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Введение 

Актуальность темы. С развитием технологий глубокого обучения и увеличе-

нием вычислительных мощностей системы биометрической идентификации полу-

чили широкое практическое применение. Один из основных разделов данного направ-

ления – биометрия по лицу. Аутентификация по изображению лица постепенно вы-

тесняет физические ключи обеспечения доступа на закрытые объекты, используется 

вместо пароля для удаленного подтверждения операций в финансовых учреждениях 

и заменяет пин-код или отпечатки пальца для авторизации в мобильных телефонах. 

По оценкам аналитического агентства Global Industry, объем рынка систем распозна-

вания лиц составит $7.2 млрд. в 2020 году, а к 2027 году увеличится более чем в 3 раза 

– до $22.7 млрд [62]. С широким внедрением технологии распознавания лиц возникла 

задача защиты систем от попыток взлома и подлога чужого биометрического шаб-

лона. Модели распознавания лиц проверяют только схожесть образца с биометриче-

ским шаблоном и не могут оценить, зарегистрированный пользователь проходит кон-

троль доступа или злоумышленник пытается обмануть систему. Самые распростра-

ненные попытки подлога осуществляются с помощью физических артефактов с изоб-

ражением нужного человека, таких как бумажные распечатки фотографий, записи с 

экрана мобильного устройства или силиконовые маски, повторяющие трехмерную 

геометрию лица жертвы. Чтобы обеспечить надежную работу систем идентификации, 

требуются комплементарные подходы, проверяющие подлинность пользователя на 

изображении. Методы, решающие данную задачу, называются методами определения 

живости. 

Современные системы биометрии по изображению лица уже превосходят спо-

собности человека в распознавании им других людей [18]. Значительная часть такого 

успеха обусловлена наличием больших размеченных выборок [19, 20], которые до-

вольно легко собрать из Интернета, так как фотографии лиц являются наиболее рас-
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пространенным видом изображений. В отличие от задачи распознавания лиц, изобра-

жения попыток подлога для обучения систем определения живости могут быть со-

браны только вручную, так как таких изображений в свободном доступе нет. Такие 

данные собираются исследовательскими группами в лабораториях с приглашенными 

участниками [21,22] и, следовательно, сильно ограничены в количестве и разнообра-

зии, что нивелирует преимущества моделей глубокого обучения, которые хорошо ра-

ботают на больших по объему выборках. 

С другой стороны, для определения живости можно использовать не только 

обычные камеры, но и специальные сенсоры, предоставляющие дополнительные мо-

дальности для анализа. Эти модальности добавляют дополнительную информацию и 

могут повысить точность определения живости. Например, инфракрасная (ИК) ка-

мера нечувствительна к экранам электронных устройств и автоматически защищает 

от возможных подлогов такого рода. Камера глубины позволяет получить трехмерное 

изображение объекта, делая обнаружение любых плоских (отличающихся от формы 

лица) подделок проще. 

Высокий спрос индустрии на решения определения живости стимулировал ак-

тивное развитие исследований в данной области. В последние годы в открытом до-

ступе появляется все больше соответственных обучающих выборок. Но, на текущий 

момент, существующие решения не удовлетворяют требованиям промышленных си-

стем по скорости и точности работы, оставляя широкое поле для исследований.  Кроме 

этого, алгоритмы, обученные на конкретных выборках, показывают слабые резуль-

таты на изображениях из других доменов, что делает их непригодными на практике. 

Данная работа систематизирует текущее состояние задачи определения живости, 

а также описывает разработанные автором практически применимые методы. 
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Цели и задачи диссертационной работы. 

В работе были поставлены следующие цели: 

1. Исследовать кооперативные методы определения живости для стационарных 

и мобильных устройств с высоким уровнем защиты от всех видов взлома. 

2. Разработать практически применимые методы определения живости для си-

стем контроля и управления доступом (СКУД) с защитой от самых распро-

страненных попыток взлома. 

3. Предложить алгоритм определения живости для мультимодальных данных. 

4. Предложить некооперативный метод определения живости для стационарных 

и мобильных устройств с защитой от неизвестных попыток взлома. 

 

Для достижения поставленных целей были решены следующие задачи: 

1. Разработка кооперативного метода определения живости для стационарных и 

мобильных устройств и анализ его работоспособности для различных типов 

атак. 

2. Разработка удобного в применении кооперативного метода защиты от наибо-

лее распространенных видов взлома. 

3. Сбор обучающей и тестовой выборки, построение алгоритмов генерации но-

вых данных для увеличения вариативности обучающей выборки. 

4. Создание практически применимого алгоритма определения живости, эксплу-

атирующего особенности сценария. 

5. Исследование полезных признаков модальностей глубины и ИК, разработка 

метода определения живости для мультимодальных данных. 

6. Разработка устойчивого к неизвестным видам атак алгоритма определения 

живости по видеопоследовательности для стационарных и мобильных 

устройств. 
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Научная новизна.  

1. Предложен новый кооперативный метод определения живости для мобильных 

и стационарных устройств, защищающий от известных видов атак. 

2. Предложен новый точный и высокопроизводительный метод определения жи-

вости для систем контроля и управления доступом. 

3. Предложена новая архитектура нейронной сети для решения задачи определе-

ния живости по мультимодальным данным, основанная на тесной связи про-

межуточных признаков разных модальностей. 

4. Предложена концепция искусственных модальностей разработки методов за-

щиты против неизвестных типов атак, на основе которой предложен быстрый 

и масштабируемый метод определения живости по видеопоследовательности. 

 

Методы исследования. Для большей части предложенных алгоритмов широко 

применяется аппарат глубокого обучения нейронных сетей [76]. Для предобработки и 

подготовки данных к алгоритмам определения подлинности использовались модели 

детектирования лица и его ключевых точек [74, 75] и извлечения оптического потока 

[56]. Для сбора данных и демонстрации результатов применялись методы разработки 

клиенто-серверных мобильных приложений. 

  

Основные положения, выносимые на защиту. 

1. Кооперативный метод определения живости для работы в кооперативных сцена-

риях для мобильных и стационарных устройств. 

2. Метод определения живости по движению головы для мобильного сценария. 

3. Метод определения живости для систем контроля и управления доступом, включа-

ющий в себя три независимых алгоритма: по одному изображению, по картам гра-

ниц и по динамическим временным признакам лица. 

4. Алгоритм определения живости по мультимодальным данным.  
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5. Алгоритм определения живости по видеопоследовательности для мобильных и 

стационарных устройств. 

 

Теоретическая и практическая значимость. Предложенные в работе методы 

успешно используются в России и за рубежом различными компаниями. Все разраба-

тываемые методы ориентированы в первую очередь на практическое применение, где, 

помимо качества, учитывается скорость работы на широком диапазоне устройств. 

Часть предложенных алгоритмов показали лучший в мире результат на двух самых 

больших выборках по определению живости изображений лиц. 

 

Степень достоверности и апробация работы. Достоверность результатов под-

тверждена экспериментальной проверкой, в том числе сторонними организациями; 

публикациями результатов исследования в рецензируемых научных изданиях и кон-

ференциях по машинному обучению. Результаты работы докладывались и обсужда-

лись на следующих научных конференциях. 

1. “Recognizing Multi-Modal Face Spoofing with Face Recognition Networks”, Меж-

дународная конференция “Computer Vision and Pattern Recognition Work-

shops”. – Long Beach, CA. - 2019. 

2. “Creating Artificial Modalities to Solve RGB Liveness”, Международная конфе-

ренция “Computer Vision and Pattern Recognition Workshops”. – Virtual. –  2020. 

 

Публикации по теме диссертации. Основные результаты по теме диссертации 

изложены в 6 печатных работах, которые изданы в журналах, рекомендованных ВАК. 

1. O. Grinchuk, V.I. Tsurkov.  Training a Multimodal Neural Network to Determine 

the Authenticity of Images. // Journal of Computer and Systems Sciences Interna-

tional. - 2020. – V. 59 (4). – P. 575-582. 
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2. A. Parkin, O. Grinchuk. Recognizing Multi-Modal Face Spoofing With Face Recog-

nition Networks. // Proc. of the IEEE Conf. on Computer Vision and Pattern Recog-

nition Workshops. –  2019. 

3. O. Grinchuk, V.I. Tsurkov, L.P. Wang. Neural Network Training System for Marker 

Encoding. // Journal of Computer and Systems Sciences International. – 2019. –  V. 

58 (3). – P.434-440. 

4. A. Gladkov, O. Grinchuk, Y. Pigareva, I. Mukhina, V. Kazantsev, A. Pimashkin. 

Theta rhythm-like bidirectional cycling dynamics of living neuronal networks in 

vitro. // PloS one.  – 2018. – V. 13 (2). 

5. O. Grinchuk, V.I. Tsurkov. Cyclic Generative Neural Networks for Improved Face 

Recognition in Nonstardard Domains. // Journal of Computer and Systems Sciences 

International.  – 2018. – V. 57 (4). – P.620-625. 

6. O. Grinchuk, V. Lebedev, V. Lempitsky. Learnable Visual Markers. // Advances in 

Neural Information Processing Systems – 2016. –  P. 4143-4151. 

 

Личный вклад. Разработка алгоритмов и проведение экспериментов, описанных 

в главах 4 и 5, производилось совместно с Паркиным А.Н. [72], вклад автора был ре-

шающим. Вклад автора во все прочие положения, выносимые на защиту, также явля-

ется решающим. 

Обоснование специальности. Данная диссертация по своей тематике и направ-

ленности полученных результатов соответствует следующим пунктам паспорта спе-

циальности ВАК 05.13.17 “Теоретические основы информатики”: 

 5. Разработка и исследование моделей и алгоритмов анализа данных, обнаруже-

ния закономерностей в данных и их извлечениях, разработка и исследование методов 

и алгоритмов анализа текста, устной речи и изображений.  
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7. Разработка методов распознавания образов, фильтрации, распознавания и син-

теза изображений, решающих правил. Моделирование формирования эмпирического 

знания. 

 

Структура и объем работы. Диссертация состоит из оглавления, введения, пяти 

разделов, заключения и списка литературы. Основной текст занимает 112 страниц, 

включая 32 иллюстрации и 14 таблиц. Библиография включает 71 наименование. 

Краткое содержание работы по главам. В первой главе вводятся основные по-

нятия и определения, а также систематизируется решаемая задача по сценариям при-

менения, поведению пользователя и типам фальсификаций. Рассматриваются суще-

ствующие методы решения задачи определения подлинности изображений лиц. 

Во второй главе предлагается кооперативный алгоритм определения живости и 

его атомарные составляющие. 

В третьей главе рассматриваются некооперативные методы для систем управле-

ния и контроля доступом, предлагаются новые алгоритмы с учетом динамической 

структуры трека. 

В четвертой главе предлагаются методы определения живости для мультимо-

дальных данных. 

В пятой главе предлагается некооперативный алгоритм определения живости по 

видеопоследовательности, противодействующий неизвестным типам атак. 
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Глава 1 

Задача определения подлинности изображения лица 

1.1. Постановка задачи определения живости 

Задача определения подлинности изображения лица является составной частью 

процесса прохождения биометрической идентификации. Сначала сырые данные, за-

хватываемые с камеры, передаются на модуль предобработки изображений, включа-

ющий в себя обнаружение лиц. Последовательность изображений, принадлежащих 

одному человеку затем передается в модуль распознавания лиц и модуль определения 

живости лица. Модуль распознавания лиц сравнивает поступившее изображение или 

набор изображений с биометрическим шаблоном, хранящемся в базе авторизирован-

ных для доступа пользователей. Модуль определения живости проверяет поступив-

шие данные на наличие фальсификаций. Если оба модуля вынесли положительный 

вердикт, то человеку открывается доступ в систему, если хотя бы одна из частей си-

стемы ответила отрицательно, доступ в систему блокируется. (Рис 1.1.) 

 

 

Рис 1.1. Блок-схема процесса биометрической аутентификации. 

 

Будем рассматривать задачу определения подлинности лица по изображению или 

последовательности изображений изолированно от внешних факторов, предполагая, 



` 

13 
 

что поток с записывающего устройства приходит сразу на проверку живости. Задача 

защиты данных в момент процесса передачи является прерогативой общей системы 

информационной безопасности и не относится к текущей проблематике. 

Определение 1. Изображением X будем считать матрицу целых чисел размера 𝑊 ×

𝐻 × 𝐶 в диапазоне от 0 до 255,  где 𝑊 – ширина, 𝐻 – высота, 𝐶 – количество каналов. 

Например, для обычных цветных изображений: 𝐶 = 3, для черно-белых: 𝐶 = 1.  

Определение 2. Пусть 𝕏 – множество изображений, на которых присутствует центри-

рованное лицо человека. Треком длины 𝑇𝑁 назовем последовательность изображений 

𝑇 = {𝑋𝑗}, 𝑗 = 1, … , 𝑇𝑁 таких,  что 𝑋𝑗 ∈  𝕏. 

Определение 3. Будем рассматривать живость трека 𝑇 как бинарную переменную 

𝑙 ∈ 𝕃, равную 1, если на записи живой человек, и 0, если перед камерой демонстриру-

ется его “копия” – распечатанная фотография, экран электронного устройства с запи-

сью лица этого человека, трехмерная силиконовая маска и т.д.  

Определение 4. Моделью алгоритмов определения живости назовем параметриче-

ское семейство отображений {𝐟 (𝑇, 𝐰)} , где 𝐟 (𝑇, 𝐰)  – в общем случае не дифферен-

цируемая по параметрам 𝐰 ∈ 𝕎 функция из множества треков в множество меток 

живости: 

𝐟 ∶  𝕏N ×  𝕎 →  𝕃. 

Пусть дана обучающая выборка  

                                               𝓓 = {(𝑇𝑖 , 𝑙𝑖)}, 𝑖 = 1, . . . , 𝑚,                                             (1.1) 

где 𝑇𝑖 = {𝑋𝑗}, 𝑗 = 1, … , 𝑁𝑇𝑖
,   𝑙𝑖 ∈ {0,1} – множество треков и соответствующих им ме-

ток живости. 
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Алгоритм определения живости – отображение из множества треков в множе-

ство меток живости, чьи параметры оптимизированы по заданной обучающей вы-

борке.  

Метод определения подлинности изображений лиц – получение алгоритма 

определения живости для произвольной обучающей выборки. 

Определение 5. Оценкой живости для трека 𝑇𝑖 по некоторому алгоритму будем счи-

тать предсказание 𝑠𝑖 = 𝐟(𝑇𝑖 , 𝐰) ∈ [0,1], т.е. вероятность принадлежности трека классу 

1.  

Оценку живости всегда можно перевести в живость путем округления по некото-

рому выбранному на обучающей выборке порогу 𝑡 

                                                   𝑎𝑖 =   { 
1, если 𝑠𝑖 ≥ 𝑡
0, если 𝑠𝑖 < 𝑡

                                                    (1.2) 

Задача поиска оптимального алгоритма сводится к минимизации эмпирического 

риска по обучающей выборке 𝓓:   

                                                
1

𝑚
∑ ℒ𝑚

1 (𝐟(𝑇𝑖 , 𝐰),  𝑙𝑖) → min,                                                  (1.3) 

где ℒ – некоторая функция потерь. В большинстве случаев для поиска алгоритмов 

определения живости используется бинарная кросс-энтропия [54]  

                                            ℒ𝑖 = −𝑙𝑖 log 𝑠𝑖 − (1 − 𝑙𝑖) log(1 − 𝑠𝑖).                                 (1.4) 

Минимизация эмпирического риска на обучающей выборке не гарантирует, что 

найденный алгоритм будет хорошо работать на других объектах. Хороший алгоритм 

должен обладать обобщающей способностью, которую можно измерить либо мето-

дом кросс-валидации на обучающей выборке, либо на зафиксированной тестовой вы-

борке 𝓓𝒕𝒆𝒔𝒕.   
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Для разработки процедуры выбора оптимального алгоритма в случае задачи 

определения живости рассмотрим особенности получения обучающих и тестовых вы-

борок. 

Согласно вероятностной постановке задачи, рассматривается существование не-

известного распределения на множестве 𝕏N × 𝕃, с плотностью 𝑝(𝑡, 𝑙), из которого слу-

чайно и независимо выбираются 𝑚 объектов  – полученная  выборка называется про-

стой. Для простых выборок хорошо работают методы кросс-валидации для получения 

оптимальных алгоритмов. Но в практических случаях, доступные данные для задачи 

определения живости распределены не равномерно. Рассмотрим такое распределение 

подробнее. 

Множество возможных треков 𝕏𝑁 прямо зависит от базового множества изобра-

жений лиц 𝕏. Вероятностное распределение пар (𝑇, 𝑙) представляется в виде 

                                         𝑝(𝑇, 𝑙) = 𝑝(𝑇)𝑝(𝑇|𝑙).                                                     (1.5)  

Априорное распределение треков изображений лиц 𝑝(𝑇) зависит от сценария исполь-

зования, места съемки, освещения, оптических характеристик камеры и т.д. Условия 

могут быть внешними и внутренними. 

Внутренними назовем условия, которые могут меняться в процессе эксплуата-

ции. Примеры внутренних условий источника данных: модель видеокамеры, задний 

план изображения, освещенность. Ожидается, что качество алгоритма не будет зави-

сеть от внутренних условий. 

Внешними назовем условия, на которые можно опираться при разработке кон-

кретного алгоритма, т.е. есть априорное знание что данные условия будут постоянны 

во время эксплуатации алгоритма. К внешним условиям относятся: сценарий приме-

нения 𝑆, кооперативность поведения пользователя 𝐼 и модальность данных 𝑀.  
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1.2. Условия применения алгоритмов определения живости 

1.2.1. Сценарии применения 

Сценарий 𝑆 – специфическая среда применения метода определения живости, от-

личающаяся типами записывающих устройств, их положением относительно чело-

века, проходящего проверку и конечной целью проверки. Рассмотрим три основных 

типа сценариев: 

𝑆СКУД:  Система контроля и управления доступом (СКУД)– отвечает за контроль 

входа и выхода человека в помещение/зону с помощью системы биометрической 

идентификации по изображению лица. Представлена в виде турникетов с камерами, 

которые транслируют видеопоток на сервер, который находит на видеозаписи лица и 

сравнивает их с биометрическими шаблонами в базе разрешенных посетителей. В 

СКУД необходимо определение живости как метод защиты от несанкционированного 

доступа, чтобы злоумышленники не могли пройти внутрь по фотографии сотрудника. 

Отличительная особенность СКУД – человек виден на камере издалека, в течение сле-

дующих нескольких секунд он приближается, в конечном итоге проходя мимо непо-

движной камеры.  

𝑆ПК: Стационарные устройства –  Персональный компьютер, банкомат, платеж-

ный терминал и другие неподвижные устройства, в которые требуется авторизация. 

Пользователь в начале и в процессе авторизации находится в непосредственной бли-

зости от камеры и смотрит в нее. 

𝑆моб: Мобильные устройства –  Мобильный телефон, планшет, и другие подвиж-

ные устройства, которые пользователь может держать в руке. Авторизация может по-

требоваться как для доступа в само устройство, так и для подтверждения важных опе-

раций внутри приложений, например, банковских. 
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Приведенные выше сценарии отличаются подвижностью камеры, диапазоном 

возможных размеров лиц и углов поворота головы, а также потенциальными уязви-

мостями к различным видам фальсификаций, что делает рациональным разработку 

специфических методов определения живости под каждый конкретный сценарий. 

 

1.2.2. Кооперативность поведения пользователя 

Ввиду того, что размеры выборок для обучения задач определения подлинности 

на порядки меньше необходимых для эффективного решения общей задачи, в практи-

ческом применении до сих пор используются алгоритмы, интерактивно итерирующие 

с пользователем, что существенно увеличивает точность решения. Система может по-

просить человека совершить некоторое действие, которое поможет в определении жи-

вости, например, улыбнуться. Дополнительный алгоритм проверки наличия улыбки, 

запущенный на треке, по логическому “или” сможет отклонить любые статические 

фальсификационные артефакты. 

Методы, интерактивно взаимодействующие с пользователями, назовем коопера-

тивными; методы, не требующие от пользователя никаких действий – некооператив-

ными. Будем считать характеристикой метода определения живости набор параметров 

𝐼, которые описывают запрашиваемые алгоритмами действия. Степенью кооператив-

ности будем считать удобство пользователя и время выполнения действия. Для неко-

оперативных методов степень кооперативности равна 0. 

Несмотря на хороший уровень защиты, основным недостатком кооперативных 

методов является повышенное время работы и неудобство любых интерактивных дей-

ствий для пользователя, поэтому сейчас основные исследования ведутся в области 

разработки некооперативных алгоритмов. 
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1.2.3. Модальности 

Помимо стандартных камер, снимающих видео в видимом диапазоне в формате 

RGB (red, green, blue – аддитивная цветовая модель, описывающая способ кодирова-

ния цвета), существуют специальные устройства, записывающие поток в других ви-

дах и диапазонах, таких как: глубина, ближний инфракрасный диапазон, тепловой 

диапазон. Такие камеры стоят дороже и подходят не для всех сценариев, но при этом 

ввиду особых свойств получаемых изображений позволяют извлечь больше полезной 

информации для решения задачи определения живости. Рассмотрим подробнее основ-

ные виды модальностей, встречающиеся в промышленных системах: 

𝑀𝑅𝐺𝐵 – модальность обычных изображений в формате RGB. Самая распростра-

ненная модальность практически в любом сценарии ввиду низкой стоимости 

устройств и уже существующей инфраструктуры соответствующих видеокамер. 

𝑀глубина – модальность изображений с камер глубины, показывающих объемную 

картину. Карта глубины – одноканальное изображение со значениями расстояния до 

соответствующих пикселей в миллиметрах. Алгоритмы определения живости, обу-

ченные на данных такого типа обычно устойчивы к плоским артефактам, таким как 

бумажные листки или экраны устройств, так как те легко различимы на трехмерном 

изображении.  Недостаток 𝑀глубина  – высокая стоимость камеры, работа в определен-

ном диапазоне расстояния и плохое качество изображения при солнечном свете. Но в 

сценариях, позволяющих использовать камеры глубины, методы определения живо-

сти на их основе показывают самую высокую надежность. 

𝑀ИК – модальность изображений в инфракрасном (ИК) спектре. Камеры, снима-

ющие в таком диапазоне обычно доступнее камер глубины, а также могут работать в 

ночном режиме, что послужило их широкому распространению. Кроме этого, ИК-диа-

пазон обладает полезным свойством для определения подлинности лица – он не отоб-

ражает содержание экранов электронных устройств, показанных на камеру, автомати-
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чески отсекая большое семейство потенциальных фальсификаций. Еще одно преиму-

щество ИК-изображений – глаза реальных людей на них выглядят специфически, по-

глощая инфракрасное излучение, что также является сильным признаком для решения 

целевой задачи. 

 

1.3. Устойчивость алгоритмов определения живости 

Распределение изображений 𝑝(𝑇) можно записать как 

                                                     𝑝(𝑇) = 𝑝(𝑇 | 𝛉, 𝑆, 𝐼, 𝑀),                                                 (1.6) 

где 𝛉 – набор внутренних условий. При зафиксированных внешних условиях (1.6) 

можно рассматривать как совокупность кластеров внутренних условий 

                          𝑝(𝑇) = 𝑝(𝑇 | 𝛉, 𝑆, 𝐼, 𝑀) = 𝑝(𝑇|𝛉𝟏, 𝑆, 𝐼, 𝑀) + 𝑝(𝑇|𝛉𝟐, 𝑆, 𝐼, 𝑀).             (1.7) 

Будем считать, что условия 𝛉𝟏 генерируют обучающую выборку, а 𝛉𝟐 – неизвест-

ную контрольную выборку, т.е. 

                                                  𝓓 ~ 𝑝(𝑇|𝛉𝟏, 𝑆, 𝐼, 𝑀)𝑝(𝑇|𝑙),                                            (1.8) 

𝓓𝐭𝐞𝐬𝐭~ 𝑝(𝑇|𝛉𝟐, 𝑆, 𝐼, 𝑀)𝑝(𝑇|𝑙). 

При этом обе выборки по отдельности являются простыми. В таком случае задача 

определения живости сводится к обучению алгоритма на известной выборке и кон-

троле качества на тестовой выборке. При обучении, выборка разбивается на обучаю-

щую и валидационную.  

Определение 6. Пусть значение функции потерь на  обучающей выборке равно ℒ𝑡𝑟𝑎𝑖𝑛, 

на валидационной – ℒval. Устойчивостью обучения назовем 

                                                    ∆ =  
ℒ𝑣𝑎𝑙−ℒ𝑡𝑟𝑎𝑖𝑛

ℒ𝑣𝑎𝑙
                                                                (1.9) 
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Если ∆ → 1, то алгоритм сильно переобучается и плохо работает на валидации, 

хотя та выбрана из того же распределения, что и обучающая выборка. В таком случае, 

ожидать хорошей работы на контрольной выборке маловероятно. Если ∆ ~ 0, то 

можно смотреть на качество классификации на контрольной выборке. 

Внутренние и внешние условия определяют распределение 𝑝(𝑇).  Но, данные для 

задачи определения живости также зависят от класса объекта, т.е. от 𝑝(𝑇|𝑙). Рассмот-

рим случай 𝑙 = 0, т.е. когда перед камерой демонстрируются различные фальсифика-

ции. 

 

1.4. Классификация методов взлома 

Атакой PA (Presentation Attack) на систему биометрической идентификации 

назовем демонстрацию перед камерой материального артефакта, содержащего образ 

человека, биометрический шаблон которого находится в базе разрешенных пользова-

телей, c целью осуществить несанкционированный доступ в систему. Само распозна-

вание лиц не способно отличать атаки от реальных попыток, для этого используются 

методы определения живости. 

Атаки отличаются видами артефактов, степенью сложности получения изобра-

жения пользователя, а также уровнем возможностей взломщика. Рассмотрим класси-

фикацию атак по этим типам. 

 

Физические артефакты 

1. Бумажные. Изображение лица пользователя распечатывается на обычной или 

фотобумаге. Возможно вырезание по контуру лица, а также прорези для 

глаз/рта. 

2. Электронные. Изображение лица пользователя выводится на экран теле-

фона/планшета. Возможна демонстрация не только статической картинки, но и 

видеозаписи. 
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3. Трехмерные. На основе изображения лица делается силиконовая маска (другие 

материалы также возможны), которую злоумышленник надевает на себя. Воз-

можны маски с подвижными глазами, ртом. 

 

Доступность биометрического шаблона 

1. Уровень A. Статическое изображение лица пользователя обычного качества. 

Часто можно получить из социальных сетей или скрытой фотографией.  

2. Уровень B. Видеозапись лица пользователя, изображение лица высокого каче-

ства. Такие шаблоны получить сложнее, в открытых источниках их почти нет. 

3. Уровень C. Видеозапись лица пользователя с конкретными действиями (улыбка, 

поворот головы налево, и т.д.), изображение лица в другой модальности (ИК).  

Такие данные получить без целенаправленной слежки за пользователем невоз-

можно. 

 

Квалификация взломщика 

1. Уровень А.  Обычный человек, не знакомый с методами защиты биометриче-

ских систем.  

2. Уровень B.  Человек средней подготовленности, имеющий представление об ос-

новных методах определения живости, кооперативности и скрытых проверках. 

3. Уровень C.  Эксперт или группа экспертов в области информационной безопас-

ности и методов определения живости. 

 

В зависимости от рода используемых артефактов, доступности биометрического 

шаблона и экспертизы злоумышленника рассматривается классификация атак по сте-

пени сложности [63]. 
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Рис 1.2. Примеры атак разных уровней. 

 

Классификация атак 

1. Уровень A. Распечатанная или показанная на экране фотография с небольшой 

доработкой.  Самый распространенный вид атак, т.к. не требует специализиро-

ванного оборудования, высокой экспертизы и сложностей в получении биомет-

рического шаблона. Примеры атак уровня А: А4 распечатка лица; вырезанная 

по форме лица фотография в натуральную величину; фотография лица на экране 

мобильного либо стационарного устройства.  

Минимальная экспертиза взломщика: уровень А. 

Доступность биометрического шаблона: уровень A. 

 

2. Уровень B. Видеозапись пользователя или бумажная маска на основе фото вы-

сокого разрешения. Без специальной подготовки такой уровень атак неосуще-

ствим, т.к. требуется повышенная экспертиза и есть сложности в получении 

шаблона. Примеры атак уровня B: видеозапись пользователя, демонстрируемая 

на экране мобильного/стационарного устройства; бумажная маска с грубой 3D 

структурой, вырезанная из бумаги; последовательность распечатанных фото-

графий с определенным выражением лица (фото без улыбки, фото с улыбкой). 
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Минимальная экспертиза взломщика: уровень B. 

Доступность биометрического шаблона: уровень B. 

 

3. Уровень C. Трехмерные маски, сложные видеозаписи, данные из других мо-

дальностей. Основное отличие от уровня B – во времени на подготовку и стои-

мости артефакта взлома. Кроме этого требуется высокая экспертиза взломщика 

в создании реалистичных артефактов и трехмерных структур. Примеры атак 

уровня C: силиконовая/керамическая маска, копирующая лицо пользователя; 

Распечатанное изображение в ИК диапазоне; видео, повторяющее процедуру 

конкретного кооперативного метода liveness. 

Минимальная экспертиза взломщика: уровень C 

Доступность биометрического шаблона: уровень B 

 

 

Таблица 1.1. Описание наиболее распространенных видов атак. 

Код Описание Уровень 

P1 Распечатанное изображение (например, на A4) без модифика-

ций. Края бумаги видны в кадре. 

A 

P2 Распечатанное изображение (например, на A4) без модифика-

ций. Края бумаги не видны в кадре.  

A 

P3 Распечатанное изображение лица, вырезанное по контуру. Без 

изменений на изображении лица, как в P4. 

A 

P4 Распечатанное изображение лица, вырезанное по контуру + вы-

резанные глаза или рот для выполнения активных выражений, 

как моргнуть или улыбнуться. 

A 
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P5 Вырезанный бумажный участок лица, для накладывания на ре-

альное лицо, например, область вокруг глаз + щеки. Перед те-

стированием подобной атаки против liveness необходимо убе-

диться в том, что этой информации достаточно для распознава-

ния лиц с ожидаемым ответом.  

B 

P ext Несколько артефактов из P* одного человека – нейтральное 

лицо, улыбающиеся лицо и т.д.  

A 

P ir Артефакт из P*, распечатанный в ИК-диапазоне C 

D1 Статическое изображение лица (как из социальных сетей), вы-

веденное на экран телефона. Границы телефона находятся в 

кадре. 

A 

D2 Статическое изображение лица, выведенное на экран планшета 

/ ноутбука / монитора. Границы экрана не видны в кадре. 

A 

D1/D

2 ext 

Несколько кадров из D1/D2 с фиксированными кооператив-

ными выражениями лица 

A 

D3 Случайное видео с атакуемым (что можно добыть в соц. сетях) 

с движениями губ, либо с морганием, либо с сменой выражения 

лица.  

B 

D4 Видео с атакуемым,  повторяющее близкие движения к тому, 

что требуется в системе. 

B/C 

D5 Видеозвонок с попыткой удаленного доступа. Сговор взлом-

щика и легитимного пользователя. 

C 

M1 Объемная бумажная маска атакуемого. B 

M2 Точная силиконовая маска атакуемого без возможности выпол-

нения активного действия (вырезанные глаза, рот и так далее). 

C 

M3 Точная силиконовая маска атакуемого с возможностью выпол-

нения активного действия. 

C 
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M4 Точная керамическая маска без возможности выполнения ак-

тивного действия. 

C 

 

Большинство видов атак относятся к категориям A и B (табл. 1.1.). Уровень C 

требует высокой экспертизы и стоимости оборудования, что часто делает невыгодным 

попытку взлома такого уровня сложности. Поэтому на практике, заказчики ориенти-

руются на алгоритмы, защищающие от первых двух категорий, считая это достаточ-

ным. Чем выше уровень атак, против которых нужна защита, тем больше такие ме-

тоды неудобны для конечного пользователя и дороже для заказчика. 

С учетом различных видов атак, распределение данных для задачи определения 

живости можно выразить как 

𝑝(𝑇, 𝑙) = 𝑝(𝑇)𝑝(𝑇|𝑙) = 𝑝(𝑇)𝑝(𝑇|𝑙 = 1) + 𝑝(𝑇)𝑝(𝑇|𝑙 = 0) 

𝑝(𝑇|𝑙 = 0) = 𝑝(𝑇|𝑙 = 0, 𝑃𝐴1) + 𝑝(𝑇|𝑙 = 0, 𝑃𝐴2) + ⋯ 

или, упрощая и перенося класс 𝑙 = 1 в множество атак 

                                      𝑝(𝑇, 𝑙) = 𝑝(𝑇)𝑝(𝑇|{𝑷𝑨})                                                  (1.10) 

Тогда (1.8) перепишется как 

                                           𝓓~ 𝑝(𝑇|𝛉𝟏, 𝑆, 𝐼, 𝑀)𝑝(𝑇|{𝑷𝑨}𝟏),                                         (1.11) 

                                         𝓓𝐭𝐞𝐬𝐭~ 𝑝(𝑇|𝛉𝟐, 𝑆, 𝐼, 𝑀)𝑝(𝑇|{𝑷𝑨}𝟐). 

В общем случае набор атак, представленных в обучающей выборке, не эквива-

лентен набору, который может встретиться в тесте. Рассмотрим процесс построения 

алгоритма определения живости при заданных условиях и видах атак. 
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1.5. Процедура построения алгоритма определения живости 

Пусть дана обучающая выборка 𝓓 в условиях S, I, M. Требуется построить алго-

ритм определения живости по заданной выборке. Предлагается процедура получения 

оптимального алгоритма, состоящая из четырех этапов. Вначале, если возможно, ге-

нерируются дополнительные данные, которые разнообразят обучающую выборку. 

После чего выборка фиксируется и разбивается на подвыборки для кросс-валидации. 

Далее, исходя из бюджета на время работы итогового алгоритма и максимальный раз-

мер памяти выбирается семейство моделей и обучаются соответствующие алгоритмы. 

Гиперпараметры модели, параметры обучения и функции аугментации данных выби-

раются из хорошо зарекомендовавшего для данных моделей множества параметров 

исходя из результатов кросс-валидации. Наконец, обученный алгоритм тестируется 

на контрольной выборке. 

 

1.5.1. Генерация синтетических данных 

При фиксированной модели, чем больше разнообразных данных доступно для 

обучения, тем выше точность итогового алгоритма [64]. В зависимости от внешних 

условий S, I, M, можно предложить метод генерации данных для реальных и поддель-

ных изображений лиц. 

Пример. Для кооперативного алгоритма определения живости по улыбке можно 

составить новые примеры для класса 𝑙 = 0 путем дублирования одного кадра реаль-

ного человека. Получится новое семейство поддельных треков, которое разнообразит 

обучающую выборку. 

 

1.5.2. Разбиение обучающей выборки  

В случае простой выборки одним из оптимальных способов избежать переобуче-

ния является кросс-валидация [65]. Рассмотрим особенности данного метода для дан-

ных определения живости. Предполагается, что заданная обучающая выборка 𝓓 – 
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простая, то есть примеры выбраны независимо и случайно при внутренних условиях 

𝛉𝟏 и наборе атак {𝑷𝑨}𝟏.  

 

Рис 1.3. Разбиение обучающей выборки по подгруппам внутренних условий. 

   

Однако в действительности выборка неоднородна –  условия и атаки разделяются 

на подгруппы. При наивной генерации подвыборок для кросс-валидации примеры из 

одинаковых подгрупп окажутся и в обучении, и в валидации, делая валидацию неин-

формативной. Поэтому предлагается разделять выборку на обучающую и валидаци-

онную части по подгруппам (рис. 1.3.). Например,  целесообразным разбиение изоб-

ражений лиц на группы по конкретным людям – 𝐢𝐝 (от англ. identity), чтобы избежать 

переобучения на черты лица. Для простоты обозначений, будем рассматривать id как 

одну из размерностей внутренних условий. 

Разбиение заданной выборки на обучающую и валидационную по подгруппам 

эмулирует существующее разделение данных на заданную и контрольную выборки. 

В предлагаемом методе (1.11) будет иметь вид 

                𝓓 =  𝓓𝐭𝐫𝐚𝐢𝐧 ∪ 𝓓𝐯𝐚𝐥 ~                                                     (1.12) 
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𝑝(𝑇|𝛉𝟏𝟏, 𝑆, 𝐼, 𝑀)𝑝(𝑇|{𝑷𝑨}𝟏𝟏) +  𝑝(𝑥|𝛉𝟏𝟐, 𝑆, 𝐼, 𝑀)𝑝(𝑇|{𝑷𝑨}𝟏𝟐) 

Количество частей задается в зависимости от выбранного метода кросс-валида-

ции. Можно разбивать стандартно на 5, либо, в случае ограниченности вычислитель-

ных ресурсов, можно разбить на две части, выделив на валидационную часть около 

15-20% всех доступных данных. 

 Кросс-валидация по условиям, атакам и id сделает алгоритм более устойчивым 

к неизвестным данным, которые могут присутствовать в контрольной выборке, но 

уменьшит доступное для обучения число изображений, так как предлагаемые пара-

метры разбиения не всегда могут линейно разделить выборку.  

 

1.5.3. Выбор модели и оптимизация гиперпараметров 

В данной работе в качестве семейств моделей 𝐅 = {𝐟 (𝑇, 𝐰)} преимущественно 

рассматриваются сверточные нейронные сети, хорошо работающие для задач компь-

ютерного зрения.  

Нейронная сеть – дифференцируемая по параметрам 𝐰 ∈ 𝕎 функция 𝐟 (𝑋, 𝐰), 

такая что 

𝐟(𝑋𝑖 , 𝐰) = 𝑠𝑖 , 

где 𝑠𝑖 – оценка живости. Последним слоем нейронной сети обычно является сигмоид-

ная функция  

                                                            𝜎(𝑥) =
1

1+𝑒−𝑥
                                                        (1.12) 

переводящая 𝑠𝑖 в диапазон [0, 1]. 

Для обучения алгоритмов оценки живости используются хорошо зарекомендо-

вавшие себя архитектуры : mobilenet [49], resnet [37, 77], efficientnet [66] и их модифи-

кации. Кроме этого, предлагается архитектура SimpleNet, построенная по общему 

принципу формирования сверточных сетей.  
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Сначала определяются модели 𝐅̂, удовлетворяющие заданному бюджету времени 

работы Τ. Пусть 𝜏𝐟  – время работы прямого прохода нейронной сети для одного трека 

𝐟 (𝑇𝑖 , 𝐰).  Тогда множество рассматриваемых моделей: 

                                 𝐅̂ =  {𝐟(𝑇, 𝐰) ∀ 𝐟 ∈ 𝐅: 𝜏𝐟 ≤  Τ}                                                (1.13) 

 Рассмотрим процесс обучения нейронной сети для треков и соответствующих 

меток живости в случае, когда длина трека равна 1.  Обучающая выборка будет иметь 

вид 

𝓓𝐭𝐫𝐚𝐢𝐧 = {𝑋𝑖 , 𝑙𝑖}, 𝑖 = 1, … , 𝑘, 

а выбранная валидационная часть: 

𝓓𝐯𝐚𝐥 = {𝑋𝑖 , 𝑙𝑖}, 𝑗 = 𝑘 + 1, … , 𝑚. 

 

Каждая из рассматриваемых архитектур обучается с несколькими базовыми 

наборами гиперпараметров 𝜸,  после чего выбирается лучшая по кросс-валидации ар-

хитектура: 

𝐟∗ = arg min
𝐟∈𝑭̂,𝜸

ℒval(𝑙 , 𝐟(𝑋, 𝐰 | 𝜸 ))                                             (1.14) 

К гиперпараметрам обучения 𝜸 будем относить:  

 параметры оптимизатора – начальный коэффициент обучения и функция его из-

менения относительно номера эпохи. 

 структуру нейронной сети – количество сверток в каналах, количество слоев, 

функции активации. 

 набор аугментаций исходных данных и степень их случайности. Обычно ис-

пользуются повороты, сдвиги, размытие, цветовая коррекция, зеркальные отоб-

ражения. 
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Параметры нейронной сети обучаются методом обратного распространения 

ошибки [67] с функцией потерь –  бинарная кросс-энтропия ℒ (1.4).  На рис 1.2. пока-

зана схема обучения нейронной сети.  На каждом шаге обучения данные разбиваются 

на батчи (несколько изображений, объединенных в один четырехмерный тензор), по-

даются на вход сети, считается функция потерь, градиент и обновляются веса модели. 

В конце обучения сохраняется слепок параметров 𝐰, показавший лучший результат 

на валидационной выборке. 

_________________________________________________________________________ 

Вход: 𝜸: размер батча 𝑏, количество эпох 𝑛𝑒𝑝𝑜𝑐ℎ; оптимизатор 𝑂𝑝𝑡 и его гиперпара 

метры; функции предобработки изображений Augment. 

Выход: обученные параметры 𝐰 

1. для 𝑒 = 1, … , 𝑒𝑝𝑜𝑐ℎ 

2.    перемешать индексы 1, … , 𝑚 → 𝑝1, … , 𝑝𝑚     

3.    для 𝑖 = 1, … , [
𝑚

𝑏
] 

4.          𝑿 = [ 𝑋𝑝𝑖𝑏
, 𝑋𝑝𝑖𝑏+1

, … , 𝑋𝑝𝑖𝑏+𝑏−1
], 𝒍 = [ 𝑙𝑝𝑖𝑏

, 𝑙𝑝𝑖𝑏+1
, … , 𝑙𝑝𝑖𝑏+𝑏−1

],  

5.          𝑿 = 𝐴𝑢𝑔𝑚𝑒𝑛𝑡(𝑿) 

6.          𝒔 = 𝑓(𝑿, 𝐰),  𝑙𝑜𝑠𝑠 = ℒ(𝒔, 𝒍) 

7.          ∇𝐰 =  
𝜕𝑙𝑜𝑠𝑠

𝜕𝐰
 

8.          𝐰 = 𝑂𝑝𝑡 (𝐰, ∇𝐰) 

9.    посчитать loss для 𝓓𝐯𝐚𝐥 , сохранить 𝐰. 

_________________________________________________________________________ 

Рис 1.4. Псевдокод обучения нейронной сети. 
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Поочередно меняя гиперпараметры от допустимого минимального до макси-

мального, обучается 20-30 моделей 𝐟∗ и потом из них выбирается лучшая по точности 

на валидационной выборке: 

𝐰∗ = arg min
𝐰,𝜸

ℒ𝑣𝑎𝑙(𝑙 , 𝐟∗(𝑋, 𝐰 | 𝜸 ))                                       (1.15) 

Полученный таким образом алгоритм 𝐟∗(𝑋, 𝐰∗) назовем оптимальным. 

1.5.4. Проверка результатов на тестовой выборке 

Тестовая выборка никак не участвует в обучении и выборе оптимальной модели, 

но результаты на ней позволяют оценить устойчивость полученного алгоритма при 

других внешних условиях. Помимо значения функции потерь, считаются и другие по-

казатели. 

Основными мерами качества для задачи определения подлинности являются по-

казатели TPR (True Positive Rate) в определенных точках FPR (False Positive Rate), а 

также ACER (Average Classification Error Rate). Рассмотрим эти метрики подробнее.  

Пусть задана тестовая выборка 

𝓓𝐭𝐞𝐬𝐭 =  {(𝑇𝑖 , 𝑙𝑖)}, 𝑖 = 1, . . . , 𝑚, 

и модель определения живости 𝐟(𝑇𝑖 , 𝐰∗), возвращающая в качестве результата веро-

ятность 𝑠𝑖 ∈ [0,1]  – уверенность модели в том, что трек 𝑇𝑖  принадлежит живому че-

ловеку. Пусть зафиксирован некоторый порог 𝑡 ∈ [0,1], по которому предсказания мо-

дели переводятся в бинарные значения: 

                                              𝑎𝑖 =   { 
1, если 𝑝𝑖 ≥ 𝑡
0, если 𝑝𝑖 < 𝑡

                                                          (1.16) 

Тогда 

𝑇𝑃 = ∑ [𝑎𝑖 = 𝑙𝑖 = 1]𝑚
1   

𝑇𝑁 = ∑ [𝑎𝑖 = 𝑙𝑖 = 0]𝑚
1   

𝐹𝑃 = ∑ [𝑎𝑖 ≠ 𝑙𝑖 = 0]𝑚
1   

                                                   𝐹𝑁 = ∑ [𝑎𝑖 ≠ 𝑙𝑖 = 1]𝑚
1                                                     (1.17) 
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где 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁 – истинно-положительное, истинно-отрицательное, ложно-поло-

жительное и ложно-отрицательное число предсказаний в выборке относительно мо-

дели 𝐟. 

FPR – False Positive Rate – доля ложно-положительных предсказаний относительно 

общего числа предсказаний отрицательного класса. TPR – True Positive Rate – доля 

истинно-положительных предсказаний относительно общего числа предсказаний по-

ложительного класса, т.е. 

        𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
   

        𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                          (1.18) 

Так как меры выше зависят от порога 𝑡, для оценки качества алгоритма будем 

смотреть на несколько фиксированных точек FPR, например 0.001, 0.01 и 0.1. На прак-

тике, если, зафиксирован порог в точке 𝐹𝑃𝑅 = 0.01, при котором 𝑇𝑃𝑅 = 0.97, то, из 

всех попыток взлома системы, 1% окажутся успешными, при этом из всех попыток 

пройти реальному пользователю откажут в 3% случаев. 

Кроме FPR и TPR, часто рассматривается ACER – Average Classification Error 

Rate, состоящий из APCER – Attack Presentation Classification Error Rate и BPCER – 

Bonafide Presentation Classification Error Rate. Они почти ничем не отличаются от 

предыдущих мер, т.к. APCER = FPR и BPCER = 1-TPR и  

                                                   ACER =
APCER+BPCER

2
                                                     (1.19) 

но более удобны для восприятия в контексте задачи определения живости, поэтому 

получили более широкое применение чем традиционные меры.  

 Значения функции потерь ℒ, TPR в точке FPR или ACER  на контрольной вы-

борке 𝓓𝐭𝐞𝐬𝐭 будем называть мерой качества 𝑄 алгоритма определения живости 𝐟. 
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1.6. Необходимый размер обучающей выборки 

Качество алгоритмов, основанных на нейронных сетях, напрямую зависит от ко-

личества доступных данных. Зависимость качества алгоритма 𝐟 от размера обучаю-

щей выборки подчиняется экспоненциальному закону [68, 69, 70]: 

                                                 𝑄(𝐟, 𝓓𝐭𝐞𝐬𝐭) = 𝑎|𝓓|−𝑏 + 𝑐,                                                           (1.20) 

где 𝑄 –  некоторая мера качества, |𝓓| – размер обучающей выборки. Не теряя общно-

сти, будем считать, что минимальное значение меры качества равно 0, и оно соответ-

ствует идеальной классификации.  

 

Рис 1.5. Пример зависимости меры качества от размера обучающей выборки для 

разных нейронных сетей. 
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На рис. 1.5. показан пример поведения меры качества в зависимости от размера обу-

чающей выборки при разных значениях параметров кривой. Синяя кривая – пример 

более глубокой нейронной сети. При недостаточном количестве данных ее качество 

хуже, чем у легкой сети и параметр устойчивости обучения ∆ выше, чем у менее глу-

бокой сети. 

 Но при этом при наличии большого числа примеров для обучения итоговое ка-

чество глубокой модели становится лучше. Однако, для задачи определения живости 

большие выборки не всегда доступны ввиду сложности сбора данных, поэтому в ряде 

случаев предпочтение отдается более легким моделям, которые к тому же удовлетво-

ряют временным ограничениям для практического применения. 

 

 

Рис 1.6. Зависимость меры качества от размера обучающей выборки для разных 

значений параметров 𝑏 (слева) и 𝑐 (справа). 

 

 

Определение 7.  Параметр 𝑐 из (1.20) назовем пределом потенциала алгоритма опре-

деления живости 𝐟 на выборке 𝓓  по контрольной выборке 𝓓𝐭𝐞𝐬𝐭.  
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Предел потенциала показывает максимальное качество, которое можно получить 

на неограниченной по размеру обучающей выборке. В идеальном случае 𝑐 = 0 при 

|𝓓| → ∞, но если задано ограничение сверху на количество параметров нейронной 

сети либо обучающая выборка покрывает не все множество внутренних условий 𝛉,  

достичь 0 не всегда возможно (рис. 1.6.B). 

 

Определение 8.  Параметр 𝑏 из (1.20) назовем степенью эффективности алгоритма 

определения живости 𝐟 на выборке 𝓓  по контрольной выборке 𝓓𝐭𝐞𝐬𝐭. 

Степень эффективности чаще всего принимает значения из диапазона [0, 1]. Чем 

выше степень эффективности, тем меньше данных нужно алгоритму, чтобы достичь 

хорошего значения качества (рис 1.6.A). 

 

В реальных условиях точно построить график зависимости качества от размера 

выборки не представляется возможным ввиду ограниченности размера выборки, но 

его можно экстраполировать по известным точкам, подобрав параметры 𝑎, 𝑏, 𝑐 мето-

дом наименьших квадратов для точек |𝓓|,
|𝓓|

2
,

|𝓓|

4
, …  

Рассмотрим случай, когда семейство моделей алгоритмов зафиксировано и есть 

процедура получения оптимального алгоритма по заданной выборке. В таком случае, 

улучшения качества можно добиться за счет изменения представления входных дан-

ных. 

 

1.7. Выбор представления данных 

Обычное цветное изображение лица 𝑋 выбирается из множества изображений 

лиц 𝕏, при этом 

                                          𝑋 ∈  𝕏 ⊂  ℤ[0,255]
3𝑊𝐻 ,                                                            (1.21) 
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где ℤ[0,255]
3WH  – пространство матриц размера 3 × 𝑊 × 𝐻, состоящих из интенсивностей 

пикселей с значениями от 0 до 255.  Аналогично, для трека длины 𝑁 

                                          𝑇 ∈  𝕏N ⊂  ℤ[0,255]
3NWH ,                                                            (1.21) 

𝕏N – богатое пространство, объекты которого содержат множество мелких деталей, в 

том числе черты лица человека и элементы заднего плана. Поэтому, при обучении ал-

горитма определения живости на выборке небольшого размера либо собранной при 

очень ограниченных внутренних условиях 𝛉, возможно переобучение на не имеющие 

отношения к живости признаки. 

Пример 1. Треки реальных людей собраны из Интернета, треки атак собраны в 

лаборатории с узорчатой стеной на заднем плане. Самый простой разделяющий при-

знак в данном случае – узор стены и нейронная сеть переобучится на него. 

Пример 2. Реальные и поддельные данные собраны в одной и той же лаборато-

рии. Но для атак использовались артефакты с биометрическими шаблонами знамени-

тостей из выборки лиц Celeba[A], которые в большинстве случаев содержат улыбку и 

необычные прически. Нейронная сеть может переобучиться на эти признаки и плохо 

работать для других доменов. 

Уменьшить масштаб проблемы можно с помощью представления исходных 

данных в другом пространстве, которое минимизирует наличие не влияющих на жи-

вость деталей изображений и акцентирует внимание на полезных признаках.  

Рассмотрим некоторую функцию 𝜙: 𝕏𝑁 →  𝕄 , где 𝕄 – пространство изображе-

ний размера 𝐶 × 𝑊 × 𝐻, т.е. 

                                                     𝜙(𝑇) ∈  𝕄 ⊂ ℝ𝐶𝑊𝐻                                                         (1.22) 

Пусть заданы обучающая и контрольная выборки обычных цветных изображе-

ний 𝓓 и 𝓓𝒕𝒆𝒔𝒕, а также процедура выбора оптимального алгоритма 𝐟∗(𝓓). Переведем 

выборки в пространство 𝕄, т.е. 
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                                                𝓓̃ = {(𝜙(𝑇𝑖), 𝑙𝑖) ∀ (𝑇𝑖 , 𝑙𝑖) ∈  𝓓}                                        (1.23) 

𝓓̃𝒕𝒆𝒔𝒕 = {(𝜙(𝑇𝑖), 𝑙𝑖) ∀  (𝑇𝑖 , 𝑙𝑖) ∈ 𝓓𝐭𝐞𝐬𝐭} 

 

 Построим оптимальные алгоритмы 𝐟∗(𝓓) и  𝐟∗(𝓓̃) и посчитаем степени эффек-

тивности алгоритмов 𝑏̃ и 𝑏 по контрольным выборкам 𝓓𝐭𝐞𝐬𝐭  и 𝓓̃𝒕𝒆𝒔𝒕 соответственно. 

Определение 9. Пространство 𝕄 назовем искусственной модальностью, а функцию 

𝜙  – функцией преобразования модальности, если 𝑏̃ > 𝑏. 

Если размер выборки небольшой, то алгоритм, построенный на изображениях ис-

кусственной модальности, будет работать лучше на контрольной выборке, чем алго-

ритм, обученный на оригинальных изображениях (рис. 1.7.). 

 

Рис 1.7. Пример алгоритмов, обученных на обычных изображениях (1) и изобра-

жениях искусственной модальности (2).  
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Для больших и разнообразных выборок предел потенциала алгоритмов на обыч-

ных изображениях выше, чем на изображениях из искусственной модальности, но в 

прикладных задачах собрать выборку такого размера чаще всего не представляется 

возможным.  Рассмотрим примеры построения алгоритмов определения живости, ко-

торые используют искусственные модальности в том или ином виде. 

 

 

1.8. Существующие методы определения живости по изображению лица 

Одна из первых статей по данной теме [1] была опубликована в 2002 году. Ав-

торы статьи пишут, что “определение живости основано на распознавании физиоло-

гической информации как признака подлинности биометрического шаблона”.  В то 

же время для распознавания лиц достаточно ключевых черт, индивидуальных для 

пользователя. Первые методы определения подлинности изображения лица были 

опубликованы еще до эпохи глубокого обучения и основывались либо на текстурном 

анализе изображений, либо на кооперативности и обнаружении заданных действий 

объекта. 

 

1.8.1. Текстурно-частотный анализ 

Данный метод рассмотрен в [2]. Основная цель метода – различать живые лица и 

двумерные распечатанные маски на основе формы и детализации. Предложено рас-

смотреть низко- и высокочастотные спектры изображения и их отличия для подлин-

ных и поддельных изображений, которые заключались в двух пунктах. Во-первых, 

различия распределения освещенности трехмерных форм, по которым сделаны фото-

графии, отображаются в низкочастотной информации. Во-вторых, детализация реаль-

ных лиц содержится в высокочастотной части. Для получения нужной информации 

изображения преобразованы с помощью двумерного дискретного преобразования 

Фурье. Наконец, одномерный вектор признаков аполучен комбинированием средних 

значений энергии для всех концентрических колец частотного пространства Фурье. 
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Для текстурного извлечения признаков применен популярный в то время метод Local 

Binary Pattern (LBP). Объединенное решение базировалось на методе опорных векто-

ров (SVM) для классификации подлинности. Похожие решения с применением тек-

стурного анализа опубликованы в [3, 4]. Основная идея – выделить различия текстур 

в признаковом пространстве с помощью LBP и классифицировать с помощью SVM.  

 

 

1.8.2. Анализ изменения фокуса камеры 

Метод оценки подлинности по изменению фокуса камеры впервые предложен в 

[5]. Ключевая идея – использовать различия в значениях пикселей двух последова-

тельных изображений лица при изменении программно-регулируемого фокуса ка-

меры. Предполагая, что за короткий срок съемки движение лица незначительно, ав-

торы попытались находят в фокальном расстоянии для реальных и поддельных изоб-

ражений. Для подлинных лиц некоторые регионы при сфокусированной съемке чет-

кие в то время как другие расплывчаты из-за трехмерной структуры лица. Для распе-

чатанных изображений уровень размытия примерно одинаков для всех областей. Ос-

новным ограничением метода является его зависимость от расстояния объектов до ка-

меры, так как для разных расстояний уровень расфокусирования разный. Для оценки 

уровня фокусировки авторы используют сумму модифицированных лапласиан. 

 

1.8.3. Анализ движения глаз  

Метод описан в [6] как часть полномасштабной системы биометрического распо-

знавания. Рассматривается стандартное отклонение значений пикселей в области глаз 

для серии последовательных кадров и утверждалось, что для реальных изображений 

вариативность выше, чем для статических подделок. Для увеличения устойчивости 

метода применяются различные алгоритмы нормализации изображений и удаления 

эффектов освещенности.  
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 1.8.4. Анализ оптического потока 

Первое использование алгоритмов оптического потока для задач определения 

подлинности описано в [7], где проводится анализ различий оптического потока для 

двумерных и трехмерных плоскостей. На основании разницы в значениях компонент 

потока для поддельных и реальных изображений лиц подобран порог классификации. 

Дальнейшее развитие оптического потока для определения живости показано в рабо-

тах [8] и [9]. Идея использования оптического потока для задачи определения подлин-

ности взята за основу для некоторых алгоритмов, представленных в данной диссерта-

ционной работе.  

 

1.8.5. Анализ моргания 

Алгоритмы, основанные на выявлении морганий, стали основоположниками се-

мейства кооперативных методов определения живости. Впервые такой метод пред-

ставлен в [10]. Применяется Conditional Random Fields (CRF) для моделирования есте-

ственных паттернов моргания у реальных людей и полученное распределение исполь-

зуется для определения поддельных видеозаписей, где моргание генерируется слу-

чайно из статических изображений с открытыми и закрытыми глазами. Метод усовер-

шенствован в работах [11, 18, 27]. 

 

1.8.6. Анализ кодирования компонент лиц 

Технология кодирования частей лица разработана в [12]. Предложенный метод, 

состоит из четырех шагов: (1) выделение компонент лица; (2) кодирование низкоуров-

невых признаков для всех компонент; (3) синтез высокоуровневого представления 

лица из дескрипторов компонент с весами по критерию Фишера; (4) объединение ги-

стограмм всех компонент в один вектор и последующая классификация. Метод осно-

ван на трех основных различиях реальных и поддельных изображений: подделки бо-

лее размыты, так как фотографировался уже воспроизведенный артефакт; для реаль-
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ных лиц изображение лица зависит от параметра гамма коррекции камеры; для под-

делок распределение теней на изображении неестественно. Итоговое решение вклю-

чает в себя классификацию с помощью SVM дескрипторов частей лица, полученных 

алгоритмами извлечения признаков LBP и HOG.  

 

 

 

1.8.7. Анализ трехмерной структуры лица 

В [13] предложен метод, основанный на анализе трехмерных признаков лица, по-

лученных из двумерной фотографии. Показано, что восстановленные признаки 

формы лица для изображений реальных людей отличаются от поддельных. В работах 

[14, 15, 16] рассматривается метод восстановления трехмерной формы по набору по-

следовательных кадров, снятых с разного ракурса, что частично эквивалентно стерео-

камере, и последующее построение классификатора для определения живости. Недо-

статок данного семейства методов в высокой вычислительной сложности построения 

коэффициентов трехмерного объекта. 

 

1.8.8. Анализ признаков фона  

Еще одно семейство решений [17, 19, 20] нацелено на извлечение полезных при-

знаков из анализа фона вокруг лица. Оценивается движение пикселей фона и его ста-

бильность, степень “аффинности” заднего плана (распечатки часто бывают согну-

тыми, из-за чего геометрия сцены искажается) и другие моменты, которые могут сви-

детельствовать о фальсификации. Данные методы можно использовать как дополне-

ние к основным, нацеленным на изображение лица. 
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Глава 2 

Кооперативные методы определения живости 

Первые работы по решению задачи определения живости [8,9] относятся к коопе-

ративным методам и направлены на защиту от атак уровня А, то есть от неподвижных 

фальсификаций. Идея таких методов – попросить пользователя сделать какое-то ма-

шинно-определяемое действие, которое невозможно повторить статическим артефак-

том. Это действие выявляется сторонним алгоритмом, после чего метод определения 

живости представляет собой простое логическое “или” – состоялось действие или нет. 

В таком случае точность определения живости ограничена сверху точностью опреде-

ления этого действия. 

В донейросетевую эру компьютерного зрения алгоритмы справлялись с выявле-

нием только простых действий, поэтому ранние работы фокусировались на определе-

нии моргания или улыбки как признака подлинности человека. 

В последствии, с появлением нейронных сетей, увеличением количества и объ-

ема выборок по атрибутам лиц и возросшему интересу к тематике, количество доступ-

ных действий для проверки подлинности увеличилось [10]. Помимо улыбки и морга-

ния, стали использовать поворот головы в определенном направлении [11], а также 

направление взгляда человека [12]. 
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Ключевым недостатком таких кооперативных методов является простота взлома 

с помощью видео. Даже не обладая полным видео, где объект выполняет требуемое 

действие, можно отредактировать запись, добавив закрытые глаза или улыбку. 

Другое направление работ по кооперативным методам оценки живости нацелено 

на анализ текстур лица и окружения при воздействии светом определенного диапа-

зона. Последовательно зажигая подсветку разных цветов и узоров на экране устрой-

ства, алгоритмы считывают распределение света на изображении лица пользователя, 

строя на этом метод определения живости [15]. Такие методы уже требуют данных 

реальных и поддельных лиц для обучения модели различия цветовых отражений, но 

при этом способны противодействовать видеозаписям – атакам уровня B. Но на прак-

тике, алгоритмы по отражению света не нашли широкого применения, т.к. помимо 

ограниченности сценариев применения (невозможно использовать при дневном или 

ярком освещении, а также на большом расстоянии от экрана устройства), оказались 

крайне раздражающими для конечных пользователей систем. 

В данном разделе предлагается обобщение простых кооперативных методов в 

комплексную модель, способную справиться с атаками уровня B и некоторыми ата-

ками уровня C, а также предлагается метод определения живости по оптическому по-

току. 

Рассмотрим задачу определения живости в мобильном сценарии 𝑆моб для изобра-

жений из видимого диапазона 𝑀𝑅𝐺𝐵, распределение (1.10) в таком случае будет иметь 

вид 

                                𝓓 ~ 𝑝(𝑇|𝛉, 𝑆моб, 𝐼, 𝑀𝑅𝐺𝐵)𝑝(𝑇|{𝑷𝑨})                                       (2.1) 

Требуется построить алгоритм 𝐟(𝑇, 𝐰), такой что 

1

𝑚
∑ ℒ

𝑚

1

(𝐟(𝑇𝑖 , 𝐰),  𝑙𝑖) → min 
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Рассмотрим случай, когда 𝑚 → 0, т.е. когда в наличии один или несколько при-

меров на каждый класс. В таком случае большинство методов машинного обучения 

неприменимы. Однако, доступные примеры неслучайны и зависят от кооперативно-

сти алгоритма 𝐼, т.е. структура алгоритма управляет пространством данных. В таком 

случае, можно построить алгоритм оценки живости исходя из априорного представ-

ления о поведении реального и поддельного классов при заданном 𝐼. 

 

 

 

2.1. Атомарный метод определения живости 

Пусть дан трек 𝑇 = {𝑋𝑖}, 𝑖 = 1, … , 𝑁, на котором непрерывно присутствует лицо 

одного человека и его метка живости 𝑙. 

Назовем алгоритмом атрибута некоторый алгоритм 𝒦 компьютерного зрения, 

который по заданному кадру 𝑋𝑖 возвращает некоторое действительное число, вектор 

или метку класса 𝑘𝑖: 

                                                           𝒦(𝑋𝑖) = 𝑘𝑖                                                            (2.2) 

         

Назовем атомом 𝒜 алгоритм определения живости , который по последователь-

ности {𝑘𝑖} и фиксированным гиперпараметрам 𝜸 определяет бинарный ответ живости 

 𝑙, при этом  

                                                      𝒜({𝒦(𝑋𝑖)}, 𝜸) = 𝑙,                                                    (2.3) 
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Построим конкретное семейство атомов, которое оценивает бинарное действие 

пользователя. Пусть 𝛙: ℝN →  ℝ   – функция агрегации последовательности действи-

тельных чисел, а 𝛄 – набор гиперпараметров. Введем функции агрегации и гиперпа-

раметры, которые будут использоваться для построения атомов. 

Функции агрегации для последовательности {𝑘𝑖}, 𝑖 = 1, … , 𝑛: 

1. 𝛙𝐦𝐚𝐱({𝑘𝑖}) = max( {𝑘𝑖}) 

2. 𝛙𝐚𝐯𝐠({𝑘𝑖}) =
1

𝑛
∑ 𝑘𝑖

𝑛
𝑖    

3. 𝛙𝐦𝐚𝐱/𝐚𝐯𝐠
>  ({𝑘𝑖}, 𝑥) = [𝛙𝐦𝐚𝐱/𝐚𝐯𝐠({𝑘𝑖}) > 𝑥] 

4. 𝛙𝐦𝐚𝐱/𝐚𝐯𝐠
≤ ({𝑘𝑖}, 𝑥) = [𝛙𝐦𝐚𝐱/𝐚𝐯𝐠({𝑘𝑖}) ≤ 𝑥] 

где []  – оператор, равный 1, если условие в скобках выполняется и 0 в против-

ном случае. 

Для оценки бинарного действия разделим исходную последовательность на две 

части: 

                                                     𝐾1 = {𝑘𝑖}, 𝑖 = 1, … , ⌈𝑑𝑁⌉,                                             (2.4) 

𝐾2 = {𝑘𝑖}, 𝑖 = ⌈𝑑𝑁⌉ + 1, … , 𝑁, 

 где ⌈ ⌉ – целая часть числа, 𝑑 – гиперпараметр, показывающий, какую долю 

трека отнести к первой части. В частности, если 𝑑 =
1

𝑁
, то первая часть будет состоять 

из одного кадра. Формулу (2.4) сокращенно запишем как 

𝐾1, 𝐾2 = 𝛙𝐬𝐩𝐥𝐢𝐭({𝑘𝑖}, 𝑑)                                                      (2.5) 

Пример. Рассмотрим пример атома – кооперативного метода оценки живости по 

улыбке. Система просит пользователя смотреть в камеру с нейтральным выражением 

лица примерно одной секунду, после чего улыбаться в течение еще одной секунды. 

Для такого алгоритма нужен метод определения улыбки и небольшая если-то 

надстройка, агрегирующая все кадры. Рассмотрим такой метод с алгоритмической 

точки зрения. 
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Пусть 𝒦 – алгоритм, определяющий наличие улыбки на лице пользователя, т.е. 

возвращающий число 1, если улыбка присутствует и 0, если отсутствует. Метод атри-

бута переводит трек в бинарную последовательность длины 𝑁. Разобьем трек на две 

равные части по 𝑁/2 кадров. Если в первой половине большинство нулей, а во второй 

– большинство единиц (например, 75% от общего количества), то будем считать, что 

пользователь прошел проверку на живость. 

Пример псевдокода для такого атома 𝒜 показан на рис 2.2. В данном случае, ги-

перпараметрами алгоритма являются разбиение трека на 2 части поровну и 75% как 

критерий большинства для определения статуса в каждой из половин.  При внедрении, 

эти параметры можно вынести в отдельный конфигурационный файл и настраивать в 

процессе работы. 

 

 

 

_________________________________________________________________________ 

Вход: {𝑋𝑖}, 𝒦 

Выход: 𝑙 

1: для 𝑖 = 1, … , 𝑁 

2:      𝑘𝑖 =  𝒦(𝑋𝑖) 

3: 𝑠1 = ∑ 𝑘𝑖

𝑁

2
−1

0  

4: 𝑠2 = ∑ 𝑘𝑖
𝑁
𝑁

2

 

5: если (𝑠1 ≤  0.25 ∗
𝑁

2
) и (𝑠2 > 0.75 ∗

𝑁

2
), то: 𝑙 = 1 

6: иначе: 𝑙 = 0 

_________________________________________________________________________ 

Рис 2.1. Псевдокод алгоритма атомарного алгоритма по улыбке. 
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С учетом введенных функций агрегации, алгоритм атома можно описать проще. В 

данной работе предлагается восемь атомов, рассмотрим их подробнее.  

 

1.  Атом по улыбке. 𝒦 – алгоритм определения наличия улыбки. Пользователя 

просят смотреть в камеру с нейтральным выражением лица, потом улыбаться. 𝒦 воз-

вращает бинарный ответ, где 1 – улыбка есть, 0 – улыбки нет. 

Гиперпараметры: соотношение длины подсессий 𝑑, жесткость наличия атрибута в 

подсессии 𝑡 (в примере выше – 𝑡 = 75%).  

Алгоритм: 

𝐾1, 𝐾2 =  𝛙𝐬𝐩𝐥𝐢𝐭({𝑘𝑖}, 𝑑) 

𝒜({𝑘𝑖}) =  𝛙𝐚𝐯𝐠
≤ (𝐾1, 𝑡) ∗ 𝛙𝐚𝐯𝐠

> (𝐾2, 𝑡)  

 

 

2.  Атом по открытому рту. 𝒦 – алгоритм определения открытого рта.  Пользователя 

просят смотреть в камеру с нейтральным выражением лица, потом открыть рот. 𝒦 

возвращает бинарный ответ, где 1 – рот открыт, 0 – рот закрыт. 

Гиперпараметры: соотношение длины подсессий 𝑑, жесткость наличия атрибута в 

подсессии 𝑡 (в примере выше – 𝑡 = 75%).  

Алгоритм: 

𝐾1, 𝐾2 =  𝛙𝐬𝐩𝐥𝐢𝐭({𝑘𝑖}, 𝑑) 

𝒜({𝑘𝑖}) =  𝛙𝐚𝐯𝐠
≤ (𝐾1, 𝑡) ∗ 𝛙𝐚𝐯𝐠

> (𝐾2, 𝑡)  

 

 

3.  Атом по поднятым бровям. 𝒦 – алгоритм определения 68 ключевых точек лица 

и выделения координаты линии бровей. Пользователя просят смотреть в камеру с 
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нейтральным выражением лица, потом поднять брови. Фиксируется положение бро-

вей первых нескольких кадров, после чего ожидается пока положение бровей на лю-

бом из следующих кадров не отклонится от зафиксированного на порог сдвига. 

Гиперпараметры: соотношение длины подсессий 𝑑, минимальное расстояние между 

спокойным и поднятым положением бровей t. 

Алгоритм: 

𝐾1, 𝐾2 =  𝛙𝐬𝐩𝐥𝐢𝐭({𝑘𝑖}, 𝑑) 

𝒜({𝑘𝑖}) =  𝛙𝐦𝐚𝐱
> (𝐾2 − 𝛙𝐚𝐯𝐠(𝐾1), 𝑡) 

 

 

4-7.  Атом по повороту головы.  𝒦 – алгоритм определения углов поворота головы 

yaw, pitch, roll [55]. Пользователя просят смотреть в камеру с нейтральным выраже-

нием лица, потом повернуть голову вправо/влево/вниз/вверх. Фиксируются углы по-

ворота головы первых нескольких кадров, после чего ожидается пока угол поворота 

головы на любом из следующих кадров не отклонится от зафиксированного на порог 

сдвига в заданном направлении (например, для атома с поворотом головы вниз кон-

троль осуществляется по параметру pitch в сторону увеличения) 

Гиперпараметры: соотношение длины подсессий 𝑑, минимальное расстояние между 

спокойным и поднятым углом поворота головы t. 

Алгоритм: 

𝐾1, 𝐾2 =  𝛙𝐬𝐩𝐥𝐢𝐭({𝑘𝑖}, 𝑑) 

𝒜влево({𝑘𝑖}) =  𝛙𝐦𝐚𝐱
> (𝐾2

𝑦𝑎𝑤
− 𝛙𝐚𝐯𝐠(𝐾1

𝑦𝑎𝑤
), 𝑡) 

𝒜вправо({𝑘𝑖}) =  𝛙𝐦𝐚𝐱
>  (𝛙𝐚𝐯𝐠(𝐾1

𝑦𝑎𝑤
) − 𝐾2

𝑦𝑎𝑤
, 𝑡)  

𝒜вниз({𝑘𝑖}) =  𝛙𝐦𝐚𝐱
> (𝐾2

𝑝𝑖𝑡𝑐ℎ
− 𝛙𝐚𝐯𝐠(𝐾1

𝑝𝑖𝑡𝑐ℎ
), 𝑡) 

𝒜вверх({𝑘𝑖}) =  𝛙𝐦𝐚𝐱
>  (𝛙𝐚𝐯𝐠(𝐾1

𝑝𝑖𝑡𝑐ℎ
) − 𝐾2

𝑝𝑖𝑡𝑐ℎ
, 𝑡)  
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8.  Атом по морганию. 𝒦 - алгоритм определения статуса глаз (1 – открыты, 0 - за-

крыты). Пользователя просят моргнуть. Ищется последовательность открыты-за-

крыты-открыты в ответах метода атрибута. Если последовательность найдена, алго-

ритм оценки живости возвращает статус “Пройдено”.  

Гиперпараметры:  количество кадров статуса “открыты” 𝑛𝑜,  количество кадров “за-

крыты” 𝑛𝑐 в последовательности открыты-закрыты-открыты; доля допустимой по-

грешности в  последовательности 𝑡. 

Алгоритм:  

∀𝑑 = 1, … , 𝑁 − 2𝑛𝑜 − 𝑛𝑐: K1, K2, 𝐾3 =  {𝑘𝑖}, {𝑘𝑗}, {𝑘𝑣}, 

 𝑖 = 𝑑, … , 𝑑 + 𝑛𝑜, 𝑗 = 𝑑 + 𝑛𝑜 + 1, 𝑑 + 𝑛𝑜 + 𝑛𝑐 , 𝑣 = 𝑑 + 𝑛𝑜 + 𝑛𝑐 + 1, … , 𝑑 + 2𝑛𝑜 + 𝑛𝑐 

𝒜({𝑘𝑖}) = 𝛙𝐚𝐯𝐠
> (𝐾1, 1 − 𝑡) ∗  𝛙𝐚𝐯𝐠

≤ (𝐾2, 𝑡) ∗ 𝛙𝐚𝐯𝐠
> (𝐾3, 1 − 𝑡)  

 

 

Рис 2.2. Примеры запрашиваемых разными атомами действий. 

 

 

Качество работы атома зависит от двух факторов – точность следованию ин-

струкции пользователем и точностью метода атрибута. Первый фактор можно изме-

рить только в живом тестировании, задействовав множество людей в разных сцена-

риях. Для статистически значимой оценки качества работы атома в пределах 1% 
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нужно как минимум 10 разных людей, снимающихся в 10 разных локациях. Кроме 

этого, потребуется зафиксировать виды атак и провести равнозначное по количеству 

попыток тестирование взлома. Но и без живого тестирования можно получить верх-

нюю оценку точности работы атома. Верхняя оценка получается при условии, что мы 

полагаем точность следования инструкциям 100%. Тогда качество атома зависит 

только от качества метода атрибута.  

Настройку гиперпараметров атомов можно провести всего по нескольким тре-

кам, подобрав комфортные пороги для реальных людей и априори полагая, что алго-

ритм будет защищать от артефактов, которыми нельзя сделать запрашиваемое дей-

ствие. В частности, любая статическая двумерная атака не сломает атомы с предло-

женными движениями, а силиконовая трехмерная маска не сломает атом по поднятым 

бровям.  Основной недостаток таких атомов – это невозможность противодействия 

динамическим атакам. Но если объединить несколько атомов подряд в одном методе, 

то подобрать противодействие становится сложнее. Каждый из атомов по отдельности 

уязвим против динамической атаки – записанного на мобильное устройство повторе-

ния прохождения процедуры. Для противодействия таким атакам предлагается ком-

бинация атомов в мультиатомарный алгоритм. 

 

_________________________________________________________________________ 

Вход: набор атомов {𝒜𝑖}, 𝑖 = 1, … , 𝑛; количество проверок 𝑚. 

Выход: 𝑙 

1: выбрать 𝑖1, 𝑖2, … , 𝑖𝑚 случайных чисел из 1, … , 𝑛. 

2: запросить у пользователя треки по действиям {𝒜𝑖𝑗
} , 𝑗 = 1, … , 𝑚 ∶ {𝑇𝑖𝑗

} 

3:  𝑎𝑖𝑗
=  𝒜𝑖𝑗

(𝒦𝑖𝑗
(𝑇𝑖𝑗

)) 

4:  𝑙 = ∏ 𝑎𝑖𝑗

𝑚
𝑗=1  

_________________________________________________________________________ 

Рис 2.3. Мультиатомарный алгоритм определения живости. 
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Мультиатомарный алгоритм (рис. 2.3) состоит из нескольких атомов, выполняю-

щихся в произвольной последовательности непрерывно. Простая агрегация отдель-

ных атомов в связанную последовательность и расставление компонент в произволь-

ном порядке существенно улучшают защиту от различных видов атак. Так, отдельные 

атомы не обеспечивают защиту от динамических фальсификаций, но случайная по-

следовательность, подкрепленная требованием непрерывности, такую защиту обеспе-

чить может. Количество возможных случайных выборов m активных атомов из n ба-

зовых можно посчитать как количество размещений 𝐴𝑛
𝑚 =  

𝑛!

(𝑛−𝑚)!
. Например, для 8 

активных и 4 базовых это 1680 различных вариантов. Даже если у злоумышленника 

есть видео отдельных атомов, подготовить нужную комбинацию в процессе автори-

зации будет практически невозможно. 

Предлагаемый алгоритм определения подлинности также защищает от силико-

новых и керамических трехмерных масок. Если маска неподвижна, то такая атака не 

пройдет атомы, основанные на движении мимических мышц. Самые дорогие маски 

оставляют открытыми области рта и глаз, обходя такие атомы. Для противодействия 

сложным случаям предлагается атом по поднятым бровям. Данный вид кооператив-

ной проверки не был описан в научных работах и патентах по определению живости, 

соответственно, существующие трехмерные артефакты взлома не ориентированы на 

подвижность области бровей и как следствие, не могут пройти предложенный атом. 

Кооперативные динамические методы были первыми из семейства систем био-

метрической защиты, которые были реализованы на практике. Они до сих пор исполь-

зуются в случаях, когда есть основной метод защиты (например, проверка документа), 

и нужна простая проверка биометрии. В таких сервисах можно встретить отдельные 

атомы из приведенных выше. Главными недостатками атомарного алгоритма является 

время прохождения процедуры и степень вовлеченности пользователя. С развитием 

пользовательских сервисов и упрощением взаимодействия клиентов с приложениями 
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тренд разработки сместился в сторону уменьшения кооперативности в алгоритмах 

определения подлинности лица.  

 

 

2.2. Определение живости по оптическому потоку 

Несмотря на то, что атомарный метод определения живости защищает от атак 

уровня A, B и C, минимальное время для прохождения такой процедуры верификации 

составляет около 30 секунд, что не удовлетворяет требованиям некоторых практиче-

ских сценариев. С другой стороны, в сценариях (например, подтверждение присут-

ствия сотрудника на рабочем месте), где скорость и удобство важнее, чем степень за-

щиты, допускается жертвование уровнем надежности в угоду комфорту.  

Рассмотрим задачу (2.1) в условиях, когда данные для обучения присутствуют, 

но в недостаточном для создания хорошей нейросетевой модели количестве. В таком 

случае, предлагается использовать концепцию искусственной модальности. 

В данном разделе предлагается кооперативный метод с защитой от атак уровня 

A и B. требующий меньше времени и усилий со стороны пользователя. Идея метода 

состоит в использовании оптического потока [56, 73] между двумя кадрами лица, сня-

тыми в разные промежутки времени.  

Оптический поток – это движение объектов между двумя изображениями одного 

трека, вызванное относительным перемещением наблюдаемого относительно наблю-

дателя.  
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Рис 2.4. Оптический поток между двумя изображениями. 

 

В процессе такого перемещения, пиксели объекта изменяют свое местоположе-

ние от первого ко второму изображениям. Полагая интенсивность 𝐼 перемещенных 

пикселей постоянной, получаем что 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡) 

Считая, что перемещение мало, раскладываем правую часть уравнения по ряду 

Тейлора: 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡) = 𝐼(𝑥, 𝑦, 𝑡) +
𝜕𝐼

𝜕𝑥
𝑑𝑥 +

𝜕𝐼

𝜕𝑦
𝑑𝑦 +

𝜕𝐼

𝜕𝑡
𝑑𝑡, 

откуда следует, что 

                                             
𝜕𝐼

𝜕𝑥
𝑑𝑥 +

𝜕𝐼

𝜕𝑦
𝑑𝑦 +

𝜕𝐼

𝜕𝑡
𝑑𝑡 = 0                                                   (2.6) 

Разделим (2.6) на 𝑑𝑡  и положим 𝑉𝑥 =  
𝑑𝑥

𝑑𝑡
, 𝑉𝑦 =  

𝑑𝑦

𝑑𝑡
.  Получим 

                                                 
𝜕𝐼

𝜕𝑥
𝑉𝑥 +

𝜕𝐼

𝜕𝑦
𝑉𝑦 +

𝜕𝐼

𝜕𝑡
= 0                                                      (2.7)                                
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𝑉𝑥, 𝑉𝑦 – горизонтальная и вертикальная компоненты скорости оптического потока 

для точки (𝑥, 𝑦), а производные в уравнении – это градиенты изображения по гори-

зонтали, вертикали и времени. Уравнение (2.7) содержит две неизвестных и не может 

быт решено однозначно. Наиболее известный алгоритм поиска оптического потока – 

алгоритм Лукаса-Канаде [47]. Но, с развитием нейронных сетей появились модели, 

которые получают оптический поток более высокого качества. На данный момент 

лучшим алгоритмом в определении оптического потока является PWCnet [56].  В 

дальнейшем, если не указано обратное, под методом оптического потока будет под-

разумеваться данный алгоритм. 

Компоненты скорости оптического потока, посчитанные для каждой точки ис-

ходного изображения, могут быть преобразованы в двухканальное изображение (для 

этого достаточно нормировать значения к диапазону [0,255]). 

На рис. 2.5. показана визуализация компонент для двух кадров из одного трека. 

Отличительной особенностью оптического потока является то, его визуализация 

сильно коррелирует с трехмерным изображением, которое могло бы быть получено с 

помощью специальной камеры или по стереопаре. Глубина – сильная в плане призна-

ков модальность для решения задачи определения живости, соответственно, и опти-

ческий поток может быть использован как промежуточное звено для определения под-

линности изображения. 

 

Рис 2.5. Пример работы PWCnet на двух изображениях из одного трека. 
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Рис 2.6. Пример оптического потока для вырезанной маски. 

 

На рис 2.6. показан пример визуализации компонент оптического потока для 

атаки распечатанной вырезанной маской. На примерах 2.5 и 2.6 голова наклонялась 

на одинаковую величину. На изображении реального человека можно четко увидеть 

трехмерную структуру лица, в то время как для распечатанной маски интенсивность 

пикселей в районе лица равномерная. 

Для корректной работы оптического потока требуется высокое разрешение фо-

тографии, поэтому методы определения живости на его основе могут применяться 

только в мобильных и стационарных сценариях. На рис. 2.7 показана деградация ком-

поненты оптического потока при уменьшении разрешения входных данных, где 

видно, что качество сильно зависит от размерности входящей пары изображений. Но, 

с уменьшением размерности, падает время на обработку оптического потока. На рис 

2.4. показано время работы на графическом процессоре GeForce GTX 1080Ti. Опти-

мальным по соотношению скорость качество после визуального анализа является раз-

мер 448 пикселей. При этом лицо на кадре занимает 224 пикселя. Такой размер обес-

печивается большинством современных видеокамер на мобильных и стационарных 

устройствах, поэтому был принят в качестве основного в дальнейших исследованиях. 
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Рис 2.7. Сравнение качества оптического потока для данных разного разрешения.  

 

Кооперативные атомы по повороту головы, описанные в предыдущем разделе, 

также требуют от пользователя движение головой. Но поворот головы в таких атомах 

должен составлять порядка 30 градусов (при меньшей амплитуде возможен взлом 

наклоном распечатанного артефакта). В случае определения живости по оптическому 

потоку достаточно, чтобы пользователь повернул голову или снимающее устройство 

на 5-7 градусов – именно таких углов достаточно для визуально различимой трехмер-

ной структуры лица. 

Для создания классификатора оценки живости по оптическому потоку необхо-

дима обучающая выборка. Но, в отличие от классификатора по сырым RGB изобра-

жениям, тут для обучения качественной модели требуется на порядок меньше данных, 

так как оптический поток убирает множество мелких деталей, сужая признаковое про-

странство, и тем самым позволяя избежать переобучения алгоритма. 

Пусть задана обучающая выборка реальных и поддельных треков в условиях ко-

оперативного условия 𝐼 − легкого поворота головы вбок, т.е. для каждого трека 𝑇 ∈

𝓓 выполняется условие: 

                       𝐼:  𝐲𝐚𝐰(X𝑖+1) ≥ 𝐲𝐚𝐰(𝑋𝑖) − 𝜖    ∀𝑖 = 2, … , |𝑇|,                                    (2.8) 
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где 𝐲𝐚𝐰 – угол поворота головы вбок, |𝑇| – длина трека, 𝜖 – допустимая погреш-

ность в разнице углов между кадрами.  

Пусть 𝕄𝑂𝐹 ⊂  ℝ2𝑊𝐻 – искусственная модальность оптического потока, где 

𝜙(𝑇) = 𝑃𝑊𝐶𝑛𝑒𝑡(𝑋1, 𝑋𝑐) =  [𝑉𝑥, 𝑉𝑦] −   

функция преобразования модальности, переводящая трек 𝑇 в матрицу действи-

тельных чисел размера 2 × 𝑊 × 𝐻 – компонент скорости оптического потока, а пара 

кадров выбирается из трека по принципу 

∀𝑖:  𝐲𝐚𝐰(𝑋𝑖) −  𝐲𝐚𝐰(X1) ≥ 𝑡, 𝑐 = min{𝑖}, 

т.е. фиксируется первый кадр трека и выбирается первый по времени кадр такой, 

что разница углов между кадрами минимум 𝑡 (гиперпараметр алгоритма). 

Далее, выбирается семейство моделей, исходя из бюджета на время обработки 

одного трека. После чего применяется процедура получения оптимального алгоритма, 

описанная в главе 1, и получается итоговый алгоритм 𝐟∗(𝜙(𝑇), 𝐰∗). 

 

 

 

2.3. Практическая реализация оценки живости по оптическому потоку 

Рассмотрим реализацию предложенного метода на практике. В качестве сцена-

рия применимости был выбран мобильный, для упрощения разработки использовался 

клиент-серверный подход. Пользователя просят снять фронтальное видео своего 

лица, при этом в процессе слегка повернуть голову вбок/вниз или подвигать телефон 

влево-вправо. Полученный ролик длительностью в 2-4 сек загружается в чат-бота в 

приложении на телефоне. Приложение отправляет видео на заданный сервер, на кото-

ром результат обрабатывается, после чего результат оценки живости отсылается об-

ратно на телефон (рис. 2.8). 
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Рис. 2.8. Процесс использования метода оценки живости по оптическому потоку. 

 

 

Рис. 2.9. Схема работы сервера оценки живости по оптическому потоку. 

 

Процедура работы сервера (рис. 2.9): 

1. Видеофайл обрабатывается детектором лиц, получается трек {𝑋𝑖}. 

2. Для каждого кадра из трека считаются углы поворота головы 𝑟𝑜𝑙𝑙𝑖 , 𝑦𝑎𝑤𝑖 ,

𝑝𝑖𝑡𝑐ℎ𝑖. 

3. Выбирается 𝑋𝑗 если max(|𝑟𝑜𝑙𝑙𝑗 − 𝑟𝑜𝑙𝑙0|, |𝑦𝑎𝑤𝑗 − 𝑦𝑎𝑤0|, |𝑝𝑖𝑡𝑐ℎ𝑗 − 𝑝𝑖𝑡𝑐ℎ0|) > 7. 

4. Считается оптический поток  [𝑉𝑥, 𝑉𝑦] = 𝑃𝑊𝐶𝑛𝑒𝑡(𝑋0, 𝑋𝑗).  

5. Считается живость 𝑙 = 𝐟∗ ([𝑉𝑥, 𝑉𝑦]). 
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2.3.1. Сбор данных 

Для обучения предложенной модели определения живости требуется выборка ре-

альных и поддельных пар изображений, но таких данных в открытом доступе нет, по-

этому выборка была собрана самостоятельно. На первом этапе было скачано 500 ро-

ликов из видео хостинга Youtube. Видео отбирались по присутствию фронтально 

смотрящего в камеру человека. Далее, видео обрабатывались детектором лиц и алго-

ритмом углов поворота головы. Все возможные пары кадров, подходящие под п.3. 

процедуры работы сервера, добавлялись в формируемую выборку –  итого получилось 

~40 000 пар. 

Для формирования пар с поддельными лицами, из выборки CelebaHQ [57] были 

отобраны 60 лиц высокого разрешения.  Далее, лица были распечатаны на бумаге раз-

мера A4, для 30 артефактов дополнительно вырезали контуры лица. Каждый из полу-

ченных артефактов снимался на мобильную камеру в разных условиях освещения, по-

пытками сгибания и поворота артефакта. Для каждой подделки было снято по 5 ко-

ротких роликов, получая итого 300 видео атак. Видео были обработаны детектором 

лиц, после чего из каждого видео случайно были выбраны по 10 пар изображений, 

всего 30 000 пар. Сформированная выборка 𝓓 была разбита на 𝓓𝐭𝐫𝐚𝐢𝐧 и 𝓓𝐯𝐚𝐥 в соотно-

шении 90% и 10%. 

Чтобы проверить потенциальную работоспособность в практическом приложе-

нии, тестовая выборка должна быть максимально близко похожа на реальные условия 

применения. Для создания тестовой выборки был разработан telegram-бот, реализую-

щий схему на рис. 2.8. В процессе сбора данных приняло участие 40 человек, которые 

снимали себя, а также распечатанные и демонстрируемые с экранов телефонов и план-

шетов подделки. Описание итоговой статистики тестовой выборки показано в таблице 

2.1. 
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Таблица 2.1.  Статистика тестовой выборки для метода определения живости по оп-

тическому потоку. 

Тип данных Описание Количество 

Real Реальный человек. 160 

P1 Распечатанное изображение (например, на A4) без 

модификаций. Края бумаги видны в кадре. 

63 

P2 Распечатанное изображение (например, на A4) без 

модификаций. Края бумаги не видны в кадре.  

34 

P3 Распечатанное изображение лица, вырезанное по 

контуру. 

99 

D1 Статическое изображение лица (как из социальных 

сетей), на экране телефона. Границы телефона 

находятся в кадре. 

63 

D4 Видео с атакуемым повторяюще близкие движения 

к тому, что требуется в системе. 

59 

 

 

 

2.3.2. Обучение модели 

В качестве основного алгоритма для решения задачи определения живости по 

выборке 𝒟 использовалась глубокая нейронная сеть. Архитектура – Mobilenet [49] с 

урезанным до 256 количеством нейронов на последнем линейном слое. На выходе 

применялась сигмоидная функция активации 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
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 которая возвращает число в диапазоне от 0 до 1, что соответствует вероятности нали-

чия атрибута живости. В качестве функции потерь использовалась бинарная кросс-

энтропия 

                                     ℒ =  −(𝑙 log 𝑠 + (1 − 𝑙) log(1 − 𝑠) ),                                      (2.5) 

где 𝑙 – метка живости, s – выход нейронной сети. Гиперпараметры сети оптимизиро-

вались на 𝓓𝐭𝐫𝐚𝐢𝐧, лучшая эпоха выбиралась по значению функции потерь на  𝓓𝐯𝐚𝐥. Мо-

дель обучалась 30 эпох с методом оптимизации ADAM [42], начальным параметром 

коэффициента обучения 𝑙𝑟 = 0.0001, убывающим каждые 10 эпох в 2 раза. Качество 

алгоритма проверялось на выборке 𝓓𝐭𝐞𝐬𝐭, распределение которой сильно отличалось 

от данных в обучении. Критерием качества модели считался 𝑇𝑃𝑅 в точке 𝐹𝑃𝑅 =

0.01. 

  После обучения первой версии модели был произведен сбор сложных примеров. 

Для этого в telegram бота по сбору данных был добавлен ответ от системы пользова-

телю, показывающий число 𝑠 – вероятность живости – для загруженного видео. Поль-

зователей просили снять настоящие и поддельные видео которые покажут наиболее 

неправильный результат с точки зрения оценки живости. Было получено около 100 

реальных и 100 фальсифицированных видео, которые плохо распознавались систе-

мой. Данные видео были разбиты на кадры и добавлены в обучающую выборку. Ито-

говый результат работы новой модели на тестовой выборке отображен в таблице 2.2. 

Результаты посчитаны для разных типов атак чтобы показать степень защиты модели 

для каждого случая индивидуально. 

 

Таблица 2.2.  Результат работы предложенного алгоритма для разных типов атак. 

Тип атак Количество TPR в FPR = 0.01 

P1 63 0.994 

P2 34 0.969 
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P3 99 0.944 

все P 196 0.944 

D1 63 0.982 

D4 59 0.000 

 

Для сравнения эффективности предложенного метода, рассматривается алго-

ритм, обученный по исходным изображениям с помощью процедуры построения оп-

тимального алгоритма. Предложенный алгоритм по искусственной модальности оп-

тического потока показывает значительное улучшение по сравнению с базовым алго-

ритмом на обычных изображениях (рис. 2.10.). 

Предложенный метод оценки живости по оптическому потоку хорошо справля-

ется с распечатанными и неподвижными артефактами, но при этом не работает для 

динамического случая D4, в котором присутствовали видео с запрашиваемыми дви-

жениями головой. Дальнейшее улучшение метода возможно добавлением к текущему 

кооперативному алгоритму некооперативного модуля, нацеленного на выявление 

экранных атак. 

Другим возможным решением является изменение кооперативного поведения на 

более сложное движение. Видео человека, кивающего головой получить сложно, но 

возможно. Но метод по оптическому потоку подходит и для другого действия – при-

ближения. 
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Рис 2.10. Сравнение меры качества алгоритмов, обученных на модальности оп-

тического потока и на исходных изображениях. 

 

Пользователь начинает съемку видео на расстоянии вытянутой руки, после чего 

в течение нескольких секунд приближает телефон, пока изображение лица не займет 

весь экран. В таком случае ближнее изображение будет обладать эффектом рыбьего 

глаза [5] – искажения, когда нос увеличен по сравнению с обычным лицом. Биомет-

рический шаблон такого типа получить намного сложнее, что на практике делает ме-

тод устойчивым к динамическим атакам. Но данное кооперативное движение также, 

как и атомарный алгоритм оценки подлинности является неудобным для пользова-

теля, поэтому на практике широкого спроса алгоритм по приближению лица не полу-

чил. 
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2.4. Заключение 

В данной главе были освещены основные методы кооперативного оценки живо-

сти, предложен простой атомарный метод определения подлинности, обеспечиваю-

щий защиту от атак любых уровней сложности, а также предложен алгоритм оценки 

по оптическому потоку. Алгоритм определения живости по оптическому потоку тре-

бует намного меньше времени и усилий со стороны пользователя, но при этом не-

устойчив к динамическим атакам.  

Ввиду стремительного развития области и увеличенного спроса на более простые 

для пользователя методы, кооперативные алгоритмы стремительно уходят в прошлое, 

но все еще являются основными методами защиты для большинства систем биомет-

рической идентификации. 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 3 

Некооперативные методы определения живости для СКУД 
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Проблема определения живости для сценария СКУД стоит обособленно от дру-

гих методов из-за сильного различия в сценарии. В данном случае, камеры установ-

лены на пропускающих терминалах и система должна оценить подлинность пользо-

вателя до того, как он подойдет на расстояние прохода через турникет. Соответ-

ственно, основная работа ведется в диапазоне 1.5-3м от камеры, при этом размер лица 

в таком случае составляет 80-120 пикселей. Сценарий предполагает некооперативное 

поведение пользователя, то есть живость должна быть определена по треку, записан-

ному в диапазоне подхода человека к турникету. 

Положительным моментом является частичная защищенность от экранных атак 

и полноразмерных распечатанных артефактов, так как ввиду непрерывности записи с 

камеры границы артефакта будут видны на ранних кадрах трека. А сильное прибли-

жение подделки к окуляру камеры сделает изображение размытым, так как фокус ка-

меры настроен на дальнюю съемку. Самые распространенные примеры атак на си-

стему контроля и управления доступом показаны на рис. 3.1.  

В данной главе предлагаются три различных метода решения задачи определения 

живости для СКУД. Все предложенные методы работают в режиме реального времени 

и были внедрены в системы контроля доступа различных предприятий в России и за 

рубежом. 

Дана контрольная выборка 𝓓𝐭𝐞𝐬𝐭: 

𝓓𝐭𝐞𝐬𝐭~ 𝑝(𝑇|𝛉𝐭𝐞𝐬𝐭, 𝑆, 𝐼, 𝑀)𝑝(𝑇|{𝑷𝑨}), 

собранная на проходных большого предприятия. Данные сняты в неизвестных усло-

виях 𝛉𝐭𝐞𝐬𝐭 с нескольких десятков камер. Виды атак (табл. 3.1): 

{𝑷𝑨} = {𝑃1, 𝑃2, 𝑃3, 𝐷1}, 
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Рис. 3.1. Примеры атак на СКУД (А4, маски и экранные артефакты). 

 

т.е. распечатанные листы А4, полноразмерные распечатки, вырезанные двумерные 

маски и демонстрация экрана телефонов. Размер выборки – 5097реальных треков и 

1425 треков с атаками.  

 

Таблица 3.1.  Статистика тестовой выборки для сценария СКУД. 

Тип данных Описание Количество 

Real Реальный человек. 5097 
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P1 Распечатанное изображение (например, на A4) без 

модификаций. Края бумаги видны в кадре. 

394 

P2 Распечатанное изображение (например, на A4) без 

модификаций. Края бумаги не видны в кадре. 

200 

P3 Распечатанное изображение лица, вырезанное по 

контуру. 

425 

D1 Статическое изображение лица (как из социальных 

сетей), на экране телефона. Границы телефона нахо-

дятся в кадре. 

406 

 

Требуется построить алгоритм, показывающий максимальное значение TPR в 

точке FPR=0.01 на заданной контрольной выборке.  

 

3.1. Сбор обучающей выборки 

При создании обучающей выборки для решения поставленной задачи,  внутрен-

ние условия контрольной выборки 𝛉𝐭𝐞𝐬𝐭 повторить невозможно, но можно попробо-

вать покрыть максимальное число внутренних условий за счет сбора данных при по-

стоянно меняющимся заднем плане, как имитация разных турникетов. 

Чтобы сделать обучающую выборку максимально разнообразной по заднему 

фону, была снята профессиональная студия, где 10 человек в течение двух часов ими-

тировали попытки взлома и реальные проходки перед 5 установленными на разной 

высоте камерами. На рис. 3.2. показаны примеры получившихся треков. 

Всего было собрано 1073 трека с различными видами атак, средняя длина трека 

– 40 кадров, что соответствует 1.5 секундам видеозаписи.  
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Рис. 3.2. Собранные в студии треки разных видов атак. 

Помимо полученных данных из студии, на проходных турникетах офиса была 

установлена камера, снимающая входящий поток людей, добавив к обучающей вы-

борке 2300 реальных треков. Кроме этого, было собрано 2000 треков с видеозаписей 

youtube, где люди ходят по улицам и снимают прохожих. Было скачано 200 роликов, 

собранных в разных городах и странах. Данные очень разнообразны, что увеличивает 

вариативность выборки. Примеры реальных записей с канала показаны на рис 3.3. 

Все собранные изображения были пропущены через детектор лиц, кадры были 

центрированы и была составлена обучающая выборка 𝓓. 
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Рис. 3.3. Собранные в Youtube реальные треки прохожих. 

 

3.2. Живость по одному изображению 

С учетом собранных данных, построим алгоритм определения живости по од-

ному кадру 𝐟𝑋(𝑋𝑖 , 𝐰). Результат на треках будем считать, как усреднение результатов 

по кадрам:  

𝐟(𝑇, 𝐰) = 𝛙𝐚𝐯𝐠({𝐟𝑋(𝑋𝑖 , 𝐰)}).  

Будем обучать алгоритм по предложенной процедуре. Сначала сгенерируем но-

вые данные, заменяя фон исходных изображений на произвольный. Изображение од-

ного реального человека и его маска сегментации позволяют сгенерировать множе-

ство различных фальсификаций (можно менять изображение, на которое переносится 

маска, варьировать размер маски и ее положение на изображении), что делает выборку 

богатой и разнообразной, позволяя избежать переобучения.  
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Для еще большего увеличения вариативности предлагается использовать силь-

ную аугментацию, такую как повороты, размытие и цветовые возмущения. Кроме 

этого, маску сегментации можно растягивать до квадрата, имитируя распечатанные 

А4, или вырезать не только лицо, но и большую прямоугольную область вокруг него, 

имитируя атаки с помощью экранов устройств.  

 Разобьем собранную выборку на обучающую и валидационную по разным внут-

ренним условиям – 𝐢𝐝 – исключая переобучение алгоритма на черты лица человека: 

𝓓 =  𝓓𝐭𝐫𝐚𝐢𝐧 ∪  𝓓𝐯𝐚𝐥 ~ 𝑝(𝑇|𝐢𝐝𝟏)𝑝(𝑇|{𝑷𝑨}) +  𝑝(𝑥|𝐢𝐝𝟐)𝑝(𝑇|{𝑷𝑨}) 

Далее, выберем семейство моделей исходя из ограничений по времени работы. Так 

как итоговый алгоритм должен работать в режиме реального времени, была выбрана 

авторская архитектура SimpleNet (рис 3.4).  Алгоритм на такой архитектуре выполня-

ется 5-6 мс на одном ядре обычного процессора (CPU). Рассмотрим детали обучения. 

 

 

 Рис. 3.4. Архитектура SimpleNet.  
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3.2.1. Обучение модели  

Для обучения метода определения живости по одному кадру была выбрана архи-

тектура (рис 3.4.). Такая архитектура позволяет использовать алгоритм в режиме ре-

ального времени. Кроме скорости, низкая мощность сети позволяет избежать пере-

обучения на детали и концентрироваться на поиске границ между демонстрируемым 

на камеру распечатанным артефактом и фоном. Глубокая архитектура может выучить 

мелкие особенности цветных изображений и не будет обобщаться на реальные при-

меры. 

Нейронная сеть принимает на вход центрированное по лицу изображение раз-

мера 224 пикселя и возвращает предсказание живости. Модель обучалась 250 эпох на 

280 000 реальных данных с помощью ADAM оптимизатора [42] с коэффициентом 

обучения, изменяемым по косинусу и начальным значением 0.001. 

 

3.2.2. Эксперименты 

Были проведены эксперименты по разному соотношению исходных выборок и 

степени аугментации при генерировании подделок, лучший результат показан в таб-

лице 3.2. по выборке СКУД, описанной в предыдущем разделе. 

 

Таблица 3.2.  Точность работы алгоритма оценки живости по одному изображению. 

Вид атаки Кадры, TPR в точке FPR = Треки, TPR в точке FPR = 

0.1 0.01 0.001 0.1 0.01 0.001 

P1 0.999 0.977 0.709 1.000 0.991 0.450 

P2 0.688 0.134 0.000 0.595 0.116 0.031 

P3 0.998 0.962 0.810 1.000 0.994 0.046 
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D1 0.995 0.525 0.000 0.935 0.424 0.017 

Все 0.995 0.603 0.000 0.977 0.416 0.031 

 

 

Предложенный алгоритм хорошо справляется с вырезанными масками P3 –  0.994 

TPR в точке FPR=0.01, но плохо работает на полноразмерных артефактах P2 – его 

точность всего 0.116 в данном домене. Это ожидаемо, так как на таких изображениях 

отсутствуют границы артефактов. 

Несмотря на то, что выборка довольно большая, потенциал модели не был исчер-

пан. Для этого был проведен эксперимент по построению зависимости значения функ-

ционала качества –  функции потерь 𝐿 на тестовой выборке – от размера обучающей 

выборки. 

Из исходной обучающей выборки в 280000 изображений было выбрано по 5 слу-

чайных подвыборок для заданных размеров: 10000, 20000, 40000, 70000, 14000 изоб-

ражений. Далее, по описанной выше процедуре строился оптимальный алгоритм на 

архитектуре SimpleNet и считалось значение функции потерь на котрольной выборке. 

На рис. 3.5. показана зависимость качества алгоритма от размера обучающей вы-

борки. Видно, что график строго убывающий и замедления падения не наблюдается, 

то есть, если бы было больше разнообразных данных для обучения, точность алго-

ритма была бы выше.  

Для улучшения точности на контрольной выборке предлагается использовать пе-

реход в искусственную модальность. 
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Рис. 3.5. Зависимость значения функции потерь на контрольной выборке от размера 

обучающей выборки. 

 

3.3.  Живость по границам изображения 

Идея метода основана на предположении, что силуэты реальных пользователей 

и злоумышленников с артефактами отличаются. Когда взломщик держит артефакт пе-

ред собой, контур артефакта чаще всего вылезает за пределы контура человека. Этот 

признак можно выделить методом компьютерного зрения – фильтром поиска границ 

Canny [71], а потом построить классификатор, направленный на поиск отличий между 

силуэтами реальных людей и злоумышленников.  
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Рис. 3.6. Пример работы алгоритма выделения границ на поддельных изображе-

ниях. 

 

На рис 3.6 и 3.7. показаны примеры работы алгоритма выделения границ для под-

дельных и реальных изображений. Для поддельных четко видны контуры артефактов, 

в то время как силуэты реальных людей выглядят иначе. 

Карту контуров изображения можно рассматривать как искусственную модаль-

ность, аналогичную карте оптического потока. Новое отображение RGB картинок 

снижает сложность конечной задачи определения живости так как содержит меньше 

степеней свободы (потеряна информация о чертах лица человека), что позволяет обу-

чить модель определения подлинности на меньшем числе данных без риска переобу-

чения. Более того, новая модальность была выбрана так, чтобы уже содержать полез-

ные для живости признаки: различие силуэтов добросовестных и злоумышленников. 
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Рис. 3.7. Пример работы алгоритма выделения границ на реальных изображе-

ниях. 

 

Построим алгоритм определения живости по карте границ изображения 

𝐟𝑋(𝜙(𝑋𝑖), 𝐰), где 𝜙  – функция преобразования искусственной модальности. Результат 

на треках будем считать, как усреднение результатов по кадрам:  

𝐟(𝑇, 𝐰) = 𝛙𝐚𝐯𝐠({𝐟𝑋(𝜙(𝑋𝑖), 𝐰)}).  

Обучение алгоритма по картам границ аналогично обучению по обычному изоб-

ражению. Семейство моделей выбирается исходя из ограничений по времени работы 

– рассматривается SimpleNet. Далее, обучаются модели и выбирается одна оптималь-

ная по значению функции потерь на валидационной выборке 

 

3.3.1.  Обучение модели  

Ввиду того, что карта границ содержит мало детальной информации, для обуче-

ния алгоритма определения живости по таким данным достаточно неглубокой 
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нейронной сети. Поэтому в данном случае использовалась архитектура SimpleNet 

(рис. 3.4). 

Карта контуров имеет размерность 1 × 112 × 112, на выходе модели применя-

ется сигмоидная функция активации, функция потерь – бинарная кросс-энтропия. 

Структура обучения аналогична описанной в разделе определения живости по опти-

ческому потоку, лучшая эпоха выбиралась по валидационной выборке, составляющей 

10% от 𝓓𝐭𝐫𝐚𝐢𝐧.  

Предложенный некооперативный метод определения подлинности работает по 

одному кадру, никак не учитывая поведение на соседних кадрах. Однако, с учетом 

скорости работы алгоритма и наличием нескольких кадров в треке на этапе тестиро-

вания, возможно улучшить точность работы, агрегируя результаты по треку. Наибо-

лее надежная и показывающая лучший результат стратегия – усреднение предсказа-

ний модели по всем кадрам трека. В таблице 3.3. показаны результаты работы итого-

вой модели определения живости по картам сегментации отдельно для кадров и для 

треков, а также разбитые по типам атак. 

 

 

3.3.2. Эксперименты 

 

   Таблица 3.3.  Точность работы алгоритма определения живости по маске границ. 

Вид атаки Кадры, TPR в точке FPR = Треки, TPR в точке FPR = 

0.1 0.01 0.001 0.1 0.01 0.001 

P1 0.926 0.691 0.000 0.856 0.565 0.182 

P2 0.827 0.563 0.000 0.727 0.507 0.317 

P3 0.925 0.746 0.563 0.888 0.666 0.000 
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D1 0.989 0.867 0.640 0.995 0.839 0.691 

Все 0.929 0.722 0.379 0.869 0.578 0.182 

 

Точность алгоритма на типах подделок P2 ожидаемо ниже остальных срезов, так 

как данный вид атак содержит полноразмерные подделки и границы реальных и под-

дельных изображений выглядят одинаково, что усложняет работу модели. Для полной 

тестовой выборки, усреднение предсказаний модели по треку повышает точность мо-

дели с 0.416 до 0.578 % TPR в FPR=0.01, т.е. при допустимой ложноположительной 

ошибке 1% система не пропустит 42.2% реальных пользователей. Однако, точность 

текущего алгоритма сложно повысить ввиду ограничений используемых промежуточ-

ных модальностей. Поэтому для улучшения качества предлагается еще один алгоритм 

оценки живости, дополняющий слабые места вышеописанного метода. 

Новый метод работает лучше предыдущего на всей выборке, но так как они оба 

быстрые и противодействуют разным типам атак, можно использовать ансамбль мо-

делей, просто покадрово усредняя предсказания обеих алгоритмов. В таблице 3.4 по-

казана точность объединенных алгоритмов по маскам границ и по одному кадру 

 

Таблица 3.4.  Точность работы объединенной модели определения живости. 

Вид атаки Кадры, TPR в точке FPR = Треки, TPR в точке FPR = 

0.1 0.01 0.001 0.1 0.01 0.001 

P1 0.998 0.942 0.759 0.999 0.935 0.240 

P2 0.864 0.630 0.307 0.783 0.560 0.494 

P3 0.996 0.933 0.771 0.999 0.959 0.012 



` 

78 
 

D1 0.998 0.936 0.795 0.998 0.855 0.617 

Все 0.990 0.850 0.619 0.989 0.753 0.240 

 

Объединенная модель показывает значительно лучшие результаты по сравнению 

с компонентами по отдельности. Точность работы на каждом из видов атак колеблется 

от 0.560 TPR в FPR=0.01 для P2 до 0.935 для P1, а общая точность на всей выборке 

составляет 0.753 TPR в FPR=0.01, т.е. добавление нового алгоритма снизило ложно-

отрицательную до 24.7%. 

 

3.4. Живость по динамике трека. 

 Алгоритмы оценки живости по синтетическим лицам и картам сегментации ра-

ботают только по одному кадру и не зависят от результатов на соседних, а агрегация 

по треку является усреднением независимых оценок каждого кадра. Однако, сценарий 

СКУД предполагает, что для обработки доступен весь трек, то есть можно оценивать 

не только статические кадры, но и динамические временные признаки, которые отли-

чаются у живого человека и подделки.  

 Использование динамической информации было описано в главе 2. В частности, 

алгоритм оптического потока позволяет построить грубую карту глубины лица, если 

оно двигается. В кооперативном методе система просит пользователя подвинуть го-

лову на определенный градус, в сценарии СКУД такой возможности нет. Но, на прак-

тике очень часто человек двигает голову или его мимика меняется за несколько се-

кунд, которые он подходит к турникету.  

 Для проверки потенциала динамических признаков в рассматриваемом сценарии, 

алгоритм оценки живости по оптическому потоку был применен к тестовой выборке 

СКУД. Для каждого кадра из трека выбирался наиболее далекий по углам головы кадр 
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из того же трека, т.е. каждому кадру трека была поставлена в соответствие пара кад-

ров, что дало возможность посчитать оптический поток и соответствующий скор 

liveness.  

 Результаты работы метода показаны в таблице 3.5. Алгоритм оптического потока 

отлично подходит для некоопертивного сценария, в котором длина трека достаточно 

длинная. 

 

Таблица 3.5.  Точность работы оценки подлинности по оптическому потоку на вы-

борке СКУД. 

Вид атаки Кадры, TPR в точке FPR = Треки, TPR в точке FPR = 

0.1 0.01 0.001 0.1 0.01 0.001 

P1 0.970 0.890 0.755 0.996 0.961 0.679 

P2 0.958 0.857 0.761 0.995 0.977 0.966 

P3 0.946 0.822 0.000 0.987 0.939 0.792 

D1 0.981 0.909 0.800 0.999 0.977 0.840 

Все 0.962 0.859 0.687 0.994 0.962 0.792 

 

 

Метод работает стабильно для всех видов атак, а его итоговая точность практи-

чески не уступает объединенному решению двух предыдущих алгоритмов. Но ввиду 

очень медленной скорости работы (~4 с. на один трек) и большого размера файла, со-

держащего веса нейронной сети, данный метод неприменим на практике. Однако, про-

веденный эксперимент доказывает эффективность динамических методов для задачи 

СКУД и перспективность работы в этом направлении. 
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В данном разделе предлагается быстрый алгоритм оценки живости по динамике 

трека, который можно использовать в прикладных задачах. Идея метода основана на 

изменяемости лица пользователя в процессе подхода к турникету. При поднесении 

статического артефакта, его мимика и поворот головы не будет меняться, в отличие 

от реального человека (рис. 3.8). Соответственно, можно обучить модель, принимаю-

щую на вход весь трек и выдающую единственное число – оценку живости всего 

трека. 

 

 

 Рис. 3.8. Пример реального (А) и поддельного (В) треков в сценарии СКУД. 

 

3.4.1.  Описание алгоритма 

Пусть дан трек 𝑇 = {𝑋𝑖}, 𝑖 = 1, … , 𝑁, на котором непрерывно присутствует лицо 

одного человека и соответствующая оценка живости 𝑙. Из трека выбирается L=8 кад-

ров, распределенных равномерно, т.е. каждый [
𝑁

𝐿
]-й кадр, где [] – оператор выбора 

целой части. Полученная последовательность подается на вход нейронной сети, опи-

санной на рис. 3.11.  

Из каждого кадра с помощью детектора лиц выбирается лицо и приводится к раз-

меру 112 × 112. Каждый кадр подается на вход в SimpleNet (рис. 3.4) и переводится 
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в дескриптор размера 1 × 𝑑, где 𝑑 = 256. Дескрипторы конкатенируются в один тен-

зор 8 × 𝑑, который обрабатывается пространственной сверткой 8 × 1, после чего ито-

говый дескриптор трека проходит через полносвязный слой с сигмоидной функцией 

активации, возвращая оценку живости (рис. 3.9). Модель обучается с помощью стан-

дартной бинарной кросс-энтропии, при этом веса сети SimpleNet являются общими 

для всех 8 кадров. 

 

 

Рис. 3.9. Архитектура нейронной сети определения живости по динамике трека. ⨁  –  

оператор конкатенации. 

 

Идея алгоритма состоит в том, что базовая сеть SimpleNet учит дескриптор, сов-

падающий для лиц с одинаковой мимикой/поворотом головы и различный для лиц с 

изменением мимики. Это свойство потом ловится сверточными слоями, которые 

смотрят на дескрипторы всех кадров одновременно и в конце обрабатывается полно-

связным для перевода в одно число. В качестве базовой сети выбрана очень легкая 

архитектура SimpleNet, что позволяет не только сделать алгоритм быстрым (20 мс на 

CPU для всего трека), но и не дает сети переобучиться на сложные признаки.  
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3.4.2. Эксперименты 

Работая с обычными изображениями, выбор легких архитектур позволяет избе-

жать переобучения на определенный домен, так как данных для обучения обычно не-

много. В данном случае для обучения использовались те же треки, что и в предыду-

щих двух алгоритмах, но так как поддельных примеров недостаточно для обучения 

нейросети, дополнительные поддельные треки генерировались синтетически. 

Для этого выбирался случайный кадр из реального трека и дублировался 8 раз, 

имитируя неподвижность мимики. После чего каждое из 8 одинаковых изображений 

лиц случайно аугментировалось поворотом, пространственным сдвигом, цветовой 

коррекцией и размытием, имитируя движения атакующего артефакта. Это позволило 

значительно расширить обучающую выборку для поддельного класса и повысить ито-

говую точность на тестовом сете. 

 

Таблица 3.6.  Точность работы оценки живости по динамике трека на выборке СКУД. 

Вид атаки Треки, TPR в точке FPR = 

0.1 0.01 0.001 

P1 
0.944 0.648 0.173 

P2 
0.982 0.860 0.606 

P3 
0.976 0.829 0.663 

D1 
0.997 0.886 0.817 

Все 
0.979 0.811 0.285 
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Результаты обучения модели показаны в таблице 3.6. Так как нейронная сеть об-

рабатывает весь трек целиком, то результат по кадрам отдельно посчитать невоз-

можно. Предложенный метод работает лучше, чем алгоритм по обычным изображе-

ниям в низких FPR, особенно для экранных и полноразмерных атак, где манипуляции 

с мимикой/поворотами лица незначительны.  

3.5. Заключение 

В данной главе были предложены три алгоритма определения подлинности изоб-

ражения лиц для сценария СКУД, где автоматическая система оценивает живость че-

ловека, подходящего к турникету, по записанной видеопоследовательности. Была со-

брана репрезентативная тестовая выборка в реальных условиях, состоящая из 1500 

треков атак и 5000 треков реальных людей. Атаки были разделены на четыре вида: 

распечатанные лица на A4, края бумаги видны в кадре; распечатанные полноразмер-

ные портреты, края бумаги не видны в кадре; вырезанные по контуру лица маски; 

изображения с экрана телефона.  Для обучения модели была собрана выборка из 1000 

треков различных атак. Помимо этого, было собрано около 2000 треков реальных лю-

дей с сайта youtube и 2300 с турникета офисного здания. 

Идея предложенного алгоритма определения подлинности по картам границ со-

стояла в различии контуров поддельного и реального изображений. Для реальных 

примеров эти контуры антропоморфны, для атак – отличаться от реальных. Сначала 

изображения переводились в соответствующие карты границ, после чего обрабатыва-

лись неглубокой нейронной сетью. Так как при переходе в новую модальность эффек-

тивное признаковое пространство значительно уменьшается, собранных данных было 

достаточно для создания устойчивой модели. Алгоритм хорошо работает на А4, пол-

норазмерных и экранных атаках, так как именно в них отличия в контурах значи-

тельны.  

Идея предложенного алгоритма определения подлинности по динамике трека за-

ключалась в предположении, что мимика и углы поворота головы реального человека 
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меняются в процессе подхода к турникету, в то время как статические артефакты оста-

ются неизменными. Для увеличения вариативности обучающей выборки был реали-

зован процесс генерации подделок из реальных треков путем дублирования одного 

кадра и применения аугментации. Кроме этого, была предложена архитектура нейрон-

ной сети, обрабатывающая весь трек целиком и содержащая временную агрегацию 

внутри себя. Алгоритм хорошо работает на всех видах атак в низких FPR, проседая в 

высоких FPR (т.е. в тестовой выборке присутствовали треки реальных людей, у кото-

рых мимика менялась очень незначительно и алгоритм принимал их за подделку). 

 

Таблица 3.7.  Точность работы ансамбля из трех алгоритмов определения живости для 

сценария СКУД. 

Вид атаки Треки, TPR в точке FPR = 

0.1 0.01 0.001 

P1 1.000 0.975 0.882 

P2 0.975 0.912 0.572 

P3 1.000 0.993 0.641 

D1 1.000 0.977 0.770 

Все 0.999 0.948 0.641 

 

В таблице 3.7 показана точность ансамбля из трех предложенных алгоритмов на 

тестовой выборке. TPR=0.948 в точке FPR=0.01, то есть при допустимости 1% ложно-

положительных проходов будет 6.2% ложноотрицательных, что в 4 раза меньше 

ошибки при агрегации двух алгоритмов. На рис. 3.10. показаны результаты предло-

женных алгоритмов на всей тестовой выборке. 
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Рис. 3.10. ROC-кривая предложенных алгоритмов на тестовой выборке СКУД. 

 

Итоговая точность модели и скорость работы в реальном времени позволила при-

менять ее в прикладных условиях. На данный момент часть предложенных алгорит-

мов используется более чем на 1000 турникетах по всему миру. 
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Глава 4 

Методы определения живости по мультимодальным данным  

 Помимо систем контроля и управлением доступом, алгоритм оценки подлинно-

сти лица требуется и в других сценариях, таких как Мобильный и ПК или АТМ. Такие 

сценарии можно назвать условно-кооперативными, так как при авторизации пользо-

ватель смотрит в камеру. При этом, в некоторых сценариях возможна установка до-

полнительных камер, добавляющих к доступным данным модальности ИК и глубины 

модальности, что облегчает работу алгоритмам оценки живости [18, 21, 22]. 

 Первой открытой исследовательской выборкой большого размера, включающей 

все три модальности, является CASIA-SURF [25]. Авторы выборки организовали кон-

курс, приуроченный к конференции CVPR 2019, по достижению максимальной точ-

ности на тестовой части выборки.  В данной главе предлагается алгоритм определения 

живости по мультимодальным изображениям, который показал лучший результат 

среди других алгоритмов на выборке CASIA-SURF. 

 

4.1. Живость по мультимодальным данным 

 Когда есть возможность установить вместо обычных камер специализирован-

ные, например, с сенсорами ИК и глубины, сделать надежный алгоритм определения 

подлинности лица становится в разы проще, так как дополнительные модальности 

обеспечивают модель очень информативными признаками [24, 26]. Карта глубины 

позволяет показывает трехмерную структуру демонстрируемого объекта, тем самым 

значительно упрощая отсечение двумерных артефактов, а инфракрасный диапазон по-

могает с трехмерными масками, так как изображение глаз у живых людей в ИК отли-

чается от статических изображений глаз.  
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Большинство выборок для определения живости лиц содержат только изобра-

жения в формате RGB [21, 22]. До недавнего времени выборки с другими модально-

стями были очень ограничены в количестве примеров [23, 24], что увеличивало риск 

переобучения модели на тренировочную часть. Недавно опубликованная выборка 

CASIA-SURF [25] на порядок лучше предыдущих как с точки зрения количества дан-

ных, так и количества доступных модальностей (RGB, ИК, глубина), что позволяет 

эффективно применить инструментарий нейронных сетей для решения задачи оценки 

подлинности. 

 

4.2.  Описание выборки  

  CASIA-SURF [25] включает в себя 21000 видеозаписей 1000 субъектов, для каж-

дого субъекта записано одно реальное видео и шесть поддельных видео, содержащих 

разные виды атак с лицом этого человека. Видео записаны с помощью камеры Intel 

RealSense SR300 и имеют три синхронизированных канала: RGB, ИК, глубина. Вы-

борка разделена на обучающую, валидационную и тестовую подвыборки, содержа-

щих 300, 100 и 600 уникальных субъектов соответственно. Из каждого видео выбран 

каждый десятый кадр, переводя каждый ролик в набор изображений. Кроме того, вы-

борки были также разделены по типам атак, в тестовой выборке присутствуют фаль-

сификации, которых не было в обучающей выборке (рис. 4.1). После публикации вы-

борки авторы статьи запустили соревнование на лучшее решение для тестовой части, 

сделав доступными 40 000 изображений для обучения и валидации. 

 Примеры настоящих и поддельных изображений из CASIA-SURF показаны на 

рис 4.1. Атаки отличаются формой (плоская, согнутая) и вырезанными частями лица 

(табл. 4.1.) для создания объемности подделке. Атаки, представленные в тестовой ча-

сти, полностью отличаются от содержащихся в обучающей выборке. В таком разбие-

нии данных для демонстрации высокой точности модель должна обладать обобщаю-

щей способностью и избегать переобучения на конкретные виды атак, что являлось 

большой проблемой в ранее опубликованных выборках. 
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Таблица 4.1.  Виды фальсификационных атак из CASIA-SURF. 

Поверхность Глаза Нос Рот Выборка 

Плоская ✓   Тест 

Согнутая ✓   Тест 

Плоская ✓ ✓  Тест 

Согнутая ✓ ✓  Тест 

Плоская ✓ ✓ ✓ Обучение 

Согнутая ✓ ✓ ✓ Обучение 

 

 Вместе с публикацией CASIA-SURF [25] авторы также предложили базовый ме-

тод решения. Нейронная сеть обрабатывает каждую из модальностей отдельно, ис-

пользуя архитектурные блоки из resnet-18 [37] в качестве основы. Далее совершается 

перебалансировка признаков каждой ветви, выбираются наиболее информативные 

признаки и подавляются остальные. Выходы с каждой из трех ветвей объединяются в 

один и обрабатываются еще двумя resnet-блоками. Завершают архитектуру глобаль-

ный слой усреднения и два полносвязных слоя. Авторы провели тщательные экспери-

менты и показали преимущества предложенной модели. 
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 Рис. 4.1. Примеры реальных и поддельных изображений из датасета CASIA-

SURF. 

 

4.3.  Предлагаемый метод 

 В CASIA-SURF атаки, представленные в обучающей выборке, отличаются от те-

стовых атак. Для увеличения устойчивости модели к новым атакам мы выделили из 

обучающей выборки три части. Каждая часть содержит все изображения двух разных 

атак, данные по третьей атаке используются как валидационная выборка. После чего 
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обучаются три нейронные сети на каждой из частей. Во время тестирования, все мо-

дели рассматриваются как одна, выходы с классификационного слоя усредняются по 

трем значениям выходов каждой из обученной сети. 

 Перенос признаков. Множество задач компьютерного зрения [39] с небольшим 

доступным объемом данных для обучения в качестве инициализации применяют обу-

ченные модели других задач, в которых выборка достаточно большая [40]. Дообуче-

ние параметров сети, которая была инициализирована предобученными параметрами 

разных задач, приводит к различным результатам на тестовой выборке. В наших экс-

периментах мы тестируем четыре разные модели, предобученные на разных датасетах 

распознавания лиц и классификации пола. Кроме того, в этих задачах используются 

разные архитектуры базовой модели и функции потерь для увеличения вариативности 

итоговых параметров. После дообучения на задаче определения живости четыре ито-

говые модели применяются как одна путем усреднения предсказаний. 

 

4.4.  Архитектура модели 

 Предлагаемая архитектура основана на resnet-34 и resnet-50 с SE-модулями (squeeze 

and excitation) [37, 77], как показано на рис. 4.2. В базовом алгоритме [25] каждая мо-

дальность обрабатывается первыми тремя блоками архитектуры resnet, дальше три 

ветви объединяются с помощью SE-модуля и обрабатываются оставшимся res-бло-

ком. В отличие от базового метода мы обогатили модель дополнительными блоками 

агрегации на каждом слое ветвей (мультиуровневая агрегация признаков – МУАП). 

Агрегационный блок берет признаки с соответствующих res-блоков подсетей модаль-

ностей и из предыдущего агрегационного блока и обрабатывает их. Такая архитектура 

позволяет нейронной сети находить корреляцию между признаками не только высо-

кого, но и низкого уровня. 
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 Рис. 4.2. Предлагаемая архитектура.  GAP –  общий слой усреднения; ⨁  –  опе-

ратор объединения; + – оператор почленного суммирования. 

4.5. Эксперименты 

 Код был написан с помощью библиотеки Pytorch [41], нейронные сети обучались 

на четырех видеокартах NVIDIA 1080Ti. Обучение одной модели занимает 3 ч, обу-

ченная модель извлекает предсказания по 1000 изображениям за 8 с. Все нейронные 

сети были обучены с помощью оптимизатора ADAM [42], параметр скорости обуче-

ния изменялся по косинусу, в качестве функции потерь использовалась стандартная 

двухклассовая кроссэнтропия. Модель обучалась 30 эпох с начальным параметром 

скорости обучения 0.1 и размером батча 128. Эти же параметры применялись для обу-

чения моделей распознавания лиц. 

 Изображения в выборке CASIA-SURF уже вырезаны по контуру лица, поэтому 

никакого дополнительного выравнивания лиц не потребовалось. Изображения изме-

нялись до  125 × 125 пикселей, после чего вырезался центральный регион размером 

112 × 112. В процессе обучения картинки случайно отзеркаливались по горизонтали с 

вероятностью 0.5. 
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 Также были проверены другие стратегии предобработки, но они не принесли 

улучшений по сравнению с описанной. 

 Базовый метод. Выборка разбита на обучающую, валидационную и тестовую 

части, но так как в момент соревнования Chalearn LAP тестовая часть была недо-

ступна, далее все результаты приводятся для валидационной части. В первую очередь 

мы воспроизвели базовый метод из [25], основанный на resnet-18 и обучили пять сетей 

на пяти частях по стратегии кросс-валидации. Все части были разделены по субъек-

там, все изображения одного субъекта принадлежали только одной части. Итоговая 

модель - результат усреднения предсказаний пяти полученных моделей. В табл. 4.2.  

приведены результаты из статьи базового метода и результаты нашего воспроизведе-

ния.  Далее, мы расширили основу сети до resnet-34, что сильно увеличило точность 

на целевой выборке. Ввиду ограничений вычислительных ресурсов мы обучали 

только модели resnet-34 и resnet-50, не тестируя более глубокие сети. 

 

Таблица 4.2.  Результаты на валидационной выборке CASIA-SURF. 

Метод Инициализация Обучающая 

выборка 

TPR в точке 

FPR=10−4, % 

Zhang, Wang et al. [25] Нет Одна часть 56.80 

resnet-18 >> Пять частей по 

субъектам 

60.54 

resnet-34 >> >> 74.55 

resnet-34 >> Три части по 

атакам 

78.89 

resnet-34 ImageNet [40] >> 92.12 

resnet-34 CASIA-Web face 

[43] 

>> 99.80 
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A. resnet-34 + МУАП CASIA-Web face 

[43] 

>> 99.87 

B. resnet-50 + МУАП MSCeleb-1M [19] >> 99.63 

C. resnet-50 + МУАП Asian dataset [44] >> 99.33 

D. resnet-34 + МУАП AFAD-lite [45] >> 98.70 

Усреднение A,B,C,D  >> 100.00 

 

 Разбиение обучающей выборки. В данном эксперименте сравниваются резуль-

таты моделей, обученных стандартным методом кросс-валидации по пяти частям и 

предложенным методом разбиения обучающей выборки на три части по типам атак. 

Изображения реальных людей в таком разбиении случайно разделены по этим частям. 

Несмотря на то, что новая модель получена усреднением трех сетей, а не пяти, кото-

рые к тому же обучены на меньшем количестве данных, чем в стандартном разбиении, 

ее результаты лучше на 4.3% (табл. 4.2.). Это может быть объяснено тем, что разбие-

ние по типам атак в обучающей выборке позволяет лучше адаптироваться к неизвест-

ным примерам фальсификации из целевого сета. 

 Инициализация весов. В текущем разделе мы исследуем зависимость целевой 

точности от задания начальных параметров. Параметры каждой из трех ветвей архи-

тектуры инициализируются весами сети, обученной на ImageNet, после чего дообуча-

ются на CASIA-SURF. В сравнении со случайной инициализацией, применение 

предобученной сети увеличивает результат с 78.89 до 92.12%. Если же вместо общей 

выборки классификации изображений ImageNet использовать выборку для задачи 

распознавания лиц CASIA-Web [43], точность достигает почти идеального значения 

99.80%. 
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 МУАП. При дополнении стандартной архитектуры предложенным блоком 

МУАП новая модель после обучения показывает уменьшение ошибки в 1.5 раза по 

сравнению с базовой моделью (табл. 4.2.). 

 Ансамбль моделей. Для улучшения устойчивости решения используются че-

тыре модели, предобученные на четырех различных выборках: A. CASIA-WebFace 

[43], B. MSCeleb-1M [19], C. AsianDataset [44] и D. AFAD-lite [45]. Разные исходные 

задачи, данные и функции потерь приводят к разным обученным весам сверточных 

фильтров, в итоге финальная модель как усреднение сетей A, B, C и D позволяет до-

стичь 100.00% TPR в FPR=10−4 (табл. 4.2.). 

 

Таблица 4.3.  Влияние дополнительных модальностей на целевую метрику. 

Модальность TPR в точке FPR = 

𝟏𝟎−𝟐 𝟏𝟎−𝟑 𝟏𝟎−𝟒 

RGB 
71.74 22.34 7.85 

ИК 
91.82 72.25 57.41 

Глубина 
100.00 99.77 98.40 

RGB+ИК+Глубина 
100.00 100.00 99.87 

 

4.6.  Влияние мультимодальности 

 Чтобы показать преимущество мультимодальных данных в задаче определения 

живости, мы исследовали сети, обученные только на одной модальности. Для чест-

ного сравнения использовалась та же архитектура, что и для мультимодальных изоб-

ражений, только вместо подавания на вход (RGB, ИК, глубина), модели обучались на 

входах (RGB, RGB, RGB), (ИК, ИК, ИК) и (глубина, глубина, глубина). 
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 Как видно в табл. 4.3., использование только одного канала RGB приводит к низ-

кой точности. Соответствующая модель переобучилась на тренировочной выборке и 

достигла только 7.85% TPR в FPR=10−4. Модель на инфракрасных данных оказалась 

лучше, показав 57.41% TPR в FPR=10−4. ИК-данные содержат меньше мелких дета-

лей, поэтому сети, основанные на них, сложнее переобучаются и в общем более устой-

чивы на неизвестных данных, что и показал текущий результат. Наиболее высокий 

результат 98.40% TPR в FPR=10−4 был получен на модальности глубина, подтвердив 

важность информации о форме для задачи проверки подлинности лица. 

Но сеть, обученная на объединении модальностей, показала еще лучшую точность, 

понижая ложноотрицательную ошибку с 1.6 до 0.13 % и доказывая важность мульти-

модального подхода. 

 

4.7.  Заключение  

 В данном разделе был представлен новый метод для решения задачи детектиро-

вания фальсифицированных изображений лиц, который показал лучший результат на 

конкурсе "Chalearn  LAP  face anti-spoofing 2019". Были предложены три направления 

работы: данные, архитектура нейронной сети и инициализация весов. Комплексный 

подход выявил существенные улучшения точности по сравнению с базовым методом. 

Тщательный выбор обучающей подвыборки по типам атак позволяет модели лучше 

противостоять незнакомым попыткам взлома. Предложена новая архитектура сети с 

модулем мультиуровневевой агрегации признаков, что улучшило обмен полезными 

признаками между подсетями разных модальностей как на поверхностных, так и на 

глубоких слоях модели. Использован метод переноса признаков с обученных моделей 

распознавания лиц, что улучшило стабильность модели и увеличило точность на це-

левой выборке. 
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Глава 5 

Методы определения живости по видеопоследовательности  

 В главе 2 рассматривался кооперативный метод оценки живости для мобильных 

и стационарных сценариев в условиях наличия небольшой выборки. В случае, когда 

доступна выборка большего размера, становится возможным создать некооператив-

ный алгоритм с высокой точностью, эксплуатируя отличия в динамических признаках 

реальных и поддельных видео. 

 В 2020 году была опубликована расширенная выборка CASIA-SURF CeFa [46], 

включающая в себя новые виды атак (3D маски) и новые расы реальных людей, и 

также устроили конкурс на лучшее решение. В обеих конкурсах алгоритмы автора 

диссертации заняли первое место. На данный момент, CASIA-SURF CeFa [46] явля-

ется самой большой выборкой данных для задачи определения подлинности лиц по 

количеству объектов, национальностей и типов атак. Для тестирования обобщающей 

способности моделей оценки живости, авторы предоставили различные тестовые про-

токолы, где в контрольной выборке присутствуют неизвестные атаки и национально-

сти. Все данные представлены в виде коротких видеозаписей и точность меряется по 

ролику целиком, позволяя использовать алгоритмы, связанные с временным измене-

нием кадра в процессе. Все видео записаны в трех модальностях: RGB, ИК и глубина. 

Авторы выборки устроили конкурс на лучшее решение по всем модальностям и по 

RGB отдельно. Мы решили сфокусироваться на втором соревновании. Примеры изоб-

ражений из выборки показаны на рис. 5.1.  

 Классификация реальных и поддельных видео проще, чем покадровая классифи-

кация, так как можно использовать различия в мимике лица с течением времени [27, 

36]. Но в то же время малое для нейронных сетей количество видеозаписей не позво-

ляет использовать обучение в лоб. Мы предлагаем перейти от задачи классификации 

треков к задаче классификации изображений, вводя понятие искусственных модаль-

ностей, богатых полезными для определения живости признаками и в то же время без 
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лишних деталей, которые могут привести к переобучению. В качестве таких модаль-

ностей предлагается использовать оптический поток и ранг-пулинг [48]. В дополне-

ние к этому, для расширения вариативности обучающей выборки предлагается ис-

пользовать аугментацию последовательности, как в алгоритме по динамике трека из 

Главы 3. Кроме этого тут применяется очень легкая архитектура, позволяющая ис-

пользовать решение не только в исследовательских, но и в прикладных целях. 

 

 

 Рис. 5.1. Примеры реальных и поддельных изображений из выборки CASIA-

SURF CeFa. Первая строка – реальный трек (обучение), вторая – реальный трек (тест. 

Третья строка – подделка(обучение), четвертая – подделка(тест). 
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 Наше решение показало лучший результат на тестовой выборке CASIA-SURF 

CeFa по RGB изображениям и заняло первое место в соответствующем соревновании, 

приуроченном к конференции CVPR 2020. 

5.1.  Описание выборки 

 CASIA-SURF CeFa содержит записи 1607 разных людей трех национальностей и 

4 вида атак, включая 3D маски. Для соревнования организаторы сформировали три 

протокола, где обучающая и тестовая выборка полностью отличается по националь-

ностям и типам атак. Каждый протокол включает в себя 200 реальных и 200 поддель-

ных видео для тренировки, 400 реальных и 1800 поддельных видео для теста. Видео 

были представлены как последовательность кадров с убранным фоном и центриро-

ванными лицами. Существуют различные метрики оценивания точности алгоритма 

определения живости. Одной из популярных метрик является average classification er-

ror rate (ACER), используемая в работах [21, 22, 38, 39]. Она применяется и в данном 

соревновании. 

5.2.  Предлагаемый метод 

 Так как различие в обучающей и тестовой выборке очень велико (рис. 5.1.), будем 

использовать искусственные модальностей. Хорошая искусственная модальность 

должна содержать мало мелких деталей (чтобы избежать переобучения), но в то же 

время обладать полезными для задачи определения живости признаками. Мы предла-

гаем использовать оптический поток и ранк-пулинг, которые обладают необходи-

мыми свойствами. 

 Так как по условиям соревнования нельзя было использовать дополнительные 

выборки и предобученные модели, для оптического потока мы выбрали непараметри-

ческий метод из [47]. В финальном решении мы используем две карты потока, одна –  

между первым и последним кадром трека, другая – между первым и вторым. Для под-

дельных изображений обе карты должны быть примерно одинаковы, в то время как 

для реальных примеров первая карта покажет больше движения, чем вторая. Более 
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того, поток между первым и последним изображениями будет похож на трехмерную 

карту головы объекта по особенностям своего построения (подробнее в главе 1). 

Рис. 5.2. Ранг-пулинг для разных значений параметра регуляризации С. 

 

 Модальность ранк-пулинга кодирует видеопоследовательность в вектор призна-

ков с помощью процесса оптимизации, который может быть сформулирован как ме-

тод опорных признаков для задачи регрессии SVR [48]. После решения оптимизаци-

онной задачи вектор признаков можно визуализировать, получая динамическое изоб-

ражение, которое отображает временную эволюцию покадровых признаков. В данной 

задаче мы выбрали гиперпараметры C=1 и C=1000, т.е. низкий и высокий уровень ре-

гуляризации для SVR, получив два визуально различных представления (рис. 5.2). 

С=1 сохраняет больше информации об объекте, в то время как С=1000 показывает 

изменение черт лица со временем. 

 Помимо предоставленных модальностей, для увеличения вариативности вы-

борки мы используем аугментацию последовательности –   преобразование реальных 

последовательностей в синтетические. Для этого в процессе обучения выбирается 

один кадр из реального трека и дублируется нужное число раз, после все кадры новой 

последовательности индивидуально аугментируются поворотами, сдвигом и цветовой 

коррекцией. Новое семейство поддельных треков больше похоже на распечатанные 

атаки, присутствующие в тестовой выборке. 
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5.3.  Архитектура модели 

 

Рис. 5.3. Предлагаемая архитектура. 16 равномерно выбранных изображений из трека 

используются для получения 4х модальностей: 2 ранк-пулинга и 2 оптических потока. 

Модальности обрабатываются независимыми базовыми сетями SimpleNet, после чего 

агрегируются полносвязным слоем.   

 

 Для классификации полученных искусственных модальностей предлагается но-

вая архитектура, показанная на рис 5.3. Используемые базовые нейросети SimpleNet 

достаточно глубокие для извлечения полезных признаков из изображений модально-

стей, но достаточно узкие, чтобы избежать переобучения. 

 Каждый из четырех полученных тензоров обрабатывается отдельной сетью Sim-

pleNet, которые возвращают дескрипторы размера 1 × 𝑑. Дескрипторы конкатениру-

ются, после чего к полученной 4 × 𝑑 матрице применяются операторы Max, Min и Avg 

пулинга, получая 3 × 𝑑 матрицу. Обработка завершается полносвязным слоем с сиг-

моидой. 
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 В отличие от обычной конкатенации дескрипторов, предлагаемые операторы пу-

линга всегда приводят к фиксированной матрице размера 3 × 𝑑, позволяя легко рас-

ширить количество обрабатываемых модальностей и добавить новую даже уже к обу-

ченным другим. Кроме того, использование Max и Min пулинга позволяет выбрать 

признаки с модальностей, которые могут отличаться по важности от изображения к 

изображению и это работает лучше обычного оператора усреднения. 

 

5.4.   Эксперименты 

  Код написан в python с помощью библиотеки pytorch [41], обучался и тестиро-

вался на одной видеокарте NVIDIA RTX 2080. Модель обучалась с размером батча 32 

и 8 CPU потоками. Для обучения достаточно 1.5G памяти. Модель тренировалась 10 

эпох с оптимизатором ADAM [42] и начальным коэффициентом обучаемости 0.0001. 

Время обучения – 1 час, для каждого из трех протоколов применялись одинаковые 

настройки.  

 Предобработка изображений. Пусть дан трек {𝑋𝑖} и его метка 𝑙 = {0,1}, где 0 – 

подделка, 1 – реальный. Из трека равномерно выбирается 𝐿 = 16 изображений, После 

чего, с вероятностью 0.5 применяется аугментация последовательности, т.е. выбира-

ется случайный кадр 𝑋𝑗 и дублируется 𝐿 раз, при этом метке класса присваивается 0. 

У каждого изображения трека убираются черные границы, после чего дополняются до 

квадрата и изменяются до размера 112 × 112. Наконец, выбирается случайный пара-

метр цветовой коррекции и применяется ко всем изображениям трека, эмулируя раз-

личный цвет кожи, после чего для каждого кадра 𝑋𝑖 применяются независимые от 

других повороты, сдвиги, и цветовая коррекция. 

Обработанные таким образом треки пропускаются через подсчет модальностей, полу-

чаются 4 тензора размера 112 × 112: RankPooling({𝑋𝑖}, 𝐶 = 1000), RankPool-

ing({𝑋𝑖}, 𝐶 = 1), Flow(𝑋0, 𝑋15), Flow(𝑋0, 𝑋1). Далее, все подается на вход нейронной 

сети (рис. 5.3.). 
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 Базовый эксперимент. Для задания базовой планки, мы обучили модель на сы-

рых RGB изображениях без искусственных модальностей. Первый и последний кадр 

трека конкатенируются в тензор 6 × 112 × 112, после чего подается на вход  архитек-

туре из рис. 5.3 для честного сравнения. Такой метод достигает точности 23.42% 

ACER на тестовой выборке (табл. 5.1.). Большое стандартное отклонение BPCER го-

ворит о нестабильности модели и неспособности к обобщению. 

 

Таблица 5.1.  Результаты на тестовой выборке CASIA-SURF CeFa. 

Метод APCER, % BPCER, % ACER, % 

Базовый 23.83  ± 1.70 25.20 ± 22.00 23.42 ± 12.14 

Ранк-пулинг(C=1000) 14.11 ± 13.52 11.25 ± 12.75 12.68 ± 4.39 

+аугментация последова-

тельности 

0.68 ± 0.21 13.91 ± 10.03 7.30 ± 5.00 

+Ранк-пулинг(C=1) 1.07 ± 0.53 13.00 ± 10.75 7.03 ± 5.20 

+Оптический поток 0.11 ± 0.11 5.33 ± 2.37 2.72 ± 1.21 

 

 Ранк-пулинг. Чтобы показать преимущество использования искусственных мо-

дальностей, мы заменили входные данные базового эксперимента на одно изображе-

ние – ранк-пулинг (С=1000). Ошибка на тестовой выборке упала до 12.68%, доказы-

вая, что использования динамических признаков без мелких деталей лучше, чем чи-

стые RGB данные. 

 Аугментация последовательности. Этот эксперимент показывает, насколько 

можно улучшить итоговый результат простым преобразованием. Добавление аугмен-

тации последовательности к предыдущему эксперименту улучшило целевую метрику 

ACER до 7.3%. Но использование такой аугментации без индивидуальных цветовых 

и пространственных шумов для каждого изображения трека бесполезно, так как ранк-
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пулинг для одинаковой последовательности будет неинформативным. Добавление 

еще одного ранк-пулинга c С=1000 дало небольшое улучшение до 7.03%, поэтому 

было решено остановиться на двух представителях данной модальности. 

 Оптический поток. Добавление модальности оптического потока к предыду-

щему эксперименту показало результат в 2.72% ACER на подвыборке CASIA-SURF 

CeFa RGB, что на текущий момент является лучшим результатом в мире. Карты оп-

тического потока подчеркивают разницу в движении мимических мышц у реальных и 

поддельных людей. Атаки с использованием распечатанных масок выглядят менее ин-

тенсивно, если посмотреть на них сквозь призму оптического потока. Это доказыва-

ется результатом APCER=0.11%, т.е. всего 2 из 1800 примеров атак были неправильно 

классифицированы. Недостаток предложенного метода выражается в высокой ложно-

отрицательной ошибке BPCER=5.33%, где большинство неправильно классифициро-

ванных примеров относится к реальным трекам без значительных движений. Выби-

рать искусственные модальности следует осторожно – в нашем построении мы пред-

полагали, что лицо будет меняться со временем, но в некоторых реальных сценариях 

это не обязательно правда. 

5.5. Заключение 

 В данном разделе был предложен метод решения задачи определения живости с 

помощью создания искусственных модальностей и аугментации последовательности. 

Было показано, что аккуратный выбор промежуточного представления данных, как 

ранк-пулинг или оптический поток, уменьшают риск переобучения и повышают ито-

говую точность модели по сравнению с наивным использованием исходных изобра-

жений. Также была представлена быстрая и масштабируемая архитектура нейронной 

сети, применимая в прикладных задачах. Наконец, был показан простой трюк по обо-

гащению поддельных данных, что всегда является узким местом для подавляющего 

большинства задач определения подлинности. В результате, предложенное решение 
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заняло первое место в соревновании Chalearn Singlemodal Face Anti-spoofing Attack 

Detection на конференции CVPR 2020. 
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Заключение 

В первой главе были введены основные термины и описана специфика задачи 

определения живости. Была предложена система классификации сценариев примене-

ния метода и кооперативности пользовательского поведения. Описаны основные 

виды атак на биометрические системы и введено понятие уровня сложности атаки. 

Проведен обзор существующих методов, рассмотрены их достоинства и недостатки. 

В главе 2 были предложены кооперативные методы оценки подлинности, осно-

ванные на интерактивном взаимодействии с пользователем. Был представлен атомар-

ный алгоритм определения живости, обеспечивающий высокий уровень защиты, но 

неудобный для пользователя. Далее, были показаны улучшенные алгоритмы, требу-

ющие меньшего уровня кооперативности, основанные на оптическом потоке. Числен-

ные эксперименты на собранной выборке подтвердили эффективность предложен-

ного метода. 

В главе 3 была рассмотрена задача определения подлинности для систем кон-

троля и управления доступом. Собрана обучающая и тестовые выборки, а также опи-

саны методы синтеза новых данных, эффективно увеличивающие размер и вариатив-

ность выборки для обучения. Были предложены три алгоритма определения живости 

в описанном сценарии. Все алгоритмы оптимизированы под скорость работы для воз-

можности внедрения в промышленные объекты. Первый алгоритм базируется на идее 

различия реальных и подделок по одному изображению. Метод хорошо работает на 

вырезанных масках, но неустойчив к полноразмерным артефактам. Второй алгоритм 

основывается на идее различия границ подлинных и поддельных изображений. Метод 

устойчив к распечатанным маскам и экранным демонстрациям, но пасует перед пол-

норазмерными подделками. Третий метод эксплуатирует идею динамического изме-

нения лицевой мимики и углов наклона головы при подходе человека к турникету. 

Ансамбль алгоритмов показывает высокую точность и может быть использован в 

прикладных условиях. 
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Четвертая глава посвящена некооперативным алгоритмам оценки живости для 

мобильных и стационарных устройств по мультимодальным данным. Предложен ал-

горитм, работающий с мультимодальными изображениями (RGB, ИК, Глубина). Раз-

работано универсальное улучшение мультимодальных архитектур нейронных сетей, 

позволяющее лучше агрегировать признаки на всех уровнях детализации. Экспери-

менты показали, что новые модальности добавляют полезные признаки и улучшают 

точность на целевой метрике. Предложенное решение заняло первое место на самой 

крупной на момент разработки алгоритма мультимодальной выборке CASIA-SURF в 

2019 году.  

В пятой главе предлагается алгоритм определения подлинности для мобильных 

и стационарных устройств по видеопоследовательности, устойчивый против неиз-

вестных атак.  Помимо скорости работы в режиме реального времени, предложенный 

метод стал лучшим на соревновании по оценки живости “Chalearn Face Anti-Spoofing 

Challenge” в 2020 году.  
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