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Общая характеристика работы

Актуальность данной работы обусловлена высокой и до сих пор рас­
тущей популярностью систем автоматизированной торговли как среди круп­
ных компаний, так и среди частных лиц. Во-первых, автоматизация процес­
сов торговли позволяет снизить затраты на ручной труд и во много раз по­
высить эффективность работы, и, следовательно, привести к значительному
снижению затрат. Это особенно актуально для крупных компаний, где ав­
томатизация может привести к значительной экономии времени и денег. Во­
вторых, в связи с увеличением количества транзакций и торгуемых активов
на рынке, общее количество информации в сфере торговли постоянно растет.
Одновременно с этим, из-за развития беспроводных технологий, уменьшается
среднее время на одну совершаемую транзакцию. Поэтому для прогнозиро­
вания финансовых временных рядов необходима разработка алгоритмов и
моделей, способных обрабатывать большие объемы данных за короткие сро­
ки, что недоступно людям. Машинное обучение позволяет автоматизировать
многие задачи, которые ранее требовали участия человека. Одновременно
с этим, модели машинного и глубокого обучения способны анализировать
большие объемы данных и, в связи с этим, принимать более точные и обос­
нованные решения, что особенно важно в сфере финансов, где ошибки могут
иметь серьезные последствия. Современные модели машинного обучения мо­
гут работать с различными категориями данных, такими как тексты, изоб­
ражения, временные ряды. Таким образом открывается возможность обра­
батывать разнородную информацию, связанную с финансовыми рынками, с
помощью различных моделей, которые потом могут быть объединены в один
общий торговый модуль. Например, помимо самих временных рядов цен и
объемов активов, следует рассматривать экономические новости и работать
с ними как с текстовыми данными для предсказания дальнейшего движения
рынка после выхода новости. Таким образом, используя различные источни­
ки данных и подходящие для них модели машинного обучения, можно более
точно предсказывается движение рынка, используя одну систему.

Целью данной работы является разработка и исследование методов
решения задач прогнозирования точек разворота на многомерных временных
рядах финансовых рынков на основе моделей машинного обучения с подкреп­
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лением. В качестве результата данной работы предлагается обученная и про­
тестированная модель, являющаяся ядром полнофункциональной автомати­
зированной торговой системы. Для достижения поставленной цели должны
быть решены изложенные ниже задачи, в которых детально обозначены тре­
бования к модели, методике ее обучения, тестирования и оценки финансовых
показателей, а также инфраструктурным компонентам полнофункциональ­
ной автоматизированной торговой системы.

Для достижения поставленной цели были решены следующие задачи:

1. Определены статистические свойства многомерных финансовых
временных рядов, а именно, свойства стационарности, самоподобия,
корреляции и волатильности. Понимание данных свойств необходи­
мо при формировании выборок данных для обучения и тестирова­
ния моделей машинного обучения.

2. Оценена применимость моделей классического машинного обучения
с учителем при решении задач прогнозирования на многомерных
финансовых временных рядах. Нейронная сеть, обученная решению
задачи классификации на размеченных данных используется в ка­
честве базовой модели.

3. Разработана среда для обучения с подкреплением моделей на осно­
ве нейронных сетей с рекуррентными слоями типа LSTM; построена
архитектура моделей; обучены и оценены модели; выполнено ансам­
блирование нескольких моделей в единую экспертную систему.

4. Построены дополнительные вторичные признаки для многомерных
финансовых временных рядов криптовалютного рынка на основе
биржевой ленты сделок. Лента сделок отражает действия других
участников рынка, в частности, крупных игроков. Декодирование
этой информации и выделение важных сигналов позволяет подстра­
иваться под тех, кто обладает большей информацией о перспекти­
вах актива или рынка.

5. Разработано гибридное решение посредством сочетания алгоритми­
ческой стратегии и модели машинного обучения, фильтрующей сиг­
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налы алгоритмической стратегии. Таким образом организован про­
цесс решения двух оптимизационных задач: первая задача посвяще­
на определению пары оптимальных параметров алгоритмической
стратегии методом поиска на двумерной сетке, вторая задача по­
священа обучению с подкреплением модели фильтрации сигналов
алгоритмической стратегии. Доказано, что такой подход дает луч­
шие результаты в терминах финансовых показателей.

Основные положения, выносимые на защиту:

1. Доказано, что применение моделей машинного обучения позволяет
достичь более высоких результатов в терминах доходности и дру­
гих финансовых показателей, если они используются в качестве
фильтра сигналов исходной алгоритмической стратегии, построен­
ной на классических индикаторах или осцилляторах технического
анализа, таких как экспоненциально сглаженные скользящие сред­
ние, полосы Боллинджера, индексы относительной силы и другие
сглаживающие инструменты.

2. Предложен двухэтапный метод оптимизации гибридной стратегии,
в рамках которого на первом этапе решается задача многокритери­
альной оптимизации для поиска наиболее стабильных параметров
алгоритмической стратегии, а на втором этапе выполняется обуче­
ние с подкреплением DQN модели машинного обучения на данных
многомерных временных рядов, дополненных сигналами исходной
жесткой алгоритмической стратегии.

3. Сформированы дополнительные вторичные признаки для крипто­
валютного рынка, а именно апериодические признаки на основе бир­
жевой ленты сделок. Предложена гибридная модель многомерного
временного ряда, сочетающая в себе данные различных типов из
нескольких источников. Разработана архитектура модели на осно­
ве нейронной сети типа DQN с модулем автокодировщика, позволя­
ющего снизить размерность дополненного признаками временного
ряда.
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Научная новизна работы заключается в том, что предложен подход
использования комбинированного многомерного временного ряда, сочетающе­
го в себе первичные признаки, и вторичные, вычисленные алгоритмически,
такие как уровни поддержки и сопротивления, индикаторы, осцилляторы и
другие. Разработана среда для обучения с подкреплением моделей соверше­
нию торговых операций, в которой в качестве награды модели использует­
ся достигнутая ею доходность на тестовом периоде. Разработана архитекту­
ра модели машинного обучения на основе нейронной сети типа DQN (Deep
Q-Network), предназначенная для прогнозирования точек разворота. Реали­
зована комбинированная модель из жесткой алгоритмической стратегии и
модели машинного обучения с подкреплением, фильтрующей сигналы алго­
ритмической стратегии. Обученные в разработанной среде модели встроены
в систему автоматизированной торговли, в которой являются компонентами
активной среднесрочной инвестиционной стратегии и показывают лучшую
результативность, чем альтернативные модели и методы, обученные с учите­
лем решению задач классификации и регрессии на размеченных данных или
построенные на средствах технического анализа алгоритмические стратегии.

Теоретическая значимость работы заключается в оригинальном
решении задачи прогнозирования точек разворота на временных рядах за
счет использования дополнительных апериодических вторичных признаков,
и предложенном двухэтапном методе оптимизации гибридной стратегии, ко­
торая основана на классической алгоритмической стратегии, сигналы кото­
рой фильтруются посредством модели машинного обучения на архитектуре
DQN (Deep Q-Network).

Практическая ценность обусловлена реализацией активной средне­
срочной инвестиционной стратегии на основе прогнозирования точек разворо­
та посредством комбинирования базовой алгоритмической стратегии и моде­
ли машинного обучения с подкреплением в составе автоматизированной тор­
говой системы. Данная система внедрена в качестве одного из программных
решений в ООО «Интеллектуальные Системы Управления», которое подтвер­
дило практическую ценность указанных разработок в форме акта 0824-1 от
23 августа 2024 года. Техническая документация на разработанные решения
предоставляется клиентам ООО «Интеллектуальные Системы Управления»
при заключении договора.
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Степень достоверности результатов подтверждена эксперименталь­
ной проверкой результатов предлагаемых методов на реальных исследования
в рецензируемых научных изданиях и конференциях по машинному обуче­
нию, воспроизводимостью результатов исследования при использовании раз­
личных тестовых наборов данных из публичных репозиториев данных, в том
числе сторонними организациями; публикациями и докладами результатов.

Апробация работы произведена автором на следующих конферен­
циях:

1. 2021 International Conference Engineering and Telecommunication

2. 2022 International Conference Engineering and Telecommunication

Основные результаты по теме диссертации изложены в 10 печатных
изданиях [1–10], 4 из которых изданы в журналах, рекомендованных ВАК,
6 опубликованы в качестве тезисов докладов перечисленных выше конферен­
ций.

Личный вклад соискателя в работах с соавторами заключается в сле­
дующем: [1] - постановка задачи; определение статистических свойств много­
мерных временных рядов финансовых рынков; построение выборок данных;
[2, 3, 4, 7] – проектирование и реализация моделей машинного обучения с учи­
телем; [5, 6] - проектирование и реализация моделей машинного обучения с
подкреплением; [8, 9, 10] – построение дополнительных вторичных признаков
для многомерных временных рядов криптовалютного рынка; усовершенство­
вание моделей; оценка и сравнение результатов. Содержание диссертации и
основные положения, выносимые на защиту, отражают персональный вклад
автора в опубликованных работах. Подготовка к публикации полученных ре­
зультатов проводилась совместно с соавторами, причем вклад диссертанта
был определяющим. Все представленные результаты получены лично авто­
ром.

Диссертация состоит из введения, трех глав и заключения. Полный
объём текста диссертации составляет 111 страниц с 37 рисунками и 4 табли­
цами. Список литературы содержит 182 наименования источников.
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Содержание работы

Во введении обосновывается актуальность исследований, проводимых
в рамках данной диссертационной работы, приводится обзор научной литера­
туры по изучаемой проблеме, формулируется цель, ставятся задачи работы,
сформулированы научная новизна и практическая значимость представляе­
мой работы.

В главе 1 рассмотрены концепции биржевой торговли и особенности
функционирования криптовалютных рынков, которые были учтены в про­
цессе разработки системы автоматической торговли и среднесрочной инве­
стиционной стратегии с переворотом позиций. В частности, рассмотрены спо­
собы использования уровней поддержки и сопротивления, а также некото­
рых других средств технического анализа. Описаны разработанные автором
инфраструктурные компоненты, а именно система анализа данных в реаль­
ном времени на основе торгового терминала Quik и система бэктестирования
среднесрочных стратегий. В разделе 1.1 рассмотрены типы заявок, маржи­
нальная торговля, особенности фьючерсов, биржевые индексы и функцио­
нал блокчейнов. Помимо этого, были обозначены скользкие места предмет­
ной области, которые избегались в ходе исследований. В разделе 1.2 описана
разработанная автором инфраструктура системы автоматической торговли
на основе торгового терминала Quik 8.0. Предложена высокопроизводитель­
ная архитектура системы обработки финансовых данных различных типов в
реальном времени средствами технического и фундаментального анализа. В
разделе 1.3 для 30 криптовалютных активов с наибольшей рыночной капита­
лизацией построена матрица корреляции временных рядов, на основе которой
можно сделать вывод о сильной коррелированности всего криптовалютного
рынка. При включении различных криптовалютных активов в портфель сле­
дует выполнять диверсификацию за счет различных торговых или инвести­
ционных стратегий, а не за счет удержания различных активов. В разделе 1.4
описана разработанная автором примитивная алгоритмическая стратегия на
основе индикаторов и осцилляторов технического анализа, которая использу­
ется в качестве базовой стратегии в главах 2 и 3. Также показана важность
учета уровней поддержки и сопротивления в процессе технического анализа
графиков цен активов. Информация об уровнях используется в главе 2 в каче­
стве компонент многомерных временных рядов и входных векторов моделей
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машинного обучения. В разделе 1.5 описана разработанная автором систе­
ма тестирования и валидации среднесрочных торговых стратегий. Данная
система используется далее для проверки трех разработанных стратегий, а
также в процессе решения двупараметрической задачи оптимизации алгорит­
мической стратегии в главе 3. Сформулированы требования к финансовым
показателям стратегий на основе коэффициентов Шарпа и Сортино.

В главе 2 рассмотрен полный цикл подготовки и разметки данных, а
также архитектура и процессы обучения и тестирования моделей машинного
обучения с учителем и с подкреплением. Приведены некоторые статистиче­
ские свойства многомерных временных рядов финансовых рынков. Сформи­
рованы обучающая и тестовая выборки данных для моделей, а также выпол­
нена разметка данных для решения задачи тернарной классификации. Также
в главе описаны первые две версии моделей машинного обучения, ориентиро­
ванных на решение задачи прогнозирования многомерных временных рядов
финансовых рынков. Это модель, обученная с учителем, и модель, обучен­
ная с подкреплением. Во втором случае используется алгоритм DQN, а обу­
ченные по-разному при исследовании среды модели объединены в ансамбль.
В разделе 2.1 сформулировано определение торговой стратегии с переворо­
том позиций, а также сформулирована многокритериальная задача оптими­
зации с ограничениями, которую необходимо решить в процессе разработки
стратегий. В разделе 2.2 приведены результаты исследования некоторых ста­
тистических свойств многомерных временных рядов финансовых рынков. В
разделах 2.3 и 2.4 описана итоговая структура многомерного временного ря­
да и входного вектора для моделей машинного обучения с разметкой под
тернарную задачу классификации. В итоговую структуру была включена ин­
формация об уровнях поддержки и сопротивления, описанных в главе 1. В
разделе 2.5 приведено описание первой версии модели прогнозирования мно­
гомерных временных рядов финансовых рынков. В разделе 2.6 совмещено
обучение отдельных моделей с использованием известного варианта оптими­
зации алгоритма DQN с двумя сетями и буфером воспроизведения и состав­
лении ансамбля таких моделей. В этой части описывается среда, используе­
мая для обучения с подкреплением, алгоритм DQN, результаты исследования
ансамбля обученных глубоких нейронных сетей и использование этого алго­
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ритма для применения на финансовых рынках. В качестве входного вектора
используются те же вектора, что и для модели обучения с учителем.

Определение торговой стратегии с переворотом позиций следующее:

𝐴𝑖+1(𝑥) = 𝑆Θ(𝑇𝑖−𝑛+1(𝑥), ..., 𝑇𝑖(𝑥)), (1)

где 𝑆 - стратегия с оптимизируемыми параметрами Θ. Здесь 𝑆Θ -
разработанный и оптимизированный алгоритм прогнозирования действий,
𝑇𝑖(𝑥) - вектор MFTS для инструмента 𝑥 на временном шаге 𝑖, 𝑛 - количе­
ство шагов, 𝐴𝑖+1(𝑥) - рекомендуемое для инструмента 𝑥 действие на времен­
ном шаге 𝑖 + 1, при этом 𝐴𝑖 ∈ {𝐵, 𝑆, 𝐶, 𝐻}, где 𝐵 - покупка, 𝑆 - про­
дажа, 𝐶 - закрытие, 𝐻 - удержание. Таким образом можно сформировать
𝐴⃗(𝑥) = {𝐴𝑛(𝑥), 𝐴𝑛+1(𝑥), ..., 𝐴𝑁(𝑥)} - последовательность действий для ин­
струмента 𝑥, для которой определяется функция 𝑅(𝐴⃗(𝑥), 𝑥), вычисляющая
награду за последовательность действий для инструмента 𝑥. Далее приводит­
ся математическая формулировка многокритериальной задачи оптимизации
для обучаемой модели. Численные значения констант, которые указаны в
ограничениях, заданы для решения, ориентированного на криптовалютный
рынок, аналогично для активов MOEX.

𝑅(𝑆Θ, 𝑥) = 𝑅(𝐴⃗(𝑥), 𝑥) −→ 𝑚𝑎𝑥, 𝑠.𝑡. (2)

𝑅(𝑆Θ, 𝑥) > 𝑅(𝐵⃗(𝑥), 𝑥), 𝐵⃗(𝑥) = {𝐵𝑛, 𝐻𝑛+1, ..., 𝐻𝑁} ∀𝑥, (3)

𝑡𝑁 − 𝑡𝑛 > 360 суток при длительности временного шага ∆𝑡 = 1 час, (4)

𝑅𝑠ℎ𝑎𝑟𝑝𝑒 =
𝐸(𝑅𝑚)

𝜎𝑅𝑚

> 0.5, 𝑅𝑠𝑜𝑟𝑡𝑖𝑛𝑜 =
𝐸(𝑅𝑚)

𝜎𝑅𝑚−

> 5.0, (5)

где 𝑅(𝑆) - чистая прибыль стратегии за тестовый период, 𝑡𝑛 - момент
времени начала тестового периода, 𝑡𝑁 - момент времени окончания тестового
периода, для криптовалютного рынка торговая сессия равняется 24 часам,
т.к. биржи работают без выходных, 𝐼𝑚𝑎𝑥 - капиталоемкость стратегии, 𝑅(𝐵)

- функция прибыли бенчмарка «купи и держи» за тестовый период. Следует
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заметить, что для MOEX минимально допустимыми значениями коэффици­
ентов Шарпа и Сортино являются значения 1.0 и 7.0 соответственно.

В последующих разделах описаны результаты исследования различ­
ных статистических свойств имеющихся временных рядов. Во-первых, рас­
смотрено приближение указанных временных рядов винеровским процессом,
а также выполнена оценка свойства самоподобия посредством алгоритма
DTW. Во-вторых, проведен анализ похожести временных рядов различных
активов в одинаковом таймфрейме посредством собственной метрики. В-тре­
тьих, вычислена корреляция между временными рядами различных активов
в одинаковых таймфреймах. В конце проведен анализ изменения волатиль­
ности для некоторых активов за имеющийся временной промежуток.

В первую очередь решалась проблема нехватки данных многомерных
временных рядов на старших таймфреймах. С учетом выходных дней и празд­
ников за год существует около 200 временных шагов по одному активу на
дневном таймфрейме. Этого недостаточно для качественного обучения моде­
лей. В связи с этим рассматривается гипотеза о самоподобии графика цены
одного актива в разных таймфреймах, при подтверждении которой можно бу­
дет использовать данные разных таймфреймов для обучения одной и той же
модели. Пусть два временных ряда 𝑇 = {𝑡1, 𝑡2 . . . 𝑡𝑛} и 𝑆 = {𝑠1, 𝑠2 . . . 𝑠𝑚}
длины 𝑛 и 𝑚 соответственно. Коэффициент самоподобия определяется как
минимальная стоимость преобразования T в S на основе евклидового рассто­
яния между соответствующими компонентами. Он используется для оценки
подобия паттернов на разных временных шкалах. На следующем шаге состав­
ляется матрица расстояний, где на пересечении строки 𝑖 и столбца 𝑗 стоит
расстояние между 𝑡𝑖 и 𝑠𝑗 элементами временных рядов 𝑇 и 𝑆 соответственно.
В расчетах используется расстояние, определяемое следующим образом:

𝑑(𝑡𝑖, 𝑠𝑗) = |𝑡𝑖 − 𝑠𝑗| (6)

Таким образом, матрица расстояний примет следующий вид:⎛⎜⎜⎜⎜⎝
𝑑(𝑡1, 𝑠1) 𝑑(𝑡1, 𝑠2) . . . 𝑑(𝑡1, 𝑠𝑚)

𝑑(𝑡2, 𝑠1) 𝑑(𝑡2, 𝑠2) . . . 𝑑(𝑡2, 𝑠𝑚)

. . . . . . . . . . . .

𝑑(𝑡𝑛, 𝑠1) 𝑑(𝑡𝑛, 𝑠2) . . . 𝑑(𝑡𝑛, 𝑠𝑚)

⎞⎟⎟⎟⎟⎠ (7)
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Пусть 𝑊 = {𝑤1, 𝑤2 . . . 𝑤𝑘 . . . 𝑤𝐾} - путь трансформации такой, что
следующая функция принимает свое минимальное значение, т.е. стоимость
пути трансформации наименьшая:

𝐷𝑇𝑊 (𝑇,𝑆) = 𝑚𝑖𝑛

(︃
𝐾∑︁
𝑘=1

𝑑(𝑤𝑘)

)︃
/𝐾 (8)

где 𝑤𝑘 = (𝑖,𝑗), 𝑑(𝑤𝑘) = 𝑑(𝑡𝑖,𝑠𝑗) = |𝑡𝑖 − 𝑠𝑗| граничные условия зада­
ются равенствами 𝑤1 = (1, 1), 𝑤𝐾 = (𝑛,𝑚). Следующая задача: вычислить
минимальную стоимость преобразования T в S. Путь трансформации 𝑊 нахо­
дится с помощью методов динамического программирования. Для матрицы
трансформации 𝛾 значение на пересечении строки 𝑖 и столбца 𝑗 вычисляется
следующим образом:

𝛾(𝑖, 𝑗) = 𝑑(𝑡𝑖, 𝑠𝑗) + min(𝛾(𝑖, 𝑗 − 1), 𝛾(𝑖− 1, 𝑗), 𝛾(𝑖− 1, 𝑗 − 1)) (9)

Algorithm 1 Алгоритм динамической трансформации временной шкалы.
for i in range(0, size(T)) do

for j in range(0, size(S)) do
D[i][j] = |T[i] - S[j]|

end for
end for
𝛾[0][0] = D[0][0]
for i in range(1, size(T)) do

𝛾[i][0] = D[i][0] + 𝛾[i-1][0]
end for
for j in range(1, size(S)) do

𝛾[0][j] = D[0][j] + 𝛾[0][j-1]
end for
for i in range(1, size(T)) do

for j in range(1, size(S)) do
𝛾[i][j] = D[i][j] + min(𝛾[i-1][j-1], 𝛾[i][j-1], 𝛾[i-1][j])

end for
end for
result = 𝛾[size(T) - 1][size(S) - 1]

В результате получена матрица самоподобия, в которой отражено срав­
нение графиков одного и того же актива в разных таймфреймах. Большие
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значения в ячейках матрицы соответствуют большему различию временных
рядов. Ноль соответствует полному совпадению графиков. Исследование по­
казывает, что частота сбора данных влияет на их качество: с уменьшени­
ем длительности таймфрейма увеличивается уровень шума и снижается схо­
жесть временных рядов. В последующем при обучении моделей, данные с
различными таймфреймами, включая дневные, недельные и месячные, бу­
дут использоваться одновременно в обучающих выборках для моделей, не
являющихся старшими по временной шкале.

Рис. 1 — Матрица самоподобия для четырех графиков цены акций SBER.

Далее необходимо выделить активы, поведение которых значительно
отличается от других. Такие активы будут называться выбросами. Их следу­
ет рассматривать отдельно. Для их нахождения будут составлены матрицы
непохожести для различных таймфреймов. В ячейках каждой матрицы будут
записаны коэффициенты непохожести, соответствующие паре активов.

Пусть 𝑝𝑡1, 𝑝𝑡2, . . . 𝑝𝑡𝑛 - числовой ряд, где 𝑝𝑡𝑖 - цена закрытия данного
актива в момент времени 𝑡𝑖. Дополнительный временной ряд составляется
из процентных отклонений цены с течением времени 𝑑1, 𝑑2, . . . 𝑑𝑛−1, элементы
ряда вычисляются по формуле:

𝑑𝑖 =
𝑝𝑡𝑖+1
− 𝑝𝑡𝑖
𝑝𝑡𝑖

(10)
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Далее осуществляется сортировка в порядке возрастания для данной
пары активов 𝐷 и 𝑆 рядов процентных отклонений 𝑑1, 𝑑2, . . . 𝑑𝑛 и 𝑠1, 𝑠2, . . . 𝑠𝑚.
Если ряды отличаются по размеру (например, 𝑚 > 𝑛), выполняется обрезка
одного из них так, что отбрасываются первые 𝑚 − 𝑛 точек. Формула для
нахождения коэффициента непохожести:

𝑆 =
∑︁
𝑖=1

𝑛
|𝑑𝑖 − 𝑠𝑖|

𝑛
(11)

Рис. 2 — Сопоставление двух временных рядов на предмет непохожести.

Более темные элементы матрицы соответствуют высоким значениям
коэффициента непохожести. Таким образом, матрицы получились симмет­
ричны относительно диагонали, на которой стоят нули. Значение коэффи­
циента непохожести близкое к нулю означает похожесть временных рядов
рассматриваемых активов, в соответствии с предложенной метрикой. Чем
больше коэффициент непохожести, тем меньше активы похожи друг на дру­
га и тем ближе к темному цвет.

Полученные результаты исследования статистических свойств времен­
ных рядов финансовых рынков могут быть применены в процессе подготовки
данных для обучения моделей, предназначенных для решения различных за­
дач на подобных временных рядах. Установлено, что, во-первых, свечные гра­
фики в малых таймфреймах обладают меньшим самоподобием, чем свечные
графики в больших таймфреймах, однако свечные графики в больших тайм­
фреймах также не демонстрируют высокой степени самоподобия, поэтому
при составлении выборки данных рекомендуется не смешивать данные свеч­
ных графиков различных таймфреймов; вовторых, графики индексов, акций
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Рис. 3 — Матрица коэффициентов непохожести для различных активов.

и товаров в одинаковом таймфрейме различаются по составу свечей, поэто­
му выборку данных для моделей следует составлять из временных рядов
только одного класса; в-третьих, временные ряды акций компаний входящих
в индекс MOEX и активов товарного рынка не обладают сильной корреля­
цией друг с другом, поэтому нет необходимости ликвидировать какие-либо
компоненты выборки данных по причине корреляции. Дополнительно стоит
отметить, что в периоды кризисов на рынке наблюдаются всплески волатиль­
ности. В такие моменты поведение стоимости активов плохо описывается ма­
тематическими моделями.

Для обучения моделей берутся данные на основе свечных графиков на
дневном таймфрейме. Длительность используемых временных рядов состав­
ляет от 1 до 20 лет. Графики на меньших таймфреймах не рассматриваются
из-за сильного шума данных. В данной работе было подготовлено несколько
типов разметки для решения задач классификации различного рода. Первый
вариант простейшей разметки соответствует задаче прогнозирования движе­
ния цены вверх или вниз в ближайшие N дней от текущего момента, N лежит
в диапазоне [1; 5]. Вторая версия разметки была получена с использованием
алгоритма определения тренда с плавающей правой границей окна фильтра.
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В ходе экспериментов выяснилось, что значение точности лучше у разметки,
полученной вторым методом. Далее в работе представлены результаты обу­
чения и тестирования моделей на второй разметке, потому что точность на
разметке первого типа 54-58%, на разметке второго типа 65-70%. Первона­
чальный вариант разметки вторым способом подразумевает три класса: L, S,
N. Отметка N означает, что на момент закрытия текущей свечи рекомендует­
ся иметь нулевую позицию, L - что рекомендуется иметь длинную позицию,
S - что рекомендуется иметь короткая позиция. Метка N соответствует мо­
ментам, когда на рынке нет определенного движения.

Первая модель, которая рассматривалась в рамках данной работы —
это модель, обученная с учителем на описанной ранее разметке для решения
задачи тернарной классификации. Выходной сигнал модели — это наиболее
вероятное состояние, которое должно быть реализовано на следующем вре­
менном шаге. Модель имеет разветвленную топологию и содержит четыре
точки входа, на которые разбивается входной вектор — это предыстория
цен, объемов, уровней и данные о временной метке. Далее для работы с
предысторией временного ряда используются слои LSTM типа, которые кон­
катенируются и обрабатываются дополнительными полносвязными слоями с
выпадением 0.5. Модель реализована посредством инструментария Keras и
Tensorflow и имеет порядка 6 млн параметров.

Рис. 4 — Архитектура модели для решения задачи классификции.
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В результате обучения модели на протяжении 10 эпох, что являлось оп­
тимальным значением, было достигнуто значение метрики точности в 66.5% и
доходность по результатам бэктестирования на тестовой выборке в 15% годо­
вых за 2022 год. Коэффициент Шарпа составил примерно 0.22. Коэффициент
Сортино составил примерно 1.38. Это довольно низкие показатели, ниже ми­
нимально необходимых, обозначенных ранее. Модель показала обучаемость
в терминах машинного обучения, однако непригодна по финансовым показа­
телям в реальных условиях. Низкие показатели модели обусловлены в том
числе достаточно примитивной разметкой и частыми переворотами позиций,
что будет исправлено далее в подходе обучения с подкреплением.

Новизна данной работы заключается в совмещении обучения отдель­
ных моделей с использованием известного варианта оптимизации алгоритма
DQN с двумя сетями и буфером воспроизведения и составлении ансамбля
таких моделей. В классическом машинном обучении часто рассматривают­
ся ансамбли слабых моделей. В данной работе рассматривается составление
ансамбля сильных моделей, каждая из которых по отдельности способна ка­
чественно решить поставленную задачу, но с худшей производительностью
(доходностью при совершении операций на финансовых рынках), чем в со­
ставе ансамбля. В процессе обучения моделей алгоритмом DQN присутствует
фактор случайности, связанный с epsilon-жадным исследованием окружаю­
щей среды. В связи с этим обучение моделей осуществляется по- разному, по­
этому был разработан критерий отбора обученных моделей для составления
ансамбля. Показано, что эффективность ансамбля значительно превышает
эффективность каждой отдельной модели.

Как видно из таблицы, с увеличением количества моделей в ансам­
бле увеличивается и получаемая ими награда. Время, необходимое для функ­
ционирования ансамбля на каждом шаге, также увеличивается пропорцио­
нально, поэтому было решено сосредоточиться на ансамбле, содержащем 64
модели. Его эффективность приемлема для используемой среднесрочной тор­
говой стратегии. Полученный ансамбль дает прибавку к вознаграждению за
тестовый период примерно на 100% по отношению к каждой отдельной моде­
ли из ансамбля. Также использование ансамбля дает более плавный график
роста вознаграждения без сильных просадок. Доходность одной модели со­
ставила от 40 до 56годовых за 2022 г. Доходность ансамбля из 64 моделей
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Algorithm 2 Алгоритм обучения с подкреплением модели типа DQN.
for i in range(epochs) do

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = environment.reset()
while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 != timeseries.end() do

if epsilon-greedy research required then
𝑎𝑐𝑡𝑖𝑜𝑛 = random(L, S, C)

else
𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑜𝑛𝑙𝑖𝑛𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
𝑛𝑒𝑥𝑡, 𝑟𝑒𝑤𝑎𝑟𝑑 = environment.step(𝑎𝑐𝑡𝑖𝑜𝑛)
BUFFER ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑛𝑒𝑥𝑡, 𝑟𝑒𝑤𝑎𝑟𝑑
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑛𝑒𝑥𝑡

end if
if 𝑀𝑜𝑛𝑙𝑖𝑛𝑒 update required then

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛𝑡, 𝑛𝑒𝑥𝑡𝑡, 𝑟𝑒𝑤𝑎𝑟𝑑𝑡 = random(BUFFER)
update(𝑀𝑜𝑛𝑙𝑖𝑛𝑒, 𝑓𝑙𝑜𝑠𝑠(𝑟𝑒𝑤𝑎𝑟𝑑𝑡 + 𝛾 *

𝑀𝑡𝑎𝑟𝑔𝑒𝑡(𝑛𝑒𝑥𝑡𝑡), 𝑀𝑜𝑛𝑙𝑖𝑛𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑡)))
end if
if 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 update required then

𝑀𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑀𝑜𝑛𝑙𝑖𝑛𝑒

end if
end while

end for
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составила примерно 90% годовых за 2022 г. с коэффициентом Шарпа 0.47 и
коэффициентом Сортино 4.16, что уже достаточно близко к желаемым целе­
вым показателям и может быть запущено на реальном счете.

M R(3 года) R(2022 г.)
22 ≈ 206% ≈ 81%
24 ≈ 207% ≈ 84%
26 ≈ 213% ≈ 84%
32 ≈ 240% ≈ 86%
44 ≈ 267% ≈ 89%
58 ≈ 278% ≈ 90%
64 ≈ 280% ≈ 90%

Таблица 1 — Результативность работы разных ансамблей моделей.

В главе 3 представлено оригинальное решение задачи прогнозирования
точек разворота на многомерных временных рядах финансовых рынков за
счет использования дополнительных апериодических вторичных признаков
на основе ленты сделок и предложенном двухэтапном методе оптимизации
гибридной стратегии, которая основана на классической алгоритмической
стратегии, сигналы которой фильтруются посредством модели машинного
обучения на архитектуре DQN. Здесь показано, что подобное использование
моделей машинного обучения поверх алгоритмических стратегий позволяет
существенно повысить доходность стратегий. В разделе 3.1 описаны допол­
нительные признаки многомерных временных рядов финансовых рынков. В
разделе 3.2 представлена итоговая третья итерации модели и стратегии, пред­
лагаемая автором как основной результат данной работы. В разделе 3.3 проде­
монстрированы отчеты модуля бэктестирования для итоговой третьей версии
стратегии.

В главе 2 были представлены 2 модели машинного обучения. Первая
была обучена на размеченной выборке для решения задачи тернарной клас­
сификации, вторая была обучена с подкреплением для прогнозирования на­
грады за следующее действие. Использование расширенного MFTS, допол­
ненного вторичными признаками на основе ленты сделок, является не един­
ственным улучшением итоговой модели. Был кардинально пересмотрен под­
ход использования моделей машинного обучения в задачах прогнозирования
MFTS. За основу была взята жесткая алгоритмическая трендовая стратегия,
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сигналы которой в режиме бинарной классификации фильтровались моде­
лью.

𝐸𝑀𝐴𝑡(𝑛,𝑚) = 𝛼 · 𝑃𝑡−𝑚 + (1− 𝛼) · 𝐸𝑀𝐴𝑡−𝑚−1, 𝛼 =
2

1 + 𝑛
(12)

𝐵𝐵𝑊𝑡(𝑘) =

√︃∑︀𝑡
𝑖=𝑡−𝑘+1(𝑃𝑖 − 𝑆𝑀𝐴𝑡(𝑘))2

𝑘
, 𝑆𝑀𝐴𝑡(𝑘) =

∑︀𝑡
𝑖=𝑡−𝑘+1 𝑃𝑖

𝑘
(13)

(𝑃𝑡 − 𝐸𝑀𝐴𝑡(𝑛,𝑚)) * (𝑃𝑡−1 − 𝐸𝑀𝐴𝑡−1(𝑛,𝑚)) < 0⇒ 𝑁 (14)

𝑃𝑡 > 𝐸𝑀𝐴𝑡(𝑛,𝑚), 𝑃𝑡−1 < 𝐸𝑀𝐴𝑡−1(𝑛,𝑚), 𝐵𝐵𝑊𝑡(𝑘) < 𝑇 ⇒ 𝐿 (15)

𝑃𝑡 < 𝐸𝑀𝐴𝑡(𝑛,𝑚), 𝑃𝑡−1 > 𝐸𝑀𝐴𝑡−1(𝑛,𝑚), 𝐵𝐵𝑊𝑡(𝑘) < 𝑇 ⇒ 𝑆 (16)

Здесь обозначено, что основой стратегии служит индикатор EMA. Сиг­
нал на покупку поступает при пересечении графиком цены линии EMA снизу
вверх. Сигнал на продажу поступает при пересечении графиком цены линии
EMA сверху вниз. При поступлении нового сигнала предыдущая позиция
другого типа закрывается. При этом сигналы на первом этапе фильтруются
по волатильности, определяемой как ширина между линиями Боллинджера
BBW. Если волатильность превышает пороговое значение T сигнал игнори­
руется. Оптимальные значения k = 60 и T = 0.3 для часового таймфрейма.
Данная стратегия является доходной в базовом варианте при оптимально
подобранных параметрах, однако ее можно существенно улучшить при до­
бавлении вторичной фильтрации посредством модели машинного обучения.
Оптимальные значения параметров n и m были определены в результате ре­
шения двупараметрической задачи оптимизации на двумерной сетке и соста­
вили n = 3, m = 16. На рисунке приведена тепловая карта, отражающая реше­
ние оптимизационной задачи. Рассматриваемый актив - ETHUSDT на споте
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Binance. Светлые клетки означают положительную доходность стратегии на
тестовом периоде за 2023 год. Темные клетки сигнализируют об отрицатель­
ной доходности и неудачных комбинациях параметров. По сути, вся тепловая
карта дает положительную доходность при любых параметрах. Это говорит
о том, что трендовые стратегии применимы для работы с торговой парой
ETHUSDT. ETH является стабильным активом с адекватными трендовыми
движениями. Обозначенные выше параметры k и T не перебирались, а ис­
пользовались фиксированные, т.к. это приводило бы к переобучению модели.

Рис. 5 — Тепловая карта перебора параметров n и m для ETHUSDT.

Далее поверх жесткой алгоритмической стратегии была надстроена
модель, обученная методом с подкреплением, описанным в главе 2. За осно­
ву была взята та же архитектура, дополненная несколькими компонентами
для обслуживания вторичных признаков, построенных на основе ленты сде­
лок. На рисунке представлена архитектура финальной модели. Она содержит
примерно 25 млн параметров. Модель была дополнена новыми LSTM слоями
в режиме разветвления, предназначенными для обработки информации по
сериям сделок и крупным сделкам. Используется модуль автокодировщика
для уменьшения размерности вектора, описывающего серии сделок. Модель
обучена с подкреплением для решения задачи бинарной классификации, про­
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пускать или нет сигнал от жесткой алгоритмической стратегии. Результаты
бэктестирования обученной модели третьей версии приведены в следующем
разделе.

Рис. 6 — Архитектура нейронной сети модели третьей версии.

Модель обучалась на данных за 2 года - 2020 и 2021 в часовом тайм­
фрейме. 2022 и 2023 года использовались для чистого тестирования. В данном
случае результаты приведены для актива ETHUSDT, аналогичные резуль­
таты были получены и для 55 других торговых пар, из которых по итогу
был составлен портфель, однако эта часть выходит за рамки данной работы.
Стратегия тестировалась без реинвестирования прибыли, с фиксированным
стоп-лоссом, без тейк-профита, с полными комиссиями биржи и брокера. Об­
служивание позиций не приводило к проскальзыванию, т.к. капиталоемкость
стратегии ограничена 10 млн USDT. Стратегия показала доходность пример­
но 289% за 2 тестовых года, коэффициент Шарпа составил 0.97, коэффициент
Сортино составил 16.76.

В заключении приведены основные результаты работы:
1. Показано, что применение моделей машинного обучения позволяет

достичь более высоких результатов в терминах доходности и других финансо­
вых показателей, если они используются в качестве фильтра сигналов исход­
ной алгоритмической стратегии, построенной на классических индикаторах
или осцилляторах технического анализа, таких как экспоненциально сглажен­
ные скользящие средние, полосы Боллинджера или индексы относительной
силы.
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Рис. 7 — Результаты бэктестирования стратегии Intersector 3.1.

2. Предложен двухэтапный метод оптимизации гибридной стратегии, в
рамках которого на первом этапе решается задача многокритериальной опти­
мизации для поиска наиболее стабильных параметров алгоритмической стра­
тегии, а на втором этапе выполняется обучение с подкреплением DQN модели
на данных MFTS, дополненных сигналами исходной алгоритмической стра­
тегии.

3. Построены дополнительные вторичные признаки MFTS для крипто­
валютного рынка, а именно апериодические признаки на основе биржевой лен­
ты сделок и публикаций и сообщений социальных сетей. Предложена гибрид­
ная модель MFTS, сочетающая в себе данные различных типов из нескольких
источников.

Таким образом в рамках данной работы были разработаны методы
решения задач прогнозирования точек разворота на многомерных времен­
ных рядах финансовых рынков на основе моделей машинного обучения с
подкреплением. В качестве результата данной работы предложена обученная
и протестированная модель, являющаяся ядром полнофункциональной авто­
матизированной торговой системы.
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