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Общая характеристика работы

Актуальность темы. В диссертации рассматривается одна из цен-
тральных задач машинного обучения — задача классификации на основе пре-
цедентов.

Под прецедентной (обучающей) информацией понимается совокуп-
ность примеров изучаемых объектов, в которой каждый объект представлен
в виде числового вектора, полученного на основе измерения или наблюдения
ряда его параметров или характеристик, называемых признаками. Каждый
пример (обучающий объект или прецедент) приписан к определённому клас-
су объектов. Требуется на основе анализа обучающей информации построить
алгоритм, позволяющий классифицировать новые, не входящие в обучающую
выборку, объекты.

Главное достоинство логического подхода к задаче классификации на
основе прецедентов — возможность получения результата при отсутствии до-
полнительных предположений вероятностного характера и при небольшом
числе прецедентов. Считается, что каждый признак принимает ограниченное
число допустимых значений, которые кодируются целыми числами. Для каж-
дого признака задаётся бинарная функция близости между его значениями,
что позволяет проводить сравнение описания распознаваемого объекта с опи-
саниями прецедентов. Анализ прецедентной информации сводится к поиску
в исходных данных специальных фрагментов описаний объектов, различаю-
щих объекты из разных классов. Найденные фрагменты имеют содержатель-
ное описание в терминах той прикладной области, в которой решается зада-
ча. По их наличию или, наоборот, отсутствию в описании распознаваемого
объекта решается вопрос о его классификации. Большое внимание уделяет-
ся вопросам синтеза алгоритмов, безошибочно классифицирующих материал
обучения. Такие алгоритмы называются корректными.

К наиболее известным направлениям логической классификации от-
носятся Correct Voting Procedures или CVP (процедуры корректного голо-
сования), впервые предложенные в отечественных работах, а также Logical
Analysis of Data или LAD (логический анализ данных) и Formal Concept
Analysis или FCA (анализ формальных понятий). Все три названных направ-
ления CVP, LAD и FCA имеют много общего. С другой стороны, каждый из
подходов использует свою терминологию и демонстрирует некоторую ориги-
нальность.

Фундаментальную роль в создании методов CVP сыграли работы
С. В. Яблонского, в которых введено хорошо известное в дискретной мате-
матике понятие теста, и работы Ю. И. Журавлёва, опубликованные в 70-х
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и 80-х годах прошлого века. Основы проблематики были заложены также
в статьях российских учёных М. М. Бонгарда (1967 г.) и М. Н. Вайнцвайга
(1973 г.). В дальнейшем направление CVP развивалось в работах отечествен-
ных и зарубежных авторов и наиболее существенное развитие получило в
публикациях представителей школы Ю. И. Журавлёва.

Основополагающие идеи LAD и FCA принадлежат соответственно П.
Хаммеру (1986 г.) и Р. Вилле (1982 г.).

В России методы LAD предложены практически параллельно с
зарубежными авторами и, в основном, получили развитие в работах
Ю. И. Журавлёва, В. В. Рязанова, О. В. Сенько и И. С. Масича.

В 1981 г. В. К. Финн предложил так называемый метод автоматиче-
ского порождения гипотез (или ДСМ-метод), который позднее в 1990-х го-
дах был адаптирован В. К. Финном и его учениками для задач машинного
обучения. Позднее С. О. Кузнецов описал ДСМ-метод в терминах FCA. В
России методы FCA представлены работами В. К. Финна, С. О. Кузнецова,
М. И. Забежайло, Д. И. Игнатова и Д. В. Виноградова.

Пусть исследуемое множество объектов M представимо в виде объ-
единения попарно не пересекающихся подмножеств (классов) K1, . . . , Kl, и
пусть объекты из множества M описываются целочисленными признаками
x1, . . . , xn. Описание объекта S из M имеет вид (a1, . . . , an), здесь aj — зна-
чение признака xj для объекта S.

Классические процедуры CVP базируются на поиске фрагментов опи-
саний прецедентов, называемых корректными элементарными классифика-
торами. Элементарным классификатором ЭК называется пара (σ,H), где
H = {xj1, . . . , xjr} — набор различных признаков, σ = (σ1, . . . , σr) — набор,
в котором σi значение признака xji, i = 1, 2, . . . , r. Близость между объек-
том S = (a1, . . . , an) и ЭК (σ,H) оценивается функцией B(S, σ,H), которая
принимает значение 1, если aji = σi для всех i = 1, 2, . . . , r, и 0 в противном
случае. Если B(S, σ,H) = 1, то говорят, что объект S содержит ЭК (σ,H).
ЭК (σ,H) корректен для класса K, K ∈ {K1, . . . , Kl}, если нельзя указать
пару прецедентов, одновременно содержащих этот ЭК, причём один из них
принадлежит классу K, а другой не принадлежит классу K.

В общем случае корректный ЭК (σ,H) по отношению к классу K

может обладать одним из следующих двух свойств:

1) некоторые обучающие объекты из класса K содержат (σ,H);

2) ни один обучающий объект из класса K не содержит (σ,H).

Корректный ЭК первого типа называется представительным ЭК
класса K. Корректный ЭК второго типа называется покрытием класса K.
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На этапе обучения для каждого класса K классификатор A строит
некоторое множество CA(K) корректных ЭК класса K. При распознавании
произвольного объекта S из M найденные ЭК участвуют в процедуре голо-
сования с целью вычисления общей оценки принадлежности объекта S этому
классу.

В модели голосования по представительным ЭК множество CA(K)

состоит из представительных ЭК класса K (необязательно всех). Оценка
Γ1(S,K) принадлежности объекта S к классу K вычисляется по формуле

Γ1(S,K) =
1

W

∑
(σ,H)∈CA(K)

P(σ,H)B(S, σ,H),

здесь W =
∑

(σ,H)∈CA(K) P(σ,H), в качестве P (σ,H) обычно берется число обу-
чающих объектов из K, содержащих (σ,H). Объекту S присваивается класс
с наивысшей оценкой. Если таких оценок несколько, то происходит отказ от
классификации.

Аналогично устроена модель голосования по покрытиям класса. Од-
нако в данной модели оценка Γ2(S,K) принадлежности объекта S к классу
K вычисляется по формуле

Γ2(S,K) =
1

W

∑
(σ,H)∈CA(K)

P(σ,H) (1−B(S, σ,H)) .

На практике хорошие результаты показывает алгоритм голосования по
тупиковым корректным ЭК классов. Корректный для класса K ЭК (σ,H)

называется тупиковым, если не является корректным любой ЭК (σ′, H ′) та-
кой, что σ′ ⊂ σ, H ′ ⊂ H.

Направление LAD ориентировано на поиск так называемых логиче-
ских закономерностей или patterns. Описание классификаторов обычно да-
ётся в терминах логических функций. Логическая закономерность класса K
— это представительный ЭК класса K. Наиболее информативными счита-
ются логические закономерности, оптимальные с точки зрения некоторого
заранее выбранного функционала. Например, ищутся логические закономер-
ности, содержащиеся в наибольшем числе прецедентов (наибольшие логиче-
ские закономерности).

В направлении FCA для задачи классификации ключевым термином
является положительная ДСМ-гипотеза. Каждая положительная ДСМ-
гипотеза класса K порождает в исходной обучающей выборке представитель-
ный ЭК (σ,H) класса K, обладающего следующим свойством: любой пред-
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ставительный ЭК (σ′, H ′) класса K такой, что σ ⊂ σ′, H ⊂ H ′, содержится
в меньшем числе прецедентов.

Таким образом, алгоритмы CVP, LAD и FCA ориентированы на по-
иск представительных ЭК, но каждое направление по разному определяет
информативность ЭК. Это обуславливает и различие в методологии поиска
требуемых представительных ЭК.

Направление CVP опирается на теорию труднорешаемых перечисли-
тельных задач. Алгоритмы LAD в значительной степени используют методы
теории целочисленного программирования и при этом, как правило, строят
небольшое количество представительных ЭК, что позволяет лучше интер-
претировать полученные результаты. Схема работы на этапе распознавания
алгоритма в LAD полностью аналогична схеме работы алгоритма голосова-
ния по представительным ЭК.

ДСМ-классификатор (FCA) действует более строго по сравнению с
классификаторами из CVP и LAD. На первом этапе для каждого класса K
строится некоторое множество представительных ЭК класса K, порождае-
мых положительными для класса K ДСМ-гипотезами. Объект S относится
к классу K, если S содержит хотя бы один найденный ЭК, и не содержит
ни одного ЭК из порождаемых положительными ДСМ-гипотезами для K ′,
K ′ ̸= K. В противном случае происходит отказ от классификации.

Настоящая работа посвящена развитию методов направления CVP.
При поиске тупиковых корректных ЭК возникает необходимость рас-

сматривать сложные в вычислительном плане задачи, которые в теории ал-
горитмической сложности дискретных задач называют труднорешаемыми.
Среди этих задач центральное место принадлежит монотонной дуализации
— задаче построения сокращённой дизъюнктивной нормальной формы мо-
нотонной булевой функции, заданной конъюнктивной нормальной формой.
Задача допускает гиперграфовую формулировку и матричную формулиров-
ку с использованием понятия неприводимого покрытия булевой матрицы.
Труднорешаемость монотонной дуализации имеет два аспекта: экспоненци-
альный рост числа решений при увеличении размера задачи и сложность их
нахождения (перечисления). Наиболее эффективными считаются алгоритмы
с полиномиальным шагом (алгоритмы с полиномиальной задержкой). По-
линомиальные алгоритмы построены лишь для некоторых частных случаев
монотонной дуализации. В настоящее время сформировано два основных на-
правления исследований.

Первое направление нацелено на построение так называемых инкре-
ментальных алгоритмов монотонной дуализации, когда алгоритму разрешено
просматривать решения, найденные на предыдущих шагах. При этом оценка
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сложности шага алгоритма даётся для худшего случая (для самого сложного
варианта задачи). В 1996 г. Л. Г. Хачияном и М. Л. Фридманом построен ин-
крементальный алгоритм монотонной дуализации с квазиполиномиальным
шагом, определяемым фактически не только размером входа задачи, но и
размером её выхода.

Второе направление основано на построении асимптотически опти-
мальных алгоритмов дуализации, впервые предложенных в 1977 г. Е. В. Дю-
ковой. В этом случае алгоритму разрешено делать лишние полиномиальные
шаги при условии, что их число почти всегда должно быть достаточно мало
по сравнению с числом всех решений задачи. В рамках данного направле-
ния удалось построить алгоритмы монотонной дуализации, эффективные в
типичном случае (эффективные для почти всех вариантов задачи). Асимпто-
тически оптимальные алгоритмы используют матричную формулировку за-
дачи монотонной дуализации и являются лидерами по скорости счёта, среди
которых одним из наиболее быстрых является алгоритм RUNC-M (Е. В. Дю-
кова, П. А. Прокофьев 2015 г.). Существуют обобщения задачи монотонной
дуализации на случай целочисленной матрицы (предложены Е. В. Дюковой
в 1987 г.), основанные на модификации понятия неприводимого покрытия бу-
левой матрицы, для которых также построены асимптотически оптимальные
алгоритмы.

Современные прикладные задачи классификации не всегда могут быть
описаны в рамках классической постановки, когда отдельные значения при-
знака сравниваются с использованием простых отношений «равно» и «не рав-
но». В ряде случаев возникает необходимость рассматривать более сложные
отношения на множествах допустимых значений признаков. Например, ко-
гда на этих множествах заданы отношения частичных порядков и описания
объектов представляют собой элементы декартова произведения конечных
частично упорядоченных множеств.

Пусть M = N1×· · ·×Nn, где Ni — частично упорядоченное множество
значений признака xi, i ∈ {1, 2, . . . , n}. Запись a ⪯ b (b ⪰ a) означает, что
b следует за a. Элементы a, b из частично упорядоченного множества Ni

называются сравнимыми, если a следует за b или b следует за a. В противном
случае a и b несравнимы. Если все элементы множестваNi попарно сравнимы,
то множество Ni называется линейно упорядоченным или цепью. Если все
различные элементы множества Ni попарно несравнимы, то множество Ni

называется антилинейно упорядоченным или антицепью. Обозначим a ≺ b,
если a ⪯ b и a ̸= b. Объект S = (a1, . . . , an) ∈ M следует за объектом
S ′ = (b1 . . . bn) ∈ M , если ai следует за bi при i = 1, 2, . . . , n. Таким образом,
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на множестве объектов из M естественным образом возникает отношение
частичного порядка.

Введём обобщённую функцию близости B̃(S, σ,H) между объектом
S = (a1, . . . , an) и ЭК (σ,H), которая принимает значение 1, если aji ⪯ σi,
i = 1, 2, . . . , r, и 0 в противном случае. При построении процедур классифи-
кации, учитывающих частичную упорядоченность данных, требуется ввести
более общие понятия корректного ЭК, представительного ЭК и покрытия
класса, используя функцию близости B̃. Актуальным является построение
асимптотически оптимальных методов поиска корректных ЭК общего вида,
опирающихся на получение асимптотических оценок типичного числа и ти-
пичного ранга таких ЭК.

Как правило, результат классификации существенно зависит от того,
какие частичные порядки заданы на множествах значений признаков. При
этом выбор частичных порядков, обеспечивающих высокое качество класси-
фикации, путём полного перебора возможных вариантов бесперспективен в
силу колоссальной вычислительной сложности. Важными являются вопросы
синтеза вычислительно эффективных процедур выбора частичных порядков
на множествах значений признаков, гарантирующих корректную классифи-
кацию.

Хорошо известно, что использование алгоритмов стохастических ком-
позиций приводит к улучшению качества классификации и повышению ско-
рости обучения логических классификаторов. На данный момент, сильнейши-
ми алгоритмами классификации являются стохастические композиции над
решающими деревьями, такие как CatBoost или LGBM. Поэтому актуаль-
ным является создание стохастических композиций над логическими клас-
сификаторами в случае, когда информация представлена в виде декартова
произведения конечных частично упорядоченных множеств.

Основной целью данной работы является обобщение процедур CVP
на случай, когда данные представляют собой элементы декартова произведе-
ния конечных частично упорядоченных множеств. В классическом варианте
порядок на множестве прецедентов фактически не установлен, так как от-
дельные значения каждого признака несравнимы между собой.

Рассмотрены следующие конкретные задачи.

1. Описание в рамках терминологии CVP единой схемы синтеза алгоритмов
логической классификации, включающей все три названных направле-
ния, а именно CVP, LAD и FCA.

2. Обобщение классических понятий CVP на случай частично упорядочен-
ных данных. Разработка и исследование моделей голосования по кор-
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ректным ЭК общего вида. Создание алгоритмов поиска корректных ЭК
общего вида на основе асимптотически оптимального решения задачи
дуализации над произведением частичных порядков.

3. Разработка и исследование методов задания частичных порядков на мно-
жествах значений признаков, обеспечивающих корректность классифи-
кации. Создание процедуры линейного упорядочения множеств допусти-
мых значений признаков, обеспечивающей высокое качество классифи-
кации при меньших временных затратах, но не гарантирующей коррект-
ность классификации.

4. Создание стохастических композиций построенных процедур классифи-
кации над произведением частичных порядков.

Методы исследования. Применялись методы дискретной математи-
ки, в частности алгебры логики, теории дизъюнктивных нормальных форм
логических функций, методов построения покрытий булевых и целочислен-
ных матриц, современных подходов к синтезу алгоритмов для дискретных
перечислительных задач. Экспериментальное исследование проводилось с ис-
пользованием программ, разработанных автором.

Основные положения, выносимые на защиту:

1. Разработана единая схема синтеза алгоритмов логической классифика-
ции с использованием терминологии Correct Voting Procedures (CVP).

2. Создана общая схема синтеза логических классификаторов в случае ча-
стично упорядоченных данных, которая может быть использована для
описания классических логических алгоритмов классификации и пред-
лагаемых в рамках данной работы моделей.

3. Предложена методика повышения качества классификации без потери
корректности за счёт задания частичного порядка на множествах значе-
ний признаков.

4. Разработан асимптотически оптимальный алгоритм дуализации над про-
изведением цепей RUNC-M+. Дано теоретическое обоснование предла-
гаемому алгоритму на основе матричной формулировки задачи дуали-
зации над произведением частичных порядков.

5. Созданы методики повышения качества классификации путём синтеза
стохастических композиций логических классификаторов.
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6. Экспериментально подтверждено, что предлагаемые в рамках данной ра-
боты процедуры результативно применимы для решения проблемы клас-
сификации по прецедентам.

Научная новизна. Впервые создана единая схема синтеза логиче-
ских процедур классификации по прецедентам, включающая направления
CVP, LAD и FCA, и для направления CVP построены корректные логические
классификаторы над произведением частичных порядков. Развит асимптоти-
чески оптимальный подход к труднорешаемым перечислительным дискрет-
ным задачам, возникающим на этапе обучения построенных классификато-
ров. Поставлена задача выбора «корректных» частичных порядков (гаранти-
рующих корректность классификации) на множествах значений признаков, и
намечены пути её решения. Предложена быстрая процедура выбора «некор-
ректных» линейных порядков на множествах значений признаков. Разрабо-
таны и экспериментально исследованы практические модели стохастических
композиций логических классификаторов над произведением частичных по-
рядков. Все полученные результаты являются новыми.

Теоретическая и практическая значимость. Диссертационная
работа содержит как теоретические, так и практические результаты.

Рассмотрены методологические аспекты алгоритмов логической клас-
сификации. Показано, что известные алгоритмы логической классификации,
описанные в традициях разных научных направлений, могут быть синтези-
рованы в рамках единой схемы.

Создана общая схема синтеза корректных логических алгоритмов
классификации по прецедентам над произведением частичных порядков, со-
гласно которой классические модели корректного голосования — это класси-
фикаторы над произведением антицепей. Показано, что в случае представ-
ления данных в виде декартова произведения конечных частичных порядков
синтез процедур CVP сводится к решению задачи дуализации над произве-
дением частичных порядков.

Дана матричная формулировка задачи дуализации над произведением
частичных порядков, в рамках которой установлено, что в общем случае ана-
лиз прецедентной информации приводит к необходимости находить так на-
зываемые упорядоченные тупиковые покрытия целочисленной матрицы. На
основе изучения метрических (количественных) свойств множества упорядо-
ченных тупиковых покрытий целочисленной матрицы получена асимптотика
типичного числа решений задачи дуализации над произведением цепей, и для
этой задачи разработан асимптотически оптимальный алгоритм. Построены
и реализованы асимптотически оптимальные классификаторы над произве-
дением конечных цепей.
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Исследована актуальная и ранее не изучавшаяся задача выбора на
этапе предварительного анализа обучающей выборки «хороших» частичных
порядков. Разработана «быстрая» процедура линейного упорядочения мно-
жеств допустимых значений признаков, эффективная по времени вычисле-
ний и позволяющая повысить качество классификации, но не гарантирую-
щая корректность классификации. Поставлена задача выбора «корректных»
частичных порядков на множествах допустимых значений признаков, и пока-
зано, что эта задача может быть решена на основе построения неприводимых
покрытий специальной булевой матрицы.

На базе идей бэггинга и бустинга построены и экспериментально ис-
следованы стохастические композиции логических классификаторов, исполь-
зующих голосование по тупиковым представительным ЭК общего вида.

Степень достоверности и апробация работы. Достоверность по-
лученных результатов обеспечивается доказательствами сформулированных
утверждений и теорем, а также результатами экспериментов, проведённых
автором. Результаты работы докладывались и обсуждались на следующих
научных конференциях: «Математические методы распознавания образов
(ММРО-18)» (Таганрог, 2017), «Дискретные модели в теории управляющих
систем» (Подмосковье, 2018), «Математические методы распознавания обра-
зов (ММРО-19)» (Москва, 2019), «Конференция по искусственному интеллек-
ту (КИИ-2019)» (Ульяновск, 2019), «Интеллектуализация обработки инфор-
мации (ИОИ-13)» (Москва, 2020), «Информационные технологии и нанотех-
нологии (ИТНТ-2021)» (Самара, 2021), «Математические методы распозна-
вания образов (ММРО-20)» (Москва, 2021), «Информационные технологии и
нанотехнологии (ИТНТ-2023)» (Самара, 2023).

Результаты диссертационной работы включены в отчёты по двум
проектам Российского фонда фундаментальных исследований: №16-01-00445
«Логический анализ данных в распознавании: обобщение классических под-
ходов и вычислительные аспекты» и №19-01-00430 «Логический анализ ча-
стично упорядоченных целочисленных данных в задачах классификации и
поиска ассоциативных правил».

Личный вклад. Все приведенные в диссертации результаты получе-
ны диссертантом лично при научном руководстве д.ф.-м.н. Е. В. Дюковой.

Публикации. По тематике работы опубликовано 15 научных работ.
В изданиях ВАК опубликованы работы [2, 6, 8, 12]. Англоязычные версии
работ [2, 8] опубликованы в журналах, индексируемых в Web Of Science Core
Collection. В изданиях, индексируемых в Scopus, опубликованы работы [7, 9,
15] и англоязычная версия работы [13].
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Объем и структура работы. Диссертация состоит из введения, че-
тырех глав, заключения и списка литературы. Полный объём диссертации
111 страниц, из них 97 страниц текста, включая 2 рисунка и 5 таблиц. Спи-
сок литературы содержит 93 наименования на 11 страницах.

Содержание работы

Во введении сформулированы основные цели и задачи, описаны ос-
новные результаты и структура диссертационной работы.

В первой главе рассматривается задача классификации по преце-
дентам и даётся обзор трёх основных подходов к построению логических ал-
горитмов классификации, а именно CVP, LAD и FCA. Приводится описание
единой схемы синтеза алгоритмов логической классификации, включающей
направления CVP, LAD и FCA.

Показано, что каждое направление вводит специальный частичный по-
рядок на множестве P(K) представительных ЭК класса K и в качестве наи-
более информативных ЭК рассматривает максимальные относительно задан-
ного порядка элементы множества P(K). Элемент частично упорядоченного
множества называется максимальным, если за ним не следует ни один другой
элемент из этого множества.

В частности, для процедур голосования по тупиковым представитель-
ным ЭК на множестве P(K) задаётся отношение частичного порядка ⪯1,
согласно которому ЭК (σ1, H1) ∈ P(K) следует за ЭК (σ2, H2) ∈ P(K) (т.е.
(σ2, H2) ⪯1 (σ1, H1)), если σ1 ⊆ σ2, H1 ⊆ H2. Доказано следующее

Утверждение 1.5.1. ЭК (σ,H) ∈ P(K) является тупиковым представи-
тельным для класса K тогда и только тогда, когда (σ,H) — максимальный
относительно частичного порядка ⪯1 элемент множества P(K).

Аналогичные утверждения доказаны для направлений LAD и FCA.
Во второй главе дано описание схемы синтеза процедур CVP для

случая частично упорядоченных данных.
Понятия корректного ЭК класса K, представительного ЭК класса

K и покрытия класса K переносятся на рассматриваемый случай заменой
функции близости B(S, σ,H) между объектом S и ЭК (σ,H) на функцию
B̃(S, σ,H). При этом предполагается, что частично упорядоченное множество
значений признаков Ni, i = 1, 2, . . . , n, содержит наибольший элемент ki.
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Пусть (σ,H) — ЭК, в котором H = {xj1, . . . , xjr}, σ = (σ1, . . . , σr),
σi ∈ Nji, i = 1, 2, . . . , r. ЭК (σ,H) сопоставим набор S(σ,H) = (γ1, . . . , γn) из
M , в котором γt = σi при t ∈ {j1, . . . , jr}, и γt = kt при t /∈ {j1, . . . , jr}.

Корректный для классаK ЭК назовём тупиковым, если любой другой
ЭК (σ′, H ′) такой, что S(σ,H) ⪯ S(σ′,H ′), не является корректным ЭК класса
K.

Через R(K) обозначим множество прецедентов из класса K. R(K)+

— множество объектов из M , которые следуют за хотя бы одним объек-
том из R(K). Элемент S ∈ M называется независимым от R(K), если
S ∈ M \ R(K)+. Задача построения множества I(R(K)), содержащего
все максимальные элементы множества M \ R(K)+ известна как задача
дуализации над произведением частичных порядков и относится к классу
труднорешаемых.

Утверждение 2.2.1. Покрытие (σ,H) класса K является тупиковым
покрытием класса K тогда и только тогда, когда S(σ,H) ∈ I(R(K)).

Пусть K =M \K. Будем рассматривать K как отдельный класс, т.е.
будем считать, что есть всего два класса K и K.

Утверждение 2.2.2. ЭК (σ,H) является тупиковым представитель-
ным для класса K тогда и только тогда, когда S(σ,H) ∈ I(R(K)) и
S(σ,H) ∈ R(K)+.

Таким образом показано, что поиск тупиковых корректных ЭК общего
вида сводится к решению задачи дуализации над произведением частичных
порядков.

В общем случае существование представительных для класса K ЭК
не гарантировано. Пусть ˜̃M = ˜̃N1×· · ·× ˜̃Nn,

˜̃Ni совпадает с Ni, i = 1, 2, . . . , n,
но на ˜̃Ni задано обратное отношение порядка, т.е. a ⪯ b в ˜̃Ni тогда и только
тогда, когда b ⪯ a в Ni.

Зададим отображение ψ : M → M × ˜̃M следующим образом. Отоб-
ражение ψ переводит объект S = (a1, . . . , an) из M в объект ψ(S) =

(a1, . . . , an, an+1, . . . , a2n) из M × ˜̃M , в котором ai+n = ai при i ∈ {1, 2, . . . , n},
т.е. признаковое описание объекта S дублируется с обратным отношением
порядка.

Пусть ψ(A), A ⊂ M , — образ A при отображении ψ. Имеет место
следующая
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Теорема 2.2.1. Если классы множества M не пересекаются, то любой
прецедент из класса ψ(K) порождает тупиковый представительный ЭК
класса ψ(K).

Согласно теореме 2.2.1 существует такое преобразование признакового
описания множества M , которое обеспечивает корректность классификации.

Отметим, что этап обучения — это самый сложный в вычислительном
плане этап логической классификации из-за необходимости решать задачу
дуализации над произведением частичных порядков, число решений которой
растёт экспоненциально с ростом размера входа задачи. Поэтому описанный
метод преобразования признакового пространства применим только в случае
небольшого числа признаков.

В данной главе дано описание практических моделей логической клас-
сификации над произведением частичных порядков, основанных на стохасти-
ческой композиции над обобщёнными логическими классификаторами. Пред-
лагаемые модели основаны на известных способах ансамблирования (бэггинг
и бустинг), в которых в качестве базового классификатора использован ал-
горитм голосования по представительным ЭК. Эти модели не гарантируют
корректность классификации, но демонстрируют высокое качество класси-
фикации на реальных задачах, что показало проведённое подробное экспери-
ментальное исследование.

В третьей главе разработаны эффективные методы задания частич-
ных порядков на множествах значений признаков, обеспечивающих коррект-
ность классификации. Описана быстрая процедура линейного некорректного
упорядочения значений признаков и приведены результаты её тестирования
на реальных задачах.

Пусть A — классификатор над произведением частичных порядков,
строящий все тупиковые представительные ЭК класса K. Тогда справедлива

Теорема 3.1.1. Алгоритм A классифицирует правильно объект S ′ из
R(K) тогда и только тогда, когда S ′ ∈M \R(K)+.

Частичный порядок на множестве M называется (A,K)-корректным,
если алгоритм A правильно классифицирует каждый объект из R(K). По-
строим булеву матрицу BK . Каждой паре объектов (S ′, S ′′), где S ′ ∈ R(K)

и S ′′ ∈ R(K), соответствует строка в матрице BK . Каждому признаку xj,
j ∈ {1, 2, . . . , n}, и каждой паре (a, b), a ∈ Nj, b ∈ Nj, a ̸= b, соответствует
столбец (xj, a, b) матрицы BK . Элемент матрицы BK , расположенный на пе-
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ресечении строки (S ′, S ′′) и столбца (xj, a, b), равен 1, если значение признака
xj равно a и b у объектов S ′ и S ′′ соответственно.

Набор столбцов H матрицы BK называется покрытием, если каждая
строка матрицы BK в пересечении хотя бы с одним из столбцов, входящих
в H, дает 1. Покрытие матрицы BK называется неприводимым, если любое
его собственное подмножество покрытием не является.

С использованием утверждения теоремы 3.1.1 доказана

Теорема 3.3.1. Частичный порядок, заданный на множестве M , являет-
ся (A,K)-корректным тогда и только тогда, когда существует покрытие
H матрицы BK такое, что для любого j ∈ {1, 2, . . . , n} и для любых
a, b ∈ Nj, b ≺ a, столбец (xj, a, b) не входит в H.

Частичный порядок на множестве объектов из M называется ли-
нейным (антилинейным) на множестве M , если каждое множество Nj,
j = 1, 2, . . . , n является цепью (антицепью).

Рассмотрим (A,K)-корректный линейный порядок на множестве M .
Согласно теореме 3.3.1 существует покрытие H матрицы BK такое, что для
любого столбца (xj, a, b) ∈ H, a, b ∈ Nj, не выполнено b ≺ a. Поскольку
множество Nj является цепью, то a ≺ b. Поэтому справедливо

Следствие 3.3.1. Линейный порядок на множестве M является (A,K)-
корректным тогда и только тогда, когда существует покрытие H

матрицы BK такое, что a ≺ b для любого столбца (xj, a, b) из покрытия
H.

Пусть на множестве M задан (A,K)-корректный антилинейный по-
рядок. Тогда для всех j = 1, 2, . . . , n и для всех a, b ∈ Nj не выполнено b ≺ a.
Следовательно, для любого покрытия матрицы BK выполнены условия
теоремы 3.3.1. Поэтому справедливо

Следствие 3.3.2. Антилинейный порядок на множестве M является
(A,K)-корректным для любого класса K из {K1, . . . , Kl}.

С целью увеличения числа признаков с линейно упорядоченным мно-
жеством значений была разработана генетическая процедура поиска покры-
тия матрицы BK , по длине близкого к минимальному. Необходимость исполь-
зования генетического алгоритма обусловлена большими размерами матрицы
BK и её разреженностью по числу единиц.
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Для линейного упорядочения множества значений отдельного призна-
ка использовался алгоритм топологической сортировки с линейным временем
работы. В случае невозможности линейного упорядочения на множестве зна-
чений признака устанавливался антилинейный порядок.

Отметим, что каждое покрытие матрицы BK может порождать
несколько (A,K)-корректных частичных порядков, из-за чего описанная
процедура выбора корректного частичного порядка имеет высокую степень
неопределённости. Этого недостатка лишена описанная в данной главе про-
цедура выбора линейного порядка на множестве M , основанная на оценке
информативности значений отдельных признаков и не гарантирующая кор-
ректность классификации.

Пусть µ(1)ij (a) и µ2ij(a), i ∈ {1, 2, . . . , l}, j ∈ {1, 2, . . . , n}, a ∈ Nj, — соот-
ветственно доля прецедентов класса Ki и доля прецедентов не из класса Ki, у
которых признак xj принимает значение a. Величина µij(a) = µ1ij(a)− µ2ij(a)

служит мерой важности значения a признака xj в классе Ki. Для каждого
класса Ki, i ∈ {1, 2, . . . , l}, и для каждого признака xj, j ∈ {1, 2, . . . , n}, за-
дадим следующий линейный порядок: ∀y, z ∈ Nj, y ⪯ z тогда и только тогда,
когда µij(y) ≥ µij(z). Описанная процедура обеспечивает высокое качество
классификации и незначительное время счёта, что подтверждено результата-
ми экспериментального исследования.

В четвёртой главе приведена матричная формулировка задачи ду-
ализации над произведением частичных порядков. Показано, что данная за-
дача сводится к поиску так называемых упорядоченных тупиковых покры-
тий целочисленной матрицы. Понятие упорядоченного тупикового покрытия
целочисленной матрицы обобщает известное понятие тупикового покрытия
целочисленной матрицы. Для дуализации над произведением цепей построен
асимптотически оптимальный алгоритм RUNC-M+. Его теоретическое обос-
нование базируется на приведённой ниже теореме 4.2.1.

Пусть P = P1 × P2 × · · · × Pn, Pi — конечное частично упорядоченное
множество с наибольшим элементом. Введём обозначения: Q1(x, P ), x ∈ P , —
множество всех элементов в P , непосредственно следующих за x (Q1(x, P ) =

{y ∈ P : x ≺ y, ∀a ∈ P : x ≺ a ⇒ a ⊀ y}); Q2(x, y, P ), x ∈ P , y ∈ Q1(x, P ),
— множество всех элементов в P , не предшествующих x и предшествующих
y (Q2(x, y, P ) = {a ∈ P : a ⪯̸ x, a ⪯ y}).

ПустьMk
mn — совокупность всех матриц размераm×n с элементами из

{0, 1, . . . , k−1}, k ≥ 2; Er
k, r ≤ n, — множество всех наборов вида (σ1, . . . , σr),

в которых σi ∈ {0, 1, . . . , k−1}, k ≥ 2, при i = 1, 2, . . . , r. Рассмотрим σ ∈ Er
k,

σ = (σ1, . . . , σr), σi < k − 1, i = 1, 2, . . . , r. Через Qi(σ), i ∈ {1, 2, . . . , r},
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обозначим множество наборов (β1, . . . , βr) в Er
k, таких что βi = σi+1 и βj ≤ σj

при j ∈ {1, 2, . . . , r} \ {i}.
Пусть H — набор из r различных столбцов матрицы L ∈ Mk

mn. Мно-
жество различных строк подматрицы матрицы L, образованной столбцами
набора H, можно рассматривать как некоторое подмножество EH наборов из
Er

k. Набор столбцов H называется упорядоченным тупиковым σ-покрытием
матрицы L, если выполнены два следующих условия:

1) EH не содержит набор (β1, . . . , βr) ∈ Er
k, в котором βj ≤ σj при j ∈

{1, 2, . . . , r};

2) если i ∈ {1, 2, . . . , r}, то EH содержит хотя бы один набор из Qi(σ).

Если L ∈ M 2
mn и набор столбцов H является упорядоченным тупи-

ковым (0, 0, . . . , 0)-покрытием матрицы L, то H — неприводимое покрытие
матрицы L.

Заметим, что если Pi, i ∈ {1, 2, . . . , r}, — конечная цепь и x ∈ Pi не яв-
ляется наибольшим элементом в Pi, то множество Q1(x, P ) состоит из одного
элемента, обозначаемого далее через x+1, и следовательно, Q2(x, x+1, P ) =

{x+ 1}. Поэтому в случае произведения конечных цепей условие 1) из опре-
деления упорядоченного тупикового σ-покрытия превращается в следующее
условие: для любого i ∈ {1, 2, . . . , n} подматрица LH

R матрицы LR, образо-
ванная столбцами из H, содержит строку (β1, . . . , βi−1, σi+1, σi+1, . . . , σr), где
βt ⪯ σt при t ̸= i, t ∈ {1, 2, . . . , r}.

Возьмём элемент x = (x1, . . . , xn) ∈ P , в котором компонента
xji = σi, i ∈ {1, 2, . . . , r}, не является наибольшим элементом в Pji, а каждая
из остальных компонент xj, j ∈ {1, 2, . . . , r} \ {j1, . . . , jr} — наибольший
элемент в Pj. Положим σ = (σ1, . . . , σr). Имеет место следующая

Теорема 4.1.1 Элемент x является максимальным независимым от R тогда
и только тогда, когда набор столбцов матрицы LR с номерами j1, . . . , jr
является упорядоченным тупиковым σ-покрытием матрицы LR.

Квадратную подматрицу порядка r матрицы L ∈Mk
mn назовем упоря-

доченной σ-подматрицей, если для множества EH выполнено EH∩Qi(σ) ̸= ∅
при i ∈ {1, 2, . . . , r}.

Обозначим: ϕd, d > 0, — интервал (12 logdmn − 1
2 logd logdmn −

logd logd logd n,
1
2 logdmn − 1

2 logd logdmn + logd logd logd n); Πr(σ) = (σ1 +

1)r−1 . . . (σr + 1)r−1, σ ∈ Er
k−1.
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Пусть L ∈ Mk
mn, σ ∈ Er

k−1. Положим B(L, σ) — множество всех упо-
рядоченных тупиковых σ-покрытий матрицы L; S(L, σ) — множество всех
упорядоченных σ-подматриц матрицы L;

Σ1(L) =
n∑

r=1

∑
σ∈Er

k−1

|B(L, σ)|;

Σ2(L) =
n∑

r=1

∑
σ∈Er

k−1

|S(L, σ)|.

Теорема 4.2.1 Если mα ≤ n ≤ dm, α > 1, d = k/(k− 1), то для почти всех
матриц L из Mk

mn при n→ ∞ справедливо

Σ1(L) ∼ Σ2(L) ∼
∑
r∈ϕd

∑
σ∈Er

k−1

Πr(σ)C
r
nC

r
mr!k

−r2

и длины почти всех упорядоченных тупиковых покрытий матрицы L при-
надлежат интервалу ϕd.

Из теоремы 4.2.1 следуют оценки типичных значений количественных
характеристик множества неприводимых покрытий булевой матрицы:

Следствие 4.2.1. Если mα ≤ n ≤ 2m, α > 1, то для почти всех матриц L

из M 2
mn при n→ ∞ справедливо

Σ1(L) ∼ Σ2(L) ∼
∑
r∈ϕ2

Cr
nC

r
mr!2

−r2,

и длины почти всех неприводимых покрытий матрицы L принадлежат ин-
тервалу ϕ2.

В заключении приводятся положения диссертации, выносимые на
защиту и задаются направления дальнейших исследований.
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