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Общая характеристика работы 

Актуальность темы. С развитием технологий глубокого обучения и увеличе-

нием вычислительных мощностей системы биометрической идентификации полу-

чили широкое практическое применение. Один из основных разделов данного направ-

ления – биометрия по лицу. Аутентификация по изображению лица постепенно вы-

тесняет физические ключи обеспечения доступа на закрытые объекты, используется 

вместо пароля для удаленного подтверждения операций в финансовых учреждениях 

и заменяет пин-код или отпечатки пальца для авторизации в мобильных телефонах. С 

широким внедрением технологии распознавания лиц возникла задача защиты систем 

от попыток взлома и подлога чужого биометрического шаблона. Модели распознава-

ния лиц проверяют только схожесть образца с биометрическим шаблоном и не могут 

оценить, зарегистрированный пользователь проходит контроль доступа или зло-

умышленник пытается обмануть систему. Самые распространенные попытки подлога 

осуществляются с помощью физических артефактов с изображением нужного чело-

века, таких как бумажные распечатки фотографий, записи с экрана мобильного 

устройства или силиконовые маски, повторяющие трехмерную геометрию лица 

жертвы. Чтобы обеспечить надежную работу систем идентификации, требуются ком-

плементарные подходы, проверяющие подлинность пользователя на изображении. 

Методы, решающие данную задачу, называются методами определения живости. 

Одни из первых алгоритмов определения живости были основаны на извлечении 

текстурно-частотных признаков изображения (Li: 2004; Maatta: 2011) с помощью дис-

кретного преобразования Фурье и локальных бинарных шаблонов, и последующей 

классификацией методом опорных векторов.   

Альтернативное семейство алгоритмов строилось на построении полезных при-

знаков по последовательности изображений лиц. В работе (Kim: 2013) изменяется фо-

кусное расстояние камеры в момент съемки и анализируется отличие размытых и чет-

ких областей изображения для поддельных и подлинных объектов. В работе (Bao: 

2007) считается карта оптического потока между соседними кадрами, на базе которой 

строится классификатор оценки подлинности. В ряд работ (Jee: 2006, Sun: 2006) рас-

сматривается моргание как одна из характеристик живости. 

Общей проблемой рассматриваемых методов является недостаточная для прак-

тического применения точность работы в неизвестных сценариях, что обусловлено 

ограниченностью доступных для обучения обучающих выборок. В отличие от задачи 

распознавания лиц, выборки для обучения алгоритмов определения живости могут 
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быть собраны только вручную в лабораториях с приглашенными участниками и, сле-

довательно, сильно ограничены в количестве и разнообразии. 

Однако, высокий спрос индустрии на решения определения живости стимулиро-

вал активное развитие исследований в данной области. В последние годы в открытом 

доступе появляется все больше соответственных обучающих выборок (Zhang: 2019; 

A. Liu: 2020; Y. Liu: 2020), что позволяет строить более устойчивые и точные алго-

ритмы. 

 

Цели и задачи диссертационной работы. 

В работе были поставлены следующие цели: 

1. Исследовать кооперативные методы определения живости для стационарных 

и мобильных устройств с высоким уровнем защиты от всех видов взлома. 

2. Разработать практически применимые методы определения живости для си-

стем контроля и управления доступом (СКУД) с защитой от самых распро-

страненных попыток взлома. 

3. Предложить алгоритм определения живости для мультимодальных данных. 

4. Предложить некооперативный метод определения живости для стационарных 

и мобильных устройств с защитой от неизвестных попыток взлома. 

 

Для достижения поставленных целей были решены следующие задачи: 

1. Разработка кооперативного метода определения живости для стационарных и 

мобильных устройств и анализ его работоспособности для различных типов 

атак. 

2. Разработка удобного в применении кооперативного метода защиты от наибо-

лее распространенных видов взлома. 

3. Сбор обучающей и тестовой выборки, построение алгоритмов генерации но-

вых данных для увеличения вариативности обучающей выборки. 

4. Создание практически применимого алгоритма определения живости, эксплу-

атирующего особенности сценария. 

5. Исследование полезных признаков модальностей глубины и ИК, разработка 

метода определения живости для мультимодальных данных. 

6. Разработка устойчивого к неизвестным видам атак алгоритма определения 

живости по видеопоследовательности для стационарных и мобильных 

устройств. 
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Научная новизна. В диссертации предложена концепция искусственных мо-

дальностей как промежуточного представления данных в полезном признаковом про-

странстве, на основе которой предложены новые практически применимые алго-

ритмы определения живости для разных сценариев.  Разработан новый кооператив-

ный метод определения живости для мобильных и стационарных устройств, защища-

ющий от известных видов атак. Предложен новый высокопроизводительный метод 

определения живости для систем контроля и управления доступом. Предложен мас-

штабируемый метод определения живости по видеопоследовательности. Также пред-

ложена новая архитектура нейронной сети для решения задачи определения живости 

по мультимодальным данным, основанная на тесной связи промежуточных признаков 

разных модальностей. 

 

Научная значимость работы заключается в том, что предложенные методы по-

казывают более высокую точность и производительность для разных сценариев при-

менения в сравнении с существующими методами. В рамках разработанных методов 

предлагаются новые архитектуры нейронных сетей, процедуры генерации данных и 

искусственные модальности, которые могут быть полезны не только для решения за-

дачи определения подлинности, но и для других задач компьютерного зрения.  

 

Практическая значимость результатов диссертации заключается в том, что раз-

работанные алгоритмы используются в основе продуктов, которые были внедрены в 

многие компании по всему миру. Программная реализация части предложенных ме-

тодов выложена в открытый доступ, что дает возможность другим исследовательским 

группам использовать наработки в своих целях. Выложенные в открытый доступ ал-

горитмы показали лучший в мире результат на двух самых больших выборках по 

определению живости изображений лиц. 

 

Методы исследования. Для большей части предложенных алгоритмов широко 

применяется аппарат глубокого обучения нейронных сетей. Для предобработки и под-

готовки данных к алгоритмам определения подлинности использовались модели де-

тектирования лица и его ключевых точек (Zhang: 2017) и извлечения оптического по-

тока (Sun: 2018). Для сбора данных и демонстрации результатов применялись методы 

разработки клиенто-серверных мобильных приложений. 
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Основные положения, выносимые на защиту: 

1. Кооперативный метод определения живости для работы в кооперативных сце-

нариях для мобильных и стационарных устройств. 

2. Метод определения живости по движению головы для мобильного сценария. 

3. Метод определения живости для систем контроля и управления доступом, 

включающий в себя три независимых алгоритма: по одному изображению, по 

картам границ и по динамическим временным признакам лица. 

4. Алгоритм определения живости по мультимодальным данным.  

5. Алгоритм определения живости по видеопоследовательности для мобильных и 

стационарных устройств. 

 

Степень достоверности и апробация работы. Достоверность результатов под-

тверждена экспериментальной проверкой, в том числе сторонними организациями; 

публикациями результатов исследования в рецензируемых научных изданиях и кон-

ференциях по машинному обучению. Результаты работы докладывались и обсужда-

лись на следующих научных конференциях. 

 

1. “Recognizing Multi-Modal Face Spoofing with Face Recognition Networks”, Меж-

дународная конференция “Computer Vision and Pattern Recognition Work-

shops”. – Long Beach, CA. - 2019. 

2. “Creating Artificial Modalities to Solve RGB Liveness”, Международная конфе-

ренция “Computer Vision and Pattern Recognition Workshops”. – Virtual. –  2020. 

 

Публикации по теме диссертации. Основные результаты по теме диссертации 

изложены в 6 печатных изданиях, рекомендованных ВАК (включенных в междуна-

родную систему цитирования Scopus). 

Личный вклад. Все результаты, выносимые на защиту, получены автором лично 

при научном руководстве д.ф.-м.н. Цуркова В. И. Разработка алгоритмов предобра-

ботки данных и проведение экспериментов, описанных в главах 4 и 5, проводились 

совместно с Паркиным А.Н. [2], вклад автора был решающим.  

Структура и объем работы. Диссертация состоит из оглавления, введения, пяти 

разделов, заключения и списка литературы. Основной текст занимает 113 страниц, 

включая 32 иллюстрации и 14 таблиц. Библиография включает 77 наименований. 
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Содержание работы 

 

Во введении обоснована актуальность диссертационной работы, сформулиро-

ваны цели и методы исследования, поставлены основные задачи, обоснована научная 

новизна, показаны теоретическая и практическая значимость полученных результа-

тов. 

В первой главе приводится формальная постановка задачи, вводятся основные 

термины и определения. Описывается процедура получения оптимального алгоритма 

по заданной выборке и формулируется понятие искусственной модальности. 

Определение 1. Пусть 𝕏 – множество изображений, на которых присутствует центри-

рованное лицо человека. Треком длины 𝑇𝑁 назовем последовательность изображений 

𝑇 = {𝑋𝑗}, 𝑗 = 1, … , 𝑇𝑁 таких,  что 𝑋𝑗 ∈  𝕏. 

Определение 2. Будем рассматривать живость трека 𝑇 как бинарную переменную 

𝑙 ∈ 𝕃, равную 1, если на записи живой человек, и 0, если перед камерой демонстриру-

ется его “копия” – распечатанная фотография, экран электронного устройства с запи-

сью лица этого человека, трехмерная силиконовая маска и т.д.  

Определение 3. Моделью алгоритмов определения живости назовем параметриче-

ское семейство отображений {𝐟 (𝑇, 𝐰)} , где 𝐟 (𝑇, 𝐰)  – в общем случае не дифферен-

цируемая по параметрам 𝐰 ∈ 𝕎 функция из множества треков в множество меток 

живости: 

𝐟 ∶  𝕏N ×  𝕎 →  𝕃. 

Пусть дана обучающая выборка  

                                               𝓓 = {(𝑇𝑖 , 𝑙𝑖)}, 𝑖 = 1, . . . , 𝑚,                                                  (1) 

где 𝑇𝑖 = {𝑋𝑗}, 𝑗 = 1, … , 𝑁𝑇𝑖
,   𝑙𝑖 ∈ {0,1} – множество треков и соответствующих им ме-

ток живости. 

Алгоритм определения живости – отображение из множества треков в множе-

ство меток живости, чьи параметры оптимизированы по заданной обучающей вы-

борке.  

Метод определения подлинности изображений лиц – получение алгоритма 

определения живости для произвольной обучающей выборки. 
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Определение 4. Оценкой живости для трека 𝑇𝑖 по некоторому алгоритму будем счи-

тать предсказание 𝑠𝑖 = 𝐟(𝑇𝑖 , 𝐰) ∈ [0,1], т.е. вероятность принадлежности трека классу 

1.  

Задача поиска оптимального алгоритма сводится к минимизации эмпирического 

риска по обучающей выборке 𝓓:   

                                                
1

𝑚
∑ ℒ𝑚

1 (𝐟(𝑇𝑖 , 𝐰),  𝑙𝑖) → min,                                                   (2) 

где ℒ – некоторая функция потерь. 

 

В разделе 1.2 вводится классификация сценариев применения алгоритмов опре-

деления живости 𝑆, кооперативности поведения пользователя 𝐼 и модальностей изоб-

ражений 𝑀. 

Раздел 1.3 посвящен определению устойчивости алгоритмов определения живо-

сти, вводится понятие устойчивости обучения и определение внутренних и внешних 

условий распределения данных. 

В разделе 1.4 описываются виды фальсификаций {𝑷𝑨}, вводится классификация 

атак по уровням сложности.   

Раздел 1.5 содержит процедуру получения оптимального алгоритма по заданной 

выборке. 

В начале, если возможно, генерируются дополнительные данные, которые разно-

образят обучающую выборку. После чего выборка фиксируется и разбивается на под-

выборки для кросс-валидации. Разбиение заданной выборки на обучающую и валида-

ционную по подгруппам эмулирует существующее разделение данных на заданную и 

контрольную выборки: 

                𝓓 =  𝓓𝐭𝐫𝐚𝐢𝐧 ∪ 𝓓𝐯𝐚𝐥 ~                                                          (3) 

𝑝(𝑇|𝛉𝟏𝟏, 𝑆, 𝐼, 𝑀)𝑝(𝑇|{𝑷𝑨}𝟏𝟏) +  𝑝(𝑇|𝛉𝟏𝟐, 𝑆, 𝐼, 𝑀)𝑝(𝑇|{𝑷𝑨}𝟏𝟐) 

 

Далее выбирается семейство моделей 𝐅 = {𝐟 (𝑇, 𝐰)}, среди которых будет вы-

брана лучшая для заданной выборки. Рассматриваются преимущественно рассматри-

ваются сверточные нейронные сети, хорошо работающие для задач компьютерного 

зрения.  

Сначала определяются модели 𝐅̂, удовлетворяющие заданному бюджету времени 

работы Τ. Пусть 𝜏𝐟  – время работы прямого прохода нейронной сети для одного трека 

𝐟 (𝑇𝑖 , 𝐰).  Тогда множество рассматриваемых моделей: 
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                                 𝐅̂ =  {𝐟(𝑇, 𝐰) ∀ 𝐟 ∈ 𝐅: 𝜏𝐟 ≤  Τ}.                                                 

Каждая из рассматриваемых архитектур обучается с несколькими базовыми 

наборами гиперпараметров 𝜸,  после чего выбирается лучшая по кросс-валидации ар-

хитектура: 

𝐟∗ = arg min
𝐟∈𝑭̂,𝜸

ℒval(𝑙 , 𝐟(𝑇, 𝐰 | 𝜸 )).                                               (4) 

Поочередно меняя гиперпараметры от допустимого минимального до макси-

мального, обучается 20-30 моделей 𝐟∗ и потом из них выбирается лучшая по точности 

на валидационной выборке: 

𝐰∗ = arg min
𝐰,𝜸

ℒval(𝑙 , 𝐟∗(𝑇, 𝐰 | 𝜸 )).                                            (5) 

Полученный таким образом алгоритм 𝐟∗(𝑇, 𝐰∗) назовем выбранным по проце-

дуре.  В дальнейшем, если не указано обратное, алгоритмы определения живости стро-

ятся по описанной выше процедуре. 

 

В разделе 1.6 формулируется понятие меры качества 𝑄 и рассматривается зави-

симость качества от размера обучающей выборки. Согласно (Figureoa 2012; Cho: 2015; 

Lei: 2019), зависимость качества алгоритма 𝐟 от размера обучающей выборки подчи-

няется экспоненциальному закону: 

                                                 𝑄(𝐟, 𝓓𝐭𝐞𝐬𝐭) = 𝑎|𝓓|−𝑏 + 𝑐,                                                           (6) 

 

Определение 5.  Параметр 𝑐 из (6) назовем пределом потенциала алгоритма опреде-

ления живости 𝐟 на выборке 𝓓  по контрольной выборке 𝓓𝐭𝐞𝐬𝐭.  

Предел потенциала показывает максимальное качество, которое можно получить 

на неограниченной по размеру обучающей выборке. В идеальном случае 𝑐 = 0 при 

|𝓓| → ∞, но если задано ограничение сверху на количество параметров нейронной 

сети либо обучающая выборка покрывает не все множество внутренних условий 𝛉,  

достичь 0 не всегда возможно (рис. 1.B). 

Определение 6.  Параметр 𝑏 из (6) назовем степенью эффективности алгоритма 

определения живости 𝐟 на выборке 𝓓  по контрольной выборке 𝓓𝐭𝐞𝐬𝐭. 

Степень эффективности чаще всего принимает значения из диапазона [0, 1]. Чем 

выше степень эффективности, тем меньше данных нужно алгоритму, чтобы достичь 

хорошего значения качества (рис 1.A). 
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Рис 1. Зависимость меры качества от размера обучающей выборки для разных 

значений параметров 𝑏 (слева) и 𝑐 (справа). 

 

В разделе 1.7 формулируется понятие искусственной модальности и рассматри-

ваются ее свойства. 

Обычное цветное изображение лица 𝑋 выбирается из множества изображений 

лиц 𝕏, при этом 

                                                 𝑋 ∈  𝕏 ⊂  ℤ[0,255]
3𝑊𝐻 ,                                                             

где ℤ[0,255]
3WH  – пространство матриц размера 3 × 𝑊 × 𝐻, состоящих из интенсивностей 

пикселей с значениями от 0 до 255.  Аналогично, для трека длины 𝑁 

                                                𝑇 ∈  𝕏N ⊂  ℤ[0,255]
3NWH ,                                                             

𝕏N – богатое пространство, объекты которого содержат множество мелких деталей, в 

том числе черты лица человека и элементы заднего плана. Поэтому, при обучении ал-

горитма определения живости на выборке небольшого размера либо собранной при 

очень ограниченных внутренних условиях 𝛉, возможно переобучение на не имеющие 

отношения к живости признаки. 

Рассмотрим некоторую функцию 𝜙: 𝕏𝑁 →  𝕄 , где 𝕄 – пространство изображе-

ний размера 𝐶 × 𝑊 × 𝐻, т.е. 

                                                     𝜙(𝑇) ∈  𝕄 ⊂ ℝ𝐶𝑊𝐻                                                         (7) 
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Пусть заданы обучающая и контрольная выборки обычных цветных изображе-

ний 𝓓 и 𝓓𝐭𝐞𝐬𝐭, а также процедура выбора алгоритма 𝐟∗(𝓓). Переведем выборки в про-

странство 𝕄, т.е. 

                                                𝓓̃ = {(𝜙(𝑇𝑖), 𝑙𝑖) ∀ (𝑇𝑖 , 𝑙𝑖) ∈  𝓓}                                         

𝓓̃𝒕𝒆𝒔𝒕 = {(𝜙(𝑇𝑖), 𝑙𝑖) ∀  (𝑇𝑖 , 𝑙𝑖) ∈ 𝓓𝐭𝐞𝐬𝐭} 

 

 Построим алгоритмы 𝐟∗(𝓓) и  𝐟∗(𝓓̃)  по процедуре и посчитаем степени эффек-

тивности алгоритмов 𝑏̃ и 𝑏 по контрольным выборкам 𝓓𝐭𝐞𝐬𝐭  и 𝓓̃𝐭𝐞𝐬𝐭 соответственно. 

Определение 7. Пространство 𝕄 назовем искусственной модальностью, а функцию 

𝜙  – функцией преобразования модальности, если 𝑏̃ > 𝑏. 

Если размер выборки небольшой, то алгоритм, построенный на изображениях ис-

кусственной модальности, будет работать лучше на контрольной выборке, чем алго-

ритм, обученный на оригинальных изображениях. Для больших и разнообразных вы-

борок предел потенциала алгоритмов на обычных изображениях выше, чем на изоб-

ражениях из искусственной модальности, но в прикладных задачах собрать выборку 

такого размера чаще всего не представляется возможным.  

 

Вторая глава посвящена кооперативным методам определения живости для мо-

бильных и стационарных сценариев, в условиях отсутствия или малого количества 

обучающих данных. 

В разделе 2.1 предлагается атомарный алгоритм, который состоит из комбина-

ции простых кооперативных проверок. 

Назовем алгоритмом атрибута некоторый алгоритм 𝒦 компьютерного зрения, 

который по заданному кадру 𝑋𝑖 возвращает некоторое действительное число, вектор 

или метку класса 𝑘𝑖: 

                                                           𝒦(𝑋𝑖) = 𝑘𝑖                                                                 (8) 

         

Назовем атомом 𝒜 алгоритм определения живости , который по последователь-

ности {𝑘𝑖} и фиксированным гиперпараметрам 𝜸 определяет бинарный ответ живости 

 𝑙, при этом  

                                                      𝒜({𝒦(𝑋𝑖)}, 𝜸) = 𝑙,                                                         (9) 
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Функции агрегации для последовательности {𝑘𝑖}, 𝑖 = 1, … , 𝑛: 

1. 𝛙𝐦𝐚𝐱({𝑘𝑖}) = max( {𝑘𝑖}) 

2. 𝛙𝐚𝐯𝐠({𝑘𝑖}) =
1

𝑛
∑ 𝑘𝑖

𝑛
𝑖    

3. 𝛙𝐦𝐚𝐱/𝐚𝐯𝐠
>  ({𝑘𝑖}, 𝑥) = [𝛙𝐦𝐚𝐱/𝐚𝐯𝐠({𝑘𝑖}) > 𝑥] 

4. 𝛙𝐦𝐚𝐱/𝐚𝐯𝐠
≤ ({𝑘𝑖}, 𝑥) = [𝛙𝐦𝐚𝐱/𝐚𝐯𝐠({𝑘𝑖}) ≤ 𝑥] 

где []  – оператор, равный 1, если условие в скобках выполняется и 0 в противном 

случае. Для оценки бинарного действия разделим исходную последовательность на 

две части: 

                                                     𝐾1 = {𝑘𝑖}, 𝑖 = 1, … , ⌈𝑑𝑁⌉,                                              

𝐾2 = {𝑘𝑖}, 𝑖 = ⌈𝑑𝑁⌉ + 1, … , 𝑁, 

 где ⌈ ⌉ – целая часть числа, 𝑑 – гиперпараметр, показывающий, какую долю 

трека отнести к первой части. Вводятся следующие виды атомов: 

1. По улыбке 

𝒜({𝑘𝑖}) =  𝛙𝐚𝐯𝐠
≤ (𝐾1, 𝑡) ∗ 𝛙𝐚𝐯𝐠

> (𝐾2, 𝑡)  

2. По открытому рту 

                                         𝒜({𝑘𝑖}) =  𝛙𝐚𝐯𝐠
≤ (𝐾1, 𝑡) ∗ 𝛙𝐚𝐯𝐠

> (𝐾2, 𝑡)  

3. По поднятым бровям 

𝒜({𝑘𝑖}) =  𝛙𝐦𝐚𝐱
> (𝐾2 − 𝛙𝐚𝐯𝐠(𝐾1), 𝑡) 

        4–7.  По повороту головы 

𝒜влево({𝑘𝑖}) =  𝛙𝐦𝐚𝐱
> (𝐾2

𝑦𝑎𝑤
− 𝛙𝐚𝐯𝐠(𝐾1

𝑦𝑎𝑤
), 𝑡) 

𝒜вправо({𝑘𝑖}) =  𝛙𝐦𝐚𝐱
>  (𝛙𝐚𝐯𝐠(𝐾1

𝑦𝑎𝑤
) − 𝐾2

𝑦𝑎𝑤
, 𝑡)  

𝒜вниз({𝑘𝑖}) =  𝛙𝐦𝐚𝐱
> (𝐾2

𝑝𝑖𝑡𝑐ℎ
− 𝛙𝐚𝐯𝐠(𝐾1

𝑝𝑖𝑡𝑐ℎ
), 𝑡) 

𝒜вверх({𝑘𝑖}) =  𝛙𝐦𝐚𝐱
>  (𝛙𝐚𝐯𝐠(𝐾1

𝑝𝑖𝑡𝑐ℎ
) − 𝐾2

𝑝𝑖𝑡𝑐ℎ
, 𝑡)  

8. По морганию 

∀𝑑 = 1, … , 𝑁 − 2𝑛𝑜 − 𝑛𝑐: K1, K2, 𝐾3 =  {𝑘𝑖}, {𝑘𝑗}, {𝑘𝑣}, 

 𝑖 = 𝑑, … , 𝑑 + 𝑛𝑜, 𝑗 = 𝑑 + 𝑛𝑜 + 1, 𝑑 + 𝑛𝑜 + 𝑛𝑐 , 

𝑣 = 𝑑 + 𝑛𝑜 + 𝑛𝑐 + 1, … , 𝑑 + 2𝑛𝑜 + 𝑛𝑐 

𝒜({𝑘𝑖}) = 𝛙𝐚𝐯𝐠
> (𝐾1, 1 − 𝑡) ∗  𝛙𝐚𝐯𝐠

≤ (𝐾2, 𝑡) ∗ 𝛙𝐚𝐯𝐠
> (𝐾3, 1 − 𝑡)  

где 𝑡,  𝑛𝑜,  𝑛𝑐 – гиперпараметры алгоритмов. 

 

 Схема предлагаемого мультиатомарного алгоритма показана на рис 2. Агрега-

ция отдельных атомов в связанную последовательность и расставление компонент в 
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произвольном порядке существенно улучшают защиту от различных видов атак. Так, 

отдельные атомы не обеспечивают защиту от динамических фальсификаций, но слу-

чайная последовательность, подкрепленная требованием непрерывности, такую за-

щиту обеспечить может. 

_________________________________________________________________________ 

Вход: набор атомов {𝒜𝑖}, 𝑖 = 1, … , 𝑛; количество проверок 𝑚. 

Выход: 𝑙 

1: выбрать 𝑖1, 𝑖2, … , 𝑖𝑚 случайных чисел из 1, … , 𝑛. 

2: запросить у пользователя треки по действиям {𝒜𝑖𝑗
} , 𝑗 = 1, … , 𝑚 ∶ {𝑇𝑖𝑗

} 

3:  𝑎𝑖𝑗
=  𝒜𝑖𝑗

(𝒦𝑖𝑗
(𝑇𝑖𝑗

)) 

4:  𝑙 = ∏ 𝑎𝑖𝑗

𝑚
𝑗=1  

_________________________________________________________________________ 

Рис 2. Мультиатомарный алгоритм определения живости. 

 

В разделах 2.2, 2.3 рассматривается кооперативный алгоритм определения жи-

вости, требующий меньшей вовлеченности пользователя по сравнению с мультиато-

марным алгоритмом. Вводится оптический поток как искусственная модальность, по 

определению выделяющая полезные признаки для оценки подлинности (рис 3). 

 

   
Рис 3. Пример карт оптического потока для реального и поддельного треков. 

 

Для сбора данных реализован программный комплекс в виде приложения на те-

лефон, собирающий данные пользователей. На собранных данных проведена проце-

дура получения алгоритма определения живости, описанная в первой главе.  

 Алгоритм определения живости, обученный на картах оптического потока, ра-

ботает значительно лучше алгоритма по обычным изображениям (рис 4). 

В разделе 2.4 приведены заключения к главе. 
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Рис 4. Сравнение меры качества алгоритмов, обученных на модальности опти-

ческого потока и на исходных изображениях. 

 

В третьей главе предлагается метод определения подлинности для систем кон-

троля и управления доступом (СКУД). Собирается обучающая и тестовые выборки, а 

также описываются методы синтеза новых данных, эффективно увеличивающие раз-

мер и вариативность выборки для обучения. Предлагаются три алгоритма определе-

ния живости в описанном сценарии. Все алгоритмы оптимизированы под скорость 

работы для возможности внедрения в промышленные объекты. Первый алгоритм ба-

зируется на идее генерации синтетических данных, эмулирующих атаку масками.  

Второй алгоритм основывается на идее различия границ на подлинных и поддельных 

изображениях. Метод устойчив к полноразмерным и экранным видам атак, но пасует 

перед вырезанными масками. Метод хорошо работает на этом типе атак, но неустой-

чив к полноразмерным артефактам. Третий метод эксплуатирует идею динамиче-

ского изменения лицевой мимики и углов наклона головы при подходе человека к 

турникету. Ансамбль из трех алгоритмов показывает высокую точность на целевой 

выборке. 

 

Рис. 5. ROC-кривая предложенных алгоритмов на тестовой выборке СКУД. 
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В разделе 3.1 описывается сбор обучающей выборки. В разделе 3.2 строится ал-

горитм определения живости по обычным изображениям, предлагается быстрая архи-

тектура нейронной сети SimpleNet, показанная на рис. 6. 

 

 

 Рис. 6. Архитектура SimpleNet.  

 

Проверяется, что качество алгоритма зависит от размера обучающей выборки 

(рис. 7).   

 

 
 

Рис. 7. Зависимость значения функции потерь на контрольной выборке от размера 

обучающей выборки. 

Далее, в разделе 3.3, предлагается использование искусственной модальности 

границ, так как согласно рис. 7, качество нейронной сети по исходным изображениям 

не выходит на плато при полном размере выборки. Обучение алгоритма по картам 

границ аналогично обучению по обычному изображению. Семейство моделей 
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 𝐟𝑋(𝜙(𝑋𝑖), 𝐰), где 𝜙  – функция преобразования искусственной модальности, выбира-

ется исходя из ограничений по времени работы – рассматривается SimpleNet,. Резуль-

тат на треках считается, как усреднение результатов по кадрам:  

𝐟(𝑇, 𝐰) = 𝛙𝐚𝐯𝐠({𝐟𝑋(𝜙(𝑋𝑖), 𝐰)}).  

В разделе 3.4 предлагается альтернативный подход, оценивающий весь трек це-

ликом. Предлагается архитектура агрегации динамических признаков (рис. 8). Идея 

алгоритма состоит в том, что базовая сеть SimpleNet учит дескриптор, совпадающий 

для лиц с одинаковой мимикой/поворотом головы и различный для лиц с изменением 

мимики. Это свойство потом ловится сверточными слоями, которые смотрят на де-

скрипторы всех кадров одновременно и в конце обрабатывается полносвязным для 

перевода в одно число. 

 

 

Рис. 8. Архитектура нейронной сети определения живости по динамике трека. ⨁  –  

оператор конкатенации. 

 

В разделе 3.5 содержатся выводы к главе и демонстрируется итоговую точность 

ансамбля алгоритмов на целевой выборке (рис. 5). 

 

В четвертой главе предлагается алгоритм, работающий с мультимодальными 

изображениями (RGB, ИК, Глубина). Представляется универсальное улучшение 

мультимодальных архитектур нейронных сетей (рис. 6), позволяющее лучше агреги-

ровать признаки на всех уровнях детализации. Эксперименты показали, что новые мо-

дальности добавляют полезные признаки и улучшают точность на целевой метрике. 
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Предложенное решение заняло первое место на самом крупном на момент разработки 

алгоритма мультимодальном датасете CASIA-SURF (раздел 4.2) в 2019 году.  

  

 

 Рис. 9. Предлагаемая архитектура.  GAP -  общий слой усреднения; ⨁ - оператор 

объединения; + - оператор почленного суммирования. 

 

Предлагаются три направления работы: данные, архитектура нейронной сети и 

инициализация весов (разделы 4.3, 4.4). Комплексный подход выявил существенные 

улучшения точности по сравнению с базовым методом. Тщательный выбор обучаю-

щей подвыборки по типам атак позволяет модели лучше противостоять незнакомым 

попыткам взлома. Предлагается новая архитектура сети с модулем мультиуровневе-

вой агрегации признаков, что улучшает обмен полезными признаками между подсе-

тями разных модальностей как на поверхностных, так и на глубоких слоях модели. 

Используется метод переноса признаков с обученных моделей распознавания лиц, что 

улучшило стабильность модели и увеличило точность на целевой выборке.  

Результаты экспериментов и показатели точности на контрольной выборке пока-

заны в разделе 4.5. 

Когда есть возможность установить в систему вместо обычных камер специали-

зированные, например, с сенсорами ИК и глубины, сделать надежный алгоритм опре-

деления живости становится в разы проще, так как дополнительные модальности 

обеспечивают модель очень информативными признаками Карта глубины позволяет 
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показывает трехмерную структуру демонстрируемого объекта, тем самым значи-

тельно упрощая отсечение двумерных артефактов, а инфракрасный диапазон помо-

гает с трехмерными масками, так как изображение глаз у живых людей в ИК отлича-

ется от статических изображений глаз.  

В разделе 4.6 анализируется влияние каждой из модальностей на итоговую меру 

каества. Табл. 1 показывает, что наибольший вклад вносит глубина, но лучшее реше-

ние достигается при использовании всех трех модальностей. 

В разделе 4.7 приводятся выводы к главе. 

 

Таблица 1.  Влияние дополнительных модальностей на целевую метрику. 

Модальность TPR в точке FPR = 

𝟏𝟎−𝟐 𝟏𝟎−𝟑 𝟏𝟎−𝟒 

RGB 
71.74 22.34 7.85 

ИК 
91.82 72.25 57.41 

Глубина 
100.00 99.77 98.40 

RGB+ИК+Глубина 
100.00 100.00 99.87 

 

В пятой главе предлагается метод решения задачи определения живости для ви-

деопоследовательности на заданной обучающей выборке. Показывается, что аккурат-

ный выбор искусственных модальностей, как ранк-пулинг или оптический поток, 

уменьшают риск переобучения и повышают итоговую точность модели по сравнению 

с наивным использованием исходных изображений.  

Также предлагается быстрая и масштабируемая архитектура нейронной сети (рис 

7), применимая в прикладных задачах. Наконец, показывается простой трюк по обо-

гащению поддельных данных, что всегда является узким местом для подавляющего 

большинства задач определения живости. В результате, предложенное решение за-

няло первое место в соревновании Chalearn Singlemodal Face Anti-spoofing Attack De-

tection на конференции CVPR2020 по выборке CASIA-SURF CeFa (раздел 5.1). 
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Рис. 10. Предлагаемая архитектура для обработки видеопоследовательности. 16 рав-

номерно выбранных изображений из трека используются для получения четырех мо-

дальностей: 2 ранк-пулинга и 2 оптических потока. Модальности обрабатываются раз-

личными SimpleNet, после чего агрегируются полносвязным слоем.   

В разделе 5.2 описывается предлагаемый алгоритм.  Модальность ранк-пулинга 

кодирует видеопоследовательность в вектор признаков с помощью процесса оптими-

зации, который может быть сформулирован как метод опорных признаков для задачи 

регрессии SVR (Fernando: 2017). После решения оптимизационной задачи вектор при-

знаков можно визуализировать, получая динамическое изображение, которое отобра-

жает временную эволюцию покадровых признаков. В данной задаче выбираются ги-

перпараметры 𝐶 = 1 и 𝐶 = 1000, т.е. низкий и высокий уровень регуляризации для 

SVR и получаются два визуально различных представления (рис. 11). 𝐶 = 1 сохраняет 

больше информации об объекте, в то время как 𝐶 = 1000 показывает изменение черт 

лица со временем. 

 

 
Рис. 11. Ранг-пулинг для разных значений параметра регуляризации С. 
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Помимо предоставленных модальностей, для увеличения вариативности вы-

борки используется аугментация последовательности – преобразование реальных 

последовательностей в синтетические. Для этого в процессе обучения выбирается 

один кадр из реального трека и дублируется нужное число раз, после все кадры новой 

последовательности индивидуально аугментируются поворотами, сдвигом и цветовой 

коррекцией. Новое семейство поддельных треков больше похоже на распечатанные 

атаки, присутствующие в тестовой выборке. 

В разделе 5.3 предлагается новая архитектура, показанная на рис. 10. Использу-

емые базовые нейросети SimpleNet достаточно глубокие для извлечения полезных 

признаков из изображений модальностей, но достаточно узкие, чтобы избежать пере-

обучения. Каждый из четырех полученных тензоров обрабатывается отдельной сетью 

SimpleNet, которые возвращают дескрипторы размера 1 × 𝑑. Дескрипторы конкатени-

руются, после чего к полученной 4 × 𝑑 матрице применяются операторы Max, Min и 

Avg пулинга, получая 3 × 𝑑 матрицу. Обработка завершается полносвязным слоем с 

сигмоидой. 

 

Таблица 2.  Результаты на тестовой выборке CASIA-SURF CeFa. 

Метод APCER, % BPCER, % ACER, % 

Базовый 23.83  ± 1.70 25.20 ± 22.00 23.42 ± 12.14 

Ранк-пулинг(C=1000) 14.11 ± 13.52 11.25 ± 12.75 12.68 ± 4.39 

+аугментация последова-

тельности 

0.68 ± 0.21 13.91 ± 10.03 7.30 ± 5.00 

+Ранк-пулинг(C=1) 1.07 ± 0.53 13.00 ± 10.75 7.03 ± 5.20 

+Оптический поток 0.11 ± 0.11 5.33 ± 2.37 2.72 ± 1.21 

 

 

Раздел 5.4 посвящен экспериментам. Изменение точности на контрольной вы-

борке от введения искусственных модальностей и аугментации последовательности, 

и итоговый результат показаны в табл. 2. В разделе 5.5 описаны выводы к главе. 
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В заключении описаны основные результаты диссертационной работы. 

1. Предложены кооперативные методы определения подлинности, основанные 

на интерактивном взаимодействии с пользователем. Представлен атомарный 

алгоритм, построенный без обучающей выборки, но неудобный для пользова-

теля. Показаны улучшенные алгоритмы, требующие меньшего уровня коопе-

ративности, основанные на оптическом потоке. 

2. Рассмотрена задача определения подлинности для систем контроля и управ-

ления доступом. Предложены три алгоритма определения живости в описан-

ном сценарии. Все алгоритмы оптимизированы под скорость работы для воз-

можности внедрения в промышленные объекты. 

3. Собраны и обработаны тестовые и обучающие данные для сценария СКУД. 

Описаны методы синтеза новых данных, эффективно увеличивающие размер 

и вариативность выборки для обучения. 

4. Предложен алгоритм по различию контуров подлинных и поддельных изоб-

ражениях. Исследована идея временной зависимости изображений лиц на 

треке, предложен алгоритм, эксплуатирующий различия в динамическом по-

ведении реальных и поддельных примеров. 

5. Разработан алгоритм, работающий с мультимодальными изображениями. 

Предложено универсальное улучшение мультимодальных архитектур 

нейронных сетей, позволяющее лучше агрегировать признаки на всех уровнях 

детализации. Получен лучший результат по итогам открытого конкурса на це-

левой выборке. 

6. Предложен алгоритм определения подлинности для мобильных и настольных 

устройств по видеопоследовательности. Предложена масштабируемая архи-

тектура на основе использования искусственных модальностей. Алгоритм 

продемонстрировал лучший результат по итогам открытого конкурса на це-

левой выборке. 
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