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ВВЕДЕНИЕ 

 

Актуальность темы исследования. Корректное принятие эффективных 

управленческих решений на всех уровнях управления, в частности, на 

макроуровне (например, на государственном уровне или уровне региона) и на 

микроуровне (например, для отдельно взятых хозяйств или предприятий), требует 

применения адекватного математического аппарата. Анализ возможностей и 

возможных сценариев, выбор и обоснование решения, реализация которого 

наиболее целесообразна для имеющихся условий, позволяет найти оптимальную 

модель функционирования экономического объекта, максимально реализующую 

его потенциал. Успешное решение задач принятия управленческих решений 

подразумевает обязательный учет, присущих современной экономике, 

неопределенности, конфликтности и порожденного ими экономического риска. 

Принятие управленческих решений часто требует выполнения таких операций, 

как поиск наиболее типичной оценки неизвестного распределения вероятностей 

состояний экономической среды, поиск оценки значимости рассматриваемых 

экономических объектов/показателей и значений соответствующих весовых 

коэффициентов, вычисления оценок различных числовых характеристик 

случайной величины, характеризующей выбранный показатель эффективности 

принятия управленческих решений в экономике. Предлагаемый теоретико-

игровой инструментарий позволяет осуществить, как строго математически 

обоснованный поиск наиболее типичной оценки неизвестного распределения 

вероятностей состояний экономической среды, так и корректное принятие 

эффективного управленческого решения с учетом неопределенности, 

конфликтности и экономического риска. Это обуславливает актуальность 

исследования. 

Степень разработанности проблемы. Вопросы теории игр, теории 

принятия статистических решений, теории экономического риска, а также 

применения этих теорий в экономических исследованиях рассматриваются в 

многочисленных научных публикациях. 
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В частности, эти вопросы рассматривались в работах таких зарубежных и 

российских авторов, как З. И. Абдулаева [2], Р. Ауман, М. Машлер [121], 

Д. Блекуэлл, М. А. Гиршик [9], А. Вальд [15, 139], Э. Вилкас [17], 

В. В. Витлинский [19, 18], Н. Н. Воробьев [20], Ю. Б. Гермейер [24], М. В. Губко, 

Д. А. Новиков [28] Р. Б. Майерсон [130], Д. Мак-Кинси [43], Г. М. Марковиц [128, 

129], Э. Мулен [45], Ф. Найт [47], А. О. Недосекин [48], Дж. фон Нейман, 

О. Моргенштерн [109, 132], Г. Оуэн [54], А. В. Сигал [86, 102], Д. Трейнор [138], 

Р. И. Трухаев [112], П. Фишберн [116, 122, 123 124, 125], Дж. Харшаньи [126], 

У. Шарп [118], М. Шубик [126, 136] и др. 

Среди монографий по теории принятия решений хотелось бы выделить 

следующие работы: В. В. Витлинский, П. И. Верченко, А. В. Сигал, 

Я. С. Наконечный [18], Н. Н. Воробьев [20], А. И. Орлов [52], Д. А. Новиков, 

А. Г. Чхартишвили [28, 50], С. Л. Блюмин, И. А. Шуйкова [10], Т. Саати [78], 

В. Н. Козлов [32] и др. 

Отечественные и зарубежные исследователи внесли значительный вклад в 

разработку проблемы принятия статистических решений с учетом 

неопределенности, конфликтности и риска. И, тем не менее, в данной области 

существует ряд нерешенных проблем, к которым, в частности, можно отнести 

проблему оценки вероятностей возможных состояний экономической среды в 

поле третьей и четвертой информационных ситуаций. 

Целью диссертационной работы является разработка научно-обоснованных 

методов и моделей принятия управленческих решений, основанных на 

использовании наиболее типичной оценки неизвестного распределения 

вероятностей состояний экономической среды, оценке значимости 

рассматриваемых экономических объектов/показателей и значений 

соответствующих весовых коэффициентов и на использовании вычисленных 

оценок числовых характеристик случайной величины, характеризующей 

выбранный показатель эффективности принятия управленческих решений в 

экономике. 

Для реализации цели были поставлены и решены следующие задачи: 
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1. Анализ и систематизация существующих в теории принятия решений 

и управления вероятностно-статистических моделей с использованием вектора 

оценок вероятностей возможных состояний экономической среды или оценок 

неизвестных значений весовых коэффициентов рассматриваемых показателей. 

2. Критический обзор инструментов оценки вероятностей возможных 

состояний экономической среды, оценки весовых коэффициентов выбранных 

экономических объектов/показателей в поле третьей информационной ситуации. 

3. Разработка корректных методов построения вектора оценок 

вероятностей возможных состояний экономической среды, оценок значимости 

рассматриваемых экономических объектов/показателей и значений 

соответствующих весовых коэффициентов, наиболее адаптированных к 

использованию в экономических исследованиях. 

4. Разработка метода построения для вероятностно-статистических 

моделей вектора оценок вероятностей возможных состояний экономической 

среды, учитывающих значимость предшествующих периодов времени для 

настоящего момента времени. 

5. Построение вероятностно-статистических моделей выбора вектора 

оценок вероятностей возможных состояний экономической среды или оценок 

неизвестных значений весовых коэффициентов рассматриваемых показателей. 

Объект исследования — экономические системы (прежде всего, 

предприятия всех организационно-правовых форм), характеризующиеся разного 

вида механизмами управления, обязанные разрабатывать научно-обоснованные 

рекомендации по организации и технологии построения процедур подготовки, 

принятия и поддержки управленческих решений с учетом неопределенности, 

конфликтности и экономического риска. 

Предмет исследования — процессы принятия управленческих решений в 

экономике, в случаях, когда принятие управленческих решений осуществляется в 

поле третьей или четвертой информационной ситуации. 

Теоретико-методологическую основу исследования составили положения 

и принципы системного подхода, рискологии, теории игр, в частности, игр с 
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природой, т. е. теории принятия статистических решений, теории математических 

методов принятия решений с учетом неопределенности, конфликтности и риска 

на основе классификации информационных ситуаций о состояниях 

экономической среды, теории полезности, теории управления социально-

экономическими системами, современной теории портфеля. Построение 

комплекса экономико-математических моделей принятия статистических 

решений опирается на ряд экономико-математических методов: методы 

оптимизации. При этом для оценки значений неизвестных вероятностей 

состояний экономической среды применялись методы теории вероятностей и 

математической статистики, а для построения последовательностей, 

удовлетворяющих простому линейному отношению порядка, задающих 

распределение вероятностей, применялись методы теории полезности. Кроме 

того, применялись методы принятия решений с учетом неопределенности, 

конфликтности и риска, основанные на классификации информационных 

ситуаций о состояниях экономической среды, а также стандартные и теоретико-

игровые методы построения множества допустимых и эффективных портфелей. 

Информационной базой исследования являются научные исследования 

российских и зарубежных ученых в области теории игр и статистических 

решений, рискологии и их приложений в экономике, а также монографии, 

посвященные проблемам моделирования процесса принятия статистических 

решений в условиях неопределенности; публикации в экономических журналах; 

материалы научно-практических конференций. 

Научная новизна исследования: в диссертации рассмотрено построение 

вектора оценок вероятностей возможных состояний экономической среды на 

основе классических последовательностей натуральных чисел в поле третьей или 

четвертой информационной ситуации. Научной новизной обладают следующие 

результаты, выносимые на защиту: 

1. Проанализированы и систематизированы существующие в теории 

принятия решений и управления вероятностно-статистические модели с 

использованием вектора оценок вероятностей возможных состояний 
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экономической среды или оценок неизвестных значений весовых коэффициентов 

рассматриваемых показателей. 

2. Рассмотрено понятие обобщенных прогрессий Фишберна в поле 

третьей информационной ситуации. На множестве всех обобщенных 

геометрических прогрессий Фишберна, удовлетворяющих частично усиленному 

линейному отношению порядка, впервые доказана теорема о максимизации 

значения энтропии Шеннона. 

3. Рассмотрен метод построения произвольной последовательности, 

удовлетворяющей простому линейному отношению порядка и задающей 

распределение вероятностей. Введены понятия «последовательность Фишберна» 

и «последовательность, производящая последовательность Фишберна». 

Введенное понятие последовательностей Фишберна определяет класс 

последовательностей, являющийся гораздо более широким, чем класс 

последовательностей, элементы которых вычисляются по формуле точечных 

оценок Фишберна для случая усиленного линейного отношения порядка. Введены 

понятия «последовательность Фишберна второго порядка» и «последовательность 

Фишберна, производящая последовательность Фишберна второго порядка». 

Введенное понятие последовательностей Фишберна второго порядка является 

обобщением понятия последовательностей Фишберна, если имеет место 

смешанная система предпочтений. 

4. Разработан метод построения вектора оценок вероятностей 

возможных состояний экономической среды, учитывающих значимость 

предшествующих периодов времени для настоящего момента времени, в 

обобщенной модели Марковица задачи выбора эффективного портфеля. 

5. Предложены методы и модели применения последовательностей 

Фишберна для моделирования процессов принятия управленческих решений в 

экономике. 

Теоретическая значимость результатов исследования заключается в том, 

что разработанный комплекс методов вносит значительный вклад в развитие 

методов оценки вероятностей возможных состояний экономической среды, 
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методов оценки значимости рассматриваемых экономических 

объектов/показателей и значений соответствующих весовых коэффициентов с 

учетом неопределенности, конфликтности и риска, а также в обосновании 

математической и экономической корректности разработанных методов и 

моделей оценки неизвестных значений соответствующих показателей. 

Практическая значимость результатов исследования определяется 

возможностью применения предложенных моделей и методов в различных 

сферах экономической деятельности с целью повышения эффективности 

функционирования экономических систем. Предложенные в диссертационной 

работе методы позволяют повысить корректность и эффективность принятия 

управленческих решений в экономике лицом, принимающим решения (ЛПР). 

Область исследования диссертационной работы соответствует 

требованиям следующих пунктов паспорта специальности 08.00.13 – 

«Математические и инструментальные методы экономики»: 

Раздел 1 «Математические методы» 

1.1. «Разработка и развитие математического аппарата анализа 

экономических систем: математической экономики, эконометрики, прикладной 

статистики, теории игр, оптимизации, теории принятия решений, дискретной 

математики и других методов, используемых в экономико-математическом 

моделировании». 

1.4. «Разработка и исследование моделей и математических методов анализа 

микроэкономических процессов и систем: отраслей народного хозяйства, фирм и 

предприятий, домашних хозяйств, рынков, механизмов формирования спроса и 

потребления, способов количественной оценки предпринимательских рисков и 

обоснования инвестиционных решений». 

Апробация результатов исследований осуществлялась по следующим 

направлениям: 

1. Исследования, лежащие в основе диссертационной работы, были 

поддержаны грантом РФФИ в рамках научного проекта «Разработка технологий и 

инструментария теоретико-игрового моделирования принятия управленческих 
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решений в экономике на основе концепции комбинированного применения 

статистических и антагонистических игр» (№ 18-010-00688 на 2018–2020 гг.). 

2. Ряд положений диссертации был использован при выполнении 

инициативных НИР кафедры бизнес-информатики и математического 

моделирования Института экономики и управления (структурное подразделение) 

Федерального государственного автономного образовательного учреждения 

высшего образования «Крымский федеральный университет имени 

В. И. Вернадского», г. Симферополь, в 2016–2018 гг.: АААА-А16-116051910-074-

1 на тему «Форсайт, моделирование и обеспечение информационной 

безопасности устойчивого информационного развития Республики Крым», в 

2019–2021 гг.: АААА-А19-119012390077-2 на тему «Информационные системы и 

модели цифровой экономики». Отдельные положения и научные результаты были 

внедрены в учебный процесс преподавания дисциплин «Инвестирование и 

бизнес-планирование» и «Управление инновациями на предприятии», 

включенных в учебный план студентов, обучающихся по направлению 

подготовки 38.03.05, 38.04.05 «Бизнес-информатика» (бакалавриат и 

магистратура). 

3. Научно-методические разработки диссертации были внедрены в 

деятельность акционерного общества «Международный аэропорт «Симферополь» 

(№ 01.01.1246, 18.06.2020). 

4. Основные выводы, положения и результаты исследования доложены и 

обсуждены на научно-практических конференциях: X V Международной научно-

практической конференции «Теория и практика экономики и 

предпринимательства», (Гурзуф, 2018); X V I Всероссийской с международным 

участием научно-практической конференции «Теория и практика экономики и 

предпринимательства» (Гурзуф, 2019); X I, X I I Международной школе-

симпозиуме «Анализ, моделирование, управление, развитие социально-

экономических систем» АМУР-2017, АМУР-2018 (Симферополь–Судак), X I I I 

Всероссийской с международным участием школе-симпозиуме «Анализ, 

моделирование, управление, развитие социально-экономических систем» АМУР-
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2019 (Симферополь–Судак); I Всероссийской школе молодых ученых 

«Исследование, систематизация, кооперация, развитие, анализ социально-

экономических систем в области экономики и управления» ИСКРА–2018 

(Симферополь–Судак), I, I I Всероссийской с международным участием научно-

практической конференции «Тенденции развития Интернет и цифровой 

экономики» ТРИЦЭ–2018, ТРИЦЭ–2019  (Симферополь–Алушта), X V I I 

Международной научно-практической конференции «Актуальные проблемы и 

перспективы развития экономики» (Гурзуф, 2018), I I I, I V Международной 

научно-практической конференции, приуроченной ко «Дню финансиста-2018», 

«Финансы России в условиях глобализации (Воронеж, 2018), ко «Дню 

финансиста-2019», «Финансы России в условиях глобализации» (Воронеж, 2019), 

Международной научной конференции МАБР–2019 «Моделирование и анализ 

безопасности и риска в сложных системах» (Санкт-Петербург, 2019), Восьмой 

Международной конференции САИТ-2019 «Системный анализ и 

информационные технологии» (Иркутск-Листвянка, 2019). 

Публикации. Основные результаты диссертации отражены в 26 научных 

работах автора общим объемом 33,75 п.л. (личный вклад автора — 18,5 п.л.). В том 

числе в 2 монографиях с одним соавтором общим объемом 22,8 п.л. (личный 

вклад — 11,4), в 6 статьях в изданиях, рекомендованных ВАК. 

Структура работы. Диссертация состоит из введения, трех глав, 

заключения, списка литературы. Общий объем диссертации составляет 149 

страниц, включая 22 рисунка, 42 таблицы. Список литературы содержит 140 

наименований. 
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ГЛАВА 1. ОСОБЕННОСТИ ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ 

С УЧЕТОМ РИСКА И НЕОПРЕДЕЛЕННОСТИ 

 

1.1. Проблемы моделирования экономического риска и неопределенности 

 

Экономика с точки зрения теории систем и теории принятия решений 

представляет собой сложную систему, которая отличается непрерывными 

изменениями, которые оказывают существенное влияние на все процессы, 

происходящие в каждой ее структурной составляющей. Динамичность 

экономической системы создает неопределенность хозяйственной ситуации, в 

условиях которой лицо, принимающее решение (ЛПР), осуществляет управление. 

Согласно определению, данному в Большом экономическом словаре: 

«неопределенность — недостаточность сведений об условиях, в которых будет 

протекать экономическая деятельность, низкая степень предсказуемости, 

предвидения этих условий»[11,с.441]. 

В монографии Р. И. Трухаева говорится, что «неопределенность в принятии 

решений обусловлена недостаточной надежностью и количеством информации, 

на основе которой орган принятия решений осуществляет выбор 

решения»[112,с.8]. 

По определению В. В. Витлинского, «неопределенность — 

фундаментальная характеристика недостаточной обеспеченности процесса 

принятия экономических решений знаниями относительно определенной 

проблемной ситуации. Это, в частности, неисчерпаемые или недостоверные 

(неточные) знания для различных параметров в будущем, порожденные 

различными причинами, прежде всего — неиссякаемой и недостоверной 

информацией об условиях реализации решения, в частности связанных с этим 

решением выгод и затрат, отсутствием четко определенных целей и критериев их 

оценки, а также многокритериальность»[18,с.16]. 

Причинами возникновения неопределенности в хозяйственной 

деятельности можно считать следующие [18,с.16–17]: недетерминированность 
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процессов, которые происходят в экономической деятельности; отсутствие 

исчерпывающей информации либо некачественный ее анализ при организации и 

планировании поведения субъекта рыночной деятельности; влияние 

субъективных факторов на результаты анализа. 

Еще одной характерной чертой социально-экономического развития 

является множественность, многогранность интересов и наличие сторон, 

выражающих эти интересы. Из-за разногласий целей, которые отражают не 

только противоречивые интересы различных сторон, но и разносторонние 

интересы одной и той же личности, может возникнуть конфликт. Под конфликтом 

в экономике понимается «столкновение противоположных интересов, 

противоречие во взглядах и в отношениях»[11,с.333]. 

Кроме того в экономике постоянным стимулом генерирования новой 

информации является конкуренция, которая автоматически открывает путь 

научно-техническим изобретениям, техническому прогрессу, и наоборот, научно-

технический прогресс стимулирует конкуренцию. «Конкуренция — состязание 

между экономическими субъектами: борьба за рынки сбыта товаров с целью 

получения более высоких доходов, прибыли, других выгод»[11,с.321]. 

Конкуренты, в узком смысле — это фирмы, которые борются за 

потребителя товаров или услуг другой фирмы. Каждое предприятие сталкивается 

с множеством разнообразных конкурентов. Постоянная конкурентная борьба, 

связанная с непрерывными изменениями, происходящими на рынке, сказывается 

на характере управления предприятием. В последние десятилетия все больше 

внимания уделяется анализу конкурентной позиции организации. Автором 

основных моделей по определению главных сил конкуренции и вариантов 

конкурентных стратегий является М. Портер [58]. Основы теории конкуренции и 

научные подходы к управлению конкурентоспособностью подробно рассмотрены 

Р. Фатхутдиновым в учебном пособии [115]. 

В связи с динамизмом экономических и социальных процессов, которые 

происходят в обществе все больше возрастает роль стратегического 

планирования. Под целями в стратегическом планировании понимают желаемые 
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состояния или результаты функционирования соответствующего объекта 

планирования на определенный момент в будущем. Цели могут оказаться 

недостижимыми в рамках планового периода, но приближение к ним в течение 

этого периода должно быть реальным. Возможные отклонения от целей и задач в 

неблагоприятную сторону характеризуют соответствующую степень риска. 

«Экономический риск — возможность потерь вследствие случайного 

характера результатов принимаемых хозяйственных решений или совершаемых 

действий»[11,с.861]. В словаре современных экономических терминов под риском 

понимается «любая опасность возникновения непредвиденных потерь имущества, 

денег, здоровья или самой жизни. В экономической деятельности риск (угроза 

потерь) бывает вызван неблагоприятными обстоятельствами […] Всегда 

существует опасность получить непредсказуемый результат, хуже ожидаемого, 

предусмотренного. Риск можно измерить, оценить тем, насколько часто 

возникают потери и какова величина убытков»[60,с.329–330]. Наиболее общее 

определение понятия экономический риск дается В. В Витлинским в [18]: 

«Риск — это экономическая категория в деятельности субъектов хозяйствования, 

связанная с преодолением неопределенности, конфликтности в ситуациях 

оценивания, управления, неизбежного выбора. Он имеет диалектическую 

объективно-субъективную структуру. Оценка риска является многомерной 

величиной, характеризующей возможные отклонения от целей, от желаемого 

(ожидаемого) результата, возможную неудачу (убытки) с учетом влияния 

контролируемых (управляемых) и неконтролируемых (неуправляемых) факторов, 

прямых и обратных связей». 

На стадии формирования целей и задач субъекту стратегического 

планирования необходимо: 

 определить цели плановой системы и перевести их на язык задач; 

 предусмотреть четкое определение всех задач и разработать критерии 

оценки по выполнению каждого из них; 

 разработать инструментарий для преодоления возможных противоречий, 

конфликтов между задачами, то есть решить ряд проблем, определиться 
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относительно того, как действовать, когда выполнение одной задачи 

противоречит решению другой, что приводит к определенной степени риска. 

Отметим, что со временем цели могут меняться не только по форме — 

благодаря лучшему пониманию проблем, но и по содержанию — вследствие 

изменения условий или других факторов. В этих случаях тоже возникает 

неопределенность, конфликтность и соответствующий риск отклонения от 

реальных целей. В случае адекватного описания целей важно не количество 

используемых критериев, а насколько полно они характеризуют цель. При 

формировании критериев стремятся к компромиссу между полнотой описания 

целей и количеством критериев. Признание неопределенности как объективной 

характеристики развития экономических систем, а также объективное 

существование конфликтности, понимание того, что на запланированный 

экономический рост влияют случайные факторы, которые могут, в частности, 

задержать ожидаемый результат или изменить его сущность, — важная проблема 

по анализу, моделирования и управления экономическим риском. 

Степень риска зависит и от отношения к неопределенности и конфликту, к 

обусловленному ими риску субъекта принятия решения: склонности, 

несклонности, равнодушия. Поэтому все факторы неопределенности, 

конфликтности и вызванного ими риска делятся на объективные и субъективные. 

Следовательно, риск возникает тогда, когда принимаются решения в 

условиях неопределенности, конфликтности, а лицо, принимающее решение, 

заинтересовано в результатах решения. 

«Неопределенность сопряжена с риском планирования, принятия решений, 

осуществления действий на всех уровнях экономической системы»[11,с.441]. В 

1921 г. американский экономист Фрэнк Найт в своей монографии «Риск, 

неопределенность и прибыль» характеризует риск как «измеримую 

неопределенность»[47,с.30]. 

Рассматривая противоречивость риска, необходимо подчеркнуть ее 

проявление в различных аспектах. Риск, с одной стороны, ориентирован на 

получение положительных для системы принятия решений результатов 
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эффективными способами в условиях неопределенности и конфликтности в 

ситуации неизбежного выбора. Эта характеристика риска имеет важные 

экономические и социальные последствия. С другой стороны, управленческий 

риск может привести к неблагоприятным социально-экономическим 

последствиям, потому что оценка или выбор альтернативы базируется на 

неполной, нечеткой, недостоверной на момент принятия решения информации. 

ЛПР должен на основании всей имеющейся информации устранить 

неопределенность и перейти к принятию решения в условиях 

информированности, что означает осуществление выбора наиболее 

предпочтительной альтернативы из множества возможных [28, 117]. 

Альтернативность — это свойство экономического риска, допускает как 

обязательное условие необходимость оценки, управления или выбора из 

нескольких наиболее вероятных стратегий (альтернатив, вариантов, 

управленческих действий). При этом в зависимости от ситуации альтернативность 

имеет разную степень сложности и может преодолеваться разными способами. 

Правила принятия решений в условиях неопределенности, конфликтности и 

вызванного ими риска базируются на различных концепциях. 

Теория принятия управленческих решений активно начинает развиваться с 

1940–х годов. Первоначально использовались вероятностно-статистические 

методы описания неопределенностей в теории принятия решений. С 1950–1960гг. 

происходит взаимосвязь теории управления с такими научными дисциплинами 

как исследование операций и теория игр, о чем свидетельствуют работы как 

зарубежных, так и отечественных ученых. Зарубежный специалист по 

исследованию операций Т. Саати в книге [78] рассматривает приемы создания и 

исследования математических моделей целенаправленных процессов на базе 

методов линейного и квадратичного программирования, теории игр, теории 

вероятностей, математической статистики и теории массового обслуживания. В 

работе Е. С. Вентцель [16] достаточно полно рассмотрены методологические 

вопросы исследования операций: постановка задач, выбор математических 

моделей, осмысление результатов расчета. Ю. Б. Гермейер в своей книге [23] 
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формализует исследование операций в общем случае информированности 

исследователя и проводящего операцию об обстановке, а также излагает ряд 

традиционных результатов теории игр с противоположными интересами. 

Появляются исследования в области теории нечетких множеств Лотфи Заде [140]. 

В последнее время наблюдается рост научных работ  по вопросам системы 

поддержки принятия решений (СППР), ориентированных на управленческие 

задачи различного вида и уровня. Приведем показательные примеры 

исследований в области принятия решений в условиях неопределенности в 

зависимости от применяемых методов. 

Применение нечеткой логики. Исследование С. А. Глушенко [25] 

посвящено разработке методов и моделей поддержки принятия решений по 

управлению рисками проектов на базе нечеткой логики. В данной работе 

повышение эффективности принимаемых решений в условиях неопределенности 

обеспечивается с помощью применения СППР, базирующейся на методах и 

моделях нечеткой логики, позволяющей применять в модели и качественные,  и 

количественные подходы к анализу рисков. Модель включает в себя множество 

факторов риска и множество показателей риска. 

Применение теоретико-методологических основ экономико-

математического моделирования. Исследование Л. А. Мыльникова [46] 

посвящено развитию методов и моделей прогнозирования и планирования в 

задачах управления инновационными проектами в производственно-

экономических системах. Предлагается комплекс методов и экономико-

математических моделей, учитывающих многоэтапность процессов планирования 

и внедрения проектов на основе их жизненного цикла. Разработанная 

производственная функция содержит экспертные оценки важности для 

выбранных методик. Исследование А. А. Поносова [57] посвящено развитию 

системы поддержки принятия решений в региональной экономике на основе 

непрерывно-дискретных экономико-математических моделей. Исследование 

Е. В. Семиной [81] посвящено методам и моделям управления рисками 

факторинговой компании. В работе разработаны экономико-математические 
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модели управления рисками и предложены методические рекомендации по 

организации процесса построения системы управления рисками факторинговой 

компании. 

Применение искусственных нейронных сетей (ИНС). Исследование 

Н. А. Валиотти [14] посвящено математическим моделям и инструментальным 

СППР в сфере массовых услуг. Для количественного оценивания последствий 

принимаемых  решений используются модели на основе ИНС. В работе 

разработан алгоритм оценивания влияния внешних событий и управленческих 

решений в условиях неполноты информации, разработан алгоритм сценарного 

моделирования. 

Применение моделей с интегральным показателем. Исследование 

Н. Ю. Гращенко [27] посвящено методике оценки и выбора стратегии повышения 

конкурентоспособности межрегиональной генерирующей компании в условиях 

неопределенности. 

Применение различных методов и моделей в комплексе. Исследование 

В. А. Артюхиной [6] посвящено гибридной СППР в задачах управления 

интегрированными производственными структурами. Разработана гибридная 

СППР, объединяющая лучшие качества модельно-ориентированных систем и 

систем, ориентированных на знания. Исследование С. Б. Титова [110] посвящено 

гибридным алгоритмам анализа и обработки данных в задачах поддержки 

принятия решений. В работе разработан алгоритм кластеризации и 

упорядочивания для классификации объектов в сфере городской жилой 

недвижимости на основе гибридных технологий, реализующих комплексное 

применение различных алгоритмов и методов искусственного интеллекта, 

разработанных в рамках теории искусственных иммунных систем, теории 

нечетких множеств, теории генетических алгоритмов, теории искусственных 

нейронных сетей, теории мультимножеств. 

В настоящее время наиболее известной, достаточно исследованной и 

широко используемой в теории и на практике является концепция теории игры и 

статистических решений. 
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1.2. Применение теории игр и статистических решений для моделирования 

принятия управленческих решений в экономике 

 

Вопросами моделирования процесса принятия управленческих решений в 

экономике в условиях неопределенности, конфликтности и обусловленного ими 

риска занимается такой раздел математики, как «Теория игр и принятия 

статистических решений» [9]. 

Теория игр как один из разделов современной математики разрабатывает 

методы выбора оптимальных решений в сложных ситуациях, возникающих в 

различных областях человеческой деятельности. Процесс зарождения теории 

вероятностей и теории игр начинается еще в Средние века [21]. Впервые 

основные математические аспекты по данной теории систематически были 

представлены в книге «Теория игр и экономическое поведение» Джона фон 

Неймана и Оскара Моргенштерна [109]. С данного периода теория игр начинает 

бурно развиваться. Появляются новые работы по развитию теории игр как 

математической теории, применительно к экономике. Российский математик 

Н. Н. Воробьев в своей книге рассматривает основы математического аппарата 

теории игр [20]. 

Американский математик Джон Нэш в 1949 пишет диссертацию по теории 

игр, за которую в 1994г. был удостоен Нобелевской премии по экономике за 

«анализ равновесия в теории некооперативных игр» [131]. 

В последние десятилетия интерес к теории игр и ее приложениям только 

возрастает, некоторые области современной экономической теории практически 

невозможно изложить без ее применения. О чем свидетельствуют 

многочисленные работы по данной теме, среди которых хотелось бы отметить 

следующие: Р. Ауман, М. Машлер [121], Д. Блекуэлл, М. А. Гиршик [9], А. Вальд 

[15], Э. Вилкас [17], В. В. Витлинский, П. И. Верченко, А. В. Сигал, 

Я. С. Наконечный [18], Н. Н. Воробьев [20], Ю. Б. Гермейер [24], М. В. Губко, 

Д. А. Новиков [28], Р. Б. Майерсон [130], Д. Мак-Кинси [43], Э. Мулен [45], 

Д. А. Новиков, А. Г. Чхартишвили. [50, 51], Г. Оуэн [54], Дж. фон Нейман, 



19 

 

О. Моргенштерн [109], А. В. Сигал [86, 100, 102], Р. И. Трухаев [112], 

Дж. Харшаньи [126], М. Шубик [136].  

«Теория игр — теоретическое направление, использующее аппарат 

математического моделирования в целях предсказания, выработки лучших 

вариантов действий в условиях неопределенности, в игровых 

ситуациях»[11,с.745]. 

Игра — это формализованное описание (модель) конфликтной ситуации, 

включающей четко определенные правила действий ее участников, которые 

пытаются получить определенную победу путем выбора конкретной (в 

определенном смысле — лучшей) стратегии поведения. Субъект принятия 

решения называется игроком, а целевая функция — платежной функцией. В игре 

могут участвовать несколько игроков, причем некоторые из них могут вступать 

между собой в постоянные или временные коалиции (союзы). В случае 

образования коалиций игра носит название "коалиционной". Игра двух лиц 

называется парной игрой. 

«Антагонистическая игра — модель конфликтной ситуации в игре двух 

участников с прямо противоположными интересами; игра, моделирующая 

экономическую ситуацию противостояния, противоборства, конкуренции двух 

сторон с взаимно противоположными интересами»[11,с.33]. 

При этом различают два разных класса антагонистических игр [19]: 

классические антагонистические игры (КАИ) — антагонистические игры (АИ) с 

полной информацией, и неоклассические антагонистические игры (НАИ) — 

антагонистические игры с неполной информацией. 

АИ представляет собой систему RR ,, JI , где  ki;...;;...;1I  — 

известное множество всех чистых стратегий первого игрока,  nj;...;;...;1J  — 

известное множество всех чистых стратегий второго игрока,  jink r RR  — 

полностью (для случая КАИ) или частично известная (для случая НАИ) 

платежная матрица АИ. 
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Чистой стратегией игрока называют альтернативные решения о его способе 

действий, который он может применять в одной отдельно взятой партии игры. 

Смешанной стратегией игрока называют такую его стратегию, которую он может 

применять при повторении партий игры, чередуя свои чистые стратегии от партии 

в соответствии с выбранным законом распределения вероятностей применения 

чистых стратегий. Решение игры (в общем смысле) — это рекомендация такого 

способа действий игроков, которое позволяет каждому из них наилучшим 

образом достигнуть своих собственных целей. Решением игры может быть набор 

смешанных стратегий игроков, если применение только чистых стратегий 

недостаточно. Если при повторении партий игроки применяют свои смешанные 

стратегии, то выигрыши всех игроков представляют собой случайную величину 

(СВ). При повторении партий ожидаемые выигрыши игроков численно задаются 

значениями математических ожиданий соответствующих СВ. Нормальной (или 

стратегической) формой игры называют совокупность функций, которые задают 

зависимость значений ожидаемых выигрышей игроков от применяемых ими 

стратегий. 

Статистическая игра или статистическая модель принятия решений 

представляет собой систему RR ,, JI , где  ki;...;...;;1I  — известное 

множество всех решений ЛПР, которое он может применить при одноразовом 

принятии управленческого решения,  nj;...;;...;1J  — известное множество 

всех возможных состояний «природы» (экономической среды),  

 jink r RR  — полностью или частично известная платежная матрица, еще 

называемая функционалом оценивания статистической игры. 

Оптимальная стратегия ЛПР — это такая стратегия ЛПР из множества всех 

возможных стратегий, которую само ЛПР считает наилучшей согласно структуре 

его собственных предпочтений и согласно имеющейся у него информации. В этом 

случае теория статистических решений дает возможность строить процедуры, 

позволяющие ЛПР формализовать его предпочтения, при этом принятие решений 

сводится к сравнению значений тех показателей полезности, которые положены в 
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основу оценки эффективности решений. Качество процесса принятия решений 

зависит от полноты учета всех факторов, существенных с точки зрения 

возможных последствий реализации принятых управленческих решений. 

Статистическую игру, моделирующую процесс принятия управленческих 

решений, можно решать как в чистых стратегиях игроков, так и в их смешанных 

стратегиях. Для поиска оптимальной стратегии ЛПР можно решать АИ, 

платежная матрица которой совпадает с функционалом оценивания 

 jink r RR , далее будем отождествлять статистическую игру с 

соответствующей АИ, заданной аналогичной платежной матрицей. Тогда 

соответствующую АИ можно называть АИ, характеризующей процесс принятия 

управленческих решений. В таком случае АИ используется как 

высокотехнологический инструмент поиска оптимального управленческого 

решения. При этом экономические интерпретации компонент оптимальных 

стратегий игроков, цены соответствующей АИ и их найденных числовых 

значений зависят от экономического содержания исходного процесса принятия 

управленческих решений. С одной стороны, такое отождествление позволяет 

расширить возможности применения статистических игр в экономике, 

существенно упростить процесс принятия управленческих решений и уменьшить 

стоимость этого процесса. С другой стороны, такое отождествление требует от 

ЛПР определенной осторожности и корректности комбинированного применения 

статистических и антагонистических игр. Корректное применение предлагаемой 

концепции для принятия управленческих решений в экономике требует 

выполнения определенных предпосылок [101, 103]. К таким предпосылкам можно 

отнести следующие требования: 

1. Наличие двух участников (игроков), по крайней мере, один из которых 

(первый игрок) активно и осмысленно выбирает свои решения. 

2. ЛПР, т. е. первый игрок, должен иметь не менее двух различных чистых 

стратегий, из которых следует сформировать его оптимальную, возможно 

смешанную, стратегию. 
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3. Возможность представления имеющейся информации в виде матрицы 

выигрышей первого игрока. 

4. Возможность экономической интерпретации чистых и смешанных 

стратегий обоих игроков. 

5. Наличие необходимой информации, в том числе сведений об имеющейся 

ситуации. 

6. Возможность экономической интерпретации оптимального решения АИ, 

характеризующей процесс принятия управленческих решений. В частности, 

возможность экономической интерпретации компонент оптимальных стратегий 

игроков этой АИ, цены этой АИ, а также их найденных значений. 

7. Возможность реализации оптимального решения АИ, характеризующей 

процесс принятия управленческих решений, точнее оптимальной стратегии 

первого игрока, в виде управленческого решения. 

8. Возможность обоснования корректности и экономической эффективности 

управленческого решения, принятого на основе оптимального решения АИ, 

характеризующей процесс принятия управленческих решений. 

В случае, когда нарушена хотя бы одна из этих предпосылок, применение 

концепции комбинированного применения статистических и антагонистических 

игр для принятия управленческих решений в экономике нецелесообразно, а во 

многих случаях невозможно. Поэтому применение концепции комбинированного 

применения статистических и антагонистических игр для принятия 

управленческих решений в экономике требует проверки математической 

корректности, экономической корректности, экономической целесообразности и 

экономической эффективности. Более подробно данные требования рассмотрены 

в работах [86, 103]. 

1.3. Статистическая игра как модель управления экономическим риском 

В качестве математического аппарата описания и получения решения в 

неопределенных ситуациях можно применять теорию игр и теорию 

статистических решений. Неопределенность в теории игр порождается 

конфликтом и антагонистическими интересами игроков, а в теории 
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статистических решений — возможными состояниями «природы» или 

экономической среды. Для определения стратегий поведения среды существует 

целая градация информационных ситуаций. Определение и классификация этих 

информационных ситуаций составляют фундамент теории принятия решений в 

условиях неопределенности. 

В монографии «Модели принятия решений в условиях неопределенности» 

Р. И. Трухаев [112] предлагает развитие классических подходов к исследованию 

математических методов принятия решений в условиях неопределенности на 

основе классификации информационных ситуаций (ИС) о состояниях среды и по 

показаниям источников информации. 

«Под информационной ситуацией I будем понимать определенную степень 

градации неопределенности выбора средой своих состояний из заданного 

множества, которой располагает орган управления в момент принятия 

решения»[112]. В данной работе предложена следующая классификация ИС: 

1. I 1: первая ИС, характеризующаяся заданным распределением 

априорных вероятностей возможных состояний экономической среды; 

2. I 2: вторая ИС, характеризующаяся заданным распределением 

вероятностей с неизвестными параметрами; 

3. I 3: третья ИС, характеризующаяся заданными системами линейных 

отношений порядков на компонентах априорного распределения экономической 

среды; 

4. I 4: четвертая ИС, характеризующаяся неизвестным распределением 

вероятностей на элементах множества возможных состояний экономической 

среды; 

5. I 5: пятая ИС, характеризующаяся антагонистическими интересами 

среды в процессе принятия решений; 

6. I 6: шестая ИС, характеризующаяся «промежуточными» между I 1 и I 5 

случаями выбора экономической средой своих возможных состояний; 

7. I 7: седьмая ИС, характеризующаяся нечетким множеством состояний 

экономической среды. 
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Данная детализация ИС позволяет точнее выбрать критерий принятия 

решений, лучше учитывать особенности имеющей место ситуации, качественнее 

учитывать неопределенность, конфликтность и обусловленный ими 

экономический риск. В данной работе рассматривается третья информационная 

ситуация относительно состояний экономической среды. Структуры 

предпочтений для ЛПР и их численные представления подробно рассмотрены в 

книге Питера Фишберна «Теория полезности для принятия решений» [116]. 

Введем следующие обозначения:  ki ppp ;...;;...;1p  — вектор, 

характеризующий вероятности применения первым игроком своих чистых 

стратегий при повторении партий;  nj qqq ;...;;...;1q  — вектор, 

характеризующий вероятности применения вторым игроком своих чистых 

стратегий при повторении партий;   
 


k

i

n

j

jiji qprVV
1 1

T; qRpqp  — 

платежная функция АИ; где 
Tq  — вектор, транспонированный к вектору q . 

Векторы p  и q  могут характеризовать как чистые, так и смешанные стратегии 

игроков. 

Основными критериями принятия решения в поле I 3 являются:  

 критерий Байеса и его модификации; 

 критерии рассеяния значений элементов функционала оценивания. 

Предварительно необходимо найти оценку распределения вероятностей 

состояний экономической среды. Фундаментальным принципом для поиска 

оценки распределения вероятностей состояний экономической среды чаще всего 

выступает принцип максимальной неопределенности Гиббса–Джейнса. Согласно 

этому принципу как меру неопределенности «поведения» экономической среды 

используют натуральную энтропию Шеннона. 

Во введении к своей статье «Математическая теория связи» Шеннон 

отмечает, что в этой статье он расширяет теорию связи, основные положения 

которой содержатся в важных работах Найквиста [133] и Хартли [127]. Величина 

значения энтропии характеризует то, как далеко рассматриваемая система 



25 

 

отклонилась от упорядоченного, структурированного состояния и как 

приблизилась она к беспорядочному, полностью хаотичному, бесструктурному, 

однородному виду. Максимально возможное значение энтропии заданной 

системы соответствует наименьшей степени ее структурной организованности. 

Малое значение энтропии, напротив, соответствует высокой структурной 

упорядоченности соответствующей системы [36]. В своей работе [135] Шеннон, 

исследуя проблему рациональной передачи информации через зашумленный 

коммуникационный канал, предложил вероятностный подход к пониманию 

коммуникаций, создал первую, истинно математическую, теорию энтропии как 

меры случайности и ввел меру дискретного распределения p  вероятности на 

множестве альтернативных состояний передатчика и приемника сообщений. 

Шеннон задал требования к измерению энтропии и вывел формулу, ставшую 

основой количественной теории информации: 

   



n

i

ii ppXH
1

2log . (1.1) 

Здесь n — число символов, из которых может быть составлено сообщение 

(алфавит), H — информационная двоичная энтропия. На практике значения 

вероятностей pi в формуле (1.1) заменяют их статистическими оценками:  

N

N
p i

i   — относительная частота i-го символа в сообщении, где N — число всех 

символов в сообщении, Ni — абсолютная частота i-го символа в сообщении, т. е. 

число встречаемости i-го символа в сообщении. 

Для поиска неизвестного распределения вероятностей состояний 

экономической среды на основе принципа Гиббса–Джейнса исходят из того, что 

наименее сомнительным является то распределение, которое максимизирует 

функцию (1.1). Применение энтропийного подхода существенно обогащает 

инструментарий и аппарат анализа и моделирования экономического риска, 

количественной оценки его уровня, принятия управленческих решений в 

экономике, как с теоретической, так и с практической точки зрения. Несомненно, 

энтропийный подход дает возможность учесть хаотичность и неопределенность, 
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существенно понизить уровень экономического риска. Это, в свою очередь, 

позволяет повысить качество и эффективность принимаемых управленческих 

решений и, в частности, избежать ошибок в процессе принятия управленческих 

решений в экономике. 

 

1.4. Анализ существующих вероятностно-статистических моделей с 

использованием вектора весовых коэффициентов 

 

Из применяемых в теории принятия решений и управлении вероятностно-

статистических  моделей с использованием вектора весовых коэффициентов в 

поле третьей и четвертой информационной ситуации можно выделить следующие 

классы моделей в зависимости от решаемых задач и типа имеющихся данных. 

1. Современная теория портфеля. В ситуациях принятия решений о 

формировании эффективного портфеля целесообразно применять модели 

теоретико-игрового принятия решений. Абрахам Вальд, основоположник 

последовательного анализа [15], основной моделью теоретико-игрового принятия 

решений считал статическую модель принятия решений, которая, собственно, и 

является статистической игрой. При решении статистической игры важно 

корректно оценить распределение априорных вероятностей состояний «природы», 

т. е. экономической среды. Обобщенные модели Марковица задачи выбора 

эффективного портфеля в поле третьей ИС [84, 89, 95] представляют собой задачи 

трехкритериальной оптимизации с дополнительными ограничениями для 

возможных значений вероятностей 1q ,…, nq . Обобщенная модель Марковица 

задачи выбора эффективного портфеля в поле третьей ИС может быть приведена 

к задаче двухкритериальной оптимизации, т. е. к классической модели 

Марковица. Если закон распределения вероятностей состояний экономической 

среды неизвестен, но известны некоторые соотношения между вероятностями 

этих состояний, то имеет место третья ИС. В случае обобщенной модели 

Марковица задачи выбора эффективного портфеля в поле третьей ИС необходимо 
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произвести оценку неизвестных значений вероятностей состояний экономической 

среды. 

2. Модели с интегральным показателем, включающие качественные 

исходные данные. Изучение сложных социально-экономических систем, в 

частности, проведение экспресс-оценки текущего состояния и развития систем, 

может основываться на применении нечеткого когнитивного моделирования 

(НКМ), как одного из эффективных направлений современной теории поддержки 

принятия решений. Достоинством НКМ является возможность формализации 

численно не измеримых факторов и применения в условиях частичной 

неопределенности. НКМ позволяет строить сравнительно простые модели, 

которые находят широкое применение в различных социально-экономических 

сферах. Применение нечетко-множественных парадигм моделирования для 

оценки инновационного риска подробно рассмотрено в монографии 

З. И. Абдулаевой и А. О. Недосекина [2]. В работе [4] И. М. Ажмухамедовым 

предложена схема построения когнитивной модели, позволяющая унифицировать 

подходы к управлению комплексной безопасностью различных систем. Целью 

диссертационной работы Д. С. Сизых [106] является совершенствование 

алгоритмов и методов оценки показателей инвестиционной привлекательности 

предприятий. В диссертационной работе А. Г. Сергиенко [82] предлагается 

прогнозная модель котировок ценных бумаг на основании аппарата нейронных 

сетей. В моделях с интегральным показателем, включающих качественные 

исходные данные, для сравнения факторов в расчетах  применяются системы 

отношений и соответствующие весовые коэффициенты. 

3. Модели с интегральным показателем, включающие количественные 

исходные данные. Проведение экономической оценки, когда на входе имеются 

количественные данные, основывается на применении моделей вычисления 

интегрального показателя. В работе [113] Е. Б. Тютюкина, Л. Д. Капранова, 

Т. Н. Седаш для признания отрасли экономики базовой предлагают использовать 

индикатор базовости видов экономической деятельности, представляющий собой 

интегрированный комплексный показатель, который учитывает критерии 
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значимости отрасли, рассчитанный по методике точечных оценок Фишберна. В 

статье Ж. А. Ермаковой, О. В. Пергуновой, Н. И. Парусимовой [28] утверждается, 

что оценка эффективности использования информационно-коммуникационных 

технологий на промышленных предприятиях должна осуществляться с помощью 

системы показателей, которые отражают количественную оценку степени 

достижения поставленной цели. Стандартная модель (схема) вычисления 

интегрированного комплексного показателя или комплексной оценки содержит 

весовые коэффициенты, соответствующие системе отношений между факторами. 

4. Теоретико-игровые модели. Факторы, которые необходимо учитывать 

при принятии управленческих решений в экономике, становятся все более 

многочисленными, разнообразными и взаимосвязанными. Особенности 

социально-экономических систем требуют разработки такого теоретико-игрового 

подхода к моделированию процесса принятия управленческих решений в 

экономике, который позволил бы учитывать неопределенность, случайность, 

неполноту информации. Эти особенности экономики приводят к тому, что при 

теоретико-игровом моделировании экономики не для всех элементов платежной 

матрицы известны их точные истинные значения либо они неизвестны вообще, но 

известен (или можно определить) закон, по которому их возможно найти. В таких 

случаях необходимо применять неоклассические антагонистические игры (НАИ). 

Кроме того, для расширения сферы применения антагонистических игр (АИ) в 

экономико-математическом моделировании их целесообразно применять 

комбинированно со статистическими играми, а также совместно с теорией 

вероятностей, математической статистикой, теорией случайных процессов. В 

пункте 1.2, а более подробно в учебном пособии [103], для принятия 

управленческих решений в экономике рассмотрена концепция комбинированного 

применения статистических и антагонистических игр. Данная концепция находит 

широкое применение в различных областях принятия управленческих решений: 

оптимальное распределение имеющихся ресурсов между разными активами, 

реализация инвестиционных проектов и др. 
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Например, как отечественные, так и зарубежные ученые, рассматривают 

применение теоретико-игрового подхода к оценке рисков информационной 

безопасности. К защите информации можно подходить с точки зрения 

оптимизации объема расходов на обеспечение информационной безопасности 

(см., например, [120]), т. е. с точки зрения распределения денежных ресурсов, а 

также с точки зрения оптимизации ресурсов, затрачиваемых на поддержание 

работоспособности системы защиты от сетевых атак (см., например, [8]), 

собственно, с точки зрения распределения ресурсов системы и ее мощности. 

Краткие выводы к главе 1. Высокая скорость изменений, происходящих в 

экономической деятельности, требует от ЛПР быстрого реагирования на 

ситуации. Неопределенность и неполнота информации снижают эффективность 

принимаемых решений, что приводит к возникновению кризисных явлений. 

Факторы неопределенности и риска оказывают существенное влияние на 

управленческие задачи любого уровня и сложности. Методы и модели оценки и 

процедуры принятия управленческих решений, учитывающих фактор риска и 

неопределенности, являются актуальными и своевременными. Практика 

управления разработала большое количество методов и моделей, которые 

ориентированы на поиск решения управленческих задач конкретных видов в 

условиях неопределенности. В данные модели в зависимости от имеющейся 

информации включаются оценки неизвестных значений вероятностей состояний 

экономической среды или оценки неизвестных значений весовых коэффициентов. 

Основные результаты главы отражены в работах соискателя [21, 65, 66, 74, 

97]. 
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ГЛАВА 2. ПОСЛЕДОВАТЕЛЬНОСТИ ФИШБЕРНА КАК 

ИНСТРУМЕНТАРИЙ ПРИНЯТИЯ СТАТИСТИЧЕСКИХ РЕШЕНИЙ С 

УЧЕТОМ РИСКА И НЕОПРЕДЕЛЕННОСТИ 

 

2.1. Формулы Фишберна 

 

Принимая управленческие решения в поле третьей ИС I 3, целесообразно 

использовать некоторые упрощенные формулы оценки неизвестных вероятностей 

состояний экономической среды. В частных случаях можно применять так 

называемые формулы Фишберна. При этом для распределения вероятностей 

состояний экономической среды, оцененного по соответствующей формуле, 

несложно вычислить соответствующее значение энтропии Шеннона. Это 

значение энтропии Шеннона характеризует хаотичность найденной оценки 

неизвестного распределения вероятностей состояний экономической среды. 

Очевидно, чем ближе для найденной оценки распределения вероятностей 

значение энтропии Шеннона (1.1) к числу 0, тем меньшей степенью хаотичности 

характеризуется процесс принятия управленческих решений. Иначе говоря, тем 

более полной является имеющаяся у ЛПР, информация. Аналогично, чем ближе 

для найденной оценки распределения вероятностей значение энтропии Шеннона 

(1.1) к возможному максимуму, т. е. к числу ln n, тем большей степенью 

хаотичности характеризуется процесс принятия управленческих решений, т. е. 

тем менее полной является имеющаяся у ЛПР информация. 

Пусть  nj qqqq ;...;;...;; 21q  — вектор априорного распределения 

вероятностей возможных состояний экономической среды, для компонент 

которого не известны их точные истинные значения. Следует учитывать, что 

компоненты вектора, характеризующего распределение вероятностей возможных 

состояний экономической среды, обязаны удовлетворять следующим основным 

требованиям: 

условию нормировки 



31 

 

 1
1




n

j

jq  (2.1) 

и требованиям неотрицательности всех вероятностей 

 0jq , nj ,1 . (2.2) 

Приведем определения двух наиболее распространенных типов линейных 

отношений порядка [112,с.78]. 

Простым линейным отношением порядка называют соотношения, которым 

должны удовлетворять значения членов последовательности, выражающиеся 

неравенствами nj qqqq  ......21  или nj qqqq  ......21 . Частично 

усиленным линейным отношением порядка называют соотношения, которым 

должны удовлетворять значения членов последовательности, выражающиеся 

неравенствами njj qqq   ...1 , 1,1  nj , или 11 ...  jj qqq , nj ,2 . 

Р. И. Трухаев приводит основные точечные оценки распределения 

априорных вероятностей состояний экономической среды в поле третьей ИС, т. е. 

для приведенных выше отношений порядка [112,с.84–85]. Эти оценки 

распределения априорных вероятностей состояний экономической среды в 

монографии Р. И. Трухаева названы точечными оценками Фишберна. Формулы 

Фишберна позволяют простым и естественным способом вычислить оценки 

значений вероятностей состояний экономической среды, если для этих 

вероятностей задан тот или иной вектор приоритетов, т. е. то или иное отношение 

порядка. 

Пусть 1q̂ , 2q̂ ,…, jq̂ ,…, nq̂  — оценки неизвестных значений компонент 

вектора  nj qqqq ;...;;...;; 21q . Для случая простого линейного отношения 

порядка П. Фишберн предложил считать, что оценки jq̂  неизвестных значений 

вероятностей состояний экономической среды образуют арифметическую 

прогрессию, а для случая частично усиленного линейного отношения порядка — 

монотонную геометрическую прогрессию. Если соответствующие 

последовательности представляют собой убывающие прогрессии, то формулы 
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ˆ


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n

jn

jq , nj ,1 , (2.4) 

принято называть [112,с.84] первой и второй формулой Фишберна, 

соответственно. Очевидно, числа, найденные по формулам (2.3) и (2.4), 

обязательно удовлетворяют соотношениям (2.1) и (2.2). 

Предварительно отметим некоторые характерные свойства прогрессий (2.3) 

и (2.4). Разность убывающей арифметической прогрессии (2.3) равна 

 1

2




nn
x , при этом выполняется равенство 

 
xx

nn
qn 




1

2
ˆ . 

Знаменатель убывающей геометрической прогрессии (2.4) равен 5,0
2

1
x , 

откуда 
12

1
ˆ

2

1
ˆ

2

1
ˆˆˆˆ 1111


  nnnnnnn qqqqqq . 

Как предложено в статье [93], прогрессией Фишберна будем называть 

последовательность  n

jjq
1

ˆ


, заданную формулой (2.3) или (2.4): арифметической 

прогрессией Фишберна — последовательность, заданную формулой (2.3), 

геометрической прогрессией Фишберна — последовательность, заданную 

формулой (2.4). 

Например, если  n  4, применение первой формулы Фишберна позволяет 

найти следующие значения: 

20

8
ˆ1 q , 

20

6
ˆ2 q , 

20

4
ˆ3 q , 

20

2
ˆ4 q . 

Можно вычислить значение энтропии Шеннона для найденной оценки 

распределения вероятностей состояний экономической среды: 

  



4

1

ˆlnˆˆ
j

jj qqH q   1,279854. Найденное значение следует признать близким к 

максимально возможному значению ln n  ln 4  1,386294. 
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Аналогично, если  n  4, применение второй формулы Фишберна позволяет 

найти следующую оценку распределения вероятностей: 
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Значение энтропии Шеннона для найденной оценки распределения 

вероятностей состояний экономической среды:   



4

1

ˆlnˆˆ
j

jj qqH q   1,136917. 

Очевидно, эта оценка распределения вероятностей обладает меньшим уровнем 

хаотичности по сравнению с уровнями хаотичности оценки распределения 

вероятностей, найденной согласно формуле (2.3) для  n  4. Более того, можно 

утверждать, что уровень хаотичности оценки распределения вероятностей, 

найденной согласно второй формуле Фишберна, всегда меньше 

соответствующего уровня хаотичности оценки распределения вероятностей, 

найденной согласно первой формуле Фишберна. 

Изучим более подробно свойства значений энтропии Шеннона для оценок 

распределений вероятностей состояний экономической среды, найденным 

согласно первой и второй формулам Фишберна, т. е. формулам (2.3) и (2.4). 

Рассмотрим асимптотическое поведение значения энтропии Шеннона для 

оценок распределений вероятностей, найденных согласно первой и второй 

формулам Фишберна (подробно рассмотрено в [97]). 

Для вектора q̂ , значения компонент которого найдены по формулам (2.3), 

справедливы неравенства   nH
n

lnˆ
2

1
ln 


q , откуда   


q̂lim H

n
, т. к. 




 2

1
lnlim

n

n
 и 


n

n
lnlim , т. е. в этом случае значение энтропии Шеннона 

и хаотичность неограниченно возрастают, при этом справедливо приближенное 

равенство   ncnH  lnq̂ , где последовательность nc  является ограниченной: 

2ln0  nc . Для удобства можно считать справедливым приближенное равенство 
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  nH lnˆ q . Действительно, из справедливости неравенств 
 

1
ln

ˆ

ln

2

1
ln





n

H

n

n

q
, 

следует справедливость предельного соотношения 
 

1
ln

ˆ
lim 

 n

H

n

q
. 

Для второй формулы Фишберна имеем 

  2ln
12

22

2

2
2

12

2ln2
2

12

2ln2
ˆ

1
1

1













 













  n

n

nn

n
n x

n

n nn
xxH q , 

откуда для вектора q̂ , значения компонент которого найдены по формулам (2.4), 

получаем предельное соотношение   


















2ln22ln

12

22
limˆlim

1

n

n

nn

n
H q

386294,14ln  , т. е. значение энтропии Шеннона и хаотичность фактически 

остаются постоянными и характеризуются малым, по сравнению с максимально 

возможным уровнем, т. е. по сравнению с числом nln , при этом справедливо 

приближенное равенство 

  2ln
12

22
ˆ

1









n

n n
H q . 

Рассчитаем значения энтропии Шеннона для 10,4n  в случае оценок 

распределений вероятностей, найденных согласно первой формуле Фишберна 

(таблица 2.1) и второй формуле Фишберна (таблица 2.2). Найденные значения 

энтропии Шеннона сравним со значениями соответствующих асимптотических 

оценок, при этом оценим точность асимптотических оценок значениями 

погрешностей: абсолютных погрешностей () и относительных, измеренных в 

процентах, погрешностей 
  













 %100

q̂H
. 

Таблица 2.1 

Значения энтропии Шеннона для оценок распределения вероятностей,  

найденных согласно первой формуле Фишберна 

N  q̂H  асимптотическая оценка   (%) 

4 1,279854 1,386294 – 0,106444 8,3166 

5 1,489750 1,609438 – 0,119588 8,0341 
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N  q̂H  асимптотическая оценка   (%) 

6 1,662377 1,791759 – 0,129382 7,7830 

7 1,809118 1,945910 – 0,136792 7,5613 

8 1,936798 2,079442 – 0,142644 7,3649 

9 2,049841 2,197225 – 0,147384 7,1900 

10 2,151282 2,302585 – 0,151303 7,0332 

Таблица 2.2 

Значения энтропии Шеннона для распределений вероятностей,  

оцененных согласно второй формуле Фишберна 

N  q̂H  асимптотическая оценка   (%) 

4 1,136917 1,201455 – 0,064539 5,6766 

 
5 1,242748 1,274496 – 0,031749 2,5547 

6 1,304532 1,320280 – 0,015748 1,2072 

7 1,340246 1,348089 – 0,007843 0,5852 

8 1,360635 1,364548 – 0,003914 0,2877 

9 1,372131 1,374086 – 0,001955 0,1425 

 
10 1,378542 1,379519 – 0,000977 0,0709 

Итак, наибольшим уровнем хаотичности характеризуется процесс принятия 

решений, для которого неизвестное распределение вероятностей состояний 

экономической среды оценивается согласно первой формуле Фишберна 

  nH lnˆ q , а наименьшим уровнем хаотичности характеризуется процесс 

принятия решений, для которого распределение вероятностей состояний 

экономической среды оценено согласно второй формуле Фишберна   4lnˆ qH . 

Рассмотрим ситуацию, когда соответствующие последовательности 

представляют собой возрастающие прогрессии. В этом случае приведенные 

формулы Фишберна принимают следующий вид: 

 
 1

2
ˆ






nn

j
q j , nj ,1 , (2.5) 

 
12

2
ˆ

1






n

j

jq , nj ,1 . (2.6) 
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Очевидно, разность возрастающей арифметической прогрессии (2.5) равна  

 1

2




nn
x , при этом выполняется равенство 

 
x

nn
q 




1

2
ˆ1 . Знаменатель 

возрастающей геометрической прогрессии (2.4) равен 2x , откуда 

12

1
ˆˆ2ˆˆˆ 11112




n
qqqqq . 

В основе формул (2.3) и (2.5) лежит равенство  12
1




nnj
n

j

, 

позволяющее значениям оценок вероятностей, найденным по этим удобным и 

простым формулам, удовлетворять условию нормировки. Аналогично, в основе 

формул (2.4) и (2.6) лежит равенство 122
1

1 


 n
n

j

j . 

В экономических исследованиях принято считать, что формула (2.3) 

отражает тот факт, что об уровне значимости альтернатив (например, возможных 

состояний экономической среды; моделируемых систем; рассматриваемых 

показателей; анализируемых проектов и т. п.) неизвестно ничего, кроме того, что 

они расположены по порядку убывания значимости. Формула (2.4) отражает тот 

факт, что уровень значимости очередной альтернативы не меньше, совокупного 

(суммарного) уровня значимости всех предшествующих альтернатив, вместе 

взятых. Аналогично можно интерпретировать формулы (2.5) и (2.6). Заметим, в 

определенных ситуациях применение формул (2.5) и (2.6) предпочтительнее 

применения формул (2.3) и (2.4), соответственно. Например, при исследовании 

динамических рядов, когда натуральные значения индекса  j задают дискретные 

моменты времени, применение формул (2.5) и (2.6) явно предпочтительнее 

применения соответствующих формул (2.3) и (2.4). Во-первых, в связи с тем, что, 

как правило, ситуация, сложившаяся в предшествующий момент времени, более 

удаленный от настоящего момента времени, оказывает на нынешнюю ситуацию 

меньшее влияние, чем ситуация, сложившаяся в предшествующий момент 

времени, более приближенный к настоящему моменту времени. Аналогичную 

точку зрения высказывают В. К. Семенычев и Е. В. Семенычев: «Очевидно, что 

при прогнозировании в условиях быстро изменяющихся социально-
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экономических явлений информация более поздних временных периодов является 

более важной, более существенной, чем информация ранних периодов»[80,с.60]. 

Во-вторых, по причине нежелательности перенумерации, упорядоченных 

хронологически, дискретных моментов времени. 

В литературе, посвященной математическому моделированию принятия 

решений в условиях неопределенности, нередко применяют прогрессии 

Фишберна, особенно прогрессии (2.3) и (2.5). 

К примеру, в работе [42] И. Л. Макаровой проведен анализ различных 

методов определения весовых коэффициентов при построении интегрального 

показателя, который может быть применен к различным процессам или явлениям 

(в том числе и к экономическим) и рекомендованы формулы Фишберна к 

использованию в дальнейших исследованиях. 

В статье [107] В. Л. Сомов и М. Н. Толмачев применяют веса Фишберна 

(формулы для соответствующих возрастающих прогрессий) при рассмотрении 

методов определения коэффициентов весомости динамических интегральных 

показателей, «с точки зрения динамики, первый (наиболее ранний) период 

времени обладает меньшей информативностью и, соответственно, меньшим 

весом». 

Е. Б. Тютюкина, Л. Д. Капранова, Т. Н. Седаш в статье [113] для 

определения приоритетных направлений экономического развития России 

предлагают использовать индикатор базовости видов экономической 

деятельности (отраслей), представляющий собой интегрированный комплексный 

показатель, который учитывает девять критериев значимости (базовости) отрасли, 

рассчитанный по методике точечных оценок Фишберна. 

А. О. Недосекиным [48] была предложена нечетко-множественная модель 

корпоративного финансового менеджмента, в которой для комплексной оценки 

финансового состояния предприятия разработаны две системы весов для свертки 

отдельных элементов матрицы в единый комплексный показатель, при этом в 

качестве одной из этих систем им предложена система весов Фишберна, т. е. 

коэффициентов, вычисляемых согласно первой формуле Фишберна. 
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Д. К. Потапов и В. В. Евстафьева, анализируя в работе [59] различные 

методики определения весовых коэффициентов на примере конкретных 

коммерческих банков, рассматривают, в частности, определение весов с помощью 

шкалы Фишберна, основанной на первой формуле Фишберна. А  А. Е. Сазонов, 

Г. С. Осипов и В. Д. Клименко в своей статье [79] предлагают использовать 

первую формулу Фишберна для построения нечетких множеств с целью оценки 

уровня совершенства систем управления безопасностью морских судов. 

Эти и другие исследования, в которых используются точечные оценки 

Фишберна, свидетельствуют о том, что эти формулы представляют определенный 

интерес для математического моделирования социально-экономических и 

технических систем, процессов и явлений, в частности, для принятия 

управленческих решений в экономике. 

 

2.2. Обобщенные прогрессии Фишберна 

 

Формулы (2.3) и (2.5), как, соответственно, и формулы (2.4) и (2.6), 

несложно обобщить, что впервые было предложено в статье [93], на случай 

монотонных прогрессий, удовлетворяющих лишь условию нормировки (2.1) и 

требованиям неотрицательности (2.2) всех членов прогрессии. 

Определение. Обобщенной прогрессией Фишберна будем называть 

прогрессию  n

jjq
1

ˆ


, удовлетворяющую всем ограничениям (2.1) и (2.2): 

обобщенной арифметической прогрессией Фишберна — арифметическую 

прогрессию, удовлетворяющую всем ограничениям (2.1) и (2.2), обобщенной 

геометрической прогрессией Фишберна — геометрическую прогрессию, 

удовлетворяющую всем ограничениям (2.1) и (2.2). 

Как показано в статье [93], обобщенная арифметическая прогрессия 

Фишберна представляет собой арифметическую прогрессию вида 
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разность которой удовлетворяет соотношениям 
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а обобщенная геометрическая прогрессия Фишберна представляет собой 

геометрическую прогрессию вида 
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знаменатель которой удовлетворяет соотношению 

 0x . (2.10) 

Доказательство следующих утверждений об общем виде обобщенных 

арифметических и геометрических прогрессий Фишберна приведено в работе 

[93]. 

Теорема 2.1. Обобщенная арифметическая прогрессия Фишберна 

представляет собой арифметическую прогрессию вида (2.7), разность которой 

удовлетворяет соотношениям (2.8). 

Теорема 2.2. Обобщенная геометрическая прогрессия Фишберна 

представляет собой геометрическую прогрессию вида (2.9), знаменатель которой 

удовлетворяет соотношениям (2.10). 

Приведем примеры обобщенных арифметических прогрессий Фишберна 

(таблица 2.3) и обобщенных геометрических прогрессий Фишберна (таблица 2.4) 

для нескольких первых значений  n [93]. 

Таблица 2.3 

Примеры обобщенных арифметических прогрессий Фишберна 

n  1j  2j  3j  4j  5j  

3 

1,0x  
30

13
 

30

10
 

30

7
 — — 

1,0x  
30

7
 

30

10
 

30

13
 — — 

4 
05,0x  0,325 0,275 0,225 0,175 — 

05,0x  0,175 0,225 0,275 0,325 — 

5 
05,0x  0,3 0,25 0,2 0,15 0,1 

05,0x  0,1 0,15 0,2 0,25 0,3 
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Таблица 2.4 

Примеры обобщенных геометрических прогрессий Фишберна 

n  1j  2j  3j  4j  5j  

3 

25,0x  
21

16
 

21

4
 

21

1
 — — 

75,0x  
37

16
 

37

12
 

37

9
 — — 

5,1x  
19

4
 

19

6
 

19

9
 — — 

4x  
21

1
 

21

4
 

21

16
 — — 

4 

25,0x  
85

64
 

85

16
 

85

4
 

85

1
 — 

75,0x  
175

64
 

175

48
 

175

36
 

175

27
 — 

5,1x  
65

8
 

65

12
 

65

18
 

65

27
 — 

4x  
85

1
 

85

4
 

85

16
 

85

64
 — 

5 

25,0x  
341

256
 

341

64
  

341

16
 

341

4
 

341

1
 

75,0x  
781

256
  

781

192
 

781

144
 

781

108
 

781

81
 

5,1x  
211

16
 

211

24
 

211

36
 

211

54
 

211

81
 

4x  
341

1
 

341

4
 

341

16
 

341

64
 

341

256
 

Подобно прогрессиям Фишберна обобщенные прогрессии Фишберна 

применяются при математическом моделировании разнообразных явлений и 

процессов экономики и техники, в т. ч. при моделировании принятия решений в 

условиях неопределенности. Например, в статье А. В. Сигала [89] 

рассматриваются две основные обобщенные модели Марковица задачи поиска 

эффективного портфеля в поле третьей ИС: одна — с простым линейным 

отношением порядка, другая — с частично усиленным линейным отношением 

порядка. В этой статье обоснована корректность приведения обобщенных 

моделей Марковица в поле третьей ИС к классической модели Марковица на 
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основе оценки значений вероятностей значениями элементов соответствующей 

обобщенной прогрессии Фишберна. 

Кроме того, легко заметить, что формулы (2.9) для обобщенной 

геометрической прогрессии широко применяются в теории массового 

обслуживания [26], т. к., например, именно по этим формулам рассчитываются 

значения стационарных вероятностей состояний случайного процесса, 

характеризующего функционирование одноканальной системы массового 

обслуживания (СМО) с накопителем ограниченной емкости. Для того чтобы 

формулы (2.9) задавали значения стационарных вероятностей состояний 

соответствующего случайного процесса, относительно одноканальной СМО с 

накопителем ограниченной емкости должны выполняться следующие 

предположения и допущения: 

1. производящая функция (генератриса) для обобщенной 

геометрической прогрессии Фишберна, т. е. для последовательности (2.9), имеет 

следующий вид:  
1

1

1

1











tx

tx
t

x

x
t

nn

n
; 

2. входной поток требований (заявок) образует простейший поток с 

интенсивностью  ; 

3. длительность обслуживания требований распределена по 

экспоненциальному закону с интенсивностью  ; 

4. СМО является системой с отказами: если единственный канал 

(механизм обслуживания) обслуживает одно требование и одновременно с этим 

2n  требования ожидают своего обслуживания, находясь в накопителе, то СМО 

откажет очередному требованию в обслуживании, т. е. если длина очереди 

достигла максимально возможной длины 1n , то, по сути, очередное требование 

покинет СМО без обслуживания; 

5. длина очереди представляет собой общее количество требований в 

СМО, включая и обслуживаемое требование; 
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6. дисциплина обслуживания требований, поступающих в СМО, 

осуществляется по правилу обслуживания очереди «первым пришел — первым 

обслуживаешься»; 

7. для рассматриваемой СМО 



x  является коэффициентом загрузки. 

При помощи символики обозначений Кендалла такую одноканальную СМО 

с накопителем ограниченной емкости можно представить четырехсимвольным 

обозначением в виде СМО 1/1// nMM . 

Прежде, чем перейти к основным свойствам обобщенных прогрессий 

Фишберна, отдельно следует исследовать вырожденный случай, когда 

знаменатель геометрической прогрессии (2.9) равен единице ( 1x ). В этом 

случае для поиска значения первого члена геометрической прогрессии можно 

выполнить предельный переход. При этом для раскрытия неопределенности (вида 

отношения бесконечно малых величин) в соответствующем пределе можно 

применить правило Лопиталя: 

 
 




















 111111

1 ˆ
1

1

11
lim

'1

'1
lim

1

1
limˆ q

nnxnx

x

x

x
q

nnxnxnx
. 

Следовательно, если 1x , то для обобщенной геометрической прогрессии 

Фишберна можно считать, что const
1

ˆˆ  

n
qq jj , nj ,1 . 

Простейшие свойства обобщенных прогрессий Фишберна впервые были 

достаточно подробно рассмотрены в статье [93], а впоследствии приведены, 

например, в статьях [88] и [89]. 

Сформулируем простейшие свойства последовательности 1q̂ , 2q̂ ,…, jq̂ ,…, 

nq̂ , образующей обобщенную арифметическую прогрессию Фишберна: 

1. разность арифметической прогрессии (2.7) обязана удовлетворять 

соотношениям (2.8); 

2. первый член арифметической прогрессии (2.7) равен   

   
n

xnnxn

n
q









2

12

2

11
ˆ1 ; 
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3. если разность арифметической прогрессии (2.7) удовлетворяет 

соотношениям 
 

0
1

2



 x

nn
, то обобщенная арифметическая прогрессия 

Фишберна строго убывает; 

4. если разность арифметической прогрессии (2.7) равна числу 
 1

2




nn
x , 

то 
 
 1

2
ˆ






nn

jn
q j , nj ,1 , при этом 

n
q

2
ˆ1  , 0ˆ nq ; 

5. если разность обобщенной арифметической прогрессии Фишберна равна 

числу 
  nn

x



1

2
, то члены 1q̂ , 2q̂ ,…, jq̂ ,…, nq̂  обобщенной арифметической 

прогрессии Фишберна   1

1
ˆ





n

jjq  образуют арифметическую прогрессию (2.3), т. е. 

арифметическую прогрессию Фишберна; 

6. если разность арифметической прогрессии (2.7) равна числу 
 1

1




nn
x , 

то 
 1

123
ˆ






nn

jn
q j , nj ,1 , при этом 

n
q

3
ˆ1  , 

n
qn

1
ˆ  ; 

7. если разность арифметической прогрессии (2.7) равна нулю ( 0x ), то 

обобщенная арифметическая прогрессия Фишберна представляет собой 

постоянную величину const
1

ˆˆ  

n
qq jj , nj ,1 ; 

8. если разность арифметической прогрессии (2.7) удовлетворяет 

соотношениям 
 1

2
0




nn
x , то обобщенная арифметическая прогрессия 

Фишберна строго возрастает; 

9. если разность арифметической прогрессии (2.7) равна числу 
 1

1




nn
x , 

то 
 1

32
ˆ




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nn

jn
q j , nj ,1 , при этом 

n
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ˆ1  , 

n
qn

3
ˆ  ; 
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10. если разность арифметической прогрессии (2.7) равна числу 
 1

2




nn
x , 

то 
 
 1

12
ˆ






nn

j
q j , nj ,1 , при этом 0ˆ1 q , 

n
qn

2
ˆ  ; 

11. если разность обобщенной арифметической прогрессии Фишберна равна 

числу 
  nn

x



1

2
, то члены 2q̂ , 3q̂ ,…, jq̂ ,…, 1ˆ nq  обобщенной арифметической 

прогрессии Фишберна   1

1
ˆ





n

jjq  образуют арифметическую прогрессию (2.5); 

12. члены произвольной обобщенной арифметической прогрессии Фишберна 

обязательно удовлетворяют соответствующему простому линейному отношению 

порядка. 

Сформулируем простейшие свойства последовательности 1q̂ , 2q̂ ,…, jq̂ ,…, 

nq̂ , образующей обобщенную геометрическую прогрессию Фишберна: 

1. знаменатель геометрической прогрессии (2.9) обязан удовлетворять 

соотношению (2.10), т. е. должен быть положительным числом: 0x ; 

2. первый член геометрической прогрессии (2.9) равен 
nn x

x

x

x
q











1

1

1

1
ˆ1 ; 

3. если знаменатель геометрической прогрессии (2.9) удовлетворяет 

соотношениям 10  x , то обобщенная геометрическая прогрессия Фишберна 

строго убывает; 

4. если знаменатель геометрической прогрессии (2.9) удовлетворяет 

соотношениям 10  x , то формулу (2.9) можно преобразовать к виду, 

аналогичному формуле (2.4),   
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5. если знаменатель геометрической прогрессии (2.9) равен 5,0
2

1
x , то 

обобщенная геометрическая прогрессия Фишберна  n

jjq
1

ˆ


 представляет собой 

геометрическую прогрессию (2.4), т. е. геометрическую прогрессию Фишберна; 

6. если знаменатель геометрической прогрессии (2.9) равен единице ( 1x ), то 

обобщенная геометрическая прогрессия Фишберна представляет собой 

постоянную величину const
1

ˆˆ  

n
qq jj , nj ,1 ; 

7. если знаменатель геометрической прогрессии (2.9) удовлетворяет 

соотношениям 1x , то обобщенная геометрическая прогрессия Фишберна строго 

возрастает; 

8. если знаменатель геометрической прогрессии (2.9) равен 2x , то 

обобщенная геометрическая прогрессия Фишберна  n

jjq
1

ˆ


 представляет собой 

геометрическую прогрессию (2.6); 

9. члены строго убывающей обобщенной геометрической прогрессии 

Фишберна удовлетворяют частично усиленному линейному отношению порядка 

njj qqq   ...1 , 1,1  nj , тогда и только тогда, когда выполняются 

соотношения 0121  xx jn , 1,1  nj , и 10  x , что эквивалентно системе 

двух неравенств 

 








;10

,012

x

xx n

 (2.11) 

10. члены строго возрастающей обобщенной геометрической прогрессии 

Фишберна удовлетворяют частично усиленному линейному отношению порядка 

11 ...  jj qqq , nj ,2 , тогда и только тогда, когда выполняются соотношения 

012 1  jj xx , nj ,2 , и 1x , что эквивалентно системе двух неравенств 

 






 

;1

,012 1

x

xx nn

 (2.12) 
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11. если 2n , то члены обобщенной геометрической прогрессии Фишберна 

удовлетворяют соответствующему частично усиленному линейному отношению 

порядка тогда и только тогда, когда знаменатель геометрической прогрессии (2.9) 

является положительным числом; 

12. если 3n , то члены обобщенной геометрической прогрессии Фишберна 

удовлетворяют соответствующему частично усиленному линейному отношению 

порядка тогда и только тогда, когда знаменатель геометрической прогрессии (2.9) 

принадлежит множеству 






















 
 ;

2

51

2

51
;0 x . 

В случаях оценивания неизвестных значений вероятностей возможных 

состояний экономической среды по формулам (2.7)–(2.10), т. е. по формулам 

вычисления значений членов обобщенных прогрессий Фишберна, корректность 

принятия управленческих решений зависит от ответов на несколько 

существенных вопросов. Наиболее важными из этих вопросов являются 

следующие два вопроса. 

1. Удовлетворяет ли рассматриваемая обобщенная прогрессия 

Фишберна соответствующему линейному отношению порядка? 

2. Удовлетворяет ли рассматриваемая обобщенная прогрессия 

Фишберна принципу Гиббса–Джейнса максимума энтропии? 

Подчеркнем, предположение П. Фишберна о том, что величины (оценки) jq̂  

в случае линейного отношения порядка образуют арифметическую прогрессию, а 

в случае частично усиленного линейного отношения порядка — монотонную 

геометрическую прогрессию, приводящее к удобным оценкам, задаваемым 

формулами (2.3)–(2.6), не базируется на принципе максимальной 

неопределенности Гиббса–Джейнса. Р. И. Трухаев отмечает, что «Фишборн 

основывал свои оценки неконструктивным способом на основе аксиом теории 

аддитивной полезности»[112,с.85]. Кроме того, хорошо известно, что если 

выполняется условие нормировки (2.1), то энтропия Шеннона 

  



n

j

jj qqH
1

lnq  достигает своего максимального значения для равномерного 
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распределения 
n

q j

1
ˆ 

, nj ,1 , которое, очевидно, удовлетворяет простому 

линейному отношению порядка. Как показано в статье В. Н. Лившица и 

А. В. Сигала [41], для 5n  энтропия Шеннона равна   48975,1ˆ qH  для оценок 

jq̂ , вычисленных по формуле (2.3), и   24275,1ˆ qH  для оценок jq̂ , вычисленных 

по формуле (2.4), в то время как для 5n  максимальное значение энтропии 

Шеннона равно   60944,15ln
5

1
ln

5

1
ˆ

5

1

 




j

H q . Таким образом, действительно 

предположение П. Фишберна о том, что величины (оценки) jq̂  образуют 

арифметическую прогрессию для случая линейного отношения порядка, и 

монотонную геометрическую прогрессию — для случая частично усиленного 

линейного отношения порядка, не базируется на принципе максимальной 

неопределенности Гиббса–Джейнса. 

Очевидно, на множестве всех обобщенных прогрессий Фишберна энтропия 

Шеннона достигает своего безусловного максимума   n
nn

H
n

j

ln
1

ln
1

ˆ
1

 



q  для 

равномерного распределения, т. е. для последовательности 
n

q j

1
ˆ 

, nj ,1 , при 

этом постоянная величина const
1

ˆˆ  

n
qq jj , nj ,1 , представляет собой 

частный случай как обобщенной арифметической прогрессии Фишберна, так и 

обобщенной геометрической прогрессии Фишберна. И, таким образом, среди всех 

обобщенных прогрессий Фишберна принципу максимума энтропии соответствует 

лишь частный случай, когда обобщенная прогрессия Фишберна вырождается в 

постоянную величину const
1

ˆˆ  

n
qq jj , nj ,1 . 

Как отмечалось в свойстве 12 для обобщенных арифметических прогрессий 

Фишберна, члены произвольной обобщенной арифметической прогрессии 

Фишберна обязательно удовлетворяют соответствующему простому линейному 

отношению порядка. В случае обобщенных геометрических прогрессий 
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Фишберна аналогичное утверждение неверно: члены произвольной обобщенной 

геометрической прогрессии Фишберна не всегда удовлетворяют 

соответствующему частично усиленному линейному отношению порядка. 

Теорема 2.3. Произвольная обобщенная геометрическая прогрессия 

Фишберна  n

iiq
1

ˆ


 удовлетворяет соответствующему частично усиленному 

линейному отношению порядка тогда и только тогда, когда значение знаменателя 

геометрической прогрессии (2.9) удовлетворяет соотношениям 

 















 ;

1
;0

n

nx  , где n  — корень уравнения 012  xx n , 

удовлетворяющий соотношениям 15,0  n . Последовательность  



1nn  

представляет собой строго убывающую ограниченную последовательность, 

предел которой равен 5,0lim 


n
n

. 

Формулировка теоремы 2.3, в данном виде приведенная в [66], уточняет 

(для случая 1n ) соответствующий результат, приведенный в статье А. В. Сигала 

[89]. 

Еще раз отметим, что, если выполняется условие нормировки (2.1), то 

энтропия Шеннона   



n

j

jj qqH
1

lnq  достигает своего максимального 

значения для равномерного распределения 
n

qq jj

1
ˆˆ  

, nj ,1 . Следовательно, 

на множестве всех обобщенных арифметических прогрессий Фишберна энтропия 

Шеннона достигает своего максимального значения для равномерного 

распределения. Другими словами, для обобщенных арифметических прогрессий 

Фишберна единственное решение задачи максимизации энтропии Шеннона 

приводит к равномерному распределению вероятностей. 

Ответ на вопрос о максимизации значения энтропии Шеннона на множестве 

всех обобщенных геометрических прогрессий Фишберна, удовлетворяющих 

соответствующему частично усиленному линейному отношению порядка, дает 

следующее утверждение. 
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Теорема 2.4. Задача максимизации энтропии Шеннона на множестве 

невозрастающих обобщенных геометрических прогрессий Фишберна  n

jjq
1

ˆ


, 

удовлетворяющих частично усиленному линейному отношению порядка, имеет 

следующее единственное оптимальное решение:  1;5,0
nx . Задача 

максимизации энтропии Шеннона на множестве неубывающих обобщенных 

геометрических прогрессий Фишберна  n

jjq
1

ˆ


, удовлетворяющих частично 

усиленному линейному отношению порядка, имеет следующее единственное 

оптимальное решение  2;1
1





n

n

x . При достаточно больших натуральных 

значениях n  геометрическая прогрессия Фишберна задает приблизительное 

решение задачи максимизации энтропии Шеннона на множестве невозрастающих 

обобщенных геометрических прогрессий Фишберна, удовлетворяющих частично 

усиленному линейному отношению порядка. Для геометрических прогрессий 

Фишберна справедливо предельное соотношение   386294,14lnˆlim 


qH
n

. 

Формулировка теоремы 2.4 уточняет (для случая 1n ) соответствующий 

результат, приведенный в статье А. В. Сигала и Е. С. Ремесник [87]. 

Доказательство. С учетом утверждения теоремы 2.3 задача максимизации 

энтропии Шеннона на множестве невозрастающих обобщенных геометрических 

прогрессий Фишберна, удовлетворяющих частично усиленному линейному 

отношению порядка, имеет следующий вид: 

 
q

q maxln
1

 


n

j

jj qqH , 

1

1

1
ˆ 




 j

nj x
x

x
q , nj ,1 , 

nx 0 . 

Очевидно, полученная задача представляет собой задачу условной 

оптимизации нелинейной функции одной переменной. Решение этой задачи 

можно найти разными методами. Докажем, что с учетом формул (2.9) на 



50 

 

промежутке  1;0x  функция   



n

j

jj qqxh
1

ln  строго убывает. Для этого 

достаточно доказать, что производная этой функции имеет отрицательное 

значение на всем промежутке  1;0x . Прежде, чем найти производную 

   xh
xd

d
xh  , найдем производную отдельного слагаемого, т. е.  jj qq

xd

d
ln . 

Т. к.  xqq jj   имеем    1lnln  jjjj qqqq
xd

d
. 

В частности, если 1j  имеем 

    




































 1

1

1
ln

1

1
1lnln 1111 nn x

x

x

x
qqqq

xd

d
 

 

 























e
x

x

x

xnxn
nn

nn

1

1
ln

1

11
2

1

 

 
   


















  e

x

x
xxxxn

x

x
n

nn

n 1

1
ln1...1

1

1 221

2
 

 
































1

1

1

2

1

1
ln

1

1 n

i

in

nn
xine

x

x

x

x
. 

Аналогично, если 1j  имеем 

    






































  1

1

1
ln

1

1
1lnln 11 j

n

j

njjjj x
x

x
x

x

x
qqqq

xd

d
 

 
  
































 



  ex
x

x
jxxjnx

x

x j

n

n

j

jnnj

n

1

1

2

2 1

1
ln

1

1
 

 




 



























1

0

112

2

1

1
ln

1

1 n

i

inj

n

j

n
xijnex

x

x
x

x

x
. 
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Следовательно, для функции (по сути, для энтропии Шеннона) 

  



n

j

jj qqxh
1

ln  после приведения подобных слагаемых получаем 

   



n

j

jj

n

j

jj qq
xd

d
qq

xd

d
xh

11

lnln  

 

 








 
























2

0

22

0

2
2

2

ln
1

1 n

j

jn

i

ij
jn

xxCx
x

x
, 

где 
   

2

122
2




jj
C j

 — соответствующий биномиальный коэффициент. Если 

 1;0x , то 0ln x , откуда получаем справедливость неравенства   0 xh . 

Итак, если  1;0x , то   



n

j

jj qqxh
1

ln  — строго возрастающая 

функция, которая на промежутке  nx  ;0 , где 15,0  n  для 2n , достигает 

своего максимального значения для аргумента nx  . В частных случаях, для 

1n  и 2n , имеем 121 x . 

Таким образом, задача максимизации энтропии Шеннона на множестве 

невозрастающих обобщенных геометрических прогрессий Фишберна, 

удовлетворяющих частично усиленному линейному отношению порядка, имеет 

единственное оптимальное решение nx  , при этом 11 x  для 1n , 

12 x  для 2n  и  1;5,0
nx  для 2n . 

Аналогично задача максимизации энтропии Шеннона на множестве 

неубывающих обобщенных геометрических прогрессий Фишберна, 

удовлетворяющих частично усиленному линейному отношению порядка, 

 
q

q maxln
1

 


n

j

jj qqH , 

1

1

1
ˆ 




 j

nj x
x

x
q , nj ,1 , 
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nx  , 

где 21  n , имеет единственное оптимальное решение nx  , при этом 

11 x  для 1n , 12 x  для 2n  и  2;1
nx  для 2n . ч.т.д. 

Как отмечалось в свойстве 5 для обобщенных геометрических прогрессий 

Фишберна, если ее знаменатель равен 5,0x , то обобщенная геометрическая 

прогрессия Фишберна  n

jjq
1

ˆ


 представляет собой геометрическую прогрессию 

(2.4), т. е. геометрическую прогрессию Фишберна. Согласно теореме 2.3 

справедливо предельное соотношение 5,0lim 


n
n

. Следовательно, при 

достаточно больших натуральных значениях n  геометрическая прогрессия 

Фишберна задает приблизительное решение задачи максимизации энтропии 

Шеннона на множестве невозрастающих обобщенных геометрических прогрессий 

Фишберна, удовлетворяющих частично усиленному линейному отношению 

порядка. 

Этот вывод подтверждает сравнительный анализ (таблица 2.5) значений 

энтропии Шеннона для соответствующих геометрических прогрессий Фишберна 

для нескольких первых значений n . 

Таблица 2.5 

Сравнительный анализ значений энтропии Шеннона  

для геометрических прогрессий Фишберна 

n  nx    nh    q̂H  %  

2 1 0,693147 0,636514 – 8,1704 

3 0,618034 1,025656 0,955700 – 6,8207 

4 0,543689 1,185837 1,136917 – 4,1254 

5 0,518790 1,272528 1,242748 – 2,3402 

 
Здесь nx   — это оптимальное решение задачи максимизации энтропии 

Шеннона на множестве невозрастающих обобщенных геометрических прогрессий 

Фишберна,  nh   — экстремальное значение целевой функции этой задачи, q̂  — 

соответствующая геометрическая прогрессия Фишберна,  q̂H  — значение 
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энтропии Шеннона для соответствующей геометрической прогрессии Фишберна, 

%  — относительное отклонение (в процентном выражении) значения  q̂H  от 

числа  nh  , все вычисления выполнены с точностью до 0,000001, а в последнем 

столбце — с точностью до 0,0001. 

Легко убедиться, что для задачи максимизации энтропии Шеннона на 

множестве неубывающих обобщенных геометрических прогрессий Фишберна, 

удовлетворяющих частично усиленному линейному отношению порядка, 

арифметические прогрессии Фишберна не целесообразно использовать в качестве 

приблизительного решения этой задачи. Этот вывод подтверждает сравнительный 

анализ (таблица 2.1) значений энтропии Шеннона для соответствующих 

арифметических прогрессий Фишберна для 10,4n . 

Как видно из таблицы 2.6, значения элементов последовательностей  



1nn  

и  



1nn  быстро приближаются к своим предельным значениям. 

Приведем примеры обобщенных геометрических прогрессий Фишберна 

 n

jjq
1

ˆ


 для случаев, когда знаменатели геометрических прогрессий (2.9) 

равняются n  или n , для первых значений n  (таблица 2.7), при этом значения 

элементов jq̂  и энтропии Шеннона  q̂H  вычислены с точностью до 0,0001. 

Таблица 2.6 

Значения элементов последовательностей  



1nn  и  




1nn  для 5,1n  

n  n  n  

1 1 1 

2 1 1 

3 
618034,0

2

51



 618034,1

2

51



 

4 

543689,0
3

13331733317 33






 

839287,1

13331733317

3

33




  

5 0,518790 1,927562 
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Таблица 2.7 

Примеры обобщенных геометрических прогрессий Фишберна,  

максимизирующих значение энтропии Шеннона для 5,2n  

n  1j  2j  3j  4j  5j    q̂H  

2 
2x  0,5 0,5 — — —  0,6931 

2x  0,5 0,5 — — —  0,6931 

3 
3x  0,5 0,3090 0,1910 — —  1,0257 

3x  0,1910 0,3090 0,5 — —  1,0257 

4 
4x  0,5 0,2718 0,1478 0,0804 —  1,1858 

4x  0,0804 0,1478 0,2718 0,5 —  1,1858 

5 
5x  0,5 0,2594 0,1346 0,0698 0,0362  1,2725 

5x  0,0362 0,0698 0,1346 0,2594 0,5  1,2725 

Легко доказать, что для обобщенных геометрических прогрессий Фишберна 

 n

jjq
1

ˆ


, для которых знаменатели геометрических прогрессий (2.9) равняются n  

или n , всегда справедливо равенство 5,0ˆˆ
2

1 


n

j

jqq  в случае убывающих 

прогрессий или 5,0ˆˆ
1

1






n

j

jn qq  в случае возрастающих прогрессий. 

В [66] рассматривается еще одно обобщение понятия геометрическая 

прогрессия Фишберна: бесконечно обобщенная геометрическая прогрессия 

Фишберна. 

Определение. Бесконечной обобщенной геометрической прогрессией 

Фишберна будем называть бесконечно убывающую геометрическую прогрессию, 

 
1

ˆ
jjq , удовлетворяющую свойствам 1ˆ

1




j

jq  и 0ˆ jq , Nj . 

Доказательство следующего утверждения тоже приводится в [66]. 

Теорема 2.5. Бесконечная обобщенная геометрическая прогрессия 

Фишберна представляет собой бесконечно убывающую геометрическую 
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прогрессию вида   11ˆ  j
j xxq , Nj , знаменатель которой удовлетворяет 

соотношению 10  x . 

Заметим, что, подобно формулам (2.9), формулы   11ˆ  j
j xxq , Nj , 

где 10  x , для бесконечной обобщенной геометрической прогрессии Фишберна 

также применяются в теории массового обслуживания: по этим формулам 

рассчитываются, например, значения стационарных вероятностей состояний 

случайного процесса, характеризующего функционирование одноканальной СМО 

1// MM  с накопителем неограниченной емкости. При этом производящая 

функция (генератриса) для бесконечной обобщенной геометрической прогрессии 

Фишберна имеет следующий вид:   t
tx

x
t 






1

1
, где 










xx
t

1
;

1
. 

Наконец, члены бесконечной обобщенной геометрической прогрессии 

Фишберна удовлетворяют частично усиленному линейному отношению порядка, 

т. е. отношениям 





1ji

ij qq , Nj , тогда и только тогда, когда xx 1 , т. е. 

5,00  x  (с учетом допустимых значений знаменателя бесконечной обобщенной 

геометрической прогрессии Фишберна). 

Таким образом, простейшие свойства последовательности  
1

ˆ
jjq , 

образующей бесконечную обобщенную геометрическую прогрессию Фишберна, 

имеют следующий вид: 

1. бесконечная обобщенная геометрическая прогрессия Фишберна 

представляет собой бесконечно убывающую геометрическую прогрессию вида 

  11ˆ  j
j xxq , Nj ; 

2. знаменатель бесконечной обобщенной геометрической прогрессии 

Фишберна обязан удовлетворять соотношению 10  x ; 

3. первый член бесконечной обобщенной геометрической прогрессии 

Фишберна равен xq 11 ; 
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4. члены бесконечной обобщенной геометрической прогрессии Фишберна 

удовлетворяют частично усиленному линейному отношению порядка 





1ji

ij qq , 

Nj , тогда и только тогда, когда выполняются соотношения 5,00  x . 

Итак, обобщенные прогрессии Фишберна можно применять, например, для 

оценки неизвестных значений вероятностей состояний экономической среды или 

для оценки неизвестных значений весовых коэффициентов, если для этих 

неизвестных значений задано соответствующее отношение порядка, при этом 

ЛПР выбирает такие значения параметров прогрессии, для которых полученная 

обобщенная прогрессия Фишберна будет задавать последовательность, 

являющуюся с его точки зрения наиболее характерной, а, по сути, наилучшим 

образом соответствующей всем особенностям имеющейся ситуации принятия 

решений. 

 

2.3. Последовательности Фишберна 

 

Рассмотрим метод построения произвольной последовательности, 

удовлетворяющей простому линейному отношению порядка и задающей 

распределение вероятностей, который был предложен в работе А. В. Сигала [90]. 

Пусть  n

jja
1
 — произвольная монотонная последовательность неотрицательных 

чисел, сумма которых является положительным числом, т. е. справедливы 

соотношения 0......21  nj aaaa  или nj aaaa  ......0 21 , при 

этом 0
1




n

i

ia , тогда последовательность  n

jjq
1

ˆ


, где 

 





n

i

i

j

j

a

a
q

1

ˆ , nj ,1 , (2.13) 
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удовлетворяет и простому линейному отношению порядка, и всем требованиям 

(2.1) и (2.2), т. е. задает распределение вероятностей. Далее будем использовать 

следующую терминологию и обозначения. 

Определение. Последовательностью Фишберна будем называть 

последовательность  n

jjq
1

ˆ


, значения элементов которой вычисляются по 

формулам (2.13), где  n

jja
1
 – монотонная последовательность неотрицательных 

чисел, сумма которых является положительным числом, при этом 

последовательность  n

jja
1
 будем называть последовательностью, производящей 

(или порождающей) последовательность Фишберна  n

jjq
1

ˆ


. 

Введенное понятие последовательностей Фишберна определяет класс 

последовательностей, являющийся гораздо более широким, чем класс 

последовательностей, элементы которых вычисляются по формуле точечных 

оценок Фишберна. Элементы любой последовательности  n

jjq
1

ˆ


, вычисленные по 

первой (2.3) и второй (2.4) формулам Фишберна, — это частные случаи 

последовательностей Фишберна. Класс последовательностей Фишберна содержит 

последовательности, не являющиеся прогрессиями Фишберна. Применение 

последовательностей Фишберна существенно шире вычисления точечных оценок 

априорных вероятностей состояний экономической среды. Например, 

последовательности Фишберна можно применять для оценки вектора весовых 

коэффициентов приоритета. 

Очевидно, свойства, которыми обладает последовательность Фишберна, и 

свойства, которыми обладает последовательность, ее производящая, совпадают. В 

частности, последовательность Фишберна и последовательность, ее 

производящая, одновременно обладают одноименным свойством монотонности. 

Например, последовательность Фишберна является неубывающей (строго 

возрастающей) последовательностью тогда и только тогда, когда 

последовательность, ее производящая, является неубывающей (строго 

возрастающей, соответственно) последовательностью. Аналогичное утверждение 
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справедливо про невозрастание (строгое убывание) последовательности 

Фишберна. Последовательность Фишберна и последовательность, ее 

производящая, одновременно могут представлять собой прогрессию 

(арифметическую или геометрическую, соответственно). Кроме того, любая 

последовательность Фишберна и любая последовательность, производящая 

последовательность Фишберна, всегда удовлетворяет простому линейному 

отношению порядка. Наконец, последовательность Фишберна удовлетворяет 

частично усиленному линейному отношению порядка тогда и только тогда, когда 

последовательность, ее производящая, удовлетворяет частично усиленному 

линейному отношению порядка. 

Единственным принципиальным отличием последовательности Фишберна и 

последовательности, ее производящей, является то, что любая 

последовательность Фишберна обязана задавать распределение вероятностей и, в 

частности, обязана удовлетворять условию нормировки (2.1), а произвольная 

последовательность, производящая последовательность Фишберна, не обязана 

удовлетворять условию нормировки (2.1). Собственно говоря, 

последовательность Фишберна — это монотонная последовательность 

неотрицательных чисел, сумма которых равна числу 1, а 

последовательность, производящая последовательность Фишберна, — это 

монотонная последовательность неотрицательных чисел, сумма которых 

является положительным числом (иначе говоря, монотонная 

последовательность неотрицательных чисел, хотя бы одно из которых 

является положительным числом). Таким образом, именно последовательности 

Фишберна можно использовать в качестве оценок распределения вероятностей 

состояний экономической среды (фондового рынка), при этом в качестве 

последовательности, производящей последовательность Фишберна с желаемыми 

свойствами, ЛПР (инвестору) следует выбирать последовательность, обладающую 

этими желаемыми свойствами. В качестве таких последовательностей, 

производящих последовательности Фишберна с желаемыми свойствами, можно 
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выбирать прогрессии и другие известные последовательности, в частности, 

классические последовательности натуральных чисел [85]. 

Понятно, что арифметическая прогрессия Фишберна — это 

последовательность Фишберна, производящая последовательность которой 

представляет собой последовательность  1;2;3;...;1; nn  первых натуральных 

чисел, расположенных в обратном порядке, или, например, последовательность 

  2;4;6;...;12;2  nn  первых четных натуральных чисел, расположенных в 

обратном порядке. А геометрическая прогрессия Фишберна — это 

последовательность Фишберна, производящая последовательность которой 

представляет собой последовательность  1;2;4;...;2;2 1nn  первых 

неотрицательных целых степеней числа 2, расположенных в обратном порядке. 

При этом в основе формул (2.3) и (2.7) лежит равенство  12
1




nnj
n

j

, а в 

основе формул (2.4) и (2.9) лежит равенство 122
1

1 


 n
n

j

j , позволяющие 

значениям оценок вероятностей, найденным по этим удобным и простым 

формулам, удовлетворять условию нормировки (2.1). Аналогично, любая 

обобщенная прогрессия Фишберна представляет собой частный случай 

последовательности Фишберна. 

В таблице 2.8 приведены примеры (для 4n ) последовательностей 

Фишберна, порожденных производящими последовательностями, элементы 

которых являются 1) константой (равной, например, 1); последовательными 

первыми 2) натуральными числами; 3) числами Фибоначчи; 4) обобщенная 

геометрическая прогрессия Фишберна, максимизирующая значение энтропии 

Шеннона (см. таблицу 2.7. для 4n  и знаменателя 4x ); 5) числами Мерсенна; 

6) числами Евклида; 7) числами Ферма. В таблице 2.8 последовательности 

упорядочены по убыванию значений энтропии. 
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Таблица 2.8 

Примеры (для 4n ) последовательностей Фишберна 

№ 

п/п 

Производящая 

 последовательность  

 4

1jja  

Последовательность Фишберна  4

1
ˆ

jjq

, найденная по формуле (2.13) 
 q̂H  

1.   1;1;1;1   25,0;25,0;25,0;25,0  3863,14ln   

2.   4;3;2;1   4,0;3,0;2,0;1,0  1,2799 

3.   3;2;1;1  








7

3
;

7

2
;

7

1
;

7

1
 1,2770 

4.   5,0;...;0804,0   5,0;2718,0;1478,0;0804,0  1,1858 

5.   15;7;3;1  








26

15
;

26

7
;

26

3
;

26

1
 1,0451 

6.   43;7;3;2  








55

43
;

55

7
;

55

3
;

55

2
 0,7340 

7.   257;17;5;3  








282

257
;

282

17
;

282

5
;

282

3
 0,3738 

Легко заметить, что все последовательности Фишберна, приведенные в 

таблице 2.8, удовлетворяют простому линейному отношению порядка, в то время, 

как частично усиленному линейному отношению порядка удовлетворяют только 

четыре последние последовательности из них. Заметим также, что обобщенная 

геометрическая прогрессия Фишберна, максимизирующая значение энтропии 

Шеннона, характеризуется значением   1858,1ˆ qH , что несколько меньше 

значения 1,2770 энтропии Шеннона для соответствующей последовательности 

Фишберна, производящая последовательность которой — числа Фибоначчи, и 

больше значения 1,0451 энтропии Шеннона для соответствующей 

последовательности Фишберна, производящая последовательность которой — 

числа Мерсенна. 

Следует учитывать, что монотонная последовательность неотрицательных 

чисел, сумма которых является положительным числом, однозначно определяет 

соответствующую последовательность Фишберна, а для любой 
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последовательности Фишберна последовательность, ее порождающая, определена 

неоднозначно. Справедливо следующее утверждение [98]. 

Теорема 2.6. Для любой последовательности Фишберна  n

jjq
1

ˆ


 существует 

единственная с точностью до постоянного положительного множителя 

последовательность  n

jja
1
, производящая исходную последовательность 

Фишберна  n

jjq
1

ˆ


, т. е. монотонная последовательность  n

jja
1
 неотрицательных 

чисел, сумма которых является положительным числом, и с использованием 

которой по формуле (2.13) можно построить исходную последовательность 

Фишберна  n

jjq
1

ˆ


. 

Таким образом, если ситуацию принятия решений характеризует 

статистическая игра, заданная в поле третьей информационной ситуации, то лицо, 

принимающее решения, может использовать как оценку распределения 

вероятностей состояний экономической среды последовательность Фишберна, 

обладающую желаемыми свойствами. 

 

2.4. Последовательности Фишберна второго порядка 

 

Однородные объекты (например, состояния экономической среды, критерии 

эффективности, показателей или факторов), рассматриваемые в экономических 

исследованиях, с точки зрения ЛПР имеют, как правило, разную приоритетность 

(разную степень значимости/важности). Наиболее распространенными моделями 

отображения приоритетности объектов являются следующие три [66]: 

1. ряд приоритета ( RI ); 

2. ряд бинарных отношений приоритета ( RV); 

3. вектор весовых коэффициентов приоритета ( U ). 

В [66, 104] рассмотрен метод построения оценки вектора весовых 

коэффициентов с использованием последовательностей Фишберна, при этом 

особое внимание уделено методу построения оценки вектора весовых 
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коэффициентов в случае смешанной системы предпочтений, когда с точки зрения 

ЛПР значимость частных критериев характеризуют, как отношения строгого 

предпочтения, так и отношения безразличия. Отметим, что от качества оценки 

вектора весовых коэффициентов во многих случаях зависит качество 

моделирования процессов принятия решений в экономике. Дело в том, что 

принятие управленческих решений в экономике представляет собой, как правило, 

многокритериальную задачу оптимизации. При решении многокритериальных 

задач возникает ряд специфических проблем, часть из которых имеет 

концептуальный характер, а другая часть — формальный характер. Из 

концептуальных проблем основная — это выбор принципа оптимальности, 

который определяет свойства оптимальной стратегии и дает ответ на основной 

вопрос — в каком смысле оптимальная стратегия лучше других стратегий (имеет 

над ними преимущество). К сожалению, принцип оптимальности часто носит 

искусственный характер, что, зачастую, делает бессмысленным его применение. 

Более осмысленным представляется подход, основанный на учете субъективных 

предпочтений ЛПР. 

Вильфредо Парето предложил широко известный критерий оптимальности 

распределения ресурсов, который называется «Парето-оптимумом» или 

«оптимумом по Парето». Для поиска оптимальных по Парето решений задачи 

многокритериальной оптимизации ее, как правило, приводят к задаче 

однокритериальной оптимизации, чаще всего, к задаче условной оптимизации. 

Одним из наиболее распространенных методов поиска Парето-оптимальных 

решений является приведение задачи многокритериальной оптимизации к задаче 

оптимизации аддитивной функции полезности, представляющей собой некоторую 

свертку (выпуклую линейную комбинацию) всех критериев. Следует учитывать, 

что использование аддитивных функций полезности обладает как достоинствами, 

так и недостатками. 

Таким образом, от качества решения задачи многокритериальной 

оптимизации существенным образом зависит качество принятия управленческих 

решений и эффективность функционирования экономической системы. Если при 
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решении задачи многокритериальной оптимизации ее привести к задаче 

оптимизации функции свертки, то использование последовательностей Фишберна 

для оценки вектора весовых коэффициентов (в этом случае рассматриваемыми 

объектами выступают частные критерии эффективности деятельности 

экономической системы) позволяет простым и удобным методом полностью 

учесть субъективные предпочтения ЛПР. 

Пусть для рассматриваемых однородных объектов O 1, O 2,…, O n требуется 

качественно отобразить их приоритетность. На основе отношения нестрогого 

предпочтения «O i
   O j» («объект O j не хуже объекта O i») согласно 

субъективным представлениям ЛПР строится совокупность отношений 

нестрогого предпочтения: 

njjj OOO  ...
21

. 

Полученная совокупность нестрогих предпочтений означает, что построен 

следующий ряд приоритета: 

  
njjj

OOO ;...;;
21

RI , (2.14) 

где 
1j

O  — объект с наименьшим приоритетом,…, 
njO  — объект с наибольшим 

приоритетом среди всех рассматриваемых однородных объектов. 

Без ограничения общности можно считать, что ряд приоритета имеет вид 

  nOOO ;...;; 21RI . (2.15) 

Действительно, если ряд приоритета (2.14) имеет другой вид, то за счет 

перенумерации однородных объектов ряд приоритета может быть приведен к 

виду (2.15). Итак, пусть ряд приоритета для рассматриваемых однородных 

объектов имеет вид (2.15), тогда при наличии (небольшой по объему) 

дополнительной информации об исследуемых объектах ЛПР может осуществить 

количественное уточнение ряда (2.15) в виде: 

  nvvv ;...;; 21RV , (2.16) 

где v i — числовая оценка результата попарного сравнения приоритетности 

исследуемых объектов (точнее, того, во сколько раз объект O i приоритетнее 
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объекта O i–1). Очевидно, что любая компонента вектора RV, упорядоченного в 

соответствии с рядом приоритета RI (2.15), удовлетворяет условию: 

1jv , nj ,1 . 

Если объекты O j–1 и O j равнозначны (O j–1O j), то соответствующая 

компонента равна единице: v j
  1. Для удобства принято считать справедливым 

равенство v 1
  1. 

Значения компонент u j, nj ,1 , вектора весовых коэффициентов (для 

рассматриваемых однородных объектов) 

  nuuu ;...;; 21U , (2.17) 

обязаны удовлетворять следующим ограничениям: 

 — условию нормировки 

 1
1




n

j

ju , (2.18) 

 — требованиям неотрицательности всех компонент 

 0ju , nj ,1 . (2.19) 

Компонента u j — это, в сущности, весовой коэффициент, определяющий 

относительное преимущество объекта O j над остальными однородными 

объектами. С учетом справедливости предположения о том, что ряд приоритета 

RI имеет вид (2.15), для компонент вектора (2.17) имеют место соотношения 

 1 jj uu , 1,1  nj . (2.20) 

Кроме того, для компонент векторов RV и U справедливы равенства 

 11 v , 
1


j

j

j
u

u
v , nj ,2 , 





 


n

i

i

l

l

j

l

l

j

v

v

u

1 1

1 , nj ,1 . (2.21) 

Соотношения (2.18)–(2.20) означают, что компоненты вектора весовых 

коэффициентов образуют монотонную (собственно, неубывающую) 

последовательность неотрицательных чисел, сумма которых равна 1. 

Следовательно, для оценки вектора весовых коэффициентов целесообразно 
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использовать последовательность Фишберна, обладающую желаемыми 

свойствами. Например, если ЛПР на основе имеющейся у него информации 

может утверждать, что произвольный объект O j не хуже совокупности всех 

однородных объектов, которые в ряде приоритета (2.15) находятся перед ним, т. е. 

справедлива совокупность отношений нестрогого предпочтения 

jj OOOO  121 ...  , nj ,2 , что далее будем кратко обозначать как 

kOOO  ...21 , где   — это символ отношения усиленного предпочтения, 

которое можно называть «много лучше», то это означает, что оценки значений 

компонент вектора весовых коэффициентов приоритета обязаны удовлетворять 

частично усиленному линейному отношению порядка. 

Итак, последовательности Фишберна можно использовать в качестве 

оценки вектора весовых коэффициентов приоритета. Если компоненты вектора 

(2.17) должны образовывать строго монотонную последовательность, то в 

качестве оценки вектора U весовых коэффициентов приоритета целесообразно 

использовать соответствующую последовательность Фишберна  n

jjq
1

ˆ


, 

обладающую желаемыми свойствами. В частности, в этом случае удобно 

использовать обобщенные прогрессии Фишберна, причем, если требуется, чтобы 

компоненты вектора весовых коэффициентов приоритета удовлетворяли частично 

усиленному линейному отношению порядка, то следует использовать 

обобщенные геометрические прогрессии Фишберна, знаменатели которых 

удовлетворяют требованиям теоремы 2.3. Однако для компонент вектора весовых 

коэффициентов приоритета условие строгой монотонности может нарушаться. 

Рассмотрим смешанную систему предпочтений, когда ряд приоритета 

наряду с отношениями строгого предпочтения содержит и отношения 

безразличия. Например, если 

   nll ООООО ;...;;;...;; 121 RI , (2.22) 

то здесь O 1 — объект с наименьшим приоритетом,…, O n — объект с наибольшим 

приоритетом среди всех рассматриваемых однородных объектов, а квадратными 

скобками выделены два эквивалентных однородных объекта, т. е. справедлива 
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совокупность отношений предпочтения lOOO  ...21  nl OO ...1 . Здесь 

введены символы приоритетности «» и эквивалентности «~». Очевидно, в случае 

построения оценки вектора весовых коэффициентов приоритета, когда имеет 

место смешанная система предпочтений, компоненты оценки вектора (2.22) 

весовых коэффициентов приоритета не образуют строго возрастающую 

последовательность. Но и в этом случае для построения оценки вектора весовых 

коэффициентов приоритета возможно использование последовательностей 

Фишберна. В статье [96] введено понятие последовательностей Фишберна 

второго порядка. Рассмотрим данное понятие подробно. 

Пусть  N

jjU
1
 — монотонная (возможно нестрого монотонная) 

последовательность, элементы которой принимают n различных значений, где n, 

N — заданные натуральные числа для которых справедливо соотношение n  N. 

Тогда если эти n различных значений элементов последовательности  N

jjU
1
 

обозначить u 1, u 2,…, u n, то последовательность  N

jjU
1
 удобно представить в 

виде таблицы 2.9, в которой m j — это частота элемента u j, nj ,1 , при этом 

таблицу 2.9 будем называть рядом распределения монотонной 

последовательности  N

jjU
1
. 

Таблица 2.9 

Ряд распределения монотонной последовательности  N

jjU
1
 

ju  1u  2u  … nu  


n

j 1

 

jm  1m

Ошибка! 

Ошибка 

связи. 

2m  … nm  N 

Итак, элементы последовательности  n

jju
1
, расположенные в первой 

строке таблицы 2.9, упорядочены по возрастанию, т. е. nuuu  ...21 ; m j — это 

частота u j, т. е. количество повторений числа u j в исходной монотонной 
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последовательности  N

jjU
1
, поэтому m 1, m 2,…, m n — это известные 

натуральные числа, для которых справедливо равенство Nm
n

j

j 
1

. 

Определение. Последовательностью Фишберна второго порядка будем 

называть монотонную последовательность  N

jjU
1
, заданную своим известным 

рядом распределения 2.9, при этом значения элементов этой последовательности 

вычисляются по формулам 
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j
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 (2.23) 

где  n

jjq
1

ˆ


 — заданная последовательность Фишберна, которую будем называть 

последовательностью Фишберна, производящей последовательность Фишберна 

второго порядка  N

jjU
1
. Последовательностью Фишберна первого порядка 

будем называть строго монотонную последовательность Фишберна. 

Таким образом, последовательность Фишберна второго порядка — это, по 

сути, монотонная последовательность неотрицательных чисел, удовлетворяющих 

условию нормировки. Последовательности Фишберна первого порядка можно 

теперь интерпретировать как частный случай последовательностей Фишберна 

второго порядка, а именно, как последовательности Фишберна второго порядка, 

для которых все частоты равны единице, т. е. для ряда распределения 2.9 которых 

справедливы равенства m 1
  m 2

 … m n
  1 и n  N. Если имеет место смешанная 

система предпочтений, то последовательности Фишберна второго порядка удобно 

использовать как оценку вектора весовых коэффициентов приоритета. 
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Рассмотрим конкретный пример построения оценки вектора весовых 

коэффициентов приоритета, когда имеет место смешанная система предпочтений 

ЛПР. Пусть имеет место следующая смешанная система предпочтений: 

21 OO   3O  654 OOO   7O . 

Подставляя в формулы (2.23) значения элементов последовательности 

Фишберна    4,0;3,0;2,0;1,0ˆ
4

1


jjq , т. е. соответствующей возрастающей 

обобщенной арифметической прогрессии Фишберна, то, т. к. 8,1ˆ
4

1


j

jj mq , 

получаем оценку вектора весовых коэффициентов в виде следующей 

последовательности Фишберна второго порядка: 

 









18

4
;

18

4
;

18

3
;

18

2
;

18

2
;

18

2
;

18

1
U . (2.24) 

Если же имеет место аналогичная смешанная система предпочтений вида 

21 OO   3O  654 OOO   7O , 

то для построения оценки вектора весовых коэффициентов приоритета можно 

использовать, например, возрастающую последовательность Фишберна, 

порожденную геометрической прогрессией    64;16;4;1
4

1


jja , знаменатель 

которой равен x  4, т. е. обобщенную геометрическую прогрессию Фишберна 

 









 85

64
;

85

16
;

85

4
;

85

1
ˆ

4

1jjq . 

Подставляя в формулы (2.23) значения элементов этой прогрессии, то, т. к. 

85

157
ˆ

4

1


j

jj mq , получаем оценку вектора весовых коэффициентов в виде 

следующей последовательности Фишберна второго порядка: 

 









157

64
;

157

64
;

157

16
;

157

4
;

157

4
;

157

4
;

157

1
U . (2.25) 

Аналогичную схему построения оценки вектора весовых коэффициентов 

предложили З. И. Абдулаева, А. О. Недосекин [2, с. 83]. Придерживаясь 
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терминологии, введенной в этом параграфе, можно сказать, что их схема 

представляет собой использование последовательности Фишберна второго 

порядка, значения элементов которой вычисляются на основе использования 

убывающих арифметических прогрессий Фишберна. 

Оценив вектор U весовых коэффициентов, необходимо согласно формулам 

(2.21) найти оценку вектора RV. Например, для случая вектора (2.24) оценка ряда 

бинарных отношений приоритета имеет вид 








 1;
3

4
;

2

3
;1;1;2;1VR . Аналогично, 

для случая вектора (2.25) оценка ряда бинарных отношений приоритета имеет вид 

 1;4;4;1;1;4;1VR . 

Если найденная оценка ряда бинарных отношений приоритета не 

соответствует представлениям ЛПР о значениях попарных сравнений 

приоритетности исследуемых однородных объектов, то в качестве оценки вектора 

весовых коэффициентов следует выбрать другой вектор. При этом новая оценка 

вектора U весовых коэффициентов может представлять собой другую 

обобщенную прогрессию Фишберна первого порядка для случая строго 

монотонной системы приоритетов или другую последовательность Фишберна 

второго порядка, производящей последовательностью которой является другая 

обобщенная прогрессия Фишберна, для случая смешанной системы приоритетов. 

Выбирая последовательность Фишберна, обладающую желаемыми 

свойствами, ЛПР может ограничиться обобщенными прогрессиями Фишберна, 

значения параметров которых соответствуют желаемым свойствам. Если 

компоненты вектора весовых коэффициентов приоритета должны образовывать 

строго монотонную последовательность, то в качестве оценки вектора U весовых 

коэффициентов приоритета целесообразно использовать соответствующую 

последовательность Фишберна  n

jjq
1

ˆ


, обладающую желаемыми свойствами. В 

частности, если при этом требуется, чтобы компоненты вектора весовых 

коэффициентов приоритета удовлетворяли частично усиленному линейному 

отношению порядка, то следует использовать обобщенные геометрические 
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прогрессии Фишберна, знаменатели которых удовлетворяют требованиям 

теоремы 2.3. 

Аналогично, выбирая последовательность Фишберна второго порядка, 

обладающую желаемыми свойствами, ЛПР может ограничиться 

последовательностями Фишберна второго порядка, порождаемыми обобщенными 

прогрессиями Фишберна, значения параметров которых соответствуют желаемым 

свойствам. 

Итак, для построения оценок вектора весовых коэффициентов приоритета 

можно использовать последовательности Фишберна, обладающие желаемыми 

свойствами. В качестве свойств, обладание которыми желательно для вектора 

весовых коэффициентов, могут выступать простое линейное отношение порядка 

или частично усиленное линейное отношение порядка. 

Последовательности Фишберна первого порядка представляют собой строго 

монотонные последовательности неотрицательных чисел, удовлетворяющих 

условию нормировки (т. е. сумма всех элементов равна 1). В качестве 

последовательностей, производящих последовательности Фишберна, можно 

использовать, например, прогрессии натуральных чисел (в этом случае 

построенные последовательности Фишберна представляют собой 

соответствующие обобщенные прогрессии Фишберна), числа Фибоначчи, числа 

Мерсенна, числа Евклида, числа Ферма и другие известные последовательности 

натуральных чисел. 

Последовательности Фишберна второго порядка представляют собой 

нестрого монотонные последовательности неотрицательных чисел, 

удовлетворяющих условию нормировки. Последовательности Фишберна второго 

порядка удобно использовать как оценку вектора весовых коэффициентов в 

случае смешанной системы предпочтений, когда с точки зрения лица, 

принимающего решения, значимость рассматриваемых однородных объектов 

характеризуют, как отношения строгого предпочтения, так и отношения 

безразличия. 
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Выбирая последовательность Фишберна, обладающую желаемыми 

свойствами, ЛПР может ограничиться рассмотрением или обобщенных 

прогрессий Фишберна, обладающих желаемыми свойствами, или 

последовательностей Фишберна второго порядка, производящие 

последовательности которых являются обобщенными прогрессиями Фишберна, 

обладающими желаемыми свойствами. 

Разумеется, в качестве последовательностей, производящих 

последовательности Фишберна, можно использовать не только прогрессии 

натуральных чисел (в этом случае построенные последовательности Фишберна 

представляют собой соответствующие обобщенные прогрессии Фишберна), но и 

числа Фибоначчи, числа Мерсенна, числа Евклида, числа Ферма и другие 

известные числовые последовательности. 

Оценив вектор весовых коэффициентов, необходимо найти 

соответствующую оценку ряда бинарных отношений приоритета для того, чтобы 

выполнить проверку соответствия этих векторов представлениям ЛПР о 

значениях попарных сравнений приоритетности рассматриваемых объектов. 

Таким образом, в качестве оценки вектора весовых коэффициентов можно 

использовать последовательности Фишберна. Одним из важнейших свойств 

последовательностей Фишберна является то, что они всегда удовлетворяют 

простому линейному отношению порядка, а при определенных условиях и 

частично усиленному линейному отношению порядка. Введенное понятие 

последовательностей Фишберна второго порядка позволяет построить оценку 

вектора весовых коэффициентов в случае смешанной системы предпочтений, 

когда с точки зрения ЛПР, значимость частных критериев характеризуют, как 

отношения строгого предпочтения, так и отношения безразличия. Разработанный 

метод оценки вектора весовых коэффициентов позволяет учесть субъективные 

предпочтения ЛПР, а в случае решения задачи многокритериальной оптимизации 

на основе оптимизации линейной функции свертки критериев, т. е. скалярного 

критерия оптимальности, представляющего собой аддитивную функцию 

полезности ЛПР, позволяет построить функцию свертки критериев, адекватно 
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отражающую структуру предпочтений ЛПР, принять управленческое решение, 

учитывающее неопределенность и экономический риск. Последовательности 

Фишберна можно также применять для оценки весовых коэффициентов 

значимости, например, в алгоритме нечеткой кластеризации, предложенном 

А. Л. Бекларяном, А. С. Акоповым и описанном в работе А. С. Акопова, 

Н. К. Хачатряна [5,с.41–42]. 

Краткие выводы к главе 2. Формулы Фишберна в работах А. В. Сигала 

расширены понятием обобщенные прогрессии Фишберна. Обобщенные 

прогрессии Фишберна можно применять, например, для оценки неизвестных 

значений вероятностей состояний экономической среды или для оценки 

неизвестных значений весовых коэффициентов, если для этих неизвестных 

значений задано соответствующее отношение порядка, при этом лицо, 

принимающее решения, выбирает такие значения параметров прогрессии, для 

которых полученная обобщенная прогрессия Фишберна будет задавать 

последовательность, являющуюся, с точки зрения лица, принимающего решения, 

наиболее характерной для имеющей место ситуации. Наиболее важными 

являются следующие два критерия. Во-первых, удовлетворяет ли 

рассматриваемая обобщенная прогрессия Фишберна соответствующему 

линейному отношению порядка. Во-вторых, удовлетворяет ли рассматриваемая 

обобщенная прогрессия Фишберна принципу Гиббса–Джейнса максимума 

энтропии. На множестве всех обобщенных геометрических прогрессий 

Фишберна, удовлетворяющих частично усиленному линейному отношению 

порядка, впервые доказана теорема о максимизации значения энтропии Шеннона. 

Рассмотрение возможности расширения понятия обобщенные прогрессии 

Фишберна привели к введению новых понятий: последовательность Фишберна и 

последовательность, производящая последовательность Фишберна. Например, к 

случаям, когда целесообразно применять последовательности Фишберна, 

удовлетворяющие частично усиленному линейному отношению порядка, можно 

отнести ситуации, когда в качестве статистических данных используются 

динамические ряды, а сами динамические изменения характеризуются быстрыми 
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темпами. К таким случаям можно отнести, например, кризисные и предкризисные 

ситуации, ситуации резкого роста национальной экономики или 

соответствующего сектора экономики. Если имеет место смешанная система 

предпочтений, то в качестве оценки вектора весовых коэффициентов приоритета 

удобно использовать соответствующую последовательность Фишберна второго 

порядка. Последовательность Фишберна второго порядка представляет собой 

монотонную (не обязательно строго монотонную) последовательность 

неотрицательных чисел, удовлетворяющих условию нормировки. Основные 

результаты главы отражены в работах соискателя [66, 87, 94, 97, 98]. 
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ГЛАВА 3. ПРИМЕНЕНИЕ ПОСЛЕДОВАТЕЛЬНОСТЕЙ ФИШБЕРНА ДЛЯ 

ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ 

 

3.1. Применение последовательностей Фишберна в современной теории 

портфеля 

 

3.1.1. Классическая модель Марковица 

 

Значения норм прибыли активов зависят от состояния экономической среды 

(рынка). Множество возможных состояний экономической среды может состоять, 

в принципе, из любого количества элементов, в частности оно может быть 

бесконечным (и даже может быть континуумом). Для простоты будем считать его 

конечным. Таким образом, в этом случае СВ, характеризующие нормы прибыли 

активов, представляют собой дискретные случайные величины. 

Введем следующие обозначения: k — количество активов, составляющих 

портфель, x i — доля актива i-го вида в портфеле, x  ( x 1;…; x i;…; x k ) — портфель 

(точнее, его структура), R i — СВ, характеризующая норму прибыли актива i-го 

вида, R x
  




k

i

ii xR
1

 — СВ, характеризующая норму прибыли портфеля x, 

m i
  M ( R i ) и m x

  M ( R x ) — ожидаемые нормы прибыли соответствующего 

актива и портфеля x, т. е. математические ожидания соответствующих СВ, 
2
i

  D ( R i ), 
2
x   D ( R x ) — уровни риска соответствующего актива, портфеля x, т. е. 

дисперсии соответствующих СВ, c i l
  cov ( R i; R l ) — ковариация между 

соответствующими СВ, С  С kk
  ( c i l ) — ковариационная матрица. 

Если закон распределения вероятностей СВ R i, характеризующей норму 

прибыли актива i-го вида, известен полностью, то это означает, что имеет место 

ИС I 1, когда известны точные истинные значения ri j, где ri j — значение нормы 

прибыли актива i-го вида в условиях, когда экономическая среда (фондовый 

рынок) оказалась в своем  j-м возможном состоянии, а также известны точные 
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истинные значения вероятностей q j возможных состояний экономической среды. 

В этом случае значения числовых характеристик всех дискретных СВ R i являются 

известными числами и могут быть вычислены по формулам, хорошо известным 

из теории вероятностей: 

 m i
  M ( R i )

  



n

j

jji qr
1

, i  k,1 ,  (3.1) 

   2

1

22 D i

n

j

jjiiiii mqrcR  


, 2
ii  , i  k,1 , (3.2) 

 c l i
  c i l

  cov ( R i; R l )
  

li

n

j

jjlji mmqrr 
1

, i  1,1 k , l  ki, . (3.3) 

Т. к. для реальных активов точные истинные значения ri j и q j неизвестны, 

то на практике вместо неизвестных значений ri j используют значения норм 

прибыли этих активов, наблюдавшиеся в прошлые периоды времени, а вместо 

значений числовых характеристик (3.1)–(3.3) используют значения 

соответствующих точечных оценок этих числовых характеристик, что, по сути, 

означает использование как оценки распределения вероятностей вектора 











nn

1
;...;

1
q̂ , т. е. 

n
qq n

1
ˆ...ˆ1  

. 

Согласно современной теории портфеля классическая модель Марковица 

задачи поиска эффективного портфеля представляет собой следующую задачу 

двухкритериальной оптимизации: 

 m x
  

x
max

1




k

i

ii xm , (3.4) 

 
x

x min
1 1

2  
 

k

i

k

l

lili xxc , (3.5) 

 


k

i

ix
1

  1, (3.6) 

 x i
  0, i  k,1 . (3.7) 
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Эффективным портфелем в модели Марковица называют портфель, 

структура которого является оптимальным по Парето решением задачи (3.4)–

(3.7). Согласно определению эффективность портфеля означает, что не 

существует другого, допустимого в рассматриваемой модели, портфеля с не 

меньшим значением ожидаемой нормы прибыли и меньшим значением уровня 

экономического риска или с бо́льшим значением ожидаемой нормы прибыли и не 

большим значением уровня экономического риска. 

Эффективность портфеля означает его неулучшаемость, т. е. 

неулучшаемость значений его числовых характеристик. Относительно 

эффективного портфеля любой другой (несовпадающий с ним) портфель имеет 

или большее значение уровня экономического риска, или меньшее значение 

ожидаемой нормы прибыли. Свойство эффективности портфеля можно 

представить в виде наглядной геометрической интерпретации, если в двумерном 

евклидовом пространстве критериев (на критериальной плоскости) m 0   (или 

 0 m) вдоль одной координатной оси откладывать ожидаемую норму прибыли 

активов, а вдоль второй — уровень их экономического риска, измеренный 

значением среднеквадратического отклонения (СКО) соответствующей СВ. 

Множество эффективных портфелей является, как правило, множеством, 

содержащим бесконечно много элементов. Однако множество эффективных 

портфелей — это лишь часть множества допустимых портфелей. Кроме того, 

принимая решение о структуре формируемого им портфеля, инвестор должен 

выбрать среди эффективных портфелей такой портфель, который обладает 

наилучшим с его точки зрения сочетанием значений числовых характеристик: 

ожидаемой нормы прибыли и уровня риска. 

Для поиска оптимальных по Парето решений задачи многокритериальной 

оптимизации ее, как правило, приводят к задаче однокритериальной оптимизации. 

Например, задачу (3.4)–(3.7) приводят к задаче оптимизации функции полезности 

инвестора, которая представляет собой некоторую свертку (выпуклую линейную 

комбинацию) всех критериев, т. е. к задаче максимизации функции полезности, 

имеющей вид     21 xxx  amau , где a — параметр, удовлетворяющий 
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неравенствам 0  a  1. Конкретное числовое значение параметра  задает 

инвестор (ЛПР), при этом выбранное им значение параметра  характеризует его 

отношение к риску, точнее степень его несклонности к риску. 

В случаях, когда с точки зрения инвестора ему нецелесообразно рисковать, 

он должен формировать портфель, обладающий наименьшим уровнем риска. К 

таким случаям можно отнести условия жесткой конкуренции, кризиса, 

предкризисной ситуации и/или случай, когда отношение ЛПР к риску 

характеризуется его существенной несклонностью к риску. При выполнении 

определенных, не слишком жестких, требований портфель, обладающий 

наименьшим уровнем риска, является эффективным портфелем в 

соответствующей модели. 

Чтобы найти структуру x * портфеля, обладающего наименьшим уровнем 

риска в модели Марковица, необходимо решить задачу (3.5)–(3.7). Если инвестор 

ищет структуру портфеля, обладающего наименьшим уровнем риска, то это 

соответствует нулевому значению параметра a в функции полезности  xu  

инвестора (a  0), что означает его абсолютную несклонность к риску. Очевидно, 

числовые характеристики портфеля x *, обладающего наименьшим уровнем риска 

в соответствующей модели, могут быть найдены по формулам 


 
k

i

ii xmm
1

x  и 


 

 
k

i

k

l

lili xxc
1 1

2
x . 

С точки зрения анализа эффективности портфеля, обладающего 

наименьшим уровнем ЭР и найденного теоретико-игровым методом, наиболее 

интересным и сложным является следующий возможный случай: существование 

нескольких различных портфелей, обладающих наименьшим уровнем ЭР 

(разумеется, одним и тем же по своему значению) в соответствующей модели, при 

этом эффективным будет являться только один из них, а именно тот портфель, 

который обладает наибольшим значением ожидаемой нормы прибыли среди всех 

этих портфелей. 

a

a
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Решение задачи выбора структуры портфеля, обладающего заданными 

свойствами, следует начинать с построения множества эффективных 

(неулучшаемых) портфелей. Если каждому портфелю поставить в соответствие 

точку, координатами которой являются его числовые характеристики (значения 

критериев), то геометрической моделью совокупности допустимых портфелей 

является критериальное множество точек на критериальной плоскости m 0  (или 

 0 m), а геометрической моделью совокупности эффективных портфелей — часть 

границы этого множества. 

Сущность подхода к построению геометрической модели множества 

эффективных портфелей состоит в том, что фиксируются значения всех 

количественных показателей (критериев) портфеля, кроме одного, а по 

незафиксированному показателю отыскивается оптимальное значение. 

Г. Марковиц показал, что на критериальной плоскости m 0  (или  0 m), 

множеству эффективных портфелей соответствуют точки, которые принадлежат 

соответствующей части границы множества допустимых портфелей, при этом эта 

граница является непрерывной, выпуклой вниз (рис. 3.1) кривой, состоящей из 

конечного количества дуг гипербол и возможно прямолинейных отрезков. 

На рис. 3.1 приведены следующие геометрические образы: множество 

допустимых портфелей — заштрихованная фигура; «минимальная граница» — 

дуга A 1
 C A k; множество эффективных портфелей — дуга C A k. 

На рис. 3.1 точке A 1 соответствует актив (однородный портфель 

e 1
  ( 1; 0; 0;…; 0 ) ) с числовыми характеристиками m 1,  1, где m 1

  
i

i
mmin , точке 

A k — актив (однородный портфель e k
  ( 0; 0;…; 0; 0; 1 ) ) с числовыми 

характеристиками m k,  k, где m k
  

i
i

mmax , точке C — эффективный портфель x *, 

обладающий наименьшим уровнем экономического риска, с числовыми 

характеристиками 

xm , 

 x , а точке M 0 — эффективный портфель с числовыми 

характеристиками 
0
xm , 

0
x . Указанные числовые характеристики определяют 

значения координат соответствующих точек. 
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Рис. 3.1. Множество допустимых (заштрихованная фигура)  

и множество эффективных (жирная линия) портфелей 

Согласно изображению на рисунке 3.1 для соответствующих числовых 

характеристик выполняются следующие соотношения: 

1minmin  
i

i
x

x
x , 

0
xx  

, 

ki
i

i
i

mmmmmm   maxmin 0
1 xx . 

В [91] сформулированы теоремы, касающиеся вопроса корректности 

применения теоретико-игрового метода поиска эффективного портфеля, а точнее 

портфеля без риска, являющегося эффективным в данной модели. 

Формулировки и доказательства теорем основываются на теории вполне 

смешанных стратегий и вполне смешанных игр (см., например, [20],с.79–83). 

Обозначим J k
  ( 1; 1;…; 1 ) соответствующий вектор размерности 1  k. 

Справедлива следующая теорема о возможности поиска структуры эффективного 

портфеля, основанного на решении АИ. 

Теорема 3.1. Пусть ковариационная матрица С  С kk
  ( c i l ) СВ, 

характеризующих нормы прибылей активов, является положительно 

определенной (см., например, [108,с.155] ), а в АИ CC ,, II  существует 

вполне смешанная ситуация равновесия   qp ; . Тогда АИ  является вполне C
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смешанной игрой, оптимальные стратегии p , q  в АИ C  являются 

единственными и совпадают, при этом совпавшие оптимальные стратегии задают 

эффективный портфель: положительный вектор x *  p *  q *  
T1

1

kk

k

JCJ

CJ









 

является оптимальным решением задачи (3.5)-(3.6), а число 

  Cxx
x

xCx V
T22min  является минимальным значением критерия (3.5), 

где 
T1

1

kk

V
JCJ

C






 — цена АИ C,    xx RD2

 — дисперсия СВ 




 
k

i

ii xRR
1

x , характеризующей норму прибыли портфеля x *, обладающего 

наименьшим уровнем ЭР. 

При соблюдении всех требований теоремы 3.1 задача (3.5)–(3.7) имеет 

единственное решение, которое совпадает с портфелем, обладающим 

наименьшим уровнем ЭР в модели Марковица. Эффективность портфеля 

x *  q *  p * следует из единственности портфеля, обладающего наименьшим 

уровнем ЭР. 

Для классической модели Марковица, т. е. для задачи выбора эффективного 

портфеля в поле ИС I 1, имеются и другие теоретико-игровые методы поиска 

эффективного портфеля. Решение задачи выбора эффективного портфеля может 

быть основано на применении АИ R
   I, J, R , т. е. АИ, заданной матрицей 

R  R kn
  ( ri j ), элементы ri j которой представляют собой значения норм прибыли 

активов. В игре R
   I, J, R  первый игрок — это ЛПР, т. е. инвестор, второй 

игрок — это экономическая среда, т. е. фондовый рынок, чистые стратегии 

первого игрока — это активы, составляющие портфель инвестора, а стратегия p 

первого игрока — это портфель (точнее, структура портфеля). Справедлива 

следующая теорема [91]. 

Теорема 3.2. Пусть в АИ R
   I, J, R , где ri j — значения норм прибыли 

активов, отсутствует седловая точка, а второй игрок имеет вполне смешанную 
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оптимальную стратегию. Тогда оптимальная стратегия p *   **
1 ;...; kpp  первого 

игрока задает эффективный портфель в модели Марковица, а именно портфель 

x *  p * без риска. 

В [97] отмечается несколько особенностей теоремы 3.2. 

Во-первых, если не имеет место вырожденный случай, то необходимым 

условием для выполнения требования теоремы 3.2 является справедливость 

неравенства  (число активов должно быть не меньше числа возможных 

состояний экономической среды). На практике это означает, что число активов 

должно быть не меньше числа наблюдений. 

Во-вторых, теорема 3.2 имеет ряд преимуществ по сравнению с теоремой 

3.1. Так, если ковариационная матрица является вырожденной, то она не является 

положительно определенной матрицей и, как следствие, теорема 3.1 может 

оказаться неприменимой. 

В-третьих, применение теоремы 3.2 не требует знания точных истинных 

законов распределений СВ, характеризующих нормы прибыли активов, и, как 

следствие, не требует знания точных истинных значений числовых характеристик 

этих СВ. Следовательно, если справедливы все требования теоремы 3.2, то 

оптимальная стратегия  **
1;...; kpp

p  первого игрока задает эффективный 

портфель в модели Марковица не только для заданного распределения 

вероятностей состояний экономической среды, но и для любого допустимого 

распределения вероятностей состояний экономической среды. 

В [97] обосновывается эффективности данного портфеля x *  p * без риска. 

Если все требования теоремы 3.2 оказались справедливыми, то произвольный 

портфель, допустимый в модели Марковица, не может доминировать портфель 

x *  p * без риска, а вектор x *  p * является оптимальным по Парето решением 

задачи (3.4)-(3.7), поэтому вектор x *  p * задает эффективный портфель в модели 

Марковица (вообще говоря, для произвольного допустимого распределения q). 

  

nk 
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3.1.2. Обобщенная модель Марковица задачи поиска эффективного портфеля 

 

Обобщенные модели Марковица задачи выбора эффективного портфеля в 

поле третьей ИС [84, 89, 95] представляют собой задачи трехкритериальной 

оптимизации с дополнительными ограничениями для возможных значений 

вероятностей 1q ,…, nq . Обобщенная модель Марковица задачи выбора 

эффективного портфеля в поле третьей ИС может быть приведена к задаче (3.4)-

(3.7) двухкритериальной оптимизации, т. е. к классической модели Марковица. В 

случае обобщенной модели Марковица задачи выбора эффективного портфеля в 

поле третьей ИС для оценки неизвестных значений вероятностей состояний 

экономической среды целесообразно применять формулы Фишберна. 

Если закон распределения вероятностей состояний экономической среды 

неизвестен, но известны некоторые соотношения между вероятностями этих 

состояний, то имеет место третья ИС. 

Модель задачи поиска эффективного портфеля в поле третьей ИС с простым 

линейным отношением порядка имеет следующий вид: 

  
q

q maxln
1

 


n

j

jj qqH , (3.8) 

 
x

x max
1




k

i

ii xmm , (3.9) 

 
x

x min
1 1

2  
 

k

i

k

l

lili xxc , (3.10) 

 1
1




k

i

ix , (3.11) 

 0ix , ki ,1 , (3.12) 

 nqqq  ...21 , (3.13) 

 1
1




n

j

jq , (3.14) 

 0jq , nj ,1 . (3.15) 
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Очевидно, задача (3.8)–(3.15) может быть приведена к двухкритериальной 

задаче (3.4)–(3.7) поиска эффективного портфеля, т. е. к классической модели 

Марковица, на основе использования неубывающих последовательностей 

Фишберна как оценки неизвестного распределения вероятностей, в частности, на 

основе использования неубывающих обобщенных арифметических прогрессий 

Фишберна, при этом в качестве оценок неизвестных значений вероятностей jq  

используются числа jq̂ , найденные по формуле (2.7). 

Модель задачи поиска эффективного портфеля в поле третьей ИС с 

частично усиленным линейным отношением порядка имеет следующий вид: 

  
q

q maxln
1

 


n

j

jj qqH , (3.16) 

 
x

x max
1




k

i

ii xmm , (3.17) 

 
x

x min
1 1

2  
 

k

i

k

l

lili xxc , (3.18) 

 1
1




k

i

ix , (3.19) 

 0ix , ki ,1 , (3.20) 
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
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321
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 (3.21) 

 1
1




n

j

jq , (3.22) 

 0jq , nj ,1 . (3.23) 

Очевидно, задача (3.16)–(3.23) может быть приведена к двухкритериальной 

задаче (3.4)–(3.7) поиска эффективного портфеля, т. е. к классической модели 

Марковица, на основе использования неубывающих последовательностей 
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Фишберна, удовлетворяющих частично усиленному линейному отношению 

порядка, как оценки неизвестного распределения вероятностей, в частности, на 

основе использования неубывающих обобщенных геометрических прогрессий 

Фишберна, удовлетворяющих частично усиленному линейному отношению 

порядка, при этом в качестве оценок неизвестных значений вероятностей jq  

используются числа jq̂ , найденные по формуле (2.9), для которых знаменатель 

геометрической прогрессии удовлетворяет соотношению nx  . 

Итак, в поле третьей ИС, когда на основе вербальной (или статистической) 

информации можно на качественном уровне установить приоритетность 

состояний экономической среды, для приведения трехкритериальной задачи 

поиска эффективного портфеля к классической модели Марковица оценку 

распределения вероятностей состояний экономической среды можно найти на 

основе применения последовательностей Фишберна, в частности, обобщенных 

прогрессий Фишберна. 

Как отмечалось выше, на практике в процессе формирования эффективного 

портфеля используются статистические данные о значениях норм прибыли 

рассматриваемых активов, наблюдавшиеся в прошлые периоды времени. Если 

инвестор считает, что ситуация, сложившаяся в текущий момент времени, 

предшествующий настоящему момент времени, оказывает на нынешнюю 

ситуацию большее влияние, чем ситуация, сложившаяся в момент времени, 

непосредственно предшествующий текущему моменту времени, то это означает, 

что значения значимостей моментов времени подчиняются простому линейному 

отношению порядка, т. е. в этом случае как модель задачи поиска эффективного 

портфеля следует использовать задачу (3.8)–(3.15). А если инвестор считает, что 

ситуация, сложившаяся в текущий момент времени, предшествующий 

настоящему момент времени, оказывает на нынешнюю ситуацию не меньшее 

влияние, чем ситуации, сложившиеся в моменты времени, непосредственно 

предшествующие текущему моменту времени, вместе взятые, то это означает, что 

значения значимостей моментов времени подчиняются частично усиленному 
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линейному отношению порядка, т. е. в этом случае как модель задачи поиска 

эффективного портфеля следует использовать задачу (3.16)–(3.23). 

Окончательный выбор конкретной последовательности Фишберна, 

удовлетворяющей соответствующему отношению порядка, принадлежит лицу, 

принимающему решения: инвестор выбирает такую последовательность 

Фишберна, которая с его субъективной точки зрения (согласно его 

предпочтениям, имеющейся у него информации, его профессиональной 

квалификации, компетентности, опыта и интуиции) наилучшим образом 

соответствует имеющей место ситуации. 

 

3.1.3. Модельные ситуации принятия решений о формировании 

эффективного портфеля в поле третьей ИС 

 

3.1.3.1. Рассмотрим следующую модельную ситуацию принятия решений о 

формировании эффективного портфеля. Имеются результаты наблюдений норм 

прибылей активов 2k  видов за 4n  периода: 

   






 
 

79,1874,1356,4588,16

95,2281,1329,456,27
42 jirRR . (3.24) 

Построить на критериальной плоскости m0  геометрические места точек, 

соответствующие допустимым и эффективным портфелям, для случаев, когда в 

качестве оценки распределения вероятностей состояний экономической среды 

(фондового рынка) используются последовательности Фишберна, приведенные в 

таблице 2.8. 

Приведенная модельная ситуация принятия решений о формировании 

эффективного портфеля была кратко разобрана в статье [83], а затем — детально 

в работе [63]. 

Очевидно, вид и множества всех портфелей, допустимых в модели 

Марковица, и множества всех эффективных портфелей, допустимых в этой 

модели, зависит от используемой оценки распределения вероятностей состояний 

экономической среды. Для выявления существенности этой зависимости 
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рассмотрим семь последовательностей Фишберна, приведенных в таблице 2.8. 

Напомним, в первом случае будет рассмотрен равномерный закон распределения 

вероятностей, характеризующийся равными значениями вероятностей реализаций 

состояний экономической среды за все периоды. Далее будут рассмотрены 

законы распределения вероятностей, для которых бо́льшие значения вероятностей 

имеют более поздние периоды; причем в первых пяти случаях это различие 

окажется не столь заметным, а в последних двух случаях приоритет последнего 

периода окажется резко выраженным. 

Далее применим различные последовательности Фишберна, изображая на 

критериальной плоскости фигуры, соответствующие портфелям, допустимым в 

модели Марковица. 

Итак, для первой последовательности Фишберна из таблицы 2.8 имеем 

статистические данные, приведенные в следующей таблице. 

Таблица 3.1 

Наблюдавшиеся значения норм прибылей активов и оценка распределения 

 последовательностью Фишберна, производящая  

последовательность которой — константа 

                       периоды 

показатели 

1 2 3 4 

jr1  27,56 – 4,29 13,81 22,95 

jr2  16,88 45,56 13,74 18,79 

jq̂  0,25 0,25 0,25 0,25 

СКО соответствующих СВ, характеризующих нормы прибыли 

рассматриваемых активов, ожидаемые нормы прибыли этих активов, ковариация 

между соответствующими СВ, характеризующими нормы прибыли 

рассматриваемых активов, и соответствующий коэффициент парной корреляции в 

этом случае равны 19,121   %, 72,122   %, 01,151 m  %, 74,232 m  %, 

6305,13321 c  и 8614,021  . Эти значения числовых характеристик 

позволяют найти следующую структуру портфеля, обладающего наименьшим 

уровнем экономического риска:    4885,0;5115,01;   xxx . СКО этого 
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портфеля равно 28,3
x  %, а его ожидаемая норма прибыли составляет 

27,19
xm  %, при этом множество всех эффективных портфелей представляет 

собой следующее множество: 

  5115,001;эфф.
1  xxxxX x . 

На критериальной плоскости m0  каждый раз будем отмечать три точки: 

точки  11; mA  ,  22; mB  , соответствующие однородным портфелям  0;11 e

,  1;02 e , а также точку   mC ; , соответствующую портфелю 

   xx 1;x , обладающему наименьшим уровнем ЭР. Заметим, что для всех 

семи случаев структура портфеля    xx 1;x , обладающего наименьшим 

уровнем ЭР, может быть найдена как решение КАИ CC ,, II , заданной 

ковариационной матрицей 

 

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


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212

21
2
1

22
c

c
c liCC , 

которая каждый раз удовлетворяет всем требованиям теоремы 3.1. 

Решим КАИ CC ,, II , заданной ковариационной матрицей 
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


 

9186,1616305,133

6305,1336190,148
2
212

21
2
1

22
c

c
c liCC . 

Убедимся, что для полученной ковариационной матрицы справедливы все 

требования теоремы 3.1. Главные миноры этой матрицы удовлетворяют 

соотношениям 06190,1481111  c ,    12212211det ccccC   

    00699,62076305,1336305,1339186,1616190,148  , поэтому согласно 

критерию Сильвестра (см., например, [108, с. 155-156] ), рассматриваемая 

ковариационная матрица СВ, характеризующих нормы прибылей активов и 

заданных таблицей 3.1, является положительно определенной. В КАИ 

CC ,, II  существует вполне смешанная ситуация равновесия  
qp ; , для 

которой 
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T
2

1
2

1
2

JCJ

CJ
pqx









 , 

где 





 

22122111

1222

111
cccc

cc
pqx  

 
   

05115,0
7986,577

5491,295

9186,1616305,1336305,1336190,148

6305,1339186,161





 , 

4885,05115,011 1222   xpqx , 

при этом цена этой игры равна 

7426,10
7986,577

0699,62071

22122111
T
2

1
2

2 












cccc
V

JCJ
Cx . 

Итак, все требования КАИ CC ,, II  выполняются, следовательно, эта 

игра является вполне смешанной игрой, оптимальные стратегии p , q  в КАИ C  

являются единственными и совпадают, при этом совпавшие оптимальные 

стратегии задают структуру эффективного портфеля, обладающего наименьшим 

уровнем ЭР: вектор  4885,0;5115,0 
pqx , при этом число 

7426,10min
T22  

Cxx
x

xCx V  является минимальным значением 

критерия (3.5), откуда получаем 28,37426,10 
x  % и 

27,194885,074,235115,001,152211   xmxmmx  %. 

Таким образом, в этом случае    4885,0;5115,01;   xxx  — 

структура портфеля, обладающего наименьшим уровнем ЭР, при этом указанные 

три точки имеют на плоскости m0  координаты:    01,15;19,12; 11  mA , 

   74,23;72,12; 22  mB ,    27,19;28,3;   mC . Таким образом, для этого 

случая получаем следующий чертеж: 
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Рис. 3.2. Допустимые (гипербола BCA ) и эффективные (дуга BC   

этой гиперболы) портфели для оценки распределения вероятностей  

последовательностью Фишберна, производящая последовательность  

которой — константа 

Для второй последовательности Фишберна из таблицы 2.8 имеем 

статистические данные, приведенные в следующей таблице. 

Таблица 3.2 

Наблюдавшиеся значения норм прибылей активов и оценка распределения 

 последовательностью Фишберна, производящая  

последовательность которой — первые натуральные числа 

                     периоды 

показатели 

1 2 3 4 

jr1  27,56 – 4,29 13,81 22,95 

jr2  16,88 45,56 13,74 18,79 

jq̂  0,1 0,2 0,3 0,4 

СКО соответствующих СВ, характеризующих нормы прибыли 

рассматриваемых активов, ожидаемые нормы прибыли этих активов, ковариация 

между соответствующими СВ и коэффициент парной корреляции в этом случае 

равны 76,101   %, 75,112   %, 22,151 m  %, 44,222 m  %, 6810,10421 c  и 

8278,021  . Эти значения числовых характеристик позволяют найти 

следующую структуру портфеля, обладающего наименьшим уровнем 

экономического риска:    4761,0;5239,01;   xxx . СКО этого портфеля 
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равно 30,3
x  %, а его ожидаемая норма прибыли составляет 66,18

xm  %, при 

этом множество всех эффективных портфелей представляет собой следующее 

множество: 

  5239,001;эфф.
2  xxxxX x . 

Следовательно, указанные три точки имеют на плоскости m0  координаты: 

   22,15;76,10; 11  mA ,    44,22;75,11; 22  mB ,    66,18;30,3;   mC . 

Таким образом, для этого случая получаем следующий чертеж: 

 

Рис. 3.3. Допустимые (гипербола BCA ) и эффективные (дуга BC   

этой гиперболы) портфелей для оценки распределения вероятностей  

последовательностью Фишберна, производящая последовательность  

которой — первые натуральные числа 

Для третьей последовательности Фишберна из таблицы 2.8 имеем 

статистические данные, приведенные в следующей таблице. 

Таблица 3.3 

Наблюдавшиеся значения норм прибылей активов и оценка распределения 

 последовательностью Фишберна, производящая  

последовательность которой — первые числа Фибоначчи 

                     периоды 

показатели 

1 2 3 4 

jr1  27,56 – 4,29 13,81 22,95 

jr2  16,88 45,56 13,74 18,79 

jq̂  
7

1
 

7

1
 

7

2
 

7

3
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СКО соответствующих СВ, характеризующих нормы прибыли 

рассматриваемых активов, ожидаемые нормы прибыли этих активов, ковариация 

между соответствующими СВ и коэффициент парной корреляции в этом случае 

равны 84,91   %, 28,102   %, 11,171 m  %, 90,222 m  %, 9206,7921 c  и 

7821,021  . Эти значения числовых характеристик позволяют найти 

следующую структуру портфеля, обладающего наименьшим уровнем 

экономического риска:    4904,0;5096,01;   xxx . СКО этого портфеля 

равно 34,3
x  %, а его ожидаемая норма прибыли составляет 97,18

xm  %, при 

этом множество всех эффективных портфелей представляет собой следующее 

множество: 

  5096,001;эфф.
3  xxxxX x . 

Следовательно, указанные три точки имеют на плоскости m0  следующие 

координаты:    11,17;94,9; 11  mA ,    90,22;28,10; 22  mB , 

   97,18;34,3;   mC . Таким образом, для этого случая получаем следующий 

чертеж: 

 

Рис. 3.4. Допустимые (гипербола BCA ) и эффективные (дуга BC  

 этой гиперболы) портфелей для оценки распределения  

последовательностью Фишберна, производящая последовательность  

которой — первые числа Фибоначчи 
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Для четвертой последовательности Фишберна из таблицы 2.8 имеем 

статистические данные, приведенные в следующей таблице. 

Таблица 3.4 

Наблюдавшиеся значения норм прибылей активов и оценка распределения 

 возрастающей обобщенной геометрической прогрессией Фишберна,  

максимизирующей значение энтропии Шеннона 

                     периоды 

показатели 

1 2 3 4 

jr1
 27,56 – 4,29 13,81 22,95 

jr2
 16,88 45,56 13,74 18,79 

jq̂  0,0804 0,1478 0,2718 0,5 

СКО соответствующих СВ, характеризующих нормы прибыли 

рассматриваемых активов, ожидаемые нормы прибыли этих активов, ковариация 

между соответствующими СВ и коэффициент парной корреляции в этом случае 

равны 82,91   %, 36,102   %, 81,161 m  %, 22,212 m  %, 0146,8121 c  и 

7969,021  . Эти значения числовых характеристик позволяют найти 

следующую структуру портфеля, обладающего наименьшим уровнем 

экономического риска:    4852,0;5148,01;   xxx . СКО этого портфеля 

равно 21,3
x  %, а его ожидаемая норма прибыли составляет 95,18

xm  %, при 

этом множество всех эффективных портфелей представляет собой следующее 

множество: 

  5148,001;эфф.
4  xxxxX x . 

Следовательно, указанные три точки имеют на плоскости m0  следующие 

координаты:    81,16;82,9; 11  mA ,    22,21;36,10; 22  mB , 

   95,18;21,3;   mC . Таким образом, для этого случая получаем следующий 

чертеж: 
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Рис. 3.5. Допустимые (гипербола BCA ) и эффективные (дуга BC   

этой гиперболы) портфели для оценки распределения  

возрастающей обобщенной геометрической прогрессией Фишберна,  

максимизирующей значение энтропии Шеннона 

Для пятой последовательности Фишберна из таблицы 2.8 имеем 

статистические данные, приведенные в следующей таблице. 

Таблица 3.5 

Наблюдавшиеся значения норм прибылей активов и оценка распределения 

 последовательностью Фишберна, производящая  

последовательность которой — первые числа Мерсенна 

                     периоды 

показатели 

1 2 3 4 

jr1  27,56 – 4,29 13,81 22,95 

jr2  16,88 45,56 13,74 18,79 

jq̂  
26

1
 

26

3
 

26

7
 

26

15
 

СКО соответствующих СВ, характеризующих нормы прибыли 

рассматриваемых активов, ожидаемые нормы прибыли этих активов, ковариация 

между соответствующими СВ и коэффициент парной корреляции в этом случае 

равны 92,81   %, 32,92   %,, 52,171 m  %, 45,202 m  %, 0668,6321 c  и 

7586,021  . Эти значения числовых характеристик позволяют найти структуру 

портфеля, обладающего наименьшим уровнем экономического риска: 

   4872,0;5128,01;   xxx . СКО этого портфеля равно 17,3
x  %, а его 
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ожидаемая норма прибыли составляет 95,18
xm  %, при этом множество всех 

эффективных портфелей представляет собой следующее множество: 

  5128,001;эфф.
5  xxxxX x . 

 

Рис. 3.6. Допустимые (гипербола BCA ) и эффективные (дуга BC  

 этой гиперболы) портфелей для оценки распределения  

последовательностью Фишберна, производящая последовательность  

которой — первые числа Мерсенна 

Следовательно, указанные три точки имеют на плоскости m0  следующие 

координаты:    52,17;92,8; 11  mA ,    45,20;32,9; 22  mB , 

   95,18;17,3;   mC . Таким образом, для этого случая получаем следующий 

чертеж (рис.3.6). 

Для шестой последовательности Фишберна из таблицы 2.8 имеем 

статистические данные, приведенные в таблице 3.6. 

Таблица 3.6 

Наблюдавшиеся значения норм прибылей активов и оценка распределения 

 последовательностью Фишберна, производящая  

последовательность которой — первые числа Евклида 

                     периоды 

показатели 

1 2 3 4 

jr1  27,56 – 4,29 13,81 22,95 

jr2  16,88 45,56 13,74 18,79 

jq̂  
55

2
 

55

3
 

55

7
 

55

43
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СКО соответствующих СВ, характеризующих нормы прибыли 

рассматриваемых активов, ожидаемые нормы прибыли этих активов, ковариация 

между соответствующими СВ и коэффициент парной корреляции в этом случае 

равны 76,61   %, 47,62   %, 47,201 m  %, 54,192 m  %, 3649,3221 c  и 

7394,021  . Эти значения числовых характеристик позволяют найти 

следующую структуру портфеля, обладающего наименьшим уровнем 

экономического риска:    5125,0;4875,01;   xxx . СКО этого портфеля 

равно 39,2
x  %, а его ожидаемая норма прибыли составляет 99,19

xm  %, при 

этом множество всех эффективных портфелей представляет собой следующее 

множество: 

  14875,01;эфф.
6   xxxxX x . 

Следовательно, указанные три точки имеют на плоскости m0  следующие 

координаты:    47,20;76,6; 11  mA ,    54,19;47,6; 22  mB , 

   99,19;39,2;   mC . Таким образом, для этого случая получаем следующий 

чертеж: 

 

Рис. 3.7. Допустимые (гипербола ACB ) и эффективные (дуга AC  

 этой гиперболы) портфели для оценки распределения  

последовательностью Фишберна, производящая последовательность  

которой — первые числа Евклида 
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Для седьмой последовательности Фишберна из таблицы 2.8 имеем 

статистические данные, приведенные в следующей таблице 

Таблица 3.7 

Наблюдавшиеся значения норм прибылей активов и оценка распределения 

 последовательностью Фишберна, производящая  

последовательность которой — первые числа Ферма 

                     периоды 

показатели 

1 2 3 4 

jr1
 27,56 – 4,29 13,81 22,95 

jr2
 16,88 45,56 13,74 18,79 

jq̂  
282

3
 

282

5
 

282

17
 

282

257
 

СКО соответствующих СВ, характеризующих нормы прибыли 

рассматриваемых активов, ожидаемые нормы прибыли этих активов, ковариация 

между соответствующими СВ и коэффициент парной корреляции в этом случае 

равны 18,41   %, 78,32   %, 97,211 m  %, 94,182 m  %, 0927,1021 c  и 

6398,021  . Эти значения числовых характеристик позволяют найти 

следующую структуру портфеля, обладающего наименьшим уровнем 

экономического риска:    5307,0;4693,01;   xxx . СКО этого портфеля 

равно 68,1
x  %, а его ожидаемая норма прибыли составляет 36,20

xm  %, при 

этом множество всех эффективных портфелей представляет собой следующее 

множество: 

  14693,01;эфф.
7   xxxxX x . 

Следовательно, указанные три точки имеют на плоскости m0  следующие 

координаты:    97,21;18,4; 11  mA ,    94,18;78,3; 22  mB , 

   36,20;68,1;   mC . Таким образом, для этого случая получаем следующий 

чертеж: 
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Рис. 3.8. Допустимые (гипербола B C A) и эффективные (дуга C A 

 этой гиперболы) портфели для оценки распределения  

последовательностью Фишберна, производящая последовательность  

которой — первые числа Ферма 

Для наглядности полученные результаты соберем все вместе в таблице 3.8 

(значения доли первого актива указаны с точностью до 0,0001, а всех остальных 

параметров — с точностью до 0,01). 

Таблица 3.8 

Результаты расчетов для портфелей из двух активов 

№ 

п/п 
 

Координаты точек 
x  Множество эффективных портфелей 

A B C 

1.  
 12,19 12,72 3,28 

0,5115   5115,001;эфф.
1  xxxxX x  

m 15,01 23,74 19,27 

2.  
 10,76 11,75 3,30 

0,5239   5239,001;эфф.
2  xxxxX x  

m 15,22 22,44 18,66 

3.  
 9,94 10,28 3,34 

0,5096   5096,001;эфф.
3  xxxxX x  

m 17,11 20,90 18,97 

4.  
 9,82 10,36 3,21 

0,5148   5148,001;эфф.
4  xxxxX x  

m 16,81 21,22 18,95 

5.  
 8,92 9,32 3,17 

0,5128   5128,001;эфф.
5  xxxxX x  

m 17,52 20,45 18,95 

6.  
 6,76 6,47 2,39 

0,4875   14875,01;эфф.
6   xxxxX x  

m 20,47 19,54 19,99 

7.  
 4,18 3,78 1,68 

0,4693   14693,01;эфф.
7   xxxxX x  

m 21,97 18,94 20,36 
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Очевидно, включения множеств XX i эфф.
, 7,1i  справедливы для всех 

рассмотренных случаев (разумеется, такие включения справедливы всегда), но 

найденные в последних двух случаях, когда как производящая 

последовательность использовалась последовательность чисел Евклида и Ферма, 

соответственно, множества всех эффективных портфелей кардинально 

отличаются (по своей структуре) от множеств всех эффективных портфелей, 

найденных в первых пяти случаях. В первых пяти случаях найденные множества 

всех эффективных портфелей имеют общий вид:    xxxxX 01;эфф.
x , 

где 5,0x , а в последних двух случаях найденные множества всех эффективных 

портфелей имеют совершенно другой общий вид:  

  11;эфф.   xxxxX x , где 5,0x . 

3.1.3.2. Рассмотрим еще одну модельную ситуацию. Имеются результаты 

наблюдений норм прибылей активов 6k  видов за 4n  периода: 

  



































 

57,2867,600,5067,16

70,886,4233,719,40

79,1874,1356,4588,16

95,2281,1329,456,27

34,3167,1165,1700,2

44,289,700,567,6

46 jirRR . (3.25) 

Построить на критериальной плоскости m0  геометрические места точек, 

соответствующие допустимым и эффективным портфелям, для случаев, когда в 

качестве оценки распределения вероятностей состояний экономической среды 

(фондового рынка) используются последовательности Фишберна, приведенные в 

таблице 2.8. 

Здесь законы распределения СВ R i, характеризующих нормы прибыли 

активов, точно неизвестны. Известными являются лишь возможные значения СВ 

R i, заданные элементами i-й строки матрицы (3.25). На самом деле, ri j 

представляют собой выборочные данные, т. е. статистически собранную 

информацию о значениях норм прибыли шести выбранных активов, 
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наблюдавшихся за четыре предшествующих периода. При этом эти значения 

норм прибыли вычислены с точностью до двух знаков после запятой. Без 

значительной потери строгости рассуждений можно считать, что наблюдавшиеся 

числа ri j и являются возможными значениями дискретных СВ iR . Но, для СВ R i 

ряд распределения неизвестен, т.к. неизвестны вероятности P (R i
  ri j), 6,1i , 

4,1j . 

Ситуацию формирования эффективного портфеля характеризует КАИ, 

заданная матрицей (3.25). Вообще говоря, рассматриваемая АИ не может 

интерпретироваться как АИ, моделирующая процесс принятия решений. 

Действительно, здесь нет, и не может быть, противоречия между ЛПР 

(инвестором), с одной стороны, и экономической средой (фондовым рынком), с 

другой стороны. Тем более, нет, и не может быть, противоречия между ЛПР, с 

одной стороны, и портфелем или активами, его составляющими, с другой 

стороны. 

Нижняя и верхняя чистые цены КАИ, заданной матрицей (3.25), равны 

74,13minmaxmax  ji
ji

i
i

r  и 34,31maxminmin  ji
ij

j
j

r , соответственно. 

Седловая точка в данной игре отсутствует, т.к. справедливо строгое неравенство 

  13,74 < 31,34  . Таким образом, КАИ, заданная матрицей (3.25), оказалась 

игрой без седловой точки, поэтому она не имеет решения в чистых стратегиях. 

Решив соответствующую симметричную пару взаимно-двойственных задач 

линейного программирования, найдем оптимальные смешанные стратегии 

игроков и цену данной игры: 









 0;

96932317840

41317668775
;

96932317840

31863120697
;

96932317840

51449413149
;

96932317840

72302115218
;0p  

 0;1901,0;2687,0;2091,0;3321,0;0 , 











96932317840

42863480400
;

96932317840

72419925354
;

96932317840

4905312129
;

96932317840

91158380872
q  

 4131,0;3491,0;0707,0;1671,0 , 602,18
906932317840

91371289566422


RV . 
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Т.к. справедливы строгие неравенства 0
jq , nj ,1 , все чистые стратегии 

второго игрока являются его активными стратегиями, а вектор q* является его 

вполне смешанной оптимальной стратегией. Согласно теореме 3.2 оптимальная 

стратегия  0;1901,0;2687,0;2091,0;3321,0;0
p  первого игрока определяет 

структуру эффективного портфеля x* = p*, обладающего наименьшим уровнем 

риска. При этом для любого допустимого распределения вероятностей на 

множестве возможных состояний экономической среды для дискретной СВ 




 
k

i

ii xRR
1

x  справедливы равенства   



  RVprr
k

i

ijij

1

, nj ,1 , т. е. 

const
11

 







  Rx VpRxRR
k

i

ii

k

i

ii , поэтому 

      0const2  
DDD Rxx VR . 

Модельная ситуация, соответствующая матрице (3.25) подробно разобрана 

в статье Е. С. Ремесник [64], а с точки зрения применения теоретико-игрового 

подхода — в работах А. В. Сигала [84, 91]. Кроме того, в монографии [36,с.125–

128] выполнен сравнительный анализ портфеля, найденного теоретико-игровым 

методом, и портфеля, найденного на основе применения энтропийного подхода, с 

точки зрения управления экономическим риском. Правда, в указанных работах 

А. В. Сигала решена АИ, заданная матрицей, отличающейся от (3.25) 

перестановкой строк. Понятно, что решение КАИ, заданной матрицей (5.35), 

совпадает с решением КАИ, заданной той же матрицей с измененным порядком 

строк, за исключением расположения компонент в векторе, характеризующем 

оптимальную смешанную стратегию первого игрока: числовые значения 

компонент этих векторов совпадают, но расположены они в разных порядках. 

Именно применение теоретико-игрового подхода на основе решения КАИ, 

заданной матрицей (5.25), позволило найти структуру портфеля 

 0;1901,0;2687,0;2091,0;3321,0;0
x  без риска, т. е. портфеля, являющегося 

эффективным портфелем в модели Марковица, при этом этот вектор задает 
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эффективный портфель в обобщенной модели Марковица для любого 

распределения вероятностей состояний экономической среды. 

Искусство принятия управленческих решений в экономике требует от ЛПР 

профессионализма, компетентности и интуиции. Поэтому, ориентируясь на 

найденное решение АИ, характеризующей принятие рассматриваемого 

управленческого решения, ЛПР, вообще говоря, не обязано строго 

придерживаться соответствующей оптимальной стратегии. 

Очевидно, законы распределения вероятностей СВ R i, характеризующих 

нормы прибыли активов, можно оценить. В качестве возможных значений 

дискретной СВ R i, естественно, следует выбрать элементы, расположенные в i-й 

строке матрицы (3.25). Значения оценок вероятностей возможных состояний 

экономической среды (рынка) и, следовательно, оценок соответствующих 

вероятностей P (R i
  ri j) зависят от имеющей место ИС относительно стратегии 

поведения экономической среды. 

Применим различные последовательности Фишберна, изображая на 

критериальной плоскости фигуры, соответствующие портфелям, допустимым в 

модели Марковица. На критериальной плоскости xx m0  эффективному 

портфелю   px  без риска соответствует точка    602,18;0;0  
xx mC , где 

значение ожидаемой нормы прибыли 
xm  СВ, характеризующей норму прибыли 

этого портфеля, указано с точностью до 0,001. 

С учетом результатов соответствующих расчетов получаем на 

критериальной плоскости xx m0  изображения геометрических мест точек, 

соответствующих множествам допустимых и эффективных портфелей, для 

случаев, когда в качестве оценки распределения вероятностей состояний 

экономической среды используются последовательности Фишберна, приведенные 

в таблице 2.8 (рисунки 3.9–3.15). 

Предварительно прокомментируем внешний вид полученных изображений 

геометрических мест точек, соответствующих множествам допустимых 

портфелей. На рисунках 3.9–3.15 на критериальной плоскости xx m0  отмечены 
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восемь точек. Во-первых, отмечены шесть точек  111 ; mA  ,  222 ; mA  ,…, 

 666 ; mA  , соответствующие однородным портфелям  0;0;0;0;0;11 e , 

 0;0;0;0;1;02 e ,…,  1;0;0;0;0;06 e . Расположение на критериальной 

плоскости xx m0  этих шести точек существенно зависит от применяемой оценки 

распределения вероятностей. Во-вторых, отмечены еще две точки на 

вертикальной оси xm0 , характеризующей доход, т. е. ожидаемую норму прибыли: 

точка    602,18;0;0  
xx mC , соответствующая эффективному портфелю в 

обобщенной модели Марковица в поле четвертой ИС для любого распределения 

вероятностей состояний экономической среды, точка  xmC ;01 , 

соответствующая портфелю без риска, обладающему наименьшим значением 

ожидаемой нормы прибыли среди всех безрисковых портфелей. Напомним, что 

точка    602,18;0;0  
xx mC  соответствует портфелю без риска, обладающему 

наибольшим значением ожидаемой нормы прибыли среди всех безрисковых 

портфелей. Отрезок 10CC , расположенный на вертикальной оси xm0 , 

соответствует множеству безрисковых портфелей, при этом расположение 

нижней точки  xmC ;01  этого отрезка зависит от применяемой оценки 

распределения вероятностей, а расположение верхней точки 

   602,18;0;0  
xx mC  этого отрезка остается неизменным и не зависит от 

применяемой оценки распределения вероятностей. Очевидно, для любой оценки 

распределения вероятностей справедливы соотношения 602,18 
xx mm , а для 

рассматриваемых семи оценок распределения вероятностей это неравенство 

выполняется как соответствующее строгое соотношение между 

соответствующими числами: 602,18 
xx mm . 

На рисунках 3.9–3.15 граница геометрических мест точек, соответствующих 

множествам допустимых портфелей, определяется частью отмеченных восьми 

точек и представляет собой совокупность дуг гипербол и отрезка 10CC , 



103 

 

расположенного на вертикальной оси xm0 . Очевидно, геометрические места 

точек, соответствующих множествам эффективных портфелей, определяются 

дугой гиперболы, расположенной на северо-западной части границы 

геометрических мест точек, соответствующих множествам допустимых 

портфелей. При этом точка    602,18;0;0  
xx mC  всегда принадлежит 

геометрическим местам точек, соответствующих множествам эффективных 

портфелей, т. е. северо-западной части границ геометрических мест точек, 

соответствующих множествам допустимых портфелей. 

Таблица 3.9 

Наблюдавшиеся значения норм прибылей активов, значения числовых  

характеристик соответствующих СВ и оценка распределения 

 последовательностью Фишберна, производящая  

последовательность которой — константа 

               периоды 

показатели 

1 2 3 4 im  i  

jr1  6,67 – 5,00 7,89 – 2,44 1,78 5,59 

jr2  2,00 17,65 11,67 31,34 15,67 10,63 

jr3  27,56 – 4,29 13,81 22,95 15,01 12,19 

jr4  16,88 45,56 13,74 18,79 23,74 12,72 

jr5  40,19 7,33 42,86 – 8,70 20,42 21,87 

jr6  – 16,67 50,00 – 6,67 28,57 13,81 26,81 

jq̂  0,25 0,25 0,25 0,25   

В этом случае ковариационная матрица имеет вид: 









































01,71942,49162,28281,23438,20046,145

42,49143,47838,12565,6056,21036,111

62,28238,12592,16163,13385,2442,55

81,23465,6063,13362,14814,2085,37

38,20056,21085,2414,2008,11371,42

46,14536,11142,5585,3771,4226,31

C . 

Найденные значения числовых характеристик и ковариаций позволяют 

найти множество допустимых портфелей. Западную границу данного множества 

можно получить при решении задачи на минимальный риск при заданном 

значении дохода. При этом наименьший уровень риска, в данном случае нулевой, 
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достигается не для одного единственного портфеля (безрисковых портфелей 

континуум). Уточним, что для большей точности чертежей каждый раз на 

множестве эффективных портфелей были найдены координаты точек, 

расположенных на соответствующей линии, на основе решения задачи 

математического программирования     max1 2  xxx amau  при 

условиях 



k

i

ix
1

1, 0ix , ki ,1  для конкретных значений параметра a  [0; 1]. 

Тогда множеству всех эффективных портфелей, являющейся северо-западной 

границей множества допустимых портфелей, соответствует дуга 
40 AC  от точки 

   602,18;0; 000  mC , соответствующей эффективному портфелю 


x , 

найденному теоретико-игровым методом, до точки    74,23;72,12; 444  mA , 

соответствующей однородному портфелю  0;0;1;0;0;04 e  с максимальным 

доходом среди всех однородных портфелей. 

 

Рис. 3.9. Допустимые (область 104561 CCAAAA ) и эффективные (дуга 40 AC  

границы этой области) портфели для оценки распределения вероятностей  

последовательностью Фишберна, производящая последовательность  

которой — константа 

Для второй последовательности Фишберна из таблицы 2.8 имеем 

статистические данные, приведенные в следующей таблице. 
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Таблица 3.10 

Наблюдавшиеся значения норм прибылей активов, значения числовых  

характеристик соответствующих СВ и оценка распределения 

 последовательностью Фишберна, производящая  

последовательность которой — первые натуральные числа 

               периоды 

показатели 

1 2 3 4 im  
i  

jr1
 6,67 – 5,00 7,89 – 2,44 1,06 5,42 

jr2
 2,00 17,65 11,67 31,34 19,77 10,28 

jr3  27,56 – 4,29 13,81 22,95 15,22 10,76 

jr4  16,88 45,56 13,74 18,79 22,44 11,75 

jr5  40,19 7,33 42,86 – 8,70 14,86 23,08 

jr6  – 16,67 50,00 – 6,67 28,57 17,76 23,50 

jq̂  0,1 0,2 0,3 0,4   

В этом случае ковариационная матрица имеет вид: 









































22,55285,44220,21653,12491,15658,123

85,44273,53258,8705,2489,21869,113

20,21658,8703,13868,10433,486,43

53,12405,2468,10485,11554,2586,16

91,15689,21833,454,2571,10519,40

58,12369,11386,4386,1619,4039,29

C . 

 

Рис. 3.10. Допустимые (область 104651 CCAAAA ) и эффективные (дуга 40 AC  

границы этой области) портфели для оценки распределения вероятностей  

последовательностью Фишберна, производящая последовательность  

которой — первые натуральные числа 
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Теперь множеству всех эффективных портфелей, являющейся северо-

западной границей множества допустимых портфелей, соответствует дуга 
40 AC  

от точки    602,18;0; 000  mC , соответствующей эффективному портфелю 


x , 

найденному теоретико-игровым методом, до точки    44,22;75,11; 444  mA , 

соответствующей однородному портфелю  0;0;1;0;0;04 e  с максимальным 

доходом среди всех однородных портфелей. 

Для третьей последовательности Фишберна из таблицы 4.10 имеем 

статистические данные, приведенные в следующей таблице. 

Таблица 3.11 

Наблюдавшиеся значения норм прибылей активов, значения числовых  

характеристик соответствующих СВ и оценка распределения 

 последовательностью Фишберна, производящая  

последовательность которой — первые числа Фибоначчи 

               периоды 

показатели 

1 2 3 4 im  i  

jr1  6,67 – 5,00 7,89 – 2,44 1,45 5,31 

jr2  2,00 17,65 11,67 31,34 19,57 11,04 

jr3  27,56 – 4,29 13,81 22,95 17,11 9,94 

jr4  16,88 45,56 13,74 18,79 20,90 10,28 

jr5  40,19 7,33 42,86 – 8,70 15,31 23,69 

jr6  – 16,67 50,00 – 6,67 28,57 15,10 23,05 

jq̂  
7

1
 

7

1
 

7

2
 

7

3
   

В этом случае ковариационная матрица имеет вид: 









































36,53167,46255,17388,9925,18736,118

67,46245,56105,7753,2456,24363,116

55,17305,7774,10592,7984,838,35

88,9953,2492,7975,9855,1670,11

25,18756,24384,855,1683,12149,45

36,11863,11638,3570,1149,4517,28

C . 

Теперь множеству всех эффективных портфелей, являющейся северо-

западной границей множества допустимых портфелей, соответствует дуга 40 AC  

от точки    602,18;0; 000  mC , соответствующей эффективному портфелю 


x , 
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найденному теоретико-игровым методом, до точки    90,20;28,10; 444  mA , 

соответствующей однородному портфелю  0;0;1;0;0;04 e  с максимальным 

доходом среди всех однородных портфелей. 

 

Рис. 3.11. Допустимые (область 
10451 CCAAA ) и эффективные (дуга 

40 AC  

границы этой области) портфели для оценки распределения вероятностей  

последовательностью Фишберна, производящая последовательность  

которой — первые числа Фибоначчи 

Для четвертой последовательности Фишберна из таблицы 2.8 имеем 

статистические данные, приведенные в следующей таблице. 

Таблица 3.12 

Наблюдавшиеся значения норм прибылей активов, значения числовых  

характеристик соответствующих СВ и оценка распределения 

 возрастающей обобщенной геометрической прогрессией Фишберна,  

максимизирующей значение энтропии Шеннона 

               периоды 

показатели 

1 2 3 4 im  i  

jr1  6,67 – 5,00 7,89 – 2,44 0,72 5,16 

jr2  2,00 17,65 11,67 31,34 21,61 10,36 

jr3  27,56 – 4,29 13,81 22,95 16,81 9,82 

jr4  16,88 45,56 13,74 18,79 21,22 10,36 

jr5  40,19 7,33 42,86 – 8,70 11,61 23,24 

jr6  – 16,67 50,00 – 6,67 28,57 18,52 21,66 

jq̂  0,0804 0,1478 0,2718 0,5   

В этом случае ковариационная матрица имеет вид: 
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







































97,46878,41653,16417,7799,15342,108

78,41607,54023,6480,4978,22528,110

53,16423,6424,10701,8198,039,33

17,7780,4901,8138,9639,3343,7

99,15378,22598,039,3341,10778,40

42,10842,11039,3343,778,4065,26

C . 

Теперь множеству всех эффективных портфелей, являющейся северо-

западной границей множества допустимых портфелей, соответствует дуга 20 AС  

от точки    602,18;0; 000  mC , соответствующей эффективному портфелю 


x , 

найденному теоретико-игровым методом, до точки    61,21;36,10; 222  mA , 

соответствующей однородному портфелю  0;0;0;0;1;02 e  с максимальным 

доходом среди всех однородных портфелей. 

 

Рис. 3.12. Допустимые (область 102651 CCAAAA ) и эффективные (дуга 20 AС  

границы этой области) портфели для оценки распределения вероятностей  

возрастающей обобщенной геометрической прогрессией Фишберна,  

максимизирующей значение энтропии Шеннона 

Для пятой последовательности Фишберна из таблицы 2.8 имеем 

статистические данные, приведенные в следующей таблице. 
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Таблица 3.13 

Наблюдавшиеся значения норм прибылей активов, значения числовых  

характеристик соответствующих СВ и оценка распределения 

 последовательностью Фишберна, производящая  

последовательность которой — первые числа Мерсенна 

               периоды 

показатели 

1 2 3 4 im  
i  

jr1
 6,67 – 5,00 7,89 – 2,44 0,40 4,96 

jr2
 2,00 17,65 11,67 31,34 23,34 9,74 

jr3  27,56 – 4,29 13,81 22,95 17,52 8,92 

jr4  16,88 45,56 13,74 18,79 20,45 9,32 

jr5  40,19 7,33 42,86 – 8,70 8,91 22,96 

jr6  – 16,67 50,00 – 6,67 28,57 19,82 19,73 

jq̂  
26

1
 

26

3
 

26

7
 

26

15
   

В этом случае ковариационная матрица имеет вид: 









































40,38943,38093,13117,3675,13336,95

43,38015,52734,5302,7358,21284,105

93,13134,5395,8607,6313,032,27

17,3602,7307,6348,7980,4237,0

75,13358,21213,080,4284,9424,38

36,9584,10532,2737,024,3863,24

C . 

Теперь множеству всех эффективных портфелей, являющейся северо-

западной границей множества допустимых портфелей, соответствует дуга 20 AС  

от точки    602,18;0; 000  mC , соответствующей эффективному портфелю 


x , 

найденному теоретико-игровым методом, до точки    34,23;74,9; 222  mA , 

соответствующей однородному портфелю  0;0;0;0;1;02 e  с максимальным 

доходом среди всех однородных портфелей. 
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Рис. 3.13. Допустимые (область 
102651 CCAAAA ) и эффективные (дуга 

20 AC  

границы этой области) портфели для оценки распределения вероятностей  

последовательностью Фишберна, производящая последовательность  

которой — первые числа Мерсенна 

Для шестой последовательности Фишберна из таблицы 4.10 имеем 

статистические данные, приведенные в следующей таблице. 

Таблица 3.14 

Наблюдавшиеся значения норм прибылей активов, значения числовых  

характеристик соответствующих СВ и оценка распределения 

 последовательностью Фишберна, производящая  

последовательность которой — первые числа Евклида 

               периоды 

показатели 

1 2 3 4 im  i  

jr1  6,67 – 5,00 7,89 – 2,44 – 0,93 3,83 

jr2  2,00 17,65 11,67 31,34 27,02 8,49 

jr3  27,56 – 4,29 13,81 22,95 20,47 6,76 

jr4  16,88 45,56 13,74 18,79 19,54 6,47 

jr5  40,19 7,33 42,86 – 8,70 0,51 18,82 

jr6  – 16,67 50,00 – 6,67 28,57 23,61 15,26 

jq̂  
55

2
 

55

3
 

55

7
 

55

43
   

В этом случае ковариационная матрица имеет вид: 
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







































91,23223,24779,6074,1007,9984,56

23,24738,35402,2074,5243,15386,67

79,6002,2091,4136,3208,214,12

74,1074,5236,3272,4559,2795,2

07,9943,15308,259,2713,7217,27

84,5686,6714,1295,217,2769,14

C . 

Теперь множеству всех эффективных портфелей, являющейся северо-

западной границей множества допустимых портфелей, соответствует дуга 20 AС  

от точки    602,18;0; 000  mC , соответствующей эффективному портфелю 


x , 

найденному теоретико-игровым методом, до точки    02,27;49,8; 222  mA , 

соответствующей однородному портфелю  0;0;0;0;1;02 e  с максимальным 

доходом среди всех однородных портфелей. 

 

Рис. 3.14. Допустимые (область 102651 CCAAAA ) и эффективные (дуга 20 AС  

границы этой области) портфели для оценки распределения вероятностей  

последовательностью Фишберна, производящая последовательность  

которой — первые числа Евклида 

Для седьмой последовательности Фишберна из таблицы 2.8 имеем 

статистические данные, приведенные в следующей таблице 
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Таблица 3.15 

Наблюдавшиеся значения норм прибылей активов, значения числовых  

характеристик соответствующих СВ и оценка распределения 

 последовательностью Фишберна, производящая  

последовательность которой — первые числа Ферма 

               периоды 

показатели 

1 2 3 4 im  
i  

jr1
 6,67 – 5,00 7,89 – 2,44 – 1,77 2,64 

jr2
 2,00 17,65 11,67 31,34 29,60 5,72 

jr3  27,56 – 4,29 13,81 22,95 21,97 4,18 

jr4  16,88 45,56 13,74 18,79 18,94 3,78 

jr5  40,19 7,33 42,86 – 8,70 – 4,79 13,23 

jr6  – 16,67 50,00 – 6,67 28,57 26,34 9,99 

jq̂  
282

3
 

282

5
 

282

17
 

282

257
   

В этом случае ковариационная матрица имеет вид: 









































83,9926,11815,2266,483,4680,25

26,11894,17467,990,2948,7348,33

15,2267,926,1409,1035,065,4

66,490,2909,1045,1730,1434,3

83,4648,7335,030,1478,3230,13

80,2548,3365,434,330,1398,6

C . 

Теперь множеству всех эффективных портфелей, являющейся северо-

западной границей множества допустимых портфелей, соответствует дуга 20 AС  

от точки    602,18;0; 000  mC , соответствующей эффективному портфелю 


x , 

найденному теоретико-игровым методом, до точки    60,29;72,5; 222  mA , 

соответствующей однородному портфелю  0;0;0;0;1;02 e  с максимальным 

доходом среди всех однородных портфелей. 
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Рис. 3.15. Допустимые (область 
10265 CCAAA ) и эффективные (дуга 20 AС  

границы этой области) портфели для оценки распределения вероятностей  

последовательностью Фишберна, производящая последовательность  

которой — первые числа Ферма 

Модельные ситуации, рассмотренные в подпунктах 3.1.3.1 и 3.1.3.2, 

позволяют прийти к следующим выводам. 

Во-первых, используемая оценка распределения вероятностей состояний 

экономической среды (фондового рынка) может существенно влиять на значения 

числовых характеристик активов и портфелей, а также на расположение на 

критериальной плоскости точек, соответствующих однородным портфелям. 

Во-вторых, используемая оценка распределения вероятностей состояний 

экономической среды (фондового рынка) при выполнении определенных условий 

не влияет на структуру портфеля без риска с наибольшей доходностью среди всех 

безрисковых портфелей (для случая, если портфелей без риска более одного), а 

также на расположение на критериальной плоскости точки, соответствующей 

портфелю без риска с наибольшей доходностью (для случая, если портфелей без 

риска более одного). 

В-третьих, используемая оценка распределения вероятностей состояний 

экономической среды (фондового рынка) может существенно влиять на вид 

множества эффективных портфелей и геометрического места точек 

критериальной плоскости, соответствующих множеству эффективных портфелей. 
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В-четвертых, выбор оценки распределения вероятностей состояний 

экономической среды (фондового рынка) должно осуществлять ЛПР на основе 

имеющейся в его распоряжении информации, его опыта, компетентности и 

профессиональной интуиции. Если ЛПР ориентируется на минимальный риск, а 

эффективный портфель без риска может быть найден теоретико-игровым 

методом, то оценка состояния экономической среды не оказывает влияния на 

структуру данного портфеля. Окончательный выбор оценки распределения 

вероятностей состояний экономической среды (фондового рынка), которую 

следует использовать для принятия портфельных решений, зависит от мнения 

ЛПР о том, какой системе ограничений должны удовлетворять неизвестные 

значения вероятностей состояний экономической среды (фондового рынка), на 

практике значения значимости предшествующих периодов времени для 

настоящего момента времени. В частности, выбор оценки распределения 

вероятностей состояний экономической среды (фондового рынка) зависит от того, 

считает ли ЛПР, что неизвестные значения вероятностей состояний 

экономической среды (фондового рынка) должны удовлетворять лишь простому 

линейному отношению порядка, или эти значения вероятностей должны 

удовлетворять еще и частично усиленному линейному отношению порядка. 

Разобранные модельные ситуации принятия решений о формировании 

эффективного портфеля свидетельствует, что ситуации принятия решений о 

формировании эффективного портфеля характеризует статистическая игра 

[112,с.9–14]. Это означает, что в ситуациях принятия решений о формировании 

эффективного портфеля целесообразно применять модели теоретико-игрового 

принятия решений. Абрахам Вальд, основоположник последовательного анализа 

[15], основной моделью теоретико-игрового принятия решений считал 

статическую модель принятия решений, которая, собственно, и является 

статистической игрой. При решении статистической игры важно корректно 

оценить распределение априорных вероятностей состояний «природы», т. е. 

экономической среды. Для корректной оценки распределения априорных 

вероятностей целесообразно применять последовательности Фишберна. Кроме 
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того, в ситуациях принятия решений о формировании эффективного портфеля 

целесообразно применять концепцию комбинированного применения 

статистических и антагонистических игр подобно подходу, изложенному в статье 

А. В. Сигала [91]. Наиболее полно концепция комбинированного применения 

статистических и антагонистических игр изложена в монографии А. В. Сигал 

[102]. 

 

3.2. Применение последовательностей Фишберна в нечетком когнитивном 

моделировании 

 

Рассмотрим математическую модель риска банкротства предприятия, 

составленную на основании НКМ [2,с.78], называемую BR-моделью (от Bankruptcy 

Risk): 

 ;; LGBR . 

Здесь G — древовидная иерархия факторов, показатели которых характеризуют 

риск банкротства, причем сама эта иерархия описана ориентированным графом с 

одной корневой вершиной. Кроме того, в границах одного уровня иерархии граф 

не содержит петель, циклов, горизонтальных ребер. L — набор качественных 

оценок уровней каждого фактора в иерархии. Ф — система отношений 

предпочтения между факторами одного уровня иерархии. 

Опишем древовидную иерархию G следующим графом: 

    jii VFG , , (3.26) 

где  iF  — множество вершин факторов,  jiV  — множество дуг. Будем считать, 

что 0F  — это корневая вершина, соответствующая фактору риска предприятия в 

целом. 

В пределах рассматриваемой древовидной иерархии, для получения оценки 

риска банкротства, осуществляется оценка по сгруппированным данным. Для 

получения единого показателя применяется лингвистическая переменная 

«уровень фактора» с терм-множеством значений L: 
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L  {Очень Низкий уровень (ОН), Низкий уровень (Н), Средний уровень (С), 

Высокий уровень (В), Очень Высокий уровень (ОВ)}. 

В качестве семейства функций принадлежности будем использовать 

пятиуровневый 01-классификатор, в котором функции принадлежности — 

трапециевидные нечеткие числа: 

 ОН:    
















,125,0,0

,25,015,0,25,010

,15,00,1

1

x

xx

x

x  (3.27) 

 Н:  

 

 

























,145,0,0

,45,035,0,45,010

,35,025,0,1

,25,015,0,15,010

,15,00,0

2

x

xx

x

xx

x

x  (3.28) 

 С:  

 

 

























,165,0,0

,65,055,0,65,010

,55,045,0,1

,45,035,0,35,010

,35,00,0

3

x

xx

x

xx

x

x  (3.29) 

 В:  

 

 

























,185,0,0

,85,075,0,85,010

,75,065,0,1

,65,055,0,55,010

,55,00,0

4

x

xx

x

xx

x

x  (3.30) 

 ОВ:    
















.185,0,1

,85,075,0,75,010

,75,00,0

3

x

xx

x

x  (3.31) 

В данных формулах x — это 01-носитель (отрезок [0, 1] действительных 

чисел). Стандартный классификатор осуществляет проекцию нечеткого 

лингвистического описания на 01-носитель, делая это непротиворечивым 

способом, узлы классификации (0,1; 0,3; 0,5; 0,7; 0,9) располагаются 

симметрично. Применение классификатора позволяет осуществить переход от 



117 

 

качественного описания уровня параметра к стандартному количественному виду 

соответствующей функции принадлежности. Для вычисления сгруппированного 

показателя операции с функциями принадлежности заменяются на операции с 

соответствующими вершинами (абсциссами вершин трапеции), тогда для 

функций принадлежности (3.27)–(3.31) соответствующие трапециевидные числа 

имеют вид: 

 ОН (0; 0; 0,15; 0,25), (3.32) 

 Н (0,15; 0,25; 0,35; 0,45), (3.33) 

 С (0,35; 0,45; 0,55; 0,65), (3.34) 

 В (0,55; 0,65; 0,75; 0,85), (3.35) 

 ОВ (0,75; 0,85; 1; 1). (3.36) 

Система отношений предпочтения между факторами Ф задается так: 

    , ji FF ,  , (3.37) 

где   — отношение предпочтения,   — отношение усиленного предпочтения, 

 — отношение безразличия. 

Значения весов могут быть получены экспертным путем либо предложены 

ЛПР на основании имеющейся информации. Чаще применяются методы 

сравнения, упорядочивания, так называемые ранговые методы, при которых 

требуется упорядочить факторы с учетом оценки силы связей между ними. 

Рассмотрим также метод усиленного нестрогого ранжирования, при котором 

допускается, что эксперту не удается различить между собой некоторые факторы, 

либо, наоборот, факторы могут значительно различаться, что следует подчеркнуть 

разницей в весовых коэффициентах. Найденные таким образом оценки 

представляют собой последовательности Фишберна второго порядка, подробно 

рассмотренные в разделе 2.3. Для иллюстрации в таблицах 3.1 и 3.2 приведены 

системы весов для последовательностей Фишберна второго порядка (для 

построения которых использовались возрастающая обобщенная арифметическая 

прогрессия Фишберна и последовательность, порожденная числами Ферма) для 

всех смешанных отношений предпочтения при 4,2n . 
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Таблица 3.16 

Системы весов для последовательностей Фишберна второго порядка,  

порожденные возрастающей обобщенной арифметической прогрессией 

Фишберна 

n    1p  2p  3p  4p  

2 

1F  2F  
2

1
 

2

1
 — — 

21 FF   
3

2
 

3

1
 — — 

3 

1F  2F  3F  
3

1
 

3

1
 

3

1
 — 

21 FF   3F  
4

2
 

4

1
 

4

1
 — 

1F  32 FF   
5

2
 

5

2
 

5

1
 — 

321 FFF   
6

3
 

6

2
 

6

1
 — 

4 

1F  2F  3F  4F  
4

1
 

4

1
 

4

1
 

4

1
 

21 FF   3F  4F  
5

2
 

5

1
 

5

1
 

5

1
 

1F  32 FF   4F  
6

2
 

6

2
 

6

1
 

6

1
 

1F  2F  43 FF   
7

2
 

7

2
 

7

2
 

7

1
 

321 FFF   4F  
7

3
 

7

2
 

7

1
 

7

1
 

21 FF   43 FF   
8

3
 

8

2
 

8

2
 

8

1
 

1F  432 FFF   
9

3
 

9

3
 

9

2
 

9

1
 

4321 FFFF   
10

4
 

10

3
 

10

2
 

10

1
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Таблица 3.17 

Системы весов для последовательностей Фишберна второго порядка,  

порожденные числами Ферма 

n    1p  2p  3p  4p  

2 

1F  2F  
6

3
 

6

3
 — — 

21 FF   
8

5
 

8

3
 — — 

3 

1F  2F  3F  
9

3
 

9

3
 

9

3
 — 

21 FF   3F  
11

5
 

11

3
 

11

3
 — 

1F  32 FF   
13

5
 

13

5
 

13

3
 — 

321 FFF   
25

17
 

25

5
 

25

3
 — 

4 

1F  2F  3F  4F  
12

3
 

12

3
 

12

3
 

12

3
 

21 FF   3F  4F  
14

5
 

14

3
 

14

3
 

14

3
 

1F  32 FF   4F  
16

5
 

16

5
 

16

3
 

16

3
 

1F  2F  43 FF   
18

5
 

18

5
 

18

5
 

18

3
 

321 FFF   4F  
28

17
 

28

5
 

28

3
 

28

3
 

21 FF   43 FF   
30

17
 

30

5
 

30

5
 

30

3
 

1F  432 FFF   
42

17
 

42

17
 

42

5
 

42

3
 

4321 FFFF   
282

257
 

282

17
 

282

5
 

282

3
 

Можно найти лингвистическую оценку показателя подуровня F , если по 

каждому фактору iF .  (1,…, n), предшествующего данному подуровню иерархии 

G (3.26), известны лингвистические оценки  nLLL .1. ;...;  , а также определена 

система весов Фишберна  nppP .1. ;...;   на основе системы предпочтений Ф 
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(3.37). Показатель подуровня F  характеризуется своей лингвистической оценкой, 

определяемой функцией принадлежности на 01-носителе x и соответствующим 

трапециевидным числом: 

    


 
n

i

ii pxx
1

. , (3.38) 

где  

  







































.ОВесли,)11.5(

,Весли,)10.5(

,Сесли,)9.5(

,Несли,)8.5(

,ОНесли,)7.5(

.

.

.

.

.

.

i

i

i

i

i

i

L

L

L

L

L

x  (3.39) 

Полученную функцию (3.38) нужно лингвистически распознать, чтобы 

сделать вывод о качественном уровне показателя F . Для этого необходимо 

соотнести функцию принадлежности  x  и функции  xi  вида (3.27)–(3.31). 

Если 

     0,minsup   xx i
x

, 

то уровень показателя F  не распознается как уровень, которому отвечает i-я 

«эталонная» функция принадлежности. Точное распознавание определяется при 

выполнении равенства 

      xxx ii
x

  ,min . 

Для промежуточных оценок определим меру распознавания уровня. В 

качестве такой меры будем использовать одну из наиболее удобных 

разновидностей нормы Хэмминга d. Степень сходства двух трапециевидных 

чисел  4321 ,,, aaaa  и  4321 ,,, bbbb  на 01-носителе будем определять 

следующим образом: 

   1,,,max10 44332211  babababad . (3.40) 
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Пройдя последовательно по всем уровням иерархии G, на выходе получаем 

функцию принадлежности показателя 0F  и его лингвистическую интерпретацию, 

дополненную оценкой степени надежности (3.40). 

Лингвистическая переменная «Степень риска банкротства предприятия» 

сопоставляется с лингвистической переменной «Уровень фактора 0F » (см. 

таблицу 3.18). Кроме того, лингвистическая переменная «Степень риска 

банкротства предприятия» также может быть описана стандартным 

пятиуровневым 01-классификатором. 

Таблица 3.18 

Соответствие лингвистических переменных 

n терм-

множества 
Уровень фактора 0F  Степень риска банкротства предприятия 

1 ОН Запредельная (очень высокая) 

2 Н Опасная (высокая) 

3 С Пограничная (средняя) 

4 В Приемлемая (низкая) 

5 ОВ Незначительная (очень низкая) 

Применение предлагаемого метода к ситуации, приведенной в монографии 

З. И. Абдулаевой и А. О. Недосекина [2,с.87] рассмотрено в статье [68]. 

Пусть оценивается риск банкротства предприятия по двум блокам 

факторов: 1F  «Финансы» и 2F  «Управление» (см. таблицу 3.19). 

Таблица 3.19 

Наименование факторов и их уровни 

Фактор Наименование фактора Уровень фактора 

0F  Состояние предприятия * 

1F  Финансовый уровень * 

1.1F  Уровень ликвидности * 

1.1.1F  Уровень мгновенной ликвидности Очень низкий 

2.1.1F  Уровень обеспеченности оборотного капитала 

собственными средствами 
Средний 

3.1.1F  Уровень промежуточной ликвидности Низкий 

2.1F  Уровень автономии Высокий 
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Фактор Наименование фактора Уровень фактора 

3.1F  Уровень рентабельности Средний 

4.1F  Уровень оборачиваемости активов Средний 

2F  Управленческий уровень * 

1.2F  Уровень управленческой культуры  

топ-менеджмента 
Высокий 

2.2F  Уровень управленческой культуры 

финансистов 
Средний 

3.2F  Уровень деятельности служб маркетинга и 

рекламы 
Низкий 

4.2F  Уровень развития дистрибьюторской сети и 

филиалов 
Высокий 

«*» — уровень, который необходимо определить. 

При этом существует следующая система отношений предпочтений 

факторов: 

1F  2F , 

2.11.1 FF   3.1F  4.1F , 

1.1.1F  3.1.12.1.1 FF  . 

Для подуровня iF .2  рассмотрим две системы предпочтений: строгое 

предпочтение и усиленное. 

Для строгого предпочтения: 

4.23.22.21.2 FFFF  . 

Для усиленного предпочтения: 

4.23.22.21.2 FFFF  . 

Случай усиленного предпочтения на данном подуровне имеет 

обоснованный экономический смысл. В частности, значимость фактора 1.2F  — 

уровень топ-менеджмента, ЛПР может значительно выделить, так как топ-

менеджмент реализует политику предприятия, цели, стратегии, бизнес-планы и 

проекты. Данная группа руководителей ежедневно несет ответственность за 

эффективное управление предприятием. 
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Рассматриваемым факторам с соответствующими уровнями и наложенной 

системой отношений предпочтений соответствует древовидная иерархия вида 

(рис. 3.16). 

 

Рис. 3.16. Иерархия F с наложенной системой отношений предпочтений  

(для подуровня iF .2  — строгое предпочтение) 

Определим степень риска банкротства предприятия. По формуле (3.38) на 

основании данных таблиц 3.16–3.17 и формул (3.32)–(3.36) вычислим 

трапециевидные числа, соответствующие определенным уровням. По формуле 

(3.40) определим степень сходства нечетких чисел для установления уровня 

фактора. И на заключительном этапе для фактора 0F  дадим оценку степени риска 

банкротства предприятия по таблице 3.18. Результаты расчетов представлены в 

таблицах 3.20 и 3.21 соответственно для строгого и усиленного предпочтений 

подуровня iF .2 . 

Таблица 3.20 

Результаты расчетов (для строго предпочтения подуровня iF .2 ) 

Фактор 
Наименование 

фактора 

Уровень фактора 

(степень сходства с 

эталонным нечетким 

числом) 

Соответствующие  

трапециевидные числа 

0F  Состояние  

предприятия 
Средний (0,99) 0,36 0,45 0,56 0,66 

1F  Финансовый 

уровень 
Средний (0,95) 0,32 0,40 0,51 0,61 
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1.1F  Уровень  

ликвидности 
Низкий (0,98) 0,17 0,23 0,35 0,45 

2F  Управленческий 

уровень 
Средний (0,94) 0,41 0,51 0,61 0,71 

Таблица 3.21 

Результаты расчетов (для усиленного предпочтения подуровня iF .2 ) 

Фактор 
Наименование 

фактора 

Уровень фактора 

(степень сходства с 

эталонным нечетким 

числом) 

Соответствующие  

трапециевидные числа 

0F  Состояние  

предприятия 
Средний (0,92) 0,43 0,52 0,62 0,72 

1F  Финансовый 

уровень 
Средний (0,95) 0,32 0,40 0,51 0,61 

1.1F  Уровень  

ликвидности 
Низкий (0,98) 0,17 0,23 0,35 0,45 

2F  Управленческий 

уровень 
Высокий (0,98) 0,53 0,63 0,73 0,83 

Состояние предприятия распознается в обоих случаях как среднее, несмотря 

на высокий уровень управления предприятием. Играет роль присутствие низких 

оценок (низкий уровень ликвидности). 

Если при полученных данных, ЛПР отдаст предпочтение управлению 

предприятием, тогда в расчете уровня 0F  применима система отношений 12 FF   

по таблице 3.1. Уровень фактора 0F  станет Высоким со степенью сходства 0,9 и 

соответствующим трапециевидным числом (0,46; 0,55; 0,66; 0,76). Результаты 

анализа сильно зависят от применяемых в расчете систем отношений и весовых 

коэффициентов. 

Метод НКМ может быть использован и при комбинированном наборе 

входных факторов, то есть в случае, когда вместе с качественными значениями 

факторов имеются и количественные. В данной ситуации можно действовать 

двумя способами. Качественно «описать» количественные оценки, но такой 

подход может привести к потере точности. Другим способом совместного 

использования количественных и качественных показателей является метод 

нормировки количественного показателя (см. параграф 3.3). 
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3.3. Применение последовательностей Фишберна в моделях с 

количественными факторами 

 

Проведение экономической оценки, когда на входе имеются 

количественные данные, основывается на применении моделей вычисления 

интегрального показателя. [67, 73]. 

Стандартная модель (схема) вычисления интегрального комплексного 

показателя или комплексной оценки имеет структуру, представленную на рис. 

3.17. 

 

Рис. 3.17. Модель (схема) вычисления интегрального показателя 

На первом этапе выделяют показатели, которые являются составляющими 

обобщенного исследуемого показателя. По каждому из них происходит сбор 

количественных данных. Так как все показатели имеют различные абсолютные 

значения, необходимо произвести их нормировку для использования в модели. 

Разработано большое количество разных схем нормализации. Если желательно, 

чтобы значения нормализованного показателя принадлежали отрезку [0; 1], часто 

применяются методы естественной нормализации и метод нормализации Сэвиджа 

(см., например, [103,с.370–379]). 

Согласно методу естественной нормализации значения нормированных 

элементов вычисляются по формуле: 

 
minmax

minnorm

XX

XX
X

i

i



 , (3.41) 
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где iX  — количественное значение измеряемого показателя, maxX  и minX  — 

максимальное и минимальное значения, соответственно, среди всех 

наблюдавшихся значений iX  выбранного показателя. 

Согласно методу Сэвиджа значения нормированных элементов 

вычисляются по формуле: 

 
minmax

maxnorm

XX

XX
X

i

i



 . (3.42) 

Отличием этих двух методов является сохранение или смена знака 

ингредиента рассматриваемого показателя. Смена ингредиента — это изменение 

внутреннего признака информации — его ингредиента — на противоположный. 

Так, в случае применения естественной нормализации по формуле (3.41) 

norm
iX  и iX  обладают одинаковым знаком ингредиента. При этом преобразование 

по методу естественной нормализации обладает свойством строгого возрастания в 

том смысле, что normnorm

21 ii
XX 

 

тогда и только тогда, когда 
21 ii XX  . 

Нормализация Сэвиджа меняет знак ингредиента рассматриваемого 

показателя, то есть в случае применения формулы (3.42) 
norm
iX  и iX  обладают 

разными знаками ингредиента. При этом преобразование по методу нормализации 

Сэвиджа обладает свойством строго убывания в том смысле, что normnorm

21 ii
XX 

 
тогда и только тогда, когда 

21 ii XX  . 

На втором этапе происходит расчет весовых коэффициентов. Значения 

весов могут быть получены экспертным путем либо предложены ЛПР на 

основании имеющейся информации, его предпочтений и целей. Чаще 

применяются методы сравнения, упорядочивания, так называемые ранговые 

методы, при которых требуется упорядочить показатели с учетом оценки силы их 

воздействия. Рассмотрим метод усиленного нестрогого ранжирования, при 

котором допускается, что силы воздействия некоторых факторов совпадают, 

либо, наоборот, силы воздействия факторов значительно различаются, что 

следует отразить соответствующими значениями весовых коэффициентов. 
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Нахождение весовых коэффициентов для смешанных систем предпочтений 

рассмотрено выше в разделе 2. Для иллюстрации в таблице 3.22 приведены 

системы весов для четырех показателей с учетом нестрого и усиленного нестрого 

ранжирования, при построении которых использовались возрастающая 

обобщенная арифметическая прогрессия Фишберна и последовательность, 

порожденная числами Ферма соответственно. 

Таблица 3.22 

Системы весов для нестрого и усиленного нестрого ранжирования 

Система отношений  

предпочтений показателей 1p  2p  3p  
4p  

21 XX   43 XX   83  82  82  81  

21 XX   43 XX   3017  305  305  303  

Как и везде, где   — отношение предпочтения,   — отношение усиленного 

предпочтения,  — отношение безразличия. 

Значения весовых коэффициентов удовлетворяют условию нормировки и 

требованию неотрицательности: 














.,1,0

,1
1

nip

p

i

n

i

i
 

На третьем этапе рассчитывается итоговый интегральный показатель с 

учетом нормированных значений каждого показателя, вычисленных по формуле 

(3.41) или (3.42), и соответствующих весовых коэффициентов. В зависимости от 

вида влияния факторов друг на друга применяются аддитивная или 

мультипликативная формы интегрального показателя. 

Формула для вычисления аддитивной формы имеет вид: 

 



n

i

ii pXI
1

norm
, (3.43) 

где ip  — весовые коэффициенты i-го показателя; 
norm
iX  — нормированное 

значение i-го показателя. 
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Мультипликативная форма интегрального показателя вычисляется по 

формуле: 

  



n

i

p

i

i
XI

1

norm

. (3.44) 

Полученное по формуле (3.43) или (3.44) значение интегрального 

показателя принадлежит отрезку от 0 до 1. Интерпретацию данного значения 

осуществляет ЛПР с помощью определенной классификации. Очевидно, что 

итоговая интегральная оценка значительно зависит от выбранной системы 

отношений и соответствующих весовых коэффициентов. 

В качестве примера рассмотрим методику оценки потенциала 

конкурентоспособности товара. Данная методика предусматривает составление 

таблицы: по вертикали определяются характеристики, по которым производится 

сравнение, отмечается количественное значение характеристики или ее 

значимость, а по горизонтали — конкуренты по данной группе товаров, для 

которых соответственно заполняются поля таблицы. Далее по каждой 

характеристике рассчитываются нормированные значения по формулам (3.43), 

(3.44), в зависимости от влияния величины значения на конкурентоспособность 

(положительное или отрицательное). Для определения весомости каждой 

характеристики в общем показателе используются экспертные оценки и/или 

результаты опроса потребителя по степени предпочтения той или иной 

характеристики. Сравнение значений интегральных показателей помогает 

определить конкурентную позицию товара на рынке, а также проанализировать 

сильные и слабые стороны по отдельным характеристикам по сравнению с 

конкурентами. Положительной стороной данной методики является то, что не 

накладывается ограничение на количество применяемых характеристик. Поэтому 

данная методика является универсальной и позволяет оценить 

конкурентоспособность не только товара, но и предприятия в целом, отрасли, 

экономики региона или страны. 

Пусть производится оценка некоторого товара предприятия по четырем 

характеристикам (например, экономические: цена приобретения, стоимость 
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обслуживания; потребительские: эргономичность, функциональные возможности) 

в сравнении с тремя основными конкурентами. В ходе анализа получены 

нормированные данные по характеристикам (таблица 3.23). 

Таблица 3.23 

Нормированные показатели конкурентоспособности товара по конкурентам 

Предприятия 
Характеристики товара 

norm

1X  
norm

2X  norm

3X  
norm

4X  

анализируемое 

предприятие 
0,4 1 0 0,375 

1 конкурент 1 0,4 0,5 0 

2 конкурент 0 0,4 1 0,25 

3 конкурент 0,6 0 0 1 

Эксперты выявили следующие предпочтения между характеристиками 

(факторами): первостепенное значение имеет показатель первого фактора, на 

втором месте стоят второй и третий фактор, которые практически одинаковы по 

значимости, и четвертый фактор обладает наименьшим показателем значимости. 

Однако относительно степени важности характеристик мнения разошлись. 

Поэтому рекомендуется для сравнительного анализа использовать системы весов 

с учетом нестрого и усиленного нестрого ранжирования (таблица 3.22). 

Произведем расчет интегрального показателя конкурентоспособности по формуле 

(3.43) по данным таблиц 3.22 и 3.23 соответственно для нестрого и усиленного 

нестрого ранжирования весов (таблица 3.24). 

Таблица 3.24 

Интегральные показатели конкурентоспособности товара для нестрого и 

усиленного нестрого ранжирования весов 

Система 

 отношений  

предпочтений  

показателей 

Предприятия 

анализируемое 

предприятие 

1 

конкурент 

2 

конкурент 

3 

конкурент 

21 XX   43 XX   0,45 0,6 0,38 0,35 

21 XX  

43 XX   
0,43 0,72 0,26 0,44 

Для перевода рассчитанного количественного значения оценки 

конкурентоспособности товара по рассматриваемым предприятиям в 
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качественную оценку можно использовать модифицированную шкалу 

Харрингтона (на основании функции желательности Харрингтона), см. таблицу 

3.25. 

Таблица 3.25 

Дифференциация уровня конкурентоспособности товара 

Уровень 

 конкурентоспособности 

товара 

Интегральный показатель 

конкурентоспособности 

товара ( I ) 

Высокий 0,80–1,00 

Выше среднего 0,63–0,80 

Средний 0,37–0,63 

Низкий 0,20–0,37 

Крайне низкий 0,00–0,20 

На основе полученного значения интегрального показателя ЛПР, 

анализируя сильные и слабые стороны относительно конкурентов, делает вывод о 

конкурентоспособности товара, рассматривает возможные пути достижения более 

высокого уровня. Например, опираясь на расчеты, соответствующие нестрогому 

ранжированию характеристик, товары трех предприятий, включая анализируемое, 

имеют «средний» уровень конкурентоспособности, при этом товар четвертого 

предприятия — «низкий» уровень. Если придерживаться мнения, что первая 

характеристика играет более важную роль в системе предпочтений (допустим, это 

может быть цена приобретения), тогда, имея «средний» показатель 

конкурентоспособности вместе с одним из конкурентов, товар анализируемого 

предприятия уступает другому конкуренту, имеющему оценку «выше среднего». 

Выбор системы отношений предпочтений играет важную роль для принятия 

управленческого решения по выбору дальнейшей стратегии предприятия. Если 

важное значение имеет первая характеристика товара, тогда следует искать пути 

по улучшению данного показателя (например, если данная характеристика цена 

приобретения, тогда следует направить политику предприятия на проведение 

сезонных или функциональных скидок, уменьшение затрат на транспортировку и 

т. д.). Если предпочтение первой характеристики не так велико, тогда можно 

заняться улучшением двух других факторов. Окончательный выбор по 
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применению той или иной системы предпочтений осуществляет ЛПР на основе 

имеющейся в его распоряжении информации, его опыта, компетентности и 

профессиональной интуиции. 

 

3.4. Применение последовательностей Фишберна в теоретико-игровых 

моделях 

 

В пункте 1.2 для принятия управленческих решений в экономике 

рассмотрена концепция комбинированного применения статистических и 

антагонистических игр. Данная концепция находит широкое применение в 

различных областях принятия управленческих решений: оптимальное 

распределение имеющихся ресурсов между разными активами, реализация 

инвестиционных проектов и др. 

Применение игр для принятия управленческих решений в экономике 

должно начинаться с построения платежной матрицы, что является, во многих 

случаях, наиболее трудоемким этапом подготовки принятия решений. 

Рассмотрим следующую ситуацию [66]: предприятие располагает 

определенным запасом средств (это могут быть денежные средства, 

определенный вид ресурса: человеческий или технический ресурс работы 

системы). Данные средства могут быть направлены на повышение качества 

работы определенных активов предприятия (информационные активы, 

технические, работа с клиентами по разным направлениям и др.). Предполагается, 

что вложение средств в повышение качества работы определенных активов 

является независимым событием. ЛПР предприятия может вкладывать в 

различные активы разное количество средств. Ситуация распределения средств 

может быть описана математической моделью антагонистической игры с нулевой 

суммой. Обеспечение средствами активов предприятия является стратегией ЛПР, 

стремящегося оптимизировать работу активов. Противником в данной ситуации 

может выступать атакующая сторона, конкуренты, различные состояния 

экономической среды (ЭС). Таким образом, получаем АИ двух лиц с нулевой 
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суммой, где первый игрок — ЛПР в интересах предприятия, второй — 

экономическая среда (атакующая сторона, конкуренты, стремящиеся к 

противоположному результату). 

Пусть предприятие имеет n активов, работу которых необходимо 

определенным образом оптимизировать. ЛПР располагает k стратегиями, 

распределения средств в объеме R. В соответствии с выбранными стратегиями 

получаем матрицу распределения средств по активам, представленную в таблице 

3.26. Обозначим jq  — вероятность j -го возможного состояния экономической 

среды. 

Значения вероятностей jq  могут быть оценены из имеющихся 

статистических данных, получены экспертным путем либо предложены ЛПР на 

основании имеющейся информации, его предпочтений и целей. В частности, 

данные значения могут быть элементами последовательности Фишберна первого 

или второго порядков, рассмотренных выше в главе 2. 

Таблица 3.26 

Матрица распределения средств по активам 

№ стратегии 
Активы предприятия 

1 2  n 

1 11r  21r   nr1  

2 12r  22r   nr2  

     
k 1kr  2kr   nkr  

Вероятности 

воздействия 

ЭС 
1q  2q   nq  

При этом Rr
k

i

n

j

ji 
 1 1

. 

Пусть 

  jjijiji qrfa ; , ki ,1 , nj ,1 , (3.45) 

где jia  — показатель качества работы j-го актива в случае реализации i-й 

стратегии предприятия, значение которого может быть вычислено при помощи 
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 jjiji qrf ; , т. е. при помощи функции зависимости качества работы  

j-го актива от вложенных средств jir  в случае реализации i-й стратегии, где jq  — 

вероятность воздействия экономической среды. 

Так как цель ЛПР повышение качества работы активов предприятия, 

составим матрицу «выигрышей», элементами которой являются показатели 

качества работы активов (таблица 3.27). 

Таблица 3.27 

Матрица «выигрышей» — показатели качества работы актива 

№ стратегии 
Активы предприятия 

1 2  n 

1 11a  21a   na1  

2 12a  22a   na 2  

     
k 1ka  2ka   nka  

Если игра, заданная данной матрицей «выигрышей», имеет седловую точку, 

то стратегия распределения средств найдена. Иначе решение может быть найдено 

в смешанных стратегиях при сведении игры к паре взаимно-двойственных задач 

вида (3.46)–(3.48) и (3.49)–(3.51): 

 min
1




k

i

iyf , (3.46) 

 1
1




k

i

iji ya , nj ,1 , (3.47) 

 0iy , ki ,1 , (3.48) 

 max
1




n

j

jxz , (3.49) 

 1
1




n

j

jji xa , ki ,1 , (3.50) 

 0jx , nj ,1 . (3.51) 

Пусть    kyyy ;;; 21 y ,    nxxx ;;; 21 x  — оптимальные решения 

задач (3.46)–(3.48) и (3.49)–(3.51), соответственно, тогда цена игры вычисляется 

по формуле 
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 .
11


 
zf

v  (3.52) 

Формулы для нахождения компонент оптимальных смешанных стратегий 

первого и второго игроков имеют вид: 

 
  ii yvp , ki ,1 , 

  jj xvq , nj ,1 . (3.53) 

Объем средств jR , вкладываемый в  j-й актив, определяется с помощью 

найденной смешанной стратегии следующим образом: 

 



k

i

ijij qrR
1

, nj ,1 . (3.54) 

Следует отметить, что процесс построения платежной матрицы является 

одним из наиболее ответственных и сложных этапов теоретико-игрового 

моделирования. Именно применение НАИ позволяет в определенном смысле 

учесть и преодолеть проблему неполноты информации. 

Рассмотрим применение предлагаемого метода на примере формирования 

бюджета информационной безопасности предприятия [70]. Информационные 

системы на сегодня и для коммерческих, и для государственных предприятий 

являются важной частью работы всей системы управления, поэтому для 

эффективной защиты от атак предприятие вкладывает средства в зависимости от 

оценки уровня безопасности. Для выявления недостатков в системе мер защиты 

информации проводится аудит информационной безопасности (ИБ), например 

экспертный аудит безопасности на основе опыта экспертов, участвующих в 

процедуре обследования. Информационная система состоит из нескольких 

подсистем, каждая из которых предназначена для выполнения своей функции: 

техническое обеспечение (компьютеры; устройства сбора, накопления, обработки 

и передачи информации; оргтехника), программное обеспечение (общесистемное 

и прикладное), информационное обеспечение (базы данных, системы 

классификации информации, системы документации), организационно-правовое 

обеспечение. Предприятие стремится минимизировать ущерб и максимизировать 

вероятность отражения нападения. Пусть риску нападения на информационную 

систему подвергается 4 актива (подсистемы), на обеспечение ИБ которых 

планируется выделить 40 ДЕ. Вероятность нападения с нанесением ущерба может 
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быть представлена в виде произведения вероятности атаки на вероятность того, 

что атака достигла своей цели и нанесла ущерб предприятию. При расчете 

значений вероятности атаки и вероятности нанесения ущерба в ходе атаки 

используются статистические методы и экспертные оценки. Статистические 

методы опираются на анализ накопленных данных о реально случавшихся 

инцидентах, связанных с нарушением ИБ. Из-за недостатка статистических 

данных не всегда удается применить статистические методы. Пусть в ходе аудита 

ИБ получены на основании статистических данных вероятности нанесения 

ущерба при осуществлении атаки. Мнения экспертов совпали в ранжировании 

проведения атак на подсистемы, но разошлись по количеству возможных атак. В 

силу данного решения для определения вероятности проведения атаки выбраны 

системы весов для четырех подсистем с учетом нестрого и усиленного нестрого 

ранжирования, при построении которых использовались возрастающая 

обобщенная арифметическая прогрессия Фишберна и последовательность, 

порожденная числами Ферма, соответственно. В зависимости от мнения 

экспертов, получены следующие данные для вероятности нападения с нанесением 

ущерба (таблица 3.28). 

Таблица 3.28 

Вероятность нападения с нанесением ущерба на подсистемы предприятия в 

зависимости от мнения двух групп экспертов 

 
Подсистемы предприятия 

1 2 3 4 

Вероятности нанесения ущерба 0,1 0,05 0,03 0,1 

Вероятности 

проведения 

атаки 

1-я гр. экспертов 83  82  82  81  

2-я гр. экспертов 3017  305  305  303  

Вероятности 

нападения с 

нанесением 

ущерба 

1-я гр. экспертов 0,0375 0,0125 0,0075 0,0125 

2-я гр. экспертов 0,0567 0,0083 0,005 0,01 

Возможное распределение средств по дополнительной защите 

информационной системы может быть осуществлено стратегиями, 

представленными в таблице 3.29. 
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Таблица 3.29 

Распределение средств по подсистемам предприятия 

№ стратегии 
Подсистемы предприятия 

1 2 3 4 
1 5 10 5 20 
2 5 7 10 18 
3 10 13 13 4 
4 12 5 10 13 
5 15 10 10 5 

Вероятности 

нападения с 

нанесением 

ущерба 

1-я гр.  

экспертов 
0,0375 0,0125 0,0075 0,0125 

2-я гр.  

экспертов 
0,0567 0,0083 0,005 0,01 

Вероятность отражения нападения на  j-ю подсистему, в которую вложено 

jir  средств, можно считать равной (см., например, [120]): 

   jir

jji qa  11 , ki ,1 , nj ,1 . (3.55) 

В данном случае принималась гипотеза, что чем больше вероятность 

нападения с нанесением ущерба, тем более совершенны применяемые 

стандартизированные средства защиты, следовательно, данная подсистема 

требует меньших затрат на устранение недостатков в обеспечении безопасности. 

Используя формулу (3.55), в зависимости от мнений экспертов получим 

матрицы вероятностей сохранения ИБ подсистем (таблицы 3.30 и 3.31). 

Таблица 3.30 

Матрица вероятностей отражения атаки для 1-й группы экспертов 

№ стратегии 
Подсистемы предприятия 

1 2 3 4 
1 0,174 0,118 0,037 0,222 
2 0,174 0,084 0,073 0,203 
3 0,318 0,151 0,093 0,049 
4 0,368 0,061 0,073 0,151 
5 0,436 0,118 0,073 0,061 
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Таблица 3.31 

Матрица вероятностей отражения атаки для 2-й группы экспертов 

№ стратегии 
Подсистемы предприятия 

1 2 3 4 
1 0,253 0,080 0,025 0,182 
2 0,253 0,057 0,049 0,165 
3 0,442 0,103 0,063 0,039 
4 0,503 0,041 0,049 0,122 
5 0,583 0,080 0,049 0,049 

Для обеих задач седловая точка отсутствует, то есть игра не решается в 

чистых стратегиях. 

Произведем поиск смешанных стратегий, решая задачи линейного 

программирования (3.56)–(3.58) и (3.59)–(3.61) по данным таблиц 3.30 и 3.31 

соответственно. 

 min543211  yyyyyf , (3.56) 

 





















,1061,0151,0049,0203,0222,0

,1073,0073,0093,0073,0037,0

,1118,0061,0151,0084,0118,0

,1436,0368,0318,0174,0174,0

54321

54321

54321

54321

yyyyy

yyyyy

yyyyy

yyyyy

 (3.57) 

 0iy , 5,1i . (3.58) 

 min543212  yyyyyf , (3.59) 

 





















,1049,0122,0039,0165,0182,0

,1049,0049,0063,0049,0025,0

,1080,0041,0103,0057,0080,0

,1583,0503,0442,0253,0253,0

54321

54321

54321

54321

yyyyy

yyyyy

yyyyy

yyyyy

 (3.60) 

 0iy , 5,1i . (3.61) 

Решение игр в смешанных стратегиях дает следующие результаты 

соответственно для первого и второго случаев:  0;0;7466,0;2534,0;01 


p  и 

 0;0;8312,0;1688,0;02 


p . При этом рекомендуемые объемы финансирования 

подсистем получаются равными:  5479,7;2397,12;4795,11;7329,8  и 

 3634,6;4936,12;9871,11;1559,9 . Очевидны изменения результата в зависимости 
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от применяемых экспертами весовых коэффициентов. Окончательное решение по 

распределению средств на финансирование ИБ принимает ЛПР, учитывая не 

только вероятность отражения атаки, но и величину возможного ущерба при 

воздействии на определенную подсистему. 

 
 

3.5. Применение прикладных программ, основанных на использовании 

последовательностей Фишберна, в процессе принятия управленческих 

решений  

 

В экономике качество и эффективность управления напрямую зависят от 

обоснованности принимаемых решений. Перед лицом, принимающим решения 

(ЛПР), встает вопрос максимально полно и детально провести анализ 

сложившейся ситуации или проблемы. Во многих областях экономики наиболее 

используемым методом остается интегральное оценивание. Данный метод дает 

возможность формализованного решения повторяющихся ситуаций по 

организации планирования и контроля. Однако каждая деятельность имеет 

высокую степень неопределенности, что приводит к рассмотрению различных 

вариантов решения. Для учета фактора риска требуется проанализировать 

несколько альтернатив или сценариев с применением вероятностных понятий и 

статистического анализа. В настоящее время роль аналитического отдела состоит 

не только в том, чтобы предоставить необходимую информацию руководителю, и 

даже не в том, чтобы помочь принять оптимальное решение с конкретными 

данными. Необходимо уметь правильно подать материал и предоставить 

возможность использования информационно-аналитических моделей самим ЛПР 

в реальном времени для повторяющихся ситуаций, без глубокого изучения 

сложных аналитических расчетов. На данный момент сформирован достаточно 

развитый аппарат теории принятия решений и методы обработки данных, однако 

для конкретных предприятий требуется моделирование адаптивной системы 

построения оценок и ее применение непосредственно для принятия 

управленческих решений [30]. 
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В качестве примера рассмотрим использование простейшей прикладной 

программы, которую может применять ЛПР после предварительного анализа и 

построения математической модели аналитическим отделом [69]. 

Рассмотрим вычисление интегрального показателя с количественными 

входными данными разной размерности на примере показателя 

конкурентоспособности предприятия. Пусть для планирования действий ЛПР 

необходимо периодически проводить оценку своего предприятия с 

конкурирующими организациями. Для сравнения выбираются показатели, 

информацию о которых можно получить. Причем состав данного набора 

показателей может меняться. Для каждого показателя задается степень важности, 

по отношению к другим. Данные значения определяются на основании 

экспертной оценки либо на основании опыта и компетенции ЛПР. Этапы 

вычисления подробно рассмотрены в пункте 3.3 данной главы. 

Пусть сравнительному анализу подлежат пять предприятий-конкурентов 

(П-К), в качестве системы оцениваемых показателей выбрано четыре ресурса, 

которые определяют интегральную конкурентоспособность. Для простоты 

построения расчетов взяты ресурсы с положительной степенью влияния. Это 

могут быть: финансовый менеджмент (рентабельность), доля рынка, кадровый 

менеджмент, материально-техническая база. Первые два измеряются в процентах, 

вторые два имеют денежные единицы измерения.  

Согласно методу естественной нормализации значения нормированных 

элементов вычисляются по формуле (3.41). Для выбранных ресурсов строится ряд 

бинарных отношений приоритета (2.16). На основании данного ряда вычисляется 

вектор весовых коэффициентов (2.17) для рассматриваемых ресурсов по формуле 

(2.21). Расчет интегральной оценки произведем в аддитивной форме (3.43). Для 

перевода рассчитанного количественного значения оценки 

конкурентоспособности по рассматриваемым предприятиям в качественную 

оценку можно использовать модифицированную шкалу Харрингтона (на 

основании функции желательности Харрингтона), см. таблицу 3.25. 

Реализацию данного расчета можно спрограммировать с помощью 

приложения VBA в Excel для многократного применения. Пусть имеются данные 

по рассматриваемым предприятиям (таблица 3.32) [71]. 
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Таблица 3.32 

Числовые значения показателей предприятий 

Предприятия-

конкуренты 

(П-К)  

по порядку 

Показатели деятельности предприятия (ПДП) 

Фин.менеджмент 

(%) 

Доля рынка 

(%) 

Кадровый  

менеджмент 

(тыс. руб./чел.) 

Матер.-техн. 

(тыс. руб.) 

1 1,5 4,5 200 40000 

2 3,5 3,0 200 10000 

3 5,2 3,4 150 15000 

4 2,0 2,0 120 20000 

5 5,0 6,5 160 60000 

ЛПР располагает следующими коэффициентами попарного сравнения: 

 1;1;2;1RV . Эти показатели означают такую ситуацию попарного сравнения: 

первому показателю всегда задаем единицу; второй показатель в два раза 

приоритетнее первого; третий и четвертый показатели по важности аналогичны 

второму. 

Осуществление расчетов в приложении (рис. 3.18): 

1 шаг: задать количество предприятий и показателей, в выделенную 

матрицу ввести данные числовые значения из таблицы 3.32 (рис. 3.19). 

 

Рис. 3.18. Кнопки пошагового осуществления программы 
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Рис. 3.19. Ввод данных после определения количества предприятий и  

показателей 

2 шаг: задать коэффициенты попарного сравнения показателей (рис. 3.20). 

 

Рис. 3.20. Ввод коэффициентов попарного сравнения показателей. 

3 шаг: кнопка запуска программы «получить итоги» — выводит итоговые 

интегральные показатели с оценкой уровня конкурентоспособности (рис. 3.21). 

 

Рис. 3.21. Итоговые значения оценки и уровня конкурентоспособности  

по заданным предприятиям 

Если ЛПР имеет основания для рассмотрения нескольких альтернатив в 

зависимости от информации о значимости показателей, то изменяя при вводе 

коэффициенты попарного сравнения, можно получить альтернативные варианты 

оценки.  

Прикладные программы, адаптированные под нужды конкретного 

предприятия, помогают проведению экстренного анализа ситуации для принятия 
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решения в условиях неопределенности. Зная основные принципы ввода данных, 

ЛПР может само осуществить расчет необходимой оценки для нескольких 

альтернатив. Альтернативы могут быть рассмотрены в зависимости от 

предполагаемых бинарных отношений приоритета показателей. Переход от 

бинарных отношений приоритета к вектору весовых коэффициентов 

осуществляется по третьей формуле Фишберна. Выбор альтернатив 

осуществляется экспертным путем либо ЛПР на основании имеющейся 

информации, опыта и профессиональной интуиции. 

 

3.6. Применение последовательностей Фишберна в гибридных системах 

поддержки принятия решений в экономике 

 

Как видно из предыдущих пунктов, практика управления разработала 

достаточно разнообразное количество методов и моделей, которые 

ориентированы на поиск решения управленческих задач конкретных видов в 

условиях неопределенности. Данные методы и модели по определенным 

признакам классифицированы, и процесс управления можно свести к применению 

набора типовых моделей, которые, в свою очередь, можно модифицировать до 

авторской модели. 

Обзор исследований, представленных в первой главе, демонстрирует, что в 

последнее время появляется много научных работ  по вопросам системы 

поддержки принятия решений (СППР), ориентированных на управленческие 

задачи различного вида и уровня [92]. Современным методам построения СППР 

предшествовали работы и исследования российских ученых ([38], [39], [40], [53], 

[13], [33], [61], [34], [44], [12], [35]). 

Гибридные СППР следует отметить отдельно, так как построение 

оптимальной модели для принятия решений чаще основывается не на одном 

методе, а применении различных методов и моделей в комплексе. В последнее 

время появляется достаточно много разных работ посвященных гибридным 
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СППР. Кроме диссертационных работ, рассмотренных выше, имеется достаточно 

большое число публикаций на эту тему. 

В статье А. Н. Полетайкина [56] рассматривается гибридный подход к 

построению СППР при продвижении товаров на региональный рынок на основе 

нечеткой имитационно-оптимизационной модели, которая на основании 

трудноформализуемых исходных данных вырабатывает прогноз реализации 

товара потребителю, оптимальный по социальным и экономическим показателям. 

В работе [3] рассматривается ряд моделей для поддержки принятия решений 

в динамических ситуациях, характеризующихся слабой структурированностью, 

основанной на гибридной системе, интегрирующей нечеткую иерархическую 

модель оценивания и нечеткую когнитивную модель ситуации. В статье 

О. В. Рогозина [77] рассмотрен программный комплекс анализа характеристик 

инновационного проекта, разработанный с помощью созданной нейро-нечеткой 

модели, благодаря которой можно получить эффективное решение для 

слабоструктурируемых задач. Используемая гибридная модель обеспечивает 

получение эффективного решения на основе анализа качественных 

характеристик. 

Основная задача всех СППР — обработка и анализ данных и получение 

возможных альтернатив для принятия решения. Следует учитывать, что принятие 

взвешенных стратегических решений возможно в результате объединения 

результирующего показателя после обработки и анализа данных с ощущением 

настоящего и нового течений в экономических процессах. Поэтому методология 

моделирования должна учитывать знания экспертов о законах развития 

моделируемой ситуации. В экономике при принятии решений в условиях 

неопределенности и риска особая роль отводится лицу, принимающему решение 

(ЛПР). Ведь именно от выбора ЛПР зависит исход. В свою очередь ЛПР 

опирается на имеющуюся информацию, свои собственные знания в 

рассматриваемой области и опыт, полученный за определенный промежуток 

времени. Анализ ситуации, выбор альтернатив и принятие решения ЛПР и 
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является предметом исследования когнитивной экономики. На сегодняшний 

момент имеется достаточно большое количество работ, посвященных различным 

направлениям развития когнитивной экономики, как зарубежных, так и 

отечественных исследователей. Например, в работе [1] Н. М. Абдикеева, 

А. Н. Аверкина, Н. А. Ефремовой рассматривается когнитивная экономика в 

широком и узком смыслах. С точки зрения данных авторов, когнитивная 

экономика в широком смысле состоит из интеллектуальных систем, управления 

знаниями и когнитивной экономики в узком смысле. Пересечение данных 

областей порождает такие направления современной экономики как бизнес-

аналитика, гибридные интеллектуальные системы, когнитивный маркетинг. 

Методы и модели, применяемые в данных направлениях, охватывают весь 

процесс принятия решения ЛПР, начиная от анализа и оценки сложившейся 

ситуации, заканчивая выбором оптимальной альтернативы. 

Для принятия управленческих решений, адекватно учитывающих 

особенности сложившейся ситуации и предпочтения лица, принимающего 

решения, в комплекс моделей рекомендуется включать методы, с применением 

последовательностей Фишберна. С другой стороны, для принятия взвешенного 

стратегического решения СППР должна  включать современные цифровые 

модели анализа данных с обязательным учетом знаний о возможном развитии 

экономической ситуации. Объединение данных моделей можно назвать 

когнитивными гибридными СППР. Например, простейшая когнитивная 

гибридная СППР — это комплекс моделей, включающих обработку и анализ 

данных совместно с конечной оценкой полученных альтернатив для принятия 

решений. ЛПР задает вектор весовых коэффициентов для определенного метода 

оценки. Так общую структуру простейшей когнитивной гибридной СППР можно 

представить в следующем виде (рис. 3.22). 
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Рис. 3.22. Общая структура СППР с применением весовых коэффициентов 

Для примера рассмотрим теоретико-игровой метод принятия решений о 

выборе наиболее надежных проектов, который может быть представлен в виде 

выполнения следующей последовательности этапов (шагов) схемы теоретико-

игрового метода принятия решений о выборе наиболее надежных проектов, 

основанного на применении последовательностей Фишберна. 

Шаг 1. Формирование ЛПР множества  ki;...;;...;2;1I  всех проектов, 

рассматриваемых им для возможной реализации в настоящий момент времени. 

Шаг 2. Формирование ЛПР множества  nj;...;;...;2;1J  всех возможных 

сценариев, т. е. всех возможных состояний, в которых может оказаться 

экономическая среда. 

Шаг 3. Оценка экономической эффективности каждого из рассматриваемых 

проектов для каждого сценария на основе расчетных значений выбранного 

показателя эффективности и построение матрицы  jink r RR , где jir  — 

значение выбранного показателя эффективности (например, значение прибыли, 

получаемой ЛПР) в случае, когда ЛПР принял решение о реализации i -го 

проекта, а экономическая среда оказалась в своем j –м возможном состоянии. 

Шаг 4. Оценка величин jq  неизвестных значений вероятностей возможных 

сценариев, при этом в качестве последовательности, производящей 
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соответствующую последовательность Фишберна, следует выбрать 

последовательность  n

jja
1
, обладающей всеми свойствами, которыми с точки 

зрения ЛПР должно обладать распределение вероятностей возможных состояний 

экономической среды. 

Шаг 5. Вычисление точечных оценок соответствующих числовых 

характеристик, например, оценок ожидаемых (средних) значений по формулам 





n

j

jjii qrm
1

ˆ , ki ,1 , или оценок дисперсий по формулам 
2

1

22 ˆ i

n

j

jjii mqr  


, 

ki ,1 . 

Шаг 6. Выбор наиболее надежного проекта, подлежащего реализации, на 

основании применения критерия, характерного для принятия управленческих 

решений в поле первой информационной ситуации. Номер i  наиболее надежного 

проекта согласно критерию Байеса определяется равенством 

i
i

mi maxarg , 

а согласно критерию минимума дисперсии функционала оценивания 

2minarg i
i

i  . 

Для окончательного выбора наиболее надежного проекта (или нескольких 

наиболее надежных проектов), подлежащего (подлежащих) реализации, ЛПР 

может задать минимально допустимый уровень значения выбранного показателя 

эффективности 
C , при этом в случае сравнения ожидаемых (средних) значений 

этого показателя ЛПР принимает положительное решение о реализации i -го 

проекта тогда и только тогда, когда справедливо соотношение 
 Cmi  и для 

реализации этого проекта имеются все необходимые ресурсы. 

Так для реализации первого и второго шага необходимо иметь 

определенную базу данных, выбрать методы и модели для анализа данных. На 

четвертом шаге производится выбор весовых коэффициентов. Далее вычисляются 

точечные оценки необходимых числовых характеристик, на основании которых 

ЛПР осуществляет выбор наиболее надежного проекта.  
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При принятии управленческих решений необходимо отвести 

главенствующую роль опыту, компетентности и профессиональной интуиции 

ЛПР. Это относится не только к выбору применяемых методов и моделей, но и к 

применяемым в моделях оценкам распределения вероятностей возможных 

состояний экономической среды, векторам весовых коэффициентов. 

В основном для применения ЛПР любых гибридных СППР создается 

приложение, реализующее созданный комплекс моделей в автоматизированном 

виде ([7], [31], [49], [111], [35]). Разработкой комплекса моделей занимаются 

эксперты (аналитический отдел), которые в дальнейшем отвечают за корректную 

работу системы. ЛПР задает вектор весовых коэффициентов для определенного 

метода оценки. Критерии эффективности выбираются совместно, к ним 

относятся, при использовании моделей НКМ, функции принадлежности. Для 

более качественного анализа сложившейся ситуации и выбора дальнейшего 

действия необходимо создавать автоматизированные СППР адаптированные под 

конкретное предприятие. 

Следует признать, что особенности современного технического уклада 

требуют ускорения цифровой трансформации реального сектора экономики в 

рамках создания сильных успешных инновационных компаний, поддержки 

высокотехнологичного экспорта и расширения спроса на инновации внутри 

Российской Федерации. Следовательно, необходимо, чтобы национальные 

проекты России осуществлялись, прежде всего, на основе разработки и внедрения 

программных продуктов отечественного производства. 

Краткие выводы к главе 3. Для обобщенной модели Марковица задачи 

выбора эффективного портфеля учет значимости предшествующих периодов 

времени для настоящего момента, то есть используемая оценка распределения 

вероятностей состояний экономической среды, может оказывать влияние на вид 

множества эффективных портфелей. Предложен метод применения 

последовательностей Фишберна в моделях с интегральным показателем, 

включающего качественные и количественные исходные данные, в теоретико-

игровых моделях. 
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Если об уровне значимости возможных состояний экономической среды 

неизвестно ничего, кроме того, что они расположены в порядке возрастания 

уровня значимости, то это означает, что оценка распределения вероятностей 

состояний экономической среды должна представлять собой неубывающую 

последовательность, удовлетворяющую простому линейному отношению 

порядка. Выбрав в качестве последовательности, производящей 

последовательность Фишберна, последовательность, обладающую желаемыми 

свойствами (например, можно использовать неубывающую прогрессию, в т. ч. 

константу, а также такие последовательности, как числа Фибоначчи, числа 

Мерсенна, числа Евклида, числа Ферма), ЛПР может применить в качестве 

оценки распределения вероятностей состояний экономической среды 

последовательность Фишберна, порожденную выбранной им 

последовательностью. 

Если же об уровне значимости возможных состояний экономической среды 

известно, что уровень значимости очередного состояния экономической среды не 

меньше совокупного (суммарного) уровня значимости всех предшествующих 

альтернатив, вместе взятых, то это означает, что оценка распределения 

вероятностей состояний экономической среды должна представлять собой 

возрастающую последовательность, удовлетворяющую частично усиленному 

линейному отношению порядка. Выбрав в качестве последовательности, 

производящей последовательность Фишберна, последовательность, обладающую 

желаемыми свойствами (например, можно использовать возрастающую 

геометрическую прогрессию, знаменатель которой является достаточно большим 

числом, а также такие последовательности, как числа Мерсенна, числа Евклида, 

числа Ферма), ЛПР может применить в качестве оценки распределения 

вероятностей состояний экономической среды последовательность Фишберна, 

порожденную выбранной им последовательностью. 

Если имеет место смешанная система предпочтений, то в качестве оценки 

вектора весовых коэффициентов приоритета удобно использовать 

соответствующую последовательность Фишберна второго порядка. 
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Последовательность Фишберна второго порядка представляет собой монотонную 

(не обязательно строго монотонную) последовательность неотрицательных чисел, 

удовлетворяющих условию нормировки. 

Существующие экономико-математические методы и модели являются 

инструментарием применения последовательностей Фишберна в современных 

экономических исследованиях для принятия управленческих решений в условиях 

хаотичности, случайности, неопределенности, конфликтности и обусловленного 

ими экономического риска. Основные результаты главы отражены в работах 

соискателя [63, 64, 66, 67, 68, 69, 73, 83, 97, 104]. 

  



150 

 

ЗАКЛЮЧЕНИЕ 

 

В диссертационной работе рассмотрено построение вектора оценок 

вероятностей возможных состояний экономической среды на основе 

классических последовательностей натуральных чисел в поле третьей или 

четвертой информационной ситуации. Предложены методы и модели применения 

построенного данным образом вектора оценок вероятностей для моделирования 

процессов принятия управленческих решений в экономике, позволяющего 

адекватно учитывать такие ее особенности, как случайность, хаотичность, 

неполнота информации, неопределенность, конфликтность, конкуренция, 

противоречивость, альтернативность, многокритериальность и обусловленный 

ими экономический риск (ЭР), а также субъективные предпочтения лица, 

принимающего решения (ЛПР). Проведенное исследование позволяет прийти к 

следующим выводам. 

1. Анализ и систематизация существующих в теории принятия решений и 

управления вероятностно-статистических моделей показывают значимость 

использования вектора оценок вероятностей возможных состояний 

экономической среды или оценок неизвестных значений весовых 

коэффициентов экономических показателей. Среди проанализированных 

вероятностно-статистических моделей с использованием вектора весовых 

коэффициентов, применяемых в поле третьей и четвертой информационных 

ситуаций, в зависимости от решаемых задач и типа имеющихся данных 

целесообразно выделить такие наиболее важные классы моделей: 

современная теория портфеля; модели с интегральным показателем, 

включающие качественные исходные данные; модели с интегральным 

показателем, включающие количественные исходные данные; теоретико-

игровые модели. 

2. Обобщенные прогрессии Фишберна, удовлетворяющие заданному 

линейному отношению порядка и условию максимизации значения 

энтропии Шеннона, целесообразно применять как оценки вероятностей, 

если неизвестно никакой иной информации. 
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В диссертационной работе получено утверждение о максимизации значения 

энтропии Шеннона на множестве всех обобщенных геометрических 

прогрессий Фишберна, удовлетворяющих соответствующему частично 

усиленному линейному отношению порядка. 

3. Последовательности Фишберна можно корректно применять и для оценки 

вероятностей экономической среды, и для оценки вектора весовых 

коэффициентов. Последовательность Фишберна представляет собой 

монотонную последовательность неотрицательных чисел, сумма которых 

равна числу 1, а последовательность, производящая последовательность 

Фишберна, — монотонную последовательность неотрицательных чисел, 

сумма которых является положительным числом. В случае смешанной 

системы предпочтений для корректной оценки вектора весовых 

коэффициентов целесообразно применять последовательности Фишберна 

второго порядка. Последовательность Фишберна второго порядка — это 

монотонная (не обязательно строго) последовательность неотрицательных 

чисел, удовлетворяющих условию нормировки. Последовательности 

Фишберна первого порядка частный случай последовательностей 

Фишберна второго порядка, для которых все частоты равны единице. 

4. Последовательность Фишберна, используемая как оценка распределения 

вероятностей состояний экономической среды для приведения обобщенной 

модели Марковица задачи выбора эффективного портфеля к классической 

модели Марковица, существенно влияет на вид (и на состав, и на структуру) 

множества эффективных портфелей. Обобщенные модели Марковица 

задачи выбора эффективного портфеля в поле третьей ИС представляют 

собой задачи трехкритериальной оптимизации с дополнительными 

ограничениями для возможных значений вероятностей. В поле третьей ИС, 

когда на основе вербальной (или статистической) информации можно на 

качественном уровне установить приоритетность состояний экономической 

среды, для приведения трехкритериальной задачи поиска эффективного 

портфеля к классической модели Марковица оценку распределения 

вероятностей состояний экономической среды можно найти на основе 
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применения последовательностей Фишберна, в частности, обобщенных 

прогрессий Фишберна, удовлетворяющих желаемым свойствам. 

5. Предложен метод применения последовательностей Фишберна в моделях с 

интегральным показателем, включающих качественные и количественные 

исходные данные, в теоретико-игровых моделях. Предлагаемые экономико-

математические методы и модели применения последовательностей 

Фишберна представляют собой удобный инструментарий для принятия 

управленческих решений в условиях хаотичности, случайности, 

неопределенности, конфликтности и обусловленного ими экономического 

риска. Результаты анализа рассматриваемой ситуации и процесса принятия 

управленческих решений сильно зависят от применяемых в моделях систем 

отношений и весовых коэффициентов т. е. от применяемых 

последовательностей Фишберна. Необходимость применения 

последовательностей Фишберна в теоретико-игровых моделях обусловлена, 

в частности, тем, что при теоретико-игровом моделировании экономики не 

для всех элементов платежной матрицы известны их точные истинные 

значения либо они неизвестны вообще, но известен (или можно определить) 

правило, согласно которому их можно найти. Для поиска значений 

элементов платежной матрицы часто требуется оценить вероятности 

возможных состояний экономической среды. 

6. Изучение и рассмотрение некоторых моделей с применением 

последовательностей Фишберна осуществлялось в рамках учебного 

процесса преподавания дисциплин «Инвестирование и бизнес-

планирование» и «Управление инновациями на предприятии», включенных 

в учебный план студентов, обучающихся по направлению подготовки 

38.03.05 и 38.04.05 «Бизнес-информатика» (бакалавриат и магистратура). 

Предложенные методы и модели построения вектора оценок вероятностей 

применялись для моделирования процессов принятия управленческих 

решений в деятельности акционерного общества «Международный 

аэропорт “Симферополь”». 
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