в документах. Задача веро­
ятностного тематического моделирования заключается в том, чтобы найти
параметры модели по эмпирическим данным 𝑛𝑑𝑤. Эта задача решается с
помощью метода максимизации логарифма правдоподобия.

Сначала принимается гипотеза условной независимости, утверждающая,
что 𝑝(𝑤|𝑑,𝑡) = 𝑝(𝑤|𝑡), и по формуле полной вероятности определяется вероят­
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ность появления слова 𝑤 в документе 𝑑:

𝑝(𝑤|𝑑) =
∑︁
𝑡∈𝑇

𝑝(𝑤|𝑑,𝑡)𝑝(𝑡|𝑑) =
∑︁
𝑡∈𝑇

𝑝(𝑤|𝑡)𝑝(𝑡|𝑑) =
∑︁
𝑡∈𝑇

φ𝑤𝑡θ𝑡𝑑.

Тогда логарифм правдоподобия коллекции 𝐷 определяется как∑︁
𝑑∈𝐷

∑︁
𝑤∈𝑑

𝑛𝑑𝑤 ln
∑︁
𝑡∈𝑇

φ𝑤𝑡θ𝑡𝑑.

Таким образом, для нахождения параметров модели решается задача мак­
симизации логарифма правдоподобия

𝐿(Φ,Θ) =
∑︁
𝑑∈𝐷

∑︁
𝑤∈𝑑

𝑛𝑑𝑤 ln
∑︁
𝑡∈𝑇

φ𝑤𝑡θ𝑡𝑑 → max
Φ,Θ

(1.1)

при ограничениях неотрицательности и нормировки:

φ𝑤𝑡 ⩾ 0,
∑︁
𝑤∈𝑊

φ𝑤𝑡 = 1, θ𝑡𝑑 ⩾ 0,
∑︁
𝑡∈𝑇

θ𝑡𝑑 = 1,

где Φ и Θ — матрицы параметров φ𝑤𝑡 и θ𝑡𝑑 соответственно.
Данная оптимизационная задача решается при помощи ЕМ-алгоритма

[16], в котором на каждой итерации чередуются два шага: E-шаг (expectation)
и M-шаг (maximization).

На E-шаге вычисляются значения условных вероятностей 𝑝𝑡𝑑𝑤 = 𝑝(𝑡 |𝑑,𝑤)
по текущим значениям параметров φ𝑤𝑡 и θ𝑡𝑑:

𝑝𝑡𝑑𝑤 ≡ 𝑝(𝑡|𝑑,𝑤) = 𝑝(𝑤|𝑡)𝑝(𝑡|𝑑)
𝑝(𝑤|𝑑)

=
φ𝑤𝑡θ𝑡𝑑∑︀

𝑠∈𝑇
φ𝑤𝑠θ𝑠𝑑

(1.2)

На M-шаге по условным вероятностям тем 𝑝𝑡𝑑𝑤 для каждого терма в каж­
дом документе вычисляются новые приближения параметров φ𝑤𝑡 и θ𝑡𝑑:

φ𝑤𝑡 =

∑︀
𝑑∈𝐷

𝑛𝑑𝑤𝑝𝑡𝑑𝑤∑︀
𝑑∈𝐷

∑︀
𝑤∈𝑊

𝑛𝑑𝑤𝑝𝑡𝑑𝑤
, θ𝑡𝑑 =

∑︀
𝑤∈𝑊

𝑛𝑑𝑤𝑝𝑡𝑑𝑤∑︀
𝑤∈𝑊

∑︀
𝑡∈𝑇

𝑛𝑑𝑤𝑝𝑡𝑑𝑤
(1.3)

1.2 Регуляризация тематических моделей

Задача (1.1) является некорректно поставленной задачей приближённо­
го стохастического матричного разложения (𝑛𝑑𝑤

𝑛𝑑
) ≈ ΦΘ, имеющей в общем
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случае бесконечное множество решений. Чтобы выбрать из него наиболее
подходящее решение, вводятся дополнительные критерии — регуляризаторы
𝑅𝑖(Φ,Θ) → max, 𝑖 = 1, . . . ,𝑘. В подходе ARTM предлагается максимизировать
взвешенную сумму всех регуляризаторов 𝑅(Φ,Θ) =

∑︀𝑘
𝑖=1 τ𝑖𝑅𝑖(Φ,Θ) совместно

с основным критерием правдоподобия:

𝐿(Φ,Θ)+𝑅(Φ,Θ) =
∑︁
𝑑∈𝐷

∑︁
𝑤∈𝑑

𝑛𝑑𝑤 log
∑︁
𝑡∈𝑇

φ𝑤𝑡θ𝑡𝑑+
∑︁𝑘

𝑖=1
τ𝑖𝑅𝑖(Φ,Θ) → max

Φ,Θ
, (1.4)

при тех же ограничениях неотрицательности и нормировки что и в (1.1).
Наиболее известные тематические модели PLSA и LDA являются част­

ными случаями регуляризации. В модели вероятностного латентного семанти­
ческого анализа PLSA регуляризация не используется, 𝑅(Φ,Θ) = 0. В модели
латентного размещения Дирихле LDA регуляризатором является логарифм
правдоподобия априорного распределения Дирихле

𝑅(Φ,Θ) =
∑︁
𝑡∈𝑇

∑︁
𝑤∈𝑊

(β𝑤 − 1) lnφ𝑤𝑡 +
∑︁
𝑑∈𝐷

∑︁
𝑡∈𝑇

(α𝑡 − 1) lnθ𝑡𝑑 (1.5)

с гиперпараметрами β𝑤, α𝑡.
Применение теоремы Каруша–Куна–Таккера позволяет выписать систему

уравнений для стационарных точек оптимизационной задачи (1.4).

Теорема 1. Решение Φ,Θ задачи (1.4) при ограничениях неотрицательности
и нормировки удовлетворяет следующей системе уравнений относительно пе­
ременных φ𝑤𝑡, θ𝑡𝑑 и вспомогательных переменных 𝑝𝑡𝑑𝑤:

𝑝𝑡𝑑𝑤 = norm
𝑡∈𝑇

(︀
φ𝑤𝑡θ𝑡𝑑

)︀
;

φ𝑤𝑡 = norm
𝑤∈𝑊

(︂∑︁
𝑑∈𝐷

𝑛𝑑𝑤𝑝𝑡𝑑𝑤 +φ𝑤𝑡
𝜕𝑅

𝜕φ𝑤𝑡

)︂
;

θ𝑡𝑑 = norm
𝑡∈𝑇

(︂∑︁
𝑤∈𝑑

𝑛𝑑𝑤𝑝𝑡𝑑𝑤 + θ𝑡𝑑
𝜕𝑅

𝜕θ𝑡𝑑

)︂
.
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Решение данной системы методом простых итераций приводит к EM-по­
добному алгоритму, E-шаг которого аналогичен (1.2), а M-шаг изменяется на

𝑛𝑑𝑤𝑡 = 𝑛𝑑𝑤𝑝𝑡𝑑𝑤,

𝑛𝑤𝑡 =
∑︁
𝑑∈𝐷

𝑛𝑑𝑤𝑡, 𝑛𝑡𝑑 =
∑︁
𝑤∈𝑑

𝑛𝑑𝑤𝑡,

𝑛𝑡 =
∑︁
𝑤∈𝑊

𝑛𝑤𝑡, 𝑛𝑑 =
∑︁
𝑡∈𝑇

𝑛𝑡𝑑, (1.6)

𝑟𝑤𝑡 = φ𝑤𝑡
𝜕𝑅

𝜕φ𝑤𝑡
, 𝑟𝑡𝑑 = θ𝑡𝑑

𝜕𝑅

𝜕θ𝑡𝑑
,

φ𝑤𝑡 = norm
𝑤∈𝑊

(𝑛𝑤𝑡 + 𝑟𝑤𝑡) , θ𝑡𝑑 = norm
𝑡∈𝑇

(𝑛𝑡𝑑 + 𝑟𝑡𝑑) ,

где norm
𝑖∈𝐼

(𝑥𝑖) =
(𝑥𝑖)+∑︀
𝑗∈𝐼(𝑥𝑗)+

— операция нормировки, которая переводит произволь­

ный числовой вектор (𝑥𝑖 : 𝑖 ∈ 𝐼) в дискретное вероятностное распределение,
операция (𝑥𝑖)+ = max(𝑥𝑖, 0) называется положительной срезкой.
Вспомогательные переменные 𝑛* интерпретируются как оценки:

𝑛𝑑𝑤𝑡 — числа вхождений терма 𝑤 в документ 𝑑, связанных с темой 𝑡;
𝑛𝑡𝑑 — числа всех термов в документе 𝑑, связанных с темой 𝑡;
𝑛𝑤𝑡 — числа раз, когда терм 𝑤 был связан с темой 𝑡, во всей коллекции;
𝑛𝑡 — числа термов, связанных с темой 𝑡, во всей коллекции;
𝑛𝑑 совпадает с длиной документа 𝑑.

Чаще всего используются следующие регуляризаторы:
1. 𝑅(Φ,Θ) = α

∑︀
𝑤,𝑡

lnφ𝑤𝑡 — регуляризатор сглаживания.

2. 𝑅(Φ,Θ) = −α
∑︀
𝑤,𝑡

lnφ𝑤𝑡 — регуляризатор разреживания.

3. 𝑅(Φ,Θ) = −τ
∑︀

𝑤 ̸=𝑢,𝑡

φ𝑤𝑡φ𝑢𝑡 — регуляризатор декоррелирования.

4. 𝑅(Φ,Θ) =
∑︀

𝑤 ̸=𝑢,𝑡

𝐶𝑢𝑤 (φ𝑤𝑡 −φ𝑢𝑡)
2 — регуляризатор когерентности.

5. 𝑅(Φ,Θ) =
∑︀
𝑠̸=𝑡,𝑑

𝐶𝑠𝑡 (θ𝑡𝑑 − θ𝑠𝑑)2 — регуляризатор связей документов (ла­

пласиан графа документов).
Более подробное описание данных регуляризаторов, а также другие регуляри­
заторы можно найти в работах [26; 44; 45]

Для комбинирования регуляризаторов при решении задачи в АРТМ необ­
ходимо продумывать стратегию регуляризации:

1. Какие регуляризаторы необходимы в данной задаче.
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2. Какие регуляризаторы должны работать одновременно, какие друг за
другом или попеременно, делая необходимую подготовительную рабо­
ту.

3. Как менять коэффициент регуляризации каждого регуляризатора в
ходе итераций: по каким условиям включать, усиливать, ослаблять и
отключать каждый регуляризатор.

1.3 Обобщение для произвольных функций потерь

Для оптимизационной задачи (1.4) рассматривается следующее обобще­
ние. Вводится функция потерь ℓ

(︀
𝑝(𝑤|𝑑)

)︀
и ставится оптимизационная задача:∑︁

𝑑∈𝐷

∑︁
𝑤∈𝑑

𝑛𝑑𝑤ℓ
(︁∑︁

𝑡∈𝑇

φ𝑤𝑡θ𝑡𝑑

)︁
+𝑅(Φ,Θ) → max

Φ,Θ
, (1.7)

где ℓ(𝑧) — произвольная гладкая неубывающая функция.
По аналогии с Теоремой 1 верна следующая теорема:

Теорема 2. Решение Φ,Θ задачи (1.7) при ограничениях неотрицательности
и нормировки удовлетворяет следующей системе уравнений относительно пе­
ременных φ𝑤𝑡, θ𝑡𝑑 и вспомогательных переменных 𝑝𝑡𝑑𝑤:

𝑝𝑡𝑑𝑤 = φ𝑤𝑡θ𝑡𝑑ℓ
′(︀𝑝(𝑤|𝑑))︀;

φ𝑤𝑡 = norm
𝑤∈𝑊

(︂∑︁
𝑑∈𝐷

𝑛𝑑𝑤𝑝𝑡𝑑𝑤 +φ𝑤𝑡
𝜕𝑅

𝜕φ𝑤𝑡

)︂
;

θ𝑡𝑑 = norm
𝑡∈𝑇

(︂∑︁
𝑤∈𝑑

𝑛𝑑𝑤𝑝𝑡𝑑𝑤 + θ𝑡𝑑
𝜕𝑅

𝜕θ𝑡𝑑

)︂
.

Решение данной системы уравнений методом простых итераций отличает­
ся от классической только формулой E-шага.

При ℓ(𝑧) = ln 𝑧 на E-шаге оптимизационная задача (1.7) совпадает с опти­
мизационной задачей (1.4) и E-шаг алгоритма совпадает с E-шагом ARTM и
PLSA (1.2).
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При ℓ(𝑧) = 𝑧 вместо правдоподобия максимизируется суммарная близость
модельных распределений вероятности термов в документах 𝑝(𝑤|𝑑) и эмпириче­
ских распределений 𝑝(𝑤|𝑑) = 𝑛𝑑𝑤

𝑛𝑑
, выраженная через скалярные произведения:∑︁

𝑑∈𝐷

𝑛𝑑

⟨︀
𝑝(𝑤|𝑑), 𝑝(𝑤|𝑑)

⟩︀
+𝑅(Φ,Θ) → max

Φ,Θ
.

При этом 𝑝𝑡𝑑𝑤 = φ𝑤𝑡θ𝑡𝑑, то есть из классической формулы Е-шага ухо­
дит нормировочный множитель в знаменателе. Этот случай функции потерь
называется быстрым E-шагом.

Быстрый E-шаг даёт существенное ускорение EM-алгоритма, поскольку
в классическом варианте вычисление нормировочного множителя

𝑝(𝑤 |𝑑) =
∑︁
𝑡∈𝑇

φ𝑤𝑡θ𝑡𝑑 = ⟨φ𝑤,θ𝑑⟩

занимает больше всего времени при обработке каждого терма в каждом до­
кументе.

1.4 Алгоритм ARTM в матричной форме

При экспериментах с алгоритмом ARTM, особенно при тестировании его
модификаций, важна производительность алгоритма, а с другой стороны, про­
стота добавления модификации. Поэтому полезным является представление
формул (1.6) в матричной форме, что позволяет использовать эффективные
программные пакеты для матричных вычислений.

Через 𝑠𝑑𝑤 обозначается выражение
∑︀

𝑡φ𝑤𝑡θ𝑡𝑑, фактически, это предсказа­
ние для вероятности 𝑝(𝑤|𝑑). Тогда

𝑝𝑡𝑑𝑤 =
φ𝑤𝑡θ𝑡𝑑∑︀
𝑡φ𝑤𝑡θ𝑡𝑑

=
φ𝑤𝑡θ𝑡𝑑

𝑠𝑑𝑤
.

Подставляя это выражение в 𝑛𝑤𝑡 получается

𝑛𝑤𝑡 =
∑︁
𝑑

𝑛𝑑𝑤
φ𝑤𝑡θ𝑡𝑑

𝑠𝑑𝑤
= φ𝑤𝑡

∑︁
𝑑

θ𝑡𝑑
𝑛𝑑𝑤

𝑠𝑑𝑤
.

Аналогично,
𝑛𝑡𝑑 = θ𝑡𝑑

∑︁
𝑤

φ𝑤𝑡
𝑛𝑑𝑤

𝑠𝑑𝑤
.



17

Таким образом, необходимо построить матрицу 𝑛𝑑𝑤

𝑠𝑑𝑤
. Поскольку она является

разреженной, то 𝑠𝑑𝑤 нужно нужно вычислять только для тех 𝑑, 𝑤, где 𝑛𝑑𝑤 > 0.
Эта матрица обозначается за 𝐴, она эффективно вычисляется по величинам
𝑛𝑑𝑤,φ𝑤𝑡, θ𝑡𝑑. В этих обозначениях выполнено

𝑛𝑤𝑡 = φ𝑤𝑡(Θ𝐴)𝑡𝑤, и 𝑛𝑡𝑑 = θ𝑡𝑑(𝐴Φ
𝑇 )𝑑𝑡.

Перемножение разреженной матрицы 𝐴 на плотную матрицу Φ𝑇 или Θ выпол­
няется за время 𝑂(|𝑁 ||𝑇 |), где |𝑁 | — количество ненулевых значений матрицы
𝐴, а |𝑇 | — вторая размерность соответствующей матрицы.

В случае обобщения оптимизационной задачи (1.7), формулы остаются
такими же, только корректируется определение матрицы 𝐴:

𝐴𝑑𝑤 = 𝑛𝑑𝑤ℓ
′(𝑠𝑑𝑤).

1.5 Заключение главы

В этой главе были поставлены оптимизационные задачи вероятностного
тематического моделирования (1.1) и аддитивной регуляризации тематических
моделей (1.4). Для их решения используется EM-алгоритм, состоящий из че­
редования E-шага (1.2) и M-шага (1.3) и (1.6). Известно, что на практике
итерационный алгоритм ARTM всегда сходится. Однако, вопрос теоретическо­
го обоснования этого факта не был изучен. Также открытым является вопрос
влияния свойств регуляризаторов на сходимость итерационного алгоритма. В
следующей главе будут представлены результаты, отвечающие на данные во­
просы.
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Глава 2. Сходимость алгоритма аддитивной регуляризация
тематических моделей

В этой главе будут сформулированы и доказаны основные теоремы о
сходимости алгоритма аддитивной регуляризации тематических моделей. Ос­
новная идея доказательств будет заключаться в интерпретации алгоритма
ARTM как GEM-алгоритма и переиспользовании известных результатов о схо­
димости GEM-алгоритмов. Также в этой главе будут предложены модификации
алгоритма ARTM, улучшающие сходимость и приведены результаты экспери­
ментов на реальных текстовых коллекциях, подтверждающие предложенные
улучшения.

2.1 Общие сведения по GEM-алгоритмам

2.1.1 Вероятностные EM- и GEM- алгоритмы

Решается задача максимизации неполного правдоподобия для некой ве­
роятностной модели, в которой есть наблюдаемые переменные 𝑋, скрытые
переменные 𝑍 и параметры Ω:

log 𝑝(𝑋 | Ω) → max
Ω

. (2.1)

Пусть 𝑞(𝑍) — произвольное распределение на скрытых переменных, тогда:

log 𝑝(𝑋 | Ω) =
∫︁

𝑞(𝑍) log 𝑝(𝑋 | Ω)𝑑𝑍 =

∫︁
𝑞(𝑍)

log 𝑝(𝑋,𝑍 | Ω)
log 𝑝(𝑍 | 𝑋,Ω)

𝑑𝑍 =

=

∫︁
𝑞(𝑍)

log 𝑝(𝑋,𝑍 | Ω)
𝑞(𝑍)

𝑞(𝑍)

log 𝑝(𝑍 | 𝑋,Ω)
𝑑𝑍 =∫︁

𝑞(𝑍) log 𝑝(𝑋,𝑍 | Ω)𝑑𝑍 −
∫︁

𝑞(𝑍) log 𝑞(𝑍)𝑑𝑍⏟  ⏞  
𝐹 (𝑞,Ω)

+

∫︁
𝑞(𝑍)

𝑞(𝑍)

𝑝(𝑍 | 𝑋,Ω)
𝑑𝑍⏟  ⏞  

𝐾𝐿(𝑞(𝑍) || 𝑝(𝑍|𝑋,Ω))

(2.2)

Дивергенция Кульбака-Лейблера 𝐾𝐿(𝑞(𝑍) || 𝑝(𝑍 | 𝑋,Ω)) оценивает рас­
стояние между двумя распределениями. Основные её свойства:
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1. неотрицательность;
2. равна нулю тогда и только тогда, когда распределения совпадают;
3. несимметричность.
В силу неотрицательности KL слагаемое 𝐹 (𝑞,Ω) является нижней оценкой

на величину log 𝑝(𝑋 | Ω). От максимизации log 𝑝(𝑋 | Ω) по Ω предлагается
перейти к максимизации нижней границы 𝐹 (𝑞,Ω) по 𝑞 и Ω.

ЕМ-алгоритм состоит в итеративном повторении двух шагов:
1. 𝐹 (𝑞,Ω) → max

𝑞

2. 𝐹 (𝑞,Ω) → max
Ω

На первом шаге максимизируется выражение

𝐹 (𝑞,Ω) → max
𝑞

.

Подставляя вместо 𝐹 его выражение, получается эквивалентное выражение

(log 𝑝(𝑋 | Ω)−𝐾𝐿(𝑞(𝑍) || 𝑝(𝑍 | 𝑋,Ω))) → max
𝑞

.

log 𝑝(𝑋 | Ω) не зависит от 𝑞, поэтому выражение эквивалентно

𝐾𝐿(𝑞(𝑍) || 𝑝(𝑍 | 𝑋,Ω)) → min
𝑞

.

Из свойств KL-дивергенции следует, что

𝑞(𝑍) = 𝑝(𝑍 | 𝑋,Ω)

То есть на первом шаге необходимо найти или оценить данное апостериорное
распределение.

На втором шаге решается задача

argmax
Ω

(︂∫︁
𝑞(𝑍) log 𝑝(𝑋,𝑍 | Ω) 𝑑𝑍 −

∫︁
𝑞(𝑍) log 𝑞(𝑍) 𝑑𝑍

)︂
=

= argmax
Ω

∫︁
𝑞(𝑍) log 𝑝(𝑋,𝑍 | Ω) 𝑑𝑍 = E𝑞(𝑍) log 𝑝(𝑋,𝑍 | Ω).

Таким образом, ЕМ-алгоритм заключается в чередовании двух шагов. E
(Expectation) соответствует подготовке к вычислению математического ожида­
ния; M (Maximization) — максимизация математического ожидания логарифма
правдоподобия по параметрам.
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E-шаг: argmin
𝑞(𝑍)

𝐾𝐿(𝑞(𝑍) || 𝑝(𝑍 | 𝑋,Ω)) = 𝑝(𝑍 | 𝑋,Ω). (2.3)

М-шаг: E𝑞(𝑍) log 𝑝(𝑋,𝑍 | Ω) → max
Ω

. (2.4)

На каждом из этих шагов возникают определённые трудности. Может
оказаться, что апостериорное распределение на скрытых переменных невозмож­
но точно найти, поэтому используют приближённые методы (сэмплирование
Гиббса) или ищут наиболее подходящее распределение в некотором классе
(Variational Bayes). На втором шаге может оказаться, что нельзя найти точ­
ную точку максимума функций, поэтому ставится задача не максимизировать,
но увеличить значение функционала по сравнению с Ω на предыдущей ите­
рации. Такой подход называют Generalized Expectation Maximization (GEM)
алгоритмом.

Пусть теперь стоит задача максимизации не апостериорной вероятности
𝑝(𝑋 | Ω), а максимизация полной вероятности 𝑝(𝑋,Ω), учитывая некоторую
априорную информацию о модели 𝑝(Ω). По формуле условной вероятности
𝑝(𝑋,Ω) = 𝑝(𝑋 | Ω) 𝑝(Ω), повторяя старую декомпозицию(2.2), получаем оп­
тимизационную задачу:

log 𝑝(𝑋 | Ω) → max
Ω

𝐹 (𝑞,Ω) +𝐾𝐿(𝑞(𝑍) || 𝑝(𝑍 | 𝑋,Ω)) + log 𝑝(Ω) → max
Ω

(2.5)

При максимизации 𝐹 (𝑞,Ω) + log 𝑝(Ω) по 𝑞 и Ω:
Е-шаг остаётся без изменений, так как новое слагаемое не зависит от 𝑞.
М-шаг меняется соответствующе: E𝑞(𝑍) log 𝑝(𝑋,𝑍 | Ω) + log 𝑝(Ω) → max

Ω
Алгоритм ARTM имеет в точности такой вид, если интерпретировать 𝑅 как
log 𝑝(Ω), хотя формально для вывода не нужна вероятностная природа для
𝑝(Ω), поскольку он участвует только в оптимизационной задаче для М-шага.

2.1.2 Известные результаты о сходимости

В работе [36] представлены общие результаты о сходимости EM- и GEM-
алгоритмов, предложенных в работе [35]. Базовой теоремой, с помощью которой
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доказываются сходимости является Global Convergence Theorem, предложенная
в работе [46].

Определение 1. Отображение 𝐴 : 𝑋 → 2𝑋 будем называть point-to-set отоб­
ражением на множестве 𝑋. Такое отображение называется замкнутым,
если из 𝑥𝑘 → 𝑥, 𝑥 ∈ 𝑋, 𝑦𝑘 → 𝑦 и 𝑦𝑘 ∈ 𝐴(𝑥𝑘) следует, что 𝑦 ∈ 𝐴(𝑥).

Теорема 3 (Global Convergence Theorem). Пусть {𝑥𝑘}∞𝑘=0, 𝑥𝑘 ∈ 𝑋 — после­
довательность, порождённая правилом 𝑥𝑘+1 ∈ 𝑀(𝑥𝑘), где 𝑀 — point-to-set
отображение на множестве 𝑋. Пусть дано некоторое множество решений
Γ ⊂ 𝑋, а также

1. Все 𝑥𝑘 принадлежат некотором компакту 𝑆 ⊂ 𝑋.
2. M – замкнуто на 𝑋 ∖ Γ.
3. Существует непрерывная функция α такая, что, во-первых, при 𝑥 /∈

Γ выполнено α(𝑦) > α(𝑥) для любого 𝑦 ∈ 𝑀(𝑥), и, во-вторых, при
𝑥 ∈ Γ выполнено α(𝑦) ⩾ α(𝑥) для любого 𝑦 ∈ 𝑀(𝑥).

Тогда все предельные точки {𝑥𝑘}∞𝑘=0 находятся в множестве Γ и α(𝑥𝑘) моно­
тонно сходится к α(𝑥*) для некоторого 𝑥* ∈ Γ.

Чтобы сформулировать результаты для GEM-алгоритмов в терминах дан­
ной теоремы, требуется ввести новые обозначения (как в работе [36]).

Множество Ω — множество параметров модели, в котором ведётся оп­
тимизация. Совпадает с множеством 𝑋 из теоремы. Элемент множества Ω

обозначается φ. Максимизируемая функция логарифма правдоподобия (2.1)
при некотором значении параметров модели φ обозначается 𝐿(φ). Соответ­
ственно оптимизационная задача записывается как max

φ∈Ω
𝐿(φ)

На E-шаге (2.3) определяется некоторое распределение при определённом
наборе параметров φ ∈ Ω. По этому распределению считается математическое
ожидание E𝑝(𝑍|𝑋,φ) log 𝑝(𝑋,𝑍 | ψ) при некотором наборе параметров ψ ∈ Ω, это
выражение обозначается за 𝑄(ψ,φ). Таким образом на M-шаге (2.4) происходит
максимизация (в случае EM-алгоритма) или увеличение (в случае GEM-алго­
ритма) функции 𝑄(ψ,φ) по ψ ∈ Ω, а φ берётся с предыдущей итерации.
Преобразование φ в точку максимизации (или увеличения) 𝑄 задаётся point-to­
set отображение 𝑀 , где значением является множество из одной точки.

В качестве множества решений Γ берётся множество

ℒ = множество стационарных точек 𝐿,
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либо множество

ℳ = множество локальных максимумов 𝐿.

Применение Теоремы 3 к GEM-алгоритму позволяет получить следующее
утверждение

Теорема 4. Пусть {φ𝑘}∞𝑘=0, φ𝑘 ∈ Ω — последовательность, порождённая
правилом φ𝑘+1 ∈ 𝑀(φ𝑘). Пусть

1. M – замкнуто на Ω ∖ ℒ(соотв. ℳ).
2. 𝐿(φ𝑘+1) > 𝐿(φ𝑘) для всех φ𝑘 /∈ ℒ(соотв. ℳ).

Тогда все предельные точки {φ𝑘}∞𝑘=0 находятся в множестве ℒ(соотв. ℳ) и
𝐿(φ𝑘) монотонно сходится к 𝐿(φ*) для некоторого φ* ∈ ℒ(соотв. ℳ).

Если функционал 𝑄(ψ,φ) непрерывен по ψ и θ, то этого достаточно для
замкнутости 𝑀 . Второе же условие нельзя гарантировать в общем виде для
GEM-алгоритмов и оно является предметом доказательства.

Теорема 4 не гарантирует сходимости параметров φ𝑘, она гарантирует
слабую сходимость в смысле функционала 𝐿. Для многих GEM-алгоритмов
может быть доказано, что

||φ𝑘+1 −φ𝑘|| → 0 при 𝑘 → ∞.

В этих ограничениях теорему о сходимости GEM-алгоритма можно усилить:

Определение 2. Пусть 𝐿 — некоторая функция, 𝑆 — подмножество обла­
сти определения 𝐿, а 𝑥 — некоторое значение из ℛ. За η𝑓𝐿(𝑆, 𝑥) обозначим

{φ : φ ∈ 𝐴 и 𝑓𝐿(φ) = 𝑎}.

Теорема 5. Пусть {φ𝑘}∞𝑘=0, φ𝑘 ∈ Ω — GEM-последовательность, удовлетво­
ряющая условиям Теоремы 4. Пусть также выполняется

||φ𝑘+1 −φ𝑘|| → 0 при 𝑘 → ∞.

Тогда все предельные точки {φ𝑘}∞𝑘=0 находятся в связном и компактном
подмножестве η𝐿(ℒ, 𝐿*)(соотв. η𝐿(ℳ, 𝐿*)), где 𝐿* это предел 𝐿(φ𝑘). Ес­
ли же множество η𝐿(ℒ, 𝐿*)(соотв. η𝐿(ℳ, 𝐿*)) дискретно, то есть все его
связанные подмножества являются одноэлементными, то φ𝑘 сходится к
некоторому φ* ∈ η𝐿(ℒ, 𝐿*)(соотв. η𝐿(ℳ, 𝐿*)).



23

Таким образом, для доказательства сходимости GEM-алгоритма требует­
ся показать увеличение 𝐿 на каждой итерации, а также стремление разности
параметров на соседних итерациях к нулю.

2.1.3 EM-алгоритм максимизации неполного правдоподобия в
модели PLSA

Модель PLSA уже была введена в главе 1, однако, рассматривалось дис­
кретное вероятностное пространство на 𝐷 ×𝑊 × 𝑇 . Модель возможно задать
иным способом, чтобы проделать вероятностный вывод ЕМ алгоритма. Для
этого расширяется вероятностное пространство. C каждой словопозицей сло­
ва в документе 𝑑 связывается одна определенная тема 𝑡. За 𝑍 обозначаются
темы всех словопозиций (d, i) в коллекции. За 𝑤𝑑𝑖 обозначим 𝑖-ое слово в до­
кументе 𝑑, а за 𝑧𝑑𝑖 его тему. Тогда расширенную вероятность можно записать
следующим образом:

𝑝(𝐷,𝑍 | Φ,Θ) =
∏︁
𝑑∈𝐷

𝑁𝑑∏︁
𝑖=1

𝑝(𝑤𝑑𝑖, 𝑧𝑑𝑖 | Φ,Θ) =
∏︁
𝑑∈𝐷

𝑁𝑑∏︁
𝑖=1

φ𝑤𝑑𝑖𝑧𝑑𝑖θ𝑧𝑑𝑖𝑑.

Поскольку темы — это ненаблюдаемые величины, то данную модель фактори­
зуют по 𝑍, получая

𝑃 (𝐷 | Φ,Θ) =
∑︁
𝑍

𝑝(𝐷,𝑍 | Φ,Θ),

и максимизируют данное выражение по Φ и Θ.
На E-шаге необходимо оценить распределение на скрытых переменных

при условии параметров и наблюдаемых величин: 𝑝(𝑍 | 𝑋,Φ,Θ). Так как слово­
позиции независимы, то сразу можно перейти к отдельным вероятностям:

𝑝(𝑍 | 𝐷,Φ,Θ) =
∏︁
𝑑∈𝐷

𝑁𝑑∏︁
𝑖=1

𝑝(𝑧𝑑𝑖 | 𝑤𝑑𝑖,Φ,Θ)

Эти вероятности находятся по формуле Байеса:

𝑝(𝑧𝑑𝑖 | 𝑤𝑑𝑖,Φ,Θ) =
𝑝(𝑤𝑑𝑖 | 𝑧𝑑𝑖,Φ,Θ)𝑝(𝑧𝑑𝑖 | Φ,Θ)∑︀𝑇
𝑡=1 𝑝(𝑤𝑑𝑖 | 𝑡,Φ,Θ)𝑝(𝑡 | Φ,Θ)

=
φ𝑤𝑑𝑖𝑧𝑑𝑖θ𝑧𝑑𝑖𝑑∑︀𝑇
𝑡=1φ𝑤𝑑𝑖𝑡θ𝑡𝑑
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Фактически это формула для 𝑝𝑡𝑑𝑤 из уравнения (1.2).
На М-шаге максимизируется выражение:

E𝑝(𝑍|𝑋,Φ,Θ) log 𝑝(𝑋,𝑍 | Φ,Θ) =
∑︁
𝑑∈𝐷

𝑁𝑑∑︁
𝑖=1

E𝑝(𝑧𝑑𝑖|𝑤𝑑𝑖,Φ,Θ)(logφ𝑤𝑑𝑖𝑧𝑑𝑖 + log θ𝑧𝑑𝑖𝑑) → max
Φ,Θ

Математическое ожидание проносится внутрь суммы в силу независи­
мости словопозиций, после чего по определению математического ожидания
получается:

∑︁
𝑑∈𝐷

𝑁𝑑∑︁
𝑖=1

∑︁
𝑡∈𝑇

𝑝(𝑧𝑑𝑖 = 𝑡 | 𝑤𝑑𝑖,Φ,Θ)(logφ𝑤𝑑𝑖𝑡 + log θ𝑡𝑑) → max
Φ,Θ

.

Причём ∑︁
𝑑∈𝐷

𝑁𝑑∑︁
𝑖=1

∑︁
𝑡∈𝑇

𝑝(𝑧𝑑𝑖 = 𝑡 | 𝑤𝑑𝑖,Φ,Θ)(logφ𝑤𝑑𝑖𝑡 + log θ𝑡𝑑) =

∑︁
𝑑∈𝐷

𝑁𝑑∑︁
𝑖=1

∑︁
𝑡∈𝑇

𝑝𝑡𝑑𝑤𝑑𝑖
(logφ𝑤𝑑𝑖𝑡 + log θ𝑡𝑑) =

=
∑︁
𝑑∈𝐷

∑︁
𝑤∈𝑊

∑︁
𝑡∈𝑇

𝑛𝑑𝑤𝑝𝑡𝑑𝑤(logφ𝑤𝑡 + log θ𝑡𝑑).

При добавлении априорного распределения (2.5) E-шаг не меняются, а M-шаг
имеет вид∑︁

𝑑∈𝐷

∑︁
𝑤∈𝑊

∑︁
𝑡∈𝑇

𝑛𝑑𝑤𝑝𝑡𝑑𝑤(logφ𝑤𝑡 + log θ𝑡𝑑) + log 𝑝(Φ,Θ) → max
Φ,Θ

.

Полагая 𝑅(Φ,Θ) = log 𝑝(Φ,Θ) и решая данную оптимизационную задачу, по­
лучается тот же M-шаг, что и в Теореме 1. E-шаг, как отмечалось ранее, тоже
совпадает. Совпадение формул E-шага и M-шага позволяет интерпретировать
алгоритм ARTM как GEM-алгоритм и переиспользовать текущие известные
результаты о сходимости.
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2.2 Теоремы о сходимости алгоритма аддитивной регуляризации
тематических моделей

2.2.1 Основная теорема о сходимости

Объединяя Теоремы 4 и 5, и адаптируя обозначения под ARTM, нетруд­
но получить теорему, с помощью которой удобно доказывать сходимость
EM-алгоритма в ARTM.

Теорема 6. Пусть {(Φ𝑘,Θ𝑘)} — траектория итерационного процесса, сгене­
рированная правилом (Φ𝑘+1,Θ𝑘+1) = 𝑀(Φ𝑘,Θ𝑘), где 𝑀 — непрерывное преоб­
разование пары стохастических матриц. Пусть функция 𝐹 (Φ,Θ) ограничена
сверху и строго возрастает под действием 𝑀 на (Φ,Θ) в не стационарных
точках 𝐹 . Тогда все предельные точки траектории (Φ𝑘,Θ𝑘) являются ста­
ционарными точками 𝐹 . Если также ‖φ𝑘

𝑤𝑡 − φ𝑘+1
𝑤𝑡 ‖ → 0 и ‖θ𝑘𝑡𝑑 − θ𝑘+1

𝑡𝑑 ‖ → 0,
а множество стационарных точек 𝐹 дискретно для каждого уровня значе­
ний 𝐹 , то (Φ𝑘,Θ𝑘) сходится к некоторой стационарной точке 𝐹 .

Определение 3. Регуляризатор 𝑅 является δ-регулярным, если на итера­
циях EM-алгоритма ∀𝑡 ∃𝑤 : 𝑛𝑤𝑡 + 𝑟𝑤𝑡 > δ и ∀𝑑 ∃𝑡 : 𝑛𝑡𝑑 + 𝑟𝑡𝑑 > δ. Если
регуляризатор обладает свойством δ-регулярности при некотором δ > 0, то
будем говорить, что регуляризатор сильно регулярен; при δ = 0 будем просто
говорить, что он регулярен.

Регулярность гарантирует, что в операции norm не возникнет деления на
нуль, то есть итерации корректно определены. Сильная же регулярность поз­
воляет утверждать, что преобразования, которые производятся на итерациях
алгоритма, являются непрерывными по (Φ,Θ). Это свойство легко выполняется
на практике: если значение 𝑛𝑤𝑡+ 𝑟𝑤𝑡 (или 𝑛𝑡𝑑+ 𝑟𝑡𝑑) становится меньше δ, то вся
тема (весь документ) исключается из модели и итерации продолжаются.

Определение 4. Регуляризатор 𝑅 сохраняет нуль, если на итерациях алго­
ритма из 𝑛𝑤𝑡 = 0 следует φ𝑤𝑡 = 0 и из 𝑛𝑡𝑑 = 0 следует θ𝑡𝑑 = 0.

Это определение формализует следующие свойство итерационного процес­
са: если на какой-либо итерации значение φ𝑤𝑡 стало равным нулю, то оно будет
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оставаться нулевым на последующих итерациях, и аналогично для θ𝑡𝑑. Для ре­
гуляризатора данное свойство легко проверяется аналитически. На практике
многие регуляризаторы им обладают. Регуляризатор модели LDA, вообще гово­
ря, не обладает данным свойством при β𝑤 > 1 или α𝑡 > 1, так как при 𝑛𝑤𝑡 = 0

вполне может оказаться, что φ𝑤𝑡 > 0. Однако при использовании ненулевой
инициализации φ𝑤𝑡 значение 𝑛𝑤𝑡 не может обратиться в нуль. Поэтому и для
такого регуляризатора условие сохранения нуля выполняется.

Определение 5. Регуляризатор 𝑅 называется ε-разреживающим, если на
итерациях EM-алгоритма φ𝑤𝑡, θ𝑡𝑑 /∈ (0, ε).

Некоторые регуляризаторы имеют неограниченную в окрестности нуля
производную, поэтому при реализации EM-алгоритма параметры, меньшие
некоторого ε, зануляются. Это приводит к тому, что значения в матрице па­
раметров оказываются отделены от нуля. Именно эта особенность отражена в
данном определении.

Определение 6. Регуляризатор 𝑅 корректный, если на итерациях
EM-алгоритма из 𝑛𝑑𝑤 > 0 следует 𝑝𝑡𝑑𝑤 > 0 хотя бы для одной темы 𝑡.

Если модель даёт нулевую оценку вероятности 𝑝(𝑤 |𝑑) = 0 при том, что
терм 𝑤 встречается в документе, 𝑛𝑑𝑤 > 0, то логарифм правдоподобия ста­
новится неограниченным, 𝐿 → −∞. На практике этого легко избежать, если
использовать регуляризатор сглаживания фоновых тем [45]. Он гарантирует,
что для любого терма в любом документе найдётся хотя бы одна тема с нену­
левой вероятностью.

Введём вспомогательный функционал

𝑄(Φ,Θ,Φ′,Θ′) =
∑︁
𝑑,𝑤,𝑡

𝑛𝑑𝑤𝑝
′
𝑡𝑑𝑤 ln(φ𝑤𝑡θ𝑡𝑑) +𝑅(Φ,Θ), 𝑝′𝑡𝑑𝑤 =

φ′
𝑤𝑡θ

′
𝑡𝑑∑︀

𝑡
φ′

𝑤𝑡θ
′
𝑡𝑑

. (2.6)

Это стандартный приём при доказательстве сходимости GEM алгорит­
ма. Изменения 𝑄 на итерациях, как будет показано в дальнейшем, являются
нижней оценкой для изменений 𝐿 + 𝑅. Аналогичный функционал вводился
в статьях [35] и [36].

Теорема 7. Пусть регуляризатор 𝑅 является дифференцируемой функцией
при φ𝑤𝑡, θ𝑡𝑑 ∈ (0, 1], сохраняющей нуль, корректной, ε-разреживающей и δ-
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регулярной. Также допустим, что 𝑄(Φ𝑘+1,Θ𝑘+1,Φ𝑘,Θ𝑘) ⩾ 𝑄(Φ𝑘,Θ𝑘,Φ𝑘,Θ𝑘)

начиная с некоторой итерации 𝑘. Тогда последовательность 𝑝𝑘𝑡𝑑𝑤 сходится
в смысле дивергенции Кульбака–Лейблера для любых 𝑑 и 𝑤 таких, что 𝑛𝑑𝑤 >

0:
KL
(︀
𝑝𝑘𝑡𝑑𝑤

⃦⃦
𝑝𝑘+1
𝑡𝑑𝑤

)︀
→ 0 при 𝑘 → ∞.

Доказательство.
Поскольку регуляризатор сохраняет нуль, то, начиная с некоторой итерации,
множество ячеек с нулевыми значениями в матрицах Φ и Θ стабилизируется и
больше не будет изменяться. Это следует из того, что нулевое значение в ячей­
ке не может стать на следующей итерации ненулевым, а множество всех ячеек
конечно. Обозначим стабилизировавшееся множество ненулевых ячеек в матри­
цах Φ и Θ через Ω. Поскольку регуляризатор ε-разреживающий, значения Φ и
Θ в позициях из Ω не могут быть менее ε. Но 𝑅 — дифференцируемая функция
при φ𝑤𝑡, θ𝑡𝑑 ∈ [ε, 1], следовательно, непрерывная и ограниченная.

Заметим, что 𝑄 можно переписать следующим образом:

𝑄(Φ,Θ,Φ′,Θ′) = 𝐿(Φ,Θ) +𝑅(Φ,Θ) +
∑︁
𝑑,𝑤,𝑡

𝑛𝑑𝑤𝑝
′
𝑡𝑑𝑤 ln 𝑝𝑡𝑑𝑤.

На М-шаге 𝑘-ой итерации были получены матрицы (Φ𝑘+1,Θ𝑘+1).
По условию теоремы, начиная с некоторой итерации выполнено

𝑄(Φ𝑘+1,Θ𝑘+1,Φ𝑘,Θ𝑘) ⩾ 𝑄(Φ𝑘,Θ𝑘,Φ𝑘,Θ𝑘).

Подставим сюда вместо 𝑄 его выражение по определению:

𝐿(Φ𝑘+1,Θ𝑘+1) +𝑅(Φ𝑘+1,Θ𝑘+1) +
∑︁
𝑑,𝑤,𝑡

𝑛𝑑𝑤𝑝
𝑘
𝑡𝑑𝑤 ln 𝑝𝑘+1

𝑡𝑑𝑤

⩾ 𝐿(Φ𝑘,Θ𝑘) +𝑅(Φ𝑘,Θ𝑘) +
∑︁
𝑑,𝑤,𝑡

𝑛𝑑𝑤𝑝
𝑘
𝑡𝑑𝑤 ln 𝑝𝑘𝑡𝑑𝑤,

откуда следует

∆𝑘(𝐿+𝑅) ⩾
∑︁
𝑑,𝑤,𝑡

𝑛𝑑𝑤𝑝
𝑘
𝑡𝑑𝑤 ln

𝑝𝑘𝑡𝑑𝑤
𝑝𝑘+1
𝑡𝑑𝑤

=
∑︁
𝑑,𝑤

𝑛𝑑𝑤 KL
(︀
𝑝𝑘𝑑𝑤

⃦⃦
𝑝𝑘+1
𝑑𝑤

)︀
⩾ 0.

Равенство достигается только если на итерации не произошло никаких изме­
нений, что означает, что процесс сошёлся в неподвижную точку. В обратном
же случае 𝐿+𝑅 строго увеличивается. Но это ограниченная функция, значит,
𝐿(Φ𝑘,Θ𝑘) + 𝑅(Φ𝑘,Θ𝑘) сходится при 𝑘 → ∞. Более того KL

(︀
𝑝𝑘𝑡𝑑𝑤

⃦⃦
𝑝𝑘+1
𝑡𝑑𝑤

)︀
⩽

∆(𝐿+𝑅)𝑘 → 0 при 𝑛𝑑𝑤 > 0, что завершает доказательство.
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Следствие 1. Если в дополнение к условиям Теоремы 7 регуляризатор 𝑅 силь­
но регулярен, а 𝑟𝑤𝑡 и 𝑟𝑡𝑑 непрерывны по 𝑝𝑡𝑑𝑤, то

|φ𝑘
𝑤𝑡 −φ𝑘+1

𝑤𝑡 | → 0 и |θ𝑘𝑡𝑑 − θ𝑘+1
𝑡𝑑 | → 0.

Доказательство.
Согласно неравенству Пинскера [47], ‖𝐴 − 𝐵‖1 ⩽ 2

√︀
KL(𝐴‖𝐵). Поэтому схо­

димость по KL-дивергенции влечёт за собой сходимость по 𝑙1 норме. φ𝑤𝑡 и θ𝑡𝑑
являются непрерывными функциями от 𝑛𝑤𝑡, 𝑛𝑡𝑑, 𝑟𝑤𝑡, 𝑟𝑡𝑑, которые в свою оче­
редь непрерывно зависят от 𝑝𝑡𝑑𝑤. Следовательно, сходимость 𝑝𝑡𝑑𝑤 влечёт за
собой сходимость φ𝑤𝑡 и θ𝑡𝑑.

Рассмотрим функцию 𝐹 (Φ,Θ) = 𝐿(Φ,Θ)+𝑅(Φ,Θ), определённую для тех
Φ и Θ, у которых множество нулевых позиций матриц совпадает с множеством
ненулевых позиций Ω, стабилизировавшимся в ходе итераций.

Следствие 2. В условиях Следствия 1 если процесс не сошёлся в непо­
движную точку, то все предельные точки траектории (Φ𝑘,Θ𝑘) являются
стационарными точками 𝐹 . Если же множество стационарных точек 𝐹

дискретно для каждого уровня значений 𝐹 , то (Φ𝑘,Θ𝑘) сходится к некото­
рой стационарной точке 𝐹 .

Доказательство.
В условиях Следствия 1 применение одной итерации EM-алгоритма к матрицам
Φ и Θ является непрерывным преобразованием. Также в ходе доказательства
теоремы было показано, что функция 𝐹 ≡ 𝐿 + 𝑅 строго возрастает на ите­
рациях, если процесс не сошёлся в неподвижную точку. Остаётся заметить,
что остальные условия Теоремы 6 тоже выполнены, если рассматривать все
функции на области определения с ограничением на множество ненулевых по­
зиций Ω.

Таким образом, итерационный процесс EM-алгоритма в ARTM разбивает­
ся (в предположении увеличения 𝑄) на два этапа: первый — выбор множества
позиций Ω ненулевых ячеек в матрицах Φ и Θ, второй — окончательная оп­
тимизация значений в этих ячейках. Первый этап можно рассматривать как
дискретную оптимизацию структуры разреженности матриц Φ и Θ и подго­
товку их начальных приближений для второго этапа. Сходимость алгоритма
происходит именно на втором этапе.
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2.2.2 Свойства траектории итерационного процесса ARTM

Важным условием в теоремах сходимости является дискретность мно­
жества стационарных точек. В силу неединственности стохастического разло­
жения матрицы это условие может не выполняться. Это подводит к поиску
альтернативных достаточных условий сходимости. Сходимость итерационного
процесса неразрывно связана со свойствами его траектории. Поэтому можно
связать свойства траектории процесса с изменениями 𝐿 + 𝑅.

Теорема 8. Пусть выполнены условия Теоремы 7. Тогда сходимость ряда
∞∑︁
𝑛=1

(∆𝑘𝐿+∆𝑘𝑅)α

влечёт за собой сходимость ряда
∞∑︁
𝑛=1

(∆𝑘𝑝𝑡𝑑𝑤)
2α.

Доказательство.
Было доказано, что 𝐾𝐿(𝑝𝑘𝑡𝑑𝑤||𝑝𝑘+1

𝑡𝑑𝑤 ) ⩽ ∆(𝐿+𝑅)𝑘. По неравенству Пинскера [47]

||𝑝𝑘𝑑𝑤 − 𝑝𝑘+1
𝑑𝑤 ||1 ⩽ 𝐶 ·

√︁
𝐾𝐿(𝑝𝑘𝑡𝑑𝑤||𝑝

𝑘+1
𝑡𝑑𝑤 ) ⩽ 𝐶

√︁
∆𝑘(𝐿+𝑅),

а, значит, (∆𝑘𝑝𝑡𝑑𝑤)
2 ⩽ 𝐶2∆𝑘(𝐿+𝑅), откуда очевидно следует требуемое утвер­

ждение.

Следствие 3. В условиях теоремы 7 ряд
∞∑︀
𝑛=1

(∆𝑝𝑘𝑡𝑑𝑤)
2α сходится при α ⩾ 1.

Доказательство.
Монотонность по α свойства сходимости очевидна. При α = 1 имеем

𝑚∑︁
𝑛=1

(∆𝑘𝐿+∆𝑘𝑅) = (𝐿(𝑚) +𝑅(𝑚))− (𝐿(0) +𝑅(0))

А сходимость данной последовательности уже была доказана.

Следствие 4. В условиях теоремы 7 условие дискретности множества ста­
ционарных точек можно заменить условием сходимости ряда

∞∑︁
𝑛=1

√︀
∆𝑘𝐿+∆𝑘𝑅.
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К сожалению, это неконструктивное условие. Однако, стоит принять во
внимание, что при машинных вычислениях, начиная с некоторого момента,
изменения функционалов меньше машинной точности, и к этому моменту на
практике частичная сумма ряда не уходит в бесконечность. Поэтому на реаль­
ных коллекциях этот ряд вычислительно сходится.

2.2.3 Эксперимент по проверке достаточных условий теоремы о
сходимости

Два основных условия Теоремы 7, выполнение которых на реальной
коллекции нужно проверить — это сохранение нуля и ε-разреживание. Для экс­
периментальной этих условий мы использовали лемматизированную коллекцию
новостных сообщений на английском языке «20 NewsGroups» [48]. Тематическая
модель строилась EM-алгоритмом для ARTM, описанным в [45], с использова­
нием регуляризатора декоррелирования [49]:

𝑅(Φ) = − τ

|𝑇 |(|𝑇 | − 1)

∑︁
𝑡 ̸=𝑠

∑︁
𝑤∈𝑊

φ𝑤𝑡φ𝑤𝑠

и регуляризаторами разреживания (1.5).
Эти регуляризаторы были выбраны как одни из наиболее часто исполь­

зуемых. Регуляризаторы разреживания зануляют являются неограниченными
сверху и именно из-за них возникает необходимость вводить требование
ε-разреживания для регуляризаторов. Максимизация регуляризатора декорре­
лирования способствует увеличению попарной различности тем как столбцов
матрицы Φ, улучшает интерпретируемость тем и способствует выделению фо­
новых тем с общей лексикой языка. При этом регуляризатор декоррелирования
не имеет аналитического решения для задачи максимизации функционала 𝑄

на M-шаге.
Измерялись две основные метрики: минимальное ненулевое значение мат­

риц Φ и Θ, а также доля нулевых значений в этих же матрицах.
Рисунки 2.1 и 2.2 показывают, что ожидаемо с ростом коэффициента регу­

ляризации увеличивается степень разреженности, но также, что разреженность
монотонна на итерациях и постепенно выходит на плато. Это согласуется с
интерпретацией итераций Теоремой 7, согласно которой сначала происходит

http://qwone.com/~jason/20Newsgroups/
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Рисунок 2.1 — Доля нулевых элементов в матрице Φ на итерациях, при раз­
личных значениях коэффициента регуляризации τ.
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Рисунок 2.2 — Доля нулевых элементов в матрице Θ на итерациях, при раз­
личных значениях коэффициента регуляризации τ.

стабилизация множества нулей матриц Φ и Θ, а затем значение функциона­
ла дооптимизируется.

Рисунки 2.3 и 2.4 показывают, что минимальное ненулевое значение на
первых итерациях уменьшается, затем достигает своего минимума и дальше
продолжает расти. Уменьшение на первых итерациях происходит из-за слу­
чайной начальной инициализации матриц. Этот результат также подтверждает
выполнение условия ε-разреживания для регуляризатора.
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Рисунок 2.3 — Минимальное ненулевое значение в матрице Φ на итерациях,
при различных значениях коэффициента регуляризации τ.
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Рисунок 2.4 — Минимальное ненулевое значение в матрице Θ на итерациях,
при различных значениях коэффициента регуляризации τ.

2.3 Изменение регуляризированного правдоподобия в
EM-алгоритме

Важным условием сходимости алгоритма ARTM является неуменьшение
значения 𝑄 на М-шаге. Далее будут приведены оценки изменения функцио­
налов 𝐿, 𝑅 и 𝑄. Поскольку мы рассматриваем второй этап итерационного
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процесса, когда множество нулевых позиций в матрицах Φ и Θ не изменяет­
ся, положительную срезку в формулах можно опустить.

Введём функционал

𝑄̄(Φ,Θ,Φ′,Θ′) =
∑︁
𝑑,𝑤,𝑡

𝑛𝑑𝑤𝑝
′
𝑡𝑑𝑤 ln(φ𝑤𝑡θ𝑡𝑑).

Тогда 𝑄 = 𝑄̄ + 𝑅.
Провести анализ суммарного изменения функционала 𝑄 на М-шаге на­

прямую затруднительно. Поэтому предлагается разложить это преобразование
на два этапа. Первый этап — максимизация 𝑄̄:⎧⎨⎩φ𝑤𝑡 = norm

𝑤∈𝑊
(𝑛𝑤𝑡),

θ𝑡𝑑 = norm
𝑡∈𝑇

(𝑛𝑡𝑑).

Второй этап (назовём его регуляризационным преобразованием) — мак­
симизация 𝑅: ⎧⎨⎩φ𝑤𝑡 = norm

𝑤∈𝑊
(𝑛𝑤𝑡 + 𝑟𝑤𝑡) ,

θ𝑡𝑑 = norm
𝑡∈𝑇

(𝑛𝑡𝑑 + 𝑟𝑡𝑑)
(2.7)

Таким образом, изменения функционалов будут оцениваться отдельно на
каждом этапе. На первом происходит переход в точку (𝑛𝑤𝑡/𝑛𝑡, 𝑛𝑡𝑑/𝑛𝑑), которая
является точкой максимума функционала 𝑄̄, а на втором проводится макси­
мизация 𝑅.

Введём ещё один функционал и обозначения для его частных производ­
ных:

𝑅̄
(︀
(𝑚𝑤𝑡), (𝑚𝑡𝑑)

)︀
= 𝑅

(︂
𝑚𝑤𝑡∑︀
𝑤
𝑚𝑤𝑡

,
𝑚𝑡𝑑∑︀
𝑡
𝑚𝑡𝑑

)︂
= 𝑅

(︂
𝑚𝑤𝑡

𝑚𝑡
,
𝑚𝑡𝑑

𝑚𝑑

)︂
;

𝑔𝑤𝑡 ≡
𝜕𝑅̄

𝜕𝑚𝑤𝑡
, 𝑔𝑡𝑑 ≡

𝜕𝑅̄

𝜕𝑚𝑡𝑑
, φ𝑤𝑡 =

𝑚𝑤𝑡∑︀
𝑤
𝑚𝑤𝑡

, θ𝑡𝑑 =
𝑚𝑡𝑑∑︀
𝑡
𝑚𝑡𝑑

.

Таким образом, функционал 𝑅̄, определён на паре произвольных неотрица­
тельных матриц размера |𝑊 | × |𝑇 | и |𝑇 | × |𝐷|. Он нормирует эти матрицы
и применяет к ним регуляризатор 𝑅. Отметим, что при регуляризационном
преобразовании 𝑅̄(𝑛𝑤𝑡, 𝑛𝑡𝑑) = 𝑅

(︀
𝑛𝑤𝑡/𝑛𝑡, 𝑛𝑡𝑑/𝑛𝑑

)︀
.
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Утверждение 1. Для 𝑔𝑤𝑡 и 𝑔𝑡𝑑 выполнено:

𝑔𝑤𝑡 =
1

𝑚𝑡

∑︁
𝑢∈𝑊

(︂
𝜕𝑅

𝜕φ𝑤𝑡
− 𝜕𝑅

𝜕φ𝑢𝑡

)︂
φ𝑢𝑡,

𝑔𝑡𝑑 =
1

𝑚𝑑

∑︁
𝑠∈𝑇

(︂
𝜕𝑅

𝜕θ𝑡𝑑
− 𝜕𝑅

𝜕θ𝑠𝑑

)︂
θ𝑠𝑑.

Доказательство.
В силу нормировки

φ𝑤𝑡 =
𝑚𝑤𝑡∑︀
𝑤 𝑚𝑤𝑡

.

Отсюда

𝜕φ𝑢𝑡

𝜕𝑚𝑤𝑡
=

𝜕 𝑚𝑢𝑡∑︀
𝑣
𝑚𝑣𝑡

𝜕𝑚𝑤𝑡
=

𝜕𝑚𝑢𝑡

𝜕𝑚𝑤𝑡∑︀
𝑣
𝑚𝑣𝑡

− 𝑚𝑢𝑡

(
∑︀
𝑣
𝑚𝑣𝑡)2

=
[𝑢 = 𝑤]

𝑚𝑡
− φ𝑢𝑡

𝑚𝑡
=

1

𝑚𝑡

(︀
[𝑢 = 𝑤]−φ𝑢𝑡

)︀
.

Следовательно,

𝜕𝑅̄

𝜕𝑚𝑤𝑡
=
∑︁
𝑢

𝜕𝑅

𝜕φ𝑢𝑡

𝜕φ𝑢𝑡

𝜕𝑚𝑤𝑡
=

1

𝑚𝑡

(︂
𝜕𝑅

𝜕φ𝑤𝑡
−
∑︁
𝑢

𝜕𝑅

𝜕φ𝑢𝑡
φ𝑢𝑡

)︂
=

1

𝑚𝑡

∑︁
𝑢

(︂
𝜕𝑅

𝜕φ𝑤𝑡
− 𝜕𝑅

𝜕φ𝑢𝑡

)︂
φ𝑢𝑡.

Формула для 𝑔𝑑𝑡 доказывается аналогично.

Теперь докажем основную теорему раздела.

Теорема 9. Пусть величины 𝑟𝑤𝑡 и 𝑟𝑡𝑑 на М-шаге рассчитываются в точках

𝑛𝑤𝑡∑︀
𝑤
𝑛𝑤𝑡

и
𝑛𝑡𝑑∑︀
𝑡
𝑛𝑡𝑑

,

тогда в ходе регуляризационного преобразования (2.7) без занулений элемен­
тов матриц угол между вектором изменений ∆𝑛 и градиентом 𝑅̄ острый,
если градиент ненулевой.

Доказательство.
Докажем утверждение для ∆𝑛𝑤𝑡, для ∆𝑛𝑡𝑑 доказательство будет аналогично.
При регуляризационном преобразовании без занулений ∆𝑛𝑤𝑡 = φ𝑤𝑡

𝜕𝑅
𝜕φ𝑤𝑡

, поэто­
му с учётом Утверждения 1 получаем:

⟨∆𝑛,∇𝑅̄(𝑛𝑤𝑡, 𝑛𝑡𝑑)⟩ =
∑︁
𝑤,𝑡,𝑢

1

𝑛𝑡

(︂
𝜕𝑅

𝜕φ𝑤𝑡
− 𝜕𝑅

𝜕φ𝑢𝑡

)︂
𝜕𝑅

𝜕φ𝑤𝑡
φ𝑤𝑡φ𝑢𝑡.
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В силу симметрии суммы выполнено:∑︁
𝑤,𝑡,𝑢

1

𝑛𝑡

(︂
𝜕𝑅

𝜕φ𝑤𝑡
− 𝜕𝑅

𝜕φ𝑢𝑡

)︂
𝜕𝑅

𝜕φ𝑤𝑡
φ𝑤𝑡φ𝑢𝑡 =

∑︁
𝑤,𝑡,𝑢

1

𝑛𝑡

(︂
𝜕𝑅

𝜕φ𝑢𝑡
− 𝜕𝑅

𝜕φ𝑤𝑡

)︂
𝜕𝑅

𝜕φ𝑢𝑡
φ𝑤𝑡φ𝑢𝑡 =

=
∑︁
𝑤,𝑡,𝑢

1

𝑛𝑡

(︂
𝜕𝑅

𝜕φ𝑤𝑡
− 𝜕𝑅

𝜕φ𝑢𝑡

)︂(︂
− 𝜕𝑅

𝜕φ𝑢𝑡

)︂
φ𝑤𝑡φ𝑢𝑡 =

=
1

2

(︂∑︁
𝑤,𝑡,𝑢

1

𝑛𝑡

(︂
𝜕𝑅

𝜕φ𝑤𝑡
− 𝜕𝑅

𝜕φ𝑢𝑡

)︂
𝜕𝑅

𝜕φ𝑤𝑡
φ𝑤𝑡φ𝑢𝑡+

+
∑︁
𝑤,𝑡,𝑢

1

𝑛𝑡

(︂
𝜕𝑅

𝜕φ𝑤𝑡
− 𝜕𝑅

𝜕φ𝑢𝑡

)︂(︂
− 𝜕𝑅

𝜕φ𝑢𝑡

)︂
φ𝑤𝑡φ𝑢𝑡

)︂
=

=
1

2

∑︁
𝑡,𝑤,𝑢

1

𝑛𝑡

(︂
𝜕𝑅

𝜕φ𝑤𝑡
− 𝜕𝑅

𝜕φ𝑢𝑡

)︂2

φ𝑤𝑡φ𝑢𝑡 =
∑︁
𝑡,𝑤<𝑢

1

𝑛𝑡

(︂
𝜕𝑅

𝜕φ𝑤𝑡
− 𝜕𝑅

𝜕φ𝑢𝑡

)︂2

φ𝑤𝑡φ𝑢𝑡 ⩾ 0.

Пусть здесь достигается равенство, тогда 𝜕𝑅
𝜕φ𝑤𝑡

= 𝜕𝑅
𝜕φ𝑢𝑡

для всех 𝑢 и 𝑤, гдеφ𝑤𝑡 > 0

и φ𝑢𝑡 > 0. Тогда

𝜕𝑅̄

𝜕𝑛𝑤𝑡
=

1

𝑛𝑡

(︃
𝜕𝑅

𝜕φ𝑤𝑡
−
∑︁
𝑢

𝜕𝑅

𝜕φ𝑢𝑡
φ𝑢𝑡

)︃
=

1

𝑛𝑡

(︃
𝜕𝑅

𝜕φ𝑤𝑡
−
∑︁
𝑢

𝜕𝑅

𝜕φ𝑤𝑡
φ𝑢𝑡

)︃

=
1

𝑛𝑡

(︃
𝜕𝑅

𝜕φ𝑤𝑡
− 𝜕𝑅

𝜕φ𝑤𝑡

∑︁
𝑢

φ𝑢𝑡

)︃
=

1

𝑛𝑡

(︂
𝜕𝑅

𝜕φ𝑤𝑡
− 𝜕𝑅

𝜕φ𝑤𝑡

)︂
= 0.

Значит, градиент нулевой. Получили противоречие. Поэтому неравенство
строгое и угол острый, что и требовалось доказать.

Ранее было показано (Теорема 7), что при определённых ограничениях на
регуляризатор занулений ячеек в матрицах Φ и Θ не будет, начиная с некото­
рой итерации. Таким образом, если коэффициенты регуляризации не слишком
большие, то изменение 𝑛𝑤𝑡 и 𝑛𝑡𝑑 будет незначительно. Поэтому при регуляри­
зационном преобразовании будет происходить увеличение 𝑅 в силу локального
изменения вдоль градиента.

Также стоит отметить, что если регуляризационные поправки вычисля­
ются по 𝑛𝑤𝑡 и 𝑛𝑡𝑑, то будут непрерывными функциями от 𝑝𝑡𝑑𝑤, что важно для
сходимости параметров.

Теперь нужно объединить результаты двух этапов. В ходе первого этапа
происходит переход в точку максимума 𝑄̄, значит, градиент 𝑄̄ в этой точке
нулевой. Это означает, что в ней градиент 𝑄̄+𝑅 сонаправлен с градиентом 𝑅,
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откуда следует, что на этапе регуляризационного преобразования происходит
неуменьшение 𝑄̄ + 𝑅.

Остаётся понять, как изменяется этот функционал на первом этапе. Есть
риск, что при максимизации 𝑄̄ значение 𝑄 может уменьшиться, поэтому при
реализации алгоритма необходимо дополнительно проверять, что значение 𝑄

увеличилось на итерации и использовать новое значение Φ и Θ только если
увеличение произошло. Эта проверка строго гарантирует неуменьшение 𝑄 на
итерациях.

2.3.1 Стремление коэффициента регуляризатора к нулю

Один из рычагов управления регуляризацией в алгоритме ARTM — это
изменение коэффициента регуляризации. Для удобства будем считать, что
регуляризатор на 𝑘-ой итерации алгоритма равен τ𝑘𝑅, а верхний индекс у функ­
ционалов означает, что они рассчитываются на соответствующей итерации. При
анализе регуляризационного преобразования использовался подход с подсчётом
градиента не по φ𝑤𝑡, а по 𝑛𝑤𝑡. Используя данный подход, докажем следующее
утверждения для коэффициентов регуляризации, стремящихся к нулю.

Утверждение 2. Существует такая константа γ, что если τ𝑘 ⩽ γ∆𝑄̄𝑘, а

также
1

𝑛𝑡

𝜕𝑅̄

𝜕φ𝑤𝑡
(𝑛𝑤𝑡, 𝑛𝑡𝑑) — ограниченная функция (константой 𝐶), то при

𝑟𝑤𝑡 = τ
𝑛𝑤𝑡

𝑛𝑡

𝜕𝑅

𝜕φ𝑤𝑡

(︂
𝑛𝑤𝑡

𝑛𝑡
,
𝑛𝑡𝑑

𝑛𝑑

)︂
и

𝑟𝑡𝑑 = τ
𝑛𝑡𝑑

𝑛𝑑

𝜕𝑅

𝜕θ𝑡𝑑

(︂
𝑛𝑤𝑡

𝑛𝑡
,
𝑛𝑡𝑑

𝑛𝑑

)︂
будет выполнено ∆𝑄̄𝑘 ⩾ 0.

Доказательство.
Для лаконичности рассмотрим случай 𝑅(Φ,Θ) = 𝑅(Φ).
При регуляризационном преобразовании выполнено

∆𝑘𝑛𝑤𝑡 =

(︂
𝑛𝑤𝑡 + τ

𝑘𝑛𝑤𝑡

𝑛𝑡

𝜕𝑅

𝜕φ𝑤𝑡

)︂
+

− 𝑛𝑤𝑡.
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Поэтому(︂
𝑛𝑤𝑡 + τ

𝑘𝑛𝑤𝑡

𝑛𝑡

𝜕𝑅

𝜕φ𝑤𝑡

)︂
+

− 𝑛𝑤𝑡 ⩽ 𝑛𝑤𝑡 +

⃒⃒⃒⃒
τ𝑘

𝑛𝑤𝑡

𝑛𝑡

𝜕𝑅

𝜕φ𝑤𝑡

⃒⃒⃒⃒
− 𝑛𝑤𝑡 ⩽

⃒⃒⃒⃒
τ𝑘

𝑛𝑤𝑡

𝑛𝑡

𝜕𝑅

𝜕φ𝑤𝑡

⃒⃒⃒⃒
,

(︂
𝑛𝑤𝑡 + τ

𝑘𝑛𝑤𝑡

𝑛𝑡

𝜕𝑅

𝜕φ𝑤𝑡

)︂
+

− 𝑛𝑤𝑡 ⩾ 𝑛𝑤𝑡 −
⃒⃒⃒⃒
τ𝑘

𝑛𝑤𝑡

𝑛𝑡

𝜕𝑅

𝜕φ𝑤𝑡

⃒⃒⃒⃒
− 𝑛𝑤𝑡 ⩾ −

⃒⃒⃒⃒
τ𝑘

𝑛𝑤𝑡

𝑛𝑡

𝜕𝑅

𝜕φ𝑤𝑡

⃒⃒⃒⃒
,

|∆𝑘𝑛𝑤𝑡| ⩽ τ𝑘
⃒⃒⃒⃒
𝑛𝑤𝑡

𝑛𝑡

𝜕𝑅

𝜕φ𝑤𝑡

⃒⃒⃒⃒
.

Подставим значение градиента из Утверждения 1:⃒⃒⃒⃒
⟨∆𝑘𝑛,∇𝑅(𝑛𝑤𝑡, 𝑛𝑡𝑑)⟩

⃒⃒⃒⃒
=

⃒⃒⃒⃒∑︁
𝑤,𝑡,𝑢

1

𝑛𝑡

(︂
𝜕𝑅

𝜕φ𝑤𝑡
− 𝜕𝑅

𝜕φ𝑢𝑡

)︂
∆𝑘𝑛𝑤𝑡

𝑛𝑢𝑡

𝑛𝑡

⃒⃒⃒⃒
⩽

⩽
∑︁
𝑤,𝑡,𝑢

2𝐶
⃒⃒
∆𝑘𝑛𝑤𝑡

⃒⃒ ⃒⃒⃒⃒𝑛𝑢𝑡

𝑛𝑡

⃒⃒⃒⃒
⩽
∑︁
𝑤,𝑡,𝑢

2𝐶τ𝑘
⃒⃒⃒⃒
𝑛𝑤𝑡

𝑛𝑡

𝜕𝑅

𝜕φ𝑤𝑡

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝑛𝑢𝑡

𝑛𝑡

⃒⃒⃒⃒
⩽

⩽
∑︁
𝑤,𝑡,𝑢

2𝐶2τ𝑘𝑛𝑤𝑡

⃒⃒⃒⃒
𝑛𝑢𝑡

𝑛𝑡

⃒⃒⃒⃒
⩽
∑︁
𝑤,𝑡

2𝐶2𝑛𝑤𝑡 ⩽

⩽ 2𝐶2
∑︁
𝑤

𝑛𝑤τ
𝑘 ⩽ (2γ𝐶2

∑︁
𝑤

𝑛𝑤)∆𝑄̄𝑘.

Если 2γ𝐶2
∑︀

𝑤 𝑛𝑤 < 1, то изменение 𝑄̄𝑘 на этапе регуляризационного преобра­
зования меньше чем на этапе максимизации 𝑄̄𝑘, а, значит, суммарный эффект
будет положительным.

2.4 Классификация регуляризаторов

С точки зрения изменения функционала 𝑄 стоит выделить несколько ти­
пов регуляризаторов.

Аналитические регуляризаторы. В эту группу попадают регуляриза­
торы, для которых возможно явно найти решение задачи максимизации 𝑄 на
М-шаге. В этом случае не требуется анализировать углы между градиентами,
увеличение функционала получается по построению. Таковыми регуляриза­
торами являются, например, регуляризаторы сглаживания и разреживания.
Аналитические регуляризаторы обладают ещё одним важным свойством: их воз­
действие можно считать отдельно. Пусть 𝑅 = 𝑅1+𝑅2, где 𝑅1 — аналитический
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регуляризатор. На М-шаге необходимо построить увеличение функционала
𝑄̄ + 𝑅 = 𝑄̄ + 𝑅1 + 𝑅2. По формулам М-шага вычисляется (𝑛𝑤𝑡, 𝑛𝑡𝑑) как точка
максимума 𝑄, а затем увеличивается 𝑅. Однако, можно определить (𝑛𝑤𝑡,𝑛𝑡𝑑)

как точку максимума 𝑄̄ + 𝑅1 (это можно сделать в силу аналитичности 𝑅1),
а затем производить увеличение 𝑅2. Таким образом, численные методы опти­
мизации будут использоваться только для той части регуляризатора, где не
получается явно найти максимум.

Вогнутые регуляризаторы. Если 𝑅 вогнутая функция, то 𝑄̄ + 𝑅 то­
же вогнутая функция, и, следовательно, имеет единственный максимум. При
некоторых дополнительных допущениях будет происходить увеличение 𝑄̄ + 𝑅

. Однако, в случае вогнутого регуляризатора можно сказать, что на шаге
регуляризационного преобразования происходит приближение к глобальному
максимуму, а не просто увеличение значения. Таковыми регуляризаторами
являются регуляризаторы когерентности и лапласианы графов связей доку­
ментов.

Неограниченные регуляризаторы. В случае, если регуляризатор
неограничен, задача оптимизации оказывается некорректно поставленной, по­
скольку максимум оптимизируемой функции равен бесконечности. Однако, за
счёт отделения итерационного процесса от нуля, это проблему получается ре­
шить (подробнее в Теореме 7).

Произвольные регуляризаторы. Для произвольных регуляризаторов
было доказано увеличение 𝑅 при регуляризационном преобразовании (Теорема
9). При дополнительных условиях оно преобразуется в увеличение 𝑄̄ + 𝑅 на
итерациях.

2.5 Модификация M-шага алгоритма ARTM

Обычно в реализациях EM-алгоритма для ARTM [30; 31; 50] регуляриза­
ционные поправки 𝑟𝑤𝑡 и 𝑟𝑡𝑑 рассчитываются в точке (Φ𝑘,Θ𝑘). В этом случае нет
теоретических гарантий на увеличение 𝑄 на этапе регуляризационного преобра­
зования. Поэтому алгоритм может сойтись в неподвижную точку отображения,
а не в стационарную точку функционала 𝐿+𝑅, из-за чего значение 𝐿+𝑅 ока­
жется субоптимальным.
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Теорема 9 утверждает, что если рассчитывать 𝑟𝑤𝑡 и 𝑟𝑡𝑑 в точке(︀
(𝑛𝑘

𝑤𝑡/𝑛
𝑘
𝑡 ), (𝑛

𝑘
𝑡𝑑/𝑛

𝑘
𝑑)
)︀
, то есть на основе величин, подсчитанных на M-шаге

𝑘-й итерации, то будут выполнены теоретические гарантии оптимальности. На
основе этой Теоремы предлагается модифицировать M-шаг алгоритма.

2.5.1 Описание модификации

Обычные формулы M-шага для регуляризационных поправок

𝑟𝑘𝑤𝑡 = φ
𝑘−1
𝑤𝑡

𝜕𝑅

𝜕φ𝑤𝑡

(︀
Φ𝑘−1

𝑤𝑡 ,Θ𝑘−1
𝑡𝑑

)︀
; 𝑟𝑘𝑡𝑑 = θ

𝑘−1
𝑡𝑑

𝜕𝑅

𝜕θ𝑡𝑑

(︀
Φ𝑘−1

𝑤𝑡 ,Θ𝑘−1
𝑡𝑑

)︀
; (2.8)

заменяются на модифицированные согласно Теореме 9:

𝑟𝑘𝑤𝑡 =
𝑛𝑘
𝑤𝑡

𝑛𝑘
𝑡

𝜕𝑅

𝜕φ𝑤𝑡

(︂
𝑛𝑘
𝑤𝑡

𝑛𝑘
𝑡

,
𝑛𝑘
𝑡𝑑

𝑛𝑘
𝑑

)︂
; 𝑟𝑘𝑡𝑑 =

𝑛𝑘
𝑡𝑑

𝑛𝑘
𝑑

𝜕𝑅

𝜕θ𝑤𝑡

(︂
𝑛𝑘
𝑤𝑡

𝑛𝑘
𝑡

,
𝑛𝑘
𝑡𝑑

𝑛𝑘
𝑑

)︂
. (2.9)

Рассмотрим поведение двух формул M-шага на примере простого ре­
гуляризатора. Пусть 𝑅 = −τ

∑︀
𝑤,𝑡
φ𝑤𝑡. Формально, он не должен влиять на

оптимизацию, поскольку равен константе при ограничениях задачи. Однако,
стандартные формулы дадут следующий М-шаг:⎧⎨⎩φ𝑤𝑡 = norm

𝑤

(︀
𝑛𝑤𝑡 − τφ𝑤𝑡

)︀
,

θ𝑡𝑑 = norm
𝑡

(︀
𝑛𝑡𝑑 − τθ𝑡𝑑

)︀
.

Если не будет занулений, то этот процесс сойдётся, скорее всего, к той
же точке, что и PLSA, но траектория будет другой. Используя несмещённые
оценки, можно получить:⎧⎪⎨⎪⎩

φ𝑤𝑡 = norm
𝑤

(sparse
τ

(𝑛𝑤𝑡, 𝑛𝑡)),

θ𝑡𝑑 = norm
𝑡

(sparse
τ

(𝑛𝑡𝑑, 𝑛𝑑)),

где sparse
τ

(𝑥, 𝑦) = 𝑥, если τ < 𝑦 и 0 иначе. Это уже практически PLSA, но
с условием, на селекцию тем: тема должна содержать некоторое минимальное
количество слов (параметр 𝑛𝑡), иначе будет удалена.
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2.5.2 Эксперимент по оценке эффекта от модификации

Согласно Теореме 9, если рассчитывать регуляризационные поправки по
формулам (2.9), то значение оптимизируемого функционала будет гарантиро­
ванно увеличиваться на втором этапе итерационного процесса. Ожидается, что
это ускорит оптимизацию, позволяя за то же число итераций получать лучшие
значения максимизируемого функционала.

Для экспериментальной проверки этого утверждение мы как и в разделе
2.2.3 использовали коллекцию «20 NewsGroups» и регуляризатор декоррели­
рования:

𝑅(Φ) = − τ

|𝑇 |(|𝑇 | − 1)

∑︁
𝑡 ̸=𝑠

∑︁
𝑤∈𝑊

φ𝑤𝑡φ𝑤𝑠.
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Рисунок 2.5 — Изменение функционала 𝐿 + 𝑅 на итерациях, |𝑇 | = 30, при
различных значениях коэффициента регуляризации τ.
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τ 𝐿+𝑅 стандарт 𝐿+𝑅 модификация Улучшение 𝐿+𝑅, %
107 -3536050 -3536340 -0.01
108 -3693905 -3691338 0.07

1.5 · 108 -4509247 -4448501 1.35
2.0 · 108 -5018335 -4808217 4.19
2.5 · 108 -5790283 -5388187 6.94
3.0 · 108 -6363392 -5848354 8.09
3.5 · 108 -7223361 -6374974 11.75
4.0 · 108 -8055262 -6982549 13.32
4.5 · 108 -8941616 -7586618 15.15
5.0 · 108 -9532948 -8259205 13.36

Таблица 1 — Итоговые значения 𝐿+𝑅 по окончании итераций.

В эксперименте мы проверяли, как на итерациях алгоритма изменяется
значение оптимизируемого функционала 𝐿(Φ,Θ) + 𝑅(Φ). Значения τ переби­
рались в таком интервале, чтобы абсолютная величина 𝑅 была соизмерима
с абсолютным значением 𝐿 и регуляризатор оказывал заметное влияние на мо­
дель в процессе оптимизации. Сравнивались две версии M-шага: стандартная
(2.8) и модифицированная (2.9).

На Рисунке 2.5 видно, что при стандартных формулах M-шага на пер­
вых итерациях происходит уменьшение функционала 𝐿 + 𝑅, причём с ростом
τ количество таких итераций растёт. В то же время для модифицированного
шага только одна итерация происходит с уменьшением 𝐿 + 𝑅, далее наблю­
дается рост значений. Как и предполагалось, это позволяет получить заметно
лучшие значения 𝐿 + 𝑅 в точке, к которой сходится алгоритм. Их сравнение
приводится в Таблице 1. Также заметим, что чем больше τ, то есть чем сильнее
воздействие регуляризатора на модель, тем существеннее предложенная моди­
фикация улучшает полученное решение.
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2.6 Обобщение теорем о сходимости на случай общей функции
потерь

Результаты Теоремы 7 могут быть перенесены на случай обобщённой оп­
тимизационной задачи (1.7). Это делается в несколько этапов.

2.6.1 Обобщение интерпретации как GEM-алгоритма

Для введения нижних оценок потребуется доказать несколько вспомога­
тельных лемм.

Утверждение 3. Пусть 𝑥𝑡 ⩾ 0 и 𝑦𝑡 > 0, тогда
∑︀

𝑡 𝑥𝑡 −
∑︀

𝑡 𝑦𝑡 ⩾
∑︀

𝑡 𝑦𝑡 log
𝑥𝑡

𝑦𝑡
.

Доказательство.
Пусть 𝑥𝑡 = 𝑦𝑡 + ε𝑡, тогда∑︁

𝑡

𝑦𝑡 log
𝑥𝑡
𝑦𝑡

=
∑︁
𝑡

𝑦𝑡 log

(︂
1 +

ε𝑡

𝑦𝑡

)︂
⩽
∑︁
𝑡

𝑦𝑡
ε𝑡

𝑦𝑡
=
∑︁
𝑡

ε𝑡 =
∑︁
𝑡

𝑥𝑡 −
∑︁
𝑡

𝑦𝑡.

Лемма 1. Пусть ℓ′ ⩾ 0 и ℓ′′ ⩾ 0, тогда

𝐿(Φ,Θ)− 𝐿(Φ0,Θ0) ⩾
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℓ
′
(︁∑︁

𝑠0𝑡𝑑𝑤

)︁(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤 log
𝑠𝑡𝑑𝑤
𝑠0𝑡𝑑𝑤

)︃
,

где 𝑠𝑡𝑑𝑤 ≡ φ𝑤𝑡θ𝑡𝑑.

Доказательство.

𝐿(Φ,Θ)− 𝐿(Φ0,Θ0) =
∑︁
𝑤,𝑑

𝑛𝑑𝑤

(︃
ℓ

(︃∑︁
𝑡

φ𝑤𝑡θ𝑡𝑑

)︃
− ℓ

(︃∑︁
𝑡

φ0
𝑤𝑡θ

0
𝑡𝑑

)︃)︃
⩾

⩾ |в силу ℓ′′ ⩾ 0| ⩾
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℓ
′

(︃∑︁
𝑡

φ0
𝑤𝑡θ

0
𝑡𝑑

)︃(︃∑︁
𝑡

φ𝑤𝑡θ𝑡𝑑 −
∑︁
𝑡

φ0
𝑤𝑡θ

0
𝑡𝑑

)︃
≡

≡
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℓ
′

(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃(︃∑︁
𝑡

𝑠𝑡𝑑𝑤 −
∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃
⩾
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⩾ |по Утверждению 3 и ℓ′ ⩾ 0| ⩾
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℓ
′

(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤 log
𝑠𝑡𝑑𝑤
𝑠0𝑡𝑑𝑤

)︃
.

По аналогии с (2.6) введём функционал

𝑄(Φ,Θ,Φ,Θ) =
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℓ
′

(︃∑︁
𝑡

𝑠𝑡𝑑𝑤

)︃∑︁
𝑡

𝑠𝑡𝑑𝑤 log 𝑠𝑡𝑑𝑤 +𝑅(Φ,Θ) (2.10)

Из Леммы 1 следует, что

𝐿(Φ,Θ)+𝑅(Φ,Θ)−𝐿(Φ0,Θ0)−𝑅(Φ0,Θ0) ⩾ 𝑄(Φ,Θ,Φ0,Θ0)−𝑄(Φ0,Θ0,Φ0,Θ0).

Таким образом, по аналогии с GEM-алгоритмом для роста правдоподобия на
каждой итерации нужно обеспечить увеличение Q(Φ,Θ,Φ0,Θ0) по сравнению
с 𝑄(Φ0,Θ0,Φ0,Θ0):

∑︁
𝑤,𝑑

𝑛𝑑𝑤ℓ
′

(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤 log
𝑠𝑡𝑑𝑤
𝑠0𝑡𝑑𝑤

)︃
+𝑅(Φ,Θ)−𝑅(Φ0,Θ0) ⩾ 0

для этого можно максимизировать выражение

∑︁
𝑤,𝑑

𝑛𝑑𝑤ℓ
′

(︃∑︁
𝑟

𝑠0𝑟𝑑𝑤

)︃(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤 log 𝑠𝑡𝑑𝑤

)︃
+𝑅(Φ,Θ) → max

Φ,Θ

Если подставить вместо 𝑠𝑡𝑑𝑤 его выражение и упростить, то получится

𝑄(Φ,Θ,Φ,Θ) =
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℓ
′

(︃∑︁
𝑟

𝑠𝑟𝑑𝑤

)︃(︃∑︁
𝑡

𝑠𝑡𝑑𝑤 log 𝑠𝑡𝑑𝑤

)︃
+𝑅(Φ,Θ) =

=
∑︁
𝑤,𝑑

𝑛𝑑𝑤

∑︁
𝑡

(︃
φ𝑤𝑡θ𝑡𝑑 ℓ′

(︃∑︁
𝑟

φ𝑤𝑟θ𝑟𝑑

)︃)︃
(logφ𝑤𝑡 + log θ𝑡𝑑) +𝑅(Φ,Θ) =

=
∑︁
𝑤,𝑑,𝑡

𝑛𝑑𝑤𝑝𝑡𝑑𝑤 (logφ𝑤𝑡 + log θ𝑡𝑑) +𝑅(Φ,Θ).

Поскольку в обозначениях Теоремы 2 выполнено 𝑝0𝑡𝑑𝑤 = φ0
𝑤𝑡θ

0
𝑡𝑑ℓ

′ (𝑝(𝑤|𝑑)). Таким
образом, валидно интерпретация решений систем уравнений Теоремы 2 методом
простых итераций как GEM-алгоритма.
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2.6.2 Сходимость параметров алгоритма

Если 𝐿+𝑅 — ограниченная сверху функция, то последовательность 𝐿𝑛+

𝑅𝑛 сходится, так как она ограничена сверху и монотонно возрастает. Значит,
∆(𝐿 + 𝑅) → 0, следовательно

∑︁
𝑤,𝑑

𝑛𝑑𝑤ℓ
′
(︁∑︁

𝑠0𝑡𝑑𝑤

)︁(︃∑︁
𝑡

𝑠𝑡𝑑𝑤 −
∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃
+∆𝑅 → 0 (2.11)

и ∑︁
𝑤,𝑑

𝑛𝑑𝑤ℓ
′
(︁∑︁

𝑠0𝑡𝑑𝑤

)︁(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤 log
𝑠𝑡𝑑𝑤
𝑠0𝑡𝑑𝑤

)︃
+∆𝑅 → 0. (2.12)

То есть имеет место быть слабая сходимость параметров 𝑠𝑡𝑑𝑤. Но обычная
сходимость 𝑠𝑡𝑑𝑤 отсюда не следует. Для решения этой проблемы, нужно немного
усложнить анализ Леммы 1.

Утверждение 4. Пусть ℓ(𝑥) = ℎ(log(𝑥)), ℓ′(𝑥) ⩾ 0 и ℓ′′(𝑥) ⩾ 0 при 𝑥 > 0,
тогда ℎ′(log 𝑥) ⩾ 0 и ℎ′′(log 𝑥) ⩾ 0 при 𝑥 > 0.

Доказательство.

Пусть ℓ(𝑥) = ℎ(log 𝑥), тогда ℓ′(𝑥) = ℎ′(log 𝑥)
𝑥 . А вторая производная ℓ′′(𝑥) =

ℎ′′(log 𝑥)−ℎ′(log 𝑥)
𝑥2 . Отсюда ℎ′′(log 𝑥) = 𝑥2ℓ′′(𝑥) + ℎ′(log 𝑥).
Так как 𝑥 > 0, то (ℓ′′(𝑥) ⩾ 0 ∧ ℓ′(𝑥) ⩾ 0) → (ℎ′(log 𝑥) ⩾ 0 ∧ ℎ′′(log 𝑥) ⩾ 0).

То есть, ℎ′(log 𝑥) ⩾ 0 ∧ ℎ′′(log 𝑥) ⩾ 0.

Лемма 2. Пусть ℓ(𝑥) = ℎ(log 𝑥), ℎ′(log 𝑥) ⩾ 0 и ℎ′′(log 𝑥) ⩾ 0 при 𝑥 > 0, тогда

𝐿(Φ,Θ)− 𝐿(Φ0,Θ0) ⩾
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℓ
′

(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤 log
𝑠𝑡𝑑𝑤
𝑠0𝑡𝑑𝑤

)︃
+

+
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℎ
′

(︃
log
∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃
𝐾𝐿

(︂
𝑠0𝑡𝑑𝑤∑︀
𝑡 𝑠

0
𝑡𝑑𝑤

|| 𝑠𝑡𝑑𝑤∑︀
𝑡 𝑠𝑡𝑑𝑤

)︂
.

Доказательство.

𝐿(Φ,Θ)− 𝐿(Φ0,Θ0) =
∑︁
𝑤,𝑑

𝑛𝑑𝑤

(︃
𝑙

(︃∑︁
𝑡

𝑠𝑡𝑑𝑤

)︃
− 𝑙

(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃)︃
=
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=
∑︁
𝑤,𝑑

𝑛𝑑𝑤

(︃
ℎ

(︃
log
∑︁
𝑡

𝑠𝑡𝑑𝑤

)︃
− ℎ

(︃
log
∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃)︃
⩾ |в силу ℓ′′ ⩾ 0| ⩾

⩾
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℎ
′

(︃
log
∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃(︃
log
∑︁
𝑡

𝑠𝑡𝑑𝑤 − log
∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃
=

=
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℎ
′

(︃
log
∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃
log

∑︀
𝑡 𝑠𝑡𝑑𝑤∑︀
𝑡 𝑠

0
𝑡𝑑𝑤

⩾

⩾
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℎ
′

(︃
log
∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃(︂
−𝐾𝐿

(︂
𝑠0𝑡𝑑𝑤∑︀
𝑡 𝑠

0
𝑡𝑑𝑤

|| 𝑠𝑡𝑑𝑤∑︀
𝑡 𝑠𝑡𝑑𝑤

)︂
+ log

∑︀
𝑡 𝑠𝑡𝑑𝑤∑︀
𝑡 𝑠

0
𝑡𝑑𝑤

)︂
=

=
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℎ
′

(︃
log
∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃⎛⎝∑︁
𝑡

𝑠0𝑡𝑑𝑤∑︀
𝑡 𝑠

0
𝑡𝑑𝑤

⎛⎝log

𝑠𝑡𝑑𝑤∑︀
𝑡 𝑠𝑡𝑑𝑤

𝑠0𝑡𝑑𝑤∑︀
𝑡 𝑠

0
𝑡𝑑𝑤

+ log

∑︀
𝑡 𝑠𝑡𝑑𝑤∑︀
𝑡 𝑠

0
𝑡𝑑𝑤

⎞⎠⎞⎠ =

=
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℎ
′

(︃
log
∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤∑︀
𝑡 𝑠

0
𝑡𝑑𝑤

log
𝑠𝑡𝑑𝑤
𝑠0𝑡𝑑𝑤

)︃
=

=
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℓ
′

(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃(︃∑︁
𝑡

𝑠0𝑡𝑑𝑤 log
𝑠𝑡𝑑𝑤
𝑠0𝑡𝑑𝑤

)︃
.

Отсюда тривиальным образом получается утверждение Леммы.

Следствие 5. В условиях Леммы 2 выполнено

𝐿(Φ,Θ)+𝑅(Φ,Θ)−𝐿(Φ0,Θ0)−𝑅(Φ0,Θ0) ⩾ 𝑄(Φ,Θ,Φ0,Θ0)−𝑄(Φ0,Θ0,Φ0,Θ0)+

+
∑︁
𝑤,𝑑

𝑛𝑑𝑤ℎ
′

(︃
log
∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃
𝐾𝐿

(︂
𝑠0𝑡𝑑𝑤∑︀
𝑡 𝑠

0
𝑡𝑑𝑤

|| 𝑠𝑡𝑑𝑤∑︀
𝑡 𝑠𝑡𝑑𝑤

)︂
.

Это означает, что если ∆(𝐿 + 𝑅) → 0, то

∑︁
𝑤,𝑑

𝑛𝑑𝑤ℎ
′

(︃
log
∑︁
𝑡

𝑠0𝑡𝑑𝑤

)︃
𝐾𝐿

(︂
𝑠0𝑡𝑑𝑤∑︀
𝑡 𝑠

0
𝑡𝑑𝑤

|| 𝑠𝑡𝑑𝑤∑︀
𝑡 𝑠𝑡𝑑𝑤

)︂
→ 0.

Если существует γ > 0 такое, что на итерациях ℎ′ (log
∑︀

𝑡 𝑠𝑡𝑑𝑤) ⩾ γ, то

𝐾𝐿

(︂
𝑠0𝑡𝑑𝑤∑︀
𝑡 𝑠

0
𝑡𝑑𝑤

|| 𝑠𝑡𝑑𝑤∑︀
𝑡 𝑠𝑡𝑑𝑤

)︂
→ 0.
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2.6.3 Теоремы о сходимости для случая общей функции потерь

Теорема 10. Пусть регуляризатор 𝑅 является дифференцируемой функцией
при φ𝑤𝑡, θ𝑡𝑑 ∈ (0, 1], сохраняющей нуль, корректной, ε-разреживающей и δ-
регулярной. Также допустим, что ℓ(𝑥) = ℎ(log 𝑥), ℎ′(log 𝑥) ⩾ 0 и ℎ′′(log 𝑥) ⩾ 0

при 𝑥 > 0 и 𝑄(Φ𝑘+1,Θ𝑘+1,Φ𝑘,Θ𝑘) ⩾ 𝑄(Φ𝑘,Θ𝑘,Φ𝑘,Θ𝑘) начиная с некоторой
итерации 𝑘. Тогда последовательность 𝑝𝑘𝑡𝑑𝑤 сходится в смысле дивергенции
Кульбака–Лейблера для любых 𝑑 и 𝑤 таких, что 𝑛𝑑𝑤 > 0:

KL
(︀
𝑝𝑘𝑡𝑑𝑤

⃦⃦
𝑝𝑘+1
𝑡𝑑𝑤

)︀
→ 0 при 𝑘 → ∞.

Доказательство.
Доказательство повторяет доказательство Теоремы 7 с одним дополнением. Как
отмечалось в предыдущем разделе, для стремления KL-дивергенции к нулю тре­
буется, чтобы существовало γ > 0 такое, что на итерациях ℎ′ (log

∑︀
𝑡φ𝑤𝑡θ𝑡𝑑) ⩾

γ. Так как регуляризатор ε-разреживающий, а ℎ′′(log 𝑥) ⩾ 0, то в качестве γ
можно взять ℎ′ (︀log (︀ε2𝑇)︀)︀.

Так как доказательства почти совпадают, то и все следствия Теоремы 7
будут верны и для Теоремы 10.

2.7 Заключение главы

Эта глава решает проблему обоснования сходимости алгоритма ARTM
при произвольном гладком критерии регуляризации. Полученные ограничения
на регуляризатор в Теореме 7 не являются обременительными, легко проверя­
ются и легко обеспечиваются программной реализацией. Также, как показывает
Теорема 10, эти результаты могут быть обобщены на случай произвольной
функции потерь в оптимизационной задаче (1.7).

Выполнение этих достаточных условий было подтверждено в эксперимен­
тах на реальной текстовой коллекции (раздел 2.2.3). Также была предложена
модификация M-мага (2.9), которая за счёт теоретических гарантий ускоряет
оптимизацию, позволяя за то же число итераций получать лучшие значения
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максимизируемого функционала. Улучшение от предложенной модификаций
также было подтверждено в эксперименте (раздел 2.5.2).

Таким образом, было показано, что итерационный процесс ARTM сходит­
ся, разумным следующим шагом является анализ свойств точки, к которой
сошёлся алгоритм. В частности, вопрос о единственности полученного реше­
ния. Изучению данной темы будет посвящена следующая глава.
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Глава 3. Единственность стохастического матричного разложения

Как было показано в главе 2, итерационный процесс ARTM сходится, и ста­
вится вопрос анализа свойств точки, к которой сошёлся алгоритм. В частности,
вопрос о единственности полученного решения. Известно, что оптимизационная
задача ARTM имеет неединственное решение, однако, причины этой неедин­
ственности подробно не изучались. Эффект неединственности потенциально
состоит из двух частей: неединственности точного матричного разложения в
точке, в которую сошёлся алгоритм, и мультиэкстремальности оптимизацион­
ной задачи. В этой главе определяется степень влияния этих двух факторов.
Для этого рассматривается вопрос единственности точного стохастического
матричного разложения.

3.1 Общие сведения по стохастическому матричному разложению

В данном разделе будет сформулирована проблема единственности стоха­
стического матричного разложения и приведены результаты основных работ
на заданную тему.

3.1.1 Стохастическое матричное разложение

Чтобы определить задачу стохастического матричного разложения, тре­
буется ввести ряд определений.

Определение 7. Матрица 𝐹 ∈ R𝑛×𝑚 будет называться неотрицательной,
если все её элементы неотрицательны.

Определение 8. Неотрицательная матрица 𝐹 ∈ R𝑛×𝑚 будет называться
стохастической, если ∀𝑗

∑︁
𝑖

𝐹𝑖𝑗 = 1.



49

Определение 9. Пусть дана матрица 𝐹 ∈ R𝑛×𝑚, её неотрицательным (сто­
хастическим) матричным разложением будет называться представление в
виде произведения 𝐹 = ΦΘ двух неотрицательных (стохастичеcких) матриц
Φ ∈ R𝑛×𝑘, Θ ∈ R𝑘×𝑚.

Определение 10. Пусть дана матрица 𝐹 ∈ R𝑛×𝑚, её матричным разло­
жением полного ранга будет называться представление в виде произведения
𝐹 = ΦΘ двух матриц полного ранга Φ ∈ R𝑛×𝑘, Θ ∈ R𝑘×𝑚.

Далее разложением матрицы 𝐹 называется полноранговое стохастическое
матричное разложение, кроме тех случаев, в которых явно сказано, что это
стохастическое разложение или неотрицательное разложение. Также предпола­
гается, что в матрице 𝐹 нет нулевых столбцов.

Если дано разложение 𝐹 = ΦΘ и у матрицы Φ есть хотя бы два различных
столбца или у матрицы Θ есть хотя бы две различных строки, то существует
другое разложение 𝐹 = Φ𝑆𝑆−1Θ, где 𝑆 — некоторая матрица перестановки. В
связи с этим единственность разложения может быть определена с точностью
до матрицы перестановки:

Определение 11. Разложение 𝐹 = ΦΘ будет называться единственным,
если для любого другого разложения 𝐹 = Φ′Θ′ выполняется Φ′ = Φ𝑆,Θ′ =

𝑆−1Θ, где 𝑆 — некоторая матрица перестановки.

Между неотрицательными и стохастическими матричными разложения­
ми, существует взаимосвязь, указанная в работе [37]:

Утверждение 5. Пусть 𝐹 ∈ R𝑛×𝑚 матрица без нулевых столбцов с неот­
рицательным разложением 𝐹 = ΦΘ, Φ ∈ R𝑛×𝑘, Θ ∈ R𝑘×𝑚. Рассмотрим
стохастическую матрицу 𝐹 , 𝐹𝑖𝑗 =

𝐹𝑖𝑗∑︁
𝑖

𝐹𝑖𝑗

. Тогда 𝐹 = Φ̃Θ̃ является сто­

хастическим разложением матрицы 𝐹 , где

Φ̃ = Φ𝑆,

Θ̃ = 𝑆−1Θ′,

Θ′ =
Θ𝑖𝑗∑︁
𝑖

𝐹𝑖𝑗

,

𝑆 = diag((
∑︁
𝑖

Φ𝑖1)
−1, . . . , (

∑︁
𝑖

Φ𝑖𝑘)
−1).
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Таким образом, результаты о единственности неотрицательного матрич­
ного разложения могут быть перенесены на единственность стохастического
матричного разложения.

3.1.2 Обзор результатов по единственности неотрицательного
матричного разложения

Во всех работах, исследующих единственность неотрицательного мат­
ричного разложения, формулируются необходимые либо достаточные условия
единственности разложения.

В работе [37] вводится геометрическая интерпретация стохастического
матричного разложения.

Определение 12. Стандартным (𝑛 − 1)-мерным симплексом называется
множество

∆𝑛−1 = {𝑥 ∈ R𝑛 |
𝑛∑︁

𝑖=1

𝑥(𝑖) = 1,∀𝑖 𝑥(𝑖) ⩾ 0}.

Линейной (выпуклой) оболочкой матрицы 𝑋 называется линейная (выпук­
лая) оболочка множества её столбцов {𝑋𝑖} и обозначается span(𝑋) (conv(𝑋)).

Теорема 11. Пусть дано разложение 𝐹 = ΦΘ, 𝐹 ∈ R𝑛×𝑚, rank𝐹 = 𝑘, Φ ∈
R𝑛×𝑘, Θ ∈ R𝑘×𝑚, тогда

conv(𝐹 ) ⊂ conv(Φ) ⊂ span(Φ) ∩∆𝑛−1.

Разложение 𝐹 = ΦΘ единственно, тогда и только тогда, когда conv(Φ) —
единственный выпуклый многогранник на 𝑘 вершинах, удовлетворяющий обо­
им включениям.

Следствие 6. Пусть дано разложение 𝐹 = ΦΘ, пусть также conv(𝐹 ) =

conv(Φ), а все вершины conv(Φ) являются вершинами span(Φ) ∩∆𝑛−1. Тогда
разложение 𝐹 = ΦΘ единственно.

Данная геометрическая интерпретация в терминах выпуклых много­
гранников является основой доказательств утверждений о единственности
стохастических матричных разложений этой главы. Например, в работе [38] на
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основе этой интерпретации также были получены либо необходимые, либо доста­
точные условия единственности для неотрицательных матричных разложений.

В работе [39] используется геометрическая интерпретация, введённая в
работе [37], и доказывается достаточный критерий единственности.

Определение 13. Паттерном разреженности вектора 𝑣 называется мно­
жество {𝑖 | 𝑣𝑖 = 0}.

Например, паттерн разреженности вектора (4, 0, 0, 2, 0) есть {1, 2, 4}.

Определение 14. Неотрицательным рангом матрицы 𝐹 назовем такое ми­
нимальное 𝑟, что существует неотрицательное разложение матрицы 𝐹 =

ΦΘ ранга 𝑟.

Определение 15. Пусть дан выпуклый многогранник 𝑀 , а 𝑣 ∈ 𝑀 — точ­
ка многогранника. Тогда 𝑣 будет называться вершиной 𝑀 , если для любого
отрезка [𝑢1, 𝑢2], содержащего 𝑣, не выполняется [𝑢1, 𝑢2] ⊂ 𝑀 .

Теорема 12. Пусть дана стохастическая матрица 𝐹 с рангом, совпадаю­
щим с неотрицательным рангом и равным 𝑘. Если у матрицы 𝐹 имеется 𝑘

ненулевых столбцов таких, что в каждом их них есть 𝑘−1 нулей и соответ­
ствующие этим нулям строки имеют различные паттерны разреженности,
тогда матрица 𝐹 имеет единственное разложение.

Также в работе описывается техника предобработки данных, приводящая
к устойчивости и разреженности получаемой тематической модели. Демонстри­
руется эффективность техники на нескольких наборах изображений.

3.2 Теорема о единственности разложения

В этом разделе будет сформулирована и доказана основная теорема главы
о достаточных условиях единственности стохастического матричного разложе­
ния. Основой доказательства является лемма условиях, при которых точка
является вершиной многогранника. Прежде чем перейти к этой лемме, дока­
жем вспомогательное утверждение.
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Лемма 3. Пусть дан многогранник 𝑀 , заданный системой⎧⎪⎨⎪⎩
𝑓𝑖(𝑥) ⩾ 0, 𝑖 = 1, . . . ,𝑚∑︁
𝑠

𝑥(𝑠) = 1
,

для некоторых линейных функций 𝑓𝑖. Также пусть определено множество

𝐼 = {𝑖 |𝑓𝑖(𝑣) = 0}.

Тогда, чтобы являться вершиной многогранника 𝑀 , для точки 𝑣 необходимо
и достаточно, чтобы система⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑓𝑖(𝑥) = 0, 𝑖 ∈ 𝐼

𝑓𝑖(𝑥) > 0, 𝑖 /∈ 𝐼∑︁
𝑠

𝑥(𝑠) = 1

(3.1)

имела единственное решение.

Доказательство.

Достаточность.

Предположим, что 𝑣 не вершина, но при этом выполняются условия

𝑓𝑖(𝑥) ⩾ 0, 𝑖 = 1 . . .𝑚.

В этом случае точка 𝑣 принадлежит многограннику 𝑀 . Так как она не является
вершиной, то, по определению, она является серединой некоторого отрезка с
концами 𝑢1 и 𝑢2, отличными от 𝑣. Это означает, что

𝑣 =
𝑢1 + 𝑢2

2
.

В силу линейности 𝑓𝑖 будет выполнено

∀𝑖 ∈ 𝐼 𝑓𝑖(𝑣) =
1

2
(𝑓𝑖(𝑢1) + 𝑓𝑖(𝑢2)) .

Но по определению множества 𝐼 выполняется 𝑓𝑖(𝑣) = 0, поэтому

∀𝑖 ∈ 𝐼 𝑓𝑖(𝑢1) = −𝑓𝑖(𝑢2).



53

При этом
∀𝑥 ∈ 𝑀 𝑓𝑖(𝑥) ⩾ 0 и

∑︁
𝑠

𝑥𝑠 = 1.

Значит,
∀𝑖 ∈ 𝐼 𝑓𝑖(𝑢1) = 𝑓𝑖(𝑢2) = 0.

Но тогда для любого α ∈ [0, 1] точка α𝑢1 + (1 − α)𝑢2 является решением
системы (3.2). Противоречие c единственностью решения системы (3.2).

Необходимость.

Предположим, что решение системы (3.2) не единственно. Значит, мно­
жество точек задаваемых системой , является многогранником 𝑀 ′, не вырож­
денным в точку. Все линейные функции, задающие грани 𝑀 ′ (𝑓𝑖 при 𝑖 /∈ 𝐼),
строго положительны в точке 𝑣, поэтому, по определению, точка 𝑣 являет­
ся внутренней точкой многогранника 𝑀 ′. Следовательно, существует отрезок
[𝑢1, 𝑢2] ⊂ 𝑀 ′ ⊂ 𝑀 такой, что 𝑣 = 1

2(𝑢1 + 𝑢2). Значит, точка 𝑣 не является
вершиной 𝑀 .

Теперь мы можем сформулировать главную лемму, введя дополнитель­
ные обозначения

Определение 16. Пусть 𝑣 ∈ R𝑛, тогда за supp(𝑣) будет обозначаться
множество позиций ненулевых элементов вектора 𝑣, а за supp(𝑣), соответ­
ственно, множество позиций нулевых элементов вектора 𝑣.

Определение 17. Пусть дана матрица 𝑋 ∈ R𝑛×𝑚, тогда за 𝑋𝑗 будет обо­
значаться 𝑗-ый столбец матрицы 𝑋, а за 𝑋

[︀
[𝑖1, . . . , 𝑖𝑠], [𝑗1, . . . , 𝑗𝑡]

]︀
будет

обозначаться подматрица, состоящая из строк 𝑖1, . . . , 𝑖𝑠 и столбцов 𝑗1, . . . , 𝑗𝑡

Лемма 4. Пусть дана матрица𝐹 ∈ R𝑛×𝑚 и её стохастическое разложение
𝐹 = ΦΘ. Тогда, чтобы вершина Φ𝑗 многогранника conv(Φ) являлась вершиной
многогранника span(Φ) ∩∆𝑛−1 необходимо и достаточно

rank
(︁
Φ
[︀
supp(Φ𝑘), [1, . . . ,𝑘] ∖ [𝑗]]

)︁
= 𝑘 − 1.

Доказательство.
Для удобства можно рассматривать случай 𝑗 = 𝑘 без ограничения общности
доказательства.
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Также обозначим набор утверждений, эквивалентность которых будет до­
казана далее:

(I) Φ𝑘 является вершиной многогранника span(Φ) ∩∆𝑛−1

(II) ∃! решение системы⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑘∑︁
𝑠=1

Φ𝑖𝑠𝑥
(𝑠) = 0, 𝑖 ∈ supp(Φ𝑘)

𝑘∑︁
𝑠=1

Φ𝑖𝑠𝑥
(𝑠) > 0, 𝑖 ∈ supp(Φ𝑘)

𝑘∑︁
𝑠=1

𝑥(𝑠) = 1

(3.2)

(III) ∃! решение системы уравнений

𝑘−1∑︁
𝑠=1

Φ𝑖𝑠𝑥
(𝑠) = 0, 𝑖 ∈ supp(Φ𝑘) (3.3)

(IV) rank
(︁
Φ
[︀
supp(Φ𝑘), [1, . . . ,𝑘] ∖ [𝑘]]

)︁
= 𝑘 − 1

(III) ⇔ (IV)
Система (3.3) всегда имеет нулевое решение. То, что это решение един­
ственно, равносильно тому, что ядро отображения, задаваемого матрицей
Φ
[︀
supp(Φ𝑘), [1, . . . ,𝑘] ∖ [𝑘]], нулевое, что равносильно (IV).

(III) ⇒ (II)
При 𝑖 ∈ supp(Φ𝑘) выполняется Φ𝑖𝑘 = 0, откуда

𝑘∑︁
𝑠=1

Φ𝑖𝑠𝑥
(𝑠) = 0, 𝑖 ∈ supp(Φ𝑘) ⇔

𝑘−1∑︁
𝑠=1

Φ𝑖𝑠𝑥
(𝑠) = 0, 𝑖 ∈ supp(Φ𝑘).

Таким образом, система (3.2) имеет больше условий чем система (3.3). Это
означает, что количество решений системы (3.2) не превышается количество
решений системы (3.3). В данном случае получается, что у системы (3.2) не бо­
лее одного решения. Но вектор (0, . . . ,0,1) всегда является решением системы
(3.2). Значит, система (3.2) имеет единственное решение.

(II) ⇒ (III)
Точка 0 (как вектор размерности 𝑘 − 1) всегда является решением системы
(3.3). Пусть у системы (3.3) нашлось ещё одно решение 𝑢 ̸= 0. Тогда мы
можем определить решение 𝑢 системы (3.2), подобрав константу 𝑐 в векторе
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𝑢̃ = (𝑢(1), . . . , 𝑢(𝑘−1), 𝑐) и отнормировав его.

𝑢 =

⎧⎪⎪⎨⎪⎪⎩
𝑛𝑜𝑟𝑚(𝑢̃), 𝑖𝑓

∑︁
𝑠

𝑢̃(𝑠) ̸= 0

𝑛𝑜𝑟𝑚((𝑢̃(1), . . . , 𝑢̃(𝑘−1), 𝑢̃(𝑘) + 1)), 𝑖𝑓
∑︁
𝑠

𝑢̃𝑠 = 0
,

где

𝑛𝑜𝑟𝑚(𝑥)(𝑖) =
𝑥(𝑖)∑︁
𝑠

𝑥(𝑠)
,

𝑐 = max(0, 𝑐+ 1)

𝑐 = − min
𝑤∈suppΦ𝑘

𝑘−1∑︁
𝑠=1

Φ𝑤𝑠𝑢
(𝑠)

Φ𝑤𝑘

Однако, у системы системы (3.2) есть ещё одно решение — вектор (0, . . . ,0,1),
и вектор 𝑢 точно с ним не совпадает, так как содержит хотя бы одно ненулевое
значение на первых 𝑘 − 1 позиции. Это противоречит единственности решения
системы (3.2), значит, предположение было неверным и система (3.3) имела
единственное нулевое решение.

(I) ⇔ (II)
Следует из леммы 3. Заметим, что система⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑘∑︁
𝑠=1

Φ𝑖𝑠𝑥
(𝑠) ⩾ 0

𝑘∑︁
𝑠=1

𝑥(𝑠) = 1

задаёт в точности многогранник span(Φ) ∩ ∆𝑛 в пространстве span(Φ), кото­
рый соответствует многограннику 𝑀 из леммы 3. Множеству 𝐼 из леммы 3
соответствует supp(Φ𝑘).

Теперь может быть доказана главная теорема главы о достаточных усло­
виях единственности стохастического матричного разложения:

Теорема 13. Пусть дано разложение 𝐹 = ΦΘ, 𝐹 ∈ R𝑛×𝑚, rank𝐹 = 𝑘, Φ ∈
R𝑛×𝑘, Θ ∈ R𝑘×𝑚. Пусть выполнены условия:

– ∀𝑖 ∈ {1, . . . ,𝑘} ∃𝑗 : Θ𝑖𝑗 = 1,∀𝑖′ ̸= 𝑗 Θ𝑖′𝑗 = 0;
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– ∀𝑗 rank
(︁
Φ
[︀
supp(Φ𝑗), [1, . . . ,𝑘] ∖ [𝑗]]

)︁
= 𝑘 − 1.

Тогда разложение 𝐹 = ΦΘ единственно.

Доказательство.
Условие

∀𝑖 ∈ [1, . . . ,𝑘] ∃𝑗 : Θ𝑖𝑗 = 1,∀𝑖′ ̸= 𝑗 Θ𝑖′𝑗 = 0

означает, что существует 𝑘 точек 𝐹 таких, что они являются вершинами мно­
гогранника conv(Φ). Откуда следует, что conv(𝐹 ) = conv(Φ).

Из условия

∀𝑗 rank
(︁
Φ
[︀
supp(Φ𝑗), [1, . . . ,𝑘] ∖ [𝑗]]

)︁
= 𝑘 − 1

следует, что каждая вершина conv(Φ) является вершиной многогранника
span(Φ) ∩ ∆𝑛−1 (Лемма 4). Далее применение Следствия 6 доказывает утвер­
ждение Теоремы.

Условие на матрицу Φ легко обобщить на матрицу 𝐹 , тем самым получив
достаточное условие для единственности стохастического разложения.

Следствие 7. Пусть дана стохастическая матрица 𝐹 ∈ R𝑛×𝑚, rank𝐹 = 𝑘.
Пусть также нашлось множество столбцов 𝐽 = {𝑗1, . . . , 𝑗𝑘} для которых
выполнено

– ∀𝑗 ∈ 𝐽, 𝑝 = 1, . . . ,𝑚, существует набор 𝑎𝑗𝑝 ⩾ 0 т. ч. ∀𝑝
∑︁
𝑗∈𝐽

𝑎𝑗𝑝 = 1,

𝐹𝑝 =
∑︁
𝑗∈𝐽

𝑎𝑗𝑝𝐹𝑗.

– ∀𝑗 ∈ 𝐽 rank
(︁
𝐹
[︀
supp(𝐹𝑗), 𝐽 ∖ [𝑗]]

)︁
= 𝑘 − 1,

Тогда у 𝐹 существует единственное разложение 𝐹 = ΦΘ, где

Φ = 𝐹 [: ,𝐽 ],

Θ[𝑗, 𝑝] = 𝑎𝑗𝑝.

Доказательство.
Возьмём в качестве матрицы Φ матрицу образованную столбцами 𝐹𝑗1, . . . , 𝐹𝑗𝑘 , а
в качестве матрицы Θ матрицу образованную величинами 𝑎𝑗𝑝. Первое условие
обеспечивает выполнение первого условия Теоремы 13, а второе условие, соот­
ветственно второго условия Теоремы 13. Также из первого условия следует, что
𝐹 = ΦΘ.
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Для сравнения Теорем 13 и 12 рассмотрим следующий пример:

𝐹 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
6

2
6

0 2
6

1
6

1
6 0 2

6

2
6 0 1

6

1
6

2
6 0

2
6

1
6 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Матрица 𝐹 имеет единственное разложение (𝐹 = 𝐹𝐸), при этом условия Тео­
ремы 12 не выполнены, а условия следствия Теоремы 13 выполняются.

3.3 Эксперименты про проверке выполнения достаточных условий
теоремы о единственности стохастического матричного разложения

С точки зрения тематического моделирования для условий Теоремы 13
возможна следующая интерпретация.

Условие 1 требует наличия в матрице Θ единичной подматрицы размера
𝑘×𝑘. Матрица Θ отвечает за распределение тем в документах. Поэтому факти­
чески это условие требует наличия в тематической модели 𝑘 унитематических
документов, то есть таких, в которых есть одна тема с вероятностью появления
1, а вероятности остальных тем нулевые. Выполнение этого условия можно га­
рантировать, добавив в коллекцию 𝑘 искусственно созданных унитематических
документов, слова для которых подбираются, например, экспертами.

Условие 2 говорит о том, что для любого 𝑗 произведение матриц

Φ
[︀
supp(Φ𝑗), [1, . . . ,𝑘] ∖ [𝑗]] и Θ

[︀
[1, . . . , 𝑘] ∖ [𝑗], :

]︀
является неотрицательным матричным разложением полного ранга для мат­
рицы

𝐹
[︀
supp(Φ𝑗), :

]︀
.

С точки зрения тематического моделирования это означает, что если для любой
темы 𝑡 из матрицы слова-документы 𝐹 ранга 𝑇 убрать все слова, встречающи­
еся в 𝑡-ой теме, то на получившей матрице слова-документы можно построить
невырожденную тематическую модель на 𝑇 − 1 теме.
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Для проверки выполнения второго условия на реальной текстовой кол­
лекции был проведен эксперимент.

3.3.1 Описание эксперимента

Эксперимент проводился на лемматизированной коллекции 20Newsgroups
[48]. Для проверки условий теоремы использовалась исходная матрица встре­
чаемости слова-документы, а для оценки устойчивости ещё искусственная
матрица, полученная по коллекции следующим способом: было найдено ре­
шение (Φ,Θ) оптимизационной задачи, а затем использовалась матрица ΦΘ.
Особенностью этой матрицы являлось то, что она обеспечивала глобальное и
единственное (так как на нём выполнялись условия Теоремы 13) решение оп­
тимизационной задачи.

При проверке выполнения условий теоремы проверялось только второе
условие, так как выполнение первого обеспечивалось за счёт обогащения кол­
лекции псевдодокументами, по одному для каждой темы. Псевдодокумент для
фиксированной темы строился следующим образом. В него вручную добав­
лялись (некоторые) слова данной темы, после чего в матрице Θ для этого
документа назначались нулевые значения всем темам кроме исходной. До­
бавление таких псевдодокументов по одному для каждой темы обеспечивает
выполнение первого условия теоремы.

Тематическая модель строилась алгоритмом оптимизации ARTM ([51],
[52]) с регуляризатором разреживания

𝑅(Φ) = α
∑︁
𝑡

∑︁
𝑤

lnφ𝑤𝑡

с коэффициентом регуляризации α. В использованной реализации алгоритма
ARTM по умолчанию матрица Φ не может содержать нулей. Регуляризатор
разреживания позволяет добиться зануления малых значений в этой матрице
и контролировать количество нулей.

При оценке устойчивости сравнивались 4 различных схемы:
1. Раскладывается исходная матрица слова-документы, никаких ограни­

чений на начальную инициализацию. (далее обозначается PLSA).

http://qwone.com/~jason/20Newsgroups/
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2. Раскладывается исходная матрица слова-документы, первый запуск
определял матрицы Φ и Θ, фиксировалось множество нулевых элемен­
тов обоих матриц, и при последующих начальных инициализациях эти
элементы оставались нулевыми. Так как в алгоритме PLSA если какой­
то элемент Φ или Θ равен нулю, то он будет оставаться равен нулю
на последующих итерациях, то за счёт инициализации мы можем обес­
печивать ограничение на множестве нулевых элементов в полученном
решении оптимизационной задачи. (далее Init PLSA).

3. Раскладывается искусственная матрица слова-документы, никаких
ограничений на начальную инициализацию. (далее synPLSA).

4. Раскладывается искусственная матрица слова-документы, начальная
инициализация аналогично пункту 2. (далее Init synPLSA).

Для каждой схемы проверялись 100 различных начальных случайных инициа­
лизаций, а затем оценивались свойства полученных наборов матриц Φ, и также
визуализировалось их расположение при помощи алгоритма tSNE [53].

Для удобства обозначим

Φ[𝑠𝑢𝑝𝑝(Φ𝑡), {1, . . . , 𝑇} ∖ {𝑡}]

за матрицу 𝑈𝑡. Для проверки второго условия теоремы требовалось находить
для каждой темы 𝑡 величину rank𝑈𝑡 Эффективный вычислительный способ
сделать это — нахождение минимального сингулярного значения матрицы 𝑈 .
Эта величина в дальнейшем будет называться uniqueness measure темы 𝑡. Гео­
метрически она означает насколько не плоским является многогранный угол
при вершине темы 𝑡 в многограннике, натянутом на вектора тем Φ𝑡. Если эта
величина больше 0, то можно утверждать, что матрица 𝑈𝑡 имеет полный ранг.

Для большей интерпретируемости uniqueness measure стоит отнормиро­
вать на минимальное сингулярное значение матрицы

Φ[{1, . . . ,𝑊}, {1, . . . , 𝑇} ∖ {𝑡}].

Полученная величина будет лежать в промежутке от 0 до 1, причём 1 будет
достигаться тогда и только тогда, когда матрица

Φ[𝑠𝑢𝑝𝑝(Φ𝑡), {1, . . . , 𝑇} ∖ {𝑡}]

нулевая, что означает полное отделение слов темы. Далее эта величина будет
называться normalized uniqueness measure.
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Для оценки устойчивости решения оптимизационной задачи использова­
лись две группы метрик. Как было сказано, имеется набор матриц Φ. Далее
для этого набора оценивался разброс, как среднее попарное расстояние меж­
ду этими матрицами, также в схемах 2-4 оценивалось смещение, как среднее
расстояние до истинной матрицы Φ, при помощи которой генерировалась кол­
лекция.

Расстояние между матрицами рассчитывалось следующим образом:

ρ(Φ1,Φ2) = min
𝑆

(︃∑︁
𝑖

ρ0(Φ1
𝑖 , (Φ

2𝑆)𝑖)

)︃
,

где 𝑆 — перестановочные матрицы размера 𝑇 × 𝑇 , а ρ0 — одна из следующих
функций расстояния между распределениями:

𝐿1(𝑝, 𝑞) =
∑︁
𝑘

|𝑝𝑘 − 𝑞𝑘|,

sMAPE(𝑝, 𝑞) =
1

𝑛

∑︁
𝑘

|𝑝𝑘 − 𝑞𝑘|
|𝑝𝑘|+ |𝑞𝑘|

,

KL(𝑝, 𝑞) =
∑︁
𝑘

𝑝𝑘 log
𝑝𝑘
𝑞𝑘
,

KL2(𝑝, 𝑞) = KL(𝑝, 𝑧) + KL(𝑞, 𝑧), где 𝑧 =
𝑝+ 𝑞

2
.

3.3.2 Результаты

Как показывает Рисунок 3.1 даже незначительного разреживания (α =

−10−25) достаточно, чтобы обеспечить единственность разложения. Однако,
если запустить исходный алгоритм PLSA без какого либо разреживания, то
условия теоремы не будут выполняться, поскольку в данном алгоритме не мо­
жет происходить зануление элементов матриц. Тем не менее, это означает, что
та точка, к которой стремится решение PLSA, удовлетворяет условиям теоремы.

На Рисунке 3.2 можно увидеть, что решения не имеют какой-то общей
структуры. Так как tSNE учитывает локальные особенности точек, то по
этим изображениям нельзя сделать вывод о силе разброса точек, можно лишь
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Рисунок 3.1 — Зависимость uniqueness measure и normalized uniqueness measure
от коэффициента разреживания α.

Value PLSA Init PLSA synPLSA Init synPLSA
Variance 𝐿1 0.6733± 0.0027 0.0264± 0.0002 0.1373± 0.0128 0.0000± 0.0001

Variance sMAPE 1.2952± 0.0025 0.0696± 0.0003 1.2473± 0.0137 0.0003± 0.0001

Variance KL ∞ ∞ 0.3310± 0.0486 (0.0000± 0.0001

Variance KL2 0.2845± 0.0015 0.0022± 0.0001 0.0442± 0.0045 0.0000± 0.0001

Bias 𝐿1 — 0.0253± 0.0006 0.0959± 0.0259 0.0000± 0.0001

Bias sMAPE — 0.0656± 0.0010 1.3867± 0.0129 0.0030± 0.0001

Bias KL — ∞ 0.0553± 0.0159 0.0000± 0.0001

Bias KL2 — 0.0020± 0.0001 0.0331± 0.0095 0.0000± 0.0001

Таблица 2 — Средние и доверительные интервалы для метрик устойчивости

проверить наличие кластеров. В случае Init PLSA вы видим явные кластера раз­
личных решений, что означает, что, несмотря на выполнение условий теоремы,
неединственность обеспечивается за счёт неединственного решения оптимиза­
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Рисунок 3.2 — Визуализация устойчивости при помощи алгоритма tSNE.

ционной задачи, причём эти решения могут существенно отличаться друг от
друга.

В Таблице 2 приведены средние с доверительными интервалами для ис­
следуемых метрик разброса и смещения. В случаях PLSA и synPLSA значения
Variance очень большие, так как без каких-либо ограничений на множество ну­
левых элементов матриц решений оптимизационной задачи крайне много и все
эти решения различны.

Однако, если зафиксировать множество нулевых элементов, то уже даже
в случае исходной матрицы (Init PLSA) можно наблюдать сильное уменьшение
разброса и восстановление исходной матрицы Φ с достаточно хорошей точно­
стью. Тем не менее, решение оптимизационной задачи может быть нединственно
даже при фиксации нулевых элементов матриц. Поэтому значение Variance не
опускается до нуля в случае Init PLSA. Но когда решение оптимизационной за­
дачи единственно при фиксации множества нулевых элементов (Init synPLSA),
то можно наблюдать устойчивое нахождение исходной матрицы Φ.
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3.4 Заключение главы

Была описана проблема неединственности решения в задаче тематиче­
ского моделирования, которая декомпозируется на неоднозначность выбора
локального экстремума 𝐹 = ΦΘ оптимизируемого функционала и неединствен­
ность разложения 𝐹 на Φ и Θ.

Был сформулирован ранее неизвестный результат (Теорема 13), дающий
достаточные условия для единственности решения задачи стохастического мат­
ричного разложения. Также были реализованы эксперименты (раздел 3.3), в
которых подтвердилось выполнение условий Теоремы 13 на реальной тексто­
вой коллекции. Таким образом, было показано, что неединственность решения
в задаче тематического моделирования возникает в основном из-за неоднознач­
ности выбора локального экстремума 𝐹 .
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Глава 4. Разреживание тематических моделей

Теорема 7 о достаточных условиях сходимости выделяет важность множе­
ства нулей, которое фиксируется с некоторой итерации в EM-алгоритме ARTM.
Дальнейшая оптимизация ведётся при ограничение на это множество, соответ­
ственно, оно во многом определяет качество полученного решения.

Теорема 13 предлагает достаточные условия для единственности стохасти­
ческого матричного разложения полученного решения оптимизационной задачи
ARTM. Чем выше уровень разреженности матрицы Φ, тем выше вероятность
выполнения условий теоремы.

Таким образом, оказывается, что разреженность очень важна для по­
вышения качества решения задачи тематического моделирования. А, значит,
появляется проблема увеличения разреженности для произвольных матрицы
Φ и Θ, при условии повышения или незначительного понижения правдоподо­
бия (1.1).

В этой главе для решения поставленной проблемы предлагается приме­
нить метод аналогичный методу Optimal Brain Damage (OBD [54]) для обучения
нейросетей.

4.1 Описание метода

Решаемую задачу можно сформулировать следующим способом. Обозна­
чим за 𝐿 функцию логарифма правдоподобия:

𝐿(Φ,Θ) =
∑︁
𝑑,𝑤

𝑛𝑑𝑤 log
∑︁
𝑡

φ𝑤𝑡θ𝑡𝑑.

Имеется некоторая пара матриц Φ и Θ, требуется сделать их более разрежен­
ным, сохранив структуру и несильно уменьшив функционал 𝐿.

Основная идея метода заключается в том, что стоит занулять те значения
φ𝑤𝑡 и θ𝑡𝑑, при занулении которых значение 𝐿 изменится наименьшим способом.
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Утверждение 6. При занулении значения φ𝑤𝑡 эффект уменьшения значения
𝐿 равен

∆1𝐿 = −𝑛𝑤𝑡

(︁
1 +𝑂

(︁
max

𝑑
𝑝𝑡𝑑𝑤

)︁)︁
.

Доказательство.

∆1𝐿 =
∑︁
𝑑

𝑛𝑑𝑤

⎛⎝log
∑︁
𝑠̸=𝑡

φ𝑤𝑠θ𝑠𝑑 − log
∑︁
𝑠

φ𝑤𝑠θ𝑠𝑑

⎞⎠ =

=
∑︁
𝑑

𝑛𝑑𝑤 log

∑︀
𝑠̸=𝑡

φ𝑤𝑠θ𝑠𝑑∑︀
𝑠φ𝑤𝑠θ𝑠𝑑

=
∑︁
𝑑

𝑛𝑑𝑤 log

(︂
1− φ𝑤𝑡θ𝑡𝑑∑︀

𝑠φ𝑤𝑠θ𝑠𝑑

)︂
=

=
∑︁
𝑑

𝑛𝑑𝑤 log(1− 𝑝𝑡𝑑𝑤) =
∑︁
𝑑

𝑛𝑑𝑤

(︀
−𝑝𝑡𝑑𝑤 −𝑂(𝑝2𝑡𝑑𝑤)

)︀
=

= −
∑︁
𝑑

𝑛𝑑𝑤𝑝𝑡𝑑𝑤 (1 +𝑂(𝑝𝑡𝑑𝑤)) = −𝑛𝑤𝑡

(︁
1 +𝑂

(︁
max

𝑑
𝑝𝑡𝑑𝑤

)︁)︁
.

Таким образом, если мы хотим занулять параметры модели для раз­
реживания, на первый взгляд кажется, что нужно занулять параметры с
наименьшим значением 𝑛𝑤𝑡. Однако, здесь опускается один важный момент:
когда мы разреживаем модель и зануляем какой-то φ𝑤𝑡, вероятность всех
остальных слов в теме увеличивается, а это увеличивает 𝐿.

Утверждение 7. При занулении значении φ𝑤𝑡 эффект увеличения значения
𝐿 равен

∆2𝐿 =
φ𝑤𝑡𝑛𝑡

1−φ𝑤𝑡

(︂
1− 𝑛𝑤𝑡

𝑛𝑡

)︂(︂
1 +𝑂

(︂
φ𝑤𝑡

1−φ𝑤𝑡

𝑛𝑤𝑡

𝑛𝑡
max
𝑑,𝑢

𝑝𝑡𝑑𝑢

)︂)︂
.

Доказательство.

∆2𝐿 =
∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢

⎛⎝log

⎛⎝∑︁
𝑠̸=𝑡

φ𝑢𝑠θ𝑠𝑑 +
φ𝑢𝑡

1−φ𝑤𝑡
θ𝑡𝑑

⎞⎠− log
∑︁
𝑠

φ𝑢𝑠θ𝑠𝑑

⎞⎠ =

=
∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢

(︃
log

(︃∑︁
𝑠

φ𝑢𝑠θ𝑠𝑑 +
φ𝑤𝑡

1−φ𝑤𝑡
φ𝑢𝑡θ𝑡𝑑

)︃
− log

∑︁
𝑠

φ𝑢𝑠θ𝑠𝑑

)︃
=

=
∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢 log

(︂
1 +

φ𝑤𝑡

1−φ𝑤𝑡

φ𝑢𝑡θ𝑡𝑑∑︀
𝑠φ𝑢𝑠θ𝑠𝑑

)︂
=
∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢 log

(︂
1 +

φ𝑤𝑡

1−φ𝑤𝑡
𝑝𝑡𝑑𝑢

)︂
=



66

=
∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢

(︃
φ𝑤𝑡

1−φ𝑤𝑡
𝑝𝑡𝑑𝑢 +𝑂

(︃(︂
φ𝑤𝑡

1−φ𝑤𝑡
𝑝𝑡𝑑𝑢

)︂2
)︃)︃

=

=
φ𝑤𝑡

1−φ𝑤𝑡

∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢𝑝𝑡𝑑𝑢

(︂
1 +𝑂

(︂
φ𝑤𝑡

1−φ𝑤𝑡
𝑝𝑡𝑑𝑢

)︂)︂
=

=
φ𝑤𝑡

1−φ𝑤𝑡

⎛⎝𝑛𝑡 − 𝑛𝑤𝑡 +𝑂

⎛⎝ φ𝑤𝑡

1−φ𝑤𝑡

∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢𝑝
2
𝑡𝑑𝑢

⎞⎠⎞⎠ =

=
φ𝑤𝑡𝑛𝑡

1−φ𝑤𝑡

(︂
1− 𝑛𝑤𝑡

𝑛𝑡
+𝑂

(︂
φ𝑤𝑡

1−φ𝑤𝑡

𝑛𝑤𝑡

𝑛𝑡
max
𝑑,𝑢

𝑝𝑡𝑑𝑢

)︂)︂
=

=
φ𝑤𝑡𝑛𝑡

1−φ𝑤𝑡

(︂
1− 𝑛𝑤𝑡

𝑛𝑡

)︂(︂
1 +𝑂

(︂
φ𝑤𝑡

1−φ𝑤𝑡

𝑛𝑤𝑡

𝑛𝑡
max
𝑑,𝑢

𝑝𝑡𝑑𝑢

)︂)︂
.

Если матрицы Φ и Θ брать ближе к последним итерациям алгоритма, то
φ𝑤𝑡 ≈ 𝑛𝑤𝑡

𝑛𝑡
откуда следует, что ∆2𝐿 ≈ 𝑛𝑤𝑡. Таким образом, суммарно в первом

приближении ∆1𝐿 + ∆2𝐿 ≈ 0, то есть 𝐿 не изменится.
Первый способ решения этой проблемы — точно рассчитать ∆𝐿.

Теорема 14. Изменение значения 𝐿 при занулении значения φ𝑤𝑡 составляет

∆𝐿 =
∑︁
𝑑

𝑛𝑑𝑤 log(1− 𝑝𝑡𝑑𝑤) +
∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢 log

(︂
1 +

φ𝑤𝑡

1−φ𝑤𝑡
𝑝𝑡𝑑𝑢

)︂
. (4.1)

Изменение значения 𝐿 при занулении значения θ𝑡𝑑 составляет

∆𝐿 =
∑︁
𝑤

𝑛𝑑𝑤 log (1− 𝑝𝑡𝑑𝑤)− 𝑛𝑑 log(1− θ𝑡𝑑). (4.2)

Доказательство.
Зануление значения φ𝑤𝑡.
В доказательстве Утверждения 6 было показано, что

∆1𝐿 =
∑︁
𝑑

𝑛𝑑𝑤 log(1− 𝑝𝑡𝑑𝑤).

В доказательстве Утверждения 7

∆2𝐿 =
∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢 log

(︂
1 +

φ𝑤𝑡

1−φ𝑤𝑡
𝑝𝑡𝑑𝑢

)︂
.



67

Сложив ∆1𝐿 и ∆2𝐿, получим (4.1).

Зануление значения θ𝑡𝑑.
При занулении θ𝑡𝑑 изменение 𝐿 составит:

∆𝐿 =
∑︁
𝑤

𝑛𝑑𝑤

⎛⎝log

⎛⎝ 1

1− θ𝑡𝑑

∑︁
𝑠̸=𝑡

φ𝑤𝑠θ𝑠𝑑

⎞⎠− log
∑︁
𝑠

φ𝑤𝑠θ𝑠𝑑

⎞⎠ =

=
∑︁
𝑤

𝑛𝑑𝑤 log

(︂
1

1− θ𝑡𝑑

(︂
1− φ𝑤𝑡θ𝑡𝑑∑︀

𝑠φ𝑤𝑠θ𝑠𝑑

)︂)︂
=
∑︁
𝑤

𝑛𝑑𝑤 log
1− 𝑝𝑡𝑑𝑤
1− θ𝑡𝑑

=

=
∑︁
𝑤

𝑛𝑑𝑤 log (1− 𝑝𝑡𝑑𝑤)− 𝑛𝑑 log(1− θ𝑡𝑑).

Однако, подобные вычисления могут быть, во-первых, вычислительно дол­
гими из-за взятия логарифмов и существенно замедлять алгоритм, а во-вторых,
влиять на асимптотику вычисления. Например, выражение ∆2𝐿 при занулении
φ𝑤𝑡 вычисляется за 𝑂(|𝑁 ||𝑊 |), где |𝑁 | — суммарная длина коллекции, что яв­
но дольше времени работы E-шага и будет замедлять алгоритм. Для оценки
∆𝐿 можно выполнить разложение до второго члена в ряде Тейлора слагаемых
(по аналогии с OBD) и получить примерные оценки.

Теорема 15. Изменение значения 𝐿 при занулении значения φ𝑤𝑡 после ап­
проксимации составляет

∆𝐿 =
𝑛𝑡φ𝑤𝑡 − 𝑛𝑤𝑡

1−φ𝑤𝑡
−1

2

(︂
φ𝑤𝑡

1−φ𝑤𝑡

)︂2 ∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢𝑝
2
𝑡𝑑𝑢+

1

2

∑︁
𝑑

𝑛𝑑𝑤𝑝
2
𝑡𝑑𝑤+𝑂

(︃∑︁
𝑑

𝑛𝑑𝑤𝑝
3
𝑡𝑑𝑤

)︃
.

Изменение значения 𝐿 при занулении значения θ𝑡𝑑 после аппроксимации
составляет

∆𝐿 = (𝑛𝑑θ𝑡𝑑 − 𝑛𝑡𝑑) +
1

2

∑︁
𝑤

𝑛𝑑𝑤𝑝
2
𝑡𝑑𝑤 − 1

2
𝑛𝑑θ

2
𝑡𝑑 +𝑂

(︃∑︁
𝑤

𝑛𝑑𝑤𝑝
3
𝑡𝑑𝑤

)︃
.

Доказательство.
Зануление φ𝑤𝑡.
Оценим первое слагаемое (4.1):∑︁

𝑑

𝑛𝑑𝑤 log(1− 𝑝𝑡𝑑𝑤) =
∑︁
𝑑

𝑛𝑑𝑤

(︂
−𝑝𝑡𝑑𝑤 +

1

2
𝑝2𝑡𝑑𝑤 +𝑂(𝑝3𝑡𝑑𝑤)

)︂
=
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= −𝑛𝑤𝑡 +
1

2

∑︁
𝑑

𝑛𝑑𝑤𝑝
2
𝑡𝑑𝑤 +𝑂

(︃∑︁
𝑑

𝑛𝑑𝑤𝑝
3
𝑡𝑑𝑤

)︃
.

Оценим второе слагаемое (4.1):∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢 log

(︂
1 +

φ𝑤𝑡

1−φ𝑤𝑡
𝑝𝑡𝑑𝑢

)︂
=

=
∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢

(︃
φ𝑤𝑡

1−φ𝑤𝑡
𝑝𝑡𝑑𝑢 −

1

2

(︂
φ𝑤𝑡

1−φ𝑤𝑡

)︂2

𝑝2𝑡𝑑𝑢 +𝑂

(︃(︂
φ𝑤𝑡

1−φ𝑤𝑡
𝑝𝑡𝑑𝑢

)︂3
)︃)︃

=

=
φ𝑤𝑡

1−φ𝑤𝑡
(𝑛𝑡 − 𝑛𝑤𝑡)−

1

2

(︂
φ𝑤𝑡

1−φ𝑤𝑡

)︂2 ∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢𝑝
2
𝑡𝑑𝑢+

(︂
φ𝑤𝑡

1−φ𝑤𝑡

)︂3

𝑂

⎛⎝∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢𝑝
3
𝑡𝑑𝑢

⎞⎠ .

Объединяя, получим

∆𝐿 = −𝑛𝑤𝑡 +
1

2

∑︁
𝑑

𝑛𝑑𝑤𝑝
2
𝑡𝑑𝑤 +𝑂

(︃∑︁
𝑑

𝑛𝑑𝑤𝑝
3
𝑡𝑑𝑤

)︃
+

φ𝑤𝑡

1−φ𝑤𝑡
(𝑛𝑡 − 𝑛𝑤𝑡)−

−1

2

(︂
φ𝑤𝑡

1−φ𝑤𝑡

)︂2 ∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢𝑝
2
𝑡𝑑𝑢 +

(︂
φ𝑤𝑡

1−φ𝑤𝑡

)︂3

𝑂

⎛⎝∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢𝑝
3
𝑡𝑑𝑢

⎞⎠ =

=
𝑛𝑡φ𝑤𝑡 − 𝑛𝑤𝑡

1−φ𝑤𝑡
− 1

2

(︂
φ𝑤𝑡

1−φ𝑤𝑡

)︂2 ∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢𝑝
2
𝑡𝑑𝑢 +

1

2

∑︁
𝑑

𝑛𝑑𝑤𝑝
2
𝑡𝑑𝑤 +𝑂

(︃∑︁
𝑑

𝑛𝑑𝑤𝑝
3
𝑡𝑑𝑤

)︃
.

Зануление θ𝑡𝑑.
Оценим первое слагаемое (4.2):∑︁

𝑤

𝑛𝑑𝑤 log(1− 𝑝𝑡𝑑𝑤) =
∑︁
𝑤

𝑛𝑑𝑤

(︂
−𝑝𝑡𝑑𝑤 +

1

2
𝑝2𝑡𝑑𝑤 +𝑂(𝑝3𝑡𝑑𝑤)

)︂
=

= −𝑛𝑡𝑑 +
1

2

∑︁
𝑤

𝑛𝑑𝑤𝑝
2
𝑡𝑑𝑤 +𝑂

(︃∑︁
𝑤

𝑛𝑑𝑤𝑝
3
𝑡𝑑𝑤

)︃
.

Оценим второе слагаемое (4.2):

−𝑛𝑑 log(1− θ𝑡𝑑) = 𝑛𝑑θ𝑡𝑑 −
1

2
𝑛𝑑θ

2
𝑡𝑑 +𝑂(𝑛𝑑θ

3
𝑡𝑑).

Объединяя получим

∆𝐿 = −𝑛𝑡𝑑 +
1

2

∑︁
𝑤

𝑛𝑑𝑤𝑝
2
𝑡𝑑𝑤 +𝑂

(︃∑︁
𝑤

𝑛𝑑𝑤𝑝
3
𝑡𝑑𝑤

)︃
+ 𝑛𝑑θ𝑡𝑑 −

1

2
𝑛𝑑θ

2
𝑡𝑑 +𝑂(𝑛𝑑θ

3
𝑡𝑑) =
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= (𝑛𝑑θ𝑡𝑑 − 𝑛𝑡𝑑) +
1

2

∑︁
𝑤

𝑛𝑑𝑤𝑝
2
𝑡𝑑𝑤 − 1

2
𝑛𝑑θ

2
𝑡𝑑 +𝑂

(︃∑︁
𝑤

𝑛𝑑𝑤𝑝
3
𝑡𝑑𝑤

)︃
.

Эти формулы являются приближением формул (4.1) и (4.2), они могут
быть использованы, когда производительность критична. С алгоритмической
точки зрения сложность представляет только выражение ∆2𝐿 при занулении
φ𝑤𝑡, поскольку не вычисляется за асимптотику E-шага 𝑂(|𝑁 |) и потенциально
замедляется асимптотику алгоритма. Теорема 15 предлагает приближение

∆2𝐿 = α𝑤𝑡 (𝑛𝑡 − 𝑛𝑤𝑡)−
1

2
α2
𝑤𝑡

∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢𝑝
2
𝑡𝑑𝑢 + α

3
𝑤𝑡𝑂

⎛⎝∑︁
𝑑,𝑢̸=𝑤

𝑛𝑑𝑢𝑝
3
𝑡𝑑𝑢

⎞⎠ ,

где α𝑤𝑡 =
φ𝑤𝑡

1−φ𝑤𝑡
. Это приближение вычисляется за 𝑂(|𝑁 |), остальные сла­

гаемые Теоремы 14 тоже вычисляются за эту асимптотику. Таким образом,
используя приближения только для ∆2𝐿, полученные значения будут наиболее
точны, а асимптотика алгоритма не будет отличаться от асимптотики E-шага,
не меняя асимптотику алгоритма.

4.2 Описание экспериментов по разреживанию моделей

Есть несколько вариантов использования оценки изменения ∆𝐿:
1. Разреживание имеющейся тематической модели.
2. Разреживание в ходе итераций EM-алгоритма ARTM.
3. Определение структуры разреженности.

Отличие первого и второго пункта состоит в том, что для готовой тематической
модели будет выполнено φ𝑤𝑡 ≈ 𝑛𝑤𝑡

𝑛𝑡
и θ𝑡𝑑 ≈ 𝑛𝑡𝑑

𝑛𝑑
, поэтому точность приближения

∆𝐿 будет более важна. Для первого пункта в качестве начального приближения
использовались матрицы Φ и Θ, полученные алгоритмом PLSA за 100 итера­
ций. Для второго пункта в качестве начального приближения использовались
матрицы Φ и Θ, полученные алгоритмом PLSA за 1 итерацию. Одна итерация
была необходима, чтобы не применять OBD к случайным матрицам, которые
являлись начальной инициализацией для PLSA.
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Обозначим за γ𝑤𝑡 изменение −∆𝐿 при занулении φ𝑤𝑡. Под структурой раз­
реженности понимается отображение всех ячеек матрицы Φ в осях 𝑛𝑤𝑡, γ𝑤𝑡. Это
изображение показывает зависимость изменения логарифма правдоподобия от
популярности слова в теме, а также на нём можно увидеть распределение тер­
мов по степени их влияния на оптимизируемый функционал.

В качестве текстовой коллекции для оценки поведения использовалась
«20 NewsGroups».
Сравнивались три алгоритма:

1. sparse LDA. Разреживащий LDA, реализованный посредством регу­
ляризатора разреживания. Зануление элемента φ𝑤𝑡 происходит, если
𝑛𝑤𝑡 ⩽ 1.

2. OBD ARTM limited. Стандартный алгоритм ARTM, дополнительно
на каждой итерации рассчитывающий γ𝑤𝑡 по формулам Теорем 14 и
15. Зануление элемента φ𝑤𝑡 происходит, если γ𝑤𝑡 ⩽ 1.

3. OBD ARTM. Аналогично OBD ARTM limited, но дополнительно на
каждой итерации зануляется 0.5% элементов с наибольшим значением
γ𝑤𝑡.

Полученные тематические модели оценивались по двум метрики:
Разреженность матрицы Φ. Разреженность определяется как доля ну­

лей в матрице. Как отмечалось в начале главы, мы хотим значительно повысить
разреженность моделей, так как это положительно сказывается на теоре­
тических свойствах полученных решений. Также увеличение разреженности
положительно влияет на интерпретируемость полученной модели и уменьша­
ет переобучение.

Перплексия. Перплексия это стандартная метрика для вероятностных
тематических моделей, она определяется по логарифму правдоподобия по сле­
дующей формуле:

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(Φ,Θ) = exp

(︂
−𝐿(Φ,Θ)

𝑛

)︂
, (4.3)

где 𝑛 =
∑︀

𝑑,𝑤 𝑛𝑑𝑤 — суммарная длина коллекции. Поскольку задача разре­
живания ставится как увеличение разреженности при неуменьшении 𝐿, то по
перплексии определяется степень этого неуменьшения.
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4.3 Результаты экспериментов по разреживанию моделей

|𝑇 | Метрика Алгоритм До После Увеличение, %
10 Разреженность sparse LDA 0.187 0.755 303
10 Разреженность OBD ARTM 0.187 0.751 301
10 Разреженность OBD ARTM limited 0.187 0.75 301
10 Перплексия sparse LDA 2034.7 2374.0 16
10 Перплексия OBD ARTM 2034.7 2064.3 1
10 Перплексия OBD ARTM limited 2034.7 2059.9 1
25 Разреженность sparse LDA 0.32 0.866 170
25 Разреженность OBD ARTM 0.32 0.861 169
25 Разреженность OBD ARTM limited 0.32 0.86 168
25 Перплексия sparse LDA 1518.1 2121.5 39
25 Перплексия OBD ARTM 1518.1 1553.9 2
25 Перплексия OBD ARTM limited 1518.1 1549.8 2

Таблица 3 — Разреженность и перплексия после 1 итерации разреживания
разными методами

|𝑇 | Метрика Алгоритм До После Увеличение, %
10 Разреженность sparse LDA 0.187 0.836 347
10 Разреженность OBD ARTM 0.187 0.808 332
10 Разреженность OBD ARTM limited 0.187 0.764 308
10 Перплексия sparse LDA 2034.7 2214.7 8
10 Перплексия OBD ARTM 2034.7 2092.7 2
10 Перплексия OBD ARTM limited 2034.7 2037.7 0
25 Разреженность sparse LDA 0.32 0.923 188
25 Разреженность OBD ARTM 0.32 0.899 180
25 Разреженность OBD ARTM limited 0.32 0.871 172
25 Перплексия sparse LDA 1518.1 1754.7 15
25 Перплексия OBD ARTM 1518.1 1580.2 4
25 Перплексия OBD ARTM limited 1518.1 1521.5 0

Таблица 4 — Разреженность и перплексия после 100 итерации разреживания
разными методами

Таблица 3 показывает, что зануление элементов матрицы Φ по величинам
𝑛𝑤𝑡 и по величинам γ𝑤𝑡 дают примерно одинаковое увеличение разреженности
модели при разном количестве тем |𝑇 |. При этом зануление по γ𝑤𝑡 увеличивает
перплексию в незначительной мере, в отличие от зануления по 𝑛𝑤𝑡.
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Рисунок 4.1 — Изменения метрик на итерациях для разреживающего LDA и
двух версий алгоритма OBD ARTM.

Таблица 4 показывает, что с повторениями итераций LDA позволяет ещё
дополнительно увеличить разреженность матриц и уменьшить перплексию. Это
объясняется тем, что разреживающий LDA постепенно на итерациях подстра­
ивается под данные и нивелирует сильную просадку перплексии на первых
итерациях. Однако, OBD продолжает показывать слабое увеличение перплек­
сии в отличие от LDA.

На Рисунке 4.1 более подробно показаны изменения перплексии и раз­
реженности на итерациях. Первые 100 итераций графики совпадают, так как
использовался общий алгоритм PLSA для получения матриц для разрежива­
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ния. на 100-ой итерации мы видим резкий скачок метрик связанный с первой
итерацией зануления. После чего алгоритмы адаптируются к произошедшим
изменениям на продолжении последующих 100 итераций разрежения. Алго­
ритм OBD ARTM за счёт дополнительного зануления элементов по сравнению
с OBD ARTM limited показывает чуть большее значение разреженности, но
и чуть большее значение перплексии, однако, разница не значительна. Также
на графике видно, что LDA требуется порядка 5 дополнительных итераций,
чтобы уменьшить потерю в перплексии на первой итерации. В то же время
OBD ARTM limited без дополнительных итераций даёт приемлемое значение
перплексии.

На Рисунках 4.2 и 4.3 изображены изменения структуры разреженности
в логарифмических шкалах на итерациях OBD ARTM.

Самый первый график показывает структуру разреженности для случай­
ной инициализации матриц. При больших значениях 𝑛𝑤𝑡 выполняется 𝑛𝑤𝑡 ≈
γ𝑤𝑡, при малых же значениях такой корреляции не прослеживается, однако,
γ𝑤𝑡 ⩽ 𝑛𝑤𝑡. Это означает, что есть много пар тема-слово, таких что слово
достаточно часто встречается в теме, но при занулении этого элемента, прав­
доподобие сильно не изменяется.

Графики с 20 по 100 итерацию показывают структуру разреженности для
алгоритма PLSA. Мы видим облако точек вокруг прямой 𝑛𝑤𝑡 = γ𝑤𝑡, причём
облако значительно шире чем у случайных матриц. Это говорит о том, что
корреляция между 𝑛𝑤𝑡 и γ𝑤𝑡 присутствует, но они явно не совпадают. Также
на этих графиках видно большое облако точек при малых значениях 𝑛𝑤𝑡 и γ𝑤𝑡.
Это основные кандидаты на зануление, так как их эффект на правдоподобие
очень мал. Видно, что при малых значениях 𝑛𝑤𝑡 выполняется 𝑛𝑤𝑡 ⩾ γ𝑤𝑡. Это
объясняется равенством (4.1), при малых 𝑛𝑤𝑡 первое слагаемое примерно равно
−𝑛𝑤𝑡, а второе слагаемое положительно, откуда следует, что −∆𝐿 ⩽ 𝑛𝑤𝑡.

На графиках с 120 по 220 итерацию видно, что произошло зануление эле­
ментов, слабо влияющих на правдоподобие. Чем больше занулений происходит,
тем большая часть нижних точек отсекается. Можно наблюдать горизонталь­
ную линию, выше которой находится почти всё облако точек, она соответствует
порогу зануления на итерации. На графике 120-ой итерации он соответствует
γ𝑤𝑡 ⩽ 1, на последующих итерациях он определяется процентилью ненулевых
значений γ𝑤𝑡, которая постепенно растёт.



74

Также образуется ступеньки на определённых значениях γ. Это объясня­
ется тем, что при реализации алгоритма ARTM часто используется технический
трюк — при вычислении логарифма правдоподобия 𝐿 по формуле (1.1) к вы­
ражению под логарифмов добавляется небольшое значение ε чтобы избежать
𝐿 = −∞ на итерациях. Соответственно, если при занулении φ𝑤𝑡 зануляется
выражение под логарифмов, то ∆𝐿 = 𝑛𝑤 log ε. Поэтому ступеньки, которые мы
видим на графике соответствуют значениям log 𝑛𝑤+log log 1

ε
при разных 𝑛𝑤 от

1 и т.д. При реализация использовалось ε = 10−20, а, значит, первая ступенька
должна соответствовать log log 1020 ≈ 3.83, вторая 3.83 + log 2 ≈ 4.52, третья
≈ 4.92 и т.д, что и наблюдается на графиках.

4.4 Заключение главы

В этой главе была применена идея метода OBD к задаче тематического
моделирования. Было оценено изменение логарифма правдоподобия (1.1) при
занулении φ𝑤𝑡 или θ𝑡𝑑 (Теорема 14). Для ускорения вычисления предложенных
оценок и использования в алгоритме ARTM были предложены аппроксимации,
которые вычисляются за приемлемое для практического применения время
(Теорема 15).

Аппроксимации были реализованы в алгоритме ARTM и был проведён
эксперимент на текстовой коллекции «20Newsgroups», сравнивающий пред­
ложенный метод с разреживанием с помощью регуляризатор разреживания
ARTM (раздел 4.2). Эксперимент показал, что OBD позволяет добиться при­
мерно того же уровня разреженности, но при этом, в отличие от подхода с
регуляризатором, не увеличивает перплексию модели.
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Рисунок 4.2 — Изменения структуры разреженности матрицы Φ на итерациях,
|𝑇 | = 10.
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Рисунок 4.3 — Изменения структуры разреженности матрицы Φ на итерациях,
|𝑇 | = 25.
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Глава 5. Аддитивная регуляризация тематических моделей c
быстрой векторизацией текста

Важной особенностью тематических моделей является интерпретиру­
емость: часто человек-эксперт может дать понятное описание каждой из
компонент распределения φ𝑤𝑡. Когерентность темы (topic coherence) — авто­
матическая мера качества тематических моделей, хорошо коррелирующая с
асессорскими оценками интерпретируемости [55] (недостатком этого метода яв­
ляется то, что он основан на анализе ограниченного числа слов, составляющие
маленькую долю от всей коллекции документов [56])

Генерация псевдодокументов — эффективный способ улучшения коге­
рентности тем. Распространены подходы, основанные на со-встречаемостях:
biterm topic model BTM [57]) и Word Network Topic Model WNTM [58]. Дру­
гой подход к построению псевдодокументов, особенно полезный для анализа
коротких текстов, “склеивает” близкие документы вместе. Дальнейшее разви­
тие подход псевдодокументов получил в работе [59], в которой комбинируются
оптимизация в пространстве “слово-документ” и оптимизация в пространстве
“слово-контекст”.

Двумя существенными недостатками псевдодокументов являются необ­
ходимость настройки параметров (например, критерий склейки или размер
контекстного окна) и необходимость большой предобработки данных (за счёт
чего данный подход работает существенно дольше традиционных методов).

Другой способ улучшения качества, широко используемый в области
машинного обучения в целом, — уменьшение числа параметров. Особенно
релевантными в контексте тематического моделирования кажутся работы из
области неотрицательного матричного разложения, показывающие полезность
симметричности в задачах кластеризации [60—62].

При этом данные вопросы не освещены в литературе по тематическому
моделированию. Насколько нам известно, используются лишь две техники для
уменьшения числа параметров. Первая сводится к уменьшению числа скрытых
тем (например, используя Иерархические Процессы Дирихле [63—66]). Вторая
заключается в использовании разреженных распределений [26; 67].

В этой главе рассматривается применение симметричности к тематиче­
ским моделям (переход от разложения вида 𝑀 ≈ 𝑋 · 𝑋𝑇 к разложению вида
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𝑀 ≈ 𝑋 · 𝑓(𝑋)) и предпринимается попытка обойтись без псевдодокументов
за счёт более тщательного учёта информации, содержащейся в обычных до­
кументах.

5.1 Роль матрицы тем в документах и EM-алгоритм

С точки зрения вероятностного вывода матрица слова-темы (Φ) и матри­
ца документы-темы (Θ) имеют одинаковую важность, поскольку обе являются
скрытыми параметрами вероятностной модели (раздел 2.1.3). Однако, на прак­
тике, исследователи часто считают матрицу Φ более важной и относятся к
матрице Θ как к чему-то вспомогательному, что может быть легко восстанов­
лено из известных данных.

В первую очередь нужно упомянуть интерпретируемость. Интерпретируе­
мость является желательным свойством хорошей тематической модели. Оценка
интерпретируемости человеком обычно состоит из выбора небольшого набора
самых вероятных слов для каждой темы и представления этого набора экс­
перту-человеку [55]. В этом процессе используется только матрица Φ.

Вторым примером подобного подхода является основополагающая рабо­
та [68], в которой измерялась интерпретируемость нескольких тематических
моделей. Построенные модели вместе с использованной разметкой, были вы­
ложены в открытый доступ. Однако, была опубликована только матрица Φ

(возможно, потому что авторы посчитали ее более ценной, или из-за неявного
расчёта на то, что недостающее распределение Θ может быть восстановлено
по выложенным данным).

К второстепенности матрицы Θ можно прийти и из практических сооб­
ражений.

Во-первых, на практике часто встречаются задачи, требующие дина­
мического расширения коллекции документов (например, анализ новостных
потоков). Такое расширение может существенно увеличить | 𝐷 |, практически
не изменив размер словаря | 𝑊 | (что объясняется законом Хипса [69]).

Во-вторых, требование вычислительной эффективности естественным
образом приводит к использованию параллельных, распределённых или он­
лайновых реализаций алгоритмов тематического моделирования. Наиболее
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эффективным является следующий подход, реализованный в открытой биб­
лиотеке BigARTM: алгоритм разбивает входные данные на пакеты, которые
обрабатываются разными потоками [70]. В результате, алгоритмы библиотеки
никогда не хранят всю матрицу Θ, вместо этого элементы матрицы рассчиты­
ваются, когда они необходимы.

Для многих исследователей качество тематической модели эквивалентно
прежде всего качеству матрицы Φ. Но с точки зрения самой тематической моде­
ли, Φ и Θ являются равноправными, и появление слов в документах коллекции
объясняется при помощи обеих этих матриц. Качество матрицы Θ при этом ни­
как не контролируется, поэтому тематическая модель может скомпенсировать
“плохую” Φ специально подогнанной матрицей Θ.

Реализации тематического моделирования (особенно восстанавливающие
элементы Θ “на лету”) часто используют следующую эвристику: для получения
θ𝑡𝑑 конкретного документа 𝑑 повторяются несколько итераций EM-алгоритма
с фиксированной Φ. В этой процедуре вектор θ*𝑑 сначала инициализируется
некоторым образом (как правило, используется равномерное распределение), а
затем итеративно обновляется по формуле θ𝑡𝑑 ∝

∑︀
𝑤 𝑛𝑑𝑤𝑝𝑡𝑑𝑤 с пересчётом 𝑝𝑡𝑑𝑤.

Обновление может происходить какое-то установленное количество итераций
либо продолжаться до сходимости.

Отметим, что этот процесс может привести к переобучению, поскольку
Θ целенаправленно оптимизируется для того, чтобы соответствовать заданной
Φ. Кроме того, время обучения модели линейно зависит от числа этих итера­
ций, и поэтому слишком большое их количество может существенно замедлить
обучение.

Чтобы сделать роль Φ в EM-алгоритме более значимой, мы предлагаем
заменить исходную оптимизационную задачу 1.4 на следующую:

𝐿(Φ, 𝑓(Φ)) +𝑅(Φ, 𝑓(Φ)) → max
Φ

, (5.1)

где 𝑓 — это некоторая функция, которая отображает матрицу темы-слова
в матрицу документы-темы. Решение задачи 5.1 может отличаться от реше­
ния задачи 1.4.
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5.2 Итерационный алгоритм для подхода ARTM без матрицы
документы-темы

В этом разделе будет предложен итерационный алгоритм для оптимиза­
ционной задачи (5.1). Для этого на основе практических соображений будет
выбрана функция 𝑓 зависимости матриц Φ и Θ, и проведён вывод EM-алгорит­
ма, аналогичный Теореме 1. Также результаты теорем о сходимости главы 2
будут перенесены на предложенный алгоритм.

5.2.1 Функция зависимости матриц документы-темы и темы-слова

Для дальнейшего изложения нужно определить функцию зависимости Φ

и Θ. Другими словами, указать, как рассчитать вероятности тем в документах
𝑝(𝑡 | 𝑑), зная только вероятности слов в темах 𝑝(𝑤 | 𝑡).

Подчеркнём, что есть бесконечное множество возможных функций за­
висимости. Например, можно рассмотреть следующее бесконечное семейство:
берётся какое-то начальное приближение для Θ, которое затем уточняется на
протяжении 𝑘, 𝑘 ∈ N итераций.

Однако, мы требуем, чтобы искомая функция была интерпретируемой,
простой для анализа и лёгкой для вычислений. Естественным вариантом яв­
ляется усреднение распределений тем слов по всем словам, встречающимся в
документе. Более формально:

𝑃 (𝑡 | 𝑑) ∝
∑︁
𝑤

𝑛𝑑𝑤𝑃 (𝑡 | 𝑤),

где 𝑃 (𝑡 | 𝑤) получены по формуле Байеса, предполагая, что распределение
𝑝(𝑡) равномерно:

𝑃 (𝑡 | 𝑤) = 𝑃 (𝑤 | 𝑡)∑︀𝑇
𝑠=1 𝑃 (𝑤 | 𝑠)

=
Φ𝑤𝑡∑︀
𝑠Φ𝑤𝑠

.

Если мы обозначим 𝑛𝑑𝑤(
∑︀

𝑤 𝑛𝑑𝑤)
−1 за 𝐵𝑑𝑤, то

Θ𝑡𝑑 =
∑︁
𝑤

𝐵𝑑𝑤
Φ𝑤𝑡∑︀
𝑠Φ𝑤𝑠

(5.2)
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Эту формулу также можно проинтерпретировать как результат первой
итерации процесса, описанного в 5.1.

5.2.2 Вывод EM-алгоритма

Для вывода EM алгоритма будут использоваться следующие обозначения:

𝐴𝑑𝑤 =
𝑛𝑑𝑤∑︀

𝑠Φ𝑤𝑠Θ𝑠𝑑
[𝑛𝑑𝑤 > 0],

𝐵𝑑𝑤 =
𝑛𝑑𝑤∑︀
𝑤 𝑛𝑑𝑤

,

𝐶𝑑𝑡 = (𝐴Φ)𝑑𝑡 +
𝜕𝑅

𝜕Θ𝑡𝑑
,

ℎ𝑤 =
1∑︀
𝑠Φ𝑤𝑠

.

Теорема 16. В EM-алгоритме для 5.1 c формулой зависимости матрицы Φ и
Θ (5.2) E-шаг останется без изменений, а М-шаг будет выглядеть следующим
образом:

Φ𝑛𝑒𝑤
𝑤𝑡 ∝

(︃∑︁
𝑑

𝑛𝑑𝑤𝑝𝑡𝑑𝑤 + Φ𝑜𝑙𝑑
𝑤𝑡

(︂
𝜕𝑅

𝜕Φ𝑤𝑡
+ ℎ𝑤(𝐶

𝑇𝐵)𝑡𝑤 − ℎ2
𝑤(Φ

𝑜𝑙𝑑𝐶𝑇𝐵)𝑤𝑤

)︂)︃
+

. (5.3)

Доказательство.
Для вывода формул воспользуемся выводом обобщённого ЕМ алгоритма
(GEM). В GЕМ алгоритме на каждой итерации на Е-шаге Φ и Θ фиксируются,
считаются 𝑝𝑡𝑑𝑤 и строится функционал (2.6):

𝑄(Φ,Θ,Φ′,Θ′) =
∑︁
𝑑,𝑤,𝑡

𝑛𝑑𝑤𝑝
′
𝑡𝑑𝑤 ln(φ𝑤𝑡θ𝑡𝑑) +𝑅(Φ,Θ).

Как было показано в доказательстве Теоремы 7, изменения функционала дан­
ного 𝑄 (значений между разными итерациями) являются нижней оценкой на
изменения исходного регуляризированного логарифма правдоподобия. То есть,
если ∆𝑄 > 0, то ∆(𝐿 + 𝑅) > 0. Поэтому цель М-шага увеличить значение
данного функционала по сравнению с Φ и Θ с предыдущей итерации.

То, что в предложенном новом подходе Θ — это функция от Φ, не меняет
тот факт, что изменения 𝑄 — это нижняя оценка изменения 𝐿+𝑅. Так как это
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основное требование к функционалу на E-шаге, то поскольку оно выполняется,
E-шаг нового алгоритма останется без изменений. Теперь цель М-шага — подо­
брать Φ, чтобы увеличить значение по сравнению с Φ с предыдущей итерации
следующий функционал:

𝑄(Φ,Φ′) =
∑︁
𝑑𝑡𝑤

𝑛𝑑𝑤𝑝
′
𝑡𝑑𝑤 (lnΦ𝑤𝑡 + ln(Θ(Φ))𝑡𝑑) +𝑅(Φ,Θ(Φ)). (5.4)

Найдём его производные:

𝜕𝑄

𝜕Φ𝑣𝑟
=

1

Φ𝑣𝑟

(︃∑︁
𝑑

𝑛𝑑𝑣𝑝
′
𝑟𝑑𝑣 + Φ𝑣𝑟

𝜕𝑅

𝜕Φ𝑣𝑟
+
∑︁
𝑑𝑡𝑤

𝑛𝑑𝑤𝑝
′
𝑡𝑑𝑤

1

Θ𝑡𝑑

𝜕Θ𝑡𝑑

𝜕Φ𝑣𝑟
+
∑︁
𝑑𝑡

𝜕𝑅

𝜕Θ𝑡𝑑

𝜕Θ𝑡𝑑

𝜕Φ𝑣𝑟

)︃
.

Подставив вместо 𝑝′𝑡𝑑𝑤 его выражение через Φ и Θ, получим:∑︁
𝑤

𝑛𝑑𝑤𝑝𝑡𝑑𝑤
1

Θ𝑡𝑑
=
∑︁
𝑑𝑡𝑤

𝑛𝑑𝑤
Φ𝑤𝑡∑︀

𝑠Φ𝑤𝑠Θ𝑠𝑑
=
∑︁
𝑑𝑡𝑤

𝐴𝑑𝑤Φ𝑤𝑡 = (𝐴Φ)𝑑𝑡 ,

то есть
𝐶𝑑𝑡 =

∑︀
𝑤 𝑛𝑑𝑤𝑝

′
𝑡𝑑𝑤

Θ𝑡𝑑
+

𝜕𝑅

𝜕Θ𝑡𝑑
,

поэтому

𝜕𝑄

𝜕Φ𝑣𝑟
=

1

Φ𝑣𝑟

(︃∑︁
𝑑

𝑛𝑑𝑣𝑝
′
𝑟𝑑𝑣 + Φ𝑣𝑟

(︃
𝜕𝑅

𝜕Φ𝑣𝑟
+
∑︁
𝑑𝑡

𝐶𝑑𝑡
𝜕Θ𝑡𝑑

𝜕Φ𝑣𝑟

)︃)︃
.

Остаётся только найти
𝜕Θ𝑡𝑑

𝜕Φ𝑣𝑟
.

Θ𝑡𝑑 =
∑︁
𝑤

𝐵𝑑𝑤
Φ𝑤𝑡∑︀
𝑠Φ𝑤𝑠

=
∑︁
𝑤

𝐵𝑑𝑤Φ𝑤𝑡ℎ𝑤.

𝜕Θ𝑡𝑑

𝜕Φ𝑣𝑟
=
∑︁
𝑤

𝐵𝑑𝑤 ℎ𝑤δ𝑣𝑤𝑟𝑡 +
∑︁
𝑤

𝐵𝑑𝑤Φ𝑤𝑡
𝜕ℎ𝑤

𝜕Φ𝑣𝑟
=

=
∑︁
𝑤

𝐵𝑑𝑤ℎ𝑤δ𝑣𝑤𝑟𝑡 −
∑︁
𝑤

𝐵𝑑𝑤 Φ𝑤𝑡 ℎ
2
𝑤 δ𝑣𝑤 = 𝐵𝑑𝑣 ℎ𝑣 δ𝑟𝑡 −𝐵𝑑𝑣 Φ𝑣𝑡 ℎ

2
𝑤,

где δ это символ Кронекера. Теперь∑︁
𝑑𝑡

𝐶𝑑𝑡
𝜕Θ𝑡𝑑

𝜕Φ𝑣𝑟
=
∑︁
𝑑𝑡

𝐶𝑑𝑡

(︀
𝐵𝑑𝑣 ℎ𝑣 δ𝑟𝑡 −𝐵𝑑𝑣 Φ𝑣𝑡 ℎ

2
𝑣

)︀
=

= ℎ𝑣

∑︁
𝑑

𝐶𝑑𝑟𝐵𝑑𝑣 − ℎ2
𝑣

∑︁
𝑑𝑡

𝐶𝑑𝑡𝐵𝑑𝑣Φ𝑣𝑡 = ℎ𝑣(𝐶
𝑇𝐵)𝑟𝑣 − ℎ2

𝑣(Φ𝐶
𝑇𝐵)𝑣𝑣.
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Итого

𝜕𝑄

𝜕Φ𝑣𝑟
=

1

Φ𝑣𝑟

(︃∑︁
𝑑

𝑛𝑑𝑣𝑝𝑟𝑑𝑣 + Φ𝑣𝑟

(︂
𝜕𝑅

𝜕Φ𝑣𝑟
+ ℎ𝑣(𝐶

𝑇𝐵)𝑟𝑣 − ℎ2
𝑣(Φ𝐶

𝑇𝐵)𝑣𝑣

)︂)︃
.

Далее, выписав условия Каруша-Куна-Таккера, по аналогии с Теоремой 1 по­
лучаем, что

Φ𝑛𝑒𝑤
𝑣𝑟 ∝

(︃∑︁
𝑑

𝑛𝑑𝑣𝑝𝑟𝑑𝑣 + Φ𝑜𝑙𝑑
𝑣𝑟

(︂
𝜕𝑅

𝜕Φ𝑣𝑟
+ ℎ𝑣(𝐶

𝑇𝐵)𝑟𝑣 − ℎ2
𝑣(Φ

𝑜𝑙𝑑𝐶𝑇𝐵)𝑣𝑣

)︂)︃
+

.

5.2.3 Анализ асимптотической сложности работы и сходимости
алгоритма

На М-шаге предложенного алгоритма потребуется найти матрицы 𝐶, 𝐶𝑇𝐵

и диагональ матрицы Φ𝐶𝑇𝐵.
В силу разреженности 𝐴 и 𝐵, умножение на эти матрицы может быть

эффективно реализовано за 𝑂(𝑁𝑆), где 𝑁 – суммарная длина коллекции, а 𝑆

— общая размерность умножаемых матриц. В данном случае это матрицы Φ

и 𝐶, поэтому 𝑆 равно числу тем.
Поскольку матрицы Φ и 𝐶𝑇𝐵 уже подсчитаны, то диагональные элементы

матрицы Φ𝐶𝑇𝐵 могут быть найдены за 𝑂(𝑊𝑇 ).
Так как вычисление 𝑝𝑡𝑑𝑤 выполняется за такое же асимптотическое время,

то изменение М-шага не приведёт с изменению асимптотики времени работы
алгоритма.

Изменения функционала (5.4) являются нижней оценкой изменения 𝐿+𝑅,
поэтому будет верна следующая теорема:

Теорема 17. Пусть регуляризатор 𝑅 является дифференцируемой функци­
ей при φ𝑤𝑡, θ𝑡𝑑 ∈ (0, 1], сохраняющей нуль, корректной, ε-разреживающей
и δ-регулярной. Также допустим, что 𝑄(Φ𝑘+1,Φ𝑘) ⩾ 𝑄(Φ𝑘,Φ𝑘) начиная с
некоторой итерации 𝑘. Тогда последовательность 𝑝𝑘𝑡𝑑𝑤 сходится в смысле ди­
вергенции Кульбака–Лейблера для любых 𝑑 и 𝑤 таких, что 𝑛𝑑𝑤 > 0:

KL
(︀
𝑝𝑘𝑡𝑑𝑤

⃦⃦
𝑝𝑘+1
𝑡𝑑𝑤

)︀
→ 0 при 𝑘 → ∞.
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Доказательство.
В доказательстве Теоремы 7 было показано

∆𝑘(𝐿+𝑅) = 𝑄(Φ𝑘+1,Θ𝑘+1,Φ𝑘,Θ𝑘)−𝑄(Φ𝑘,Θ𝑘,Φ𝑘,Θ𝑘) + KL
(︀
𝑝𝑘𝑑𝑤

⃦⃦
𝑝𝑘+1
𝑑𝑤

)︀
.

В предложенном алгоритме выполняется Θ𝑘 = 𝑓(Φ𝑘), поэтому это равенство
всё ещё выполняется в терминах функционала (5.4):

∆𝑘(𝐿+𝑅) = 𝑄(Φ𝑘+1,Φ𝑘)−𝑄(Φ𝑘,Φ𝑘) + KL
(︀
𝑝𝑘𝑑𝑤

⃦⃦
𝑝𝑘+1
𝑑𝑤

)︀
.

При увеличении 𝑄 на итерациях будет выполнено

∆𝑘(𝐿+𝑅) ⩾ KL
(︀
𝑝𝑘𝑑𝑤

⃦⃦
𝑝𝑘+1
𝑑𝑤

)︀
⩾ 0,

что будет влечь за собой сходимость параметров аналогично Теореме 7.

Следствие 8. Если в дополнение к условиям Теоремы 17 регуляризатор 𝑅

сильно регулярен, а регуляризационная поправка рассчитывается не точке
Φ𝑜𝑙𝑑, а в точке 𝑛𝑤𝑡

𝑛𝑡
по аналогии с (2.9), то

|φ𝑘
𝑤𝑡 −φ𝑘+1

𝑤𝑡 | → 0.

Доказательство.
Нетрудно заметить, что в предложенных условиях выполняются условия След­
ствия 1.

5.3 Описание экспериментов с алгоритмом ARTM с быстрой
векторизацией текста

Для оценки улучшения метрик качества тематических моделей от предло­
женного алгоритма была проведена серия экспериментов.

Эксперименты проводились на трёх стандартных текстовых коллекциях:
20Newsgroups (auto, motorcycles, baseball, hockey, crypt, electronics, med, space),
NIPS Conference Papers 1987-2015 Data Set и Twitter Sentiment140 Data Set При
построении моделей использовались |𝑇 | = 25 для 20Newsgroups, |𝑇 | = 50 для
NIPS and Twitter.
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Сравнивались несколько подходов в тематическом моделировании. PLSA,
LDA и sparse LDA обозначают стандартные PLSA и LDA с сглаживающим и раз­
реживающим значением параметра априорного распределения Дирихле. Два
варианта предлагаемого подхода были рассмотрены: выведенный в Теореме 16
(TARTM) и популярный эвристический вывод naive TARTM где на каждой ите­
рации Θ рассчитывается согласно (1.6) (вместо (5.3)) и Θ отбрасывается после
расчёта 𝑝𝑡𝑑𝑤. Для проведения численных экспериментов на языке Python был
реализован отдельный модуль, позволяющий проверять различные варианты
реализации EM и ARTM.

Использование в качестве регуляризатора. Если сравнить формулы
(1.6) и (5.3), то можно заметить, что они отличаются на слагаемое, имеющее
такой же вид, как и 𝜕𝑅

𝜕Φ𝑤𝑡
. Это означает, что вышеописанный итерационный

процесс можно “сэмулировать” внутри традиционного подхода ARTM, введя
фиктивный регуляризатор специального вида1 и положив, что Θ должна полу­
чаться из Φ за одну итерацию EM-алгоритма (то есть по формуле (5.2)) 2.

Мы реализовали эту идею на практике, построив специальный регуля­
ризатор внутри библиотеки TopicNet. TopicNet – открытая надстройка над
библиотекой BigARTM, предоставляющая более удобные возможности по рабо­
те с пользовательскими регуляризаторами [32]. Наличие такого регуляризатора
будет дополнительным фактором достоверности результатов эксперимента за
счёт реализации в сторонней библиотеке и проверке на встроенной и поставля­
емой вместе с библиотекой текстовой коллекции 20NG.

Также это позволяет напрямую сравнить результаты TARTM и ARTM
с традиционным набором регуляризаторов (сглаживание фоновых тем, разре­
живание предметных тем, декорреляция) и проверить взаимодействие предло­
женной формулы с дополнительными регуляризаторами. Для этой реализации
сравнивались не значения метрик на итерациях, а финальные значения метрик
после заданного числа итераций; мы положили параметр | 𝑇 |= 20.

Использование для онлайн алгоритма. Предложенную модифика­
цию можно использовать в онлайн алгоритме ARTM [30]. Поскольку в онлайн
алгоритмах [30; 71; 72] данные поступают батчами из документов, то для них
не хранится матрица Θ, а вычисляется «на лету» по матрице Φ и матрице

1Заметим, что это новое слагаемое внутри M-шага может не быть производной какой-либо функ­
ции.

2Библиотека BigARTM позволяет добиться последнего, если установить num_document_passes

= 1.
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данным батча. В эксперименте будут сравнены исходная версия онлайн алго­
ритма с вычислением Θ за одну итерацию по формуле (5.2) и онлайн версия
алгоритма с быстрой векторизацией, в которой обновление (5.3) происходит
по данным батча.

Для оценки качества полученных тематических моделей использовались
следующие метрики:

Разреженность матрицы Φ. Разреженность определяется как доля
нулей в матрице. Более высокая разреженность означает более высокую ин­
терпретируемость и более низкое переобучение модели.

Средняя мера Жаккара между топ-словами. Это метрика пока­
зывает степень различности тем: средний коэффициент Жаккара равный 1
означает, что все найденные темы являются дубликатами друг друга, в то время
как нулевой средний коэффициент говорит, что все темы уникальны. В экспе­
рименте эта метрика рассчитывалась следующим способом:

1

𝑇 (𝑇 − 1)

∑︁
𝑠̸=𝑡

|𝐾(𝑡) ∩𝐾(𝑠)|
|𝐾(𝑡) ∪𝐾(𝑠)|

,

где 𝐾(𝑡) это множество, состоящее из 100 наиболее вероятных слов в теме 𝑡.
Среднее расстояние до ближайшей темы. Это другой способ оценки

различности тем, анализирующий не только топ-слова темы, но всё распреде­
ление целиком. Для оценки этой метрики вычисляются попарные расстояния
между всеми темами, для каждой темы определяется ближайшая (помимо
неё самой) и эти расстояния усредняются. Здесь приведены расстояния, полу­
ченные на основе косинусной близости векторов (были рассмотрены и другие
метрики близости, но качественной разницы в результатах не наблюдалось).

PPMI топ-слов. PMI между словами 𝑤 и 𝑣 определяется как

𝑃𝑀𝐼(𝑤, 𝑣) = log
| 𝐷 | 𝑁(𝑤, 𝑣)

𝑁(𝑤)𝑁(𝑣)
,

где |𝐷| — количество документов в коллекции, 𝑁(𝑤, 𝑣) — количество доку­
ментов, где слова 𝑤 и 𝑣 содержатся одновременно, а 𝑁(𝑤) — количество
документов, содержащих слов 𝑤. Чтобы избежать околонулевых значений, ис­
пользуется 𝑃𝑃𝑀𝐼 = max(𝑃𝑀𝐼, 0). Для расчёта метрики бралось множество
из 30 наиболее вероятных слов темы и суммировался попарный PPMI по всем
парам в этом множестве, а затем результат усреднялся по всем темам. Эта
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метрика является широко используемым показателем согласованности тем и
коррелирует с восприятием интерпретируемости тем человеком [55; 73; 74].

LogLift. Величина Lift была введена в работе [75], где рекомендовалось
использовать её при показе темы пользователю (а именно, сортировать слова
темы по Lift, а не по их вероятностям). Lift(𝑤, 𝑡) определяется как отношение
φ𝑤𝑡 к средней частоте слова 𝑤 по коллекции. В недавней работе [76] была пред­
ложена метрика качества Log-Lift, основанная на этой величине: для 30 слов 𝑤𝑖,
наиболее вероятных в теме 𝑡, вычисляется 1

30

∑︀30
𝑖=1 log Lift(𝑤𝑖, 𝑡), в дальнейшем

усредняемая по всем темам. Было показано, что рассчитанная таким образом
величина связана с долей неинформативных слов в темах, а также имеет суще­
ственную корреляцию с экспертными оценками качества тем.

Качество классификации. Чтобы оценить качество вычисления рас­
пределения тем в документах, для 20Newsgroups также оценивалось качество
классификации документов по следующей схеме. Документы разделялись на
три группы: train1, train2 и test. На train1 вместе с train2 обучалась тема­
тическая модель и мы получали матрицу Θ для документов. Далее на этих
признаках обучался SVM для многоклассовой классификации истинной метки
документа. По кроссвалидации на train1 подбирались оптимальные параметры
SVM (лучшее значение — cv fold). Затем оценивалось качество классификации
на train2 (cv test). После чего оценивалось качество классификатора на пре­
образованных признаках документов из test. Чтобы получить матрицу Θ для
новых документов требует сделать несколько итераций ЕМ алгоритма, поэтому
качество классификации оценивалось после каждой итерации. Качество клас­
сификации измерялось по accuracy.

Перплексия. Перплексия это стандартная метрика для вероятностных
тематических моделей, она определяется по логарифму правдоподобия по сле­
дующей формуле:

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(Φ,Θ) = exp−𝐿(Φ,Θ)

𝑛
,

где 𝑛 =
∑︀

𝑑,𝑤 𝑛𝑑𝑤 — суммарная длина коллекции.
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5.4 Результаты экспериментов с алгоритмом ARTM с быстрой
векторизацией текста

TARTM LDA
game team player play season hockey hit
league fan baseball last run watch throw
pitcher ball stat year sport score

game year team player get last good
baseball win play go season hit fan
think time make well say league

car bike buy engine sell speed drive price
mile road ride owner dealer drive model
driver motorcycle tire detector brake

car bike get engine buy new also drive
mile make speed look tire well dealer
brake wheel go good road

period st series vs playoff pt shot king
canada ranger lead cup toronto play
wing pittsburgh buffalo blue chicago
round

period gm vs pt st chicago power
pp april shot play buffalo pittsburgh
islander flame series lead first scorer
cup

Таблица 5 — 20newsgroups, примеры наиболее вероятных слов в темах. Слова
общей лексики выделены жирным. TARTM убирает подобные слова из тем в
отличие от LDA.

Алгоритм Разреженность Средняя ме­
ра Жаккара

PPMI LogLift Среднее расстоя­
ние до ближайшей
темы

sparse LDA 0.896 0.044 1.570 0.503 0.587
smooth LDA 0 0.043 1.509 0.479 0.632
PLSA 0.869 0.050 1.517 0.459 0.586
ARTM + 𝑅𝑒𝑔 0.898 0.027 1.710 0.590 0.661
TARTM 0.893 0.007 1.716 0.952 0.895
TARTM + 𝑅𝑒𝑔 0.929 0.003 1.788 1.020 0.953

Таблица 6 — Результаты эксперимента с алгоритмом быстрой векторизации в
TopicNet.

На Рисунках 5.1, 5.2 и 5.3 изображены основные результаты экспери­
ментов. Во-первых, они показывают, что самые разреженные модели были
ожидаемо получены разреживающим LDA. Тем не менее, TARTM даёт модели
сравнимой разреженности, отдельно этого не оптимизируя. Во-вторых, модели
TARTM демонстрируют наилучший результат по мере Жаккара (это можно
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method cv folds cv test 1 iter 2 iter 3 iter 4 iter 5 iter 6 iter
lda, 𝑇 = 10 0.684 0.687 0.59 0.672 0.697 0.704 0.704 0.703
tartm, 𝑇 = 10 0.701 0.697 0.689 0.683 0.68 0.678 0.677 0.677
lda, 𝑇 = 25 0.729 0.74 0.685 0.748 0.762 0.765 0.765 0.764
tartm, 𝑇 = 25 0.768 0.77 0.752 0.749 0.747 0.746 0.746 0.746

Таблица 7 — 20newsgroups, качество классификации тематик по матрице Θ.
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Рисунок 5.1 — Сравнение изменения метрик качества тематических моделей
на итерациях для LDA и TARTM на коллекции NIPS, |𝑇 | = 50.

объяснить тем, что TARTM и LDA по-разному обрабатывают частые, но неин­
формативные слова; Таблица 5 демонстрирует это на примере трёх сравнимых
тем).

В Таблице 6 приведены результаты, полученные через библиотеку
TopicNet. Они подтверждают ранее описанные результаты, а также показыва­



90

0 3 6 9 12 15 18 21 24 27 30
Номе1Ни3е1а4ии

500

1000

1500

2000

2500
Пе
1п
ле
к2
и6

0 3 6 9 12 15 18 21 24 27 30
Номе1Ни3е1а4ии

0о0

0о2

0о4

0о6

0о8

1о0

Ра
з1
еж
е.
.о
23
5

0 3 6 9 12 15 18 21 24 27 30
Номе1Ни3е1а4ии

0о0

0о1

0о2

0о3

0о4

С1
ед
.6
6Н
ме
1а
Н 
ак
ка
1а

0 3 6 9 12 15 18 21 24 27 30
Номе1Ни3е1а4ии

0о150

0о175

0о200

0о225

0о250

0о275

0о300

тт
и
р

жсьа ьяззСлНсПа ьжаньпНсПа СанСя РакдпНСанСя

Рисунок 5.2 — Сравнение изменения метрик качества тематических моделей
на итерациях для LDA и TARTM на коллекции Twitter, |𝑇 | = 50.

ют, что формула 5.3 эффективно комбинируется с другими регуляризаторами
ARTM, что позволяет дополнительно увеличивать метрики качества.

Основное улучшение наблюдается в метриках PPMI и LogLift. TARTM
превосходит все другие подходы на коллекциях NIPS и 20newsgroups, но уступа­
ет naive TARTM в наборе данных Twitter (однако TARTM сходится за меньшее
количество итераций). Мы предполагаем, что это в основном из-за небольшого
размера документа в коллекции Twitter, что делает оценку темы более вос­
приимчивой к выбросам. В целом, мы видим, что отбрасывание матрицы Θ

(наивным или строгим образом) дает более согласованные и интерпретируемые
тематические модели.

В Таблице 7 приведены результаты по качеству классификации. Видно,
что на кросс-валидации качество TARTM существенно выше, но на новых дан­
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Рисунок 5.3 — Сравнение изменения метрик качества тематических моделей
на итерациях для LDA и TARTM на коллекции 20Newsgroups, |𝑇 | = 25.

ных после нескольких итераций качество LDA становится выше, что означает,
что LDA может подстроиться под новые данные. Тем не менее, на первых ите­
рациях качество классификации у TARTM выше и оно сохраняется на всех
итерациях, это свидетельствует в пользу того, что TARTM не подстраиваются
под данные, а с первой же итерации показывают финальное качество клас­
сификации.

Основное объяснение полученных результатов следующее. PLSA и LDA
предсказывают появление слов в документах как с помощью матрицы Φ, так и
с помощью матрицы Θ, в то время как TARTM использует только матрицу Φ.
Это означает, что PLSA и LDA могут “скорректироовать” недостатки матрицы
Φ за счёт правильного подбора матрицы Θ, а TARTM может “исправлять” эти
недостаки только меняя саму Φ.
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Рисунок 5.4 — Сравнение перплексии оригинального онлайн алгоритма ARTM
и онлайн версии алгоритма TARTM.

Приведём простой пример, иллюстрирующий данные рассуждения. Допу­
стим, коллекция состоит из 7 слов и 6 документов:

medicine and spices
herbs and spices
herbs and spices and chicken
honey and spices
medicine and herbs
medicine and honey
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Как могла бы выглядеть “хорошая” тематическая модель из 4 тем, постро­
енная на этой коллекции? Неинформативное слово "and" может либо лежать в
какой-то единственной “фоновой” теме (∃𝑡0 : φ𝑤𝑡0 > 0,φ𝑤* = 0 для 𝑤 ="and"),
либо распределиться между несколькими “информативными” темами. Первый
вариант кажется более естественным. Из 1000 запусков PLSA и TARTM с разны­
ми начальными приближениями PLSA ни разу не выделил "and" в отдельную
тему, в то время как TARTM сделал это в 365 случаях. При этом матрица Θ,
полученная в TARTM содержала от 3 до 7 нулей, а в PLSA от 12 до 17. Это
показывает как PLSA с помощью нулей в матрице Θ “прячет” недостатки, вы­
званные шумами в виде наличия "and" во всех темах.

5.5 Заключение главы

В этой главе была предложена модификация оптимизационной зада­
чи (1.4), которая уменьшает количество оптимизируемых параметров и повыша­
ет уникальность и когерентность получаемых тем. Предложенный в Теореме 16
алгоритм не увеличивает вычислительную сложность или количество необ­
ходимых обучающих примеров. Также результаты о сходимости алгоритма
ARTM из главы 2 были перенесены на предложенный алгоритм (Теорема 17).
Эксперименты на реальных данных показывают, что предложенный алгоритм
действительно улучшает качество тем (раздел 5.4).

Важным аспектом предлагаемого алгоритма является его совместимость
с подходом ARTM, что позволяет включать произвольное количество допол­
нительных регуляризаторов, чтобы точно настроить решение поставленной
задачи.

Открытым вопросом остаётся адаптация предложенного подхода к муль­
тимодальным тематическим моделям [30], в которых имеется несколько мат­
риц Φ
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Заключение

Основные результаты работы заключаются в следующем.
1. Теорема о достаточных условиях сходимости алгоритма ARTM.
2. Теорема о достаточных условиях единственности стохастического мат­

ричного разложения.
3. Модификация алгоритма ARTM, ускоряющая сходимость итерацион­

ного процесса.
4. Метод разреживания тематической модели, не увеличивающий пер­

плексию получаемой модели.
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Список сокращений и условных обозначений

NLP Natural Language Processing
NLU Natural Language Understanding
PTM Probabilistic Topic Model
PLSA Probabilistic Latent Semantic Analysis
LDA Latent Dirichlet Allocation

ARTM Additive Regularization of Topic Models
EM Expectation Maximization

GEM Generalized Expectation Maximization
tSNE t-Distributed Stochastic Neighbor Embedding
OBD Optimal Brain Damage
BTM Biterm Topic Model

WNTM Word Network Topic Model
TARTM Thetaless ARTM
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